WorldWideScience

Sample records for construction materials technical

  1. 77 FR 23117 - Rigging Equipment for Material Handling Construction Standard; Correction and Technical Amendment

    Science.gov (United States)

    2012-04-18

    ... Equipment for Material Handling Construction Standard; Correction and Technical Amendment AGENCY... AND HEALTH REGULATIONS FOR CONSTRUCTION Subpart H--Materials Handling, Storage, Use, and Disposal 0 1... amendment. SUMMARY: OSHA is correcting its sling standard for construction titled ``Rigging Equipment for...

  2. Construction demolition wastes, Waelz slag and MSWI bottom ash: a comparative technical analysis as material for road construction.

    Science.gov (United States)

    Vegas, I; Ibañez, J A; San José, J T; Urzelai, A

    2008-01-01

    The objective of the study is to analyze the technical suitability of using secondary materials from three waste flows (construction and demolition waste (CDW), Waelz slag and municipal solid waste incineration (MSWI) bottom ash), under the regulations and standards governing the use of materials for road construction. A detailed technical characterization of the materials was carried out according to Spanish General Technical Specifications for Road Construction (PG3). The results show that Waelz slag can be adequate for using in granular structural layers, while CDW fits better as granular material in roadbeds. Likewise, fresh MSWI bottom ash can be used as roadbed material as long as it does not contain a high concentration of soluble salts. This paper also discusses the adequacy of using certain traditional test methods for natural soils when characterizing secondary materials for use as aggregates in road construction.

  3. ALLUVIAL DEPOSITS AS A SUBSOIL AND MATERIAL FOR BASIC HYDRO-TECHNICAL CONSTRUCTIONS

    Directory of Open Access Journals (Sweden)

    Jędrzej Wierzbicki

    2015-11-01

    Full Text Available The article presents an analysis of geotechnical parameters of the alluvial deposit (the areas of the Vistula and Warta river valleys with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. Strength and deformation parameters of the subsoil tested were identified by the CPTU (cone penetration test and DMT (flat dilatometer test methods, as well as by the vane test (VT. The article includes the analysis of overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 4 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne’s formula (1995 was used to determine the M0 modulus from the CPTU test. The usefulness of the alluvial deposit as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterized by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition. On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.

  4. USAGE OF FILTERS FROM FIBROUS MATERIALS IN AMELIORATIVE AND HYDRO-TECHNICAL CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    V. T. Klimkov

    2016-01-01

    Full Text Available Construction of first drainage tubular systems has been facing such problem as their protection against silting-up by soil particles penetrating through input openings. Searches and investigations have led to usage of various fibrous materials which are playing the role of filters. At the beginning glass-fibre mats have been widely applied for this purpose. However, the mats possessing good filtration properties have had a number of fundamental disadvantages. Works executed at the Institute of Mechanics of Metal Polymeric Systems (Gomel, Republic of Belarus have played a big role in usage of plastic materials. A new technology has been developed with the purpose to obtain thermally-bonded fibres from thermoplastic material. The fibres have been called as polyethylene mats. Investigation of their properties has been carried out under load and it has revealed that their lateral and longitudinal permeability becomes equal at specified pressures, in other words the material takes an isotropic state. The considered interactions of filtrating material and skeleton frame have shown that the main water filtration occurs directly above perforation holes while the material above blind frame sections does not participate in the process. Due to this a new design of the filtrating element has been developed and it can be used in water intake systems for surface and underground water. The filtrating element consists of the skeleton frame with openings and a filtration covering which is installed on the frame. Water-feeding groove cavities are located on the skeleton frame and they are dispersing from perforation holes in the form of beams. These grooves can have side branches of the second, third and other orders. As beam-like arrangement of grooves creates the shortest flow paths for filtrated water from periphery to frame holes and area of groove cross section exceeds the area of poral holes in water in-take covering by a factor of hundreds, it is possible

  5. Construction material

    Science.gov (United States)

    Wagh, Arun S [Orland Park, IL; Antink, Allison L [Bolingbrook, IL

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  6. Materials Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-08-01

    Roadmap identifying the efforts of the Materials Technical Team (MTT) to focus primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks) which enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed.

  7. Technical mechanics in constructional reactor safety

    International Nuclear Information System (INIS)

    Matthees, W.

    1979-01-01

    Reactor safety is based on close cooperation between a number of technical and scientific disciplines; most problems of reactor technology can be solved with the aid of technical mechanics. At the 5th International Conference on Structural Mechanics in Reactor Technology (5th SMIRT), one of the biggest conferences in the field of applied technical mechanics, about 800 papers were read giving the latest state of knowledge in the field of constructional reactor safety. The main subject of the conference was the analysis of material behaviour under high loads; the information and methods of these analysis go far beyond what is required in the conventional field. (orig./UA) [de

  8. Construction and material specification

    Science.gov (United States)

    2002-01-01

    These Construction and Material Specifications are written to the Bidder before award of the : Contract and to the Contractor after award of the Contract. The sentences that direct the Contractor to perform Work are written as commands. For example, ...

  9. Technical Problems of Residential Construction

    Science.gov (United States)

    Nowogońska, Beata; Cibis, Jerzy

    2017-10-01

    Beauty, utility, durability - these are the features of good architecture and should also be the distinguishing qualities of every residential building. But do beauty and utility remain along with the passing of time? Performance characteristics are an indicator of both, the technical as well as aesthetic state of buildings. Aesthetic needs are in disagreement with the merciless aging process. The beauty of a city is formed not only by the original forms of new residential buildings, but also by existing tenement housing; thus preserving their aesthetics becomes a necessity. Time is continuously passing and along with it, aging intensifies. The aging process is a natural phenomenon for every material. The life expectancy of building materials is also limited. Along with the passing of time, the technical state of residential buildings continuously deteriorates. With the passing of time, the aesthetic values and preferences of users of flats change and the usability of the building decreases. The permanence of buildings, including residential buildings, is shaped not only by the forces of nature but also by activities of humans. A long lifespan is ensured by carrying out ongoing, systematic renovation-repair works. It is thanks to them that buildings derived from past centuries are still being used, and their market attractiveness is not decreasing.

  10. Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction.

    Science.gov (United States)

    Chen, Maozhe; Blanc, Denise; Gautier, Mathieu; Mehu, Jacques; Gourdon, Rémy

    2013-05-01

    Ashes produced by thermal treatments of sewage sludge exhibit common properties with cement. For example, major elements present in SSA are the same of major elements of cement. Hydraulic properties of SSA are quite the same of cement ones. They may therefore be used to substitute part of cement in concrete or other cementitious materials, provided that technical prescriptions are satisfied and that environmental risks are not significantly increased. The objective of the present study was to determine the appropriate substitution ratios to satisfy both technical and environmental criteria. In a first step, the elemental composition and particle size distribution of the ashes were measured. Then the ashes were used along with Portland cement and sand at different ratios of substitution to produce mortar and concrete which were cured for up to 90 days into parallelepipedic or cylindrical monoliths. The mechanical properties of the monoliths were measured using standard procedures for flexural and compressive strengths, and compared to blanks containing no ashes. The environmental criteria were assessed using leaching tests conducted according to standard protocols both on the ashes and the monoliths, and compared to the blanks. Results showed that the characteristics of the ashes ranged between those of cement and sand because of their larger particle size and higher content in SiO2 as compared to cement. The monoliths made with the highest substitution ratios exhibited a significant decrease in flexural and compressive strengths. However, when the ashes were used in partial substitution of cement at appropriate ratios, the concrete monoliths exhibited similar compressive strengths as the blank samples. The most appropriate ratios were found to be 10% substitution of cement and 2% substitution of sand. The leaching tests conducted on the ashes in their powdery form revealed that amongst the potential contaminants analyzed only Mo and Se were leached at

  11. [Materials for construction sector].

    Science.gov (United States)

    Macchia, C

    2012-01-01

    The construction sector is characterized by high complexity due to several factors. There are a lot of processes within the building sites and they need the use of different materials with the help of appropriate technologies. Traditional materials have evolved and diversified, meanwhile new products and materials appeared and still appear, offering services which meet user needs, but that often involve risks to the health of workers. Research in the field of materials, promoted and carried out at various levels, has led to interesting results, encoded in the form of rules and laws.

  12. Indigenous lunar construction materials

    Science.gov (United States)

    Rogers, Wayne P.; Sture, Stein

    1991-01-01

    The utilization of local resources for the construction and operation of a lunar base can significantly reduce the cost of transporting materials and supplies from Earth. The feasibility of processing lunar regolith to form construction materials and structural components is investigated. A preliminary review of potential processing methods such as sintering, hot-pressing, liquification, and cast basalt techniques, was completed. The processing method proposed is a variation on the cast basalt technique. It involves liquification of the regolith at 1200-1300 C, casting the liquid into a form, and controlled cooling. While the process temperature is higher than that for sintering or hot-pressing (1000-1100 C), this method is expected to yield a true engineering material with low variability in properties, high strength, and the potential to form large structural components. A scenario for this processing method was integrated with a design for a representative lunar base structure and potential construction techniques. The lunar shelter design is for a modular, segmented, pressurized, hemispherical dome which could serve as habitation and laboratory space. Based on this design, estimates of requirements for power, processing equipment, and construction equipment were made. This proposed combination of material processing method, structural design, and support requirements will help to establish the feasibility of lunar base construction using indigenous materials. Future work will refine the steps of the processing method. Specific areas where more information is needed are: furnace characteristics in vacuum; heat transfer during liquification; viscosity, pouring and forming behavior of molten regolith; design of high temperature forms; heat transfer during cooling; recrystallization of basalt; and refinement of estimates of elastic moduli, compressive and tensile strength, thermal expansion coefficient, thermal conductivity, and heat capacity. The preliminary

  13. Construction materials and Radon

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine Nicolosi; Loriane, Fior; Schelin, Hugo R.; Pottker, Fabiana; Paula Melo, Vicente de

    2008-01-01

    Full text: Current studies have been performed with the aim to find the correlation of radon concentration in the air and used construction materials. At the first stage of the measurements different samples of materials used in civil construction were studied as a source of radon in the air and at the second step it was studied the radon infiltration insulation using different samples of finishing materials. For 222 Rn concentration measurements related to different construction materials as well as for the studies of radon emanation and its reduction, the sealed cell chambers, of approximately 60 x 60cm 2 , have been built using the ceramic and concrete blocks. This construction has been performed within protected and isolated laboratory environment to maintain the air humidity and temperature stable. These long term measurements have been performed using polycarbonate alpha track passive detectors. The exposure time was set about 15 days considering previous calibration performed at the Institute of Radiation Protection and Dosimetry (IRD/CNEN), where the efficiency of 70% was obtained for the density of alpha particle tracks about 13.8 cm -2 per exposure day and per kBq/m 3 of radon activity concentration. The chemical development of alpha tracks has been achieved by electrochemical etching. The track identification and counting have been done using a code based on the MATLAB Image Processing Toolbox. The cell chambers have been built following four principle steps: 1) Assembling the walls using the blocks and mortar; 2) Plaster installation; 3) Wall surface finishing using the lime; 4) Wall surface insulation by paint. Making the comparison between three layers installed at the masonry walls from concrete and ceramic blocks, it could be concluded that only wall painting with acrylic varnish attended the expectation and reduced the radon emanation flow by the factor of 2.5 approximately. Studied construction materials have been submitted the instant

  14. The application of impedance measurement to assess biofilm development on technical materials used for water supply system construction

    Science.gov (United States)

    Wolf, Mirela; Traczewska, Teodora; Grzebyk, Tomasz

    2017-11-01

    The lack of biological stability of water which is introduced into the network, leads primarily to its secondary contamination during transport to the consumer. The water that is biologically unstable creates ideal conditions for colonization of the inner surface of pipelines by microorganisms and adhesion of their products (biocorrosion). The studies was conducted using the identified microorganisms isolated from the water supply network which accounted inocula in continuous culture of biofilm in CDC reactor. As a result of studies it was revealed the presence of biofilm formed on different materials polyethylene, polypropylene, polyvinyl chloride, polybutylene. Microbiological biodiversity of organisms inhabiting a biofilm of the diversity of nucleic acids was used. It was observed the amount of the psychrophilic bacteria oscillation in the effluent from the reactor. It was also determined the affinity of various bacteria to the plastic through adhesion measurement using impedance spectroscopy. For impedance measurements apparatus SIGNAL RECOVERY 7280 DSP LOCK-IN AMPLIFIER was used, recording impedance components (real and imaginary). The results will allow for the creation of biosensor systems that can be used in predicting health risks in connection with drinking water and taking corrective actions.

  15. The application of impedance measurement to assess biofilm development on technical materials used for water supply system construction

    Directory of Open Access Journals (Sweden)

    Wolf Mirela

    2017-01-01

    Full Text Available The lack of biological stability of water which is introduced into the network, leads primarily to its secondary contamination during transport to the consumer. The water that is biologically unstable creates ideal conditions for colonization of the inner surface of pipelines by microorganisms and adhesion of their products (biocorrosion. The studies was conducted using the identified microorganisms isolated from the water supply network which accounted inocula in continuous culture of biofilm in CDC reactor. As a result of studies it was revealed the presence of biofilm formed on different materials polyethylene, polypropylene, polyvinyl chloride, polybutylene. Microbiological biodiversity of organisms inhabiting a biofilm of the diversity of nucleic acids was used. It was observed the amount of the psychrophilic bacteria oscillation in the effluent from the reactor. It was also determined the affinity of various bacteria to the plastic through adhesion measurement using impedance spectroscopy. For impedance measurements apparatus SIGNAL RECOVERY 7280 DSP LOCK-IN AMPLIFIER was used, recording impedance components (real and imaginary. The results will allow for the creation of biosensor systems that can be used in predicting health risks in connection with drinking water and taking corrective actions.

  16. Radioactive materials in construction projects

    International Nuclear Information System (INIS)

    Herrmann, Ralf; Ohlendorf, Frank; Kaltz, Andrea Christine

    2014-01-01

    Till 1990 residues often of the former uranium mining were partly used as building material for road construction, terrain compensation and house construction in Saxony. These recommendations for action are addressed to applicants, planners and building constructors in the engineering and construction sector. It provides information for planning, preliminary investigations, applications, construction supervision related to radiation protection measures and documentation of construction projects where radioactive materials are expected.

  17. Reliability of construction materials

    International Nuclear Information System (INIS)

    Merz, H.

    1976-01-01

    One can also speak of reliability with respect to materials. While for reliability of components the MTBF (mean time between failures) is regarded as the main criterium, this is replaced with regard to materials by possible failure mechanisms like physical/chemical reaction mechanisms, disturbances of physical or chemical equilibrium, or other interactions or changes of system. The main tasks of the reliability analysis of materials therefore is the prediction of the various failure reasons, the identification of interactions, and the development of nondestructive testing methods. (RW) [de

  18. TECHNICAL GUIDANCE DOCUMENT: CONSTRUCTION QUALITY MANAGEMENT FOR REMEDIAL ACTION AND REMEDIAL DESIGN WASTE CONTAINMENT SYSTEMS

    Science.gov (United States)

    This Technical Guidance Document is intended to augment the numerous construction quality control and construction quality assurance (CQC and CQA) documents that are available far materials associated with waste containment systems developed for Superfund site remediation. In ge...

  19. Construction materials, monuments and environment

    Science.gov (United States)

    Prikryl, R.; Siegesmund, S.; Török, A.; Brimblecombe, P.; Gomez-Heras, M.

    2012-04-01

    Construction materials (natural stone, aggregates, bricks, cement, lime, mortar, etc.) form a wide and heterogeneous group both from the genetic and technological point of view. These materials deserve attention from the scientific community due to their long-term use, importance for society and sensitivity to the environment. Most geomaterials have also been used in important monuments designated as a part of the World Cultural Heritage and/or make part of national monuments. Despite of the wide-ranges of studies and our rapidly increasing understanding of material behaviour, our knowledge is still rather limited in many aspects. This concerns the characterisation of traditional raw materials, the knowledge of their processing and use, and/or durability and compatibility assessment. The exploitation and sustainable use of these materials are also new and emerging challenges in the modern society. The use of local materials for monuments can be considered as a part of our cultural and technological heritage, which has, however, significantly deteriorated during the past several decades. This paper summarizes the general topics related to a modern analysis of traditional construction materials derived from the Earth, and on the characteristic aspects of the behaviour of these materials on selected monuments.

  20. Ice as a Construction Material

    Science.gov (United States)

    Zuppero, Anthony; Lewis, Joseph

    1998-01-01

    The use of ice as a construction material is discussed. A model of an ice tire torus space ship, which slowly spins to produce artificial gravity is proposed. The size of the ship, needed to support a given number of people and the required envelope mass is presented.

  1. Materials in machine, plant, and apparatus construction

    International Nuclear Information System (INIS)

    Blumenauer, H.; Hampe, E.; Hoehne, D.

    1983-01-01

    The subject is covered under the following headings: principles of materials economy and selection, designation of materials, general construction materials; materials for tools, materials for low temperatures, materials for high temperatures, materials for corrosive stress, materials with high wear resistance and friction materials, sliding and bearing materials, materials for spring load, materials for joints, and materials for nuclear reactors

  2. Effects of radiation rays on construction materials

    International Nuclear Information System (INIS)

    Akkurt, I.; Kilicarslan, S.; Basyigit, C.; Kacar, A.

    2006-01-01

    Molecules that are bring into existence material determined as gas, liquid and stiff according to their internal structures and heat. Materials show various reaction to various effects that is result from all kind of materials have various internal structures. Radiation is covert materials' mechanical, physical and chemical properties. Nowadays in construction formation there isn't using only one material it is preferred that kind of materials composition because of there are run into some problems about choosing and decision sort of material. Material that using in construction is classified as metals, plastics and ceramics in three groups. About sixty percent of construction cost is being formed from construction materials. In this study effects of various radiations on construction materials are being investigated and the end of study it is being suggestion some useful construction materials according to usage land and radiation properties

  3. INDOT Construction Inspection Priorities : Technical Summary

    Science.gov (United States)

    2012-05-01

    In the last decade, the Indiana Department of Transportation (INDOT) increased the number of construction projects funded by capital made available through the leasing of the Indiana Toll Road. However, during the same time period, the level of perso...

  4. Management for Construction Materials and Control of Construction Waste in Construction Industry: A Review

    OpenAIRE

    A. A. Gulghane; Prof P. V. Khandve

    2015-01-01

    In recent treads a wide range of building materials is available for the construction of civil engineering structures. The total cost of materials may be up to 60% or more of the total cost incurred in construction project dependent upon the type of project. Effective construction materials management is a key to success for a construction project. Construction waste is another serious problem in construction industry. A large and various types of construction waste with different...

  5. The influence of technical testing methods on perceptions of constructions

    International Nuclear Information System (INIS)

    Oestberg, Gustaf

    2002-01-01

    In principle, methods of testing the reliability and safety of constructions are designed with the aim of representing critical conditions for their use. Because of variations within technical systems, including the one for which a certain test was once developed, the validity of the method also varies. The adoption of a standardized test for different applications had to be based on the assumption that the test deals adequately with a real situation. As a consequence of this acceptance of a trustworthy relationship between test and reality, an imprint of the former on the latter occurs. This effect may even cause the perception of a reality to be defined by the corresponding test. Examples of such an influence may be found in the field of materials testing. Related phenomena can be dealt with by reference to current concepts of cognitive science and psychology of the perception of images

  6. Sustainable Management of Construction and Demolition Materials

    Science.gov (United States)

    This web page discusses how to sustainably manage construction and demolition materials, Information covers, what they are, and how builders, construction crews, demolition teams,and deign practitioners can divert C&D from landfills.

  7. EVALUATION OF CAUSES OF CONSTRUCTION MATERIAL WASTE

    African Journals Online (AJOL)

    Osondu

    factors contributing to construction material waste generation on building sites in Rivers State, ... the studied factors at every level of the construction processes and in their waste management plan. ..... Evaluation of Solid Waste in Building.

  8. CONSTRUCTION MATERIALS FROM WASTE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Тахира Далиевна Сидикова

    2016-02-01

    Full Text Available We have studied the physical and chemical processes occurring during the thermal treatment of ceramic masses on the basis of compositions of natural raw materials and waste processing facilities. The study of structures of ceramic samples species has shown different types of crystalline phases.The results have shown that the waste of Kaytashsky tungsten-molybdenum ores (KVMR may be used as the main raw material to develop new compositions for ceramic materials. The optimal compositions of ceramic tiles for the masses and technological parameters of obtaining sintered materials based on the compositions of kaolin fireclay KVMR have been developed.It has been found that the use of the waste of Kaytashskoy tungsten-molybdenum ore (KVMR in the composition of the ceramic material will expand the raw material base of ceramic production, reduce the roasting temperature and the cost of ceramic materials and products.

  9. Extraterrestrial materials processing and construction

    Science.gov (United States)

    Criswell, D. R.

    1978-01-01

    Applications of available terrestrial skills to the gathering of lunar materials and the processing of raw lunar materials into industrial feed stock were investigated. The literature on lunar soils and rocks was reviewed and the chemical processes by which major oxides and chemical elements can be extracted were identified. The gathering of lunar soil by means of excavation equipment was studied in terms of terrestrial experience with strip mining operations on earth. The application of electrostatic benefication techniques was examined for use on the moon to minimize the quantity of materials requiring surface transport and to optimize the stream of raw materials to be transported off the moon for subsequent industrial use.

  10. Technical considerations in materials management policy development

    International Nuclear Information System (INIS)

    Avci, H.; Goldberg, M.

    1996-01-01

    Under the Materials-in-Inventory (MIN) initiative, US DOE intends to develop policies to ensure that materials are managed and use efficiently, cost-effectively, and safely throughout DOE. The MIN initiative covers depleted uranium, scrap metals, chemicals, explosives, spent nuclear fuel, lead, alkali metals, etc.; by far the largest component is depleted uranium hexafluoride (DUF6). A technically defensible approach has been developed and is being used to select a long-term management strategy for DOE's DUF6 inventory. The same approach can be adapted to management of other materials in inventory that have the potential to be reutilized

  11. Materials of 3. scientific-technical seminar: Materials Investigation for Power Industry

    International Nuclear Information System (INIS)

    1996-01-01

    The report is an assembly of the papers concerning material problems during the exploitation of power stations as well as during construction and exploitation of gas pipelines. The accreditation problems according to the European Standards and Office of Technical Inspection prescription are also discussed

  12. Sandia Laboratories technical capabilities: materials and processes

    International Nuclear Information System (INIS)

    Lundergan, C.D.; Mead, P.L.

    1977-08-01

    Materials and process activities have emphasized the balance between research and development necessary to provide materials compatible with the extreme environments and performance requirements associated with nuclear ordnance. Specific technical areas which have continuing emphasis include metallurgy, composites, surface characterization and thin films, polymers, ceramics, and high-temperature characterization. Complete processing and fabrication facilities assure the capability for early evaluation and use of tailored materials. Efforts are focused on material applications involving structural and electronic materials, thermal and electrical insulation, radiation shields, and shock mitigation. Key elements in these efforts are functionability, reliability, and longevity. This interdisciplinary approach to scientific materials engineering results from the recognition that many disciplines are required to understand, characterize, and apply materials, and from the fact that material design is an essential element in meeting the objectives of quality, functionality, and life. In effect, the responsibility of a materials group extends beyond the development of a material into the understanding and description of its behavior in the extreme environments to which it will be subjected

  13. Construction Materials for Coastal Structures.

    Science.gov (United States)

    1983-02-01

    formaldehyde derivatives. Thermoplastic materials include polyvinyl alcohol and polyacrylamides. PPCC process technology is based upon overcoming the...entrained air from a concrete mixture. Compounds such as tributyl phosphate, diburyl phthalate, water-insoluble alcohols , and water-insoluble esters of...of hydrolysis of wood is small and is dependent on the temperature. 0 (3) Wood Oxidation. Wood oxydation by air in dry locations is slow and attacks

  14. Nondestructive evaluation ultrasonic methods for construction materials

    International Nuclear Information System (INIS)

    Chilibon, I.; Zisu, T.; Raetchi, V.

    2002-01-01

    The paper presents some ultrasonic methods for evaluation of physical-mechanical properties of construction materials (bricks, concrete, BCA), such as: pulse method, examination methods, and direct measurement of the propagation velocity and impact-echo method. Utilizing these nondestructive evaluation ultrasonic methods it can be determined the main material parameters and material characteristics (elasticity coefficients, density, propagation velocity, ultrasound attenuation, etc.) of construction materials. These method are suitable for construction materials because the defectoscopy methods for metallic materials cannot be utilized, due to its rugged and non-homogeneous structures and grate attenuation coefficients of ultrasound propagation through materials. Also, the impact-echo method is a technique for flaw detection in concrete based on stress wave propagation. Studies have shown that the impact-echo method is effective for locating voids, honeycombing, delaminating, depth of surface opening cracks, and measuring member thickness

  15. Sustainable material selection for construction industry

    DEFF Research Database (Denmark)

    Govindan, Kannan; Shankar, Madan; Kannan, Devika

    2016-01-01

    a hybrid multi criteria decision making (MCDM) methodology with a specific examination of the UAE. The indicators collected from existing literatures were used in evaluation of sustainable construction materials with the assistance of construction sector-based respondents. The proposed framework...

  16. Constructing bald eagle nests with natural materials

    Science.gov (United States)

    T. G. Grubb

    1995-01-01

    A technique for using natural materials to build artificial nests for bald eagles (Haliaeetus leucocephalus) and other raptors is detailed. Properly constructed nests are as permanently secured to the nest tree or cliff substrate as any eagle-built nest or human-made platform. Construction normally requires about three hours and at least two people. This technique is...

  17. Activity measurements of radon from construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Fior, L.; Nicolosi Correa, J. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Paschuk, S.A., E-mail: spaschuk@gmail.com [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Denyak, V.V. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Schelin, H.R. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Pele Pequeno Principe Research Institute, Av. Silva Jardim, 1632, Curitiba, PR 80250-200 (Brazil); Soreanu Pecequilo, B.R. [Institute of Nuclear and Energetic Researches, IPEN, Av. Prof. Lineu Prestes, 2242-/05508-000 Sao Paulo (Brazil); Kappke, J. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil)

    2012-07-15

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60 Multiplication-Sign 60 Multiplication-Sign 60 cm{sup 3} were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K. The values for the index of the activity concentration (I), radium equivalent activity (Ra{sub eq}), and external hazard index (H{sub ext}) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). - Highlights: Black-Right-Pointing-Pointer Radon activity in air related to building materials was measured. Black-Right-Pointing-Pointer The index of activity concentration of building materials was evaluated. Black-Right-Pointing-Pointer The radium equivalent activity of

  18. Indigenous Construction Materials for Theater Facilities

    Science.gov (United States)

    2013-09-01

    is shown as a step-by-step plan in Figure 1. ERDC TR-13-13 5 Figure 1. Infrastructure planning. The pyramid can be initially divided into two...disadvantages in terms of constructability, structural integrity, environmental impact, and sociocultural impacts. The lower portions of the pyramid ...United States or the Nile in Sudan and Egypt ) is vital to the local economy and can provide a means for transport- ing such construction materials

  19. Toxic or dangerous substances present construction materials

    International Nuclear Information System (INIS)

    Campos Alvarado, A.

    2003-01-01

    The purpose of this investigation is the elaboration of a guide which could be used as a support and consultation concerning the topic of safety in the construction, specifically in the area of the use and managing of material and dangerous substances; considering the possible dangers to medium and long term that some of the common construction materials represent for the health. The gathered information is the result of the review of bibliographical material, the visits to public institutions at national level and to international offices which representation in our country, this way as a work of field and of study of the national market, among others. Besides important consult through the Internet checking many sites of interest with the finality of getting more updated information as possible, like that as the consultation to professionals and workers related to the construction area. (Author) [es

  20. Materials of construction for silicon crystal growth

    Science.gov (United States)

    Leipold, M. H.; Odonnell, T. P.; Hagan, M. A.

    1980-01-01

    The performance of materials for construction and in contact with molten silicon for crystal growth is presented. The basis for selection considers physical compatibility, such as thermal expansion and strength, as well as chemical compatibility as indicated by contamination of the silicon. A number of new high technology materials are included as well as data on those previously used. Emphasis is placed on the sources and processing of such materials in that results are frequently dependent on the way a material is prepared as well as its intrinsic constituents.

  1. RECOMMENDED FOUNDATION FILL MATERIALS CONSTRUCTION STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    Science.gov (United States)

    The report summarizes the technical basis for a recommended foundation fill materials standard for new construction houses in Florida. he radon-control construction standard was developed by the Florida Radon Research Program (FRRP). ill material standards are formulated for: (1)...

  2. Material and construction of primary components

    International Nuclear Information System (INIS)

    Kaser, A.; Wallner, F.

    1978-01-01

    The construction of SNR's requires specific properties of the materials, i.e. high strength at temperatures of 600 0 C, adequate creep rupture strength, low long-time embrittlement. Aspects are given for optimalization of the mentioned properties with regard to safe manufacture especially good weldability. The austenitic material X6CrNil811 similar the type AISI 304 SS finally was chosen. Besides the fundamental analysis of the material properties it will be reported about the experiences gained during the manufacturing of the essential components. (author)

  3. Zwitterionic materials for antifouling membrane surface construction.

    Science.gov (United States)

    He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi

    2016-08-01

    Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc

  4. Advantages and challenges of dissimilar materials in automotive lightweight construction

    Science.gov (United States)

    Weberpals, Jan-Philipp; Schmidt, Philipp A.; Böhm, Daniel; Müller, Steffen

    2015-03-01

    The core of future automotive lightweight materials is the joining technology of various material mixes. The type of joining will be essential, particularly in electrified propulsion systems, especially as an improved electrical energy transmission leads to a higher total efficiency of the vehicle. The most evident parts to start the optimization process are the traction battery, the electrical performance modules and the engines. Consequently aluminum plays a very central role for lightweight construction applications. However, the physical-technical requirements of components often require the combination with other materials. Thus the joining of mixed material connections is an essential key technology for many of the current developments, for example in the areas E-Mobility, solar energy and lightweight construction. Due to these advantages mixed material joints are already established in the automotive industry and laser beam remote welding is now a focus technology for mixed material connections. The secret of the laser welding process with mixed materials lies within the different areas of the melting phase diagram depending on the mixing ratio and the cooling down rate. According to that areas with unwanted, prim, intermetallic phases arise in the fusion zone. Therefore, laser welding of mixed material connections can currently only be used with additional filler in the automotive industry.

  5. Activity measurements of radon from construction materials.

    Science.gov (United States)

    Fior, L; Nicolosi Corrêa, J; Paschuk, S A; Denyak, V V; Schelin, H R; Soreanu Pecequilo, B R; Kappke, J

    2012-07-01

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60×60×60 cm3 were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of 226Ra, 232Th and 40K. The values for the index of the activity concentration (I), radium equivalent activity (Raeq), and external hazard index (Hext) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. The construction of irradiated material examination facility

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Lee, Key Soon; Herr, Young Hoi

    1990-03-01

    A detail design of the examination process, the hot cell facility and the annexed facility of the irradiated material examination facility (IMEF) which will be utilized to examine and evaluate physical and mechanical properties of neutron-irradiated materials, has been performed. Also a start-up work of the underground structure construction has been launched out. The project management and tasks required for the license application were duly carried out. The resultant detail design data will be used for the next step. (author)

  7. Textile materials for lightweight constructions technologies, methods, materials, properties

    CERN Document Server

    2016-01-01

    In this book, experts on textile technologies convey both general and specific informa­tion on various aspects of textile engineering, ready-made technologies, and textile chemistry. They describe the entire process chain from fiber materials to various yarn constructions, 2D and 3D textile constructions, preforms, and interface layer design. In addition, the authors introduce testing methods, shaping and simulation techniques for the characterization of and structural mechanics calculations on anisotropic, pliable high-performance textiles, including specific examples from the fields of fiber plastic composites, textile concrete, and textile membranes. Readers will also be familiarized with the potential offered by increasingly popular textile structures, for instance in the fields of composite technology, construction technology, security technology, and membrane technology. Textile materials and semi-finished products have widely varied potential characteristics, and are commonly used as essential element...

  8. Environmental impacts of construction materials. A report on the contribution of construction materials to greenhouse gas emissions of construction; Rakennusmateriaalien ympaeristoevaikutukset. Selvitys rakennusmateriaalien vaikutuksesta rakentamisen kasvihuonekaasupaeaestoeihin, tiivistelmaeraportti

    Energy Technology Data Exchange (ETDEWEB)

    Ruuska, A.; Haekkinen, T.; Vares, S.; Korhonen, M.-R.; Myllymaa, T.

    2013-05-15

    As the energy performance of new construction improves and the related greenhouse gas (GHG) emissions diminish the carbon footprint of construction materials becomes more important. One objective in the current government's programme is to take into account construction materials and products in the energy performance assessment of buildings. At the request of the Ministry of the Environment, VTT Technical Research Centre of Finland and the Finnish Environment Institute analysed, through a case study, the significance of the environmental impacts of construction materials. The aim was to develop preliminary recommendations for guiding construction. The case study calculated the overall GHG emissions from the materials used in an apartment building over its life cycle and estimated the range of emissions. In addition, the amount of construction waste was assessed, as was the effects of waste management and waste utilisation processes on GHG emissions. This report presents a summary of the results. According to this case study, GHG emissions can vary in typical multi-storey residential buildings within the range of 1 to 2.2 or 1 to 3.9 when the site foundation work also taken into account. The study shows that the construction materials and related processes contribute significantly to the GHG emissions of a building over its life cycle. In fact the level of significance is of the same order as the heating of spaces in an A-class energy performance building. The efficient recycling of materials can contribute to reductions in GHG emissions. The study showed that the estimated benefit was 9 % of the total life-cycle emissions. In the future, specific assessments of different types of waste could look at opportunities for the recycling and reuse of critical materials. Plastics and wood are especially important waste components. Future research topics include improving the use of recycled materials, collecting information on user experiences and enhancing quality

  9. Materials and techniques for model construction

    Science.gov (United States)

    Wigley, D. A.

    1985-01-01

    The problems confronting the designer of models for cryogenic wind tunnel models are discussed with particular reference to the difficulties in obtaining appropriate data on the mechanical and physical properties of candidate materials and their fabrication technologies. The relationship between strength and toughness of alloys is discussed in the context of maximizing both and avoiding the problem of dimensional and microstructural instability. All major classes of materials used in model construction are considered in some detail and in the Appendix selected numerical data is given for the most relevant materials. The stepped-specimen program to investigate stress-induced dimensional changes in alloys is discussed in detail together with interpretation of the initial results. The methods used to bond model components are considered with particular reference to the selection of filler alloys and temperature cycles to avoid microstructural degradation and loss of mechanical properties.

  10. Unvulcanized elastomeric waterproofing materials for construction application

    Directory of Open Access Journals (Sweden)

    O. V. Karmanova

    2016-01-01

    Full Text Available In the construction was widespread elastomer profiles, which have the ability to swell in water. Such products should have a high capacity for swelling, elasticity, resistance to weathering. At the present time for these purposes are used materials, mostly of foreign origin. With the increasing pace of construction in Russia the problem of replacement of imported materials is particularly relevant. The work was dedicated to the creation of water-swellable elastomer materials using bentonite powders and study of their properties. Сomparative testing of imported and domestic hydrophilic sealants were held. Rationale and choice of components for the cords of bentonite was conducted. Polymer base is saturated ethylene-propylene rubber. Bentonite from different manufacturers used to increase the swelling of the samples. Filler added in an amount of 50–100 phr. The elastomeric compositions were prepared using laboratory roller at a temperature of 60 ± 5° C. Profiling was performed on a syringe-machine at a temperature of 120° C. Extrusion indicator of the mixtures were evaluated on a 10-point scale (German-Russian system. It is found that high swelling products provided using field Azerbaijan bentonite. It is noted that the dosage of bentonite than 150 w.p. deteriorates technological properties of bentonite cords. It has been shown that activation of the bentonite and sodium carbonate chloride can significantly improve product swelling, wherein the bentonite content of the composition was 150–200 w.p.

  11. Technical and Regulatory Guidance Document for Constructed Treatment Wetlands

    Science.gov (United States)

    2003-12-01

    horizon in which organic material is being added. This horizon often has the characteristics of cultivation and other disturbances. Under the A horizon is...intermediate between III and II (commonly called “green rust”) induces the reduction of Se. In the case of Se accumulation, ecotoxicological effects should be...consulted before a constructed wetland system design can be approved, specifically because many restrict the use and cultivation of plant species that

  12. Quality and safety of construction materials

    International Nuclear Information System (INIS)

    Rodulfo Zabala, L.

    2015-01-01

    CEPCO represents 20 industrial sectors, which take charge of construction materials production, and whose expectations of European and Spanish legislation observance (specially the articles related to quality, security and environmental respect) reach a very high level. This performance is equally taken to their internal competitiveness and to their huge international enlargement produced on the recent years. In addition to this principle, the Confederation includes its own this principle, the Confederation includes its own doctrine of trying to consolidate important heights of quality related to the evolution of the product trough I+D+i. (Author)

  13. Natural road construction materials of Southern Africa

    CSIR Research Space (South Africa)

    Weinert, HH

    1980-01-01

    Full Text Available respectively. p. 210. column 4: Insert Notre in rect311glc directly below heading Matrix. p. 240, paragraph 5, line 4: J 770 should read I 700. I ~I -~ r THE NATURAL ROAD CONSTRUCTION MATERIALS OF SOUTHERN AFRICA ACADEMICA I PRETORIA ICAPE TOWN ISBN... and the author acknowledges gratefully the valuable assistance and the trouble taken by the following persons: Southern African road authorities: Mr W. J. Biesenbach, Mr H. K. Geel, Mr C. L. Laubscher, Mr G. P. Marais, Mr R. L. Mitchell, Mr I. P. A. Smit, Mr C...

  14. Raw material selection for object construction

    CSIR Research Space (South Africa)

    Perlow, J

    2017-11-01

    Full Text Available on their visual appearance. In particular, we present a method for an agent to recognise the required unseen raw material images and link them to corresponding novel object images. This capability provides an agent with an increased degree of resourcefulness... construction from component parts, and in doing so we provide a benchmark for future work to compare against within Minecraft and ShapeNet domains. II. BACKGROUND Our model is inspired by Siamese neural networks, a class of neural network that includes multiple...

  15. Recent trend in construction materials field. Kenzai bun[prime]ya ni okeru saikin no doko

    Energy Technology Data Exchange (ETDEWEB)

    Tominaga, M [Kawasaki Steel Corp., Tokyo (Japan)

    1992-09-01

    The Japanese construction industry, the construction market and the technical trend of construction materials made by Kawasaki Steel Group were described. The roles of the steel industry in the construction material market are to increase the ratio of steel used in construction, to manufacture steel products of high value added and to develop new applications. Appearance and good design are required to provide for the construction materials made of processed steel in addition to the necessary functions. In the construction material market, qualitative changes in needs are taking place, such as labor saving shortening of construction period and simplification of construction management. Kawasaki Steel Group intends to expand the integrated business such as system building, external wall materials for buildings made of metals, highly corrosion resistant stainless steel for metallic roof field, and roof materials of the heat insulation, good appearance and horizontally covering type based on the overall business strategy. In addition, Kawasaki Steel Group is expanding the Kawasaki Design Steel Plaza and its construction material research laboratory to cope with the trend of diversified functions and design of construction goods and of making kinds of construction material much more and to develop more rational construction techniques. 1 ref., 8 figs.

  16. Decontamination of radionuclides on construction materials

    International Nuclear Information System (INIS)

    Samuleev, P.V.; Andrews, W.S.; Creber, K.A.M.; Velicogna, D.

    2013-01-01

    A wide variety of materials can become contaminated by radionuclides, either from a terrorist attack or an industrial or nuclear accident. The final disposition of these materials depends, in large part, on the effectiveness of decontamination measures. This study reports on investigations into the decontamination of a selection of building materials. The aim has been to find an effective, easy-to-use and inexpensive decontamination system for radionuclides of cesium and cobalt, considering both the chemical and physical nature of these potential contaminants. The basic method investigated was surface washing, due to its ease and simplicity. In the present study, a basic decontamination formulation was modified by adding isotope-specific sequestering agents, to enhance the removal of cesium(I) and cobalt(II) from such construction materials as concrete, marble, aluminum and painted steel. Spiking solutions contained 134 Cs or 60 Co, which were prepared by neutron activation in the SLOWPOKE-2 nuclear reactor facility at the Royal Military College of Canada. Gamma spectroscopy was used to determine the decontamination efficiency. The results showed that the addition of sequestering agents generally improved the radiological decontamination. Although the washing of both cesium and cobalt from non-porous materials, such as aluminum and painted steel, achieved a 90-95 % removal, the decontamination of concrete and marble was more challenging, due to the porous nature of the materials. Nevertheless, the removal efficiency from 6-year-old concrete increased from 10 % to approximately 50 % for cobalt(II), and from 18 to 55 % for cesium(I), with the use of isotope binding agents, as opposed to a simple water wash. (author)

  17. 46 CFR 164.006-3 - Construction, materials, and workmanship.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Construction, materials, and workmanship. 164.006-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Deck Coverings for Merchant Vessels § 164.006-3 Construction, materials, and workmanship. (a) It is the intent of this specification to obtain a...

  18. Constructing Ontology for Knowledge Sharing of Materials Failure Analysis

    Directory of Open Access Journals (Sweden)

    Peng Shi

    2014-01-01

    Full Text Available Materials failure indicates the fault with materials or components during their performance. To avoid the reoccurrence of similar failures, materials failure analysis is executed to investigate the reasons for the failure and to propose improved strategies. The whole procedure needs sufficient domain knowledge and also produces valuable new knowledge. However, the information about the materials failure analysis is usually retained by the domain expert, and its sharing is technically difficult. This phenomenon may seriously reduce the efficiency and decrease the veracity of the failure analysis. To solve this problem, this paper adopts ontology, a novel technology from the Semantic Web, as a tool for knowledge representation and sharing and describes the construction of the ontology to obtain information concerning the failure analysis, application area, materials, and failure cases. The ontology represented information is machine-understandable and can be easily shared through the Internet. At the same time, failure case intelligent retrieval, advanced statistics, and even automatic reasoning can be accomplished based on ontology represented knowledge. Obviously this can promote the knowledge sharing of materials service safety and improve the efficiency of failure analysis. The case of a nuclear power plant area is presented to show the details and benefits of this method.

  19. Superface energy of several construction materials

    Directory of Open Access Journals (Sweden)

    Otero, J. L.

    2006-09-01

    Full Text Available Inverse gas chromatography at infinite dilution was used to characterize the surface of different construction materials (marble, sandstone, granite and brick. Surface energy can be divided into two components: dispersive and polar or acid-base. The highest dispersive energy value was found for sandstone, while the values for the other three materials were all very similar. The lower dispersive energy variation exhibited by sandstone with temperature changes is an indication that substances interact equally well with its surface at any temperature. All the materials were found to be amphoteric, with both acid and alkaline components, although acidity was greater in granite and brick and sandstone and marble had higher alkalinity.En este trabajo se ha realizado la caracterización de la superficie de diferentes materiales de construcción (mármol,arenisca, granito y ladrillo mediante cromatografía inversa gas-sólido a dilución infinita. La energía superficial se puede dividir en dos componentes: dispersiva y ácido-base. Los valores obtenidos para la energía dispersiva son bastante parecidas para mármol, granito y ladrillo, mientras que el valor más alto corresponde a la arenisca. Además, este material presenta una menor variación de la energía dispersiva con la temperatura lo que indica que la interacción de cualquier sustancia con su superficie se dará a cualquier temperatura. Por lo que respecta a las componentes ácido-base, se ha observado que todos los materiales poseen ambas componentes lo que indica un carácter anfótero, sin embargo, la acidez es mayor en el granito y en el ladrillo, mientras que la basicidad es mayor en la arenisca y en el mármol.

  20. Evaluating the Readability of Radio Frequency Identification for Construction Materials

    Directory of Open Access Journals (Sweden)

    Younghan Jung

    2017-01-01

    Full Text Available Radio Frequency Identification (RFID, which was originally introduced to improve material handling and speed production as part of supply chain management, has become a globally accepted technology that is now applied on many construction sites to facilitate real-time information visibility and traceability. This paper describes a senior undergraduate project for a Construction Management (CM program that was specifically designed to give the students a greater insight into technical research in the CM area. The students were asked to determine whether it would be possible to utilize an RFID system capable of tracking tagged equipment, personnel and materials across an entire construction site. This project required them to set up an experimental program, execute a series of experiments, analyze the results and summarize them in a report. The readability test was performed using an active Ultra-High frequency (UHF, 433.92 MHz RFID system with various construction materials, including metal, concrete, wood, plastic, and aluminum. The readability distance distances are measured for each of the six scenarios. The distance at which a tag was readable with no obstructions was found to be an average of 133.9m based on three measurements, with a standard deviation of 3.9m. This result confirms the manufacturer’s claimed distance of 137.2m. The RFID tag embedded under 50.8mm of concrete was readable for an average distance of only 12.2m, the shortest readable distance of any of the scenarios tested. At the end of the semester, faculty advisors held an open discussion session to gather feedback and elicit the students’ reflections on their research experiences, revealing that the students’ overall impressions of their undergraduate research had positively affected their postgraduate education plans.

  1. 46 CFR 162.017-3 - Materials, construction, and workmanship.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, construction, and workmanship. 162.017-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Valves, Pressure-Vacuum Relief, for Tank Vessels § 162.017-3 Materials, construction, and workmanship. (a) The valves shall be of...

  2. 46 CFR 160.053-3 - Materials, construction and workmanship.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, construction and workmanship. 160.053-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Work Vests, Unicellular Plastic Foam § 160.053-3 Materials, construction and workmanship. (a) General. Except as otherwise specifically...

  3. 23 CFR 633.207 - Construction labor and materials.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Construction labor and materials. 633.207 Section 633... OPERATIONS REQUIRED CONTRACT PROVISIONS Federal-Aid Contracts (Appalachian Contracts) § 633.207 Construction labor and materials. (a) Construction and materials shall be in accordance with the State highway...

  4. 46 CFR 160.038-3 - Materials, workmanship, and construction.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, workmanship, and construction. 160.038-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Magazine Chests, Portable, for Merchant Vessels § 160.038-3 Materials, workmanship, and construction. (a) Portable magazine chests shall...

  5. 46 CFR 58.05-1 - Material, design and construction.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Material, design and construction. 58.05-1 Section 58.05... AUXILIARY MACHINERY AND RELATED SYSTEMS Main Propulsion Machinery § 58.05-1 Material, design and construction. (a) The material, design, construction, workmanship, and arrangement of main propulsion machinery...

  6. Logistic management materials-technical support railway enterprises

    OpenAIRE

    Dykan, V.; Borozenetc, T.

    2014-01-01

    The essence of logistics management. Determine the feasibility of applying the principles of logistics management in organizing the logistics of railway transport. Discussed measures to develop suppliers in the implementation of logistics management logistics. Identified the need to develop and implement regulatory and methodical system to improve materials-technical support through the introduction of modern logistics principles. Applied systemic campaign to organize the materials-technical ...

  7. Sustainable construction : towards a strategic approach to construction material management for waste reduction

    OpenAIRE

    Abarca Guerrero, L.; Scheublin, F.J.M.; Egmond - de Wilde De Ligny, van, E.L.C.; Lambert, A.J.D.

    2008-01-01

    The construction sector plays a key role in shaping and developing the built environment. It also has an undisputed and significant impact on it due to the amounts of materials extracted and produced as waste. The construction industry has emphasized to recycling construction waste (CW), however, relatively less emphasis has been paid on construction waste minimization. CW reduction can be achieved through changes in design concepts, material and construction methods selection and material ma...

  8. Measurements of the radioactivity of power plant by-products processed into construction materials

    International Nuclear Information System (INIS)

    Marcinkowski, S.A.; Dudelewski, H.A.

    1992-01-01

    The subject of the recycling of residual products comprising, inter alia, fly ash and slags accuring from the combustion of black and brown coal in modern coal dust boilers in the power industry has been topical for a number of years. Numerous discussions and articles in technical periodicals and the daily press have revolved around the problem of the radioactivity of construction materials or construction elements obtained from fly ash or slags of power plant. In Poland, this was a forbidden subject until the publication in 1980 by the Warsaw institute of construction technology of standard no. 234 entitled: 'Recommendations for establishing the natural radioactivity of products processed into construction materials'. (orig.) [de

  9. ARPA Semiannual Technical Report, Materials Science

    Science.gov (United States)

    1973-12-15

    determine the oscillator output properties. A newly designed cylindrical-ring-electrode Pockel’s cell is used for single picosecond pulse...satellite pulse trains and pulse noise. A contacted dye cell has been constructed and tested for this new system. Considerable experience in its ur-e...by the definition - - - -- ■’ -’ ’" - - ■ - - ■; - . v -• . . . -. 1.,-. •. • .’■-."■ ’,■■ . • ’*■ ," ’".** "."’" ", ■," ■T^r,T^" nT1

  10. 49 CFR 176.96 - Materials of construction.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Materials of construction. 176.96 Section 176.96 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Barges § 176.96 Materials of construction. Barges used to transport hazardous materials must...

  11. Material and energy balances of technical means in horticulture and farming - from production to disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The twenty papers of this progress report, which are not individually recorded, belong to either one of the subject areas ''material and energy balances of technical means in horticulture and forming from production to disposal'' and ''plastics in construction and technical systems''. The first-mentioned subject area deals with balances for technical means at horticultural enterprises, greenhouse constructions, and styrofoam in farm buildings, and comprises short papers on sewage treatment plants in the form of beds of plants and ecological aspects of horticultural activities in open spaces. The second subject area mainly concerns recycling and multiple uses of plastics (silage and protective foils) as well as air-flow thermal collector systems. Advances in the construction and use of foil-covered greenhouses and experience with protective nets for plant cultures, energy shields, and shading are reported. (UWA) [de

  12. Qualification of technical personnel for employment during construction and operation of the SSC

    International Nuclear Information System (INIS)

    Johnson, C.D.; Wolf, L.J.

    1991-01-01

    In the early stages of the SSC design it became apparent that construction will have a significant impact on post-secondary technical/vocational education in Texas. Present estimates are that from 2,000 to 3,000 employees will be needed in the traditional fields of civil, mechanical, electrical technology, computers as well as exotic technologies such as cryogenics and high vacuum. In this paper an on-going project is described which is directed toward assuring that graduates of Texas post-secondary technical and vocational education programs will be competitive for employment in these jobs. The project involves development of SSC pedagogical material at a level appropriate to the students, education of teachers about the SSC and development of delivery systems for education about the SSC

  13. Research Progress of Building Materials Used in Construction Land

    Science.gov (United States)

    Niu, Yan

    2018-01-01

    Construction land preparation is an important aspect of land remediation project. The research of materials in the process of land improvement is the foundation and the core. Therefore, it is necessary to study the materials that may be involved in the process of building land preparation. In this paper, the research on the construction materials such as recycled concrete, geosynthetics, soil stabilizers, soil improvers, building insulation materials and inorganic fibrous insulation materials, which are commonly used in construction sites, is reviewed and discussed in this paper. Land remediation project involved in the construction of land materials to provide reference.

  14. The construction of the graphite calorimeter GR9 at LNE-LNHB (geometrical and technical consideration)

    International Nuclear Information System (INIS)

    Ostrowsky, A.; Daures, J.

    2008-01-01

    Calorimetry is the most direct dosimetric technique to reach absorbed dose. A calorimeter gives direct access to the energy imparted to matter by ionizing radiation per mass unit by measuring the heat quantity Q produced under irradiation in its sensitive element which is thermally insulated. Graphite was chosen as construction material because all the energy imparted to graphite by ionizing radiation is converted into heat. Thermistors are used for temperature measurements as well as for the electrical heating of the different bodies of the calorimeter. The construction of a calorimeter is the result of a compromise between dosimetric requirements and mechanical constraints. The difficulties encountered are examined and the solutions chosen are detailed. All technical data are gathered in this document. The aim is to provide a practical operative instruction and guidance document, which can help interested laboratories in designing such an instrument. The electrical and thermal tests have shown a good behaviour of the GR9 calorimeter

  15. Construction cost forecast model : model documentation and technical notes.

    Science.gov (United States)

    2013-05-01

    Construction cost indices are generally estimated with Laspeyres, Paasche, or Fisher indices that allow changes : in the quantities of construction bid items, as well as changes in price to change the cost indices of those items. : These cost indices...

  16. 46 CFR 154.1702 - Materials of construction.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Materials of construction. 154.1702 Section 154.1702... § 154.1702 Materials of construction. When Table 4 references one of the following paragraphs in this section, the materials in the referenced paragraph must not be in components that contact the cargo liquid...

  17. Energy Materials Coordinating Committee, fiscal year 1997. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-31

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. This report summarizes EMaCC activities for FY 1997 and describes the materials research programs of various offices and divisions within the Department.

  18. Use of superabsorbent polymers in construction materials

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2008-01-01

    extreme and reversible water absorption, porosity formation, water blocking and controlled release of substances. The overview does not cover all aspects of SAP use, but is focused on topics the author has been dealing with. In particular examples of SAP use within concrete construction are elaborated....

  19. Materials availability for fusion power plant construction

    International Nuclear Information System (INIS)

    Hartley, J.N.; Erickson, L.E.; Engel, R.L.; Foley, T.J.

    1976-09-01

    A preliminary assessment was made of the estimated total U.S. material usage with and without fusion power plants as well as the U.S. and foreign reserves and resources, and U.S. production capacity. The potential environmental impacts of fusion power plant material procurement were also reviewed including land alteration and resultant chemical releases. To provide a general measure for the impact of material procurement for fusion reactors, land requirements were estimated for mining and disposing of waste from mining

  20. Wood: a construction material for tall buildings

    Science.gov (United States)

    Wimmers, Guido

    2017-12-01

    Wood has great potential as a building material, because it is strong and lightweight, environmentally friendly and can be used in prefabricated buildings. However, only changes in building codes will make wood competitive with steel and concrete.

  1. Information systems for material flow management in construction processes

    Science.gov (United States)

    Mesároš, P.; Mandičák, T.

    2015-01-01

    The article describes the options for the management of material flows in the construction process. Management and resource planning is one of the key factors influencing the effectiveness of construction project. It is very difficult to set these flows correctly. The current period offers several options and tools to do this. Information systems and their modules can be used just for the management of materials in the construction process.

  2. Self-Organized Construction with Continuous Building Material

    DEFF Research Database (Denmark)

    Heinrich, Mary Katherine; Wahby, Mostafa; Divband Soorati, Mohammad

    2016-01-01

    Self-organized construction with continuous, structured building material, as opposed to modular units, offers new challenges to the robot-based construction process and lends the opportunity for increased flexibility in constructed artifact properties, such as shape and deformation. As an example...... investigation, we look at continuous filaments organized into braided structures, within the context of bio-hybrids constructing architectural artifacts. We report the result of an early swarm robot experiment. The robots successfully constructed a braid in a self-organized process. The construction process can...... be extended by using different materials and by embedding sensors during the self-organized construction directly into the braided structure. In future work, we plan to apply dedicated braiding robot hardware and to construct sophisticated 3-d structures with local variability in patterns of filament...

  3. Conjoint utility analysis of technical maturity and project progress of construction project

    Directory of Open Access Journals (Sweden)

    Ma Wei

    2016-01-01

    Full Text Available In this paper, taking construction project as the research object, the relationship between the project maturity index calculated by the construction project technical risks with different fine degree and the project progress index is studied, and the equilibrium relationship between the Party A’s utility curve and the Party B’s cost curve of using project maturity index and project progress index as the research variables is analyzed. The results show that, when the construction project technical risk division is more precise, the conjoint utility of the project's technical maturity index and the project progress is higher, and the project’s Party A and Party B two sides are closer to the optimal equilibrium. This shows that the construction project technical risk must be finely divided, and managed and controlled respectively, which will help to improve the conjoint utility of the project Party A and Party B two sides.

  4. Thermoelectric materials evaluation program. Quarterly technical task report No. 46

    International Nuclear Information System (INIS)

    Hampl, E.F. Jr.

    1976-02-01

    This forty-sixth Technical Task Report prepared under contract E(11-1)-2331 with the U.S. AEC and U.S. ERDA covers the performance period from October 1, 1975, to December 31, 1975. Highlights include the following tasks: N-type material development (material synthesis--gadolinium selenide compositions; material analyses; material processing; element contacting; ingradient compatibility and life testing; mechanical property characterization), TPM-217 P-type characterization (material preparation and analyses; element contacting; thermodynamic stability; isothermal chemical compatibility; ingradient compatibility and ingradient life testing; performance mapping of contacted and noncontacted elements; high-temperature partitioned P-legs), couple development (design and development of TPM-217/gadolinium selenide rare earth chalcogenide couple; design and development of TPM-217/3N-PbTe couples; advanced generator concepts), module development, liaison with Jet Propulsion Laboratory and material supply, liaison with GGA, and program management. 24 figures, 27 tables

  5. Materials for construction and civil engineering science, processing, and design

    CERN Document Server

    Margarido, Fernanda

    2015-01-01

    This expansive volume presents the essential topics related to construction materials composition and their practical application in structures and civil installations. The book's diverse slate of expert authors assemble invaluable case examples and performance data on the most important groups of materials used in construction, highlighting aspects such as nomenclature, the properties, the manufacturing processes, the selection criteria, the products/applications, the life cycle and recyclability, and the normalization. Civil Engineering Materials: Science, Processing, and Design is ideal for practicing architects; civil, construction, and structural engineers, and serves as a comprehensive reference for students of these disciplines. This book also: ·       Provides a substantial and detailed overview of traditional materials used in structures and civil infrastructure ·       Discusses properties of natural and synthetic materials in construction and materials' manufacturing processes ·  �...

  6. Nanostructured materials, production and application in construction

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2014-12-01

    Full Text Available The paper considers characteristics of water-soluble high module silicate systems: based on polysilicates of alkali element called liquid glasses and the chains of their transformations from the lowest oligomers into the highest ones with further formation colloid solutions – silica sol. The authors describe the potentialities of the use of such systems as binders or modifying additives to produce different nanostructured silicate polymer concretes. There are examples of prospective application of liquid glass and water solutions of high module silicates in industrial areas and construction. Quantum-chemical calculations of the structure and properties of tetraphenylarsonium are given and heterogeneity of its functional groups is shown.

  7. Technical efficiency and its determinants in the spanish construction sector pre- and post-financial crisis

    NARCIS (Netherlands)

    Kapelko, Magdalena; Oude Lansink, A.G.J.M.

    2015-01-01

    This paper estimates technical efficiency in the Spanish construction sector before and after the start of the current financial crisis, and examines the impact of socio-economic factors on technical efficiency. Bias-corrected efficiency measures are obtained using Data Envelopment Analysis with

  8. Influential Factors Affecting Materials Management in Construction Projects

    Directory of Open Access Journals (Sweden)

    Jusoh Zairra Mat

    2017-12-01

    Full Text Available Construction projects are more often than not plagued by poor performances such as delays, cost overrun, low productivity, construction wastes and compromised quality. Amongst the critical contributory factors of poor project performances, is the ineffectiveness of materials management occurring in the construction sites. Indeed, materials management is a very important component for construction projects. However, there are only limited numbers of research available regarding this topic. Thus, this research focuses its study on materials management, specifically in identifying the influential factors that affect materials management in the construction project activities. Literatures from books, journal articles and conference papers related to poor project performances and materials management have been reviewed. Consequently, this study sorted the salient influential factors and categorized them based on their specific group. Out of 47 factors identified, they are classified into 8 groups. They are (1 site condition; (2 planning and handling on site; (3 management; (4 materials; (5 supplier and manufacturer default; (6 transportation; (7 contractual; and (8 governmental interferences. In conclusion, this study contends that by identifying the influential factors affecting materials management, it will help construction players to avoid the occurrence of those factors and will minimize the negative impacts on the overall performance of construction projects. Hence, the handling-over of project will be according to schedule and not delayed by materials mismanagement.

  9. Sustainable construction : towards a strategic approach to construction material management for waste reduction

    NARCIS (Netherlands)

    Abarca Guerrero, L.; Scheublin, F.J.M.; Egmond - de Wilde De Ligny, van E.L.C.; Lambert, A.J.D.

    2008-01-01

    The construction sector plays a key role in shaping and developing the built environment. It also has an undisputed and significant impact on it due to the amounts of materials extracted and produced as waste. The construction industry has emphasized to recycling construction waste (CW), however,

  10. Interactively human: Sharing time, constructing materiality.

    Science.gov (United States)

    Roepstorff, Andreas

    2013-06-01

    Predictive processing models of cognition are promising an elegant way to unite action, perception, and learning. However, in the current formulations, they are species-unspecific and have very little particularly human about them. I propose to examine how, in this framework, humans can be able to massively interact and to build shared worlds that are both material and symbolic.

  11. When Construction Material Traders Goes Electronic: Analysis of SMEs in Malaysian Construction Industry

    OpenAIRE

    Dzul Fahmi Nordin; Rosmini Omar

    2012-01-01

    This paper analyzed the perception of e-commerce application services by construction material traders in Malaysia. Five attributes were tested: usability, reputation, trust, privacy and familiarity. Study methodology consists of survey questionnaire and statistical analysis that includes reliability analysis, factor analysis, ANOVA and regression analysis. The respondents were construction material traders, including hardware stores in Klang Valley, Kuala Lumpur. Find...

  12. Mass of materials: the impact of designers on construction ergonomics.

    Science.gov (United States)

    Smallwood, John

    2012-01-01

    Many construction injuries are musculoskeletal related in the form of sprains and strains arising from the handling of materials, which are specified by designers. The paper presents the results of a study conducted among delegates attending two 'designing for H&S' (DfH&S) seminars using a questionnaire. The salient findings include: the level of knowledge relative to the mass and density of materials is limited; designers generally do not consider the mass and density of materials when designing structures and elements and specifying materials; to a degree designers appreciate that the mass and density of materials impact on construction ergonomics; designers rate their knowledge of the mass and density of materials as limited, and designers appreciate the potential of the consideration of the mass and density of materials to contribute to an improvement in construction ergonomics. Conclusions include: designers lack the requisite knowledge relative to the mass and density of materials; designers are thus precluded from conducting optimum design hazard identification and risk assessments, and tertiary built environment designer education does not enlighten designers relative to construction ergonomics. Recommendations include: tertiary built environment designer education should construction ergonomics; professional associations should raise the level of awareness relative to construction ergonomics, and design practices should include a category 'mass and density of materials' in their practice libraries.

  13. Material Construction of Care Workers’ Identity

    OpenAIRE

    Sanna Laulainen; Anneli Hujala

    2016-01-01

    This article takes a critical look at the unconscious and unnoticed effects of materiality on care workers’ identity. The data was collected through nonactive role-playing using written accounts, in which the respondents described how they felt about working in fictitious ‘good’ or ‘bad’ elderly care homes. The data was analyzed with rhetorical analysis. Five different identity strategies were identified in the accounts. Strong professional identity was defended by downplaying the significanc...

  14. Material Construction of Care Workers’ Identity

    Directory of Open Access Journals (Sweden)

    Sanna Laulainen

    2016-03-01

    Full Text Available This article takes a critical look at the unconscious and unnoticed effects of materiality on care workers’ identity. The data was collected through nonactive role-playing using written accounts, in which the respondents described how they felt about working in fictitious ‘good’ or ‘bad’ elderly care homes. The data was analyzed with rhetorical analysis. Five different identity strategies were identified in the accounts. Strong professional identity was defended by downplaying the significance of materiality. Adjustment and passive compliance were used to adjust to physical shortcomings of the work environment. A ‘rebellion’ was described as an extreme course of action to resolve the contradiction between good care and poor facilities. At its best, the materiality of care homes, in particular homelikeness, seemed to support professional identity. These identity strategies illustrate how care workers balance between the physical realities of care homes and the requirements of the ethos of care, which are often incompatible with each other. It is crucial that managers as well as workers themselves recognize and acknowledge these connections affecting motivation and commitment to care work. Investments in better environments could be one way to improve the image and the attractiveness of the care branch and relieve the recruitment problems.

  15. Natural radioactivity in construction materials; Natuerliche Radioaktivitaet in Bauprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Bernd [Bundesamt fuer Strahlenschutz, Berlin (Germany)

    2017-04-01

    Rocks and soils contain traces of uranium and thorium and their daughter products, also the primordial nuclide K-40. Most construction materials are produced from mineral raw materials and residuals from industrial processes, thus natural radionuclides can be detected. The radionuclide concentrations are relevant with respect to radiation protection. Radionuclides in construction materials can cause indoor radiation exposure due to their gamma radiation and due to inhalation of radon a gaseous nuclide that can diffuse out of the materials. Based on new legal developments in the European Union the Bundesamt fuer Strahlenschutz is now again concerned with radiation protection issues of building materials.

  16. Use of polymer concrete for construction materials

    International Nuclear Information System (INIS)

    Vrtanoski, Gligorche; Dukovski, Vladimir; Yamaguchi, Kitazumi

    2002-01-01

    Polymer concrete (PC), or resin concrete, consists of a polymer binder, which may be a thermoplastic but more frequently is a thermosetting polymer, and a mineral filler such as aggregate, gravel and crushed stone. PC has higher strength, greater resistance to chemicals and corrosive agents, lower water absorption and higher freeze-thaw stability than the conventional Portland cement concrete and Cast Iron. This paper is a review of the key features of PC materials as a bases for comparison with the cast iron. (Original)

  17. Synthesis on construction unit cost development : technical report.

    Science.gov (United States)

    2009-01-01

    Availability of historical unit cost data is an important factor in developing accurate project cost estimates. : State highway agencies (SHAs) collect data on historical bids and/or production rates, crew sizes and mixes, : material costs, and equip...

  18. Constructions, geo-materials and interactions

    International Nuclear Information System (INIS)

    Petit, C.; Pijaudier-Cabot, G.; Reynouard, J.M.

    1998-01-01

    The development of methods for the evaluation of the functioning safety of buildings and structures during all their service life represents one of the major research goals in civil engineering. The energy production, the industrial development and the management of wastes have led to new safety research problems to ensure the environment and populations protection. The mechanics of geo-materials (soils, concretes, rocks) is the central part of the predictive tools developed to satisfy these socio-economical stakes. The functioning analysis of buildings cover huge size and time scales, from the micro-meter to the kilometer and from the second to the century, and requires various relevant models and multi-subject methods. This volume is divided in 3 parts dealing with: the in-service safety of buildings, the accidental situations, and the behaviour of geo-materials. Five papers dealing with the long-term, seismic and thermal behaviour of concretes were selected for INIS and one paper dealing with the effect of time on a natural clay and on the behaviour of a dam foundations was selected for ETDE. (J.S.)

  19. Management of waste from packaging of construction materials in building construction works

    OpenAIRE

    González Pericot, Natalia; Río Merino, Mercedes del

    2011-01-01

    Every material arriving at the construction site comes protected in some type of packaging, fundamentally cardboard, plastic or wood, and presently the great majority of these packagings finish in a container mixed with the rest of waste of the construction work. The increasing tendency to use prefabricated materials increases the volume of packaging necessary in product transport; in addition, the traditional materials also arrive more protected with packaging. A specific management for ...

  20. Technical specification for transferring tank construction data to the Oak Ridge Environmental Information System (OREIS)

    International Nuclear Information System (INIS)

    1996-06-01

    The primary goal of this technical specification is to meet the consolidated environmental data requirements defined by the Federal Facility Agreement (FFA) and the Tennessee Oversight Agreement as they pertain to tank construction data maintained in Oak Ridge, Tennessee, by the US Department of Energy's Maintenance and Operations contractor Lockheed Martin Energy Systems, Inc., and prime contractors to the Department of Energy. This technical specification describes the organizational responsibilities for loading tank construction data into OREIS, describes the logical and physical data transfer files, addresses business rules and submission rules, addresses configuration control of this technical specification, and addresses required changes to the current OREIS data base structure based on site requirements. This technical specification addresses the tank construction data maintained by the Y-12, K-25, and ORNL sites that will be sent to OREIS. The initial submission of data will include only inactive Environmental Restoration tanks as specified by the FFA

  1. Lagrangian torus fibration of quintic Calabi-Yau hypersurfaces II: Technical results on gradient flow construction

    OpenAIRE

    Ruan, Wei-Dong

    2004-01-01

    This paper is the sequel to my recent paper [10]. It will provide technical details of our gradient flow construction and related problems, which are essential for our construction of Lagrangian torus fibrations in [10] and subsequent papers [11, 13, 14].

  2. Innovative Materials and Techniques in Concrete Construction : ACES Workshop

    CERN Document Server

    2012-01-01

    Recent years have seen enormous advances in the technology of concrete as a material, through which its strength, compactness and ductility can reach levels never dreamed of before. Thanks to these improved material properties, the strength and durability of concrete structures is greatly improved, their weight and dimensions reduced, the scope of concrete as a structural material is widened and – despite the higher material costs – overall economy is possible, with positive impacts on sustainability as well. Similar advances are underway in reinforcing materials, notably high strength steel and fibre-reinforced polymers, and in the way they are combined with concrete into high performance structures. Developments in materials and equipment, as well as new concepts, have lead to innovative construction techniques, reducing cost and construction time and making possible the application of concrete under extreme conditions of construction or environment. All these advances will be highlighted in the book by...

  3. Cost Indexing and Unit Price Adjustments for Construction Materials

    Science.gov (United States)

    2012-10-30

    This project was focused on the assimilation of information regarding unit price adjustment clauses, or PACs, : that are offered for construction materials at the state Departments of Transportation (DOTs). It is intended to : provide the South Carol...

  4. Aspects of new material application for boilers construction

    International Nuclear Information System (INIS)

    Czerniawski, R.

    1996-01-01

    Review of steel types commonly used for energetic boilers construction has been done. The worldwide trends in new materials application for improvement of boilers quality have been discussed. The mechanical properties of boiler construction steels have been shown and compared. 3 refs, 5 figs, 1 tab

  5. Identification of Key Indicators for Sustainable Construction Materials

    Directory of Open Access Journals (Sweden)

    Humphrey Danso

    2018-01-01

    Full Text Available Studies on sustainable construction materials are on the rise with their environmental, social, and economic benefits. This study identifies the key indicators for measuring sustainable construction materials. The design used for the study was that of a survey which relied on a questionnaire with five-point Likert scale to generate data for the analysis. For this purpose, 25 indicators from the three dimensions (environmental, social, and economic identified from the literature were presented to the respondents in a structured questionnaire, and responses were collected and analysed using SPSS. The study identified three key environmental indicators for measuring sustainable construction materials, and these indicators are human toxicity, climate change, and solid waste. Furthermore, adaptability, thermal comfort, local resources, and housing for all were identified as the four key social indicators for sustainable construction materials. In addition, maintenance cost, operational cost, initial cost, long-term savings, and life span were found to be the five key economic indicators for measuring sustainable construction materials. The study therefore suggests that these twelve indicators should be considered in future studies that seek to measure sustainable construction materials.

  6. Technical regulations for road transport of radioactive materials

    International Nuclear Information System (INIS)

    Juul-Jensen, P.; Ulbak, K.

    1990-01-01

    The technical regulations for the transport of radioactive materials in Denmark are set down by the (Danish) National Board of Health in collaboration with the (Danish) National Institute for Radiation Hygiene in accordance with paragraph 3 of the Danish Ministry of Justice's Executive Order no. 2 of 2, January 1985 on the national road transport of dangerous goods by road, as amended by exutive order no. 251 of April 29th 1987 and no. 704 of November 1989. These regulations are presented here. They are almost identical, with only very few exceptions indicated in the publication, with the rules for Class 7 of the European convention on international transport of dangerous goods by road (ADR). In addition to the aforementioned regulations for national road transport of radioactive materials the general rules for the transport of radioactive materials found in the National Board of Health's executive order no. 721 of November 27th 1989 on the transport of radioactive materials are valid. The abovementioned executive orders, with the exception of certain supplements which are not part of the technical regulations, are also contained in this publication. (AB)

  7. Considering Materials Management in Construction: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Zakaria Dakhli

    2018-03-01

    Full Text Available While materials count for a considerable amount of construction costs, the way materials are managed seems to be improvised rather than approached methodically. This study investigates the practice of novel techniques used to manage materials in the construction industry. Techniques that have already proven themselves to be efficient ways to manage the production pace within the industry include the pull system, Just-In-Time, Kitting and off-site fabrication. These are explained and assessed in the context of the French construction industry through an exploratory study, supported by a questionnaire completed by contractors. The results reveal that a clear plan to manage materials on-site is lacking among the respondents, creating common inventory problems. This research provides evidence to support the central role played by an efficient management of material flow on-site. It also highlights the obstacles that hinder the adoption of innovative techniques, such as sub-contractor coordination.

  8. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    OpenAIRE

    Cuizhen Xue; Aiqin Shen; Yinchuan Guo; Tianqin He

    2016-01-01

    The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM) as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, ...

  9. Designing and constructing/installing technical security countermeasures (TSCM) into supersensitive facilities

    International Nuclear Information System (INIS)

    Davis, D.L.

    1988-01-01

    The design and construction of supersensitive facilities and the installation of systems secure from technical surveillance and sabotage penetration involve ''TSCM'' in the broad sense of technical ''security'' countermeasures. When the technical threat was at a lower level of intensity and sophistication, it was common practice to defer TSCM to the future facility occupant. However, the New Moscow Embassy experience has proven this course of action subject to peril. Although primary concern with the embassy was audio surveillance, elsewhere there are other threats of equal or greater concern, e.g., technical implants may be used to monitor readiness status or interfere with the operation of C3I and weapons systems. Present and future technical penetration threats stretch the imagination. The Soviets have committed substantial hard scientific resources to a broad range of technical intelligence, even including applications or parapsychology. Countering these threats involves continuous TSCM precautions from initial planning to completion. Designs and construction/installation techniques must facilitate technical inspections and preclude the broadest range of known and suspected technical penetration efforts

  10. Designing and constructing/installing technical security countermeasures (TSCM) into supersensitive facilities

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D.L.

    1988-01-01

    The design and construction of supersensitive facilities and the installation of systems secure from technical surveillance and sabotage penetration involve ''TSCM'' in the broad sense of technical ''security'' countermeasures. When the technical threat was at a lower level of intensity and sophistication, it was common practice to defer TSCM to the future facility occupant. However, the New Moscow Embassy experience has proven this course of action subject to peril. Although primary concern with the embassy was audio surveillance, elsewhere there are other threats of equal or greater concern, e.g., technical implants may be used to monitor readiness status or interfere with the operation of C3I and weapons systems. Present and future technical penetration threats stretch the imagination. The Soviets have committed substantial hard scientific resources to a broad range of technical intelligence, even including applications or parapsychology. Countering these threats involves continuous TSCM precautions from initial planning to completion. Designs and construction/installation techniques must facilitate technical inspections and preclude the broadest range of known and suspected technical penetration efforts.

  11. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions.

    Science.gov (United States)

    Schwab, Oliver; Bayer, Peter; Juraske, Ronnie; Verones, Francesca; Hellweg, Stefanie

    2014-10-01

    In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk

  12. Technical limitations of nuclear fuel materials and structures

    International Nuclear Information System (INIS)

    Hansson, L.; Planman, T.; Vitikainen, E.

    1993-05-01

    This report gives a summary of the tasks carried out within the project 'Technical limitations of nuclear fuel materials and structures' which belongs to the Finnish national research programme called 'Systems behaviour and operational aspects of safety'. The duration of the project was three years from 1990 to 1992. Most western LWR utilities, including the two Finnish ones have an incentive to implement extended burnup fuel cycles in their nuclear power plants. The aim of this project has been authorities to support them in the assessment and licensing of new fuel designs and materials. The research work of the project was focused on collecting and qualifying fuel performance data and on performing laboratory tests on fresh and irradiated cladding and structural materials. Moreover, knowledge of the high burnup phenomena was obtained through participation in international research projects such as OECD Halden Project and several Studsvik projects. Experimental work within the framework of the VVER fuel cooperative effort was also continued. (orig.)

  13. MISSE in the Materials and Processes Technical Information System (MAPTIS )

    Science.gov (United States)

    Burns, DeWitt; Finckenor, Miria; Henrie, Ben

    2013-01-01

    Materials International Space Station Experiment (MISSE) data is now being collected and distributed through the Materials and Processes Technical Information System (MAPTIS) at Marshall Space Flight Center in Huntsville, Alabama. MISSE data has been instrumental in many programs and continues to be an important source of data for the space community. To facilitate great access to the MISSE data the International Space Station (ISS) program office and MAPTIS are working to gather this data into a central location. The MISSE database contains information about materials, samples, and flights along with pictures, pdfs, excel files, word documents, and other files types. Major capabilities of the system are: access control, browsing, searching, reports, and record comparison. The search capabilities will search within any searchable files so even if the desired meta-data has not been associated data can still be retrieved. Other functionality will continue to be added to the MISSE database as the Athena Platform is expanded

  14. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions

    International Nuclear Information System (INIS)

    Schwab, Oliver; Bayer, Peter; Juraske, Ronnie; Verones, Francesca; Hellweg, Stefanie

    2014-01-01

    Highlights: • We model environmental impacts of leaching from secondary construction material. • Industrial wastes in construction contain up to 45,000 t heavy metals per year (D). • In a scenario, 150 t are leached to the environment within 100 years after construction. • All heavy metals but As, Sb and Mo are adsorbed by 20 cm subsoil in this scenario. • Environmental impacts depend on material, pollutant, construction type, and geography. - Abstract: In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors

  15. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Oliver [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Karlsruhe Institute of Technology, Institute for Geography and Geoecology, Adenauerring 20, 76131 Karlsruhe (Germany); Bayer, Peter, E-mail: bayer@erdw.ethz.ch [Swiss Federal Institute of Technology Zurich, Geological Institute, Sonneggstrasse 5, 8092 Zurich (Switzerland); Juraske, Ronnie [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Verones, Francesca [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Hellweg, Stefanie [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland)

    2014-10-15

    Highlights: • We model environmental impacts of leaching from secondary construction material. • Industrial wastes in construction contain up to 45,000 t heavy metals per year (D). • In a scenario, 150 t are leached to the environment within 100 years after construction. • All heavy metals but As, Sb and Mo are adsorbed by 20 cm subsoil in this scenario. • Environmental impacts depend on material, pollutant, construction type, and geography. - Abstract: In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors

  16. Additive Construction with Mobile Emplacement (ACME) / Automated Construction of Expeditionary Structures (ACES) Materials Delivery System (MDS)

    Science.gov (United States)

    Mueller, R. P.; Townsend, I. I.; Tamasy, G. J.; Evers, C. J.; Sibille, L. J.; Edmunson, J. E.; Fiske, M. R.; Fikes, J. C.; Case, M.

    2018-01-01

    The purpose of the Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) project is to incorporate the Liquid Goods Delivery System (LGDS) into the Dry Goods Delivery System (DGDS) structure to create an integrated and automated Materials Delivery System (MDS) for 3D printing structures with ordinary Portland cement (OPC) concrete. ACES 3 is a prototype for 3-D printing barracks for soldiers in forward bases, here on Earth. The LGDS supports ACES 3 by storing liquid materials, mixing recipe batches of liquid materials, and working with the Dry Goods Feed System (DGFS) previously developed for ACES 2, combining the materials that are eventually extruded out of the print nozzle. Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) is a project led by the US Army Corps of Engineers (USACE) and supported by NASA. The equivalent 3D printing system for construction in space is designated Additive Construction with Mobile Emplacement (ACME) by NASA.

  17. Using constitutive equation gap method for identification of elastic material parameters: Technical insights and illustrations

    KAUST Repository

    Florentin, Éric

    2011-08-09

    The constitutive equation gap method (CEGM) is a well-known concept which, until now, has been used mainly for the verification of finite element simulations. Recently, CEGM-based functional has been proposed to identify local elastic parameters based on experimental full-field measurement. From a technical point of view, this approach requires to quickly describe a space of statically admissible stress fields. We present here the technical insights, inspired from previous works in verification, that leads to the construction of such a space. Then, the identification strategy is implemented and the obtained results are compared with the actual material parameters for numerically generated benchmarks. The quality of the identification technique is demonstrated that makes it a valuable tool for interactive design as a way to validate local material properties. © 2011 Springer-Verlag.

  18. Investigations of construction materials by means of cracking mechanics

    International Nuclear Information System (INIS)

    Bilous, W.; Wasiak, J.

    1995-01-01

    The diagnostic procedure for typical construction materials based on cracking tests has been presented. Results of investigations for aluminium base alloys and tungsten sintered materials have been shown and discussed. Application of the method for pipelines testing has been also performed. 6 figs, 2 tabs

  19. Molecular tools for the construction of peptide-based materials.

    Science.gov (United States)

    Ramakers, B E I; van Hest, J C M; Löwik, D W P M

    2014-04-21

    Proteins and peptides are fundamental components of living systems where they play crucial roles at both functional and structural level. The versatile biological properties of these molecules make them interesting building blocks for the construction of bio-active and biocompatible materials. A variety of molecular tools can be used to fashion the peptides necessary for the assembly of these materials. In this tutorial review we shall describe five of the main techniques, namely solid phase peptide synthesis, native chemical ligation, Staudinger ligation, NCA polymerisation, and genetic engineering, that have been used to great effect for the construction of a host of peptide-based materials.

  20. The Natural Hospital Environment: a Socio-Technical-Material perspective.

    Science.gov (United States)

    Fernando, Juanita; Dawson, Linda

    2014-02-01

    This paper introduces two concepts into analyses of information security and hospital-based information systems-- a Socio-Technical-Material theoretical framework and the Natural Hospital Environment. The research is grounded in a review of pertinent literature with previously published Australian (Victoria) case study data to analyse the way clinicians work with privacy and security in their work. The analysis was sorted into thematic categories, providing the basis for the Natural Hospital Environment and Socio-Technical-Material framework theories discussed here. Natural Hospital Environments feature inadequate yet pervasive computer use, aural privacy shortcomings, shared workspace, meagre budgets, complex regulation that hinders training outcomes and out-dated infrastructure and are highly interruptive. Working collaboratively in many cases, participants found ways to avoid or misuse security tools, such as passwords or screensavers for patient care. Workgroup infrastructure was old, architecturally limited, haphazard in some instances, and was less useful than paper handover sheets to ensure the quality of patient care outcomes. Despite valiant efforts by some participants, they were unable to control factors influencing the privacy of patient health information in public hospital settings. Future improvements to hospital-based organisational frameworks for e-health can only be made when there is an improved understanding of the Socio-Technical-Material theoretical framework and Natural Hospital Environment contexts. Aspects within control of clinicians and administrators can be addressed directly although some others are beyond their control. An understanding and acknowledgement of these issues will benefit the management and planning of improved and secure hospital settings. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    Science.gov (United States)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  2. Fire-resistant materials for aircraft passenger seat construction

    Science.gov (United States)

    Fewell, L. L.; Tesoro, G. C.; Moussa, A.; Kourtides, D. A.

    1979-01-01

    The thermal response characteristics of fabric and fabric-foam assemblies are described. The various aspects of the ignition behavior of contemporary aircraft passenger seat upholstery fabric materials relative to fabric materials made from thermally stable polymers are evaluated. The role of the polymeric foam backing on the thermal response of the fabric-foam assembly is also ascertained. The optimum utilization of improved fire-resistant fabric and foam materials in the construction of aircraft passenger seats is suggested.

  3. Role of coal combustion products in sustainable construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Naik, T.R.; Siddique, R.; Vaniker, S. [University of Wisconsin-Milwaukee, Milwaukee, WI (USA). UWM Center for Products Utilization, College of Engineering and Applied Science

    2003-07-01

    The paper describes various coal combustion products, CCPs produced in the process of power generation. These include fly ash, bottom ash, boiler slag and flue gas desulfurization products. Typical test protocol used for testing, analysis and evaluation of CCPs, as well as the current best recycling use options for these materials are discussed. Materials, productions, properties, and potential applications in the manufacture of emerging materials for sustainable construction, as well as environmental impact are also briefly discussed. 47 refs., 16 figs., 8 tabs.

  4. Materials of 3. scientific-technical seminar: Materials Investigation for Power Industry; Materialy 3. seminarium naukowo-technicznego: Badania Materialowe na Potrzeby Elektrowni i Przemyslu Energetycznego

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is an assembly of the papers concerning material problems during the exploitation of power stations as well as during construction and exploitation of gas pipelines. The accreditation problems according to the European Standards and Office of Technical Inspection prescription are also discussed.

  5. Mixing of incompatible materials in waste tanks technical basis document

    International Nuclear Information System (INIS)

    SANDGREN, K.R.

    2003-01-01

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process, the technical basis for assigning risk bins, and the controls selected for the mixing of incompatible materials representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSCs) and/or technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the FR-equency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report

  6. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    KOZLOWSKI, S.D.

    2007-01-01

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below

  7. Transportation of nuclear material in France: regulatory and technical aspects

    International Nuclear Information System (INIS)

    Flory, D.; Renard, C.

    1995-01-01

    Legislative and regulatory documentation define responsibilities in the field of security and physical protection for transportation of nuclear material. Any transportation activity has to conform to an advance authorization regime delivered by the Ministry of Industry. Responsibility for physical protection of nuclear material rests with the carrier under control of the public authority. Penalties reinforce this administrative regime. Operational responsibility for management and control of transport operations has been entrusted by the ministry to the operational transport unit (Echelon Operationnel des Transports - EOT) of IPSN (Institute for Nuclear Protection and Safety). To guarantee en efficient protection of transport operations, the various following means are provided for: -specialized transport means; - devices for real time tracking of road vehicles; - administrative authorization and declaration procedures; -intervention capacities in case of sabotage... This set of technical means and administrative measures is completed by the existence of a body of inspectors who may control every step of the operations. (authors). 3 tabs

  8. Materials And Processes Technical Information System (MAPTIS) LDEF materials data base

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated from LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux) and author(s) or principal investigator(s). Tne LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which has been computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. The LDEF Materials Data Base is described and step-by-step example searches using the data base are included. Information on how to become an authorized user of the system is included.

  9. Suitability of technical materials for machinery subsoilers for soil tillage

    Directory of Open Access Journals (Sweden)

    Radek Bednář

    2013-01-01

    Full Text Available Agricultural soil processing belongs to the basic elements in the process of crop production. Currently classic tillage method is decreasing and the only trend has stated as a shallow plowing. Suitable post harvest soil tillage greatly affects yields in the next cycle. The aim of the study is the analysis of abrasive wear of selected construction materials and their subsequent use for DXRV-HD cultivator. The performed tests are focused on monitoring the mechanical properties of the materials and their use for variable cutting tip of cultivator body. Tested materials are divided into four categories. These materials include tool steel (19436, carbon steel (12050, cast iron with globular graphite and welding material supplied as a functional complex on low carbon steel by the Abraweld company. These materials are tested together with the original part of share cultivator. The present experiment is focused on metallorgraphic, mechanical and abrasive analysis. Structural component of the material is identified by metallographic photos and then compared with the impact strength tested on Charpy hammer. Followed the abrasion resistance according to CSN 01 5084 and the total evaluation of the tested samples are done.

  10. Enablers of Innovation in the Construction Material Industry

    DEFF Research Database (Denmark)

    Wandahl, Søren; Lassen, Astrid Heidemann; Jacobsen, Alexia

    2014-01-01

    , which creates a strong interdependence between the different supply network partners and can be seen as a hindrance for innovation. Innovation models must embrace such a contemporary business structures, where competition often takes place between supply chains rather than between individual companies......The construction material industry is often acknowledged as slightly more innovative than the overall construction industry and could hence serve as a valuable learning place for how innovation could flourish in the construction industry. Construction is viewed as network or supply chain based......, it was found that different approaches for facilitating this journey exists, based on company characteristics. This paper adds to the body of knowledge on how to succeed with innovation in the construction industry. The increased awareness of an open and cooperative approach to innovation is of value both...

  11. Design and construction of the Fuels and Materials Examination Facility

    International Nuclear Information System (INIS)

    Burgess, C.A.

    1979-01-01

    Final design is more than 85 percent complete on the Fuels and Materials Examination Facility, the facility for post-irradiation examination of the fuels and materials tests irradiated in the FFTF and for fuel process development, experimental test pin fabrication and supporting storage, assay, and analytical chemistry functions. The overall facility is generally described with specific information given on some of the design features. Construction has been initiated and more than 10% of the construction contracts have been awarded on a fixed price basis

  12. Expanding Application of Perforated Metal Materials in Construction and Architecture

    Science.gov (United States)

    Mironovs, V.; Tatarinov, A.; Gorbacova, S.

    2017-10-01

    Perforated metal materials (PMM) combine a range of properties, including rigidity, strength, lightweight, small thickness, a dosed transparency and decorative attractiveness. All these bring new application effects in construction industry and architecture. Nowadays, PMM are widely used in design of facades and interiors all over the world, becoming more popular in Latvia as well. The paper touches several aspects of PMM applications, including its decoration function, shadowing of sunlight, sound and noise barrier function and the problem of corrosion when exploited outdoors. Possible perfection may include using different coatings, multi-layer design variants and integration with other constructional materials in order to provide better sound absorption, corrosion resistance and functionality.

  13. Technical skills requirement of Indonesian construction labors to work in Malaysia

    Science.gov (United States)

    Adi, Henny Pratiwi

    2017-03-01

    Labors skills is an important part of construction projects implementation. Suitability between the skills possessed by labors with the skills needed by user is required to increase employment opportunities. Malaysia is a country that using construction labors from Indonesia. This study aims to get the kind of technical skills required by users of Indonesian constructian labors in Malaysia and also the importance level of technical skills. Data collecting in this research was conducted through interviews and questionnaires on contractors in Malaysia. The next stage was determine the importance level of technical skills in work field of carpenter, bricklayer, plumber and painters. The importance level of technical skills analyzed using the Relative Importance Index (RII). The results showed that mastering the operation of both instruments either manually or electrically is the most importance in the technical skills. Therefore, an understanding of the types of equipment for work field and the manner of operation is need to had by Indonesian construction labors who will work in Malaysia.

  14. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles : Task 4B : material & construction specifications : final report.

    Science.gov (United States)

    2015-07-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP composite piles for load-bearing in bridges. This report covers Task 4B, Materials and Construction Specifications. : This technical report...

  15. Intelligent Materials Tracking System for Construction Projects Management

    Directory of Open Access Journals (Sweden)

    Narimah Kasim

    2015-05-01

    Full Text Available An essential factor adversely affecting the performance of construction projects is the improper handling of materials during site activities. In addition, paper-based reports are mostly used to record and exchange information related to the material components within the supply chain, which is problematic and inefficient. Generally, technologies (such as wireless systems and RFID are not being adequately used to overcome human errors and are not well integrated with project management systems to make tracking and management of materials easier and faster. Findings from a literature review and surveys showed that there is a lack of positive examples of such tools having been used effectively. Therefore, this research focused on the development of a materials tracking system that integrates RFID-based materials management with resources modelling to improve on-site materials tracking. Rapid prototyping was used to develop the system and testing of the system was carried out to examine the functionality and working appropriately. The proposed system is intended to promote the employment of RFID for automatic materials tracking with integration of resource modelling (Microsoft (R Office Project in the project management system in order to establish which of the tagged components are required resources for certain project tasks. In conclusion, the system provides an automatic and easy tracking method for managing materials during materials delivery and inventory management processes in construction projects.

  16. A primer on wood as dock construction material

    Science.gov (United States)

    Stan Lebow

    2007-01-01

    To be a successful marina owner and operator, it’s important to understand all the facets of one’s facility, including the intricacies of one part of the marina that most boaters take for granted: the docks. When it comes to dock construction, marinas have a wide-range of materials to choose from, with one of the most commonly used materials being preservative-treated...

  17. Vectors of technical innovation delivery by small and medium Australian construction firms

    Directory of Open Access Journals (Sweden)

    Marie Hardie

    2016-09-01

    Full Text Available Long-established Schumpeterian theory on innovation assumes that significant innovations are generated by large companies with ample spare resources. The allocation of time and money to speculative endeavours with unclear outcomes has often been regarded as beyond the scope of small and medium-sized enterprises (SMEs. As a result, authorities sometimes advise SMEs to concentrate on the adoption of existing innovative products and processes rather than the generation of new creative ideas. Despite this traditional wisdom, some very capable individuals actively choose to participate in the SME sector because the relative absence of internal bureaucratic processes and the capacity for agile response to changing circumstances. Ten case studies of significant technical innovations generated within construction SMEs were examined in the light of common themes identified through a literature review. The case studies were classified according to existing taxonomies of innovation. Content analysis was used to map the identified themes against the published material about the innovations from patent applications, company websites, trade literature and industry magazines. The findings indicate that SME innovation stems from several distinct motivations. These drivers of innovation can be described vectors. They inspire innovative solutions but the generated innovations also drive development towards solutions for other, quite different problems.

  18. Distribution of materials in construction and demolition waste in Portugal.

    Science.gov (United States)

    Coelho, André; de Brito, Jorge

    2011-08-01

    It may not be enough simply to know the global volume of construction and demolition waste (CDW) generated in a certain region or country if one wants to estimate, for instance, the revenue accruing from separating several types of materials from the input entering a given CDW recycling plant. A more detailed determination of the distribution of the materials within the generated CDW is needed and the present paper addresses this issue, distinguishing different buildings and types of operation (new construction, retrofitting and demolition). This has been achieved by measuring the materials from buildings of different ages within the Portuguese building stock, and by using direct data from demolition/retrofitting sites and new construction average values reported in the literature. An attempt to establish a benchmark with other countries is also presented. This knowledge may also benefit industry management, especially that related to CDW recycling, helping to optimize procedures, equipment size and operation and even industrial plant spatial distribution. In an extremely competitive market, where as in Portugal low-tech and high environmental impact procedures remain the norm in the construction industry (in particular, the construction waste industry), the introduction of a successful recycling industry is only possible with highly optimized processes and based on a knowledge-based approach to problems.

  19. Glass melter materials technical options for the French vitrification process and operations experience authors

    International Nuclear Information System (INIS)

    Bonniaud, R.; Roznad, L.; Demay, R.

    1986-09-01

    The French vitrification process for solidifying high-level radioactive waste which has been under industrial application since 1978, is mentioned briefly. This technique involves glass melting at 1,150 deg.C, using an induction heated metallic vessel. The molten glass pouring is controlled by a thermal gate, which is also heated by induction. Two types of vessel are in use. Both are remotely removable and disposable to permit replacement at regular intervals. The technical criteria (the materials used have to meet) are described. The behaviour of the materials has been investigated using the industrial experience gained in the AVM facility during 8 years of operation, as well as with operation of a prototype for the new vitrification facilities under construction at La Hague. A short description of the use of these materials is also presented

  20. Low cost construction technologies and materials - case study Mozambuique

    CSIR Research Space (South Africa)

    Kuchena, JC

    2009-09-01

    Full Text Available Low cost or affordable construction technologies and materials are often touted as a panacea in meeting the ever growing demand for rapid housing delivery in developing economies. Mozambique as with most of the developing world, from both historical...

  1. Aeolian sands as material to construct low-volume roads

    CSIR Research Space (South Africa)

    Paige-Green, P

    2011-07-01

    Full Text Available Aeolian sands are widespread in many semi-arid to arid areas of the world and often provide the only economic source of construction materials for low volume roads. Experience in southern Africa over a number of decades has shown that provided...

  2. Improved Suction Technique for the Characterization of Construction Materials

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Hansen, Kurt Kielsgaard

    2007-01-01

    The suction technique is a method from soil science that is used for the study of moisture storage capacity in porous construction materials at high relative humidity levels (above approximately 93%). The samples to be studied are placed in a pressurized container (an extractor) on a water...

  3. Construction raw materials policy and supply practices in Northwestern Europe

    NARCIS (Netherlands)

    Meulen, M.J. van der; Koopmans, T.P.F.; Pietersen, H.S.

    2003-01-01

    The present contribution is an inventory of the construction raw materials policy and supply practices in The Netherlands, Belgium, North Rhine-Westphalia, Lower Saxony, Great Britain, Norway and Denmark. The work has been commissioned by the Dutch government in order to benchmark its domestic

  4. Natural and construction materials and plant products. Raw materials, constructional physics, design and construction. 2. upd. and enl. ed.; Natuerliche und pflanzliche Baustoffe. Rohstoff - Bauphysik - Konstruktion

    Energy Technology Data Exchange (ETDEWEB)

    Holzmann, Gerhard; Wangelin, Matthias; Bruns, Rainer

    2012-07-01

    The book discusses all relevant renewable constructional materials made from fibre or dyeing plants along with their physical and chemical fundamentals. Protection of resources, environmental protection, and pollutants in constructional materials are gone into as well. [German] Dieses Buch behandelt alle wichtige nachwachsenden, pflanzlichen Baustoffe aus Faser- und Faerberpflanzen sowie dazugehoerige physikalische und chemische Grundlagen. Angesprochen werden auch Ressourcen- und Umweltschutz sowie Schadstoffe aus Bauprodukten.

  5. Mathematical Methods of System Analysis in Construction Materials

    Science.gov (United States)

    Garkina, Irina; Danilov, Alexander

    2017-10-01

    System attributes of construction materials are defined: complexity of an object, integrity of set of elements, existence of essential, stable relations between elements defining integrative properties of system, existence of structure, etc. On the basis of cognitive modelling (intensive and extensive properties; the operating parameters) materials (as difficult systems) and creation of the cognitive map the hierarchical modular structure of criteria of quality is under construction. It actually is a basis for preparation of the specification on development of material (the required organization and properties). Proceeding from a modern paradigm (model of statement of problems and their decisions) of development of materials, levels and modules are specified in structure of material. It when using the principles of the system analysis allows to considered technological process as the difficult system consisting of elements of the distinguished specification level: from atomic before separate process. Each element of system depending on an effective objective is considered as separate system with more detailed levels of decomposition. Among them, semantic and qualitative analyses of an object (are considered a research objective, decomposition levels, separate elements and communications between them come to light). Further formalization of the available knowledge in the form of mathematical models (structural identification) is carried out; communications between input and output parameters (parametrical identification) are defined. Hierarchical structures of criteria of quality are under construction for each allocated level. On her the relevant hierarchical structures of system (material) are under construction. Regularities of structurization and formation of properties, generally are considered at the levels from micro to a macrostructure. The mathematical model of material is represented as set of the models corresponding to private criteria by which separate

  6. Development and mechanical properties of construction materials from lunar simulants

    Science.gov (United States)

    Desai, Chandra S.

    1990-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. Currently, this research involves two aspects: (1) liquefaction of lunar simulants with various additives in a furnace so as to produce a construction material like an intermediate ceramic; and (2) cyclic loading of simulant with different initial vacuums and densities with respect to the theoretical maximum densities (TMD). In both cases, bending, triaxial compression, extension, and hydrostatic tests will be performed to define the stress-strain strength response of the resulting materials. In the case of the intermediate ceramic, bending and available multiaxial test devices will be used, while for the compacted case, tests will be performed directly in the new device. The tests will be performed by simulating in situ confining conditions. A preliminary review of high-purity metal is also conducted.

  7. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties

    Directory of Open Access Journals (Sweden)

    Almudena Díaz-García

    2017-01-01

    Full Text Available Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  8. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties.

    Science.gov (United States)

    Díaz-García, Almudena; Martínez-García, Carmen; Cotes-Palomino, Teresa

    2017-01-25

    Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  9. Radiation damage of the construction materials, Phase I, Part I- Radiation damage of the construction steels

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1962-10-01

    The objective of this task was testing the mechanical properties of stainless steels having different grain size. Being an important material used mainly for reactor vessel construction stainless steel will be exposed to neutron flux in the RA reactor for testing

  10. Environmentally Sustainable Construction Products and Materials – Assessment of release

    DEFF Research Database (Denmark)

    Wahlström, Margareta; Laine-Yliijoki, Jutta; Järnström, helena

    The construction sector consumes yearly about half of all natural resourcesextracted in Europe and their transformation into building products has huge energy demands. Therefore the focus of today’s environmental policy is on the building end-of-life scenarios and material efficiency. Here waste...... hardly any construction product is designed keeping recycling/reuse in mind, the “Design for theEnvironment” -concept is one of the key steps towards increased recycling and reuse and thereby towards minimal environmental impacts. This project has been carried out by VTT with cooperation with the Danish...

  11. Employers' Perception of Graduates with Entry-Level Technical Skills from Construction Industry Programs in Ghana and Nigeria

    Science.gov (United States)

    Acheampong, Philip

    2013-01-01

    The purpose of this comparative study was to identify the technical skills and abilities needed by prospective employees of construction industries in Ghana and Nigeria. Potential employees were defined here as recent graduates of construction industry programs with entry-level technical skills. The continuous growth in and expansion of these two…

  12. Construction material processed using lunar simulant in various environments

    Science.gov (United States)

    Chase, Stan; Ocallaghan-Hay, Bridget; Housman, Ralph; Kindig, Michael; King, John; Montegrande, Kevin; Norris, Raymond; Vanscotter, Ryan; Willenborg, Jonathan; Staubs, Harry

    1995-01-01

    The manufacture of construction materials from locally available resources in space is an important first step in the establishment of lunar and planetary bases. The objective of the CoMPULSIVE (Construction Material Processed Using Lunar Simulant In Various Environments) experiment is to develop a procedure to produce construction materials by sintering or melting Johnson Space Center Simulant 1 (JSC-1) lunar soil simulant in both earth-based (1-g) and microgravity (approximately 0-g) environments. The characteristics of the resultant materials will be tested to determine its physical and mechanical properties. The physical characteristics include: crystalline, thermal, and electrical properties. The mechanical properties include: compressive tensile, and flexural strengths. The simulant, placed in a sealed graphite crucible, will be heated using a high temperature furnace. The crucible will then be cooled by radiative and forced convective means. The core furnace element consists of space qualified quartz-halogen incandescent lamps with focusing mirrors. Sample temperatures of up to 2200 C are attainable using this heating method.

  13. Barriers to Zero Energy Construction (ZEC); technically possible; why not succeed yet?

    NARCIS (Netherlands)

    Abdalla, G.; Maas, G.J.; Demers, C.M.H.; Potvin, A

    2009-01-01

    The construction activities have a significant impact on the environment in terms of energy consumption and use of raw materials. The construction industry has been challenged to meet the human needs in environmentally friendly ways. Environmentally friendly measures and proven renewable energy

  14. Interiors Construction Manual integrated planning, finishing and fitting out, technical servcies

    CERN Document Server

    Hausladen, Gerhard

    2010-01-01

    Soccer stadiums, airports, theaters, museums it falls to very few architects to tackle spectacular building tasks like these. The everyday work of most architects is more often focused on ""manageable"" projects like the renovation, remodeling, or rebuilding of single- and multi-family houses, schools, and offices. Whatever the nature of the building task, interior construction is always a significant design and qualitative challenge that calls for highly detailed technical expertise. After all, it affects the realm that will be brought to life and utilized by the user when the task is finished, and whose aesthetic and functional serviceability will be put to the test each and every day. The Interior Construction Manual supports planners in their daily work as a practical planning aid and reference work with the relevant standards, guidelines, reference details, and constructional solutions, all illustrated by built example projects. It brings together the crucial facts on all aspects of interior construction...

  15. Feasibility of coal fly ash based bricks and roof tiles as construction materials: a review

    Directory of Open Access Journals (Sweden)

    Akhtar M.N.

    2017-01-01

    Full Text Available The aim of present study is to investigate about the potential use of coal fly ash along with other natural and solid wastes for the production of coal fly ash based bricks and roof tiles. The study is based on the comprehensive reviews available from the previous experimental data on coal fly ash based bricks and roof tiles. The study intendeds to provide the essential technical information and data for the use of fly ash mix with other solid wastes and reveal their suitability as construction materials. It has been found that samples were non-hazardous in nature and vigorously used as an additional construction materials and their compositions are perfectly fit to make the strong composite material for bricks and tiles. The three past studies have been demonstrated that, fly ash based bricks and roof tiles provides a sustainable supplement to the traditional clay bricks and roof tiles, that not only increases the efficiency of traditional bricks and roof tiles but also helps significantly to reduce the environmental issues associated with the disposal of these waste materials. In addition to this study highlights the potential use of fly ash for producing sustainable construction materials.

  16. Toxic substances or dangerous presents in the construction materials

    International Nuclear Information System (INIS)

    Campos Alvarado, A.

    2003-01-01

    The purpose of this work of investigation is the elaboration of a guide who serves as support and consults in the referring thing to the subject of the security in the construction, specifically in and area of the use and handling of materials and dangerous substances; Considering the possible dangers to medium and long term that some of but the common construction equipments represent for the health. The obtained data is a bibliographical review, the visits to public institutions and international offices with representation in our country, as well as a work of field and study of the national market, among others. In addition it made an important consultation through network Internet reviewing many sites of with the purpose of obtaining the data but updated interest possible, as well as the consultation to professionals and workers with the area of the construction. (Author) [es

  17. Towards high-performance materials for road construction

    Science.gov (United States)

    Gladkikh, V.; Korolev, E.; Smirnov, V.

    2017-10-01

    Due to constant increase of traffic, modern road construction is in need of high-performance pavement materials. The operational performance of such materials can be characterized by many properties. Nevertheless, the most important ones are resistance to rutting and resistance to dynamical loads. It was proposed earlier to use sulfur extended asphalt concrete in road construction practice. To reduce the emission of sulfur dioxide and hydrogen sulfide during the concrete mix preparation and pavement production stages, it is beneficial to make such a concrete on the base of complex sulfur modifier. In the present work the influence of the complex modifier to mechanical properties of sulfur extended asphalt concrete was examined. It was shown that sulfur extended asphalt concrete is of high mechanical properties. It was also revealed that there as an anomalous negative correlations between strain capacity, fatigue life and fracture toughness.

  18. Technical data for concentrated solar power plants in operation, under construction and in project

    Directory of Open Access Journals (Sweden)

    Ugo Pelay

    2017-08-01

    Full Text Available This article presents technical data for concentrated solar power (CSP plants in operation, under construction and in project all over the world in the form of tables. These tables provide information about plants (e.g., name of the CSP plant, country of construction, owner of the plant, aim of the plant and their technical characteristics (e.g., CSP technology, solar power, area of the plant, presence and type of hybridization system, electricity cost, presence and type of TES, power cycle fluid, heat transfer fluid, operating temperature, operating pressure, type of turbine, type and duration of storage, etc.. Further interpretation of the data and discussions on the current state-of-the-art and future trends of CSP can be found in the associated research article (Pelay et al., 2017 [1].

  19. Information support of monitoring of technical condition of buildings in construction risk area

    Science.gov (United States)

    Skachkova, M. E.; Lepihina, O. Y.; Ignatova, V. V.

    2018-05-01

    The paper presents the results of the research devoted to the development of a model of information support of monitoring buildings technical condition; these buildings are located in the construction risk area. As a result of the visual and instrumental survey, as well as the analysis of existing approaches and techniques, attributive and cartographic databases have been created. These databases allow monitoring defects and damages of buildings located in a 30-meter risk area from the object under construction. The classification of structures and defects of these buildings under survey is presented. The functional capabilities of the developed model and the field of it practical applications are determined.

  20. Staff technical position on regulatory considerations in the design and construction of the exploratory shaft facility

    International Nuclear Information System (INIS)

    Gupta, D.; Peshel, J.; Bunting, J.

    1991-07-01

    The staff of the US Nuclear Regulatory Commission has prepared this staff technical position for the purpose of compiling and further clarifying previous staff positions on regulatory considerations in the design and construction of the exploratory shaft facility (ESF). (The US Department of Energy (DOE) now refers to the ESF as the ''exploratory studies facility.'' DOE's change in terminology does not affect the positions taken in this guidance.) This document lists the key regulations in 10 CFR Part 60 that should be considered in the design and construction of the ESF and presents the staff position statements and corresponding discussions. 13 refs., 1 fig

  1. The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt

    Directory of Open Access Journals (Sweden)

    Wenbo Zeng

    2017-01-01

    Full Text Available In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration were tested for the samples which were introduced at different mass ratios of GO (1% and 3% to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants of GO in asphalt pavement construction were explained.

  2. The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt.

    Science.gov (United States)

    Zeng, Wenbo; Wu, Shaopeng; Pang, Ling; Sun, Yihan; Chen, Zongwu

    2017-01-07

    In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO) are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration) were tested for the samples which were introduced at different mass ratios of GO (1% and 3%) to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants) of GO in asphalt pavement construction were explained.

  3. Oriented strand board: new material for building construction

    International Nuclear Information System (INIS)

    Paridah Md Tahir; Ong, L.L.

    2001-01-01

    The paper will attempt to show the suitability and competitiveness of oriented strand board (OSB) in building construction. One important factor underlining the success of this product is the availability of the wood raw material. Plantation timbers such as rubberwood, paraserianthes falcataria, acacia crassicarpa, A. auriculiformis and A. mangium have been identified as the major source of this industry. We will focus on the domestic market as well as export market especially on the Asia Pacific region

  4. Technical Site Information: Planning group of the Directorate and Conventional Construction Division

    International Nuclear Information System (INIS)

    1993-11-01

    This document presents the technical site information for the Superconducting Super Collider project. The Ellis County, Texas site was selected by the Department of Energy in 1989. After assembling the initial staff at temporary facilities in Dallas, the SSC Laboratory began site-specific design work. The resulting design for the SSC accelerators, experimental areas, and laboratory facilities were described in the Site-Specific Conceptual Design Report of July 1990. Since then, design specifications for the technical components and conventional facilities have been formulated. In fact, a very significant amount of surface and underground construction has been initiated and many buildings have been completed. Testing of prototypes for most technical components is advanced. The construction phase of the SSC project is approximately 20% complete. At this time, it is appropriate to capture the conventional design work which has taken place since 1990. This documents records regional and physical information used in site studies, summarizes the site studies for conventional facilities, and presents site layouts for buildings and utilities as they would have been at the end of the construction project. As such, this documents summarizes and complements the work of many groups in the SSC laboratory, the Texas National Research Laboratory Commission (TNRLC), and several subcontractors to the SSC project. The document contains extensive references to their work contained in other drafts and final reports. In particular, it borrows heavily from the Site Development Plan (released in draft form in January, 1992) which has, to date, guided aspects of site development

  5. Technical Site Information: Planning group of the Directorate and Conventional Construction Division

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    This document presents the technical site information for the Superconducting Super Collider project. The Ellis County, Texas site was selected by the Department of Energy in 1989. After assembling the initial staff at temporary facilities in Dallas, the SSC Laboratory began site-specific design work. The resulting design for the SSC accelerators, experimental areas, and laboratory facilities were described in the Site-Specific Conceptual Design Report of July 1990. Since then, design specifications for the technical components and conventional facilities have been formulated. In fact, a very significant amount of surface and underground construction has been initiated and many buildings have been completed. Testing of prototypes for most technical components is advanced. The construction phase of the SSC project is approximately 20% complete. At this time, it is appropriate to capture the conventional design work which has taken place since 1990. This documents records regional and physical information used in site studies, summarizes the site studies for conventional facilities, and presents site layouts for buildings and utilities as they would have been at the end of the construction project. As such, this documents summarizes and complements the work of many groups in the SSC laboratory, the Texas National Research Laboratory Commission (TNRLC), and several subcontractors to the SSC project. The document contains extensive references to their work contained in other drafts and final reports. In particular, it borrows heavily from the Site Development Plan (released in draft form in January, 1992) which has, to date, guided aspects of site development.

  6. Economic efficiency of application of innovative materials and structures in high-rise construction

    Science.gov (United States)

    Golov, Roman; Dikareva, Varvara; Gorshkov, Roman; Agarkov, Anatoly

    2018-03-01

    The article is devoted to the analysis of technical and economic efficiency of application of tube confined concrete structures in high-rise construction. The study of comparative costs of materials with the use of different supporting columns was carried out. The main design, operational, technological and economic advantages of the tube confined concrete technology were evaluated, conclusions were drawn about the high strength and deformation properties of axial compression of steel tubes filled with high-strength concrete. The efficiency of the tube confined concrete use is substantiated, which depends mainly on the scale factor and percentage of reinforcement affecting its load-bearing capacity.

  7. 48 CFR 25.605 - Evaluating offers of foreign construction material.

    Science.gov (United States)

    2010-10-01

    ... foreign construction material. 25.605 Section 25.605 Federal Acquisition Regulations System FEDERAL... American Act-Construction Materials 25.605 Evaluating offers of foreign construction material. (a) If the... evaluation factors to the offer incorporating the use of such foreign construction material as follows: (1...

  8. 43 CFR 12.830 - Buy American Act-Construction materials.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Buy American Act-Construction materials... Assistance Programs Buy American Act-Construction Materials § 12.830 Buy American Act—Construction materials...—Construction Materials (a) The Buy American Act (41 U.S.C. 10) provides that the Government give preference to...

  9. Prevention of radioactive gas seeping into buildings through constructive materials

    International Nuclear Information System (INIS)

    Khaydarov, R.A.; Gapurova, O.U.; Khaydarov, R.R.

    2004-01-01

    Full text: One of possible method of realization of the terrorist acts is using gases and liquids, which easily permeate through the constructive materials of walls, floor, ceiling, roof, etc. into buildings by the capillary action of the pores. Toxic volatile organic compounds, organic and inorganic gases, radioactive elements, especially, which emits alpha particles can be used as the dangerous substances. Increased ventilation may help in removing the gases, but can actually increase the gases level by increasing the suction through the pores of concrete. If the gases and liquids are soluble in water and are easily volatilized from it, they can also get by groundwater up to underground structures and penetrate inside through opening and pores in concrete or pushed by hydrostatic pressure. The purpose of this work is creating a method to reduce concentration of toxic and radioactive gases in homes, buildings, underground buildings, tunnels, hangars, garages, bomb shelters, etc. The most effective method to prevent penetration of radionuclides into premises of buildings and underground structures through walls, roofs, floors is using special chemicals, which seal micropores inside the construction materials against gases. Worked out chemicals which consist of blend of polymeric compounds are described in the paper. Radioactive gases permeability in constructive materials after treatment by chemicals was studied. Influence of types of cement, sand and gypsum, preliminary treatment by different chemicals, different types of polymeric compounds, time between treatments, moisture of materials, time between preparation of chemicals and treatment of materials (aging of chemicals), time between treatment of concrete and testing (aging of treated concrete) were examined. Experiments have shown that our method allows reducing the coefficient of gas permeability 200 - 400 times

  10. Assessment of material and technical resources of crop production technologies

    Directory of Open Access Journals (Sweden)

    V. M. Beylis

    2017-01-01

    Full Text Available The author explains the general principles of influence of the material and technical resources (MTR on performance and efficiency of the main technological operations in crop production. Various technologies from the point of view of MTR expenses were estimated. The general tendencies in development of crop production technologies were revealed. The distribution of costs of materials and equipment to perform a variety of agricultural activities was determined. Cost indicators should be a guide in the search of innovative technological processes and working elements of agricultural machins. The greatest values of expenses of work, fuel, metal, and also, money where found. The concepts allowing to provide costs production reduction were formulated. To achieve the maximum productivity with the minimum expenses, the perspective calculations shoul be based on «progressive» agrotechnologies. When determining progressive agrotechnology it is necessary on reasonable grounds to approach indicators of crop productivity in various agrozones and regions of the country. For an assessment of efficiency of MTR by crop production and ensuring decrease in resource intensity of agricultural products by search and use of essentially new technologies for energy saving when performing agricultural operations, an integrated percentage indicator of comparison of progressive technologies with the applied ones was developed. MTR at application of new progressive crop production technologies by integrated percentage index were estimated. This indicator can be used for definition of efficiency of MTR. Application of the offered technique will promote an effective assessment of MTR, decrease in resource intensity by search and developments of essentially new technologies of performance of operations in crop production.

  11. Defense Virtual Library: Technical Metadata for the Long-Term Management of Digital Materials: Preliminary Guidelines

    National Research Council Canada - National Science Library

    Flynn, Marcy

    2002-01-01

    ... of the digital materials being preserved. This report, prepared by Silver Image Management (SIM), proposes technical metadata elements appropriate for digital objects in the Defense Virtual Library...

  12. TECHNICAL AND ECONOMIC SUBSTANTIATION OF PROJECTS OF THE AFFORDABLE HOUSING CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    KRAVCHUNOVSKA T. S.

    2015-12-01

    Full Text Available Summary. Problem statement. The development of inhabitant locality of Ukraine is characterized by significant differences in levels of socio and economic development. An excessive concentration of population and industry in large cities, inefficient, slow development of most medium and small cities, towns and villages, considerable territorial disproportions of economic development of the country, considerable shortcomings in the territorial organization of society are observed. At the same time the tendency of the total area of increasing of inhabitant locality. The lands are used inefficiently. Among the most common problems of inhabitant locality is the housing problem. When making a decision on the design of affordable housing construction is one of the most important stages in the development of the technique and economic substantiation of the project is determination of the advisability and effectiveness of construction. The substantiation of advisability and effectiveness of affordable housing based on the definition of technical and economic indicators of projects, one of the most important among them is the cost, in its calculation is necessary to take into account the influence of organizational and technological factors, reflecting the features of construction in condition of compacted construction. Purpose. Development of methodical recommendations on substantiation of cost construction of affordable housing in the conditions of compacted construction. Conclusion. To provide a processing and the analysis of data is necessary development of the applied software on the basis of the developed block scheme of justification of cost construction of affordable housing.

  13. Spanish experiences with marginal and special materials on the construction of road embankments

    International Nuclear Information System (INIS)

    Cano Linares, H.; Perucho Martinez, A.

    2015-01-01

    The use of existing materials along the alignment of a road is an essential problem within the Sustainable Development policies, which is being promoting worldwide since a long time. In the Word road Association (PIARC-AIPCR) this subject has being investigated by different Technical Committees during last decades. Additionally, the review of the article 330 Embankment of PG-3 (FOM 1382/2002) has opened the door to new non-conventional materials, as wastes and artificial materials, to be used on embankments. This could come to adequate solutions, technically, and environmentally, contributing with national legislation on valorisation policies. In this sense, the use of marginal materials and wastes con represent and important save on natural resources and dumping sites. In Spain, some experiences with marginal materials and wastes have being carried out. The work presented has consisted in compiling and analysing the experiences executed with marginal materials and wastes on Spanish road embankments. Although there are many other cases, 24 cases published with adequate information have being analysed, summarising aspects as: materials problems arrangement solutions or treatments employed. Analysing these experiences and making them public can be a way to transmit confidence, help to improve knowledge, and progress on the preparation of recommendations. This work has being carried out on the frame of the Project Geotechnical Engineering, Materials and Structures and Impact of Infrastructure in Civil engineering (TTIGEM), within the frame Program Border Cooperation Spain-External Borders (POCTEFEX); particularly in the Activity 2 related to Technology Transfer of Construction Materials, including marginal materials and wastes. (Author)

  14. Vegetable Fibers for Composite Materials In Constructive Sector

    Science.gov (United States)

    Giglio, Francesca; Savoja, Giulia

    2017-08-01

    The aim of the research is to study and to test bio-mixture for laminas to use in construction field components. Composite materials are becoming more common in different sectors, but their embodied energy is an environmental problem. For this, in recent years, the researchers investigate new mixtures for composites, in particular with vegetable fibers and bio-based epoxy resin. The research carried out different laboratory tests for material and mechanical characterization, starting from the analysis of vegetable fibers, and arriving to test different kind of laminas with sundry fabrics and bio-based epoxy resin. In the most general organization of the theme, the research has the overall objective to contribute to reduce composites environmental impacts, with the promotion of local production chains about innovative materials from renewable and sustainable sources.

  15. Neutron diffraction measurements of residual stresses in NPP construction materials

    International Nuclear Information System (INIS)

    Hinca, R.; Bokuchava, G.

    2001-01-01

    Neutron diffraction is one of the most powerful methods for condensed matter studies. This method is used for non-destructive determination of residual stresses in material. The fundamental aspects of neutron diffraction are discussed, together with a brief description of the experimental facility. The principal advantage of using neutrons rather than the more conventional X-rays is the fact that neutron can penetrate deeply (2-4 cm for steel and more than 10 cm for aluminium) into metals to determine internal parameters within the bulk of materials. We present results of measurements residual stresses in NPP construction material - austenitic stainless steel (Cr-18%, Ni-10%, Ti-1%) coated with high-nickel alloy. (authors)

  16. The use of shale ash in dry mix construction materials

    Science.gov (United States)

    Gulbe, L.; Setina, J.; Juhnevica, I.

    2017-10-01

    The research was made to determine the use of shale ash usage in dry mix construction materials by replacing part of cement amount. Cement mortar ZM produced by SIA Sakret and two types of shale ashes from Narva Power plant (cyclone ash and electrostatic precipitator ash) were used. Fresh mortar properties, hardened mortar bulk density, thermal conductivity (λ10, dry) (table value) were tested in mortar ZM samples and mortar samples in which 20% of the amount of cement was replaced by ash. Compressive strenght, frost resistance and resistance to sulphate salt solutions were checked. It was stated that the use of electrostatic precipitator ash had a little change of the material properties, but the cyclone ash significantly reduced the mechanical strength of the material.

  17. 48 CFR 801.602-80 - Legal and technical review-Office of Construction and Facilities Management and National Cemetery...

    Science.gov (United States)

    2010-10-01

    ...-Office of Construction and Facilities Management and National Cemetery Administration. 801.602-80 Section... Responsibilities 801.602-80 Legal and technical review-Office of Construction and Facilities Management and National Cemetery Administration. An Office of Construction and Facilities Management or National Cemetery...

  18. Efficiency potential of management and technical solutions for a construction object

    Directory of Open Access Journals (Sweden)

    Lapidus Azariy Abramovich

    2014-01-01

    Full Text Available The authors investigate the models of efficiency potential of management and technical solutions for a construction object, which allows accounting for the influence of management-technological and administrative solutions in the process of implementing construction project. The solutions are represented by various factors – solitary integral potentials. The factors, which should be taken into account in the process of developing an integral model, are: development of general contracting structure, project decisions, management decisions, administrative decisions and ecological impact. In is necessary to develop the model, which will integrally put together the above mentioned factors of a construction project, observe and investigate other factors, create a model and get the opportunity not only to predict the endpoint of the future construction object on the stage of formulating technological requirements, but also to monitor the changes of this prognosis in time. The parameters of the integral potential will allow the system to obtain flexibility, which makes it possible to adjust to the changes usually taking place on a construction object and at the same time to aim for optimization of organizational, technological and administrative solutions in the process of reaching endpoint of construction.

  19. The flying buttress construct for posterior spinopelvic fixation: a technical note

    Directory of Open Access Journals (Sweden)

    van Ooij Bas

    2011-04-01

    Full Text Available Abstract Background Posterior fusion of the spine to the pelvis in paediatric and adult spinal deformity is still challenging. Especially assembling of the posterior rod construct to the iliac screw is considered technically difficult. A variety of spinopelvic fixation techniques have been developed. However, extreme bending of the longitudinal rods or the use of 90-degree lateral offset connectors proved to be difficult, because the angle between the rod and the iliac screw varies from patient to patient. Methods We adopted a new spinopelvic fixation system, in which iliac screws are side-to-side connected to the posterior thoracolumbar rod construct, independent of the angle between the rod and the iliac screw. Open angled parallel connectors are used to connect short iliac rods from the posterior rod construct to the iliac screws at both sides. The construct resembles in form and function an architectural Flying Buttress, or lateral support arches, used in Gothic cathedrals. Results and discussion Three different cases that illustrate the Flying Buttress construct for spinopelvic fixation are reported here with the clinical details, radiographic findings and surgical technique used. Conclusion The Flying Buttress construct may offer an alternative surgical option for spinopelvic fixation in circumstances wherein coronal or sagittal balance cannot be achieved, for example in cases with significant residual pelvic obliquity, or in revision spinal surgery for failed lumbosacral fusion.

  20. The flying buttress construct for posterior spinopelvic fixation: a technical note

    Science.gov (United States)

    2011-01-01

    Background Posterior fusion of the spine to the pelvis in paediatric and adult spinal deformity is still challenging. Especially assembling of the posterior rod construct to the iliac screw is considered technically difficult. A variety of spinopelvic fixation techniques have been developed. However, extreme bending of the longitudinal rods or the use of 90-degree lateral offset connectors proved to be difficult, because the angle between the rod and the iliac screw varies from patient to patient. Methods We adopted a new spinopelvic fixation system, in which iliac screws are side-to-side connected to the posterior thoracolumbar rod construct, independent of the angle between the rod and the iliac screw. Open angled parallel connectors are used to connect short iliac rods from the posterior rod construct to the iliac screws at both sides. The construct resembles in form and function an architectural Flying Buttress, or lateral support arches, used in Gothic cathedrals. Results and discussion Three different cases that illustrate the Flying Buttress construct for spinopelvic fixation are reported here with the clinical details, radiographic findings and surgical technique used. Conclusion The Flying Buttress construct may offer an alternative surgical option for spinopelvic fixation in circumstances wherein coronal or sagittal balance cannot be achieved, for example in cases with significant residual pelvic obliquity, or in revision spinal surgery for failed lumbosacral fusion. PMID:21489256

  1. Modular construction of nuclear power plants in Korea and technical issues - 15051

    International Nuclear Information System (INIS)

    Kim, T.I.; Kim, K.K.; Yoon, J.J.; Han, G.E.

    2015-01-01

    The construction of nuclear power plants (NPPs) is the process of installing structures, systems and components (SCCs) of NPPs within a targeted time and a budget while ensuring quality and safety. Recently various efforts have been made in the nuclear industry to construct NPPs more effectively and modular construction has been highlighted as one of the most effective methods. Modular construction has been known to be effective in reducing construction time, allocating labor and equipment more efficiently while ensuring quality. The installation of structures and systems requires stable provision of labor force which is essential to keep the installation work of bulk materials such as re-bars, pipes and so forth in a construction site over a long period. Especially, in the case of the structure work, it is greatly affected by weather conditions such as rainfall, snow and wind, and discontinuity of installation work due to weather is directly related with success of a construction project. The most significant feature of modular construction is that SSCs could be pre-fabricated at an off-site factory or an assembly shop near a construction site, which provides stable labor force and favorable work condition impervious to weather. Reinforced concrete is largely used in NPPs and re-bar and form works are time consuming requiring lots of labor force at a construction site. Various efforts have been made to install re-bars and forms at the same time, which led to the development of SC structures. SC structures are composed of face steel plates which work as forms for concrete pouring as well as reinforcement for concrete. In this paper, we are going to introduce module types applicable to construction of NPPs and the status of modular construction in Korea. In addition, several issues will be addressed for the successful application of modular construction

  2. A novel abutment construction technique for rapid bridge construction : controlled low strength Materials (CLSM) with full-height concrete panels.

    Science.gov (United States)

    2012-01-01

    One of the major obstacles facing rapid bridge construction for typical span type bridges is the time required to construct bridge abutments and foundations. This can be remedied by using the controlled low strength materials (CLSM) bridge abutment. ...

  3. TFTR materials issues and problems during design and construction

    International Nuclear Information System (INIS)

    Sabado, M.; Little, R.

    1984-01-01

    TFTR as well as its contemporaries, T15, JT60, and JET, have important contributions to make towards our understanding of plasma conditions in the thermonuclear regime. One of the main objectives of TFTR is to produce fusion power densities approaching those in a fusion reactor, approx.= 1 Wcm -3 at Q approx.= 1-2. TFTR will be the first tokamak to routinely use deuterium tritium, and produce approx.= 10 19 fusion neutrons per pulse. With startup of TFTR on December 24, 1982, the demonstration of physics feasibility of 'breakeven' is close at hand. Since TFTR performance will be reactor relevant, the capability of materials/components to withstand the hostile effects of a plasma environment will be presented. It is intended that designers of future fusion devices benefit from the materials technology developments and applications on TFTR. In an attempt to comply with this mandate, this paper will describe TFTR issues on materials, their developments, selections, problems, and solutions. Special emphasis will be given, in particular, to the impurity control devices in TFTR, namely, the limiter and surface pumping system located inside the vacuum vessel. The plasma will interact with these components and they will be subjected to disruptions, a vacuum of 10 -6 to 10 -8 torr and a nominal temperatures of 0 C. 'Painful' materials development problems encountered will be reviewed, as well as important 'lessons learned'. A briefing on the materials of construction will be given, with some comments on the problems that developed and their solutions. (orig.)

  4. Technical and management challenges associated with structural materials degradation in nuclear reactors in the future

    International Nuclear Information System (INIS)

    Ford, F.P.

    2007-01-01

    There are active plans worldwide to increase nuclear power production by significant amounts. In the near term (i.e. by 2020) this will be accomplished by, (a) increasing the power output of the existing reactors and extending their life, and by, (b) constructing new reactors that are very similar to the current water-cooled designs. Beyond 2025-2030, it is possible that new reactors (i.e. the 'GEN IV' designs) will be very different from those currently in service. A full discussion of the technical and management concerns associated with materials degradation that might arise over the next 40 years would need to address a wide range of topics. Quite apart from discussing the structural integrity issues for the materials of construction and the fuel cladding, the debate would also need to cover, for example, fuel resources and the associated issues of fuel cycle management and waste disposal, manufacturing capacity, inspection capabilities, human reliability, etc., since these all impact to one degree or another on the choice of material and the reactor operating conditions. For brevity, the scope of this article is confined to the integrity of the materials of construction for passive components in the current water-cooled reactors and the evolutionary designs (which will dominate the near term new constructions), and the very different GEN IV reactor designs. In all cases the operating environments will be more aggressive than currently encountered. For instance, the concerns for flow accelerated corrosion and flow-induced vibration will be increased under extended power uprate conditions for the current water-cooled reactors. Of greater concern, the design life will be at least 60 years for all of the new reactors and for those current reactors operating with extended licenses. This automatically presents challenges with regard to managing both irradiation damage in metallic and non-metallic materials of construction, and environmentally assisted cracking. This

  5. Technical characteristics of rigid sprayed PUR and PIR foams used in construction industry

    Science.gov (United States)

    Gravit, Marina; Kuleshin, Aleksey; Khametgalieva, Elina; Karakozova, Irina

    2017-10-01

    The article describes the distinctive properties of rigid polyurethane foam and polyisocyanurate (PUR and PIR). A brief review of the research was carried out on their modification with an objective to improve the thermal insulation properties and reducing the combustibility. A comparative analysis of the technical characteristics of rigid PUR and PIR foams of various manufacturers is presented. The problems of the state of the market for the production of polyurethane foam and polyisocyanurate in Russia have been marked. It is established that the further development of the fabrication technology of heat-insulating sprayed rigid PUR and PIR foams requires uniformity of technical characteristics of original components and finished products. Moreover, it requires the creation of unified information base for raw materials and auxiliary materials used in the production of PUR and PIR foam.

  6. Strengthening the material-technical base of modern agrarian ...

    African Journals Online (AJOL)

    At present, in agriculture there is a tendency of equipment obsolescence and break ... by means of acquisition of high-energy, high-performance equipment and the ... and to make recommendations for the development of technical capacity.

  7. Study of capability of microorganisms to develop on construction materials used in space objects

    Science.gov (United States)

    Rakova, N.; Svistunova, Y.; Novikova, N.

    One of the most topical issues nowadays in the whole set of space research is the study of microbiological risks (medical, technical, technological). Experiments held onboard MIR station and International Space Station (ISS) clearly demonstrated capacity of microorganisms to contaminate the environment, equipment and belonging of habitual compartments of space objects. In this connection microorganisms-biodestructors play an important role. In their vital functioning they are capable of causing biological damage of different polymers, biocorrosion of metals which can lead to serious difficulties in performing long-term flights, namely the planned mission to Mars. Our purpose was to study capability of growth and reproduction of microorganisms on construction materials of various chemical composition as the first stage of biodestruction process. In our research we used "flight" strains of bacteria (Bacillus subtilus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Pseudomonas pumilus etc.) recovered from the ISS environment in several missions. For control we used "earth" bacteria species with typical properties. To model the environment of the ISS we took construction materials which are widely used in the interior and equipment of the ISS. The results we've obtained show that some microorganisms are capable of living and reproducing themselves on construction materials and their capability is more pronounced than that of the "earth" species. The best capability for growth and reproduction was characteristic of Bacillus subtilus.

  8. Lunar materials for construction of space manufacturing facilities

    Science.gov (United States)

    Criswell, D. R.

    1977-01-01

    Development of industrial operations in deep space would be prohibitively expensive if most of the construction and expendable masses had to be transported from earth. Use of lunar materials reduces the needed investments by a factor of 15 to 20. It is shown in this paper that judicious selection of lunar materials will allow one to obtain hydrogen, nitrogen, carbon, helium and other specific elements critical to the support of life in large space habitats at relatively low costs and lower total investment even further. Necessary selection techniques and extraction schemes are outlined. In addition, tables are presented of the oxide and elemental abundances characteristic of the mare and highland regions of the moon which should be useful in evaluating what can be extracted from the lunar soils.

  9. Modern diaper performance: construction, materials, and safety review.

    Science.gov (United States)

    Dey, Swatee; Kenneally, Dianna; Odio, Mauricio; Hatzopoulos, Ioannis

    2016-07-01

    A review of the literature on diapers and diaper rash reveals that many clinicians are unfamiliar with modern diaper construction and materials as well as diaper safety testing methods. Typical modern diapers do not contain ingredients of concern such as latex and disperse dyes, but use ingredients such as spandex and pigments with a favorable safety profile. Today's disposable diaper is a high performance product whose carefully designed layers and liners provide optimal urine and feces absorption and an ever more clothing-like and comfortable fit. This is possible due to a variety of specialized polymer materials that provide optimal absorption of urine and feces, thereby minimizing skin exposure. © 2016 The International Society of Dermatology.

  10. Marine dredged sediments as new materials resource for road construction.

    Science.gov (United States)

    Siham, Kamali; Fabrice, Bernard; Edine, Abriak Nor; Patrick, Degrugilliers

    2008-01-01

    Large volumes of sediments are dredged each year in Europe in order to maintain harbour activities. With the new European Union directives, harbour managers are encouraged to find environmentally sound solutions for these materials. This paper investigates the potential uses of Dunkirk marine dredged sediment as a new material resource for road building. The mineralogical composition of sediments is evaluated using X-ray diffraction and microscopy analysis. Since sediments contain a high amount of water, a dewatering treatment has been used. Different suitable mixtures, checking specific geotechnical criteria as required in French standards, are identified. The mixtures are then optimized for an economical reuse. The mechanical tests conducted on these mixtures are compaction, bearing capacity, compression and tensile tests. The experimental results show the feasibility of the beneficial use of Dunkirk marine dredged sand and sediments as a new material for the construction of foundation and base layers for roads. Further research is now needed to prove the resistance of this new material to various environmental impacts (e.g., frost damage).

  11. Development and mechanical properties of construction materials from lunar simulant

    Science.gov (United States)

    Desai, Chandra S.

    1992-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward the establishment of outposts on the Moon and Mars. Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and tensile, flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal 'liquefaction' of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.), and (2) development and use of a new triaxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or in situ stress. Details of the development of intermediate ceramic composites (ICC) and testing for their flexural and compression characteristics were described in various reports and papers. The subject of behavior of compacted simulant under vacuum was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum be utilized for further investigation.

  12. Sheep Wool as a Construction Material for Energy Efficiency Improvement

    Directory of Open Access Journals (Sweden)

    Azra Korjenic

    2015-06-01

    Full Text Available The building sector is responsible for 40% of the current CO2 emissions as well as energy consumption. Sustainability and energy efficiency of buildings are currently being evaluated, not only based on thermal insulation qualities and energy demands, but also based on primary energy demand, CO2 reductions and the ecological properties of the materials used. Therefore, in order to make buildings as sustainable as possible, it is crucial to maximize the use of ecological materials. This study explores alternative usage of sheep wool as a construction material beyond its traditional application in the textile industry. Another goal of this research was to study the feasibility of replacement of commonly used thermal insulations with natural and renewable materials which have better environmental and primary energy values. Building physics, energy and environmental characteristics were evaluated and compared based on hygrothermal simulation and ecological balance methods. The observations demonstrate that sheep wool, compared with mineral wool and calcium silicate, provides comparable thermal insulation characteristics, and in some applications even reveals better performance.

  13. A comparative toxicity assessment of materials used in aquatic construction.

    Science.gov (United States)

    Lalonde, Benoit A; Ernst, William; Julien, Gary; Jackman, Paula; Doe, Ken; Schaefer, Rebecca

    2011-10-01

    Comparative toxicity testing was performed on selected materials that may be used in aquatic construction projects. The tests were conducted on the following materials: (1) untreated wood species (hemlock [Tsuga ssp], Western red cedar (Thuja plicata), red oak [Quercus rubra], Douglas fir [Pseudotsuga menziesii], red pine [Pinus resinosa], and tamarack [Larix ssp]); (2) plastic wood; (3) Ecothermo wood hemlock stakes treated with preservatives (e.g., chromated copper arsenate [CCA], creosote, alkaline copper quaternary [ACQ], zinc naphthenate, copper naphthenate, and Lifetime Wood Treatment); (4) epoxy-coated steel; (5) hot-rolled steel; (6) zinc-coated steel; and (7) concrete. Those materials were used in acute lethality tests with rainbow trout, Daphnia magna, Vibrio fischeri and threespine stickleback. The results indicated the following general ranking of the materials (from the lowest to highest LC(50) values); ACQ > creosote > zinc naphthenate > copper naphthenate > CCA (treated at 22.4 kg/m(3)) > concrete > red pine > western red cedar > red oak > zinc-coated steel > epoxy-coated steel > CCA (6.4 kg/m(3)). Furthermore, the toxicity results indicated that plastic wood, certain untreated wood species (hemlock, tamarack, Douglas fir, and red oak), hot-rolled steel, Ecothermo wood, and wood treated with Lifetime Wood Treatment were generally nontoxic to the test species. © Springer Science+Business Media, LLC 2011

  14. Introducing Textiles as Material of Construction of Ethanol Bioreactors

    Directory of Open Access Journals (Sweden)

    Osagie A. Osadolor

    2014-11-01

    Full Text Available The conventional materials for constructing bioreactors for ethanol production are stainless and cladded carbon steel because of the corrosive behaviour of the fermenting media. As an alternative and cheaper material of construction, a novel textile bioreactor was developed and examined. The textile, coated with several layers to withstand the pressure, resist the chemicals inside the reactor and to be gas-proof was welded to form a 30 L lab reactor. The reactor had excellent performance for fermentative production of bioethanol from sugar using baker’s yeast. Experiments with temperature and mixing as process parameters were performed. No bacterial contamination was observed. Bioethanol was produced for all conditions considered with the optimum fermentation time of 15 h and ethanol yield of 0.48 g/g sucrose. The need for mixing and temperature control can be eliminated. Using a textile bioreactor at room temperature of 22 °C without mixing required 2.5 times longer retention time to produce bioethanol than at 30 °C with mixing. This will reduce the fermentation investment cost by 26% for an ethanol plant with capacity of 100,000 m3 ethanol/y. Also, replacing one 1300 m3 stainless steel reactor with 1300 m3 of the textile bioreactor in this plant will reduce the fermentation investment cost by 19%.

  15. Low cost materials of construction for biological processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-13

    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  16. Technical records as material evidence in criminal proceedings

    Directory of Open Access Journals (Sweden)

    Fitim Shishani

    2017-03-01

    Full Text Available Nowadays, with the aid of technical records - recordings (audio, visual or combined audiovisual events and occurrences can be registered in the outside world in detail. The recording enables the creator or anyone who has it in disposal that at any moment of its reproduction, it can be found in detail how the recorded event has happened or how an occurrence seemed at the time of the recording. Among the current formats of technical records are included: photography, filming, magnetic, magnetoscope, and videophone recording etc. (Sahiti & Murati 2016, 295. The possibility provided by the rapid technical development is also of interest to criminal procedure because technical records containing any fact that may be proved in criminal proceedings may serve as a source of knowledge about facts. In other words, they may serve as evidence to establish facts in criminal proceedings. Given the extensive options that technical fact recordings provide, entities that use the aid of various devices from this fi eld, as well as the different purposes of the author of the recording which have led to the case of making the recording, there is a reasonable question of the permission on their use as evidence in criminal proceedings. In Kosovo, the situation is clear in terms of recordings made in the criminal procedure, as Kosovo CCP 1 provides the possibility of photographing, filming, sketching, etc., of the crime scene, audio visual recording etc. examination of persons (defendant, witness, expert or recordings of any action on judicial review.

  17. Activation of accelerator construction materials by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Katrík, P., E-mail: p.katrik@gsi.de [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany); Mustafin, E. [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany); Hoffmann, D.H.H. [TU Darmstadt, Schlossgartenstraße 9, D-64289 (Germany); Pavlovič, M. [FEI STU Bratislava, Ilkovičova 3, SK-81219 (Slovakia); Strašík, I. [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany)

    2015-12-15

    Activation data for an aluminum target irradiated by 200 MeV/u {sup 238}U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  18. Sorption of tritium and tritiated water on construction materials

    International Nuclear Information System (INIS)

    Dickson, R.S.; Miller, J.M.

    1991-11-01

    Sorption and desorption of tritium (HT) and tritiated water (HTO) on materials to be used in the construction of fusion facilities were studied. In ∼ 24-hour exposures in argon or room air, metal samples sorbed 8-200 μCi/m 2 of tritium from atmospheres of 5-9 Ci/m 3 HT, and non-metallic samples sorbed 60-800 μCi/m 2 from atmospheres of 14 Ci/m 3 HT. Sorption of HTO varied much more widely than HT sorption for different samples, ranging from 4 μCi/m 2 for glass to 1,300,000 μCi/m 2 for concrete samples, in 24-hour exposures to 1 Ci/m 3 HTO in room air. Time dependence of desorption in dry air showed a rapid initial process and a slower secondary process. (Author) (10 refs., 4 figs., 2 tabs.)

  19. Corrosion behavior of construction materials for ionic liquid hydrogen compressor

    DEFF Research Database (Denmark)

    Arjomand Kermani, Nasrin; Petrushina, Irina; Nikiforov, Aleksey Valerievich

    2016-01-01

    The corrosion behavior of various commercially available stainless steels and nickel-based alloys as possible construction materials for components which are in direct contact with one of five different ionic liquids was evaluated. The ionic liquids, namely: 1-ethyl-3-methylimidazolium triflate, 1...... liquid hydrogen compressor. An electrochemical cell was specially designed, and steady-state cyclic voltammetry was used to measure the corrosion resistance of the alloys in the ionic liquids at 23 °C, under atmospheric pressure. The results showed a very high corrosion resistance and high stability...... for all the alloys tested. The two stainless steels, AISI 316L and AISI 347 showed higher corrosion resistance compared to AISI 321 in all the ionic liquids tested. It was observed that small addition of molybdenum, tantalum, and niobium to the alloys increased the corrosion stability in the ionic liquids...

  20. Uniformity in radon exhalation from construction materials using can technique

    Energy Technology Data Exchange (ETDEWEB)

    El-Amri, E.A.; Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Abu-Jarad, F.; Fazal-ur-Rehman

    2003-06-01

    The uniformity in radon exhalation rates for 46 tiles of granite, marble and ceramic used as construction materials were determined using 'Can Technique' employing CR-39 nuclear track detectors (NTDs). On each tile, two sealed cans, each enclosing one NTD fixed at the center of the tile surface area covered by the can, were mounted at two different locations of each individual tiles. The track production rates on the NTDs representing radon exhalation rates were measured. The radon exhalation rates from the surface of individual tiles showed uniform exhalations within the calculated uncertainties of the measured values. This makes Can Technique an alternative simple method to measure radon exhalation rates. Calibration required to convert track production rates into radon exhalation rates for the used can and NTD was done using an active technique. The correlation between the measurements by the two techniques shows a good linear correlation coefficient (0.83)

  1. The design, construction and testing of packaging[Radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    Essentially uniform regulations, based on the IAEA Regulations for the Safe Transport of Radioactive Materials, have been adopted on a world-wide basis with the aim of ensuring safety in the transport of radioactive and fissile substances by road, rail, sea and air. The application of these regulations over a period of almost 20 years has resulted in practically complete safety in the sense that there has been no evidence of death or injury that could be attributed to the special properties of the material even when consignments were involved in serious accidents. In the regulations, reliance is placed, to the greatest extent possible, on the packaging to provide adequate shielding and containment of the contents under both normal transport and accident conditions. The Agency organized an international seminar in 1971 to consider the performance tests that have to be applied to packaging to demonstrate compliance with the regulatory requirements. The general conclusion was that the testing programme specified in the regulations was adequate for the near future, but that further consideration should be given to assessing the risks presented by the increasing volume of transport. The second international seminar, which is the subject of this report, dealt with all aspects of the design, construction and testing of packaging for the transport both of relatively small quantities of radioactive substances, which are being used to an ever increasing extent for medical and research purposes, and of the much larger quantities arising in various stages of the nuclear fuel cycle. The programme covered the general requirements for packaging; risk assessment for the transport of various radioactive and fissile substances, including plutonium; specific features of the design and construction of packaging; quality assurance; damage simulation tests, including calculational methods and scale-model testing; tests for the retention of shielding and containment after damage; and the

  2. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    Directory of Open Access Journals (Sweden)

    Cuizhen Xue

    2016-01-01

    Full Text Available The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, and antipermeability and antifrost performances. Also the effects of CWCPM on the morphology, hydration products, and pore structure characteristics of the cement-based materials were analyzed. The results are encouraging. Although CWCPM slightly decreases the mechanical properties of the C20 concrete and the 7 d compressive strengths of the C25 and C30 concretes, the 28 d compressive strength and the 90 d flexural strength of the C25 and C30 concretes are improved when CWCPM has a dosage less than 30%; CWCPM improves the antipermeability and antifrost performances of the concretes due to its filling and pozzolanic effects; the best improvement is obtained at CWCPM dosage of 30%; CWCPM optimizes cement hydration products, refines concrete pore structure, and gives rise to reasonable pore size distribution, therefore significantly improving the durability of the concretes.

  3. Behavioural response of Phytoseiulus persimilisin inert materials for technical application.

    Science.gov (United States)

    Wendorf, Dennis; Sermann, Helga; Katz, Peter; Lerche, Sandra; Büttner, Carmen

    2009-01-01

    A large scale application of the predatory mite Phytoseiulus persimilis Athias-Henriot for use in the biological control of spider mites in the field requires testing the behaviour of Phytoseiulus persimilis in inert materials, like millet pelts and Vermiculite (1-3 mm). In laboratory studies, the distribution of the individuals in such materials, the time of remaining in the material were proved. To examine the abiotic influences on the time of remaining in the material, the dampness of the materials was varied (0%, 5% and 10%). Moreover, the influence of attitude of materials was tested. The time of emigration from the material was noted for each individual. Emigration from all dry materials was completed 15 minutes at the latest after set up of the mites. The increase of dampness had an obvious effect on the time of remaining in the material. In this respect the material millet pelts showed the most favourable effect with 10% dampness. Increasing attitude of material the mobility of predatory mites will be influenced negatively above 75 cm. Up to 50 cm, mites have not a problem to move in the material and the time of remaining can be prolonged considerably.

  4. Fluoride removal studies in water using natural materials : technical ...

    African Journals Online (AJOL)

    Excess fluoride in water causes health hazards to the natural environment. The removal of fluoride was attempted using natural materials such as red soil, charcoal, brick, fly-ash and serpentine. Each material was set up in a column for a known volume and the defluoridation capacities of these materials were studied with ...

  5. Construction materials as a waste management solution for cellulose sludge.

    Science.gov (United States)

    Modolo, R; Ferreira, V M; Machado, L M; Rodrigues, M; Coelho, I

    2011-02-01

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Construction materials as a waste management solution for cellulose sludge

    International Nuclear Information System (INIS)

    Modolo, R.; Ferreira, V.M.; Machado, L.M.; Rodrigues, M.; Coelho, I.

    2011-01-01

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.

  7. Needs study of polymer materials concrete constructions; Behovsstudie av polymera material i betongkonstruktioner

    Energy Technology Data Exchange (ETDEWEB)

    Blomfeldt, Thomas; Bergsjoe, Petter

    2013-02-15

    Polymeric materials are frequently used in concrete constructions at hydro and nuclear power facilities. They are most commonly used as expansion joints, seals, lead-thought's, coatings and as additives in cement or mortar. Polymeric materials in concrete constructions are difficult to evaluate, since they are often located within the concrete construction. In some cases the materials have been in place for over 30 years. In addition, these materials are also used to a great extent e.g. as protective coating on all concrete in a nuclear power plant or as several kilometres of joints. Replacing these materials is difficult, time consuming and very costly. That is why it is of great importance to evaluate their actual status and life-time expectancy with the largest possible precision. This report summarises the research needs in nuclear and hydro power regarding polymers in concrete constructions. During the project information has been gathered through inspections, interviews and surveys, to obtain the clearest possible picture of which polymeric components that have a need of in-depth research. In this project the nuclear power plants Oskarshamn (O1, O2 and O3), Forsmark (F2) and Ringhals (R1, R2 and R3) were visited. In the field of hydro power the concrete laboratory of Vattenfall R and D in Aalvkarleby and the hydro power plants of Aalvkarleby and Olidan were visited. The studies indicate that there are different needs for hydro and nuclear power. The survey showed that hydro-power facilities have a greater interest in joints. The nuclear power plants are more interested in components that are related to either the plant's security or if the component could lead to high future maintenance costs.

  8. Corrosion behaviour of construction materials for high temperature water electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, A.; Petruchina, I.; Christensen, E.; Bjerrum, N.J.; Tomas-Garcya, A.L. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry, Materials Science Group

    2010-07-01

    This presentation reported on a study in which the feasibility of using different corrosion resistant stainless steels as a possible metallic bipolar plate and construction material was evaluated in terms of corrosion resistance under conditions corresponding to the conditions in high temperature proton exchange membrane (PEM) water electrolysers (HTPEMWE). PEM water electrolysis technology has been touted as an effective alternative to more conventional alkaline water electrolysis. Although the energy efficiency of this technology can be increased considerably at temperatures above 100 degrees C, this increases the demands to all the used materials with respect to corrosion stability and thermal stability. In this study, Ni-based alloys as well as titanium and tantalum samples were exposed to anodic polarization in 85 per cent phosphoric acid electrolyte solution. Tests were performed at 80 and 120 degrees C to determine the dependence of corrosion speed and working temperature. Platinum and gold plates were also tested for a comparative evaluation. Steady-state voltammetry was used along with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Titanium showed the poorest corrosion resistance, while Ni-based alloys showed the highest corrosion resistance, with Inconel R 625 being the most promising alloy for the bipolar plate of an HTPEMWE. 3 refs., 1 tab., 2 figs.

  9. 46 CFR 160.057-3 - Materials, workmanship, construction, and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, workmanship, construction, and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Floating Orange Smoke Distress Signals (15 Minutes) § 160.057-3 Materials, workmanship, construction, and performance...

  10. 48 CFR 25.204 - Evaluating offers of foreign construction material.

    Science.gov (United States)

    2010-10-01

    ... foreign construction material. 25.204 Section 25.204 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Buy American Act-Construction Materials 25.204 Evaluating offers of foreign construction material. (a) Offerors proposing to use foreign...

  11. 46 CFR 160.037-3 - Materials, workmanship, construction, and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, workmanship, construction, and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand Orange Smoke Distress Signals § 160.037-3 Materials, workmanship, construction, and performance requirements. (a...

  12. 46 CFR 160.062-3 - Materials, construction, workmanship, and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, construction, workmanship, and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Releases. Lifesaving Equipment, Hydraulic and Manual § 160.062-3 Materials, construction, workmanship, and performance...

  13. 46 CFR 160.031-3 - Materials, construction, workmanship, and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, construction, workmanship, and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Line-Throwing Appliance, Shoulder Gun Type (and Equipment) § 160.031-3 Materials, construction, workmanship, and...

  14. 7 CFR 1717.605 - Design standards, plans and specifications, construction standards, and RUS accepted materials.

    Science.gov (United States)

    2010-01-01

    ..., construction standards, and RUS accepted materials. 1717.605 Section 1717.605 Agriculture Regulations of the... standards, plans and specifications, construction standards, and RUS accepted materials. All borrowers... system design, construction standards, and the use of RUS accepted materials. Borrowers must comply with...

  15. 48 CFR 252.225-7044 - Balance of Payments Program-Construction Material.

    Science.gov (United States)

    2010-10-01

    ... Program-Construction Material. 252.225-7044 Section 252.225-7044 Federal Acquisition Regulations System...—Construction Material. As prescribed in 225.7503(a), use the following clause: Balance of Payments Program—Construction Material (JAN 2009) (a) Definitions. As used in this clause— Commercially available off-the-shelf...

  16. 46 CFR 160.036-3 - Materials, workmanship, construction and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, workmanship, construction and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-3 Materials, workmanship, construction and...

  17. 48 CFR 52.225-10 - Notice of Buy American Act Requirement-Construction Materials.

    Science.gov (United States)

    2010-10-01

    ... Requirement-Construction Materials. 52.225-10 Section 52.225-10 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.225-10 Notice of Buy American Act Requirement—Construction Materials. As prescribed... Materials (FEB 2009) (a) Definitions. “Commercially available off-the-shelf (COTS) item,” “construction...

  18. 46 CFR 160.040-3 - Materials, construction, workmanship, and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, construction, workmanship, and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Line-Throwing Appliance, Impulse-Projected Rocket Type (and Equipment) § 160.040-3 Materials, construction, workmanship...

  19. 48 CFR 625.204 - Evaluating offers of foreign construction material.

    Science.gov (United States)

    2010-10-01

    ... foreign construction material. 625.204 Section 625.204 Federal Acquisition Regulations System DEPARTMENT OF STATE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Buy American Act-Construction Materials 625.204 Evaluating offers of foreign construction material. (b) The head of the contracting activity is the agency...

  20. 46 CFR 160.024-3 - Materials, workmanship, construction, and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, workmanship, construction, and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Pistol-Projected Parachute Red Flare Distress Signals § 160.024-3 Materials, workmanship, construction, and performance...

  1. 48 CFR 1325.204 - Evaluating offers of foreign construction material.

    Science.gov (United States)

    2010-10-01

    ... foreign construction material. 1325.204 Section 1325.204 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Buy American Act-Construction Materials 1325.204 Evaluating offers of foreign construction material. The designee authorized to specify a...

  2. 46 CFR 160.058-3 - Materials, workmanship, construction and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, workmanship, construction and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Desalter Kits, Sea Water, for Merchant Vessels § 160.058-3 Materials, workmanship, construction and performance...

  3. Rock as a construction material: durability, deterioration and conservation

    Directory of Open Access Journals (Sweden)

    Esbert, Rosa M.ª

    1991-03-01

    Full Text Available The different aspects related to the deterioration and conservation of stone, used as a construction material, are reviewed in this article. The petrographical characteristics and physical properties which control the durability of stone material are stated. The importance of the voids and the properties more directly linked to the up-taking and transfer of humidity through the stone are pointed out. Regarding to the deterioration processes, the role of water, soluble salts and atmospheric pollutants upon the different alteration mechanisms of the building stones is emphasized. Finally, the steps related to the stone conservation, and the methods and products more currently employed to that aim are revised.

    Se compendian los distintos aspectos relacionados con el deterioro y la conservación de la piedra utilizada como material de edificación. Se revisan las características petrográficas y propiedades físicas que controlan la durabilidad de los materiales pétreos, resaltando la importancia de los espacios vacíos y de aquellas propiedades más directamente relacionadas con la captación y transferencia de humedad por el interior de la piedra. En cuanto a los procesos de deterioro se destaca el papel del agua, de las sales solubles y de los contaminantes atmosféricos en los diversos mecanismos de alteración desarrollados en la piedra de edificación. Finalmente se plantean las diversas fases relacionadas con la conservación de la piedra, y se revisan los métodos y productos más empleados en la actualidad para tal fin.

  4. Development of construction materials using nano-silica and aggregates recycled from construction and demolition waste.

    Science.gov (United States)

    Mukharjee, Bibhuti Bhusan; Barai, Sudhirkumar V

    2015-06-01

    The present work addresses the development of novel construction materials utilising commercial grade nano-silica and recycled aggregates retrieved from construction and demolition waste. For this, experimental work has been carried out to examine the influence of nano-silica and recycled aggregates on compressive strength, modulus of elasticity, water absorption, density and volume of voids of concrete. Fully natural and recycled aggregate concrete mixes are designed by replacing cement with three levels (0.75%, 1.5% and 3%) of nano-silica. The results of the present investigation depict that improvement in early days compressive strength is achieved with the incorporation of nano-silica in addition to the restoration of reduction in compressive strength of recycled aggregate concrete mixes caused owing to the replacement of natural aggregates by recycled aggregates. Moreover, the increase in water absorption and volume of voids with a reduction of bulk density was detected with the incorporation of recycled aggregates in place of natural aggregates. However, enhancement in density and reduction in water absorption and volume of voids of recycled aggregate concrete resulted from the addition of nano-silica. In addition, the results of the study reveal that nano-silica has no significant effect on elastic modulus of concrete. © The Author(s) 2015.

  5. From molecular design and materials construction to organic nanophotonic devices.

    Science.gov (United States)

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  6. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the Technical Meeting is to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials

  7. Properties of selected superconductive materials, 1978 supplement. Technical note

    International Nuclear Information System (INIS)

    Roberts, B.W.

    1978-10-01

    This report includes data on additional superconductive materials extracted from the world literature up to fall 1977 and is an addendum to the data set published in J. Phys. Chem. Ref. Data 5, no. 3, 581-821 (1976) (Reprint no. 84). The data presented are new values and have not been selected or compared to values (except for selected values of the elements) previously assembled by the Superconductive Materials Data Center. The properties included are composition, critical temperature, critical magnetic field, crystal structure and the results of negative experiments. Special tabulations of high magnetic field materials with Type II behavior and materials with organic components are included. All entries are keyed to the literature. A list of recent reviews centered on superconductive materials is included

  8. Accounting systems for special nuclear material control. Technical report

    International Nuclear Information System (INIS)

    Korstad, P.A.

    1980-05-01

    Nuclear material accounting systems were examined and compared to financial double-entry accounting systems. Effective nuclear material accounting systems have been designed using the principles of double-entry financial accounting. The modified double-entry systems presently employed are acceptable if they provide adequate control over the recording and summarizing of transactions. Strong internal controls, based on principles of financial accounting, can help protect nuclear materials and produce accurate, reliable accounting data. An electronic data processing system can more accurately maintain large volumes of data and provide management with more current, reliable information

  9. 49 CFR 178.358-2 - Materials of construction and other requirements.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Materials of construction and other requirements... Materials of construction and other requirements. (a) Phenolic foam insulation must be fire resistant and... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  10. 49 CFR 178.356-2 - Materials of construction and other requirements.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Materials of construction and other requirements... Materials of construction and other requirements. (a) Phenolic foam insulation must be fire-resistant and... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  11. Optimising material procurement for construction waste minimization: An exploration of success factors

    OpenAIRE

    Ajayi, SO; Oyedele, LO; Akinade, OO; Bilal, M; Alaka, HA; Owolabi, HA

    2017-01-01

    Although construction waste occurs during the actual construction activities, there is an understanding that it is caused by activities and actions at design, materials procurement and construction stages of project delivery processes. This study investigates the material procurement and logistics measures for mitigating waste generated by construction activities. In a bid to explore the phenomenon from the perspectives of experts from the construction industry, this study used a combination ...

  12. Energy Materials Coordinating Committee (EMaCC): Annual technical report, Fiscal year 1987

    International Nuclear Information System (INIS)

    1988-09-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1987 and describes the materials research programs of various offices and divisions within the Department

  13. Technical committee meeting on material-coolant interactions and material movement and relocation in liquid metal fast reactors

    International Nuclear Information System (INIS)

    1994-01-01

    The Technical Committee Meeting on Material-Coolant Interactions and Material Movement and Relocation in Liquid Metal Fast Reactors was sponsored by the International Working Group on Fast Reactors (IWGFR), International Atomic Energy Agency (IAEA) and hosted by PNC, on behalf of the Japanese government. A broad range of technical subjects was discussed in the TCM, covering entire aspects of material motion and interactions relevant to the safety of LMFRs. Recent achievement and current status in research and development in this area were presented including European out-of-pile test of molten material movement and relocation; molten material-sodium interaction; molten fuel-coolant interaction; core disruptive accidents; sodium boiling; post accident material relocation, heat removal and relevant experiments already performed or planned

  14. Technical committee meeting on material-coolant interactions and material movement and relocation in liquid metal fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    The Technical Committee Meeting on Material-Coolant Interactions and Material Movement and Relocation in Liquid Metal Fast Reactors was sponsored by the International Working Group on Fast Reactors (IWGFR), International Atomic Energy Agency (IAEA) and hosted by PNC, on behalf of the Japanese government. A broad range of technical subjects was discussed in the TCM, covering entire aspects of material motion and interactions relevant to the safety of LMFRs. Recent achievement and current status in research and development in this area were presented including European out-of-pile test of molten material movement and relocation; molten material-sodium interaction; molten fuel-coolant interaction; core disruptive accidents; sodium boiling; post accident material relocation, heat removal and relevant experiments already performed or planned.

  15. Energy Materials Coordinating Committee (EMaCC): Fiscal year 1996. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. The EMaCC reports to the Director of the Office of Energy Research in his or her capacity as overseer of the technical programs of the Department. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1996 and describes the materials research programs of various offices and divisions within the Department.

  16. Energy Materials Coordinating Committee (EMaCC): Fiscal year 1996. Annual technical report

    International Nuclear Information System (INIS)

    1997-08-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. The EMaCC reports to the Director of the Office of Energy Research in his or her capacity as overseer of the technical programs of the Department. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1996 and describes the materials research programs of various offices and divisions within the Department

  17. HA and MAVL technical dialogue - Seminar - Transports of radioactive materials

    International Nuclear Information System (INIS)

    Charron, Sylvie; Eckert, Benoit; Lizot, Marie-Therese; Moutarde, Marianne; Mermaz, Frederic; Brisson, Nicolas; Sene, Monique; Demet, Michel; Jacquet, Benoit; Tran-Thien, Vivien; Ferran, Ghislain; Michel, Maurice; Barbey, Pierre; Miquel, Thierry-Paul; Monot, Bernard; Syren, Julien; Quintin, Christophe; Gilbert, Alain; Lhuillier, Daniel; Domeneghetti, Bertrand; LOURTIE, Guy; Manessier, Joffray

    2016-03-01

    This document gathers the content of a debate and Power Point presentations as contributions to this seminar on transports of nuclear materials. After an introduction, the different sessions addressed the actors of the transport of nuclear materials (regulation, parcel design, organisation on the shipper side and on the transporter side), transport safety and radiation protection (returns on experience by different actors and on event follow-up), the follow-up and safety of transports of nuclear materials (protection against malevolent acts, operational follow-up, case of rail transport), and issues related to crisis management (organisation in case of crisis, means of intervention implemented by the IRSN, return on experience for two accidents)

  18. Near-real-time material accountancy - A technical status report

    International Nuclear Information System (INIS)

    Lovett, J.; Ikawa, K.; Sellinschegg, D.; Shipley, J.

    1983-01-01

    Near-Real-time materials accountancy as applied to reprocessing plants involves two major elements, measurement of the in-process physical inventory at frequent intervals, and statistical evaluation of the resulting sequential material balance data. For most reprocessing plants the bulk of the in-process inventory is in measurable intermediate ''buffer'' tanks. The plutonium inventory in the solvent extraction system, which does not appear to be directly measureable, could cause a reduction in sensitivity of the sequential data analysis. Studies are in progress, and it is hoped that an acceptable means for accounting for these variations can be found. Consultants at a meeting in January 1982 agreed that statistical tests for evaluating sequential material balance data will increase both detection timeliness and detection sensitivity. IAEA verification of operator-generated measurement data is an area requiring significantly increased effort, but here too studies are in progress which should help to reduce inspection effort in increased effectiveness

  19. Reuse of conditional released materials from decommissioning; a review of approaches and scenarios with long-term constructions - 59149

    International Nuclear Information System (INIS)

    Daniska, Vladimir; Pritrsky, Jozef; Ondra, Frantisek; Zachar, Matej; Necas, Vladimir

    2012-01-01

    Paper presents the overall scope and actual results of the project for evaluation of representative scenarios for reuse of conditionally released materials from decommissioning. Aim of the project is to evaluate the possibilities of reuse of conditionally released steels and concrete in technical constructions which guarantee the long-term preservation of design properties over periods of 50-100 years. Interaction of conditionally released materials with public is limited and predictable due to design and purpose of selected constructions and due to fact that in many scenarios these materials are embedded in non-radioactive materials such as bars in reinforced concrete. Worker's scenarios for preparation, operation and maintenance of these constructions are analysed in detail including the manufacturing of elements for these constructions. Project aims to evaluate the scenarios of reuse of conditionally released materials in a complex way in order to develop the data for designers of scenarios and to evaluate the volumes of conditionally released materials based on facility (to be decommissioned) inventory data. The long-term constructions considered are bridges, tunnels, roads, railway constructions, industrial buildings, power industry equipment and others. Evaluation covers following areas: - Analysis of activities for manufacturing of reinforcement bars, rolled steel sheets and other steel elements and analysis of activities for construction of evaluated scenarios in order to evaluate the external exposure of professionals performing these activities; - Analysis of external exposure of professionals involved in operation and maintenance of the long-term constructions; analysis of external exposure of public groups which are exposed to evaluated constructions; - Analysis of internal exposure of public groups from the radionuclides released from the evaluated scenarios based on models for migration of radionuclides from the long-term constructions to critical

  20. Energy Materials Coordinating Committee (EMaCC). Annual technical report, Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-08-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations.

  1. Material Not Categorized As Waste (MNCAW) data report. Radioactive Waste Technical Support Program

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C.; Heath, B.A.

    1992-11-01

    The Department of Energy (DOE), Headquarters, requested all DOE sites storing valuable materials to complete a questionnaire about each material that, if discarded, could be liable to regulation. The Radioactive Waste Technical Support Program entered completed questionnaires into a database and analyzed them for quantities and type of materials stored. This report discusses the data that TSP gathered. The report also discusses problems revealed by the questionnaires and future uses of the data. Appendices contain selected data about material reported.

  2. Radioactive materials transport: a story of steady technical improvement

    International Nuclear Information System (INIS)

    Price, M.

    1991-01-01

    The transport of radioactive material is a fundamental part of the nuclear industry and equally vital to the use of radioisotopes in medical diagnosis and therapy. The safety record is impressively good and this aids open discussion of the subject. An independent consultant formerly with Atomic Energy Authority Technology reports on the Second International Conference on Transportation for the Nuclear Industry. (Author)

  3. Material Identification Technology (MIT) concept technical feasibility study

    International Nuclear Information System (INIS)

    Jones, J.L.; Harker, Y.D.; Yoon, W.Y.; Johnson, L.O.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) has initiated the design and development of a novel pulsed accelerator-based, active interrogation concept. The proposed concept, referred to as the Material Identification Technology (MIT), enables rapid (between accelerator pulses), non-destructive, elemental composition analysis of both nuclear and non-nuclear materials. Applications of this technique include material monitoring in support of counter-proliferation activities, such as export controls (at domestic and international inspection locations), SNM controls, nuclear weapon dismantlement, and chemical weapon verification. Material Identification Technology combines a pulsed, X-ray source (an electron accelerator) and a gamma detection system. The accelerator must maximize neutron production (pulse width, beam current, beam energy, and repetition rate) and minimize photon dose to the object. Current available accelerator technology can meet these requirements. The detection system must include detectors which provide adequate gamma energy resolution capability, rapid recovery after the initial X-ray interrogation pulse, and multiple single gamma event detection between accelerator pulses. Further research is required to develop the detection system. This report provides the initial feasibility assessment of the MIT concept

  4. MIXING OF INCOMPATIBLE MATERIALS IN WASTE TANKS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    SANDGREN, K.R.

    2006-01-01

    This document presents onsite radiological, onsite toxicological, and offsite toxicological consequences, risk binning, and control decision results for the mixing of incompatible materials in waste tanks representative accident. Revision 4 updates the analysis to consider bulk chemical additions to single shell tanks (SSTs)

  5. Technical features of steel structure construction by Kawasaki Steel; Kawasaki Seitetsu no kokozo gijutsu no tokucho

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Urata, I.; Okata, S. [Kawasaki Steel Corp., Tokyo (Japan)

    1996-03-01

    In the steel structure technology of Kawasaki Steel, the joint technique (e.g., welding) is added to them while developing or improving the products that meet the social needs as a material supplier. Moreover, the execution technique that manufactures materials or constructs them as an integrated structure, the structural analysis that conforms to the function and application of a structure, and the design technique on dynamic properties or durability such as earthquake resistance, fatigue, and corrosion resistance are synthetically expanded for engineering. In this paper, a building steel frame, non-residence building, bridge, and harbor structure as steel structure in the building and construction fields were described for each structure genre. The structural technology of a building steel frame is summarized to the products of pillar materials. An earthquake brace, using a dead soft steel, with high earthquake energy absorption capability and a damping wall were also developed. The design and execution technique of a large roof was systematized. The exchange technique of a road bridge RC floor and the technique of an unstiffened suspension bridge for pipeline were developed. A new technique was also developed for a suspension monorail track and offshore structure. 30 refs., 5 figs.

  6. Masonry calendar 1989. A handbook on masonry, wall construction materials, sound, thermal and moisture insulation. Mauerwerk-Kalender 1989. Taschenbuch fuer Mauerwerk, Wandbaustoffe, Schall-, Waerme- und Feuchtigkeitsschutz

    Energy Technology Data Exchange (ETDEWEB)

    Funk, P [ed.

    1989-01-01

    The 1989 Masonry Calendar comprises the following sections and contibutions: Harmonisation of technical rules for brickwork construction on a European scale; fundamentals for brickwork dimensioning according to DIN 1053, part 2; exemplary calculations for the dimensioning of brick walls under compressive and shearing loads according to DIN 1053, part 2; calculation aids for brickwork dimensioning according to DIN 1053, part 2; dimensioning tables for reinforced brickwork of rectangular cross section; characteristic data of brickwork, bricks, and mortar; thermal insulation of brickwork; moisture protection problems in brickwork construction; noise abatement in brickwork construction; novel materials and designs in brickwork construction; characteristic data for calculating the thermal conductivity of building materials; regulations on construction, bricks, binders; further construction materials, testing standards, constructional physics, further standards and technical regulations for brickwork construction, with supplements; DGfM codes; work scaffolding; dwelling on brickwork construction; experiments on the seismic response of brickwork; supporting strength of brick walls under simultaneous horizontal and vertical stress; masonry cost calculation in the framework of overall construction cost calculation; bibliography and important addresses. (BR).

  7. 46 CFR 50.20-30 - Alternative materials or methods of construction.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Alternative materials or methods of construction. 50.20... ENGINEERING GENERAL PROVISIONS Plan Submittal and Approval § 50.20-30 Alternative materials or methods of construction. (a) When new or alternative procedures, designs, or methods of construction are submitted for...

  8. Technically enhanced naturally occurring radioactive materials; identification, characterization and treatment

    International Nuclear Information System (INIS)

    Aly, H.F.

    2001-01-01

    Radioactive materials (TENORM) is produced in a relatively large amount with relatively small radioactivity, however in many instances the radioactivity levels exceeds that permissible. In this presentation, the different industries where enhanced levels of natural radioactivity is identified and characterized will be given. The different approaches for treatment of this enhanced radioactivity will be addressed. Finally, our research and development activities in characterization and treatment of TENORM produced from the oil fields in Egypt will be presented. (authors)

  9. Technical meeting on materials for in-vessel components of ITER

    International Nuclear Information System (INIS)

    Kalinin, G.; Barabash, V.

    2000-01-01

    The Technical meeting on materials for in-vessel components of ITER was held at the ITER Joint Work Site in Garching from 31 January to 4 February. The main objectives of the meetings were: 1. to summarize the requirements, 2. to review new data, 3. to discuss in detail the R and D program and to discuss the material assessment report

  10. 78 FR 65265 - Materials Technical Advisory Committee; Notice of Open Meeting

    Science.gov (United States)

    2013-10-31

    .... Report on regime-based activities. 7. SHUTDOWN Feedback. 8. Public Comments and New Business. The open...; Notice of Open Meeting The Materials Technical Advisory Committee will meet on November 14, 2013, 10:00 a... materials and related technology. Agenda Open Session 1. Opening Remarks and Introductions. 2. Remarks from...

  11. Wood and Other Materials Used to Construct Nonresidential Buildings - Canada

    Science.gov (United States)

    David B. McKeever; Joe Elling

    2014-01-01

    Low-rise nonresidential building construction is an important market in Canada for lumber, engineered wood products, structural wood panels, and nonstructural wood panels. This report examines wood products consumption in 2012 for construction of selected low-rise nonresidential buildings types that have six or fewer stories. Buildings with more than six stories are...

  12. Bio-aggregates based building materials state-of-the-art report of the RILEM Technical Committee 236-BBM

    CERN Document Server

    Collet, Florence

    2017-01-01

    The work of the RILEM Technical Committee (TC -236 BBM) was dedicated to the study of construction materials made from plant particles. It considered the question whether building materials containing as main raw material recyclable and easily available plant particles are renewable. This book includes a state-of-the-art report and an appendix. The state-of-the-art report relates to the description of vegetal aggregates. Then, hygrothermal properties, fire resistance, durability and finally the impact of the variability of the method of production of bio-based concrete are assessed. The appendix is a TC report which presents the experience of a working group. The goal was to define testing methods for the measurement of water absorption, bulk density, particle size distribution, and thermal conductivity of bio aggregates. The work is based on a first round robin test of the TC-BBM where the protocols in use by the different laboratories (labs) are compared. .

  13. Workshop on technical assessment of industrial thermal insulation materials: summary

    International Nuclear Information System (INIS)

    Peterson, S.

    1976-07-01

    Over 80 participants representing 50 organizations met to discuss the report, Industrial Thermal Insulation--An Assessment, ORNL/TM-5283. Presentations on the performance of available materials, economic considerations, and measurement problems were followed by discussion. A final wrap-up session concluded that the report was valuable in pointing the direction for needed effort in the area, confirmed the indicated actions needed to further industrial application of insulation, and called for future meetings to continue the dialogue between the various facets of the industry

  14. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sean M. McDeavitt

    2010-04-14

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at

  15. Engineered Materials for Cesium and Strontium Storage. Final Technical Report

    International Nuclear Information System (INIS)

    McDeavitt, Sean M.

    2010-01-01

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at Purdue

  16. Security during the Construction of New Nuclear Power Plants: Technical Basis for Access Authorization and Fitness-For-Duty Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Kristi M.; Baker, Kathryn A.

    2009-09-01

    A technical letter report to the NRC summarizing the findings of a benchmarking study, literature review, and workshop with experts on current industry standards and expert judgments about needs for security during the construction phase of critical infrastructure facilities in the post-September 11 U.S. context, with a special focus on the construction phase of nuclear power plants and personnel security measures.

  17. The research on the material management system in nuclear power plant construction process

    International Nuclear Information System (INIS)

    Liu Xuegeng; Huang Zhongping

    2010-01-01

    According to the module construction speciality of nuclear power plant, this article analyzes the relationship between the actual amount of the material transported to the construction site and the planed needs of the material, and points out the zero inventory management target in the nuclear power plant construction site. Based on this, the article put forward a nuclear power plant material management system which is based on the 'pull' information driver. This system is composed by material coding sub-system, procurement and site material integrated management sub-system and project control sub-system, and is driven by the material demand from construction site to realize the JIT purchasing. This structure of the system can reduce the gap between the actual amount of the material transported to the site and the planed needs of the material and achieve the target of reducing storage at construction site. (authors)

  18. technical guidelines for the design and construction of the next generation of nuclear power plants with pressurized water reactors

    International Nuclear Information System (INIS)

    2009-01-01

    These technical guidelines present the opinion of the French 'Groupe Permanent charge des Reacteurs nucleaires' (GPR) concerning the safety philosophy and approach as well as the general safety requirements to be applied for the design and construction of the next generation of nuclear power plants of the PWR (pressurized water reactor) type, assuming the construction of the first units of this generation would start at the beginning of the 21. century. These technical guidelines are based on common work of the French Institut de Protection et de Surete Nucleaire (IPSN) and of the German Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS). Moreover, these technical guidelines were extensively discussed with members of the German Reaktor Sicherheitskommission (RSK) until the end of 1998 and further with German experts. The context of these technical guidelines must be clearly understood. Faced with the current situation of nuclear energy in the world, the various nuclear steam supply system designers are developing new products, all of them claiming their intention of obtaining a higher safety level, by various ways. GPR believes that, for the operation of a new series of nuclear power plants at the beginning of the next century, the adequate way is to derive the design of these plants in an 'evolutionary' way from the design of existing plants, taking into account the operating experience and the in-depth studies conducted for such plants. Nevertheless, introduction of innovative features must also be considered in the frame of the design of the new generation of plants, especially in preventing and mitigating severe accidents. GPR underlines here that a significant improvement of the safety of the next generation of nuclear power plants at the design stage is necessary, compared to existing plants. If the search for improvement is a permanent concern in the field of safety, the necessity of a significant step at the design stage clearly derives from better

  19. 46 CFR 58.50-15 - Alternate material for construction of independent fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Alternate material for construction of independent fuel...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-15 Alternate material for construction of independent fuel tanks. (a) Materials other than those specifically...

  20. AN ASSESSMENT OF FACTORS AFFECTING MATERIAL STOCK CONTROL PRACTICE ON SELECTED CONSTRUCTION SITES IN NIGERIA

    OpenAIRE

    Adafin, Johnson Kayode; Ayodele, Elijah Olusegun; Daramola, Olufemi

    2011-01-01

    This research examines the stock control methods utilized by construction firms on construction sites with a view to assessing the factors affecting material stock control practice by construction firms as well as determining the impact of factors affecting material stock control on building project performance. Data were collected with the aid of well-structured questionnaire administered on a number of construction professionals and technicians in some randomly selected building constructio...

  1. Natural radioactivity in Slovak construction materials and the indoor dose rate from building materials

    International Nuclear Information System (INIS)

    Cabanekova, H.; Vladar, M.

    1998-01-01

    For keeping the population exposure al low as reasonably achievable (recommended by the Slovak regulations), the radioactive content of primordial radionuclides in building materials and products have not to exceed 370 Bq kg -1 of radium equivalent activity and 120 Bq kg -1 of 226 Ra. Samples of building materials (cement, stone, fly-ash, light concrete, slag, dross, sand dolomite. etc.) user for construction of the residential buildings were collected, milled and screened with 2-3 cm sieve. After drying, the samples were stored in 450 cm 3 sealed polyethylene containers for a 30 day period. All samples were measured in a 4 π geometry usually for 60,000 seconds. Measurements of 226 Ra, 232 Th and 40 K concentrations were carried out by high resolution gamma-ray spectrometry. The primordial radionuclides 226 and 232 Th were assessed through their progeny photo-peaks 214 Bi (609 keV), 214 Pb (295 keV, 351 keV) 228 Ac (338 keV, 911 keV) and 212 Pb (238 keV). The specific activity of both nuclides has been determined as weighted average of their photo-peaks. 40 K was measured directly via its 1460 keV peak. Until now, about 600 samples of building materials have been measured. The obtained radium equivalent activity in various types of building materials and mean annual effective doses of gamma radiation are presented. (J.K.)

  2. Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule

    International Nuclear Information System (INIS)

    Soli T. Khericha

    2006-01-01

    This report presents preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T and FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation

  3. Reducing nuclear danger through intergovernmental technical exchanges on nuclear materials safety management

    International Nuclear Information System (INIS)

    Jardine, L.J.; Peddicord, K.L.; Witmer, F.E.; Krumpe, P.F.; Lazarev, L.; Moshkov, M.

    1997-01-01

    The United States and Russia are dismantling nuclear weapons and generating hundreds of tons of excess plutonium and high enriched uranium fissile nuclear materials that require disposition. The U.S. Department of Energy and Russian Minatom organizations.are planning and implementing safe, secure storage and disposition operations for these materials in numerous facilities. This provides a new opportunity for technical exchanges between Russian and Western scientists that can establish an improved and sustained common safety culture for handling these materials. An initiative that develops and uses personal relationships and joint projects among Russian and Western participants involved in fissile nuclear materials safety management contributes to improving nuclear materials nonproliferation and to making a safer world. Technical exchanges and workshops are being used to systematically identify opportunities in the nuclear fissile materials facilities to improve and ensure the safety of workers, the public, and the environment

  4. Accelerated Carbonation of Steel Slag Compacts: Development of High-Strength Construction Materials

    Energy Technology Data Exchange (ETDEWEB)

    Quaghebeur, Mieke; Nielsen, Peter, E-mail: peter.nielsen@vito.be; Horckmans, Liesbeth [Sustainable Materials Management, VITO, Mol (Belgium); Van Mechelen, Dirk [RECMIX bvba, Genk (Belgium)

    2015-12-17

    Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags [stainless steel (SS) slag and basic oxygen furnace (BOF) slags] in high-quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO{sub 2} at elevated pressure (up to 2 MPa) and temperatures (20–140°C). For SS slags, raising the temperature from 20 to 140°C had a positive effect on the CO{sub 2} uptake, strength development, and the environmental properties (i.e., leaching of Cr and Mo) of the carbonated slag compacts. For BOF slags, raising the temperature was not beneficial for the carbonation process. Elevated CO{sub 2} pressure and CO{sub 2} concentration of the feed gas had a positive effect on the CO{sub 2} uptake and strength development for both types of steel slags. In addition, the compaction force had a positive effect on the strength development. The carbonates that are produced in situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones) have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100–150 g CO{sub 2}/kg slag. The technology was developed on lab scale by the optimization of process parameters with regard to compressive strength development, CO{sub 2} uptake, and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-)industrial equipment and process conditions.

  5. Geotechnical Materials Database for Embankment Design and Construction

    Science.gov (United States)

    2011-12-01

    This project was focused on the assimilation of engineering properties of borrow soils across the state of : South Carolina. Extensive data on soils used for embankment construction were evaluated and compared : within Group A (Piedmont) and Group B ...

  6. Constructing a Validity Argument for the Objective Structured Assessment of Technical Skills (OSATS): A Systematic Review of Validity Evidence

    Science.gov (United States)

    Hatala, Rose; Cook, David A.; Brydges, Ryan; Hawkins, Richard

    2015-01-01

    In order to construct and evaluate the validity argument for the Objective Structured Assessment of Technical Skills (OSATS), based on Kane's framework, we conducted a systematic review. We searched MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC, Web of Science, Scopus, and selected reference lists through February 2013. Working in duplicate, we selected…

  7. Energy Materials Coordinating Committee (EMaCC) Fiscal Year 1999 annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-10-31

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. This report summarizes EMaCC activities for FY 1999 and describes the materials research programs of various offices and divisions within the Department.

  8. Developing improved opportunities for the recycling and reuse of materials in road, bridge, and construction projects.

    Science.gov (United States)

    2014-12-01

    The use of recycled and reused materials in transportation construction reduces consumption of non-renewable : resources. The objective of this research was to develop opportunities for improving the recycling and reuse of : materials in road and bri...

  9. Assessment on the sustainable use of alternative construction materials as a substitute to natural aggregates

    CSIR Research Space (South Africa)

    George, Theresa B

    2016-08-01

    Full Text Available , and identifies potential construction materials such as glass, slags and recycled asphalt pavement (RAP) that are locally available as alternative aggregate materials to virgin aggregates. An economic cost analysis conducted indicated that it is more cost...

  10. Options and recommendations for a web database of material and construction inspection.

    Science.gov (United States)

    2015-02-01

    The Illinois Department of Transportation (IDOT) has been using software developed in-house for their : materials management and construction project management needs. The primary packages under : review MISTIC (Materials Management) and ICORS (Const...

  11. Flammability tests for regulation of building and construction materials

    Science.gov (United States)

    K. Sumathipala

    2006-01-01

    The regulation of building materials and products for flammability is critical to ensure the safety of occupants in buildings and other structures. The involvement of exposed building materials and products in fires resulting in the loss of human life often spurs an increase in regulation and new test methods to address the problem. Flammability tests range from those...

  12. High-volume recycled materials for sustainable pavement construction.

    Science.gov (United States)

    2017-05-01

    The main objective of this research is to evaluate the feasibility of using high-volume recycled materials for concrete production in rigid pavement. The goal was to replace 50% of the solids with recycled materials and industrial by-products. The pe...

  13. Mudflow utilization for construction materials of tertiary irrigation canal lining

    Science.gov (United States)

    Azis, Subandiyah; Kustamar

    2017-11-01

    Mudflow in Siring Village, Sidoarjo Regency, Indonesia, has been in eruption since May 29, 2006. It still shows irregular large bursts which loaded in a sludge reservoir with capacity of 59 million m3. From 2007 until 2015, there were more than 20 studies which concluded that the mudflow could be used as a mixture of building materials. However, the studies were not detailed and needed further research. This research aims to investigate the use of mudflow as tertiary irrigation canal lining material. This research comes with several laboratory tests to obtain a mixture that is solid and water-resistant. The methods that were used are descriptive methods as follows: 1). Sampling of mudflow, to be analyzed in Material Testing Laboratory. 2). Sampling of soil at research site, to be analyzed in Soil Mechanics Laboratory 3). Mixing of materials which are consist of mudflow and other materials and doing strength test in the laboratory. 4). Installation of tertiary irrigation canal lining using materials that have been tested. 5). Observation of lining's strength inactive soil pressure-bearing and its impermeability. It is expected that the results of this research will be applied extensively throughout the tertiary irrigation canals, so mudflow can be utilized as raw materials that are environmentally friendly, which are able to help preserving the environment, also to reduce the removal of sand / rock in the river, which has been used for lining materials, that benefits in preventing damage to the river ecosystem.

  14. A plastic micropump constructed with conventional techniques and materials

    NARCIS (Netherlands)

    Bohm, S.; Olthuis, Wouter; Bergveld, Piet

    1999-01-01

    A plastic micropump which can be produced using conventional production techniques and materials is presented. By applying well-known techniques and materials, economic fabrication of micropumps for various applications is feasible even at low production volumes. The micropump is capable of pumping

  15. Media architecture using information and media as construction material

    CERN Document Server

    Wiethoff, Alexander

    2017-01-01

    The buzzwords "Information Society" and "Age of Access" suggest that information is now universally accessible without any form of hindrance. Indeed, the German constitution calls for all citizens to have open access to information. Yet in reality, there are multifarious hurdles to information access - whether physical, economic, intellectual, linguistic, political, or technical. Thus, while new methods and practices for making information accessible arise on a daily basis, we are nevertheless confronted by limitations to information access in various domains. This new book series assembles ac

  16. Engineering properties of scoria concrete as a construction material ...

    African Journals Online (AJOL)

    The weight and cost of plain concrete are part of the setbacks in its use for construction purposes especially in low-cost housing delivery. This paper reports the experimental results of samples of concrete produced from a mix combination of cement, fine aggregate (sand) and volcanic scoria as coarse aggregate. The scoria ...

  17. 46 CFR 160.013-3 - Materials, workmanship, and construction details.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, workmanship, and construction details. 160.013-3 Section 160.013-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT... materials, workmanship, and construction details shall be in substantial compliance with the provisions of...

  18. 46 CFR 160.023-3 - Materials, workmanship, construction, and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... requirements. 160.023-3 Section 160.023-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand Combination... requirements. (a) The materials, construction, workmanship, general and detail requirements shall conform to...

  19. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Science.gov (United States)

    2010-07-01

    ... property construction. Sales of building materials to a contractor or speculative builder for the... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for commercial property construction. 779.336 Section 779.336 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION...

  20. 29 CFR 779.335 - Sales of building materials for residential or farm building construction.

    Science.gov (United States)

    2010-07-01

    ... materials for residential or farm building construction. Section 3(n) of the Act, as amended, excludes from... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for residential or farm building construction. 779.335 Section 779.335 Labor Regulations Relating to Labor (Continued) WAGE AND...

  1. Fourth Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Reilly, D.; Marsden, O.

    2018-01-01

    The Nuclear Forensics International Technical Working Group is a community of nuclear forensic practitioners who respond to incidents involving nuclear and other radioactive material out of regulatory control. The Group is dedicated to advancing nuclear forensic science in part through periodic participation in materials exercises. The Group completed its fourth Collaborative Materials Exercise in 2015 in which laboratories from 15 countries and one multinational organization analyzed three samples of special nuclear material in support of a mock nuclear forensic investigation. This special section of the Journal for Radioanalytical and Nuclear Chemistry is devoted to summarizing highlights from this exercise. (author)

  2. Waste management issues and their potential impact on technical specifications of CANDU fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Tait, J.C.; Johnson, L.H. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The technical specifications for the composition of nuclear fuels and materials used in Canada's CANDU reactors have been developed by AECL and materials manufacturers, taking into account considerations specific to their manufacture and the effect of minor impurities on fuel behaviour in reactor. Nitrogen and chlorine are examples of UO{sub 2} impurities, however, where there is no technical specification limit. These impurities are present in the source materials or introduced in the fabrication process and are neutron activated to {sup 14}C and {sup 36}C1, which after {sup 129}I , are the two most significant contributors to dose in safety assessments for the disposal of used fuel. For certain impurities, environmental factors, particularly the safety of the disposal of used fuels, should be taken into consideration when deriving 'allowable' impurity limits for nuclear fuel materials. (author)

  3. Waste management issues and their potential impact on technical specifications of CANDU fuel materials

    International Nuclear Information System (INIS)

    Tait, J.C.; Johnson, L.H.

    1997-01-01

    The technical specifications for the composition of nuclear fuels and materials used in Canada's CANDU reactors have been developed by AECL and materials manufacturers, taking into account considerations specific to their manufacture and the effect of minor impurities on fuel behaviour in reactor. Nitrogen and chlorine are examples of UO 2 impurities, however, where there is no technical specification limit. These impurities are present in the source materials or introduced in the fabrication process and are neutron activated to 14 C and 36 C1, which after 129 I , are the two most significant contributors to dose in safety assessments for the disposal of used fuel. For certain impurities, environmental factors, particularly the safety of the disposal of used fuels, should be taken into consideration when deriving 'allowable' impurity limits for nuclear fuel materials. (author)

  4. Improved construction materials for polar regions using microcellular thermoplastic foams

    Science.gov (United States)

    Cunningham, Daniel J.

    1994-01-01

    Microcellular polymer foams (MCF) are thermoplastic foams with very small cell diameters, less than 10 microns, and very large cell densities, 10(exp 9) to 10(exp 15) cells per cubic centimeter of unfoamed material. The concept of foaming polymers with microcellular voids was conceived to reduce the amount of material used for mass-produced items without compromising the mechanical properties. The reasoning behind this concept was that if voids smaller than the critical flaw size pre-existing in polymers were introduced into the matrix, they would not affect the overall strength of the product. MCF polycarbonate (PC), polystyrene (PS), and polyvinyl chloride (PVC) were examined to determine the effects of the microstructure towards the mechanical properties of the materials at room and arctic temperatures. Batch process parameters were discovered for these materials and foamed samples of three densities were produced for each material. To quantify the toughness and strength of these polymers, the tensile yield strength, tensile toughness, and impact resistance were measured at room and arctic temperatures. The feasibility of MCF polymers has been demonstrated by the consistent and repeatable MCF microstructures formed, but the improvements in the mechanical properties were not conclusive. Therefore the usefulness of the MCF polymers to replace other materials in arctic environments is questionable.

  5. Characterization of materials formed by rice husk for construction

    International Nuclear Information System (INIS)

    Portillo-Rodríguez, A M

    2013-01-01

    This review article delves into the use of agro-industrial wastes, which in construction field provides alternatives for environmental problems with the use of them. This fact enables development and lower costs for new options in the brick, cluster, mortar and concrete industry, what represents benefits for environment, housing and generally everything related to construction, looking for sustainability. For that reason a literature review is made to support the theme focusing on the use of rice husk in its natural, ground or ash state for manufacturing elements with clay masonry, precast and optimization of concrete and mortars. The technique used is based on scientific articles and researches found in reliable databases that were analyzed and integrated into a synthesized structure, which summarized the objectives, analysis processes, the physical and mechanical properties and finally the results. The conclusions are focused on potentiality of elements production in the construction development based on the high effectiveness like thermal insulation, low density and various benefits offered by high silica content pozzolanic properties, etc

  6. Characterization of materials formed by rice husk for construction

    Science.gov (United States)

    Portillo-Rodríguez, A. M.

    2013-11-01

    This review article delves into the use of agro-industrial wastes, which in construction field provides alternatives for environmental problems with the use of them. This fact enables development and lower costs for new options in the brick, cluster, mortar and concrete industry, what represents benefits for environment, housing and generally everything related to construction, looking for sustainability. For that reason a literature review is made to support the theme focusing on the use of rice husk in its natural, ground or ash state for manufacturing elements with clay masonry, precast and optimization of concrete and mortars. The technique used is based on scientific articles and researches found in reliable databases that were analyzed and integrated into a synthesized structure, which summarized the objectives, analysis processes, the physical and mechanical properties and finally the results. The conclusions are focused on potentiality of elements production in the construction development based on the high effectiveness like thermal insulation, low density and various benefits offered by high silica content pozzolanic properties, etc.

  7. The use of bio-based materials to reduce the environmental impact of construction

    OpenAIRE

    Lawrence, Michael

    2014-01-01

    In the UK, the construction industry is responsible for over 50 % of total carbon emissions. 20% of these carbon emissions are embodied within the construction and materials of buildings and the balance is expended in environmental control (heating, lighting, air conditioning) and other ‘in use’ aspects of occupation of buildings. This is replicated in other countries to a similar extent. This lecture identifies ways in which the use of bio-based construction materials can significantly reduc...

  8. Entomology Specialist 1-1. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Jones, Jimmie L.

    This individualized, self-paced course for training an entomology specialist was adapted from military curriculum materials for use in vocational and technical education. Completion of the course should provide students with basic information needed to accomplish the following duties of an entomology specialist: perform entomological work, apply…

  9. Medical Laboratory Technician--Microbiology, 10-3. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, the second of three courses in the medical laboratory technician field adapted from military curriculum materials for use in vocational and technical education, was designed as a refresher course for student self-study and evaluation. It is suitable for use by advanced students or beginning students participating in a supervised…

  10. Annual Technical Report, Materials Research Laboratory, 1 July 1982 - 30 June 1983.

    Science.gov (United States)

    1983-06-30

    Technical Report 41 SECTION 6 PROPERTIES OF MATERIALS AT LOW TEMPERATURES Introduction The general motivation for this work is that certain interesting...Professor, Chemis- "Photoelectronic Properties of Cu 3 PS4 and try. Cu 3 PS Se Single Crystals," J. V. Marzik, A. K. Hsieh, K. Dwight and A. Wold. J

  11. Energy materials coordinating committee (EMACC) Fiscal Year 1982. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1983-03-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/ workshops on selected topics involving both DOE and major contractors. In addition, the EMaCC aids in obtaining materials - related inputs for both intra- and interagency compilations. Membership in the EMaCC is open to any Department organizational unit; participants are appointed by Division or Office Directors. The current membership is listed in Table 1. The EMACC reports to the Director of the Office of Energy Research in his capacity as overseer of the technical programs of the Department. This annual technical report is mandated by the EMACC terms of reference. In this report are described 1) EMACC activities for FY 1982; 2) a summary of materials funding in the Department from FY 1978 to the present; and 3) on-going materials programs in the Department.

  12. Comparative evaluation of low cost materials as constructed wetland filling media

    Science.gov (United States)

    Pinho, Henrique J. O.; Vaz, Mafalda M.; Mateus, Dina M. R.

    2017-11-01

    Three waste materials from civil construction activities were assessed as low cost alternative filling materials used in Constructed Wetlands (CW). CW are green processes for wastewater treatment, whose design includes an appropriate selection of vegetation and filling material. The sustainability of such processes may be incremented using recovered wastes as filling materials. The abilities of the materials to support plant growth and to contribute to pollutants removal from wastewater were assessed and compared to expanded clay, a filling usually used in CW design. Statistical analysis, using one-way ANOVA and Welch's ANOVA, demonstrate that limestone fragments are a better choice of filling material than brick fragments and basalt gravel.

  13. The application of waste fly ash and construction-waste in cement filling material in goaf

    Science.gov (United States)

    Chen, W. X.; Xiao, F. K.; Guan, X. H.; Cheng, Y.; Shi, X. P.; Liu, S. M.; Wang, W. W.

    2018-01-01

    As the process of urbanization accelerated, resulting in a large number of abandoned fly ash and construction waste, which have occupied the farmland and polluted the environment. In this paper, a large number of construction waste and abandoned fly ash are mixed into the filling material in goaf, the best formula of the filling material which containing a large amount of abandoned fly ash and construction waste is obtained, and the performance of the filling material is analyzed. The experimental results show that the cost of filling material is very low while the performance is very good, which have a good prospect in goaf.

  14. Improvement of the material and transport component of the system of construction waste management

    Science.gov (United States)

    Kostyshak, Mikhail; Lunyakov, Mikhail

    2017-10-01

    Relevance of the topic of selected research is conditioned with the growth of construction operations and growth rates of construction and demolition wastes. This article considers modern approaches to the management of turnover of construction waste, sequence of reconstruction or demolition processes of the building, information flow of the complete cycle of turnover of construction and demolition waste, methods for improvement of the material and transport component of the construction waste management system. Performed analysis showed that mechanism of management of construction waste allows to increase efficiency and environmental safety of this branch and regions.

  15. Ecological performance of construction materials subject to ocean climate change.

    Science.gov (United States)

    Davis, Kay L; Coleman, Melinda A; Connell, Sean D; Russell, Bayden D; Gillanders, Bronwyn M; Kelaher, Brendan P

    2017-10-01

    Artificial structures will be increasingly utilized to protect coastal infrastructure from sea-level rise and storms associated with climate change. Although it is well documented that the materials comprising artificial structures influence the composition of organisms that use them as habitat, little is known about how these materials may chemically react with changing seawater conditions, and what effects this will have on associated biota. We investigated the effects of ocean warming, acidification, and type of coastal infrastructure material on algal turfs. Seawater acidification resulted in greater covers of turf, though this effect was counteracted by elevated temperatures. Concrete supported a greater cover of turf than granite or high-density polyethylene (HDPE) under all temperature and pH treatments, with the greatest covers occurring under simulated ocean acidification. Furthermore, photosynthetic efficiency under acidification was greater on concrete substratum compared to all other materials and treatment combinations. These results demonstrate the capacity to maximise ecological benefits whilst still meeting local management objectives when engineering coastal defense structures by selecting materials that are appropriate in an ocean change context. Therefore, mitigation efforts to offset impacts from sea-level rise and storms can also be engineered to alter, or even reduce, the effects of climatic change on biological assemblages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Materials selection as an interdisciplinary technical activity: basic methodology and case studies

    Directory of Open Access Journals (Sweden)

    M. Ferrante

    2000-04-01

    Full Text Available The technical activity known as Materials Selection is reviewed in its concepts and methodologies. Objectives and strategies are briefly presented and two important features are introduced and discussed; (i Merit Indices: a combination of materials properties, which maximises the objectives chosen by the designer and (ii Materials Properties Maps: a bi-dimensional space whose coordinates are pairs of properties in which materials can be plotted and compared directly in terms of their merit indices. A general strategy for the deduction of these indices is explained and a formal methodology to establish a ranking of candidate materials when multiple constraints intervene is presented. Finally, two case studies are discussed in depth, one related to materials substitution in the context of mechanical design and a less conventional case linking material selection to physical comfort in the home furniture industry.

  17. Modified glycogen as construction material for functional biomimetic microfibers.

    Science.gov (United States)

    Rabyk, Mariia; Hruby, Martin; Vetrik, Miroslav; Kucka, Jan; Proks, Vladimir; Parizek, Martin; Konefal, Rafal; Krist, Pavel; Chvatil, David; Bacakova, Lucie; Slouf, Miroslav; Stepanek, Petr

    2016-11-05

    We describe a conceptually new, microfibrous, biodegradable functional material prepared from a modified storage polysaccharide also present in humans (glycogen) showing strong potential as direct-contact dressing/interface material for wound healing. Double bonds were introduced into glycogen via allylation and were further exploited for crosslinking of the microfibers. Triple bonds were introduced by propargylation and served for further click functionalization of the microfibers with bioactive peptide. A simple solvent-free method allowing the preparation of thick layers was used to produce microfibers (diameter ca 2μm) from allylated and/or propargylated glycogen. Crosslinking of the samples was performed by microtron beta-irradiation, and the irradiation dose was optimized to 2kGy. The results from biological testing showed that these highly porous, hydrophilic, readily functionalizable materials were completely nontoxic to cells growing in their presence. The fibers were gradually degraded in the presence of cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Growing grass: a smart material interactive display, design and construction history

    NARCIS (Netherlands)

    Minuto, A.; Nijholt, Antinus

    2012-01-01

    In this paper we will present the design process and development of "Follow the Grass", our smart material interactive pervasive display, with related technical detailed explanation. We will present the design steps and prototypes with instructions for the use of smart materials (NiTiNOL) to create

  19. Ceramic luminescent radiographic materials for medicine and tool construction

    International Nuclear Information System (INIS)

    Winnacker, A.

    1991-01-01

    X-ray recording luminescent materials form the basis of a new concept for X ray imaging. Essential advantages as compared to the conventional film systems are the digitalisation of the X ray as well as the high dynamics of registration. Modern methods of image processing and video recording can be applied. Advantages also show where a very extensive video material must be filed. Compared to the films used up to now, one expects higher sensitivity, higher homogeneity and higher spatial resolution of pictures taken with ceramic films. (BaFBr:Eu, RbJ:Tl). (orig.) [de

  20. The construction of the graphite calorimeter GR9 at LNE-LNHB (geometrical and technical consideration); Construction du calorimetre en graphite GR9 au LNE-LNHB (caracteristiques techniques et geometriques)

    Energy Technology Data Exchange (ETDEWEB)

    Ostrowsky, A.; Daures, J

    2008-07-01

    Calorimetry is the most direct dosimetric technique to reach absorbed dose. A calorimeter gives direct access to the energy imparted to matter by ionizing radiation per mass unit by measuring the heat quantity Q produced under irradiation in its sensitive element which is thermally insulated. Graphite was chosen as construction material because all the energy imparted to graphite by ionizing radiation is converted into heat. Thermistors are used for temperature measurements as well as for the electrical heating of the different bodies of the calorimeter. The construction of a calorimeter is the result of a compromise between dosimetric requirements and mechanical constraints. The difficulties encountered are examined and the solutions chosen are detailed. All technical data are gathered in this document. The aim is to provide a practical operative instruction and guidance document, which can help interested laboratories in designing such an instrument. The electrical and thermal tests have shown a good behaviour of the GR9 calorimeter.

  1. Electric characterization of construction materials through radar data inversion

    NARCIS (Netherlands)

    Patriarca, C.

    2013-01-01

    The non-destructive evaluation with the aim of characterizing objects before or after treatment has taken place, and the monitoring of long-term performance is analyzed in this thesis. Generally, these test methods measure material properties or changes in these properties that decision makers are

  2. Corrosion behavior of construction materials for intermediate temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Jensen, Jens Oluf

    2013-01-01

    Different corrosion resistant stainless steels, nickel-based alloys, pure nickel, Ta-coated stainless steel (AISI 316L), niobium, platinum and gold rods were evaluated as possible materials for use in the intermediate temperature (200-400 °C) acidic water electrolysers. The corrosion resistance w...

  3. Deconstructing the Constructed Experience: Reforming Science Materials to Develop Creativity

    Science.gov (United States)

    Goodale, Timothy A.; Hughes, Claire E.

    2018-01-01

    For over 50 years, science educators have been calling for increased opportunities for students to engage with science in creative manners, but teachers are still reliant on packaged materials that promote single and 'correct' responses with cookbook approaches. This article suggests five strategies that teachers can use to enhance constructed…

  4. Space station system analysis study. Part 3: Documentation. Volume 2: Technical report. [structural design and construction

    Science.gov (United States)

    1977-01-01

    An analysis of construction operation is presented as well as power system sizing requirements. Mission hardware requirements are reviewed in detail. Space construction base and design configurations are also examined.

  5. Alternatives to Conventional Construction Materials on Landfills. A Guide; Alternativa konstruktionsmaterial paa deponier. Vaegledning

    Energy Technology Data Exchange (ETDEWEB)

    Rihm, Thomas; Rogbeck, Yvonne; Svedberg, Bo; Eriksson, Maria

    2009-03-15

    Before a landfill can be sited, an application for a permit from the authorities is required. Already in the application process the consequences concerning impact on human health and on the environment must be described, including descriptions of e.g. bottom liners and capping constructions. Since there is a long period of time between when the permit is given and when the capping will be carried out, it is common practice, either to postpone decisions concerning capping details, or to delegate the decisions to the supervisory authorities to be made at a later stage. All constructions must however be approved by the authorities before they can be carried out. A construction must fulfil the demands for its function. For the capping this means that the percolation through it must be low, even in a long time perspective. A construction may not in itself cause adverse environmental effects, e.g. leaching of hazardous substances from the construction material. Thus, there are functional as well as environmental demands. Beside the functional demands given in the Swedish legislation, notably in the ordinance on landfilling, the construction must be physically stable, also in a long time perspective. The materials in the construction must have sufficient strength, and may not change over time, e.g. due to degradation, which could lead to malfunction. Demands on environmental behaviour can be divided into two parts. Humans and animals must be kept from direct contact with dangerous substances including dermal contact, inhalation of dust or gases and oral intake of soil, plants or berries. Secondly, dangerous substances may not be spread with surface or ground water to an extent that could lead to adverse effects on human health or on the environment. The impact on the environment is not only depending of the materials being used, but also on the construction design, where in the landfill the construction is situated and, not least, how the landfill is located. It is

  6. Materials studies for magnetic fusion energy applications at low temperatures. VIII. Technical reports

    International Nuclear Information System (INIS)

    Reed, R.P.

    1985-05-01

    This report contains results of a research progam to produce material property data that will facilitte design and development of cryogenic structures for the superconducting magnets of magnetic fusion energy power plants and prototypes. Research results for 1984 are summarized in an initial ''Highlights of Results'' section and reported in detail in the technical papers that form the main body of this report. The technical papers are presented under four headings reflecting the main program areas: Welding, Nonmetallics, Structural Alloys, and Technology Transfer. Objectives, approaches, and achievements are summarized in an introduction to each program area

  7. Papers of 10. Scientific Technical Seminar on Materials Investigation for Power Industry

    International Nuclear Information System (INIS)

    2003-01-01

    The Report is an assembly of the papers concerning the material and diagnostic problems occurring in the exploitation of power station as well as gas pipelines and underground gas storage technical condition survey. Education and training in welding and non-destructive testing according european rules are also presented as well as provisions of European standards concerning welding consumables. Technical supervision in the light of Poland accession to the european union and quality management system in face of the new standards requirements is described. (author)

  8. Nuclear power plant diagnostics - Safety aspects and licensing. Report of a technical committee meeting. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    The aim of the Technical Committee Meeting (TCM) was to review developed systems and methods in diagnostics in the scope of their impacts and importance to the safety of Nuclear Power Plants. Papers presented on TCM came from different sources, from developers, from manufacturers, from licensing authorities and from NPP personal. They reflect up to date status in the given subject. Participants of TCM formulated three working groups to elaborate different questions which were raised during the discussions. Their results are reflected in the three chapter titles of the given material. Annex 1 to this document contains presentations made at the Technical Committee Meeting. Refs, figs, tabs

  9. Recent progress in supercapacitors: from materials design to system construction.

    Science.gov (United States)

    Wang, Yonggang; Xia, Yongyao

    2013-10-04

    Supercapacitors are currently attracting intensive attention because they can provide energy density by orders of magnitude higher than dielectric capacitors, greater power density, and longer cycling ability than batteries. The main challenge for supercapacitors is to develop them with high energy density that is close to that of a current rechargeable battery, while maintaining their inherent characteristics of high power and long cycling life. Consequently, much research has been devoted to enhance the performance of supercapacitors by either maximizing the specific capacitance and/or increasing the cell voltage. The latest advances in the exploration and development of new supercapacitor systems and related electrode materials are highlighted. Also, the prospects and challenges in practical application are analyzed, aiming to give deep insights into the material science and electrochemical fields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Automotive and Construction Equipment for Arctic Use, Materials Problems

    Science.gov (United States)

    1991-11-01

    followed. Nitrile rubber ( NBR ) is one of the most common materials used in seal manufacture. It is a copolymer of butadiene and acrylonitrile and is... rubber and other elastomers, and many plastics. This problem is exacerbated, especially in equipment with diesel engines, because the engines run...their original condition in a short time on removal of the stress. The group includes natural rubbers as well as synthetic polymers. Many of these

  11. Construction of irradiated material examination facility-basic design

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Kim, Eun Ka; Hong, Gye Won; Herr, Young Hoi; Hong, Kwon Pyo; Lee, Myeong Han; Baik, Sang Youl; Choo, Yong Sun; Baik, Seung Je

    1989-02-01

    The basic design of the hot cell facility which has the main purpose of doing mechanical and physical property tests of irradiated materials, the examination process, and the annexed facility has been made. Also basic and detall designs for the underground excavation work have been performed. The project management and tasks required for the license application have been carried out in due course. The facility is expected to be completed by the end of 1992, if the budgetary support is sufficient. (Author)

  12. Tritium interactions with steel and construction materials in fusion devices

    International Nuclear Information System (INIS)

    Dickson, R.S.

    1990-11-01

    The literature on the interactions of tritium and tritiated water with metals, glasses, ceramics, concrete, paints, polymers and other organic materials is reviewed in this report Some of the processes affecting the amount of tritium found on various materials, such as permeation, sorption and the conversion of tritium found on various materials, such as permeation, sorption and conversion of elemental tritium (T 2 ) to tritiated water (HTO), are also briefly outlined. Tritium permeation in steels is fairly well understood, but effects of surface preparation and coatings on sorption are not yet clear. Permeation of T 2 into other metals with cleaned surfaces has been studied thoroughly at high temperature, and the effect of surface oxidation has also been explored. The room-temperature permeation rates of low-permeability metals with cleaned surfaces are much faster than indicated by high-temperature results, because of grain-boundary diffusion. Elastomers have been studied to a certain extent, but some mechanisms of interaction with tritium gas and sorbed tritium are unclear. Ceramics have some of the lowest sorption and permeation rates, but ceramic coatings on stainless steels do not lower permeation or tritium as effectively as coatings obtained by oxidation of the steel, probably because of cracking caused by differences in thermal expansion coefficient. Studies on concrete are in their early stages; they show that sorption of tritiated water on concrete is a major concern in cleanup of releases of elemental tritium into air in tritium handling facilities. Some of the codes for modelling releases and sorption of T 2 and HTO contain unproven assumptions about sorption and T 2 → HTO conversion. Several experimental programs will be required in order to clear up ambiguities in previous work and to determine parameters for materials which have not yet been investigated. (146 refs., tab.)

  13. Hydrazine-mediated construction of nanocrystal self-assembly materials.

    Science.gov (United States)

    Zhou, Ding; Liu, Min; Lin, Min; Bu, Xinyuan; Luo, Xintao; Zhang, Hao; Yang, Bai

    2014-10-28

    Self-assembly is the basic feature of supramolecular chemistry, which permits to integrate and enhance the functionalities of nano-objects. However, the conversion of self-assembled structures to practical materials is still laborious. In this work, on the basis of studying one-pot synthesis, spontaneous assembly, and in situ polymerization of aqueous semiconductor nanocrystals (NCs), NC self-assembly materials are produced and applied to design high performance white light-emitting diode (WLED). In producing self-assembly materials, the additive hydrazine (N2H4) is curial, which acts as the promoter to achieve room-temperature synthesis of aqueous NCs by favoring a reaction-controlled growth, as the polyelectrolyte to weaken inter-NC electrostatic repulsion and therewith facilitate the one-dimensional self-assembly, and in particular as the bifunctional monomers to polymerize with mercapto carboxylic acid-modified NCs via in situ amidation reaction. This strategy is versatile for mercapto carboxylic acid-modified aqueous NCs, for example CdS, CdSe, CdTe, CdSe(x)Te(1-x), and Cd(y)Hg(1-y)Te. Because of the multisite modification with carboxyl, the NCs act as macromonomers, thus producing cross-linked self-assembly materials with excellent thermal, solvent, and photostability. The assembled NCs preserve strong luminescence and avoid unpredictable fluorescent resonance energy transfer, the main problem in design WLED from multiple NC components. These advantages allow the fabrication of NC-based WLED with high color rendering index (86), high luminous efficacy (41 lm/W), and controllable color temperature.

  14. Elaboration of construction materials from mineral residues, properties and perspectives

    International Nuclear Information System (INIS)

    Vite T, J.; Vite T, M.; Diaz C, A.

    2003-01-01

    The introduction in 1887 of the leaching process of metals, using the sodium cyanides revolutionized the techniques for the obtaining of gold and silver. Starting from then it is a method used in the entire world for the recovery of these and other metals. The mining activity generates the accustomed to residuals known popularly like 'jales' (voice derived nahuatl of the xalli that means sand). An important case, is it related with those 'jales' whose pyre content (FeS 2 ) it is high and wherefore they are subject to chemical reactions, caused by the intemperateness in 'jales'. Before this panorama, it is important to process the 'jales' to use them for the construction. (Author)

  15. Energy Materials Coordinating Committee (EMaCC): Annual technical report, fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. This report summarizes EMaCC activities for FY 1993 and describes the materials research programs of various offices and divisions within the Department. The program descriptions consist of a funding summary for each Assistant Secretary office and the Office of Energy Research, and detailed project summaries with project goals and accomplishments. The FY 1993 budget summary table for DOE Materials Activities in each of the programs is presented.

  16. Corrosion behaviour of construction materials for high temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2011-01-01

    temperature proton exchange membrane (PEM) steam electrolysers. Steady-state voltammetry was used in combination with scanning electron microscopy and energy-dispersive X-ray spectroscopy to evaluate the stability of the mentioned materials. It was found that stainless steels were the least resistant...... to corrosion under strong anodic polarisation. Among alloys, Ni-based showed the highest corrosion resistance in the simulated PEM electrolyser medium. In particular, Inconel 625 was the most promising among the tested corrosion-resistant alloys for the anodic compartment in high temperature steam electrolysis...

  17. Cyclodextrin-Modified inorganic materials for the construction of nanocarriers.

    Science.gov (United States)

    Cutrone, Giovanna; Casas-Solvas, Juan M; Vargas-Berenguel, Antonio

    2017-10-15

    Inorganic nanoparticles, such as gold, silver, quantum dots and magnetic nanoparticles, offer a promising way to develop multifunctional nanoparticles for biomedical applications. Such nanoparticles have the potential to combine in a single, stable construct various functionalities, simultaneously providing imaging abilities, thermal therapies and the ability to deliver drugs in a targeted fashion. An approach for providing drug loading abilities to these inorganic nanoparticles consists in the modification of their surface with a coating of cyclodextrins, and thereby endowing the nanoparticles with the potential of functioning as drug nanocarriers. This review presents the advances carried out in the preparation of cyclodextrin-contained gold, silver, quantum dot and magnetic nanoparticles as well as their applications as drug nanocarriers. The nanoparticle surface can be modified incorporating cyclodextrin moieties, (i) in situ during the synthesis of the nanoparticles, either using the cyclodextrin as reducing agent or as stabilizer; or (ii) in a post-synthetic stage. The cyclodextrin coating contributes to provide biocompatibility to the nanoparticles and to reduce their cytotoxicity. Cyclodextrin-modified nanoparticles display a multivalent presentation of quasi-hydrophobic cavities that enables, not only drug loading in a non-covalent manner, but also the non-covalent assembly of targeting motifs and optical probes. This paper also provides an overview of some of the reported applications including the in vitro studies and, to a lesser extent, in vivo studies on the drug-loaded nanoparticles behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Neutron diffraction measurement of residual stress in NPP construction materials

    International Nuclear Information System (INIS)

    Hinca, R.; Bokuchava, G.

    2000-01-01

    The aim of the investigation is to study the level of residual stresses induced by the surfacing in the weld deposit zone and in the base metal, where considerable thermal gradients are present. Surfacing high-nickel filler on an austenitic base metal is one of techniques in repair of primary collector the primary circuit of nuclear power plant type VVER. The repair technology was developed at Welding Research Institute Bratislava. Measurements of residual stresses in the weld overlay and the base metal are necessary for approving the mechanical analysis and verifying of residual stresses determination on welded material by numerical weld g computer simulation. Investigations of residual stresses are important for developing optimal welding techniques. (authors)

  19. Removal of corrosion products of construction materials in heat carrier

    International Nuclear Information System (INIS)

    1975-01-01

    A review of reported data has been made on the removal of structural material corrosion products into the heat-carrying agent of power reactors. The corrosion rate, and at the same time, removal of corrosion products into the heat-carrying agent (water) decreases with time. Thus, for example, the corrosion rate of carbon steel in boiling water at 250 deg C and O 2 concentration of 0.1 mg/1 after 3000 hr is 0.083 g/m 2 . day; after 9000 hr the corrosion rate has been reduced 2.5 times. Under static conditions the transfer rate of corrosion products into water has been smaller than in the stream and also depends on time. The corrosion rate of carbon steel under nuclear plant operating conditions is almost an order higher over that of steel Kh18N10T

  20. Energy materials coordinating committee (EMaCC). Annual technical report, fiscal year 2003

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-10-18

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. Topical subcommittees of the EMaCC are responsible for conducting seminars and otherwise facilitating information flow between DOE organizational units in materials areas of particular importance to the Department. The EMaCC Terms of Reference were recently modified and developed into a Charter that was approved on June 5, 2003. As a result of this reorganization, the existing subcommittees were disbanded and new subcommittees are being formed.

  1. Report on the FR Germany: US technical workshop on near-real-time material accounting for reprocessing plants

    International Nuclear Information System (INIS)

    Weh, R.; Hakkila, E.A.; Canty, M.J.

    1986-01-01

    A technical workshop on the subject of near-real-time material accounting in an industrial scale reprocessing plant was held. Organized within the context of the US DOE - FR German Ministry of Research and Technology (BMFT) agreement in the field of international safeguards, the workshop was initiated by the Deutsche Gesellschaft fur Wiederaufarbeitung von Kernbrennstoffen, responsible for the construction and operation of a planned industrial scale reprocessing plant in the FR Germany. The workshop's objective was to establish the current state of the art for near-real-time accounting and to bring out a common understanding and consensus among experts from both countries which seve as a basis for the definition of problems still to be solved. A summary of the workshop presentations, preliminary conclusions drawn by the experts attending as well as some implications for the application of dynamic balancing are given

  2. Brownfields Recover Your Resources - Reduce, Reuse, and Recycle Construction and Demolition Materials at Land Revitalization Projects

    Science.gov (United States)

    This document provides background information on how the sustainable reuse of brownfield properties includes efforts to reduce the environmental impact by reusing and recycling materials generated during building construction, demolition, or renovation.

  3. COMPATIBILITY OF NAPLS AND OTHER ORGANIC COMPOUNDS WITH MATERIALS UED IN WELL CONSTRUCTION, SAMPLING, AND REMEDIATION

    Science.gov (United States)

    Structural integrity of well construction, sampling, and remediation materials may be compromised at many hazardous sites by nonaqueous phase liquids (NAPLs) and their dissolved constituents. A literature review of compatibility theory and qualitative field experiences are provid...

  4. Construction Time of Three Wall Types Made of Locally Sourced Materials: A Comparative Study

    OpenAIRE

    Wojciech Drozd; Agnieszka Leśniak; Sebastian Zaworski

    2018-01-01

    Similarly to any other industry, the construction sector puts emphasis on innovativeness, unconventional thinking, and alternative ideas. At present, when sustainable development, ecology, and awareness of people’s impact on the environment grow in importance, low impact buildings can become an innovative alternative construction technology for the highly industrialized construction sector. The paper presents a comparative study of three walls made of available materials used locally, which c...

  5. Technical committee meeting on evaluation of radioactive materials release and sodium fires in fast reactors

    International Nuclear Information System (INIS)

    1996-01-01

    The objectives of the Technical Committee Meeting was to review the activities of research on radioactive materials release and sodium fires in fast reactors in each of the participating countries. It covered: out-of-pile experiments and analysis codes on source term; in-pile experiments on source term; core disruptive accidents; sodium leak experience in liquid metal fast reactors; evaluation of sodium fire; and aerosol behaviour

  6. Technical committee meeting on evaluation of radioactive materials release and sodium fires in fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The objectives of the Technical Committee Meeting was to review the activities of research on radioactive materials release and sodium fires in fast reactors in each of the participating countries. It covered: out-of-pile experiments and analysis codes on source term; in-pile experiments on source term; core disruptive accidents; sodium leak experience in liquid metal fast reactors; evaluation of sodium fire; and aerosol behaviour.

  7. Possibilities of Use of UAVS for Technical Inspection of Buildings and Constructions

    Science.gov (United States)

    Banaszek, Anna; Banaszek, Sebastian; Cellmer, Anna

    2017-12-01

    In recent years, Unmanned Aerial Vehicles (UAVs) have been used in various sectors of the economy. This is due to the development of new technologies for acquiring and processing geospatial data. The paper presents the results of experiments using UAV, equipped with a high resolution digital camera, for a visual assessment of the technical condition of the building roof and for the inventory of energy infrastructure and its surroundings. The usefulness of digital images obtained from the UAV deck is presented in concrete examples. The use of UAV offers new opportunities in the area of technical inspection due to the detail and accuracy of the data, low operating costs and fast data acquisition.

  8. Aspects of new material application for boilers construction; Aspekty wdrazania nowych materialow w budowie kotlow

    Energy Technology Data Exchange (ETDEWEB)

    Czerniawski, R. [RAFAKO S.A., Raciborz (Poland)

    1996-12-31

    Review of steel types commonly used for energetic boilers construction has been done. The worldwide trends in new materials application for improvement of boilers quality have been discussed. The mechanical properties of boiler construction steels have been shown and compared. 3 refs, 5 figs, 1 tab.

  9. Construction and commissioning of workrooms for handling of unsealed radioactive materials

    International Nuclear Information System (INIS)

    Weinhold, G.; Jost, E.; Koenig, W.

    1976-03-01

    The requirements prescribed for planning, design and construction of type II and III workrooms for handling of unsealed sources are outlined. The 'Guide Concerning Construction and Equipment of Rooms for Handling of Radioactive Materials' is explained and supplemented in part. Furthermore, problems of radiation protection organization and measuring techniques are discussed. (author)

  10. International comparison of economic and technical indexes of nuclear power plant construction

    International Nuclear Information System (INIS)

    Majer, P.; Fialova, H.

    1988-01-01

    The comparison of capital costs of the construction of nuclear power plants takes into consideration the following aspects: the delineation of the installation, the determination of costs and their break-down, the impact of the time factor, the conversion of the costs to a comparable unit. Power plants are always compared with roughly the same power capacity, this even when conditions for construction are not fully comparable. Construction costs may be divided into, e.g., pre-construction costs, direct capital costs, indirect capital costs, interest during construction. The time factor is manifest in the duration of construction and in the concrete year of construction for which the comparison is being made. The inflationary rise in prices and interests are increasing capital costs by roughly 5 - 8% per annum. The comparison of costs expressed in different currencies is made either by conversion using the rate of exchange or by comparing the time expended for the construction of the power plant. Various methods of comparison are discussed. (J.B.). 7 refs

  11. A platform for communicating construction material information between e-commerce systems

    Institute of Scientific and Technical Information of China (English)

    Stephen C W Kong; LI Heng; SHEN Qi-ping

    2004-01-01

    E-commerce systems for construction material procurement are becoming increasingly important in Hong Kong. These E-commerce systems are non-interoperable and create problems for the buyers who use these systems to purchase construction materials. This paper presents the mobile agent-based approach and Web serv-ices-based approach for enabling interoperation of these systems in the E-Union environment.

  12. Challenges of UK/Irish Contractors regarding Material Management and Logistics in Confined Site Construction

    OpenAIRE

    Spillane, John P; Oyedele, Lukumon O; Von Meding, Jason; Konanahalli, Ashwini; Jaiyeoba, Babatunde E; Tijani, Iyabo K

    2011-01-01

    The aim of this paper is to identify the various managerial issues encountered by UK/Irish contractors in the management of materials in confined urban construction sites. Through extensive literature review, detailed interviews, case studies, cognitive mapping, causal loop diagrams, questionnaire survey and documenting severity indices, a comprehensive insight into the materials management concerns within a confined construction site environment is envisaged and portrayed. The leading issues...

  13. Theorycrafting the Classroom: Constructing the Introductory Technical Communication Course as a Game

    Science.gov (United States)

    Finseth, Carly

    2015-01-01

    When games are approached as a pedagogical methodology, the homologies between games and technical communication are highlighted: pedagogy that teaches people to play and succeed within certain confines; classroom assessment that provides meaningful feedback to encourage self-improvement; instructional design that incorporates gaming theory and…

  14. Technical criteria for terminating or reducing domestic safeguards on low-grade special nuclear material

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1996-01-01

    A graded table for terminating or reducing domestic safeguards has been developed for use by programs and facilities within the Department of Energy in decisions regarding the need for or levels of protection of low-grade nuclear materials. Contained in this table are technical criteria which can allow for complete removal of safeguards over many special nuclear material forms and concentrations of typical low-grade materials either currently located at generating or processing sites and materials which may arise from processing operations related to stabilization and disposition activities. In addition, these criteria include higher concentration levels which may warrant maintaining some level of (albeit reduced) security on low-grade materials while allowing reductions in materials control and accountability requirements. These reductions can range from complete removal of these materials from materials control and accountability requirements such as measurements, physical inventories and recordkeeping, to deferring these measurements and physical inventories until a time that either the material is removed from the site or resubmitted for processing. It is important to note that other conditions contained in current Departmental safeguards and security policy be met prior to safeguards termination or reduction

  15. Improvement of technical purpose materials performance characteristics with the radio frequency low pressure plasma

    Science.gov (United States)

    Makhotkina, L. Yu; Khristoliubova, V. I.

    2017-11-01

    The main aim of the work is to solve the actual problem of increasing the competitiveness of tanning products by reducing the prime cost and improving the quality of finished products due to the increased durability of the working elements of tanneries. The impact of the low pressure radio frequency (RF) plasma in the processes of treating for modification of the materials for special purposes is considered in the article. The results of working elements of tanneries and the materials for special purposes sample processing by a RF low pressure plasma are described. As a result of leather materials nano structuring and nano modifying physical, mechanical and hygienic characteristics were increased. Processing of the technical purpose materials allows to increase operational performance of products and extend their lifespan.

  16. Conceptualising Digital Materiality and its Socio-Technical Implications through the Phenomenon of Crowdsourcing

    Directory of Open Access Journals (Sweden)

    Patricia Morizio

    2014-10-01

    Full Text Available Digital materiality is a relatively new concept in the information systems literature that attempts to give “substance” to, or explain the material properties of, digital artefacts. These artefacts, such as software programs, are challenging our traditional assumptions of what is “materiality”. Crowdsourcing or the aggregation of publicly-reported data for a variety of purposes – from tracking instances of violence within a geographic area, to coordinating information for aid agencies working in humanitarian emergency situations – is an example technology that transcends the line of a purely physical or digital object. This paper will briefly touch on the definition of digital materiality within IS thought, followed by a discussion of how crowdsourcing fits into its conceptualisation, namely in terms of its characteristics and organisational consequences. The purpose is to instantiate the more theoretical notion of digital materiality through a tangible technology with far-reaching socio-technical implications.

  17. Disposal of spent fuel in Olkiluoto bedrock. Programme for research, development and technical design for the pre-construction phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    The spent fuel from the nuclear power plants at Olkiluoto and Loviisa will be disposed of in Finnish bedrock. Posiva aims at starting the construction of the disposal facility in the 2010's and the actual disposal operations in 2020. In May 1999 Posiva submitted an application for the so-called Decision-in-Principle (DiP) on the facility to the Finnish Government. According to the application the repository would be based on a KBS-3 type concept and sited at Olkiluoto. The application was approved by the Government in December 2000 and will go next to the Parliament for final approval. However, Posiva has already started the planning for the next programme phase on the assumption that a positive decision will be made. The purpose of the present document is to describe the objectives and major items of research, development, technical planning and design work for the period preceding the construction license. According to the current official guidelines Posiva should prepare for submitting the application for the license in 2010. For the technical development and design work the main target for the starting programme phase is to reach the maturity of design and technical plans that allows the specification of work packages for bid calls and gives sufficient confidence in the technical feasibility of planned operations at the encapsulation facility and in the repository. The main objectives for the complementary characterisation work at Olkiluoto consist of the verification of the present conclusions on site suitability, the definition and identification of suitable rock volumes for repository space and the characterisation of the target host rock for repository design, safety assessment and planning of construction work. The technical design and demonstration work together with the results of complementary site characterisation will provide the basis of the safety case prepared as the support for the construction license application. An integrated safety

  18. Disposal of spent fuel in Olkiluoto bedrock. Programme for research, development and technical design for the pre-construction phase

    International Nuclear Information System (INIS)

    2000-12-01

    The spent fuel from the nuclear power plants at Olkiluoto and Loviisa will be disposed of in Finnish bedrock. Posiva aims at starting the construction of the disposal facility in the 2010's and the actual disposal operations in 2020. In May 1999 Posiva submitted an application for the so-called Decision-in-Principle (DiP) on the facility to the Finnish Government. According to the application the repository would be based on a KBS-3 type concept and sited at Olkiluoto. The application was approved by the Government in December 2000 and will go next to the Parliament for final approval. However, Posiva has already started the planning for the next programme phase on the assumption that a positive decision will be made. The purpose of the present document is to describe the objectives and major items of research, development, technical planning and design work for the period preceding the construction license. According to the current official guidelines Posiva should prepare for submitting the application for the license in 2010. For the technical development and design work the main target for the starting programme phase is to reach the maturity of design and technical plans that allows the specification of work packages for bid calls and gives sufficient confidence in the technical feasibility of planned operations at the encapsulation facility and in the repository. The main objectives for the complementary characterisation work at Olkiluoto consist of the verification of the present conclusions on site suitability, the definition and identification of suitable rock volumes for repository space and the characterisation of the target host rock for repository design, safety assessment and planning of construction work. The technical design and demonstration work together with the results of complementary site characterisation will provide the basis of the safety case prepared as the support for the construction license application. An integrated safety assessment

  19. Quality control of three main materials for civil construction of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Feng

    2011-01-01

    The construction and operation of nuclear power plant is a systematic engineering. To ensure quality and safety of nuclear power plants, each work from design to operation can have certain impact on the quality and safety of the project. The quality of each related work shall be controlled. Starting from the quality control over raw materials for the civil construction of nuclear power plant, this article mainly analyzes how to control the quality and manage the three main materials of steel, concrete and modular parts in the civil construction. (author)

  20. Estimating construction and demolition debris generation using a materials flow analysis approach.

    Science.gov (United States)

    Cochran, K M; Townsend, T G

    2010-11-01

    The magnitude and composition of a region's construction and demolition (C&D) debris should be understood when developing rules, policies and strategies for managing this segment of the solid waste stream. In the US, several national estimates have been conducted using a weight-per-construction-area approximation; national estimates using alternative procedures such as those used for other segments of the solid waste stream have not been reported for C&D debris. This paper presents an evaluation of a materials flow analysis (MFA) approach for estimating C&D debris generation and composition for a large region (the US). The consumption of construction materials in the US and typical waste factors used for construction materials purchasing were used to estimate the mass of solid waste generated as a result of construction activities. Debris from demolition activities was predicted from various historical construction materials consumption data and estimates of average service lives of the materials. The MFA approach estimated that approximately 610-78 × 10(6)Mg of C&D debris was generated in 2002. This predicted mass exceeds previous estimates using other C&D debris predictive methodologies and reflects the large waste stream that exists. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Case Study: LCA Methodology Applied to Materials Management in a Brazilian Residential Construction Site

    Directory of Open Access Journals (Sweden)

    João de Lassio

    2016-01-01

    Full Text Available The construction industry is increasingly concerned with improving the social, economic, and environmental indicators of sustainability. More than ever, the growing demand for construction materials reflects increased consumption of raw materials and energy, particularly during the phases of extraction, processing, and transportation of materials. This work aims to help decision-makers and to promote life cycle thinking in the construction industry. For this purpose, the life cycle assessment (LCA methodology was chosen to analyze the environmental impacts of building materials used in the construction of a residence project in São Gonçalo, Rio de Janeiro, Brazil. The LCA methodology, based on ISO 14040 and ISO 14044 guidelines, is applied with available databases and the SimaPro program. As a result, this work shows that there is a substantial waste of nonrenewable energy, increasing global warming and harm to human health in this type of construction. This study also points out that, for this type of Brazilian construction, ceramic materials account for a high percentage of the mass of a total building and are thus responsible for the majority of environmental impacts.

  2. Construction of a test embankment using a sand-tire shred mixture as fill material.

    Science.gov (United States)

    Yoon, Sungmin; Prezzi, Monica; Siddiki, Nayyar Zia; Kim, Bumjoo

    2006-01-01

    Use of tire shreds in construction projects, such as highway embankments, is becoming an accepted way of beneficially recycling scrap tires. However, in the last decade there was a decline in the use of pure tire shreds as fill materials in embankment construction, as they are susceptible to fire hazards due to the development of exothermic reactions. Tire shred-sand mixtures, on the other hand, were found to be effective in inhibiting exothermic reactions. When compared with pure tire shreds, tire shred-sand mixtures are less compressible and have higher shear strength. However, the literature contains limited information on the use of tire shred-soil mixtures as a fill material. The objectives of this paper are to discuss and evaluate the feasibility of using tire shred-sand mixtures as a fill material in embankment construction. A test embankment constructed using a 50/50 mixture, by volume, of tire shreds and sand was instrumented and monitored to: (a) determine total and differential settlements; (b) evaluate the environmental impact of the embankment construction on the groundwater quality due to leaching of fill material; and (c) study the temperature variation inside the embankment. The findings in this research indicate that mixtures of tire shreds and sand are viable materials for embankment construction.

  3. Evaluation on construction quality of pit filler material of cavern type radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Takechi, Shin-ichi; Yokozeki, Kosuke; Shimbo, Hiroshi; Terada, Kenji; Akiyama, Yoshihiro; Yada, Tsutomu; Tsuji, Yukikazu

    2014-01-01

    The pit filler material of the underground cavern-type radioactive waste disposal facility, which is poured directly around the radioactive waste packages where high temperature environment is assumed by their decay heat, is concerned to be adversely affected on the filling behavior and its hardened properties. There also are specific issues that required quality of construction must be achieved by unmanned construction with remote operation, because the pit filler construction shall be done under radiation environment. In this paper, the mix proportion of filler material is deliberated with filling experiments simulating high temperature environment, and also the effect of temperature on hardened properties are confirmed with high temperature curing test. Subsequently, the feasibility of unmanned construction method of filler material by pumping, and by movable bucket, are comparatively discussed through a real size demonstration. (author)

  4. Prepackaged polymer - modified mortar proves effective construction material - field and laboratory observations

    International Nuclear Information System (INIS)

    Afridi, M.U.K.; Khan, A.A.; Rizwan, S.A.; Khaskhali, G.B.

    2005-01-01

    Hi-Bond - prepackaged polymer - modified mortar described in this paper is a revolutionary, multifunctional, high-tech, high performance, sustainable, durability improving group of construction materials with a high cost - benefit ratio. Hi-Bond has been developed by Dadabhoy Construction Technologies (Pvt) Ltd., (DCTL), Karachi, after extensive studies and research both locally and abroad. It can be used in floorings and pavings, integral waterproofing, adhesive applications, protective and decorative coatings, repairs, renovation, rehabilitation, anti corrosive linings, deck coverings, durability and efficiency improvement of canal linings and other hydraulic structures. Hi-Bond has been applied in various projects of national importance with great success for their repairs, renovation and rehabilitation and has also been tested and evaluated at various laboratories with highly encouraging results. Some examples include: (i) earthquake damaged bridge at Lora Nallah on Brewery Road, Quetta, (ii) fire damaged building of the daily Business Recorder House, Karachi, (iii) 200 - year old main dome of the tomb of Hazrat Shah Abdul Latif Bhitai, Bhitshah, Hyderabad, (iv) RCC shell roofs of Mehtab Biscuit and Wafers Factory, Sahiwal, (v) repair of newly built concrete floor on structural slab in a factory building at Karachi, (vi) Mohatta Palace, Clifton, Karachi, (vii) swimming pool at Okara Cantt, and (viii) numerous leaking basements, underground and overhead water reservoirs at and around Karachi including those of new vegetable market on super highway. Building Research Station, Government of the Punjab, Lahore also recommended the use of Hi-Bond in the applications mentioned above after testing and evaluation. The product was found easy in application and offered numerous technical and economical advantages, over conventional products, in variety of applications. It is important to note that shortly after the repairs and renovation of the building of the daily

  5. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Liquid metal reactor concept: core design and structural materials” was to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials. Main results arising from national and international R&D programmes and projects in the field were reviewed, and new activities to be carried out under the IAEA aegis were identified on the basis of the analysis of current research and technology gaps

  6. WET-WEATHER POLLUTION PREVENTION THROUGH MATERIALS SUBSTITUTION AS PART OF INDUSTRIAL CONSTRUCTION

    Science.gov (United States)

    A literature review of urban stormwater runoff and building/construction materials has shown that many materials such as galvanized metal, concrete, asphalt, and wood products, have the potential to release pollutants into urban stormwater runoff and snowmelt. However, much of th...

  7. International cooperation in combating illicit trafficking of nuclear materials by technical means

    International Nuclear Information System (INIS)

    Herbillon, J; Koch, L; Mason, G; Niemeyer, S; Nikiforov, N

    1999-01-01

    A consensus has been emerging during the past several years that illicit trafficking of nuclear materials is a problem that needs a more focused international response. One possible component of a program to combat illicit trafficking is nuclear forensics whereby intercepted nuclear materials are analyzed to provide clues for answering attribution questions. In this report we focus on international cooperation that is specifically addressing the development of nuclear forensics. First we will describe the role of the Nuclear Smuggling International Technical Working Group (ITWG) in developing nuclear forensics, and then we will present some specific examples of cooperative work by the Institute for Transuranium Elements of the European Commission with various European states. Recognizing the potential importance of a nuclear forensics capability, the P-8 countries in 1995 encouraged technical experts to evaluate the role of nuclear forensics in combating nuclear smuggling and possibly developing mechanisms for international cooperation. As a result, an International Conference on Nuclear Smuggling Forensic Analysis was held in November, 1995, at Lawrence Livermore National Laboratory to investigate technical cooperation on nuclear forensics. The International Conference provided a unique mix of scientists, law enforcement, and intelligence experts from 14 countries and organizations. All participants were invited to make presentations, and the format of the Conference was designed to encourage open discussion and broad participation

  8. The possibility of using materials based on secondary gravel in civil construction

    Directory of Open Access Journals (Sweden)

    Galitskova Yulia

    2017-01-01

    Full Text Available By now, the wear and tear of housing stock is more than 50%. Each year the number of old and dilapidated housing is growing, but it is gradually replaced by modern buildings. However, wastes accumulated from dismantling of buildings and constructions, are underutilized and, usually are just stored at landfills, or used for temporary roads construction. The purpose of this research is to define construction wastes characteristics and to explore possibilities for recycling of wastes from construction materials production. The paper also analyzes housing stock condition and basic requirements to building materials used in construction; and demonstrates results building materials based on secondary gravel investigation. While working with materials based on waste requirements the authors conducted laboratory research. Thus, the paper presents the analysis of laboratory tests results that made it possible to draw conclusions about the possible use of building materials based on secondary gravel and about their conformity to specified requirements. The researchers also developed proposals and recommendations to improve the competitiveness of such materials.

  9. Development of apparatus and procedures for evaluating radon-resistant construction materials

    International Nuclear Information System (INIS)

    Pugh, T.D.; Greenfield, M.B.; MacKenzie, J.; Meijer, R.J. de

    1992-01-01

    Laboratory facilities and apparatus have been constructed to measure radon exhalation from, and radon permeability through, various construction materials. This phase of the project has focused on development of test apparatus and evaluation of instrumentation. Results indicate significant spatial variability in the radon permeability of polyethylene, even when all test samples were selected from the same roll of material, and when no visible differentiation could be made regarding sample quality. Implications for code enforcement are described, and recommendations are offered for refinement of equipment and the measurement process, prioritization of future materials testing, and specific building code provisions, based on our results

  10. ECONOMIC AND LEGAL ASPECTS OF MANAGEMENT OF WASTES AND SECONDARY MATERIAL RESOURCES (ON THE EXAMPLE OF CONSTRUCTION COMPLEX

    Directory of Open Access Journals (Sweden)

    Tskhovrebov Eduard Stanislavovich

    2018-05-01

    Full Text Available Subject: technical and economic processes and aspects of handling wastes and secondary material resources; stages of transition of anthropogenic object of environment to wastes and secondary material resources; technical possibility and economic feasibility of using secondary material resources as a secondary raw material for making products, providing energy, works, services. The problem of economy and rational use of material and power resources is relevant and significant within the limits of maintenance of a strategic course of Russia on innovative sustainable development. In this article, issues of actualization and harmonization of the regulatory and legal base in the field of management of wastes and secondary material resources are considered from the viewpoint of maintenance of minimization of waste formation and maximum use of secondary material resources in an industrial-economic cycle, provision of economic incentives for innovative activity in the given field. The actual multi-plan problem, chosen here as a topic of research, concerns regulations in management of wastes and secondary material resources in construction complex, in which economic, civil-law, ecological, social, industrial and legal relations are closely coordinated and define a subject of the present research. Production and consumption waste is a dangerous anthropogenic object of the environment but at the same time, it is a valuable secondary material resource. The non-use of wastes to be recycled as secondary raw materials for energy generation, production and, as a result, their increasing accumulation in the environment causes irreparable harm to natural objects and human health due to their dangerous properties. Research objectives: scientific and methodological substantiation of legal regulation, economic basis for formation of wastes and secondary material resources management system (on the example of construction complex and building materials industry

  11. 48 CFR 52.225-12 - Notice of Buy American Act Requirement-Construction Materials Under Trade Agreements.

    Science.gov (United States)

    2010-10-01

    ... Requirement-Construction Materials Under Trade Agreements. 52.225-12 Section 52.225-12 Federal Acquisition...—Construction Materials Under Trade Agreements. As prescribed in 25.1102(d)(1), insert the following provision: Notice of Buy American Act Requirement—Construction Materials Under Trade Agreements (FEB 2009) (a...

  12. Technical critique on radiation test facilities for the CTR surface and materials program

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1975-02-01

    Major radiation test facilities will be necessary in the near-term (5 years) and long-term (greater than 10 years) future for the timely development and understanding of fusion confinement systems and of prototype fusion power reactors. The study includes the technical justifications and requirements for CTR Neutron and Plasma Radiation Test Facilities. The initial technical critique covers the feasibility and design problems: in upgrading the performance of the accelerator-rotating (solid TiT) target systems, and in transforming the accelerator-supersonic jet target concept into a radiation testing facility. A scoping assessment on the potential of a pulsed high-beta plasma device (dense plasma focus) is introduced to explore plasma concepts as near-term neutron and plasma radiation sources for the CTR Surface and Materials Program. (U.S.)

  13. Waste-efficient materials procurement for construction projects: A structural equation modelling of critical success factors.

    Science.gov (United States)

    Ajayi, Saheed O; Oyedele, Lukumon O

    2018-05-01

    Albeit the understanding that construction waste is caused by activities ranging from all stages of project delivery process, research efforts have been concentrated on design and construction stages, while the possibility of reducing waste through materials procurement process is widely neglected. This study aims at exploring and confirming strategies for achieving waste-efficient materials procurement in construction activities. The study employs sequential exploratory mixed method approach as its methodological framework, using focus group discussion, statistical analysis and structural equation modelling. The study suggests that for materials procurement to enhance waste minimisation in construction projects, the procurement process would be characterised by four features. These include suppliers' commitment to low waste measures, low waste purchase management, effective materials delivery management and waste-efficient Bill of Quantity, all of which have significant impacts on waste minimisation. This implies that commitment of materials suppliers to such measures as take back scheme and flexibility in supplying small materials quantity, among others, are expected of materials procurement. While low waste purchase management stipulates the need for such measures as reduced packaging and consideration of pre-assembled/pre-cut materials, efficient delivery management entails effective delivery and storage system as well as adequate protection of materials during the delivery process, among others. Waste-efficient specification and bill of quantity, on the other hand, requires accurate materials take-off and ordering of materials based on accurately prepared design documents and bill of quantity. Findings of this study could assist in understanding a set of measures that should be taken during materials procurement process, thereby corroborating waste management practices at other stages of project delivery process. Copyright © 2018. Published by Elsevier Ltd.

  14. Introduction to the special issue on the technical status of materials for a fusion reactor

    Science.gov (United States)

    Stork, D.; Zinkle, S. J.

    2017-09-01

    Materials determine in a fundamental way the performance and environmental attractiveness of a fusion reactor: through the size (power fluxes to the divertor, neutron fluxes to the first wall); economics (replacement lifetime of critical in-vessel components, thermodynamic efficiency through operating temperature etc); plasma performance (erosion by plasma fluxes to the divertor surfaces); robustness against off-normal accidents (safety); and the effects of post-operation radioactivity on waste disposal and maintenance. The major philosophies and methodologies used to formulate programmes for the development of fusion materials are outlined, as the basis for other articles in this special issue, which deal with the fundamental understanding of the issues regarding these materials and their technical status and prospects for development.

  15. Conceptual framework and technical basis for clearance of materials with residual radioactivity

    International Nuclear Information System (INIS)

    Chen, S.Y.

    1997-01-01

    The primary impediment to the release of materials containing residual radioactivity from a controlled environment is the lack of a suitable framework within which release standards can be developed. Recently, the 'risk-based' approach has been proposed as an appropriate means of setting standards. The term 'clearance' has been introduced by the International Atomic Energy Commission as a regulatory process for releasing radioactive materials posing trivial risks. A 'trivial' risk level has been determined to be on the order of 10[sup -6] to 10[sup -7] annual risk to an exposed individual, and a population risk of no more than 0.1 annually. Under these strict constraints, exposure scenarios may account for processing, disposal, and product end-use of materials. This paper discusses these scenarios and also describes the technical basis for deriving release levels under the suggested risk (or dose) constraints

  16. The technical feasibility of uranium enrichment for nuclear bomb construction at the parallel nuclear program plant

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1990-01-01

    It is discussed the hole of the Parallel Nuclear Program is Brazil and the feasibility of uranium enrichment for nuclear bomb construction. This program involves two research centers, one belonging to the brazilian navy and another to the aeronautics. Some other brazilian institutes like CTA, IPEN, COPESP and CETEX and also taking part in the program. (A.C.A.S.)

  17. Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X

    NARCIS (Netherlands)

    Bosch, H. S.; R C Wolf,; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Brauer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodie, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; Konig, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kuhner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stabler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, C.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K. P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupinski, L.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; von Eeten, P.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Funfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; Regana, J. M. G.; Geiger, J.; Geissler, S.; Greuner, H.; Grahl, M.; Gross, S.; Grosman, A.; Grote, H.; Grulke, O.; R. Jaspers,; Szabo, V.

    2013-01-01

    The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate

  18. The atmospheric corrosion, important technical and economic factor in the construction of nuclear power plants

    International Nuclear Information System (INIS)

    Rodriguez, R.; Diaz, J.; Gomez, J.; Rodriguez, J.

    1995-01-01

    In order to determine the atmospheric effects of the construction of the Juragua NPP some experiments were performed in the reactor site. Samples of carbon steel were placed in experimental stations and the consequent oxidation was measured. The results show that the region's atmosphere aggressiveness may be classified from low to median. 11 refs

  19. Technical report on the design, construction, commissioning and operation of the super-FRS of FAIR

    International Nuclear Information System (INIS)

    Geissel, H.; Winkler, M.; Weick, H.

    2005-04-01

    In this report the construction of the super-FRS is described. Especially described are the ion-optical lay-out, the production targets, the magnets, the beam dumps, the degrader systems and the ion catcher, detectors and data-acquisition systems, as well as the safety aspects. (HSI)

  20. Characterization and testing of materials for nuclear reactors. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2007-03-01

    Nuclear techniques in general and neutrons based methods in particular have played and will continue to play an important role in research in materials science and technology. Today the world is looking at nuclear fission and nuclear fusion as the main sources of energy supply for the future. Research reactors have played a key role in the development of nuclear technology. A materials development programme will thus play a major role in the design and development of new nuclear power plants, for the extension of the life of operating reactors as well as for fusion reactors. Against this background, the IAEA had organized a Technical Meeting on Development, Characterization and Testing of Materials - With Special Reference to the Energy Sector under the activity on specific applications of research reactors. The meeting was held in Vienna, May 29- June 2, 2006. There was also participation by experts in techniques, complementary to neutrons. The participants for the technical meeting were experts in the utilization of nuclear techniques namely the high flux and medium flux research reactors, fusion research and positron annihilation. They presented the design, development and utilization of the facilities at their respective centres for materials characterization with main focus on materials for nuclear energy, both fission and fusion. In core irradiation of materials, development of instrument for residual stress measurement in large and / or irradiated specimen, neutron radiography for inspection of irradiated fuel, work on oxide dispersion strengthened (ODS) steels and SiC composites, relevant to future power systems were cited as application of nuclear techniques in fission reactors. The use of neutron scattering for helium bubbles in steel, application of positron annihilation to study helium bubbles in Cu, Ti-stabilized stainless steel and voidswelling studies etc. show that these techniques have an important role in the development of materials for energy

  1. Fabrication of Porous Ceramic-Geopolymer Based Material to Improve Water Absorption and Retention in Construction Materials: A Review

    Science.gov (United States)

    Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.

    2017-06-01

    Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.

  2. Possible checking of technical parameters in nondestructive materials and products testing

    International Nuclear Information System (INIS)

    Kesl, J.

    1987-01-01

    The requirements are summed up for partial technical parameters of instruments and facilities for nondestructive testing by ultrasound, radiography, by magnetic, capillary and electric induction methods. The requirements and procedures for testing instrument performance are presented for the individual methods as listed in domestic and foreign standards, specifications and promotional literature. The parameters to be tested and the methods of testing, including the testing and calibration instruments are shown in tables. The Czechoslovak standards are listed currently valid for nondestructive materials testing. (M.D.)

  3. IAEA technical meeting on fissile material strategies for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Ganguly, Chaitanyamoy; Koyama, Kazutoshi

    2005-01-01

    A Technical Meeting (TM) on 'Fissile Material Management Strategies for Sustainable Nuclear Energy' was organized by the International Atomic Energy Agency (IAEA) in Vienna from 12 to 15 September 2005. Prior to the TM, three Working Groups (WG) composed of experts from 10 countries prepared Key Issues papers on: 1) Uranium Demand and Supply through 2050; 2) Back-end Fuel Cycle Options; and 3) Sustainable Nuclear Energy beyond 2050: Cross-cutting Issues. Some 36 papers, including 3 key issue papers, were presented during the TM in 3 different sessions. The present paper summarizes the deliberations of the TM. (author)

  4. INCREASING THE EFFICIENCY OF ENTERPRISES' MATERIAL AND TECHNICAL EQUIPMENT (in Russian

    Directory of Open Access Journals (Sweden)

    Victor NORDIN

    2014-07-01

    Full Text Available The article pointed out the desirability of use of the “process approach” to material and technical equipment of enterprise, which will link its processes and develop an effective management system. It is proposed a form of table (matrix to enter data into an electronic database. In addition, it is proposed to create a unified management system and a set of information about procurement activities with the efficiency assessment of the resource purchasing processes and their quality through comprehensive quality indicators.

  5. Challenges of UK/Irish Contractors regarding Material Management and Logistics in Confined Site Construction

    Directory of Open Access Journals (Sweden)

    Spillane, John P

    2011-12-01

    Full Text Available The aim of this paper is to identify the various managerial issues encountered by UK/Irish contractors in the management of materials in confined urban construction sites. Through extensive literature review, detailed interviews, case studies, cognitive mapping, causal loop diagrams, questionnaire survey and documenting severity indices, a comprehensive insight into the materials management concerns within a confined construction site environment is envisaged and portrayed. The leading issues highlighted are: that contractors’ material spatial requirements exceed available space, it is difficult to coordinate the storage of materials in line with the programme, location of the site entrance makes delivery of materials particularly difficult, it is difficult to store materials on-site due to the lack of space, and difficult to coordinate the storage requirements of the various sub-contractors. With the continued development of confined urban centres and the increasing high cost of materials, any marginal savings made on-site would translate into significant monetary savings at project completion. Such savings would give developers a distinct competitive advantage in this challenging economic climate. As on-site management professionals successfully identify, acknowledge and counteract the numerous issues illustrated, the successful management of materials on a confined urban construction site becomes attainable.

  6. Fluidized bed combustion bottom ash: A better and alternative geo-material resource for construction.

    Science.gov (United States)

    Mandal, A K; Paramkusam, Bala Ramudu; Sinha, O P

    2018-04-01

    Though the majority of research on fly ash has proved its worth as a construction material, the utility of bottom ash is yet questionable due to its generation during the pulverized combustion process. The bottom ash produced during the fluidized bed combustion (FBC) process is attracting more attention due to the novelty of coal combustion technology. But, to establish its suitability as construction material, it is necessary to characterize it thoroughly with respect to the geotechnical as well as mineralogical points of view. For fulfilling these objectives, the present study mainly aims at characterizing the FBC bottom ash and its comparison with pulverized coal combustion (PCC) bottom ash, collected from the same origin of coal. Suitability of FBC bottom ash as a dike filter material in contrast to PCC bottom ash in replacing traditional filter material such as sand was also studied. The suitability criteria for utilization of both bottom ash and river sand as filter material on pond ash as a base material were evaluated, and both river sand and FBC bottom ash were found to be satisfactory. The study shows that FBC bottom ash is a better geo-material than PCC bottom ash, and it could be highly recommended as an alternative suitable filter material for constructing ash dikes in place of conventional sand.

  7. Characterizing material properties of cement-stabilized rammed earth to construct sustainable insulated walls

    Directory of Open Access Journals (Sweden)

    Rishi Gupta

    2014-01-01

    Full Text Available Use of local materials can reduce the hauling of construction materials over long distances, thus reducing the greenhouse gas emissions associated with transporting such materials. Use of locally available soils (earth for construction of walls has been used in many parts of the world. Owing to the thermal mass of these walls and the potential to have insulation embedded in the wall section has brought this construction material/technology at the forefront in recent years. However, the mechanical properties of the rammed earth and the parameters required for design of steel reinforced walls are not fully understood. In this paper, the author presents a case study where full-scale walls were constructed using rammed earth to understand the effect of two different types of shear detailing on the structural performance of the walls. The mechanical properties of the material essential for design such as compressive strength of the material including effect of coring on the strength, pull out strength of different rebar diameters, flexural performance and out-of-plane bending on walls was studied. These results are presented in this case study.

  8. Neutron reflectometry: A probe for materials surfaces. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2006-01-01

    Research reactors play an important role in delivering the benefits of nuclear science and technology. The IAEA, through its project on the effective utilization of research reactors, has been providing technical support to Member States and promotes activities related to specific applications. Neutron beam research is one of the main components in materials science studies. Neutron reflectometry is extremely useful for characterizing thin films and layered structures, polymers, oxide coatings on metals and biological membranes. The neutron has been a major probe for investigating magnetic materials. Development of magnetic multilayers is important for diverse applications in sensors, memory devices, etc. The special nature of the interaction of the neutron with matter makes it an important tool to locate low z elements in the presence of high z elements, which is useful in biology and polymer science. The role of neutron reflectometry in research and development in materials science and technology was discussed in a consultants meeting held in 2003. Following this, a technical meeting was organized from 16 to 20 August 2004 in Vienna to discuss the current status of neutron reflectometry, including the instrumentation, data acquisition, data analysis and applications. Experts in the field of neutron reflectometry presented their contributions, after which there was a brainstorming session on various aspects of the technique and its applications. This publication is the outcome of deliberations during the meeting and the presentations by the participants. This publication will be of use to scientists planning to develop a neutron reflectometer at research reactors. It will also help disseminate knowledge and information to material scientists, biologists and chemists working towards characterizing and developing new materials

  9. Technical basis for exemption from alpha surveys for personnel, material, and equipment in the 324 facility

    International Nuclear Information System (INIS)

    RIDDELLE, J.G.

    1998-01-01

    The purpose of this document is to establish the technical basis for characterizing grouted B-Cell waste for disposal at the Hanford Burial Grounds using the 3-82B shipping cask. The scope of this document includes establishing the technical basis for loading the shipping package, an HN-200 Grout Container, to ensure that: (1) the amount of material in the grout container does not exceed the 100 nCl alpha/g limit that would cause the waste to be designated as ''greater that Category 3'' (GC3) or transuranic (TRU) waste (2) the amount of heat generated by the waste in the grout container does not exceed the 60 Watt heat generation limit established in the 3-82B shipping cask Safety Analysis Report (SAR); and (3) the dose rate on the surface of the shipping cask after loading does not exceed the 200 mrem/h limit established in the cask SAR. This document establishes the technical basis for performing measurements and analyses that will ensure that none of these three limits are exceeded

  10. Waste glass as eco-friendly replacement material in construction products

    Science.gov (United States)

    Sharma, Gayatri; Sharma, Anu

    2018-05-01

    Atpresent time the biggest issue is increasing urban population, industrialization and development all over the world. The quantity of the raw materials of construction products like cement, concrete etc is gradually depleting. This is important because if we don't find the alternative material to accomplish need of this industry, with every year it will put pressure on natural resources which are limited in quantity. This major issue can be solved by partial replacing with waste glass of different construction products. This paper gives an overview of the current growth and recycling situation of waste glass and point out the direction for the proper use of waste glass as replacement of construction material. These will not only help in the reuse of waste glass but also create eco-friendly environment.

  11. Development of construction materials like concrete from lunar soils without water

    Science.gov (United States)

    Desai, Chandra S.; Saadatmanesh, H.; Frantziskonis, G.

    1989-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. A unique approach is attempted that utilizes factors such as initial vacuum and then cyclic loading to enhance the mechanical properties of dry materials similar to those available on the moon. The application of such factors is expected to allow reorientation, and coming together, of particles of the materials toward the maximum theoretical density. If such a density can provide deformation and strength properties for even a limited type of construction, the approach can have significant application potential, although other factors such as heat and chemicals may be needed for specific construction objectives.

  12. Combating illicit trafficking in nuclear and other radioactive material. Technical guidance. Reference manual. (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is intended for individuals and organizations that may be called upon to deal with the detection of and response to criminal or unauthorized acts involving nuclear or other radioactive material. It will also be useful for legislators, law enforcement agencies, government officials, technical experts, lawyers, diplomats and users of nuclear technology. This manual emphasizes the international initiatives for improving the security of nuclear and other radioactive material. However, it is recognized that effective measures for controlling the transfer of equipment, non-nuclear material, technology or information that may assist in the development of nuclear explosive devices, improvised nuclear devices (INDs) or other radiological dispersal devices (RDDs) are important elements of an effective nuclear security system. In addition, issues of personal integrity, inspection and investigative procedures are not discussed in this manual, all of which are essential elements for an effective overall security system. The manual considers a variety of elements that are recognized as being essential for dealing with incidents of criminal or unauthorized acts involving nuclear and other radioactive material. Depending on conditions in a specific State, including its legal and governmental infrastructure, some of the measures discussed will need to be adapted to suit that State's circumstances. However, much of the material can be applied directly in the context of other national programmes. This manual is divided into four main parts. Section 2 discusses the threat posed by criminal or unauthorized acts involving nuclear and other radioactive material, as well as the policy and legal bases underlying the international effort to restrain such activities. Sections 3 and 4 summarize the major international undertakings in the field. Sections 5-8 provide some basic technical information on radiation, radioactive material, the health consequences of radiation

  13. An economic analysis of the effects of regulatory delay on nuclear power plant construction. Technical report

    International Nuclear Information System (INIS)

    Maloney, M.T.; Walsh, M.D.

    1980-08-01

    In order to evaluate the impact that any government regulation has on society, an accurate measure of the costs imposed by the regulation is essential. Current government estimates of the cost of pollution control legislation have failed to include the costs of project delays that firms may experience when complying with such standards. Clearly, if these delays are the direct result of such legislation their costs should be included for a proper evaluation. The purpose of this report is to define and measure the true impact that construction deals have on the total project costs of a specific industry. The Nuclear Power Industry has been chosen to illustrate the problem. First, the industry is examined in terms of its economic and physical environment. A model is then developed to deal with the costs involved in the construction of a typical nuclear plant. The model is tested by regressing time and cost data of 31 completed plants to determine the impact that unanticipated delays have had on total project costs. These results indicate that such delays would increase the total project costs of a typical 1,000 mw plant by .8 percent per month in the initial stage of the project and 1.1 percent per month after actual construction begins

  14. Community Building Services Training Program: A Model Training Program to Provide Technical Training for Minority Adults in Construction, Building Maintenance,and Property Management. Final Report.

    Science.gov (United States)

    Community Building Maintenance Corp., Chicago, IL.

    A demonstration program, administered by a community based building maintenance, management, and construction corporation, was developed to provide technical training for minority adults in construction, building maintenance, and property management in the Chicago area. The program was concerned with seeking solutions to the lack of housing, job…

  15. Application of RFID combined with blockchain technology in logistics of construction materials

    Directory of Open Access Journals (Sweden)

    Lanko A.

    2018-01-01

    Full Text Available Nowadays, almost none of the fields of human activity can do without supply chain management. In addition, implementation of one in construction companies contributes to major economic benefits. The article considers the application feasibility of blockchain in logistics of construction materials through the usage of RFID technology. An example of introduction to the process of manufacturing and delivery of ready-mixed concrete is given. The main advantages, shortcomings, perspectives, as well as difficulties arising in the implementation of blockchain technology in the construction industry are described. Special attention is paid to the applicability of these technologies.

  16. Drivers militating against the pricing of sustainable construction materials: The Ghanaian quantity surveyors perspective

    Directory of Open Access Journals (Sweden)

    Ernest Kissi

    2018-06-01

    Full Text Available Sustainability has in recent times attained much acceptance as a result of its positive impact on the environment, social and economic issues. Nevertheless, in developing countries, the price of sustainable construction materials are too high. The aim of the study was to examine drivers militating against the pricing of sustainable construction materials. Through an in-depth review of literature as well as an interview survey, questionnaire was designed and administered to practicing quantity surveyors. Data generated from the survey was analysed using Principal Component Analysis which resulted four main drivers. These included: awareness challenge (AC, sustainability measurement tools challenge (SMTC, economic challenge (EC, and information challenge (IC. The study offers useful lessons on sustainable practices that pricing experts in the construction industry can draw on when pricing.The need for this study cannot be doubted since the consciousness of such challenges will help in resolving issues associated with pricing of sustainable construction materials. Keywords: Drivers, Militating, Pricing, Sustainable construction materials, Ghanaian

  17. Environmental Impacts and Embodied Energy of Construction Methods and Materials in Low-Income Tropical Housing

    Directory of Open Access Journals (Sweden)

    Arman Hashemi

    2015-06-01

    Full Text Available This paper evaluates the current conditions of Ugandan low-income tropical housing with a focus on construction methods and materials in order to identify the key areas for improvement. Literature review, site visits and photographic surveys are carried out to collect relevant information on prevailing construction methods/materials and on their environmental impacts in rural areas. Low quality, high waste, and energy intensive production methods, as well as excessive soil extraction and deforestation, are identified as the main environmental damage of the current construction methods and materials. The embodied energy is highlighted as the key area which should be addressed to reduce the CO2 emissions of low-income tropical housing. The results indicate that the embodied energy of fired bricks in Uganda is up to 5.7 times more than general clay bricks. Concrete walling is identified as a much more environmentally friendly construction method compared to brick walling in East African countries. Improving fuel efficiency and moulding systems, increasing access to renewable energy sources, raising public awareness, educating local manufacturers and artisans, and gradual long-term introduction of innovative construction methods and materials which are adapted to local needs and conditions are some of the recommended actions to improve the current conditions.

  18. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    In recent years, engineering oriented work, rather than basic research and development (R&D), has led to significant progress in improving the economics of innovative fast reactors and associated fuel cycle facilities, while maintaining and even enhancing the safety features of these systems. Optimization of plant size and layout, more compact designs, reduction of the amount of plant materials and the building volumes, higher operating temperatures to attain higher generating efficiencies, improvement of load factor, extended core lifetimes, high fuel burnup, etc. are good examples of achievements to date that have improved the economics of fast neutron systems. The IAEA, through its Technical Working Group on Fast Reactors (TWG-FR) and Technical Working Group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), devotes many of its initiatives to encouraging technical cooperation and promoting common research and technology development projects among Member States with fast reactor and advanced fuel cycle development programmes, with the general aim of catalysing and accelerating technology advances in these fields. In particular the theme of fast reactor deployment, scenarios and economics has been largely debated during the recent IAEA International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios, held in Paris in March 2013. Several papers presented at this conference discussed the economics of fast reactors from different national and regional perspectives, including business cases, investment scenarios, funding mechanisms and design options that offer significant capital and energy production cost reductions. This Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics addresses Member States’ expressed need for information exchange in the field, with the aim of identifying the main open issues and launching possible initiatives to help and

  19. Utilization of stabilized municipal waste combustion ash residues as construction material

    International Nuclear Information System (INIS)

    Shieh, C.S.

    1992-01-01

    Stabilized municipal waste combustion (MWC) ash residues were investigated for their potential as construction material that can be beneficially used in terrestrial and marine environments. End-use products, such as patio stones, brick pavers, solid blocks, and reef units, were fabricated and tested for their engineering and chemical characteristics. engineering feasibility and environmental acceptability of using stabilized ash residues as construction material are discussed in this paper. Ash samples were collected from two mass-burn facilities and one refuse derived fuel (RDF) facility in Florida

  20. Feasibility study of electric motors constructed with high temperature superconducting materials

    International Nuclear Information System (INIS)

    Jordan, H.E.

    1989-01-01

    The potential application of high temperature superconducting (HTSC) materials to electric motors is discussed. The specific application area of motors in electric power generating stations has been selected and a feasible study has been initiated on the use of HTSC materials in the design of motors for this application. A progress report on this feasibility study is presented. Technical challenges in both the development of HTSC wire and the design of a motor to utilize this wire are discussed. Finally, the results of design calculations comparing a superconducting motor with one of conventional design are presented assuming that success can be achieved in overcoming the technical problems which must be resolved to produce a high performance HTSC wire

  1. Applications of Research Reactors Towards Research on Materials for Nuclear Fusion Technology. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-11-01

    Controlled nuclear fusion is widely considered to represent a nearly unlimited source of energy. Recent progress in the quest for fusion energy includes the design and current construction of the International Thermonuclear Experimental Reactor (ITER), for which a licence has recently been obtained as a first of its kind fusion nuclear installation. ITER is designed to demonstrate the scientific and technological feasibility of fusion energy production in excess of 500 MW for several consecutive minutes. ITER, however, will not be able to address all the nuclear fusion technology issues associated with the design, construction and operation of a commercial fusion power plant. The demonstration of an adequate tritium or fuel breeding ratio, as well as the development, characterization and testing of structural and functional materials in an integrated nuclear fusion environment, are examples of issues for which ITER is unable to deliver complete answers. To fill this knowledge gap, several facilities are being discussed, such as the International Fusion Materials Irradiation Facility and, eventually, a fusion demonstration power plant (DEMO). However, for these facilities, a vast body of preliminary research remains to be performed, for instance, concerning the preselection and testing of suitable materials able to withstand the high temperature and pressure, and intense radiation environment of a fusion reactor. Given their capacity for material testing in terms of available intense neutron fluxes, dedicated irradiation facilities and post-irradiation examination laboratories, high flux research reactors or material test reactors (MTRs) will play an indispensable role in the development of fusion technology. Moreover, research reactors have already achieved an esteemed legacy in the understanding of material properties and behaviour, and the knowledge gained from experiments in fission materials in certain cases can be applied to fusion systems, particularly those

  2. Control assembly materials for water reactors: Experience, performance and perspectives. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    The safe, reliable and economic operation of water cooled nuclear power reactors depends to a large extent upon the reliable operation of control assemblies for the regulation and shutdown of the reactors. These consist of neutron absorbing materials clad in stainless steel or zirconium based alloys, guide tubes and guide cards, and other structural components. Current designs have worked extremely well in normal conditions, but less than ideal behaviour limits the lifetimes of control materials, imposing an economic penalty which acts as a strong incentive to produce improved materials and designs that are more reliable. Neutron absorbing materials currently in use include the ceramic boron carbide, the high melting point metal hafnium and the low melting point complex alloy Ag-In-Cd. Other promising neutron absorbing materials, such as dysprosium titanate, are being evaluated in the Russian Federation. These control materials exhibit widely differing mechanical, physical and chemical properties, which must be understood in order to be able to predict the behaviour of control rod assemblies. Identification of existing failure mechanisms, end of life criteria and the implications of the gradual introduction of extended burnup, mixed oxide (MOX) fuels and more complex fuel cycles constitutes the first step in a search for improved materials and designs. In the early part of this decade, it was recognized by the International Working Group on Fuel Performance and Technology (IWGFPT) that international conferences, symposia and published reviews on the materials science aspects of control assemblies were few and far between. Consequently, the IWGFPT recommended that the IAEA should rectify this situation with a series of Technical Committee meetings (TCMs) devoted entirely to the materials aspects of reactor control assemblies. The first was held in 1993 and in the intervening five years considerable progress has been made. In bringing together experts in the

  3. Control assembly materials for water reactors: Experience, performance and perspectives. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2000-02-01

    The safe, reliable and economic operation of water cooled nuclear power reactors depends to a large extent upon the reliable operation of control assemblies for the regulation and shutdown of the reactors. These consist of neutron absorbing materials clad in stainless steel or zirconium based alloys, guide tubes and guide cards, and other structural components. Current designs have worked extremely well in normal conditions, but less than ideal behaviour limits the lifetimes of control materials, imposing an economic penalty which acts as a strong incentive to produce improved materials and designs that are more reliable. Neutron absorbing materials currently in use include the ceramic boron carbide, the high melting point metal hafnium and the low melting point complex alloy Ag-In-Cd. Other promising neutron absorbing materials, such as dysprosium titanate, are being evaluated in the Russian Federation. These control materials exhibit widely differing mechanical, physical and chemical properties, which must be understood in order to be able to predict the behaviour of control rod assemblies. Identification of existing failure mechanisms, end of life criteria and the implications of the gradual introduction of extended burnup, mixed oxide (MOX) fuels and more complex fuel cycles constitutes the first step in a search for improved materials and designs. In the early part of this decade, it was recognized by the International Working Group on Fuel Performance and Technology (IWGFPT) that international conferences, symposia and published reviews on the materials science aspects of control assemblies were few and far between. Consequently, the IWGFPT recommended that the IAEA should rectify this situation with a series of Technical Committee meetings (TCMs) devoted entirely to the materials aspects of reactor control assemblies. The first was held in 1993 and in the intervening five years considerable progress has been made. In bringing together experts in the

  4. Energy Materials Coordinating Committee (EMaCC), fiscal year 1985. Annual technical report

    International Nuclear Information System (INIS)

    1986-05-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meeting/workshops on selected topics involving both DOE and major contractors. Four topical subcommittees on Structural Ceramics, Batteries and Fuel Cells, Radioactive Waste Containment, and Steel are established and are continuing their own program. The FY 1985 and FY 1986 meeting program is given. The EMaCC aids in obtaining materials-related inputs for both intra- and inter-agency compilations. Brief summaries of the materials research programs associated with each office and division are presented, including tables listing individual projects and the FY 1985 budgets for each. More details on the individual projects within the divisions and the specific tasks or subcontracts within the various projects are given in the paragraph descriptions

  5. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report)

    Science.gov (United States)

    Brand, Willi A.; Coplen, Tyler B.; Vogl, Jochen; Rosner, Martin; Prohaska, Thomas

    2014-01-01

    Since the early 1950s, the number of international measurement standards for anchoring stable isotope delta scales has mushroomed from 3 to more than 30, expanding to more than 25 chemical elements. With the development of new instrumentation, along with new and improved measurement procedures for studying naturally occurring isotopic abundance variations in natural and technical samples, the number of internationally distributed, secondary isotopic reference materials with a specified delta value has blossomed in the last six decades to more than 150 materials. More than half of these isotopic reference materials were produced for isotope-delta measurements of seven elements: H, Li, B, C, N, O, and S. The number of isotopic reference materials for other, heavier elements has grown considerably over the last decade. Nevertheless, even primary international measurement standards for isotope-delta measurements are still needed for some elements, including Mg, Fe, Te, Sb, Mo, and Ge. It is recommended that authors publish the delta values of internationally distributed, secondary isotopic reference materials that were used for anchoring their measurement results to the respective primary stable isotope scale.

  6. Energy Materials Coordinating Committee (EMaCC), fiscal year 1985. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-05-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meeting/workshops on selected topics involving both DOE and major contractors. Four topical subcommittees on Structural Ceramics, Batteries and Fuel Cells, Radioactive Waste Containment, and Steel are established and are continuing their own program. The FY 1985 and FY 1986 meeting program is given. The EMaCC aids in obtaining materials-related inputs for both intra- and inter-agency compilations. Brief summaries of the materials research programs associated with each office and division are presented, including tables listing individual projects and the FY 1985 budgets for each. More details on the individual projects within the divisions and the specific tasks or subcontracts within the various projects are given in the paragraph descriptions.

  7. Behaviour of LWR core materials under accident conditions. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-12-01

    At the invitation of the Government of the Russian Federation, following a proposal of the International Working Group on Water Reactor Fuel Performance and Technology, the IAEA convened a Technical Committee Meeting on Behaviour of LWR Core Materials Under Accident Conditions from 9 to 13 October 1995 in Dimitrovgrad to analyze and evaluate the behaviour of LWR core materials under accident conditions with special emphasis on severe accidents. In-vessel severe accidents phenomena were considered in detail, but specialized thermal hydraulic aspects as well as ex-vessel phenomena were outside the scope of the meeting. Forty participants representing eight countries attended the meeting. Twenty-three papers were presented and discussed during five sessions. Refs, figs, tabs

  8. Leaching of additives from construction materials to urban storm water runoff.

    Science.gov (United States)

    Burkhardt, M; Zuleeg, S; Vonbank, R; Schmid, P; Hean, S; Lamani, X; Bester, K; Boller, M

    2011-01-01

    Urban water management requires further clarification about pollutants in storm water. Little is known about the release of organic additives used in construction materials and the impact of these compounds to storm water runoff. We investigated sources and pathways of additives used in construction materials, i.e., biocides in facades' render as well as root protection products in bitumen membranes for rooftops. Under wet-weather conditions, the concentrations of diuron, terbutryn, carbendazim, irgarol 1051 (all from facades) and mecoprop in storm water and receiving water exceeded the predicted no-effect concentrations values and the Swiss water quality standard of 0.1 microg/L. Under laboratory conditions maximum concentrations of additives were in the range of a few milligrams and a few hundred micrograms per litre in runoff of facades and bitumen membranes. Runoff from aged materials shows approximately one to two orders of magnitude lower concentrations. Concentrations decreased also during individual runoff events. In storm water and receiving water the occurrence of additives did not follow the typical first flush model. This can be explained by the release lasting over the time of rainfall and the complexity of the drainage network. Beside the amounts used, the impact of construction materials containing hazardous additives on water quality is related clearly to the age of the buildings and the separated sewer network. The development of improved products regarding release of hazardous additives is the most efficient way of reducing the pollutant load from construction materials in storm water runoff.

  9. Superiority of centralized procurement and its technical and economic analysis for nuclear power intensification construction

    International Nuclear Information System (INIS)

    Wang Feng

    2010-01-01

    The intensified management is the basic orientation for modernized enterprise group to improve efficiency and benefit. For most industrial enterprises, in the implementation of intensification management process, the centralized procurement is one of most efficient paths. At present most of the international's and domestic outstanding enterprises are studying and positively using this approach. This article indicated that the centralized procurement mode is inevitable during intensification construction process based on the theoretical analysis of the advantage of centralized procurement and the economic analysis of typical cases. (author)

  10. Experimental Setup for Evaluation of the Protective Technical Measures Against the Slopes Degradation Along Linear Construction Sites

    Science.gov (United States)

    Kavka, Petr; Zumr, David; Neumann, Martin; Lidmila, Martin; Dufka, Dušan

    2017-04-01

    Soil erosion of the slopes along the linear construction sites, such as railroads, roads, pipelines or watercourses, is usually underestimated by the construction companies and controlling authorities. But under certain circumstances, when the construction site is not maintained and protected properly, a large amounts of soil may be transported from the sites to the surrounding environment during the intensive rainfall. Transported sediment, often carrying adsorbed pollutants, may reach watercourses and cause water recipient siltation and pollution. Within the applied research project we investigate ways of low cost, quick and easy technical measures that would help to protect the slopes against the splash erosion, rills development and sliding. The methodology is based on testing of various permeable covers, sheets, anchoring and patchy vegetation on a plot and hillslope scales. In this contribution we will present the experimental plot setup, consisting of large soil blocks encapsulated in the monitored steel containers and nozzle rainfall simulator. The presentation is funded by the Technological Agency of the Czech Republic (research project TH02030428) and an internal student CTU grant.

  11. A framework of analysis for field experiments with alternative materials in road construction.

    Science.gov (United States)

    François, D; Jullien, A

    2009-01-01

    In France, a wide variety of alternative materials is produced or exists in the form of stockpiles built up over time. Such materials are distributed over various regions of the territory depending on local industrial development and urbanisation trends. The use of alternative materials at a national scale implies sharing local knowledge and experience. Building a national database on alternative materials for road construction is useful in gathering and sharing information. An analysis of feedback from onsite experiences (back analysis) is essential to improve knowledge on alternative material use in road construction. Back analysis of field studies has to be conducted in accordance with a single common framework. This could enable drawing comparisons between alternative materials and between road applications. A framework for the identification and classification of data used in back analyses is proposed. Since the road structure is an open system, this framework has been based on a stress-response approach at both the material and structural levels and includes a description of external factors applying during the road service life. The proposal has been shaped from a review of the essential characteristics of road materials and structures, as well as from the state of knowledge specific to alternative material characterisation.

  12. Microbial biotechnology approaches to mitigating the deterioration of construction and heritage materials.

    Science.gov (United States)

    Junier, Pilar; Joseph, Edith

    2017-09-01

    Microorganisms are the main engines of elemental cycling in this planet and therefore have a profound impact on both organic and mineral substrates. As such, past and present human-made structures and cultural heritage can be negatively affected by microbial activity. Processes such as bioweathering (rocks and minerals), biodeterioration (organic substrates) or biocorrosion (metals) participate to the degradation or structural damage of construction and heritage materials. This structural damage can cause major economic losses (e.g. replacement of cast-iron pipes in water distribution networks), and in the case of heritage materials, the entire loss of invaluable objects or monuments. Even though one can regard the influence of microbial activity on construction and heritage materials as negative, remarkably, the same metabolic pathways involved in degradation can be exploited to increase the stability of these materials. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Computer modelling of structures with account of the construction stages and the time dependent material properties

    Directory of Open Access Journals (Sweden)

    Traykov Alexander

    2015-01-01

    Full Text Available Numerical studies are performed on computer models taking into account the stages of construction and time dependent material properties defined in two forms. A 2D model of three storey two spans frame is created. The first form deals with material defined in the usual design practice way - without taking into account the time dependent properties of the concrete. The second form creep and shrinkage of the concrete are taken into account. Displacements and internal forces in specific elements and sections are reported. The influence of the time dependent material properties on the displacement and the internal forces in the main structural elements is tracked down. The results corresponding to the two forms of material definition are compared together as well as with the results obtained by the usual design calculations. Conclusions on the influence of the concrete creep and shrinkage during the construction towards structural behaviour are made.

  14. Weight and cost analysis of large wind turbine rotors constructed from conventional materials and from advanced composite materials

    Energy Technology Data Exchange (ETDEWEB)

    van Holten, Th

    1982-07-01

    Cost calculations and cost analyses of the blades and the (teetering) hubs of large wind turbines. The blades are of different shapes, construction and materials (aluminium, steel and glass reinforced plastics). Teetering hubs are heavy and complicated steel constructions, necessary to minimize material fatigue. In large wind turbines with a diameter of 60 to 100 m or even more the rotor mass (hubs and blades together) may vary from 46,000 to 216,000 kg. Costs are estimated to be DFL. 16/kg, both for teetering hubs and/or blades made of glass reinforced plastics. Due to lack of experience and of exact knowledge of the loads appearing during operation under field conditions the uncertainty factor may be 10% to 15%.

  15. Advanced FRP for flooring in buildings: a low carbon material application in the construction industry

    OpenAIRE

    Gao, Yijian

    2013-01-01

    Fibre-reinforced polymers (FRP) are building materials that permit both the improvement of long-term building performance and the simplification of the construction process, thanks to their high specific strength, low thermal conductivity, good environmental resistance, and ability to be formed into complex shapes. FRP materials are well-suited to fulfilling many building functions. By integrating traditionally separate building systems and layers into single function-integrated components, a...

  16. Energy materials coordinating committee (EMaCC). Annual technical report, fiscal year 2004

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2005-08-31

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. Topical subcommittees of the EMaCC are responsible for conducting seminars and otherwise facilitating information flow between DOE organizational units in materials areas of particular importance to the Department. The EMaCC Terms of Reference were recently modified and developed into a Charter that was approved on June 5, 2003. As a result of this reorganization, the existing subcommittees were disbanded and new subcommittees are being formed. The FY 2004 budget summary for DOE Materials Activities is presented on page 8. The distribution of these funds between DOE laboratories, private industry, academia and other organizations is presented in tabular form on page 10. Following the budget summary is a set of detailed program descriptions for the FY 2004 DOE Materials activities. These descriptions are presented according to the organizational structure of the Department. A mission statement, a budget summary listing the project titles and FY 2004 funding, and detailed project summaries are presented for each Assistant Secretary office, the Office of Science, and the National Nuclear Security Administration. The project summaries also provide DOE, laboratory, academic and industrial contacts for each project, as appropriate.

  17. Energy materials coordinating committee (EMaCC). Annual technical report, fiscal year 2002

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-08-08

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. Topical subcommittees of the EMaCC are responsible for conducting seminars and otherwise facilitating information flow between DOE organizational units in materials areas of particular importance to the Department. The EMaCC Terms of Reference were recently modified and developed into a Charter that was approved on June 5, 2003. As a result of this reorganization, the existing subcommittees were disbanded and new subcommittees are being formed. The EMaCC Charter and the memorandum approving it are presented in the Appendix of this report. The FY 2002 budget summary for DOE Materials Activities is presented on page 8. The distribution of these funds between DOE laboratories, private industry, academia and other organizations is presented in tabular form on page 10. Following the budget summary is a set of detailed program descriptions for the FY 2002 DOE Materials activities. These descriptions are presented according to the organizational structure of the Department. A mission statement, a budget summary listing the project titles and FY 2002 funding, and detailed project summaries are presented for each Assistant Secretary office, the Office of Science, and the National Nuclear Security Administration. The project summaries also provide DOE, laboratory, academic and industrial contacts for each project, as appropriate.

  18. Energy materials coordinating committee (EMaCC). Annual technical report, fiscal year 2005

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2006-09-29

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. Topical subcommittees of the EMaCC are responsible for conducting seminars and otherwise facilitating information flow between DOE organizational units in materials areas of particular importance to the Department. The EMaCC Terms of Reference were recently modified and developed into a Charter that was approved on June 5, 2003. As a result of this reorganization, the existing subcommittees were disbanded and new subcommittees are being formed. The FY 2004 budget summary for DOE Materials Activities is presented on page 8. The distribution of these funds between DOE laboratories, private industry, academia and other organizations is presented in tabular form on page 10. Following the budget summary is a set of detailed program descriptions for the FY 2004 DOE Materials activities. These descriptions are presented according to the organizational structure of the Department. A mission statement, a budget summary listing the project titles and FY 2004 funding, and detailed project summaries are presented for each Assistant Secretary office, the Office of Science, and the National Nuclear Security Administration. The project summaries also provide DOE, laboratory, academic and industrial contacts for each project, as appropriate.

  19. Exploring the Importance of Employing Bio and Nano-Materials for Energy Efficient Buildings Construction

    Directory of Open Access Journals (Sweden)

    Mona Naguib

    2017-03-01

    Full Text Available The continued and increasing use of ordinary building materials to house the ever-growing world population ensures growing contributions of carbon (C to the active carbon cycle through carbon dioxide (C02 emissions from combustion and chemical reactions in the raw material to the atmosphere. To minimize this, materials should be conserved, reduce their unnecessary use, produce them more benignly and make them last longer, recycle and reuse materials. Thus, paper will focus on exploring alternative building materials and systems that can be developed in order to balance atmospheric carbon dioxide.  It also presents the Bio-inspired architecture approach that embraces the eco-friendly practices of using Biomaterials and Nano-materials for sustainable dwelling construction through a number of examples that shows how a building can be strongly related to its site.

  20. Naturally occurring radioactive materials in construction integrating radiation protection in Reuse

    CERN Document Server

    Schroeyers, Wouter

    2017-01-01

    Naturally Occurring Radioactive Materials in Construction (COST Action NORM4Building) discusses the depletion of energy resources and raw materials and its huge impact not only on the building market, but also in the development of new synthetic building materials, whereby the reuse of various (waste) residue streams becomes a necessity. It is based on the outcome of COST Action TU 1301, where scientists, regulators, and representatives from industry have come together to present new findings, sharing knowledge, experiences, and technologies to stimulate research on the reuse of residues containing enhanced concentrates of natural radionuclides (NORM) in tailor-made building materials. Chapters address legislative issues, measurement, and assessment of building materials, physical and chemical aspects, from raw materials, to residues with enhanced concentrations of natural radionuclides (NORM), processes, building products containing NORM, and end-of-life and reuse requirements. Presents a holistic app...

  1. Corrosion rate of construction materials in hot phosphoric acid with the contribution of anodic polarization

    DEFF Research Database (Denmark)

    Kouril, M.; Christensen, Erik; Eriksen, S.

    2011-01-01

    The paper is focused on selection of a proper material for construction elements of water electrolysers, which make use of a 85% phosphoric acid as an electrolyte at temperature of 150 8C and which might be loaded with anodic polarization up to 2.5 V versus a saturated Ag/AgCl electrode (SSCE...

  2. 48 CFR 252.225-7045 - Balance of Payments Program-Construction Material Under Trade Agreements.

    Science.gov (United States)

    2010-10-01

    .... Designated country means— (1) A World Trade Organization Government Procurement Agreement (WTO GPA) country... another country, has been substantially transformed in a Free Trade Agreement country into a new and... Program-Construction Material Under Trade Agreements. 252.225-7045 Section 252.225-7045 Federal...

  3. 48 CFR 52.225-11 - Buy American Act-Construction Materials under Trade Agreements.

    Science.gov (United States)

    2010-10-01

    ... safety systems, such as emergency lighting, fire alarm, and audio evacuation systems, that are discrete... 50 percent of the cost of all its components. Components of foreign origin of the same class or kind... description of the foreign and domestic construction materials; (B) Unit of measure; (C) Quantity; (D) Price...

  4. the suitability of lime rice husk ash cement as construction material

    African Journals Online (AJOL)

    NIJOTECH

    Enugu State University of Science and Technology, Enugu, Nigeria. ... It was therefore concluded that high percentage contents of silica, ... the Lime Rice Husk Ash cement when used as a construction material would depend ... thermal treatment of the silica in the husk .... test specimen in their moulds were stored in a.

  5. Stimulating the use of secondary materials in the construction industry: The role of certification

    NARCIS (Netherlands)

    van Eijk, R.J.; Brouwers, Jos

    2002-01-01

    Introduction of secondary materials in the construction industry is quite difficult and has not always been successful, even when they satisfy all necessary product demands and environmental (leaching) conditions. Besides the financial and commercial aspects the main problem is convincing the user

  6. Stimulating The Use Of Secondary Materials In The Construction Industry: The Role Of Certification

    NARCIS (Netherlands)

    van Eijk, R.J.; Brouwers, Jos

    2002-01-01

    Introduction of secondary materials in the construction industry is quite difficult and has not always been successful, even when they satisfy all necessary product demands and environmental (leaching) conditions. Besides the financial and commercial aspects the main problem is convincing the user

  7. Determining the Supply of Material Resources for High-Rise Construction: Scenario Approach

    Science.gov (United States)

    Minnullina, Anna; Vasiliev, Vladimir

    2018-03-01

    This article presents a multi-criteria approach to determining the supply of material resources for high-rise construction under certain and uncertain conditions, which enables integrating a number of existing models into a fairly compact generalised economic and mathematical model developed for two extreme scenarios.

  8. Radon diffusion through sandy construction materials: effect of temperature and grain size

    International Nuclear Information System (INIS)

    Narula, A.K.; Goyal, S.K.; Jain, Ravinder; Kant, Krishan; Yadav, Mani Kant; Chauhan, R.P.; Chakarvarti, S.K.

    2013-01-01

    Radon appears mainly by diffusion process from the point of origin, say, under ground soil and building materials used in construction of house following alpha decay of radium. The radon diffusion through different building construction materials can be compared by calculating radon diffusion coefficient for them. In the present work, we studied the effect of temperature and grain size on radon diffusion of coarse sand as construction material. The coarse sand was collected from Yamuna river bed, originated from Himalayas. For this study, a steel pipe of diameter 10 cm and length 30 cm., divided into four sectors of equal size, was filled in different sectors with different grain sized (800, 600 and 425 μm) sand as building construction material. A number LR-115 type-II particle track detectors were placed with inter-detector distance of 10 cm in the sectorial compartments. The bottom end of steel pipe assembly was fixed with a radon chamber containing radon source with upper end sealed with a cap. The whole arrangement was then placed into a sand-clay pipe wrapped around by a controlled heating filament, resulting into temperature variations from 25℃ to 60℃. After 100 days interval, the detectors were retrieved processed, and the α - tracks counted for the calculation of radon concentration. It is observed that the radon diffusion coefficient increases with the increase in temperature and decreases with decrease in grain size of the coarse sand. (author)

  9. Effect of interface of electronics devices constructed with different materials to X-ray

    International Nuclear Information System (INIS)

    Mu Weibing; Chen Panxun

    2003-01-01

    The behavior of X-ray nearby interface which is constructed with different materials is introduced in this paper. And the affect to electronics devices of this behavior is analyzed, the affect factors of four interfaces are calculated by Monte-Carlo method

  10. A Duration Prediction Using a Material-Based Progress Management Methodology for Construction Operation Plans

    Directory of Open Access Journals (Sweden)

    Yongho Ko

    2017-04-01

    Full Text Available Precise and accurate prediction models for duration and cost enable contractors to improve their decision making for effective resource management in terms of sustainability in construction. Previous studies have been limited to cost-based estimations, but this study focuses on a material-based progress management method. Cost-based estimations typically used in construction, such as the earned value method, rely on comparing the planned budget with the actual cost. However, accurately planning budgets requires analysis of many factors, such as the financial status of the sectors involved. Furthermore, there is a higher possibility of changes in the budget than in the total amount of material used during construction, which is deduced from the quantity take-off from drawings and specifications. Accordingly, this study proposes a material-based progress management methodology, which was developed using different predictive analysis models (regression, neural network, and auto-regressive moving average as well as datasets on material and labor, which can be extracted from daily work reports from contractors. A case study on actual datasets was conducted, and the results show that the proposed methodology can be efficiently used for progress management in construction.

  11. GROUND WATER ISSUE: NONAQUEOUS PHASE LIQUIDS COMPATIBILITY WITH MATERIALS USED IN WELL CONSTRUCTION, SAMPLING, AND REMEDIATION.

    Science.gov (United States)

    This issue paper provides a comprehensive literature review regarding the compatibility of NAPLs with a wide variety of materials used at hazardous waste sites. A condensed reference table of compatibility data for 207 chemicals and 28 commonly used well construction and sampling...

  12. Construction and testing of simple airfoils to demonstrate structural design, materials choice, and composite concepts

    Science.gov (United States)

    Bunnell, L. Roy; Piippo, Steven W.

    1993-01-01

    The objective of this educational exercise is to have students build and evaluate simple wing structures, and in doing so, learn about materials choices and lightweight construction methods. A list of equipment and supplies and the procedure for the experiment are presented.

  13. NVENTIONS IN THE NANOTECHNOLOGICAL AREA PROVIDE INCREASED RESISTANCE OF CONSTRUCTION MATERIALS AND PRODUCTS TO OPERATIONAL LOAD

    Directory of Open Access Journals (Sweden)

    VLASOV Vladimir Alexeevich

    2013-12-01

    Full Text Available The invention «Dispersion of Carbon Nanotubes (RU 2494961» can be used in production of modifying additives for construction materials. Dispersion of carbon nanotubes contains, mass %: carbon nanotubes 1–20; surface active agent – sodium chloride of sulfonated derived naphthalene 1–20; fumed silica 5–15; water – the rest. Dispersion can additionally contain ethylene glycol as antifreeze. Dispersion is steady in storage, it is soluble in water, provides increased strength of construction materials. Invention «Building Structures Reinforcement Composition (RU 2493337» can beused in construction to reinforce concrete, brick and masonry structures. Composition contains glass or basalt roving taken in quantity 90÷100 parts by weight, soaked in polymer binder based on epoxy taken in quantity 0,001÷1,5 parts by weight. This invention provides high resistance to operational load.

  14. Determining the Environmental Benefits of Ultra High Performance Concrete as a Bridge Construction Material

    Science.gov (United States)

    Lande Larsen, Ingrid; Granseth Aasbakken, Ida; O'Born, Reyn; Vertes, Katalin; Terje Thorstensen, Rein

    2017-10-01

    Ultra High Performance Concrete (UHPC) is a material that is attracting attention in the construction industry due to the high mechanical strength and durability, leading to structures having low maintenance requirements. The production of UHPC, however, has generally higher environmental impact than normal strength concrete due to the increased demand of cement required in the concrete mix. What is still not sufficiently investigated, is if the longer lifetime, slimmer construction and lower maintenance requirements lead to a net environmental benefit compared to standard concrete bridge design. This study utilizes life cycle assessment (LCA) to determine the lifetime impacts of two comparable highway crossing footbridges spanning 40 meters, designed respectively with UHPC and normal strength concrete. The results of the study show that UHPC is an effective material for reducing lifetime emissions from construction and maintenance of long lasting infrastructure, as the UHPC design outperforms the normal strength concrete bridge in most impact categories.

  15. Preference Evaluation System for Construction Products Using QFD-TOPSIS Logic by Considering Trade-Off Technical Characteristics

    Directory of Open Access Journals (Sweden)

    Jaeho Cho

    2017-01-01

    Full Text Available This paper investigates the feasibility of quality function deployment, technique for the order of preference by similarity to ideal solution (QFD-TOPSIS in presenting user preferences for multiple alternatives, such as construction technologies, products, systems, and design solutions, with trade-off technical characteristics (TC. The original QFD as house of quality (HOQ defines the requirements and features as subjective matrix relations, which cause interpretations to vary across users and limit its industrial applications. QFD-TOPSIS is a new model that combines the benefits of QFD with those of TOPSIS, maintains the subjectivity and objectivity evaluation of the technical characteristics (TC, and rates the preferences by considering users’ individual propensity for requirements. In addition, QFD-TOPSIS rates the preferences through the reciprocal compensation effects of trade-off TC and filters unsuitable alternatives with predefined restrictive conditions. Trade-off refers to conflicts and/or contradictions between attributes, often arising in multicriteria decision-making. Users or project stakeholder groups define the priorities of trade-off TC that directly influence product preferences and decision-making. In the present study, we have developed a Web system based on the QFD-TOPSIS logic and tested its operation to verify its industrial applicability and viability for automatic quality evaluation.

  16. USE OF MIRROR PATTERN CUTTING OF NETTING MATERIALS FOR CONSTRUCTION OF LAKE BEACH SEINES

    Directory of Open Access Journals (Sweden)

    A. Nazarov

    2014-12-01

    Full Text Available Purpose. Justification and calculation of a new methodological approach to the construction of a standard beach seine (502 / 302 х 3.75 with the use of the properties of mirror netting ensuring the saving of the netting material, reduction of weight, price and drag resistance. Methodology. The carp age group selectivity of the constructed seine was assessed within fish fauna monitoring based on the catch analysis of monitoring gill nets with mesh sizes of 30-130 mm according to generally accepted methods [9, 10]. Calculation of netting materials and ropes was carried out according to generally accepted methods [12-14]. Seine resistance was calculated according to N. T. Senin formula for different netting materials and the angles of the movement of different seine parts in water [2]. The gear reliability and data processing were carried out according to standard methods [11, 14, 15]. Findings. A variant of the construction of the maximum lightweight beach lake seines made of mirror pattern netting taking into account the properties of the mirror pattern netting material, reduction of weight, price and drag resistance has been proposed. The provided recalculation of the properties of a serial seine made of rhombic mesh for the mirror netting seine taking into account netting properties allowed: 1 reducing the seine drag resistance value by 1,4 times; 2 reducing the weight of netting materials by 16.3% compared to the prototype; 3 increasing the seine selectivity when fishing older age groups of carp in non-drainable ponds. Originality. We presented the method of the calculation and construction of lake beach seines made of mirror netting, analyzed the technological stages of the construction of mirror netting, determined main qualitative and technological parameters, which had effect on the conditions of the construction and reliability of such fishing gears. A new method of the use of an insert of the combined netting material cutting ensuring

  17. Measurement of residual stress in materials using neutrons. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2005-06-01

    One of the objectives of the IAEA's project on effective utilization of research reactors is to promote the use of the existing research reactors based on their capabilities and is implemented through workshops and technical meetings. Measurement of residual stress is one of the techniques that find wide applications in materials development and testing. The Technical Meeting on Measurement of Residual Stress Using Neutrons was organized to meet this objective. This publication is the outcome of the deliberations during the meeting and the presentations by the participants and is addressed to the research reactor managers, users and designers of facilities for reactor utilization. It will especially benefit those seeking to develop new facilities or upgrade the existing ones to enhance the utilization of their research reactors. Experts with a long experience in developing and using neutron beam instruments in high flux and medium flux research reactors participated in this technical meeting. They presented the design, development and utilization of the facilities at their respective centres and reviewed the current status of the residual stress measurements using neutron beams from research reactors. The sessions included brainstorming on the methodology and data analysis, characterization and standardization of the equipment and identifying the scope for further development. This publication refers to the determination of residual and/or applied stresses in polycrystalline materials using neutron diffraction technique. Stress is developed during the synthesis and use of materials such as alloys and compounds. Measurement of residual stress is essential to improve the quality of synthesized materials and diagnosis of failure and/or reliability of fabricated components. Neutron scattering has played an important role in studying structure and dynamics of condensed matter. Neutron scattering is a non-destructive technique and is useful for testing large samples. The

  18. Materials requirements for the ITER vacuum vessel and in-vessel components - approaching the construction phase

    International Nuclear Information System (INIS)

    Barabash, V.; Ioki, K.; Pick, M.; Girard, J.P.; Merola, M.

    2007-01-01

    Full text of publication follows: The ITER activities are fully devoted toward its construction. In accordance with the ITER integrated project schedule, the procurement specifications for the manufacturing of the Vacuum Vessel should be prepared by March 2008 and the procurement specifications for the in-vessel components (first wall/blanket, divertor) by 2009. To update the design, considering design and technology evolution, the ITER Design Review has been launched. Among the various topics being discussed are the important issues related to selection of materials, material procurement, and assessment of performance during operation. The main requirements related to materials for the vacuum vessel and the in-vessel components are summarized in the paper. The specific licensing requirements are to be followed for structural materials of pressure and nuclear pressure equipment components for construction of ITER. In addition, the procurements in ITER will be done mostly 'in-kind' and it is assumed that materials for these components will be produced by different Parties. However, in accordance with the regulatory requirements and quality requirements for operation, common specifications and the general rules to fulfill these requirements are to be adopted. For some ITER components (e.g. first wall, divertor high heat flux components), the ultimate qualification of the joining technologies (Be/Cu, SS/Cu, CFC/Cu, W/Cu) is under final evaluation. Successful accomplishment of the qualification program will allow to proceed with procurements of the components for ITER. The criteria for acceptance of these components and materials after manufacturing are described and the main results will be reported. Additional materials issues, which come from the on-going manufacturing R and D program, will be also described. Finally, further materials activity during the construction phase, needs for final qualification and acceptance of materials are discussed. (authors)

  19. Life Cycle Greenhouse Gas Emissions and Energy Analysis of Passive House with Variable Construction Materials

    Science.gov (United States)

    Baďurová, Silvia; Ponechal, Radoslav; Ďurica, Pavol

    2013-11-01

    The term "passive house" refers to rigorous and voluntary standards for energy efficiency in a building, reducing its ecological footprint. There are many ways how to build a passive house successfully. These designs as well as construction techniques vary from ordinary timber constructions using packs of straw or constructions of clay. This paper aims to quantify environmental quality of external walls in a passive house, which are made of a timber frame, lightweight concrete blocks and sand-lime bricks in order to determine whether this constructional form provides improved environmental performance. Furthermore, this paper assesses potential benefit of energy savings at heating of houses in which their external walls are made of these three material alternatives. A two storey residential passive house, with floorage of 170.6 m2, was evaluated. Some measurements of air and surface temperatures were done as a calibration etalon for a method of simulation.

  20. Review on the Traditional Uses and Potential of Totora (Schoenoplectus Californicus) as Construction Material

    Science.gov (United States)

    Hidalgo-Cordero, Juan Fernando; García-Navarro, Justo

    2017-10-01

    The recent advances in the wood construction field have demonstrated the feasibility and advantages of using wood-based materials in tall buildings structures and other constructive uses, which could lead to a net reduction in CO2eq emissions of the construction sector by replacing high-energy consuming materials like concrete or steel, with wood and biomass-based materials. Among these biomass-based materials are the Non-Timber Forest Products (NTFP)which are plantsthat canprovide important contributionsto the construction sector and help to reduce the net CO2eq emissions of the building industry. One of these plants is the totora (Schoenoplectus Californicus) that has been long used by several communities for making handicrafts and as construction material. Recent studies on this plant have analyzed its properties and its feasibility to be used for producing materials of interest to the contemporary building industry. The totora is a bulrush that grows in lakes and marshes in America from California to Chile and some of the Pacific islands. It grows from the sea level to 4500maasl, it can grow in fresh water and estuaries, and it is resistant to water level changes and drought. This bulrush has been used by many cultures as medicine, food, forage, material for building houses, boats and different handicrafts. The most important examples of the use of totora in the world are the floating islands of the Uros in Lake Titicaca. The Uros people have developed traditional techniques for building their homes, boats, and even the artificial islands where they live on with methods based almost exclusively on the totora. This way of living and production system has been maintained for more than 500 years. This review is about the main constructive techniques that have been used for traditional construction in totora and some of therecent researches that have been made on this subject. Experiments in architecture and industrial design objects made with totora have shown its

  1. Behaviour of built light construction on expansible clays. Technical of design and rehabilitation

    Directory of Open Access Journals (Sweden)

    Arrieta, L.

    2003-12-01

    Full Text Available The construction pathology of housing built on expansible clays is one of the most requested topics to be investigated in order to obtain solutions mainly in housing of social interest. A vision of the solution alternatives is presented that are being applying in Venezuela and specifically in the cities of Barquisimeto and Coro where the most harmful expansion characteristics are presented registered in the world literature. This population is located to the north of the country in front of the Caribbean Sea with arid climate, deep phreatic level, appreciable loamy profile and water deficit. The investigation methodology and some proven procedures for the design of foundations in light housings and for the rehabilitation of damaged buildings are supported with the results of the researches on the part of the two authors and their research teams coming from two different Universities and with 20 years of experience in the practical field. 3 cases are illustrated, two of them with historical value in the design of housings of social interest and one of severely affected constructions and actually rehabilitated with success. Finally some practical recommendations are provided to be considered in the elaboration of projects related with the construction of light housings on expansible floors.

    La patología de construcción de viviendas construidas sobre arcillas expansivas constituye uno de los temas más investigados debido a la gran cantidad de casos identificados con fallos, sobre todo en viviendas de interés social. Se presenta una visión de las alternativas de solución que se vienen aplicando en Venezuela y, específicamente, en las ciudades de Barquisimeto y Coro donde se presentan las características de expansión más perjudiciales registradas en la literatura mundial. Esta población está ubicada al norte del país, frente al mar Caribe, con clima árido, nivel freático profundo, perfil arcilloso apreciable y régimen h

  2. A Construction System for CALL Materials from TV News with Captions

    Science.gov (United States)

    Kobayashi, Satoshi; Tanaka, Takashi; Mori, Kazumasa; Nakagawa, Seiichi

    Many language learning materials have been published. In language learning, although repetition training is obviously necessary, it is difficult to maintain the learner's interest/motivation using existing learning materials, because those materials are limited in their scope and contents. In addition, we doubt whether the speech sounds used in most materials are natural in various situations. Nowadays, some TV news programs (CNN, ABC, PBS, NHK, etc.) have closed/open captions corresponding to the announcer's speech. We have developed a system that makes Computer Assisted Language Learning (CALL) materials for both English learning by Japanese and Japanese learning by foreign students from such captioned newscasts. This system computes the synchronization between captions and speech by using HMMs and a forced alignment algorithm. Materials made by the system have following functions: full/partial text caption display, repetition listening, consulting an electronic dictionary, display of the user's/announcer's sound waveform and pitch contour, and automatic construction of a dictation test. Materials have following advantages: materials present polite and natural speech, various and timely topics. Furthermore, the materials have the following possibility: automatic creation of listening/understanding tests, and storage/retrieval of the many materials. In this paper, firstly, we present the organization of the system. Then, we describe results of questionnaires on trial use of the materials. As the result, we got enough accuracy on the synchronization between captions and speech. Speaking totally, we encouraged to research this system.

  3. Assessment of impact of construction materials on the ecological safety of home

    Directory of Open Access Journals (Sweden)

    Zhigulina Anna

    2017-01-01

    Full Text Available The article deals with the problems of creating environmentally friendly aerial environment within residential premises. The main sources causing air pollution of urban housing are determined and classified. The origins of air pollution sources of residential premises are adopted as the classifying criterion. The sources of contamination are defined and assessed. Particular attention is paid to the choice of environmentally friendly building materials. The methodology for assessing toxicity of industrial waste used in the production of housing materials is developed to assess the comfort and environmental safety of home. The idea of creating “Residential buldings ID” containing information on the construction materials used is introduced.

  4. Center for Coal-Derived Low Energy Materials for Sustainable Construction

    Energy Technology Data Exchange (ETDEWEB)

    Jewell, Robert; Robl, Tom; Rathbone, Robert

    2012-06-30

    The overarching goal of this project was to create a sustained center to support the continued development of new products and industries that manufacture construction materials from coal combustion by-products or CCB’s (e.g., cements, grouts, wallboard, masonry block, fillers, roofing materials, etc). Specific objectives includes the development of a research kiln and associated system and the formulation and production of high performance low-energy, low-CO2 emitting calcium sulfoaluminate (CAS) cement that utilize coal combustion byproducts as raw materials.

  5. Titanium oxo-clusters: precursors for a Lego-like construction of nanostructured hybrid materials.

    Science.gov (United States)

    Rozes, Laurence; Sanchez, Clément

    2011-02-01

    Titanium oxo-clusters, well-defined monodispersed nano-objects, are appropriate nano-building blocks for the preparation of organic-inorganic materials by a bottom up approach. This critical review proposes to present the different structures of titanium oxo-clusters referenced in the literature and the different strategies followed to build up hybrid materials with these versatile building units. In particular, this critical review cites and reports on the most important papers in the literature, concentrating on recent developments in the field of synthesis, characterization, and the use of titanium oxo-clusters for the construction of advanced hybrid materials (137 references).

  6. The Promotion Strategy of Green Construction Materials: A Path Analysis Approach

    Directory of Open Access Journals (Sweden)

    Chung-Fah Huang

    2015-10-01

    Full Text Available As one of the major materials used in construction, cement can be very resource-consuming and polluting to produce and use. Compared with traditional cement processing methods, dry-mix mortar is more environmentally friendly by reducing waste production or carbon emissions. Despite the continuous development and promotion of green construction materials, only a few of them are accepted or widely used in the market. In addition, the majority of existing research on green construction materials focuses more on their physical or chemical characteristics than on their promotion. Without effective promotion, their benefits cannot be fully appreciated and realized. Therefore, this study is conducted to explore the promotion of dry-mix mortars, one of the green materials. This study uses both qualitative and quantitative methods. First, through a case study, the potential of reducing carbon emission is verified. Then a path analysis is conducted to verify the validity and predictability of the samples based on the technology acceptance model (TAM in this study. According to the findings of this research, to ensure better promotion results and wider application of dry-mix mortar, it is suggested that more systematic efforts be invested in promoting the usefulness and benefits of dry-mix mortar. The model developed in this study can provide helpful references for future research and promotion of other green materials.

  7. The Promotion Strategy of Green Construction Materials: A Path Analysis Approach.

    Science.gov (United States)

    Huang, Chung-Fah; Chen, Jung-Lu

    2015-10-14

    As one of the major materials used in construction, cement can be very resource-consuming and polluting to produce and use. Compared with traditional cement processing methods, dry-mix mortar is more environmentally friendly by reducing waste production or carbon emissions. Despite the continuous development and promotion of green construction materials, only a few of them are accepted or widely used in the market. In addition, the majority of existing research on green construction materials focuses more on their physical or chemical characteristics than on their promotion. Without effective promotion, their benefits cannot be fully appreciated and realized. Therefore, this study is conducted to explore the promotion of dry-mix mortars, one of the green materials. This study uses both qualitative and quantitative methods. First, through a case study, the potential of reducing carbon emission is verified. Then a path analysis is conducted to verify the validity and predictability of the samples based on the technology acceptance model (TAM) in this study. According to the findings of this research, to ensure better promotion results and wider application of dry-mix mortar, it is suggested that more systematic efforts be invested in promoting the usefulness and benefits of dry-mix mortar. The model developed in this study can provide helpful references for future research and promotion of other green materials.

  8. Methodology for the Assessment of the Ecotoxicological Potential of Construction Materials

    Science.gov (United States)

    Rodrigues, Patrícia; Silvestre, José D.; Flores-Colen, Inês; Viegas, Cristina A.; de Brito, Jorge; Kurad, Rawaz; Demertzi, Martha

    2017-01-01

    Innovation in construction materials (CM) implies changing their composition by incorporating raw materials, usually non-traditional ones, which confer the desired characteristics. However, this practice may have unknown risks. This paper discusses the ecotoxicological potential associated with raw and construction materials, and proposes and applies a methodology for the assessment of their ecotoxicological potential. This methodology is based on existing laws, such as Regulation (European Commission) No. 1907/2006 (REACH—Registration, Evaluation, Authorization and Restriction of Chemicals) and Regulation (European Commission) No. 1272/2008 (CLP—Classification, Labelling and Packaging). Its application and validation showed that raw material without clear evidence of ecotoxicological potential, but with some ability to release chemicals, can lead to the formulation of a CM with a slightly lower hazardousness in terms of chemical characterization despite a slightly higher ecotoxicological potential than the raw materials. The proposed methodology can be a useful tool for the development and manufacturing of products and the design choice of the most appropriate CM, aiming at the reduction of their environmental impact and contributing to construction sustainability. PMID:28773011

  9. Methodology for the Assessment of the Ecotoxicological Potential of Construction Materials.

    Science.gov (United States)

    Rodrigues, Patrícia; Silvestre, José D; Flores-Colen, Inês; Viegas, Cristina A; de Brito, Jorge; Kurad, Rawaz; Demertzi, Martha

    2017-06-13

    Innovation in construction materials (CM) implies changing their composition by incorporating raw materials, usually non-traditional ones, which confer the desired characteristics. However, this practice may have unknown risks. This paper discusses the ecotoxicological potential associated with raw and construction materials, and proposes and applies a methodology for the assessment of their ecotoxicological potential. This methodology is based on existing laws, such as Regulation (European Commission) No. 1907/2006 (REACH-Registration, Evaluation, Authorization and Restriction of Chemicals) and Regulation (European Commission) No. 1272/2008 (CLP-Classification, Labelling and Packaging). Its application and validation showed that raw material without clear evidence of ecotoxicological potential, but with some ability to release chemicals, can lead to the formulation of a CM with a slightly lower hazardousness in terms of chemical characterization despite a slightly higher ecotoxicological potential than the raw materials. The proposed methodology can be a useful tool for the development and manufacturing of products and the design choice of the most appropriate CM, aiming at the reduction of their environmental impact and contributing to construction sustainability.

  10. Technical committee on transport package test standards (for radioactive materials transport). Vienna, 6-10 August 1979

    International Nuclear Information System (INIS)

    White, M.C.

    1979-11-01

    The report of a meeting of the technical committee on transport package test standards is presented. The committee assigned high priority to work on Low Level Solid material and Low Specific Activity material, on the justification for and requirements of a Crush Test and on leakage from packages

  11. Comparative researches concerning cleaning chosen construction materials surface layer using UV and IR laser radiation

    International Nuclear Information System (INIS)

    Napadlek, W.; Marczak, J.; Kubicki, J.; Szudrowicz, M.

    2002-01-01

    The paper presents comparative research studies of cleaning out of deposits and pollution disposals on different constructional materials like; steel, cast iron, aluminium, copper by using UV and IR laser radiation of wavelength λ =1.064 μm; λ = 0.532 μm; λ = 0.355 μm and λ = 0.266 μm and also impulse laser TEA CO 2 at radiation λ = 10.6 μm were used for the experiments. Achieved experimental results gave us basic information on parameters and conditions and application of each used radiation wavelength. Each kind of pollution and base material should be individually treated, selecting the length of wave and radiation energy density. Laser microtreatment allows for broad cleaning application of the surface of constructional materials as well as may be used in future during manufacturing processes as: preparation of surface for PVD technology, galvanotechnics, cleaning of the surface of machine parts etc. (author)

  12. Determination of radon exhalation from construction materials using VOC emission test chambers.

    Science.gov (United States)

    Richter, M; Jann, O; Kemski, J; Schneider, U; Krocker, C; Hoffmann, B

    2013-10-01

    The inhalation of (222) Rn (radon) decay products is one of the most important reasons for lung cancer after smoking. Stony building materials are an important source of indoor radon. This article describes the determination of the exhalation rate of stony construction materials by the use of commercially available measuring devices in combination with VOC emission test chambers. Five materials - two types of clay brick, clinker brick, light-weight concrete brick, and honeycomb brick - generally used for wall constructions were used for the experiments. Their contribution to real room concentrations was estimated by applying room model parameters given in ISO 16000-9, RP 112, and AgBB. This knowledge can be relevant, if for instance indoor radon concentration is limited by law. The test set-up used here is well suited for application in test laboratories dealing with VOC emission testing. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Materials Design and System Construction for Conventional and New-Concept Supercapacitors.

    Science.gov (United States)

    Wu, Zhong; Li, Lin; Yan, Jun-Min; Zhang, Xin-Bo

    2017-06-01

    With the development of renewable energy and electrified transportation, electrochemical energy storage will be more urgent in the future. Supercapacitors have received extensive attention due to their high power density, fast charge and discharge rates, and long-term cycling stability. During past five years, supercapacitors have been boomed benefited from the development of nanostructured materials synthesis and the promoted innovation of devices construction. In this review, we have summarized the current state-of-the-art development on the fabrication of high-performance supercapacitors. From the electrode material perspective, a variety of materials have been explored for advanced electrode materials with smart material-design strategies such as carbonaceous materials, metal compounds and conducting polymers. Proper nanostructures are engineered to provide sufficient electroactive sites and enhance the kinetics of ion and electron transport. Besides, new-concept supercapacitors have been developed for practical application. Microsupercapacitors and fiber supercapacitors have been explored for portable and compact electronic devices. Subsequently, we have introduced Li-/Na-ion supercapacitors composed of battery-type electrodes and capacitor-type electrode. Integrated energy devices are also explored by incorporating supercapacitors with energy conversion systems for sustainable energy storage. In brief, this review provides a comprehensive summary of recent progress on electrode materials design and burgeoning devices constructions for high-performance supercapacitors.

  14. The distribution of common construction materials at risk to acid deposition in the United States

    Science.gov (United States)

    Lipfert, Frederick W.; Daum, Mary L.

    Information on the geographic distribution of various types of exposed materials is required to estimate the economic costs of damage to construction materials from acid deposition. This paper focuses on the identification, evaluation and interpretation of data describing the distributions of exterior construction materials, primarily in the United States. This information could provide guidance on how data needed for future economic assessments might be acquired in the most cost-effective ways. Materials distribution surveys from 16 cities in the U.S. and Canada and five related databases from government agencies and trade organizations were examined. Data on residential buildings are more commonly available than on nonresidential buildings; little geographically resolved information on distributions of materials in infrastructure was found. Survey results generally agree with the appropriate ancillary databases, but the usefulness of the databases is often limited by their coarse spatial resolution. Information on those materials which are most sensitive to acid deposition is especially scarce. Since a comprehensive error analysis has never been performed on the data required for an economic assessment, it is not possible to specify the corresponding detailed requirements for data on the distributions of materials.

  15. Sintering and dielectric properties of a technical porcelain prepared from economical natural raw materials

    Directory of Open Access Journals (Sweden)

    S. Kasrani

    Full Text Available Abstract In this study, the production of a technical porcelain, for the ceramic dielectric applications by using economical natural raw materials, was investigated. The basic porcelain composition was selected consisting of 30 wt% kaolin, 45 wt% potash-feldspar and 25 wt% quartz. The obtained phases in the sintered samples were investigated by X-ray diffraction, Fourier transform infrared spectroscopy analysis, and scanning electron microscopy images. It has been confirmed by these techniques that the main crystalline phases were quartz and mullite. Dielectric measurements of technical porcelains have been carried out at 1 kHz from room temperature to 200 °C. The dielectric constant, loss factor, dielectric loss tangent, and resistivity of the porcelain sample sintered at 1160 °C were 22-25, 0.32-1.80, 0.006-0.07, and 0.2-9 x 1013 Ω.cm, respectively. The value of dielectric constant was significantly high when compared to that of conventional porcelains which did not exceed generally 9.

  16. Sintering and dielectric properties of a technical porcelain prepared from economical natural raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Kasrani, S.; Harabi, A.; Barama, S.-E.; Foughali, L.; Benhassine, M. T., E-mail: souad478@yahoo.fr, E-mail: harabi52@gmail.com, E-mail: sebarama@usa.com, E-mail: foughali_lazhar@yahoo.fr, E-mail: mtb25dz@gmail.com [Ceramics Lab. Mentouri University of Constantine (Algeria); Aldhayan, D.M., E-mail: aldhayan@ksu.edu.sa [Chemistry Department, Riyadh, King Saud University (Saudi Arabia)

    2016-10-15

    In this study, the production of a technical porcelain, for the ceramic dielectric applications by using economical natural raw materials, was investigated. The basic porcelain composition was selected consisting of 30 wt% kaolin, 45 wt% potash-feldspar and 25 wt% quartz. The obtained phases in the sintered samples were investigated by X-ray diffraction, Fourier transform infrared spectroscopy analysis, and scanning electron microscopy images. It has been confirmed by these techniques that the main crystalline phases were quartz and mullite. Dielectric measurements of technical porcelains have been carried out at 1 kHz from room temperature to 200 °C. The dielectric constant, loss factor, dielectric loss tangent, and resistivity of the porcelain sample sintered at 1160 °C were 22-25, 0.32-1.80, 0.006-0.07, and 0.2-9 x 10{sup 13} Ω.cm, respectively. The value of dielectric constant was significantly high when compared to that of conventional porcelains which did not exceed generally 9. (author)

  17. Sintering and dielectric properties of a technical porcelain prepared from economical natural raw materials

    International Nuclear Information System (INIS)

    Kasrani, S.; Harabi, A.; Barama, S.-E.; Foughali, L.; Benhassine, M. T.; Aldhayan, D.M.

    2016-01-01

    In this study, the production of a technical porcelain, for the ceramic dielectric applications by using economical natural raw materials, was investigated. The basic porcelain composition was selected consisting of 30 wt% kaolin, 45 wt% potash-feldspar and 25 wt% quartz. The obtained phases in the sintered samples were investigated by X-ray diffraction, Fourier transform infrared spectroscopy analysis, and scanning electron microscopy images. It has been confirmed by these techniques that the main crystalline phases were quartz and mullite. Dielectric measurements of technical porcelains have been carried out at 1 kHz from room temperature to 200 °C. The dielectric constant, loss factor, dielectric loss tangent, and resistivity of the porcelain sample sintered at 1160 °C were 22-25, 0.32-1.80, 0.006-0.07, and 0.2-9 x 10 13 Ω.cm, respectively. The value of dielectric constant was significantly high when compared to that of conventional porcelains which did not exceed generally 9. (author)

  18. Utilization of ashes as construction materials in landfills; Askanvaendning i deponier

    Energy Technology Data Exchange (ETDEWEB)

    Tham, Gustav [Telge AB, Soedertaelje (Sweden); Ifwer, Karin [AaF-Process AB, Stockholm (Sweden)

    2006-03-15

    Large amounts of material will be needed to cover landfill sites in Sweden and other EU states over the next ten years. It is estimated that more than one hundred million tons of material will be required in Sweden alone in order to comply with the EU Landfill Directive (1999/31/EC). Suitable natural materials to be used in landfill cover constructions are not available on site. This report summarises the present use of secondary construction material in waste management with a focus on incineration ash. Information from eleven landfill sites has been compiled and includes the practical experience of using ash as the primary material in landfill cover. Other applications of using ash on landfill sites are also discussed. According to Swedish law, a complete cover of a landfill site consists of five different layers, each having its own specific function. The permeability of the total cover should then satisfy the permeability requirements of 50 litres per square meter and year for non-hazardous waste landfill sites and 5 litres per square meter and year for those with hazardous waste. The main purpose of this report is to describe how ash is used in the different layers and discuss the advantages or disadvantages of the techniques applied. Various landfill sites have submitted information ranging from small test areas on a pilot scale to full scale application of techniques on several hectares. Each project is part of the general Vaermeforsk research program for 2003-2005, Environmentally proper use of ash. The overall results show that incineration ash is a suitable material for use in liner constructions, either alone, or mixed with sewage sludge. Data from water percolating below the liner has indicated that the liners can meet permeability requirements. Special techniques for applying the various layers have been described. It is important to have materials readily available for an area, in order to avoid long period of exposure to dry or wet weather. Some

  19. Technical assistance to the manufacture, construction and assembly of Osorio-Canoas oil pipeline flow pumps

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Kellson Takenaka; Rangel Junior, Joilson Rangel; Costa, Jose Coelho [Petroleo Brasileiro S/A (PETROBRAS), Rio de Janeiro, RJ (Brazil)], E-mails: kellson.telsan@petrobras.com.br, joilson_jr@petrobras.com.br, jccoelho.telsan@petrobras.com.br

    2010-07-01

    This paper reports the experiences acquired through the modifications and improvements implemented in the manufacture, construction and assembly of the oil flow centrifugal pumps of the Osorio-Canoas Oil Pipeline (OSCAN 22''), located in Rio Grande do Sul. The OSCAN 22'' pumping capacity expansion was conceived aiming at meeting the Alberto Pasqualini Refinery (REFAP) processing increase project from 20,000 m{sup 3}/day to 30,000 m{sup 3}/day, besides changing the product profile from processed product to national high viscosity national oils. Due to this reason, a new pump park at the Almirante Soares Dutra Terminal (TEDUT) and a new intermediate pump station named Estacao de Santo Antonio da Patrulha (ESPAT) have been erected. Thus, the oil received by a tanker and stored at TEDUT was now pumped to ESPAT and then to REFAP through a 97 km long and 22 inch diameter oil pipeline named OSCAN 22''. In order to get such oil flow done, 03 new main pumps have been installed at TEDUT, one of them being a stand-by one, and other 03 pumps at ESPAT, one of them being also a stand-by one. During the startup of TEDUT's pumps, high vibration levels were observed in the rotors and in the equipment structures. The values defined by the manufacturer for equipment alarm and shutdown were, respectively, 50.0 {mu}m and 75.0 {mu}m, measured on the pump rotors in the bearing region. However, the global vibration levels of the TEDUT's pumps reached 110.0 {mu}m during the startup attended by the manufacturers. The equipment warranty period started after that, and a detailed activity planning was drawn up with the purpose of keeping TEDUT running with the new pumps at the lowest possible operational risk and avoiding a production reduction at REFAP. Simultaneously, various actions were taken in order to identify the vibration sources and reduce its intensity to the lowest possible values. After equipment modifications, median vibration values at 15

  20. Study of improving the thermal response of a construction material containing a phase change material

    Science.gov (United States)

    Laaouatni, A.; Martaj, N.; Bennacer, R.; Elomari, M.; El Ganaoui, M.

    2016-09-01

    The use of phase change materials (PCMs) for improving the thermal comfort in buildings has become an attractive application. This solution contributes to increasing the thermal inertia of the building envelope and reducing power consumption. A building element filled with a PCM and equipped with ventilation tubes is proposed, both for increasing inertia and contributing to refreshing building envelope. A numerical simulation is conducted by the finite element method in COMSOL Multiphysics, which aims to test the thermal behaviour of the developed solution. An experimental study is carried out on a concrete block containing a PCM with ventilation tubes. The objective is to see the effect of PCM coupled with ventilation on increasing the inertia of the block. The results show the ability of this new solution to ensure an important thermal inertia of a building.

  1. Analysis of Technical Status on the Application of Cementitious Materials for Radwaste Repository

    International Nuclear Information System (INIS)

    Kim, Jin Seop; Kwon, Sang Ki; Cho, Won Jin

    2008-12-01

    In this report, technical status on the application of cementitious materials and related research trends in Sweden, Switzerland and Japan etc. is listed based on the example of ONKALO in Finland. SKB and POSIVA have defined a pH limit ≤ 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate(CSH) gel with a Ca/Si ratio ≤ 0.8(Savage D. 2007). Silica fume as a blending agent is considered to be most promising for repository low-pH grouts. When adding silica fume to enhance cement quality, it demands high water content in cement paste. Then it is necessary to use additives such as superplasticiser to improve the workability of low-pH cement. Posiva, SKB and NUMO co-operated in developing low-pH grouts for deep repositories 2002-2005. Additionally, it is needed to study more about long-term performance characteristics, interaction of bentonite buffer material with high pH plume, influence on the migration/sorption of radionuclides and their performance numerical modeling. In this regards, international co-research projects such as ESDRED and IAEA CRP are being actively performed

  2. Road construction replaceable materials. An alternative to oil-based materials

    International Nuclear Information System (INIS)

    Deneuvillers, C.; Chappat, M.

    2008-01-01

    For some time the world has been subjected enormous upheavals with regard to energy resources: on one hand there is the steep rise in the price of oil and the other energy sources whose price depends on it; on the other hand, the prospects are that during the next 25 to 30 years oil resources will become increasingly scarce, which raises the problem of its replacement. This situation obviously raises the vital question of the present and future energy needs of each country, and, consequently, what type of energy. These are not only political issues but also issues for society. How could the roads sector help to find at least partial solutions? This paper will describe a policy adopted by a private sector construction company which is determined to apply the criteria of sustainable development and green chemistry in its products. Bitumen is a derivative of oil, can it be replaced? Most of the chemical products used in roads are petrochemical in nature, can they be replaced? Turning towards vegetable resources provides one way of reducing energy dependency. The paper demonstrates how this could be done, and at what price and with what precautions. This topic inevitably involves a discussion of the criteria of life-cycle analysis and an examination of how they can be applied in a clear manner. This response from industry has already provided some excellent results, which are described in this paper. It also attempts to show how vegetable resources may provide an opportunity for both developing and developed countries. The first could produce a new energy resource and increase their standard of living. The second could be a partial solution to their energy resources problems. Roads, which provide a universal link between different peoples, may still provide a future and hope. (authors)

  3. Application of Nanotechnology-Based Thermal Insulation Materials in Building Construction

    Directory of Open Access Journals (Sweden)

    Bozsaky David

    2016-03-01

    Full Text Available Nanotechnology-based materials have previously been used by space research, pharmaceuticals and electronics, but in the last decade several nanotechnology-based thermal insulation materials have appeared in building industry. Nowadays they only feature in a narrow range of practice, but they offer many potential applications. These options are unknown to most architects, who may simply be afraid of these materials owing to the incomplete and often contradictory special literature. Therefore, they are distrustful and prefer to apply the usual and conventional technologies. This article is intended to provide basic information about nanotechnology-based thermal insulation materials for designers. It describes their most important material properties, functional principles, applications, and potential usage options in building construction.

  4. Material characteristics and construction methods for a typical research reactor concrete containment in Iran

    International Nuclear Information System (INIS)

    Ebrahimia, Mahsa; Suha, Kune Y.; Eghbalic, Rahman; Jahan, Farzaneh Asadi malek

    2012-01-01

    Generally selecting an appropriate material and also construction style for a concrete containment due to its function and special geometry play an important role in applicability and also construction cost and duration decrease in a research reactor (RR) project. The reactor containment enclosing the reactor vessel comprises physical barriers reflecting the safety design and construction codes, regulations and standards so as to prevent the community and the environment from uncontrolled release of radioactive materials. It is the third and the last barrier against radioactivity release. It protects the reactor vessel from such external events as earthquake and aircraft crash as well. Thus, it should be designed and constructed in such a manner as to withstand dead and live loads, ground and seismic loads, missiles and aircraft loads, and thermal and shrinkage loads. This study aims to present a construction method for concrete containment of a typical RR in Iran. The work also presents an acceptable characteristic for concrete and reinforcing re bar of a typical concrete containment. The current study has evaluated the various types of the RR containments. The most proper type was selected in accordance with the current knowledge and technology of Iran

  5. Material characteristics and construction methods for a typical research reactor concrete containment in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimia, Mahsa; Suha, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of); Eghbalic, Rahman; Jahan, Farzaneh Asadi malek [School of Architecture and Urbanism, Qazvin (Iran, Islamic Republic of)

    2012-10-15

    Generally selecting an appropriate material and also construction style for a concrete containment due to its function and special geometry play an important role in applicability and also construction cost and duration decrease in a research reactor (RR) project. The reactor containment enclosing the reactor vessel comprises physical barriers reflecting the safety design and construction codes, regulations and standards so as to prevent the community and the environment from uncontrolled release of radioactive materials. It is the third and the last barrier against radioactivity release. It protects the reactor vessel from such external events as earthquake and aircraft crash as well. Thus, it should be designed and constructed in such a manner as to withstand dead and live loads, ground and seismic loads, missiles and aircraft loads, and thermal and shrinkage loads. This study aims to present a construction method for concrete containment of a typical RR in Iran. The work also presents an acceptable characteristic for concrete and reinforcing re bar of a typical concrete containment. The current study has evaluated the various types of the RR containments. The most proper type was selected in accordance with the current knowledge and technology of Iran.

  6. Construction cost impacts related to manpower, material, and equipment factors in contractor firms perspective

    Science.gov (United States)

    Husin, Saiful; Abdullah, Riza, Medyan; Afifuddin, Mochammad

    2017-11-01

    Risk can be defined as consequences which possible happened inscrutably. Although an activity has planned as good as possible, but it keep contains uncertainty. Implementation of construction project was encountering various risk impacts from a number of risk factors. This study was intended to analyze the impacts of construction cost to for contractor firms as construction project executor related to the factors of manpower, material and equipment. The study was using data obtained from questionnaires distributed to 15 large qualification contractor firms. The period of study classified into conflict period (2000-2004), post tsunami disaster rehabilitation and reconstruction period (2005-2009), and post rehabilitation and reconstruction period (2010-present). The statistical analysis of severity index and variance used to analyze the data. The three risk factors reviewed generally affected the cost in a medium impact. The high impact occurred in minor variables, which are `increase in material prices', `theft of materials', and `the fuel scarcity'. In overall, the three risk factors and the observed period contributed significant impact on construction costs.

  7. Synthesis and Characterization of High Aluminum Zeolite X from Technical Grade Materials

    Directory of Open Access Journals (Sweden)

    Seyed Kamal Masoudian

    2013-06-01

    Full Text Available Zeolites are widely used as ion exchangers, adsorbents, separation materials and catalyst due to their well-tailored and highly-reproducible structures; therefore, the synthesis of zeolite from low grade resources can be interested. In the present work, high aluminum zeolite X was prepared from mixing technical grade sodium aluminate and sodium silicate solutions at temperatures between 70°C and 100°C. The synthesized zeolite X was characterized by SEM and X-ray methods according to ASTM standard procedures. The results showed that aging of the synthesis medium at the room temperature considerably increased the selectivity of zeolite X formation. On the other hand, high temperature of reaction mixture during crystallization formed zeolite A in the product; therefore, it decreased the purity of zeolite X. In addition, it was found that increasing H2O/Na2O and decreasing Na2O/SiO2 molar ratios in the reaction mixture resulted product with higher purity. © 2013 BCREC UNDIP. All rights reservedReceived: 7th January 2013; Revised: 7th April 2013; Accepted: 19th April 2013[How to Cite: Masoudian, S. K., Sadighi, S., Abbasi, A. (2013. Synthesis and Characterization of High Alu-minum Zeolite X from Technical Grade Materials. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 54-60. (doi:10.9767/bcrec.8.1.4321.54-60][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4321.54-60] | View in  |

  8. Rapid Construction of Fe-Co-Ni Composition-Phase Map by Combinatorial Materials Chip Approach.

    Science.gov (United States)

    Xing, Hui; Zhao, Bingbing; Wang, Yujie; Zhang, Xiaoyi; Ren, Yang; Yan, Ningning; Gao, Tieren; Li, Jindong; Zhang, Lanting; Wang, Hong

    2018-03-12

    One hundred nanometer thick Fe-Co-Ni material chips were prepared and isothermally annealed at 500, 600, and 700 °C, respectively. Pixel-by-pixel composition and structural mapping was performed by microbeam X-ray at synchrotron light source. Diffraction images were recorded at a rate of 1 pattern/s. The XRD patterns were automatically processed, phase-identified, and categorized by hierarchical clustering algorithm to construct the composition-phase map. The resulting maps are consistent with corresponding isothermal sections reported in the ASM Alloy Phase Diagram Database, verifying the effectiveness of the present approach in phase diagram construction.

  9. Technical considerations for detection of and response to illicit trafficking in radioactive materials

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Arlt, R.; Cunningham, J.; Gayral, J.P.; Kravchenko, N.; Smith, D.; York, R.

    2001-01-01

    Full text: The need for guidance and recommendations explicitly directed to the problem of illicit trafficking in nuclear materials and other radioactive sources was raised by the IAEA Director General at the IAEA General Conference in December 1994, and measures were agreed by the IAEA Board of Governors in March 1995. Measures that might be taken to prevent, detect, and respond to illicit trafficking will be common for all radioactive materials, including nuclear materials. However, nuclear materials are, or should be, subject also to safeguards for nuclear non-proliferation purposes and to physical protection to prevent diversion. The IAEA has established close co-operation with intergovernmental and non-governmental organizations, in particular the World Customs Organization (WCO) and INTERPOL to conduct joint studies, meetings and training programs to support Member States in their border control activities. Within this programme technical information has been derived on requirements and methods to detect and respond to events involving inadvertent movement of and illicit trafficking in radioactive materials. The paper summarises the most important results and the experience obtained in this field. Concerning 'detection' information on strategy of detection, selection of an investigation level, techniques for radiation monitoring at borders, verification of alarms, search techniques and identification of radionuclides has been developed. This includes recommended minimum requirements for monitoring equipment, derived from the results of an extended international pilot study on border monitoring equipment ITRAP, conducted by IAEA in co-operation with the Austrian government. In order to discover illicit trafficking or inadvertent movement in radioactive materials, the following steps are required: detection of any abnormal radiation level, verification of such detection, localisation of the origin of the radiation, radiation safety measurement, and

  10. Review of the proposed materials of construction for the SBWR and AP600 advanced reactors

    International Nuclear Information System (INIS)

    Diercks, D.R.; Shack, W.J.; Chung, H.M.; Kassner, T.F.

    1994-06-01

    Two advanced light water reactor (LWR) concepts, namely the General Electric Simplified Boiling Water Reactor (SBWR) and the Westinghouse Advanced Passive 600 MWe Reactor (AP600), were reviewed in detail by Argonne National Laboratory. The objectives of these reviews were to (a) evaluate proposed advanced-reactor designs and the materials of construction for the safety systems, (b) identify all aging and environmentally related degradation mechanisms for the materials of construction, and (c) evaluate from the safety viewpoint the suitability of the proposed materials for the design application. Safety-related systems selected for review for these two LWRs included (a) reactor pressure vessel, (b) control rod drive system and reactor internals, (c) coolant pressure boundary, (d) engineered safety systems, (e) steam generators (AP600 only), (f) turbines, and (g) fuel storage and handling system. In addition, the use of cobalt-based alloys in these plants was reviewed. The selected materials for both reactors were generally sound, and no major selection errors were found. It was apparent that considerable thought had been given to the materials selection process, making use of lessons learned from previous LWR experience. The review resulted in the suggestion of alternate an possibly better materials choices in a number of cases, and several potential problem areas have been cited

  11. Materials Design and System Construction for Conventional and New‐Concept Supercapacitors

    Science.gov (United States)

    Wu, Zhong; Li, Lin

    2017-01-01

    With the development of renewable energy and electrified transportation, electrochemical energy storage will be more urgent in the future. Supercapacitors have received extensive attention due to their high power density, fast charge and discharge rates, and long‐term cycling stability. During past five years, supercapacitors have been boomed benefited from the development of nanostructured materials synthesis and the promoted innovation of devices construction. In this review, we have summarized the current state‐of‐the‐art development on the fabrication of high‐performance supercapacitors. From the electrode material perspective, a variety of materials have been explored for advanced electrode materials with smart material‐design strategies such as carbonaceous materials, metal compounds and conducting polymers. Proper nanostructures are engineered to provide sufficient electroactive sites and enhance the kinetics of ion and electron transport. Besides, new‐concept supercapacitors have been developed for practical application. Microsupercapacitors and fiber supercapacitors have been explored for portable and compact electronic devices. Subsequently, we have introduced Li‐/Na‐ion supercapacitors composed of battery‐type electrodes and capacitor‐type electrode. Integrated energy devices are also explored by incorporating supercapacitors with energy conversion systems for sustainable energy storage. In brief, this review provides a comprehensive summary of recent progress on electrode materials design and burgeoning devices constructions for high‐performance supercapacitors. PMID:28638780

  12. Mix design and mechanical performance of geopolymer binder for sustainable construction and building material

    Science.gov (United States)

    Saeli, Manfredi; Novais, Rui M.; Seabra, Maria Paula; Labrincha, João A.

    2017-11-01

    Sustainability in construction is a major concern worldwide, due to the huge volume of materials and energy consumed by this sector. Associated supplementing industries (e.g. Portland cement production) constitute a significant source of CO2 emissions and global warming. Valorisation and reuse of industrial wastes and by-products make geopolymers a solid and sustainable via to be followed as a valid alternative to Portland cement. In this work the mix design of a green fly ash-based geopolymer is evaluated as an environmentally friendly construction material. In the pursuit of sustainability, wastes from a regional kraft pulp industry are exploited for the material processing. Furthermore, a simple, reproducible, and low-cost manufacture is used. The mix design is hence optimised in order to improve the desirable mechanical performance of the material intended for structural applications in construction. Tests indicate that geopolymers may efficiently substitute the ordinary Portland cement as a mortar/concrete binder. Furthermore, valorisation and reuse of wastes in geopolymers is a suboptimal way of gaining financial surplus for the involved industrial players, while contributes for the implementation of a desirable circular economy.

  13. Creation of Polyurethane Injection Materials, Their Pilot-industrial Production, Development and Industrial Introduction of the Technology of Strengthening and Restoring the Operability of Damaged Constructions and Buildings

    Directory of Open Access Journals (Sweden)

    Marukha, V.І.

    2015-01-01

    Full Text Available Polyurethane and foam polyurethane fluid injection materials not conceding foreign analogues and technology technology of restoration and strengthening the operability of concrete and reinforced concrete structures and buildings damaged by cracks were developed. Normative and technical documentation on the injection materials and technological processes was created. The diagnosticrestoring complex for implementing the above technologies was designed, installed and utilized at the construction sites. The equipment is designed and manufactured; the technology of the research and industrial production of «A» and «B» components of injecting polyurethane materials is designed and developed. The pilot-scale batch is manufactured. Technological processes of preparation and application of the «A» and «B» componentsof the injecting materials in industrial conditions are worked out and implemented.

  14. New Experiences in Dike Construction with Soil-Ash Composites and Fine-Grained Dredged Materials

    Directory of Open Access Journals (Sweden)

    Duszyński Remigiusz

    2017-12-01

    Full Text Available The supporting structure inside a coastal dike is often made of dredged non-uniform sand with good compaction properties. Due to the shortage of natural construction material for both coastal and river dikes and the surplus of different processed materials, new experiments were made with sand-ash mixtures and fine-grained dredged materials to replace both dike core and dike cover materials resulting in economical, environmentally friendly and sustainable dikes. Ash from EC Gdańsk and dredged sand from the Vistula river were mixed to form an engineering material used for dike construction. The optimum sand-ash composites were applied at a field test site to build a large-scale research dike. Fine-grained dredged materials from Germany were chosen to be applied in a second full-scale research dike in Rostock. All materials were investigated according to the standards for soil mechanical analysis. This includes basic soil properties, mechanical characteristics, such as grain-size distribution, compaction parameters, compressibility, shear strength, and water permeability. In the field, the infiltration of water into the dike body as well as the erosion resistance of the cover material against overflowing water was determined. Results of both laboratory and field testing are discussed in this paper. In conclusion, the mixing of bottom ash with mineral soil, such as relatively uniform dredged sand, fairly improves the geotechnical parameters of the composite, compared to the constituents. Depending on the composite, the materials may be suitable to build a dike core or an erosion-resistant dike cover.

  15. New Experiences in Dike Construction with Soil-Ash Composites and Fine-Grained Dredged Materials

    Science.gov (United States)

    Duszyński, Remigiusz; Duszyńska, Angelika; Cantré, Stefan

    2017-12-01

    The supporting structure inside a coastal dike is often made of dredged non-uniform sand with good compaction properties. Due to the shortage of natural construction material for both coastal and river dikes and the surplus of different processed materials, new experiments were made with sand-ash mixtures and fine-grained dredged materials to replace both dike core and dike cover materials resulting in economical, environmentally friendly and sustainable dikes. Ash from EC Gdańsk and dredged sand from the Vistula river were mixed to form an engineering material used for dike construction. The optimum sand-ash composites were applied at a field test site to build a large-scale research dike. Fine-grained dredged materials from Germany were chosen to be applied in a second full-scale research dike in Rostock. All materials were investigated according to the standards for soil mechanical analysis. This includes basic soil properties, mechanical characteristics, such as grain-size distribution, compaction parameters, compressibility, shear strength, and water permeability. In the field, the infiltration of water into the dike body as well as the erosion resistance of the cover material against overflowing water was determined. Results of both laboratory and field testing are discussed in this paper. In conclusion, the mixing of bottom ash with mineral soil, such as relatively uniform dredged sand, fairly improves the geotechnical parameters of the composite, compared to the constituents. Depending on the composite, the materials may be suitable to build a dike core or an erosion-resistant dike cover.

  16. Gas-cooled reactor technology safety and siting. Report of a technical committee meeting. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-07-01

    At the invitation of the Government of the Union of Soviet Socialist Republics, the Eleventh International Conference on the HTGR and the IAEA Technical Committee Meeting on Gas-Cooled Reactor Technology, Safety and Siting were held in Dimitrovgrad, USSR, on June 21-23, 1989. The Technical Committee Meeting provided the Soviet delegates with an opportunity to display the breadth of their program on HTGRs to an international audience. Nearly one-half of the papers were presented by Soviet participants. Among the highlights of the meeting were the following: the diverse nature and large magnitude of the Soviet research and development program on high temperature gas-cooled reactors; the Government approval of the budget for the construction of the 30 MWt High Temperature Test Reactor (HTTR) in Japan (The schedule contemplates a start of construction in spring 1990 on a site at the Oarai Research Establishment and about a five year construction period.); disappointment in the announced plans to shutdown both the Fort St. Vrain (FSV) plant in the United States (US) and the Thorium High Temperature Reactor (THTR-300) in Germany (These two reactors presently represent the only operating HTGRs in the world since the AVR plant in Juelich, Germany, was also shutdown at the end of 1988.); the continuing negotiations between Germany and the USSR on the terms of the co-operation between the two countries for the construction of a HTR Module supplemented by joint research and development activities aimed at increasing coolant outlet temperatures from 750 deg. C to 950 deg. C; the continued enthusiasm displayed by both the US and German representatives for the potential of the small modular designs under development in both countries and the ability for these designs to meet the stringent requirements demanded for the future expansion of nuclear power; the combining of the HTGR technology interest of ABB-Atom and Siemens in Germany into a joint enterprise, HTR GmbH, in May 1989

  17. Gas-cooled reactor technology safety and siting. Report of a technical committee meeting. Working material

    International Nuclear Information System (INIS)

    1990-01-01

    At the invitation of the Government of the Union of Soviet Socialist Republics, the Eleventh International Conference on the HTGR and the IAEA Technical Committee Meeting on Gas-Cooled Reactor Technology, Safety and Siting were held in Dimitrovgrad, USSR, on June 21-23, 1989. The Technical Committee Meeting provided the Soviet delegates with an opportunity to display the breadth of their program on HTGRs to an international audience. Nearly one-half of the papers were presented by Soviet participants. Among the highlights of the meeting were the following: the diverse nature and large magnitude of the Soviet research and development program on high temperature gas-cooled reactors; the Government approval of the budget for the construction of the 30 MWt High Temperature Test Reactor (HTTR) in Japan (The schedule contemplates a start of construction in spring 1990 on a site at the Oarai Research Establishment and about a five year construction period.); disappointment in the announced plans to shutdown both the Fort St. Vrain (FSV) plant in the United States (US) and the Thorium High Temperature Reactor (THTR-300) in Germany (These two reactors presently represent the only operating HTGRs in the world since the AVR plant in Juelich, Germany, was also shutdown at the end of 1988.); the continuing negotiations between Germany and the USSR on the terms of the co-operation between the two countries for the construction of a HTR Module supplemented by joint research and development activities aimed at increasing coolant outlet temperatures from 750 deg. C to 950 deg. C; the continued enthusiasm displayed by both the US and German representatives for the potential of the small modular designs under development in both countries and the ability for these designs to meet the stringent requirements demanded for the future expansion of nuclear power; the combining of the HTGR technology interest of ABB-Atom and Siemens in Germany into a joint enterprise, HTR GmbH, in May 1989

  18. Recycled aggregate in road construction following the Spanish General Technical Specifications for Roads and Bridge Works (PG-3: a case study

    Directory of Open Access Journals (Sweden)

    Martín-Morales, M.

    2013-03-01

    Full Text Available This research characterizes four samples of recycled aggregate for their potential use in road construction projects in consonance with the Spanish General Technical Specifications for Roads and Bridge Works (PG-3. Although some fractions were of sufficient quality for the construction of embankments, backfills, and quarry-run fills, they were ultimately found to be unsuitable for the construction of underground drainage, granular structural layers, soil stabilization and concrete pavements. They were negatively evaluated because of their particle size distribution and sulfate content. Nevertheless, the quality of this recycled aggregate could be substantially improved by manually removing the gypsum before the crushing process at the plant or by selecting the material with greater care at the beginning of the process. Finally, we suggest that Construction and Demolition (C&D waste plant managers should modify the manufacturing process to obtain a suitable particle size distribution in accordance with PG-3 requirements and the projected use of the aggregate.

    En esta investigación se han caracterizado cuatro muestras de árido reciclado para su potencial uso en obras de carreteras en España siguiendo el Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG-3. Aunque algunas fracciones presentaron suficiente calidad para la construcción de terraplenes, rellenos localizados y rellenos todo en uno, resultaron inadecuadas para la construcción de drenes subterráneos, zahorras, suelos estabilizados y pavimentos de hormigón. Obtuvieron una evaluación negativa en cuanto a distribución granulométrica y contenido en sulfatos. No obstante, la calidad de este árido reciclado podría mejorar sustancialmente eliminando manualmente el yeso antes de la trituración en planta o seleccionando el material con un mayor cuidado al inicio del proceso. Finalmente, recomendamos que los empresarios de las plantas de residuos

  19. Coal combustion products in Europe valuable raw materials for the construction industry

    Energy Technology Data Exchange (ETDEWEB)

    Berg, W. vom; Feuerborn, H.J. [European Coal Combustion Products Association e.V., Essen (Germany)

    2005-07-01

    Coal combustion products (CCPs) are formed with the production of electricity in coal-fired power plants. The production of these CCPs has been increased by the years due to legal requirements for flue gas cleaning. The utilisation of CCPS is well is established in some European countries, based on long term experience and technical as well as environmental benefits. As CCPs are defined as waste materials by existing legislation the power industry has to handle the stigma put on the products and hamper the beneficial use. (orig.)

  20. Using constitutive equation gap method for identification of elastic material parameters: Technical insights and illustrations

    KAUST Repository

    Florentin, É ric; Lubineau, Gilles

    2011-01-01

    based on experimental full-field measurement. From a technical point of view, this approach requires to quickly describe a space of statically admissible stress fields. We present here the technical insights, inspired from previous works in verification

  1. Quality criteria for bottom ashes for civil construction. Part II Technical characteristics of bottom ashes; Kvalitetskriterier foer bottenaskor till vaegoch anlaeggningsbyggnad. Etapp II Bottenaskors tekniska egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Bahr, Bo von; Loorents, Karl-Johan; Ekvall, Annika; Arvidsson, Haakan [SP Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-01-15

    This report is the presentation of the second of two stages. This stage deals mainly with the testing of three different types of ashes and the evaluation and suitability of the chosen test methods. The project only relates to the technical aspects of ashes. The report is written in such a way that both ash owners (e.g. Energy companies) and those who build roads and constructions will find it meaningful. All test methods that are used for traditional materials (gravel and crushed rock) is not fitting for ashes. New test methods for some properties that will be tested must therefore be presented, tested practically and evaluated. The project encompasses both road and construction building but has a focus on road construction since there the highest and comprising demands are defined. Three bottom ashes of different types have been studied regarding some tenfold mechanical/physical parameters, essential for the functionality of the ash as a construction material. An important conclusion is that ash is from a functionality and characterisation point of view, an undefined concept that encloses materials with widely different properties. Despite that only three ashes have been looked into the range of results are varying large for some properties. This is especially true for the loose bulk density, water absorption and grain size distribution. It is also clear that some of the standard test methods for aggregates need to be exchanged by other methods, which are more adapted to alternative materials. One such example is water absorption, a property that further influences frost resistance, frost heave and such. All the proposed test methods that been used in the project is considered fitting for its purpose. The test methods can be divided into two categories the ones that yield easy assessable results and those that yield results hard to appraise. To the first group belong grain size distribution, loose bulk density, thermal conductivity, permeability and frost heave

  2. New Construction and Catalyst Support Materials for Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey

    4 reports results of testing dierent types of commercially available stainless steels, Ni-based alloys as well as titanium and tantalum as possible metallic bipolar plates and construction materials for HTPEMEC. The corrosion resistance was measured under simulated conditions of high temperature PEM...... steam electrolyzer. Steady-state voltammetry was used in combination with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) to evaluate the stability of the mentioned materials. It was found that stainless steels were the least resistant to corrosion under strong anodic...... stainless steel showed outstanding resistance to corrosion in selected media, while passivation of titanium was weak, and the highest rate of corrosion among all tested materials was observed for titanium at 120 °C. Today, there is a high interest in the eld towards investigation of new catalyst materials...

  3. Economic impact of using nonmetallic materials in low to intermediate temperature geothermal well construction

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Four appendices are included. The first covers applications of low-temperature geothermal energy including industrial processes, agricultural and related processes, district heating and cooling, and miscellaneous. The second discusses hydrogeologic factors affecting the design and construction of low-temperature geothermal wells: water quality, withdrawal rate, water depth, water temperature, basic well designs, and hydrogeologic provinces. In the third appendix, properties of metallic and nonmetallic materials are described, including: specific gravity, mechanical strength properties, resistance to physical and biological attack, thermal properties of nonmetallics, fluid flow characteristics, corrosion resistance, scaling resistance, weathering resistance of nonmetallics, and hydrolysis resistance of nonmetallics. Finally, special considerations in the design and construction of low-temperature geothermal wells using nonmetallics materials are covered. These include; drilling methods, joining methods, methods of casing and screen installation, well cementing, and well development. (MHR)

  4. Program-oriented approach to resource saving issues in construction materials industry

    Directory of Open Access Journals (Sweden)

    Novikova Galina

    2017-01-01

    Full Text Available The construction as a sector of the economy is one of the largest consumers of energy resources, and the building materials industry is today one of the most energy-intensive construction industry. At the enterprises of the building materials industry the different approaches and methods are used to solve resource and energy problems. Energy saving is considered not as an complex approach in the enterprise activity, but as activity for the implementation of specific energy-saving projects, which have limitations in time and in resources. The authors suggest to use a softwareoriented approach to solving the problems of resource and energy saving. For practical application of program-oriented approach we offer to use a structuring method of the decision-making, not previously used to solve problems of resource and energy saving.

  5. Radiometric analysis of construction materials using HPGe gamma-ray spectrometry.

    Science.gov (United States)

    Khandaker, M U; Jojo, P J; Kassim, H A; Amin, Y M

    2012-11-01

    Concentrations of primordial radionuclides in common construction materials collected from the south-west coastal region of India were determined using a high-purity germanium gamma-ray spectrometer. Average specific activities (Bq kg(-1)) for (238)U((226)Ra) in cement, brick, soil and stone samples were obtained as 54 ± 13, 21 ± 4, 50 ± 12 and 46 ± 8, respectively. Respective values of (232)Th were obtained as 65 ± 10, 21 ± 3, 58 ± 10 and 57 ± 12. Concentrations of (40)K radionuclide in cement, brick, soil and stone samples were found to be 440 ± 91, 290 ± 20, 380 ± 61 and 432 ± 64, respectively. To evaluate the radiological hazards, radium equivalent activity, various hazard indices, absorbed dose rate and annual effective dose have been calculated, and compared with the literature values. Obtained data could be used as reference information to assess any radiological contamination due to construction materials in future.

  6. PREFACE: International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014)

    Science.gov (United States)

    Kopanitsa, Natalia O.

    2015-01-01

    In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.

  7. Meta-analysis of the antecedent and consequent constructs of materialism

    Directory of Open Access Journals (Sweden)

    Fernando de Oliveira Santini

    2017-10-01

    Full Text Available Purpose – Materialism has been gaining ground in the academic field, especially from the 1980s on, given the relevance of understanding sentiments connected to possessing and acquiring goods. Thus, this meta-analysis was carried out to assess the antecedents and consequents of materialism. Design/methodology/approach – Based on a systematic review, we gathered a total 77 articles that examined those aspects, generating 99 effects-sizes and a cumulative sample of 40,288 studied individuals. Findings – The antecedents of materialism that showed a significant relationship with this construct were: perceived hedonic value, interpersonal influence, life satisfaction, and income. As for the consequents, we observed significance for purchase intention, impulsive buying, compulsive buying, conspicuous consumption, status consumption, and consumer involvement. Regarding the moderating effect, we observed that small samples produce greater effects. Furthermore, for the relationship between materialism and purchase intention, there are stronger effects for surveys conducted in Western countries. Originality/value – Based on the methodology applied in this study, we expected a solid and generalizable contribution regarding construct materialism.

  8. Perceived visual informativeness (PVI): construct and scale development to assess visual information in printed materials.

    Science.gov (United States)

    King, Andy J; Jensen, Jakob D; Davis, LaShara A; Carcioppolo, Nick

    2014-01-01

    There is a paucity of research on the visual images used in health communication messages and campaign materials. Even though many studies suggest further investigation of these visual messages and their features, few studies provide specific constructs or assessment tools for evaluating the characteristics of visual messages in health communication contexts. The authors conducted 2 studies to validate a measure of perceived visual informativeness (PVI), a message construct assessing visual messages presenting statistical or indexical information. In Study 1, a 7-item scale was created that demonstrated good internal reliability (α = .91), as well as convergent and divergent validity with related message constructs such as perceived message quality, perceived informativeness, and perceived attractiveness. PVI also converged with a preference for visual learning but was unrelated to a person's actual vision ability. In addition, PVI exhibited concurrent validity with a number of important constructs including perceived message effectiveness, decisional satisfaction, and three key public health theory behavior predictors: perceived benefits, perceived barriers, and self-efficacy. Study 2 provided more evidence that PVI is an internally reliable measure and demonstrates that PVI is a modifiable message feature that can be tested in future experimental work. PVI provides an initial step to assist in the evaluation and testing of visual messages in campaign and intervention materials promoting informed decision making and behavior change.

  9. Nondestructive indication of fatigue damage and residual lifetime in ferromagnetic construction materials

    Czech Academy of Sciences Publication Activity Database

    Tomáš, Ivan; Kovářík, O.; Vértesy, G.; Kadlecová, Jana

    2014-01-01

    Roč. 25, č. 6 (2014), "065601-1"-"065601-10" ISSN 0957-0233. [International Symposium on Measurement Technology and Intelligent Instruments /11./ (ISMTII). Aachen, 01.07.2013-03.07.2013] R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:68378271 Keywords : fatigue * residual lifetime * magnetic nondestructive evaluation * ferromagnetic construction materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.433, year: 2014

  10. On a new approach to the creation of construction materials of nuclear reactions

    International Nuclear Information System (INIS)

    Kolotushkin, V.P.; Parfenov, A.A.

    2012-01-01

    The acceleration of the recombination of vacancies and interstitial atoms upon neutron irradiation is a decisive factor of an increase in the radiation resistance of construction materials of nuclear reactors. The highest efficiency of the implementation of these processes is achieved when distortions appearing under the synergetic action of neutron radiation and short-range ordering of the crystal lattice are used as traps of vacancies and interstitial atoms [ru

  11. Construction projects using alternative materials: a framework to assess their sustainability.

    OpenAIRE

    Fevre-Gautier , Anne-Lise; Beylot , Antoine; Vaxelaire , Stéphane; Michel , Pascale; Brullot , Sabrina; Lannou , Grégory; Stoos , Marion

    2012-01-01

    The increasing use of alternative materials and local solutions for construction projects raises questions about success conditions and criteria for the economic feasibility and global sustainability of such projects. Among others, how can design conditions - especially regarding the decision process - determine their success? We will present the results of a two-years project conducted from February 2010 to March 2012 in collaboration with ADEME (French agency of environment and energy contr...

  12. Materials Design and System Construction for Conventional and New?Concept Supercapacitors

    OpenAIRE

    Wu, Zhong; Li, Lin; Yan, Jun?min; Zhang, Xin?bo

    2017-01-01

    With the development of renewable energy and electrified transportation, electrochemical energy storage will be more urgent in the future. Supercapacitors have received extensive attention due to their high power density, fast charge and discharge rates, and long?term cycling stability. During past five years, supercapacitors have been boomed benefited from the development of nanostructured materials synthesis and the promoted innovation of devices construction. In this review, we have summar...

  13. Environmental mining plan of the construction materials industry in Cartagena, Phase 1 Diagnostic. Vol.1 and Vol.2(Annex)

    International Nuclear Information System (INIS)

    Castiblanco, Carmen Rosa; Franco Serna, Jose Vicente; Nino, Jaime

    1996-01-01

    INGEOMINAS carried out this project in the cities of Cartagena, Bucaramanga, Cali and Bogota, in two phases: Phase 1 (Diagnostic) and Phase II (Formulation of Handling Plan). The phase 1 that here is described, it upgrades the knowledge of the extractive industry of the construction materials for the city of Cartagena, through bibliographical revision and field work, carried out in 50 quarries that supply from these materials to the city. This study, besides the economic and legal handling, identifies technical aspects related with the geology, the mining and the environmental situation. In accordance with their likeness, geologic, morphological and of exploitation (extraction methods and mining development), the quarries met in five groups: Exploitations on calcareous deposits of the La Popa Formation, exploitations on clay deposits of the La Popa Formation, exploitations on detritus deposits of half grain to thick (La Popa-Arenosa Formation; Pendales Conglomerate and Rotinet Formation) and exploitation of calcareous of the Arroyo de Piedra Formation. The extraction of these materials is characterized by its low degree of development technician, lack of planning mining, lack of appropriate infrastructure that allows a better development of the sector, is also evident the control lack on the part of the entities in charge of the handling of this industry. These factors added to a demand every time in increase of these materials, they have taken to a progressive deterioration in the landscape, increase of the noise and particles in the air and in the waters. The low control in this activity has generated the proliferation of informal exploitations that they find in this activity a way of subsistence

  14. Research into Behaviour Patterns Typical for Consumers of Construction Material as the Mission of Ecological Management

    Directory of Open Access Journals (Sweden)

    Ivanova Zinaida

    2016-01-01

    Full Text Available The objective of the co-authors is to study the motivation of purchasers of construction/finishing materials and the criteria that govern their selection. No systemic studies of consumer behavioral models and stereotypes in respect of residential housing have been performed so far. However, the environmentally determined management techniques, applicable to the production of building materials and construction of residential housing, are highly relevant both worldwide and in the Russian Federation. The co-authors have developed an original research methodology, drafted a questionnaire, and conducted a pilot survey. Its findings have proven that the price and quality of construction materials are the main factors that influence the decision making process in favor of particular items. Mere 14% of the respondents chose environmental friendliness as the decision making criterion. The findings of the focus group projects have also proven the trustworthiness of the stereotypes and behavioral models identified by the co-authors. The co-authors make a conclusion that further sociological surveys are needed to implement the patterns of environmentally determined management and to influence the value paradigms of the population.

  15. Technical meeting on 'Primary coolant pipe rupture event in liquid metal cooled fast reactors'. Working material

    International Nuclear Information System (INIS)

    2003-01-01

    In Liquid Metal cooled Fast Reactors (LMFR) or in accelerator driven sub-critical systems (ADS) with LMFR like sub-critical cores, the primary coolant pipes (PCP) connect the primary coolant pumps to the grid plate. A rupture in one of these pipes could cause significant loss of coolant flow to the core with severe consequences. In loop type reactors, all primary pipelines are provided with double envelopes and inter-space coolant leak monitoring systems that permit leak detection before break. Thus, the PCP rupture event can be placed in the beyond design basis event (BDBE) category. Such an arrangement is difficult to incorporate for pool type reactors, and hence it could be argued that the PCP rupture event needs to be analysed in detail as a design basis event (DBE, category 4 event). The primary coolant pipes are made of ductile austenitic stainless steel material and operate at temperatures of the cold pool and at comparatively low pressures. For such low stressed piping with negligible creep and embrittlement effects, it is of interest to discuss under what design provisions, for pool type reactors, the guillotine rupture of PCP could be placed in the BDBE category. The topical Technical Meeting (TM) on 'Primary Coolant Pipe Rupture Event in Liquid Metal Cooled Reactors' was called to enable the specialists to present the philosophy and analyses applied on this topic in the various Member States for different LMFRs. The scope of the Technical Meeting was to provide a global forum for information exchange on the philosophy applied in the various participating Member States and the analyses performed for different LMFRs with regard to the primary coolant pipe rupture event. More specifically, the objectives of the Technical Meeting were to review the safety philosophy for the PCP rupture event in pool type LMFR, to assess the structural reliability of the PCP and the probability of rupture under different conditions (with/without in-service inspection), to

  16. Improving the Technology of Obtaining Technical Ethanol from Alternative Raw Materials

    Directory of Open Access Journals (Sweden)

    Sergіj Petrov

    2018-05-01

    Full Text Available The purpose of the article is to study the properties of fallen leaves as raw materials for the production of bioethanol; Improvement of the technology of recycling cellulosic raw materials into bioethanol in the most energy-efficient and ecological way. As a result of the study, it has been found out that the production of biofuels from renewable raw materials is characterized by features of innovative technology: the rapid growth of this sector of economy is accompanied by a significant increase in market share. The use of fallen leaves as raw material will eliminate the current conflict of interests associated with the use of food raw materials for the production of bioethanol, will prevent the withdrawal of resources from the sphere of food production. Significant positive factors in the production and use of biofuels are improvement of environmental conditions, reduction of the harmful effects of exhaust gases on the human body, reducing environmental pollution and, consequently, reducing morbidity and associated costs of medical care. The use of bioethanol as an ecobiopilot makes it possible to increase the octane number of fuel, and, accordingly, increase the efficiency of the engine. Thus, the use of bioethanol leads to a qualitative improvement of technical and economic indicators, which is also an indicator of innovation. The threat of reducing (exhausting non-renewable sources of energy is also the factor that necessitates the development and improvement of biofuel production technology. The relatively low profitability of biofuel production is due to the low yield of the target product and the high cost of pre-treatment of cellulose raw materials. The method of obtaining bioethanol from renewable non-demanded raw materials - fallen leaves - was improved. The technique allows to increase the bioethanol yield due to more effective hydrolysis of hard-hydrolysable polysaccharides. Further development of the study of the differences in

  17. Measurement of color in different construction materials. The restoration in sandstone buildings

    Directory of Open Access Journals (Sweden)

    García Pascua, N.

    1999-03-01

    Full Text Available The use of construction materials and their subsequent repair purposes include a search of knowledge and preservation of their original appearance. For this reason, the main aim of this study is to determine a color range which does not change with the possible actions on a building, both when restoration works which imply the use and repair of "ancient" materials are carried out, and when construction is carried out with new materials. It is necessary to obtain the quantification of this property in order to check its variation over the passage of time. Each construction material must be taken into account as an isolated problem, since the color is different in each case.

    El empleo de materiales de construcción y la aplicación sobre ellos de productos de reparación requiere un detallado estudio sobre su forma de actuación y la importancia de la conservación del aspecto original de los mismos. Por este motivo, el objetivo principal de este estudio es el determinar un intervalo de color que se conserve a pesar de todas las posibles intervenciones que se acometan en el edificio, tanto cuando se realizan trabajos de restauración, que implican el uso y reparación de materiales "viejos", o bien cuando se llevan a cabo trabajos de construcción con materiales nuevos. Es necesario cuantificar dicha propiedad para poder controlar el paso del tiempo. Cada material de construcción debe ser considerado como un problema aislado, ya que el color es distinto en cada caso.

  18. MDEP Technical Report TR-CSWG-03. Technical Report: fundamental attributes for the design and construction of reactor coolant pressure-boundary components

    International Nuclear Information System (INIS)

    2014-01-01

    The primary, long-term goal of MDEP's CSWG is to achieve international harmonisation of codes and standards for pressure boundary components in nuclear power plants that are important to reactor safety. The key to achieving harmonisation is to understand the extent of similarities and differences amongst the pressure boundary codes and standards used in various countries. To assist the CSWG in its long-term goals, several standards development organisations (SDOs) from various countries performed a comparison of their pressure boundary codes and standards to identify the extent of similarities and differences in code requirements and the reasons for their differences. This CSWG document provides the fundamental attributes which have been developed for the codes and standards used in the design and construction of reactor coolant pressure boundary components in nuclear power plants. The fundamental attributes are the basic concepts to be considered in the design, materials, fabrication, installation, examination, testing and over-pressure protection requirements for pressure boundary components

  19. Characterization of tissue-equivalent materials for use in construction of physical phantoms

    International Nuclear Information System (INIS)

    Souza, Edvan V. de; Oliveira, Alex C.H. de; Vieira, Jose W.; Lima, Fernando R.A.

    2013-01-01

    Phantoms are physical or computational models used to simulate the transport of ionizing radiation, their interactions with human body tissues and evaluate the deposition of energy. Depending on the application, you can build phantoms of various types and features. The physical phantoms are made of materials with behavior similar to human tissues exposed to ionizing radiation, the so-called tissue-equivalent materials. The characterization of various tissue-equivalent materials is important for the choice of materials to be used is appropriate, seeking a better cost-benefit ratio. The main objective of this work is to produce tables containing the main characteristics of tissue-equivalent materials. These tables were produced in Microsoft Office Excel. Among the main features of tissue-equivalent materials that were added to the tables, are density, chemical composition, physical state, chemical stability and solubility. The main importance of this work is to contribute to the construction of high-quality physical phantoms and avoid the waste of materials

  20. Analysis of chromium and sulphate origins in construction recycled materials based on leaching test results.

    Science.gov (United States)

    Del Rey, I; Ayuso, J; Galvín, A P; Jiménez, J R; López, M; García-Garrido, M L

    2015-12-01

    Twenty samples of recycled aggregates from construction and demolition waste (CDW) with different compositions collected at six recycling plants in the Andalusia region (south of Spain) were characterised according to the Landfill Directive criteria. Chromium and sulphate were identified as the most critical compounds in the leachates. To detect the sources of these two pollutant constituents in recycled aggregate, environmental assessments were performed on eight construction materials (five unused ceramic materials, two old crushed concretes and one new mortar manufactured in the laboratory). The results confirmed that leached sulphate and Cr were mainly released by the ceramic materials (bricks and tiles). To predict the toxicological consequences, the oxidation states of Cr (III) and Cr (VI) were measured in the leachates of recycled aggregates and ceramic materials classified as non-hazardous. The bricks and tiles mainly released total Cr as Cr (III). However, the recycled aggregates classified as non-hazardous according to the Landfill Directive criteria mainly released Cr (VI), which is highly leachable and extremely toxic. The obtained results highlight the need for legislation that distinguishes the oxidative state in which chromium is released into the environment. Leaching level regulations must not be based solely on total Cr, which can lead to inaccurate predictions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Materials-of-Construction Radiation Sensitivity for a Fission Surface Power Convertor

    Science.gov (United States)

    Bowman, Cheryl L.; Geng, Steven M.; Niedra, Janis M.; Sayir, Ali; Shin, Eugene E.; Sutter, James K.; Thieme, Lanny G.

    2007-01-01

    A fission reactor combined with a free-piston Stirling convertor is one of many credible approaches for producing electrical power in space applications. This study assumes dual-opposed free-piston Stirling engines/linear alternators that will operate nominally at 825 K hot-end and 425 K cold-end temperatures. The baseline design options, temperature profiles, and materials of construction discussed here are based on historical designs as well as modern convertors operating at lower power levels. This notional design indicates convertors primarily made of metallic components that experience minimal change in mechanical properties for fast neutron fluences less than 10(sup 20) neutrons per square centimeter. However, these radiation effects can impact the magnetic and electrical properties of metals at much lower fluences than are crucial for mechanical property integrity. Moreover, a variety of polymeric materials are also used in common free-piston Stirling designs for bonding, seals, lubrication, insulation and others. Polymers can be affected adversely by radiation doses as low as 10(sup 5) - 10(sup 10) rad. Additionally, the absorbing dose rate, radiation hardness, and the resulting effect (either hardening or softening) varies depending on the nature of the particular polymer. The classes of polymers currently used in convertor fabrication are discussed along possible substitution options. Thus, the materials of construction of prototypic Stirling convertor engines have been considered and the component materials susceptible to damage at the lowest neutron fluences have been identified.

  2. Spanish experiences with marginal and special materials on the construction of road embankments; Experiencias de utilizacion de materiales marginales y especiales en terraplenes viarios en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Cano Linares, H.; Perucho Martinez, A.

    2015-07-01

    The use of existing materials along the alignment of a road is an essential problem within the Sustainable Development policies, which is being promoting worldwide since a long time. In the Word road Association (PIARC-AIPCR) this subject has being investigated by different Technical Committees during last decades. Additionally, the review of the article 330 Embankment of PG-3 (FOM 1382/2002) has opened the door to new non-conventional materials, as wastes and artificial materials, to be used on embankments. This could come to adequate solutions, technically, and environmentally, contributing with national legislation on valorisation policies. In this sense, the use of marginal materials and wastes con represent and important save on natural resources and dumping sites. In Spain, some experiences with marginal materials and wastes have being carried out. The work presented has consisted in compiling and analysing the experiences executed with marginal materials and wastes on Spanish road embankments. Although there are many other cases, 24 cases published with adequate information have being analysed, summarising aspects as: materials problems arrangement solutions or treatments employed. Analysing these experiences and making them public can be a way to transmit confidence, help to improve knowledge, and progress on the preparation of recommendations. This work has being carried out on the frame of the Project Geotechnical Engineering, Materials and Structures and Impact of Infrastructure in Civil engineering (TTIGEM), within the frame Program Border Cooperation Spain-External Borders (POCTEFEX); particularly in the Activity 2 related to Technology Transfer of Construction Materials, including marginal materials and wastes. (Author)

  3. A method for estimation of fatigue properties from hardness of materials through construction of expert system

    International Nuclear Information System (INIS)

    Jeon, Woo Soo; Song, Ji Ho

    2001-01-01

    An expert system for estimation of fatigue properties from simple tensile data of material is developed, considering nearly all important estimation methods proposed so far, i.e., 7 estimation methods. The expert system is developed to utilize for the case of only hardness data available. The knowledge base is constructed with production rules and frames using an expert system shell, UNIK. Forward chaining is employed as a reasoning method. The expert system has three functions including the function to update the knowledge base. The performance of the expert system is tested using the 54 ε-N curves consisting of 381 ε-N data points obtained for 22 materials. It is found that the expert system developed has excellent performance especially for steel materials, and reasonably good for aluminum alloys

  4. An Overview of the Use of Absolute Dating Techniques in Ancient Construction Materials

    Directory of Open Access Journals (Sweden)

    Jorge Sanjurjo-Sánchez

    2016-04-01

    Full Text Available The reconstruction of the chronology of historical buildings is a tricky issue, as usually there are not historical documents that allow the assessment of construction phases, and some materials are hardly reliable for the use of dating techniques (e.g., stone. However, in the last two decades, important advances on the use of absolute dating methods on building materials have increased the possibilities of reconstructing building chronologies, although some advances are still scarcely known among archaeologists and architects. Recent studies performed on several kinds of mortars, fired bricks, mud-bricks, and even stone surfaces have shown that it is possible to date them. Both radiocarbon and luminescence dating have been the most frequently used techniques but others such as archaeomagnetism can also be used in some cases. This paper intends to give an overview of the recent achievements on the use of absolute dating techniques for building materials.

  5. 3D printing for construction: a procedural and material-based approach

    Directory of Open Access Journals (Sweden)

    A. Nadal

    2017-06-01

    Full Text Available 3D printing for construction is stagnated at an early stage of development, especially regarding material optimization and procedural issues. These limitations are due to the specific knowledge that these technologies imply, the total cost of the machinery involved, and the lack of clear procedural guidelines. This paper presents a methodology that aims at overcoming these limitations through a workflow that allows for the ease of use of 6-axis robotic arms. A technique for the optimization of material usage is presented. A test case that shows the integration the design-to-fabrication process combining Integrated Robotic Systems (IRS and Additive Layer Manufacturing (ALM techniques is discussed. A structure-based approach to material optimization and smart infill patterning is introduced. A 0.4 x 0.4 x 1.5 m test part is shown as technological demonstrator.

  6. Heuristic economic assessment of the Afghanistan construction materials sector: cement and dimension stone production

    Science.gov (United States)

    Mossotti, Victor G.

    2014-01-01

    Over the past decade, the U.S. Government has invested more than $106 billion for physical, societal, and governmental reconstruction assistance to Afghanistan (Special Inspector General for Afghanistan Reconstruction, 2012a). This funding, along with private investment, has stimulated a growing demand for particular industrial minerals and construction materials. In support of this effort, the U.S. Geological Survey released a preliminary mineral assessment in 2007 on selected Afghan nonfuel minerals (Peters and others, 2007). More recently, the 2007 mineral assessment was updated with the inclusion of a more extensive array of Afghan nonfuel minerals (Peters and others, 2011). As a follow-up on the 2011 assessment, this report provides an analysis of the current use and prospects of the following Afghan industrial minerals required to manufacture construction materials: clays of various types, bauxite, gypsum, cement-grade limestone, aggregate (sand and gravel), and dimension stone (sandstone, quartzite, granite, slate, limestone, travertine, marble). The intention of this paper is to assess the: Use of Afghan industrial minerals to manufacture construction materials, Prospects for growth in domestic construction materials production sectors, Factors controlling the competitiveness of domestic production relative to foreign imports of construction materials, and Feasibility of using natural gas as the prime source of thermal energy and for generating electrical energy for cement production. The discussion here is based on classical principles of supply and demand. Imbedded in these principles is an understanding that the attributes of supply and demand are highly variable. For construction materials, demand for a given product may depend on seasons of the year, location of construction sites, product delivery time, political factors, governmental regulations, cultural issues, price, and how essential a given product might be to the buyer. Moreover, failure on the

  7. THE COMPLEX USE OF LOCAL TYPES OF FUEL IN THE POROUS CONSTRUCTION MATERIALS PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. P. Voronova

    2014-01-01

    Full Text Available The article presents a comprehensive low-waste technology is the use of local fuels, which can be used in the technology of some porous building materials. Also provides new methods of preparation of porous building materials based on aggloporite using local fuels and waste energy on the basis of milled peat, fuel briquettes and wood chips allow to replace expensive imported components that comprise the raw mixtures (coal, anthracite.On the basis of mathematical modeling of cooling in reheat furnaces pusher drive developed a method of engineering calculation mode batch hardening in agglomeration. Submitted constructive solution for the development of the cooling charge with thermophysical rational justification cooling modes. A study of the temperature distribution within the charge depending on the different speeds of the belt sintering machine, and hence on the cooling time.The characteristics of the raw material deposits "Fanipol" and the optimal composition of the charge which includes loam, coal, milled peat. In industrial research obtained aggloporite this formulation has shown positive results in strength and density. Established that by decreasing the particle size of the fuel increases the redox potential of the combustion products, which reduces the height of the oxidizing zone and the speed of the sintering raw mix. These processes increase the productivity of sinter machine.Technology is implemented on the "Minsk factory of building materials". The tests analyzed production technology porous construction materials using milled peat with the addition of sawdust. The study results recommend further use of sapropel, which cost significantly lower raw material mixture of submissions and in their physical and mechanical properties much closer to the properties of milled peat.

  8. Preparation and properties of hybrid materials for high-rise constructions

    Directory of Open Access Journals (Sweden)

    Matseevich Tatyana

    2018-01-01

    Full Text Available The theme of the research is important because it allows to use hybrid materials as finishing in the high-rise constructions. The aim of the study was the development of producing coloured hybrid materials based on liquid glass, a polyisocyanate, epoxy resin and 2.4-toluylenediisocyanate. The detailed study of the process of stress relaxation at different temperatures in the range of 20-100°C was provided. The study found that the obtained materials are subject to the simplified technology. The materials easy to turn different colors, and dyes (e.g. Sudan blue G are the catalysts for the curing process of the polymeric precursors. The materials have improved mechanical relaxation properties, possess different color and presentable, can be easily combined with inorganic base (concrete, metal. The limit of compressive strength varies from 32 to 17.5 MPa at a temperature of 20 to 100°C. The values σ∞ are from 20.4 to 7.7 MPa within the temperature range from 20 to 100°C. The physical parameters of materials were evaluated basing on the data of stress relaxation: the initial stress σ0, which occurs at the end of the deformation to a predetermined value; quasi-equilibrium stress σ∞, which persists for a long time relaxation process. Obtained master curves provide prediction relaxation behavior for large durations of relaxation. The study obtained new results. So, the addition of epoxy resin in the composition of the precursor improves the properties of hybrid materials. By the method of IR spectroscopy identified chemical transformations in the course of obtaining the hybrid material. Evaluated mechanical performance of these materials is long-time. Applied modern physically-based memory functions, which perfectly describe the stress relaxation process.

  9. Preparation and properties of hybrid materials for high-rise constructions

    Science.gov (United States)

    Matseevich, Tatyana

    2018-03-01

    The theme of the research is important because it allows to use hybrid materials as finishing in the high-rise constructions. The aim of the study was the development of producing coloured hybrid materials based on liquid glass, a polyisocyanate, epoxy resin and 2.4-toluylenediisocyanate. The detailed study of the process of stress relaxation at different temperatures in the range of 20-100°C was provided. The study found that the obtained materials are subject to the simplified technology. The materials easy to turn different colors, and dyes (e.g. Sudan blue G) are the catalysts for the curing process of the polymeric precursors. The materials have improved mechanical relaxation properties, possess different color and presentable, can be easily combined with inorganic base (concrete, metal). The limit of compressive strength varies from 32 to 17.5 MPa at a temperature of 20 to 100°C. The values σ∞ are from 20.4 to 7.7 MPa within the temperature range from 20 to 100°C. The physical parameters of materials were evaluated basing on the data of stress relaxation: the initial stress σ0, which occurs at the end of the deformation to a predetermined value; quasi-equilibrium stress σ∞, which persists for a long time relaxation process. Obtained master curves provide prediction relaxation behavior for large durations of relaxation. The study obtained new results. So, the addition of epoxy resin in the composition of the precursor improves the properties of hybrid materials. By the method of IR spectroscopy identified chemical transformations in the course of obtaining the hybrid material. Evaluated mechanical performance of these materials is long-time. Applied modern physically-based memory functions, which perfectly describe the stress relaxation process.

  10. Study on Plastic Coated Overburnt Brick Aggregate as an Alternative Material for Bituminous Road Construction

    Directory of Open Access Journals (Sweden)

    Dipankar Sarkar

    2016-01-01

    Full Text Available There are different places in India where natural stone aggregates are not available for constructional work. Plastic coated OBBA can solve the problem of shortage of stone aggregate to some extent. The engineers are always encouraged to use locally available materials. The present investigation is carried out to evaluate the plastic coated OBBA as an alternative material for bituminous road construction. Shredded waste plastics are mixed with OBBA in different percentages as 0.38, 0.42, 0.46, 0.50, 0.54, and 0.60 of the weight of brick aggregates. Marshall Method of mix design is carried out to find the optimum bitumen content of such bituminous concrete mix prepared by plastic coated OBBA. Bulk density, Marshall Stability, flow, Marshall Quotient, ITS, TSR, stripping, fatigue life, and deformations have been determined accordingly. Marshall Stability value of 0.54 percent of plastic mix is comparatively higher than the other mixes except 0.60 percent of plastic mix. Test results are within the prescribed limit for 0.54 percent of plastic mix. There is a significant reduction in rutting characteristics of the same plastic mix. The fatigue life of the mix is also significantly higher. Thus plastic coated OBBA is found suitable in construction of bituminous concrete road.

  11. Medical Laboratory Technician--Hematology, Serology, Blood Banking & Immunohematology, 10-4. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, the third of three courses in the medical laboratory technician field adapted from military curriculum materials for use in vocational and technical education, was designed as a refresher course for student self-study and evaluation. It is suitable for use by advanced students or beginning students participating in a supervised…

  12. Numerical and Experimental Analysis on Inorganic Phase Change Material Usage in Construction

    Science.gov (United States)

    Muthuvel, S.; Saravanasankar, S.; Sudhakarapandian, R.; Muthukannan, M.

    2014-12-01

    This work demonstrates the significance of Phase Change Material (PCM) in the construction of working sheds and product storage magazines in fireworks industries to maintain less temperature variation by passive cooling. The inorganic PCM, namely Calcium Chloride Hexahydrate (CCH) is selected in this study. First, the performance of two models with inbuilt CCH was analysed, using computational fluid dynamics. A significant change in the variation of inner wall temperature was observed, particularly during the working hours. This is mainly due to passive cooling, where the heat transfer from the surroundings to the room is partially used for the phase change from solid to liquid. The experiment was carried out by constructing two models, one with PCM packed in hollow brick walls and roof, and the other one as a conventional construction. The experimental results show that the temperature of the room got significantly reduced up to 7 °C. The experimental analysis results had good agreement with the numerical analysis results, and this reveals the advantage of the PCM in the fireworks industry construction.

  13. Thermal Performance of Typical Residential Building in Karachi with Different Materials for Construction

    Directory of Open Access Journals (Sweden)

    Nafeesa Shaheen

    2016-04-01

    Full Text Available This research work deals with a study of a residential building located in climatic context of Karachi with the objective of being the study of thermal performance based upon passive design techniques. The study helps in reducing the electricity consumption by improving indoor temperatures. The existing residential buildings in Karachi were studied with reference to their planning and design, analyzed and evaluated. Different construction?s compositions of buildings were identified, surveyed and analyzed in making of the effective building envelops. Autodesk® Ecotect, 2011 was used to determine indoor comfort conditions and HVAC (Heating, Ventilation, Air-Conditioning and Cooling loads. The result of the research depicted significant energy savings of 38.5% in HVAC loads with proposed building envelop of locally available materials and glazing.

  14. Radon survey related to construction materials and soils in Zacatecas, Mexico using LR-115

    International Nuclear Information System (INIS)

    Mireles, F.; Garcia, M.L.; Quirino, L.L.; Davila, J.I.; Pinedo, J.L.; Rios, C.; Montero, M.E.; Colmenero, L.; Villalba, L.

    2007-01-01

    Indoor radon gas ( 222 Rn), present in the air inside buildings, is one of the most important sources of radiation exposure to the population. This gas originates in the 238 U radioactive decay chain, which is contained in rock and solid soil particles. Radon accumulation in confined spaces, inside buildings, depends on several factors such as the type of soils, type of constructions, building materials, and ventilation. The aim of this work is to present indoor and outdoor radon concentrations for 202 dwellings and indoor concentrations for 148 public clinics; and the radon concentrations relate to the type of predominant soils, the construction years; and building materials used in the ceilings, walls and floors, for cities and towns of the 57 municipalities in the State of Zacatecas, Mexico. The 222 Rn concentrations were measured with a passive-type radon monitor, with LR-115 as detector material; and the radon survey was made during four stages of three months each throughout Zacatecas from 2001 to 2002. The indoor and outdoor radon concentration averages in dwellings were 55.6±4.9Bqm -3 and 46.5±5.3Bqm -3 , respectively. The indoor radon concentration average in public clinics was 57.8±5.4Bqm -3 . These values were lower than the US EPA action limit of 148Bqm -3

  15. Tentative to use wastes from thermal power plants for construction building materials

    Science.gov (United States)

    Bui, Quoc-Bao; Phan, To-Anh-Vu; Tran, Minh-Tung; Le, Duc-Hien

    2018-04-01

    Thermal power plants (TPP) generates wastes (bottom and fly ashes) which become a serious environmental problem in Vietnam. Indeed, although in several countries fly ash can be used for cement industry, fly ash from actual TPP in Vietnam does not have enough good quality for cement production, because the fly ash treatment phase has not yet included in the generations of existing Vietnamese TPP. That is why bottom ash and fly ash purely become wastes and their evacuation is an urgent demand of the society. This paper presents an investigation using fly and bottom ashes in the manufacturing of construction materials. The main aims of this study is to reduce environmental impacts of fly and bottom ashes, and to test another non-conventional binder to replace cement in the manufacture of unburnt bricks. Several proportions of fly ash, bottom ash, cement, gravel, sand and water were tested to manufacture concretes. Then, geopolymer was prepared from the fly ash and an activator. Specimens were tested in uniaxial compressions. Results showed that the cement concrete tested had the compressive strengths which could be used for low rise constructions and the material using geopolymer could be used for non-load-bearing materials (unburnt bricks).

  16. Constructing wetlands: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    Science.gov (United States)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-04-01

    Interest is growing in using soft sediment as a building material in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here the option of dredging some of the clay-rich lake-bed sediment and using it to construct 10.000 ha of wetland will soon go under construction. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a six-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling as well as yellowing of foliage. The N:P ratios of plant tissue were low and were affected not by hampered uptake of N but by enhanced uptake of P. Plant analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose that when building wetlands from these mud deposits Fe-tolerant species are used rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the building material and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  17. Ion irradiation studies of construction materials for high-power accelerators

    Science.gov (United States)

    Mustafin, E.; Seidl, T.; Plotnikov, A.; Strašík, I.; Pavlović, M.; Miglierini, M.; Stanćek, S.; Fertman, A.; Lanćok, A.

    The paper reviews the activities and reports the current results of GSI-INTAS projects that are dealing with investigations of construction materials for high-power accelerators and their components. Three types of materials have been investigated, namely metals (stainless steel and copper), metallic glasses (Nanoperm, Finemet and Vitrovac) and organic materials (polyimide insulators and glass fiber reinforced plastics/GFRP). The materials were irradiated by different ion beams with various fluencies and energies. The influence of radiation on selected physical properties of these materials has been investigated with the aid of gamma-ray spectroscopy, transmission Mössbauer spectroscopy (TMS), conversion electrons Mössbauer spectroscopy (CEMS), optical spectroscopy (IR and UV/VIS) and other analytical methods. Some experiments were accompanied with computer simulations by FLUKA, SHIELD and SRIM codes. Validity of the codes was verified by comparison of the simulation results with experiments. After the validation, the codes were used to complete the data that could not be obtained experimentally.

  18. Measurement of the thermal conductivity from construction materials; Medicion de conductividad termica de materiales de construccion

    Energy Technology Data Exchange (ETDEWEB)

    Lira Cortes, Leonel; Xaman Villasenor, Jesus P; Chavez Chena, Yvonne [CENIDET: Centro Nacional de Investigacion y Desarrollo Tecnologico, Cuernavaca, Morelos (Mexico)

    2000-07-01

    In order to improve the calculation of thermal loads that allows to model the thermal behavior of constructions with aims of energy saving, it is necessary to count on the thermophysical properties of the materials used in the construction industry. Nevertheless at present in Mexico do not exist reported data of the materials that are made and used in our country, reason why it is chosen to take the results reported in the literature, whose values in their majority do not correspond to Mexican materials. In order to cover this necessity, at the CENIDET an instrument was developed to determine the thermal conductivity of insulating and construction materials. To date they have come with studies of different materials, which are provided by the manufacturers, with the intention of obtaining real data of thermal conductivity and to apply them with whole confidence in simulations of calculations of thermal loads. In this paper the results of measurement of the apparent thermal conductivity of two different materials from construction are presented, pumice stone block and block of tezontle (a porous volcanic rock).The measurement was made with an absolute and primary instrument according to norm ANSI/ASTM C-177-97. The operation principle of the apparatus is based on the technique of heat transference by conduction in permanent state between two plates, the experiment is carried out using an apparatus of hot plate with guard (APCG). Given the geographic zone where the studied materials are to be used, it is concluded that the obtained results show better properties for both with respect to reported values of similar materials, by virtue that these materials are intended to be applied in a humid climate as it is in the state of Puebla, Mexico. [Spanish] Para mejorar el calculo de cargas termicas que permita modelar el comportamiento termico de edificaciones con fines de ahorro de energia, es necesario contar con las propiedades termofisicas de los materiales utilizados

  19. ESTIMATION OF THE MODERN STATE OF PROVISION OF AGRICULTURAL ENTERPRISES IN MYKOLAIV REGION BY MATERIAL AND TECHNICAL RESOURCES

    Directory of Open Access Journals (Sweden)

    Natalya Potryvaieva

    2017-09-01

    Full Text Available The research considers the issue of the provision of agrarian enterprises in Ukraine by material and technical resources and effective use of them. The scientific novelty of the results obtained is in the research of theoretical positions, substantiation of applied approaches concerning the organization of material and technical provision of enterprises of the agrarian sector, in particular, Mykolaiv region, taking into account the proposals of the second market of agricultural machinery, units, and aggregates. Methodology. The purpose of the article is the research and estimation of the current state of the provision of agrarian enterprises by material and technical resources. The object of scientific research is the process of provision of material and technical resources for enterprises of the agrarian sector in Mykolaiv region. The level of material and technical resources at agricultural enterprises in Mykolaiv region is analysed. Relative improvement of the situation with technical equipment and energy supply of agriculture in the Mykolaiv region since 2014 is defined; however, the dynamics are not active sufficiently and do not exceed five percent. The ratio between the amount of machinery purchased and disposed of by depreciation is disproportionate, the equipment provided by the unit of area, and the load on the machines available in the farms do not meet the requirements. The dynamics of capital and direct foreign investments in agriculture of Mykolaiv region, which during the research period increased, is investigated. It is proved that despite the rather successful development of capital investments by large-scale agricultural producers in the region, financial investments in modernization, repair, and acquisition of the new technology by small business entities are not sufficiently active. The authors substantiate that the tasks of technical re-equipment for commodity producers of the Mykolaiv region remain one of the most important

  20. Proposal for Construction/Demonstration/Implementation of A Material Handling System

    International Nuclear Information System (INIS)

    Jim Jnatt

    2001-01-01

    Vortec Corporation, the United States Enrichment Corporation (USEC) and DOE/Paducah propose to complete the technology demonstration and the implementation of the Material Handling System developed under Contract Number DE-AC21-92MC29120. The demonstration testing and operational implementation will be done at the Paducah Gaseous Diffusion Plant. The scope of work, schedule and cost for the activities are included in this proposal. A description of the facility to be constructed and tested is provided in Exhibit 1, attached. The USEC proposal for implementation at Paducah is presented in Exhibit 2, and the commitment letters from the site are included in Exhibit 3. Under our agreements with USEC, Bechtel Jacobs Corporation and DOE/Paducah, Vortec will be responsible for the construction of the demonstration facility as documented in the engineering design package submitted under Phase 4 of this contract on August 9, 2001. USEC will have responsibility for the demonstration testing and commercial implementation of the plant. The demonstration testing and initial commercial implementation of the technology will be achieved by means of a USEC work authorization task with the Bechtel Jacobs Corporation. The initial processing activities will include the processing of approximately 4,250 drums of LLW. Subsequent processing of LLW and TSCA/LLW will be done under a separate contract or work authorization task. To meet the schedule for commercial implementation, it is important that the execution of the Phase 4 project option for construction of the demonstration system be executed as soon as possible. The schedule we have presented herein assumes initiation of the construction phase by the end of September 2001. Vortec proposes to complete construction of the demonstration test system for an estimated cost of $3,254,422. This price is based on the design submitted to DOE/NETL under the Phase 4 engineering design deliverable (9 august 2001). The cost is subject to the