WorldWideScience

Sample records for constant energy application

  1. Electron transport and electron energy distributions within the wurtzite and zinc-blende phases of indium nitride: Response to the application of a constant and uniform electric field

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqua, Poppy; Hadi, Walid A.; Salhotra, Amith K.; O' Leary, Stephen K., E-mail: stephen.oleary@ubc.ca [School of Engineering, The University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Shur, Michael S. [Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590 (United States)

    2015-03-28

    Within the framework of an ensemble semi-classical three-valley Monte Carlo electron transport simulation approach, we critically contrast the nature of the electron transport that occurs within the wurtzite and zinc-blende phases of indium nitride in response to the application of a constant and uniform electric field. We use the electron energy distribution and its relationship with the electron transport characteristics in order to pursue this analysis. For the case of zinc-blende indium nitride, only a peak corresponding to the electrons within the lowest energy conduction band valley is observed, this peak being seen to broaden and shift to higher energies in response to increases in the applied electric field strength, negligible amounts of upper energy conduction band valley occupancy being observed. In contrast, for the case of wurtzite indium nitride, in addition to the aforementioned lowest energy conduction band valley peak in the electron energy distribution, and its broadening and shifting to higher energies in response to increases in the applied electric field strength, beyond a certain critical electric field strength, 30 kV/cm for the case of this particular material, upper energy conduction band valley occupancy is observed, this occupancy being further enhanced in response to further increases in the applied electric field strength. Reasons for these results are provided. The potential for device consequences is then commented upon.

  2. Cosmological Constant or Variable Dark Energy?

    Institute of Scientific and Technical Information of China (English)

    XU Li-Xin; ZHANG Cheng-Wu; LIU Hong-Ya

    2007-01-01

    @@ Selection statics of the Akaike information criterion (AIC) model and the Bayesian information criterion (BIC)model are applied to the Λ-cold dark matter (ΛCDM) cosmological model, the constant equation of state of dark energy, w =constant, and the parametrized equation of state of dark energy, w(z) = w0 + w1z/(1 + z),to determine which one is the better cosmological model to describe the evolution of the universe by combining the recent cosmic observational data including Sne Ia, the size of baryonic acoustic oscillation (BAO) peak from SDSS, the three-year WMAP CMB shift parameter. The results show that AIC, BIC and current datasets are not powerful enough to discriminate one model from the others, though odds suggest differences between them.

  3. Analytical continuation in coupling constant method; application to the calculation of resonance energies and widths for organic molecules: Glycine, alanine and valine and dimer of formic acid

    Science.gov (United States)

    Papp, P.; Matejčík, Š.; Mach, P.; Urban, J.; Paidarová, I.; Horáček, J.

    2013-06-01

    The method of analytic continuation in the coupling constant (ACCC) in combination with use of the statistical Padé approximation is applied to the determination of resonance energy and width of some amino acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used for analytic continuation in the coupling constant to obtain the resonance energy and width of organic molecules with a good accuracy. The obtained results are compared with the existing experimental ones.

  4. Holographic dark energy with cosmological constant

    Science.gov (United States)

    Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.

  5. Holographic Dark Energy with Cosmological Constant

    CERN Document Server

    Hu, Yazhou; Li, Nan; Zhang, Zhenhui

    2015-01-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the $\\Lambda$HDE model. By studying the $\\Lambda$HDE model theoretically, we find that the parameters $c$ and $\\Omega_{hde}$ are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the $\\Lambda$HDE model by using the recent observational data. We find the model yields $\\chi^2_{\\rm min}=426.27$ when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant $\\Lambda$CDM model (431.35). At 68.3\\% CL, we obtain $-0.07<\\Omega_{\\Lambda0}<0.68$ and correspondingly $0.04<\\Omega_{hde0}<0.79$, implying at present there is considerable degeneracy bet...

  6. Influence of coupling constants on nuclear symmetry energy

    Institute of Scientific and Technical Information of China (English)

    LIU Bei-Bei; OUYANG Fei; CHEN Wei

    2013-01-01

    By studying the energy of neutron star matter,we discuss the nuclear symmetry energy at different baryon densities and different coupling constants in the relativistic mean field approximation.The results show that the symmetry energy increases with baryon density at various coupling constants and incompressibilities.Furthermore,the symmetry energy at saturation density increases with increasing incompressibility at fixed d,and decreases at fixed c.Specifically,when coupling constants gv and gs are fixed,respectively,the symmetry energy has a little change with increasing incompressibility.It is demonstrated that the NN coupling constants have greater influences on the symmetry energy than the self-coupling constants.

  7. Analytical continuation in coupling constant method; application to the calculation of resonance energies and widths for organic molecules: Glycine, alanine and valine and dimer of formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Papp, P., E-mail: papp@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava (Slovakia); Matejčík, Š. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava (Slovakia); Mach, P.; Urban, J. [Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava (Slovakia); Paidarová, I. [J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, CZ-182 23 Praha 8 (Czech Republic); Horáček, J., E-mail: horacek@mbox.troja.mff.cuni.cz [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, CZ-180 00 Praha 8 (Czech Republic)

    2013-06-03

    Highlights: • The anions are stabilized by additional charges on the nuclei. • The energy dependence of anions and neutrals on nuclear charges are calculated by ab initio methods. • Resonance energies and widths are obtained from the energy data by analytical continuation with Padé approximation. • The resonance energies and widths of amino acids are compared with Nestmann–Peyerimhoff’s method and with experiment. • The resonance energies and (widths) of formic acid monomer and dimer are 2.09 (0.33) eV and 1.7 (0.13) eV, respectively. - Abstract: The method of analytic continuation in the coupling constant (ACCC) in combination with use of the statistical Padé approximation is applied to the determination of resonance energy and width of some amino acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used for analytic continuation in the coupling constant to obtain the resonance energy and width of organic molecules with a good accuracy. The obtained results are compared with the existing experimental ones.

  8. Applications of a tight-binding total energy method for transition and noble metals Elastic Constants, Vacancies, and Surfaces of Monatomic Metals

    CERN Document Server

    Mehl, M J; Mehl, Michael J.; Papaconstantopoulos, Dimitrios A.

    1996-01-01

    A recent tight-binding scheme provides a method for extending the results of first principles calculations to regimes involving $10^2 - 10^3$ atoms in a unit cell. The method uses an analytic set of two-center, non-orthogonal tight-binding parameters, on-site terms which change with the local environment, and no pair potential. The free parameters in this method are chosen to simultaneously fit band structures and total energies from a set of first-principles calculations for monatomic fcc and bcc crystals. To check the accuracy of this method we evaluate structural energy differences, elastic constants, vacancy formation energies, and surface energies, comparing to first-principles calculations and experiment. In most cases there is good agreement between this theory and experiment. We present a detailed account of the method, a complete set of tight-binding parameters, and results for twenty-nine of the alkaline earth, transition and noble metals.

  9. Negative Energy Cosmology and the Cosmological Constant

    CERN Document Server

    Prokopec, Tomislav

    2011-01-01

    It is well known that string theories naturally compactify on anti-de Sitter spaces, and yet cosmological observations show no evidence of a negative cosmological constant in the early Universe's evolution. In this letter we present two simple nonlocal modifications of the standard Friedmann cosmology that can lead to observationally viable cosmologies with an initial (negative) cosmological constant. The nonlocal operators we include are toy models for the quantum cosmological backreaction. In Model I an initial quasiperiodic oscillatory epoch is followed by inflation and a late time matter era, representing a dark matter candidate. The backreaction in Model II quickly compensates the negative cosmological term such that the Ricci curvature scalar rapidly approaches zero, and the Universe ends up in a late time radiation era.

  10. From bare interactions, low-energy constants, and unitary gas to nuclear density functionals without free parameters: Application to neutron matter

    Science.gov (United States)

    Lacroix, Denis; Boulet, Antoine; Grasso, Marcella; Yang, C.-J.

    2017-05-01

    We further progress along the line of Ref. [D. Lacroix, Phys. Rev. A 94, 043614 (2016), 10.1103/PhysRevA.94.043614] where a functional for Fermi systems with anomalously large s -wave scattering length as was proposed that has no free parameters. The functional is designed to correctly reproduce the unitary limit in Fermi gases together with the leading-order contributions in the s - and p -wave channels at low density. The functional is shown to be predictive up to densities ˜0.01 fm-3 that is much higher densities compared to the Lee-Yang functional, valid for ρ bare interaction are strongly renormalized by medium effects. As a consequence, some of the scales at play around saturation are dominated by the unitary gas properties and not directly by low-energy constants. For instance, we show that the scale in the s -wave channel around saturation is proportional to the so-called Bertsch parameter ξ0 and becomes independent of as. We also point out that these scales are of the same order of magnitude than those empirically obtained in the Skyrme energy density functional. We finally propose a slight modification of the functional such that it becomes accurate up to the saturation density ρ ≃0.16 fm-3.

  11. NVU dynamics. III. Simulating molecules at constant potential energy

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Dyre, J. C.

    2012-01-01

    This is the final paper in a series that introduces geodesic molecular dynamics at constant potential energy. This dynamics is entitled NVU dynamics in analogy to standard energy-conserving Newtonian NVE dynamics. In the first two papers [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B....... In this paper, the NVU algorithm for atomic systems is extended to be able to simulate the geodesic motion of molecules at constant potential energy. We derive an algorithm for simulating rigid bonds and test this algorithm on three different systems: an asymmetric dumbbell model, Lewis-Wahnström o......-terphenyl (OTP) and rigid SPC/E water. The rigid bonds introduce additional constraints beyond that of constant potential energy for atomic systems. The rigid-bond NVU algorithm conserves potential energy, bond lengths, and step length for indefinitely long runs. The quantities probed in simulations give results...

  12. Dark Energy and the Cosmological Constant: A Brief Introduction

    Science.gov (United States)

    Harvey, Alex

    2009-01-01

    The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…

  13. Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models

    Science.gov (United States)

    Marsh, M. C. David

    2017-01-01

    Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, Nvac˜O (1 0272 000) , are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.

  14. Exacerbating the cosmological constant problem with interacting dark energy

    CERN Document Server

    Marsh, M C David

    2016-01-01

    Future cosmological surveys will probe the expansion history of the universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e. the cosmological constant problem (c.c.p.), but can make it spectacularly worse. We show that this is the case for 'interacting dark energy' models in which the masses of the dark matter states depend on the dark energy sector. If realised in nature, these models have far-reaching implications for proposed solutions to the c.c.p. that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, $N_{\\rm vac} \\sim {\\cal O}(10^{272,000})$, is far too small to realise certain simple models of interacting dark energy \\emph{and} solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it pos...

  15. Can we test Dark Energy with Running Fundamental Constants ?

    CERN Document Server

    Doran, M

    2004-01-01

    We investigate a link between the running of the fine structure constant $\\alpha$ and a time evolving scalar dark energy field. Employing a versatile parameterization for the equation of state, we exhaustively cover the space of dark energy models. Under the assumption that the change in $\\alpha$ is to first order given by the evolution of the Quintessence field, we show that current Oklo, Quasi Stellar Objects and Equivalence Principle observations restrict the model parameters considerably stronger than observations of the Cosmic Microwave Background, Large Scale Structure and Supernovae Ia combined.

  16. Can we test dark energy with running fundamental constants?

    Science.gov (United States)

    Doran, Michael

    2005-04-01

    We investigate a link between the running of the fine structure constant α and a time evolving scalar dark energy field. Employing a versatile parametrization for the equation of state, we exhaustively cover the space of dark energy models. Under the assumption that the change in α is to first order given by the evolution of the quintessence field, we show that current Oklo, quasi-stellar object and equivalence principle observations restrict the model parameters considerably more strongly than observations of the cosmic microwave background, large scale structure and supernovae Ia combined.

  17. Deflation of the cosmological constant associated with inflation and dark energy

    CERN Document Server

    Geng, Chao-Qiang

    2016-01-01

    In order to solve the fine-tuning problem of the cosmological constant, we propose a simple model with the vacuum energy non-minimally coupled to the inflaton field. In this model, the vacuum energy decays to the inflaton during pre-inflation and inflation eras, so that the cosmological constant effectively deflates from the Planck mass scale to a much smaller one after inflation and plays the role of dark energy in the late-time of the universe. We show that our deflationary scenario is applicable to arbitrary slow-roll inflation models. We also take two specific inflation potentials to illustrate our results.

  18. Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications and piezoelectric throughput

    Science.gov (United States)

    Mehebub Alam, Md; Ghosh, Sujoy Kumar; Sarkar, Debabrata; Sen, Shrabanee; Mandal, Dipankar

    2017-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) embedded γ-phase containing polyvinylidene fluoride (PVDF) nanocomposite (PNC) film turns to an excellent material for energy storage application due to an increased dielectric constant (32 at 1 kHz), enhanced electric breakdown strength (400 MV m-1). It also exhibits a high energy density of 4 J cm-3 which is 25 times higher than that of virgin PVDF. 98% of the electroactive γ-phase has been acheived by the incorporation of TiO2 NPs and the resulting PNC behaves like a super-toughened material due to a dramatic improvement (more than 80%) in the tensile strength. Owing to their electroactive nature and extraordinary mechanical properties, PNC films have a strong ability to fabricate the piezoelectric nanogenerators (PNGs) that have recently been an area of focus regarding mechanical energy harvesting. The feasibility of piezoelectric voltage generation from PNGs is demostrated under the rotating fan that also promises further utility such as rotational speed (RPM) determination.

  19. Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications and piezoelectric throughput.

    Science.gov (United States)

    Alam, Md Mehebub; Ghosh, Sujoy Kumar; Sarkar, Debabrata; Sen, Shrabanee; Mandal, Dipankar

    2017-01-06

    Titanium dioxide (TiO2) nanoparticles (NPs) embedded γ-phase containing polyvinylidene fluoride (PVDF) nanocomposite (PNC) film turns to an excellent material for energy storage application due to an increased dielectric constant (32 at 1 kHz), enhanced electric breakdown strength (400 MV m(-1)). It also exhibits a high energy density of 4 J cm(-3) which is 25 times higher than that of virgin PVDF. 98% of the electroactive γ-phase has been acheived by the incorporation of TiO2 NPs and the resulting PNC behaves like a super-toughened material due to a dramatic improvement (more than 80%) in the tensile strength. Owing to their electroactive nature and extraordinary mechanical properties, PNC films have a strong ability to fabricate the piezoelectric nanogenerators (PNGs) that have recently been an area of focus regarding mechanical energy harvesting. The feasibility of piezoelectric voltage generation from PNGs is demostrated under the rotating fan that also promises further utility such as rotational speed (RPM) determination.

  20. Testing the cosmological constant as a candidate for dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Kratochvil, Jan; Linde, Andrei; Linder, Eric V.; Shmakova, Marina

    2003-12-03

    It may be difficult to single out the best model of dark energy on the basis of the existing and planned cosmological observations, because many different models can lead to similar observational consequences. However, each particular model can be studied and either found consistent with observations or ruled out. In this paper, we concentrate on the possibility to test and rule out the simplest and by far the most popular of the models of dark energy, the theory described by general relativity with positive vacuum energy (the cosmological constant). We evaluate the conditions under which this model could be ruled out by the future observations made by the Supernova/Acceleration Probe SNAP (both for supernovae and weak lensing) and by the Planck Surveyor cosmic microwave background satellite.

  1. Testing the Cosmological constant as a Candidate for Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kratochvil, J

    2004-01-08

    It may be difficult to single out the best model of dark energy on the basis of the existing and planned cosmological observations, because many different models can lead to similar observational consequences. However, each particular model can be studied and either found consistent with observations or ruled out. In this paper, we concentrate on the possibility to test and rule out the simplest and by far the most popular of the models of dark energy, the theory described by general relativity with positive vacuum energy (the cosmological constant). We evaluate the conditions under which this model could be ruled out by the future observations made by the Supernova/Acceleration Probe SNAP (both for supernovae and weak lensing) and by the Planck Surveyor cosmic microwave background satellite.

  2. Cosmological constant and vacuum energy: old and new ideas

    CERN Document Server

    Sola, Joan

    2013-01-01

    The cosmological constant (CC) term in Einstein's equations, Lambda, was first associated to the idea of vacuum energy density. Notwithstanding, it is well-known that there is a huge, in fact appalling, discrepancy between the theoretical prediction and the observed value picked from the modern cosmological data. This is the famous, and extremely difficult, ``CC problem''. Paradoxically, the recent observation at the CERN Large Hadron Collider of a Higgs-like particle, should actually be considered ambivalent: on the one hand it appears as a likely great triumph of particle physics, but on the other hand it wide opens Pandora's box of the cosmological uproar, for it may provide (alas!) the experimental certification of the existence of the electroweak (EW) vacuum energy, and thus of the intriguing reality of the CC problem. Even if only counting on this contribution to the inventory of vacuum energies in the universe, the discrepancy with the cosmologically observed value is already of 55 orders of magnitude....

  3. Pulse-train control of photofragmentation at constant field energy

    DEFF Research Database (Denmark)

    Tiwari, Ashwani Kumar; Henriksen, Niels Engholm

    2014-01-01

    We consider a phaselocked two-pulse sequence applied to photofragmentation in the weak-field limit. The two pulses are not overlapping in time, i.e., the energy of the pulse-train is constant for all time delays. It is shown that the relative yield of excited Br* in the nonadiabatic process: I + Br......*←IBr → I + Br, changes as a function of time delay when the two excited wave packets interfere. The underlying mechanisms are analyzed and the change in the branching ratio as a function of time delay is only a reflection of a changing frequency distribution of the pulse train; the branching ratio does...

  4. Can we distinguish early dark energy from a cosmological constant?

    Science.gov (United States)

    Shi, Difu; Baugh, Carlton M.

    2016-07-01

    Early dark energy (EDE) models are a class of quintessence dark energy with a dynamically evolving scalar field which display a small but non-negligible amount of dark energy at the epoch of matter-radiation equality. Compared with a cosmological constant, the presence of dark energy at early times changes the cosmic expansion history and consequently the shape of the linear theory power spectrum and potentially other observables. We constrain the cosmological parameters in the EDE cosmology using recent measurements of the cosmic microwave background and baryon acoustic oscillations. The best-fitting models favour no EDE; here we consider extreme examples which are in mild tension with current observations in order to explore the observational consequences of a maximally allowed amount of EDE. We study the non-linear evolution of cosmic structure in EDE cosmologies using large-volume N-body simulations. Many large-scale structure statistics are found to be very similar between the Λ cold dark matter (ΛCDM) and EDE models. We find that EDE cosmologies predict fewer massive haloes in comparison to ΛCDM, particularly at high redshifts. The most promising way to distinguish EDE from ΛCDM is to measure the power spectrum on large scales, where differences of up to 15 per cent are expected.

  5. Topological structure of the vacuum, cosmological constant and dark energy

    Science.gov (United States)

    Sidharth, B. G.; Das, A.; Das, C. R.; Laperashvili, L. V.; Nielsen, H. B.

    2016-11-01

    In this review, we present a theory of cosmological constant and dark energy (DE), based on the topological structure of the vacuum. The multiple point principle (MPP) is reviewed. It demonstrates the existence of the two vacua into the SM. The Froggatt-Nielsen’s prediction of the top-quark and Higgs masses is given in the assumption that there exist two degenerate vacua in the SM. This prediction was improved by the next-order calculations. We also considered Sidharth’s theory of cosmological constant based on the noncommutative geometry of the Planck scale space-time, what gives an extremely small DE density providing the accelerating expansion of the Universe. Theory of two degenerate vacua — the Planck scale phase and electroweak (EW) phase — is also reviewed, topological defects in these vacua are investigated, also the Compton wavelength phase suggested by Sidharth is discussed. A general theory of the phase transition and the problem of the vacuum stability in the SM is reviewed. Assuming the existence of a new scalar S bound state 6t + 6t¯, earlier predicted by Froggatt, Nielsen and Laperashvili, we try to provide the vacuum stability in the SM and exact accuracy of the MPP.

  6. A Novel Constant-Pressure Pumped Hydro Combined with Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Erren Yao

    2014-12-01

    Full Text Available As intermittent renewable energy is receiving increasing attention, the combination of intermittent renewable energy with large-scale energy storage technology is considered as an important technological approach for the wider application of wind power and solar energy. Pumped hydro combined with compressed air energy storage system (PHCA is one of the energy storage systems that not only integrates the advantages but also overcomes the disadvantages of compressed air energy storage (CAES systems and pumped hydro energy storage systems to solve the problem of energy storage in China’s arid regions. Aiming at the variable working conditions of PHCA system technology, this study proposes a new constant-pressure PHCA. The most significant characteristics of this system were that the water pump and hydroturbine work under stable conditions and this improves the working efficiency of the equipment without incurring an energy loss. In addition, the constant-pressure PHCA system was subjected to energy and exergy analysis, in expectation of exploring an attractive solution for the large-scale storage of existing intermittent renewable energy.

  7. Observational constraints on holographic dark energy with varying gravitational constant

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jianbo; Xu, Lixin [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 (China); Saridakis, Emmanuel N. [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Setare, M.R., E-mail: lvjianbo819@163.com, E-mail: msaridak@phys.uoa.gr, E-mail: rezakord@ipm.ir, E-mail: lxxu@dlut.edu.cn [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of)

    2010-03-01

    We use observational data from Type Ia Supernovae (SN), Baryon Acoustic Oscillations (BAO), Cosmic Microwave Background (CMB) and observational Hubble data (OHD), and the Markov Chain Monte Carlo (MCMC) method, to constrain the cosmological scenario of holographic dark energy with varying gravitational constant. We consider both flat and non-flat background geometry, and we present the corresponding constraints and contour-plots of the model parameters. We conclude that the scenario is compatible with observations. In 1σ we find Ω{sub Λ0} = 0.72{sup +0.03}{sub −0.03}, Ω{sub k0} = −0.0013{sup +0.0130}{sub −0.0040}, c = 0.80{sup +0.19}{sub −0.14} and Δ{sub G}≡G'/G = −0.0025{sup +0.0080}{sub −0.0050}, while for the present value of the dark energy equation-of-state parameter we obtain w{sub 0} = −1.04{sup +0.15}{sub −0.20}.

  8. Estimating Energy Conversion Efficiency of Thermoelectric Materials: Constant Property Versus Average Property Models

    Science.gov (United States)

    Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt

    2017-01-01

    Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.

  9. Conjugate Acid-Base Pairs, Free Energy, and the Equilibrium Constant

    Science.gov (United States)

    Beach, Darrell H.

    1969-01-01

    Describes a method of calculating the equilibrium constant from free energy data. Values of the equilibrium constants of six Bronsted-Lowry reactions calculated by the author's method and by a conventional textbook method are compared. (LC)

  10. Rate Constant Calculation for Thermal Reactions Methods and Applications

    CERN Document Server

    DaCosta, Herbert

    2011-01-01

    Providing an overview of the latest computational approaches to estimate rate constants for thermal reactions, this book addresses the theories behind various first-principle and approximation methods that have emerged in the last twenty years with validation examples. It presents in-depth applications of those theories to a wide range of basic and applied research areas. When doing modeling and simulation of chemical reactions (as in many other cases), one often has to compromise between higher-accuracy/higher-precision approaches (which are usually time-consuming) and approximate/lower-preci

  11. Gradient chromatography under constant frictional heat: realization and application.

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2013-05-10

    A new mode of gradient elution in liquid chromatography is proposed. It is derived from simple theoretical considerations and is particularly suitable for applications to fast, very-high pressure gradients. It is designed to improve the injection-to-injection repeatability of chromatographic runs at either constant flow (cF, cooling case scenario) or constant pressure (cP, heating case scenario). The purpose of this original gradient mode is to minimize the variations of the temperatures and the pressures across and along the column during the gradient time. These variations are caused by the heat generated in the column due to the friction of the eluent percolating the bed. Any temperature fluctuation affects to some extent the precision of the measurements of retention times and bandwidths of eluted compounds. The minimization of this effect was achieved by maintaining constant the frictional heat power (i.e., the product of the flow rate by the column pressure drop) generated during the gradient run, the washing step, and the re-equilibration time. The eluent temperature was recorded at the column outlet. One useful application of gradient chromatography at constant frictional heat (cFH) is illustrated for a 50-100% volume gradient of acetonitrile in water using a 4.6mm × 150 mm column packed with 3.5 μm BEH-C18 particles and operated with an Agilent 1290 Infinity liquid chromatograph. The reproducibility (eleven consecutive injections) of the retention times and peak variances of nine small molecules (RPLC check-out sample mixture) using cF, cP, and cFH gradients were compared for the same amount of heat produced (403 J) during each run time. The RSDs of the retention times and the peak variances for four consecutive injections were systematically below 0.035 and 0.50% in constant frictional heat gradient chromatography, after three initial injections. These RSDs were markedly higher for cF (0.050 and 0.90%) and cP (0.070 and 1.80%) gradients. Copyright

  12. Is the electron radiation length constant at high energies?

    Science.gov (United States)

    Hansen, H D; Uggerhøj, U I; Biino, C; Ballestrero, S; Mangiarotti, A; Sona, P; Ketel, T J; Vilakazi, Z Z

    2003-07-04

    Experimental results for the radiative energy loss of 149, 207, and 287 GeV electrons in a thin Ir target are presented. From the data we conclude that at high energies the radiation length increases in accordance with the Landau-Pomeranchuk-Migdal (LPM) theory and thus electrons become more penetrating the higher the energy. The increase of the radiation length as a result of the LPM effect has a significant impact on the behavior of high-energy electromagnetic showers.

  13. Application of Neural network PID Controller in Constant Temperature and Constant Liquid-level System

    Institute of Scientific and Technical Information of China (English)

    Chen,Guochu; Zhang,Lin; Hao,Ninmei; Liu,Xianguang; Wang,Junhong

    2003-01-01

    Guided by the principle of neural network, an intelligent PID controller based on neural network is devised and applied to control of constant temperature and constant liquidlevel system. The experiment results show that this controller has high accuracy and strong robustness and good characters.

  14. Low Energy Constants from Kl4 Form-Factors

    CERN Document Server

    Amorós, G; Talavera, P

    2000-01-01

    We have calculated the form-factors F and G in K ---> pi pi e nu decays (Kl4) to two-loop order in Chiral Perturbation Theory (ChPT). Combining this together with earlier two-loop calculations an updated set of values for the L's, the ChPT constants at p^4, is obtained. We discuss the uncertainties in the determination and the changes compared to previous estimates.

  15. The cosmological constant and the energy of gravitational radiation

    CERN Document Server

    Chruściel, Piotr T

    2016-01-01

    We propose a definition of mass for characteristic hypersurfaces in asymptotically vacuum space-times with non-vanishing cosmological constant $\\Lambda \\in {\\mathbb R}^*$, generalising the definition of Trautman and Bondi for $\\Lambda=0$. We show that our definition reduces to some standard definitions in several situations. We establish a balance formula linking the characteristic mass and a suitably defined renormalised volume of the null hypersurface, generalising the positivity identity of one of us (PTC) and Paetz proved when $\\Lambda=0$.

  16. Does the measured value of the Planck constant depend on the energy of measurements?

    CERN Document Server

    Massa, Enrico; Jentschel, Michael

    2011-01-01

    The measurement of the Avogadro constant opened the way to a comparison of the watt-balance measurements of the Planck constant with the values calculated from the quotients of the Planck constant and the mass of a particle or an atom. Since the energy scales of these measurements span nine energy decades, these data provide insight into the consistency of our understanding of physics.

  17. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    Science.gov (United States)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  18. Magnetized anisotropic dark energy models with constant deceleration parameter

    Indian Academy of Sciences (India)

    A Y SHAIKH; S D KATORE

    2016-12-01

    In this paper, we have studied the solutions of plane-symmetric Universe with variable $\\omega$ in the presence and the absence of magnetic field of energy density $\\rho B$. A special law of variation for Hubble’s parameterproposed by Bermann in {\\it Nuovo Cimento} B 74, 182 (1983) has been utilized to solve the field equations. Some physical and kinematical properties of the models are also discussed.

  19. Varying constants and dark energy with the E-ELT

    CERN Document Server

    Vielzeuf, P E

    2013-01-01

    The observational possibilities enabled by an ultra-stable CODEX-like spectrograph at the E-ELT will open new doors in the characterisation of the nature of Dark Energy. Indeed, it will provide measurements of a so far unexplored redshift-range ($2

  20. Zweig rule violation in the scalar sector and values of low-energy constants

    CERN Document Server

    Descotes, S

    2001-01-01

    We discuss the role of the Zweig rule violation in the scalar channel for the determination of low-energy constants and condensates arising in the effective chiral Lagrangian of QCD. The analysis of the Goldstone boson masses and decay constants shows that the three-flavor condensate and some low-energy constants are very sensitive to the value of the Zweig Rule violating constant L_6. A similar study is performed in the case of the decay constants. A chiral sum rule based on experimental data in the scalar channel is used to constrain L_6, indicating a significant decrease between the two- and the three-flavor condensates. The analysis of the scalar form factors of the pion at zero momentum suggests that the pseudoscalar decay constant could also be suppressed from N_f=2 to 3.

  1. Wind energy applications guide

    Energy Technology Data Exchange (ETDEWEB)

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  2. Numerical computation of the critical energy constant for two-dimensional Boussinesq equations

    Science.gov (United States)

    Kolkovska, N.; Angelow, K.

    2015-10-01

    The critical energy constant is of significant interest for the theoretical and numerical analysis of Boussinesq type equations. In the one-dimensional case this constant is evaluated exactly. In this paper we propose a method for numerical evaluation of this constant in the multi-dimensional cases by computing the ground state. Aspects of the numerical implementation are discussed and many numerical results are demonstrated.

  3. Dark Energy Model with Non-Minimal Coupling and Cosmological Constant Boundary

    Institute of Scientific and Technical Information of China (English)

    张晓菲

    2011-01-01

    In this paper, we study a kind of dark energy models in the framework of the non-minimal coupling. With this kind of models, dark energy could cross the cosmological constant boundary, and at early time, dark energy could have "tracking" behavior.

  4. Study of Surface Cell Madelung Constant and Surface Free Energy of Nanosized Crystal Grain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jia; WANG Tian-Min; CUI Min

    2005-01-01

    Surface cell Madelung constant is firstly defined in calculating surface free energy of nanosized crystal grains, which explains the physical performance of small crystals and may be great benefit to make surface analysis and study dynamics of crystal nucleus growth. A new ap- proximative expression of surface energy and relevant thermodynamic data was used in this cal- culation. A new formula and computing method for calculating the Madelung constant α of any complex crystals is proposed, and surface free energies and surface electrostatic energies of nano- sized crystal grains as well as Madelung constant of some complex crystals are theoretically cal- culated in this paper. The surface free energy of nanosized crystal grain TiO2 and surface elec- trostatic energy(absolute value) of nanosized crystal grain α-Al2O3 are found to be the biggest among other crystal grains.

  5. Study of surface cell Madelung constant and surface free energy of nanosized crystal grain

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei-Jia; Wang Tian-Min; Rong Ai-Lun; Cui Min

    2006-01-01

    Surface cell Madelung constant is firstly defined for calculating the surface free energy of nanosized crystal grains,which explains the physical performance of small crystals and may be greatly beneficial to the analysis of surface states and the study of the dynamics of crystal nucleation and growth.A new approximative expression of the surface energy and relevant thermodynamic data are used in this calculation.New formula and computing method for calculating the Madelung constant α of any complex crystals are proposed,and the surface free energies and surface electrostatic energies of nanosized crystal grains and the Madelung constant of some complex crystals are theoretically calculated in this paper.The surface free energy of nanosized-crystal-grain TiO2 and the surface electrostatic energy (absolute value) of nanosized-crystal-grain α-A12O3 are found to be the biggest among all the crystal grains including those of other species.

  6. The dependence of electrostatic solvation energy on dielectric constants in Poisson-Boltzmann calculations.

    Science.gov (United States)

    Tjong, Harianto; Zhou, Huang-Xiang

    2006-11-28

    The Poisson-Boltzmann equation gives the electrostatic free energy of a solute molecule (with dielectric constant epsilon(l)) solvated in a continuum solvent (with dielectric constant epsilon(s)). Here a simple formula is presented that accurately predicts the electrostatic free energy for all combinations of epsilon(l) and epsilon(s) from the calculation on a single set of epsilon(l) and epsilon(s) values.

  7. Determination of low-energy constants of Wilson chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Herdoiza, Gregorio [Mainz Univ. (Germany). Inst fuer Kernphysik, PRISMA Cluster of Excellence; Univ. Autonoma de Madrid, Contoblanco (Spain). Dept. de Fisica Teorica; Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Univ. Cyprus, Nicosia (Cyprus). Dept. of Physics; Michael, Chris [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Ottnad, Konstantin; Urbach, Carsten [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen und Kernphysik; Univ. Bonn (Germany). Bethe Center for Theoretical Physics; Collaboration: European Twisted Mass Collaboration

    2013-03-15

    By matching Wilson twisted mass lattice QCD determinations of pseudoscalar meson masses to Wilson Chiral Perturbation Theory we determine the low-energy constants W{sub 6}{sup '}, W{sub 8}{sup '} and their linear combination c{sub 2}. We explore the dependence of these low-energy constants on the choice of the lattice action and on the number of dynamical flavours.

  8. Vacuum fluctuations of $\\overline{q}q$ and values of low-energy constants

    CERN Document Server

    Descotes, S

    2000-01-01

    We discuss the influence of the vacuum fluctuations of \\bar{q}q pairs on low-energy constants and condensates. The analysis of the Goldstone boson masses and decay constants shows that the three-flavour condensate and some low-energy constants are very sensitive to the value of L_6, which measures the Zweig-rule violation in the scalar channel. A chiral sum rule based on experimental data in this channel is used to constrain L_6, confirming a significant decrease between the two- and the three-flavor condensates.

  9. [Constant scaled-energy spectroscopy of Rydberg atoms in a static electric field].

    Science.gov (United States)

    Cao, Jun-wen; Liu, Xiao-jun; Zhao, Zhi; Zhan, Ming-sheng

    2002-02-01

    In the past years, scaled energy spectroscopy is under active investigation because this method can simplify the analysis of atomic spectra in the external field based on classic mechanics. A fully computer-controlled experimental system to study the constant scaled-energy spectroscopy was established and described in this paper. The excitation energy E and the strength of the external electric field F were controlled synchronously to keep the scaled-energy epsilon = E/square root of F constant. With this system, constant scaled-energy spectra of Strontium Rydberg atoms at epsilon = -3.0 in a static electric field were successfully recorded for the first time, and the recurrence spectra were obtained by a Fourier transform.

  10. Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Freihaut, Jim

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive

  11. Optimal Constant DC Link Voltage Operation of aWave Energy Converter

    Directory of Open Access Journals (Sweden)

    Mats Leijon

    2013-04-01

    Full Text Available This article proposes a simple and reliable damping strategy for wave powerfarm operation of small-scale point-absorber converters. The strategy is based on passiverectification onto a constant DC-link, making it very suitable for grid integration of the farm.A complete model of the system has been developed in Matlab Simulink, and uses real sitedata as input. The optimal constant DC-voltage is evaluated as a function of the significantwave height and energy period of the waves. The total energy output of the WEC is derivedfor one year of experimental site data. The energy output is compared for two cases, onewhere the optimal DC-voltage is determined and held constant at half-hour basis throughoutthe year, and one where a selected value of the DC-voltage is kept constant throughout theyear regardless of sea state.

  12. Walking at non-constant speeds: mechanical work, pendular transduction, and energy congruity.

    Science.gov (United States)

    Balbinot, G

    2017-05-01

    Although almost half of all walking bouts in urban environments consist of less than 12 consecutive steps and several day-to-day gait activities contain transient gait responses, in most studies gait analysis is performed at steady-state. This study aimed to analyze external (Wext ) and internal mechanical work (Wint ), pendulum-like mechanics, and elastic energy usage during constant and non-constant speeds. The mechanical work, pendular transduction, and energy congruity (an estimate of storage and release of elastic energy) during walking were computed using two force platforms. We found that during accelerating gait (+NCS) energy recovery is maintained, besides extra W(+)ext , for decelerating gait (-NCS) poor energy recovery was counterbalanced by W(-)ext and C% predominance. We report an increase in elastic energy usage with speed (4-11%). Both W(-)ext and %C suggests that elastic energy usage is higher at faster speeds and related to -NCS (≈20% of elastic energy usage). This study was the first to show evidences of elastic energy usage during constant and non-constant speeds.

  13. Bound state potential energy surface construction: ab initio zero-point energies and vibrationally averaged rotational constants.

    Science.gov (United States)

    Bettens, Ryan P A

    2003-01-15

    Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.

  14. Holographic dark energy with varying gravitational constant in Hořava-Lifshitz cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R. [Department of Physics, University of Kurdistan, Pasdaran Ave., Sanandaj (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: rezakord@ipm.ir, E-mail: mjamil@camp.nust.edu.pk [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, Rawalpindi, 46000 (Pakistan)

    2010-02-01

    We investigate the holographic dark energy scenario with a varying gravitational constant in a flat background in the context of Hořava-Lifshitz gravity. We extract the exact differential equation determining the evolution of the dark energy density parameter, which includes G variation term. Also we discuss a cosmological implication of our work by evaluating the dark energy equation of state for low redshifts containing varying G corrections.

  15. Potentiometric Studies on the Protonation Constants and Protonation Energies of Some Diamines in Methanol + Water Mixtures

    Directory of Open Access Journals (Sweden)

    Sangita Sharma

    2007-01-01

    Full Text Available The protonation constants of diamines such as ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, o-phenylenediamine, m-phenylene-diamine, p-phenylenediamine were determined on the basis of Bjerrum and Calvin method in methanol-water mixtures. A pH metric method was used for calculation of protonation constants. The effects of solvents on protonation constant have been determined at ionic strength 0.2 M dm-3 (NaClO4 and temperature 30±0.1oC under nitrogen atmosphere. FORTRAN (IV programs were used for calculation of protonation constants and distribution of species like H2L, HL, L in equilibrium state. The logarithm of the protonation constants decrease in aliphatic diamines and increase in aromatic diamines with increase in methanol content in mixed equilibria. The verification of constants are explained on the basis of solute-solvent interaction, solvation, proton transfer processes and dielectric constant of equilibria. Protonation energies have been calculated theoretically using computational methods and these protonation energies for aromatic diamines are higher than aliphatic diamines.

  16. Role of the constant deceleration parameter in cosmological models with perfect fluid and dark energy

    CERN Document Server

    Pawar, D D; Mapari, R V

    2016-01-01

    The main purpose of the present paper is to investigate LRS Bianchi type I metric in the presence of perfect fluid and dark energy. In order to obtain a deterministic solution of the field equations we have assumed that, the two sources of the perfect fluid and dark energy interact minimally with separate conservation of their energy momentum tensors. The EoS parameter of the perfect fluid is also assumed to be constant. In addition to these we have used a special law of variation of Hubble parameter proposed by Berman that yields constant deceleration parameter. For two different values of the constant deceleration parameters we have obtained two different cosmological models. The physical behaviors of both the models have been discussed by using some physical parameters.

  17. Cosmological constant problem and renormalized vacuum energy density in curved background

    Science.gov (United States)

    Kohri, Kazunori; Matsui, Hiroki

    2017-06-01

    The current vacuum energy density observed as dark energy ρdarksimeq 2.5×10-47 GeV4 is unacceptably small compared with any other scales. Therefore, we encounter serious fine-tuning problem and theoretical difficulty to derive the dark energy. However, the theoretically attractive scenario has been proposed and discussed in literature: in terms of the renormalization-group (RG) running of the cosmological constant, the vacuum energy density can be expressed as ρvacuumsimeq m2H2 where m is the mass of the scalar field and rather dynamical in curved spacetime. However, there has been no rigorous proof to derive this expression and there are some criticisms about the physical interpretation of the RG running cosmological constant. In the present paper, we revisit the RG running effects of the cosmological constant and investigate the renormalized vacuum energy density in curved spacetime. We demonstrate that the vacuum energy density described by ρvacuumsimeq m2H2 appears as quantum effects of the curved background rather than the running effects of cosmological constant. Comparing to cosmological observational data, we obtain an upper bound on the mass of the scalar fields to be smaller than the Planck mass, m lesssim MPl.

  18. Studies on dissociation energies of diatomic molecules using vibrational spectroscopic constants

    Institute of Scientific and Technical Information of China (English)

    HOU; Shilin(侯世林); SUN; Weiguo(孙卫国)

    2003-01-01

    New analytical expression and numerical approach are suggested to calculate dissociation energies De of diatomic molecular states using an extreme value method (EVM). Studies on some electronic states of OH, BH, N2, Br2, ClF and CO molecules show that the accuracy of the EVM dissociation energies depends on the number of correct vibrational constants used in the calculations. The convergence qualities of De are suggested to be an alternative physical criterion to measure the qualities of the various sets of vibrational constants from different literature for the same diatomic state.

  19. NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Toxværd, Søren; Heilmann, Ole

    2011-01-01

    An algorithm is derived for computer simulation of geodesics on the constant-potential-energy hypersurface of a system of N classical particles. First, a basic time-reversible geodesic algorithm is derived by discretizing the geodesic stationarity condition and implementing the constant......-potential-energy constraint via standard Lagrangian multipliers. The basic NVU algorithm is tested by single-precision computer simulations of the Lennard-Jones liquid. Excellent numerical stability is obtained if the force cutoff is smoothed and the two initial configurations have identical potential energy within machine...... that ensures potential-energy and step-length conservation; center-of-mass drift is also eliminated. Analytical arguments confirmed by simulations demonstrate that the modified NVU algorithm is absolutely stable. Finally, we present simulations showing that the NVU algorithm and the standard leap-frog NVE...

  20. Correlation effects in MgO and CaO Cohesive energies and lattice constants

    CERN Document Server

    Doll, K; Stoll, H; Doll, Klaus; Dolg, Michael; Stoll, Hermann

    1996-01-01

    A recently proposed computational scheme based on local increments has been applied to the calculation of correlation contributions to the cohesive energy of the CaO crystal. Using ab-initio quantum chemical methods for evaluating individual increments, we obtain 80% of the difference between the experimental and Hartree-Fock cohesive energies. Lattice constants corrected for correlation effects deviate by less than 1% from experimental values, in the case of MgO and CaO.

  1. Energy density in general relativity a possible role of cosmological constant

    CERN Document Server

    Ray, S; Ray, Saibal; Bhadra, Sumana

    2004-01-01

    We consider a static spherically symmetric charged anisotropic fluid source of finite physical radius (\\sim 10^{-16} cm) by introducing a scalar variable \\Lambda dependent on the radial coordinate r under general relativity. From the solution sets a possible role of the cosmological constant is investigated which indicates the dependency of energy density of electron on the variable \\Lambda.

  2. Analytical and experimental investigation of a wound-rotor variable-speed, constant-frequency generator for small wind energy systems

    Science.gov (United States)

    Higashi, K. K.; Minges, G. P.; Price, G. D.

    1982-10-01

    The use of a wound rotor variable speed, constant frequency generator with small wind systems was investigated. The main initial objective was to demonstrate proof of concept under controlled conditions. The feasibility of this application was confirmed and it was shown that improved performance could be expected over a constant speed, constant frequency generator systems. The ability to maintain a constant tip speed ratio near the maximum rotor performance coefficient over a wide range of wind speeds is noted. A substantial increase in annual energy output can be expected from VSCF operation. Controlled start up and shutdown can also reduce the high transient torques and concomitant inrush currents common to induction generator systems.

  3. Application of passive energy conservation technique to a constant temperature indoor swimming pool%被动节能在某室内恒温游泳池中的应用

    Institute of Scientific and Technical Information of China (English)

    胡晨炯; 屈国伦; 胡婧; 林心关; 王飞; 刘后根; 常先问

    2012-01-01

    Introduces the natural ventilation system into the swimming pool design and determines the air inlet and outlet scheme based on CFD simulation results. Gives the logic decision conditions of natural ventilation operation, natural ventilation plus mechanical ventilation operation and air conditioning operation. Calculates the annual ventilation operation hours using the meteorological parameters of a typical year in Guangzhou and analyses the energy saving effect of ventilation operation by annual energy consumption simulation.%在该恒温游泳池设计中引入了自然通风系统,结合CFD模拟结果确定了进排风方案.给出了自然通风、自然通风与机械通风联合运行和空调运行的逻辑判-定条件.采用广州市典型气象年的气象资科计算了全年通风运行时间,并通过全年能耗模拟分析了其节能效益.

  4. Thermal energy storage system using phase change materials: Constant heat source

    Directory of Open Access Journals (Sweden)

    Reddy Meenakshi R.

    2012-01-01

    Full Text Available The usage of phase change materials (PCM to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation paraffin and stearic acid are employed as PCMs in thermal energy storage (TES system to store the heat as sensible and latent heat also. A constant heat source is used to supply heat transfer fluid (HTF at constant temperature to the TES system. In the TES system PCMs are stored in the form of spherical capsules of 38 mm diameter made of high density poly ethylene (HDPE. The results of the investigation are related to the charging time and recovery of stored energy from the TES system.

  5. Absolute Determination of Optical Constants by a Direct Physical Modeling of Reflection Electron Energy Loss Spectra

    CERN Document Server

    Xu, H; Toth, J; Tokesi, K; Ding, Z J

    2016-01-01

    We present an absolute extraction method of optical constants of metal from the measured reflection electron energy loss (REELS) spectra by using the recently developed reverse Monte Carlo (RMC) technique. The method is based on a direct physical modeling of electron elastic and electron inelastic scattering near the surface region where the surface excitation becomes important to fully describe the spectrum loss feature intensity in relative to the elastic peak intensity. An optimization procedure of oscillator parameters appeared in the energy loss function (ELF) for describing electron inelastic scattering due to the bulk- and surface-excitations was performed with the simulated annealing method by a successive comparison between the measured and Monte Carlo simulated REELS spectra. The ELF and corresponding optical constants of Fe were obtained from the REELS spectra measured at incident energies of 1000, 2000 and 3000 eV. The validity of the present optical data has been verified with the f- and ps-sum r...

  6. How the dark energy can reconcile Planck with local determination of the Hubble constant

    Science.gov (United States)

    Huang, Qing-Guo; Wang, Ke

    2016-09-01

    We try to reconcile the tension between the local 2.4 % determination of Hubble constant and its global determination by Planck CMB data and BAO data through modeling the dark energy variously. We find that the chi-square is significantly reduced by Δ χ ^2_ {all}=-6.76 in the redshift-binned dark energy model where the 68 % limits of the equation of state of dark energy read w(0≤ z≤ 0.1)=-1.958_{-0.508}^{+0.509}, w(0.11.5) is fixed to -1.

  7. a Unified Dark Energy Model from a Vanishing Speed of Sound with Emergent Cosmological Constant

    Science.gov (United States)

    Luongo, Orlando; Quevedo, Hernando

    2014-11-01

    The problem of the cosmic acceleration is here revisited by using the fact that the adiabatic speed of sound can be assumed to be negligible small. Within the context of general relativity, the total energy budget is recovered under the hypothesis of a vanishing speed of sound by assuming the existence of one fluid only. We find a cosmological model which reproduces the main results of the ΛCDM paradigm at late-times, showing an emergent cosmological constant, which is not at all related with the vacuum energy term. As a consequence, the model presented here behaves as a unified dark energy (DE) model.

  8. Aspects of the low-energy constants in the chiral Lagrangian for charmed mesons

    CERN Document Server

    Du, Meng-Lin; Meißner, Ulf-G; Yao, De-Liang

    2016-01-01

    We investigate the numerical values of the low-energy constants in the chiral effective Lagrangian for the interactions between the charmed mesons and the lightest pseudoscalar mesons, the Goldstone bosons of the spontaneous breaking of chiral symmetry for QCD. This problem is tackled from two sides: estimates using the resonance exchange model, and positivity constraints from the general properties of the $S$-matrix including analyticity, crossing symmetry and unitarity. These estimates and constraints are compared with the values determined from fits to lattice data of the scattering lengths. Tensions are found, and possible reasons are discussed. We conclude that more data from lattice calculations and experiments are necessary to fix these constants better. As a by-product, we also estimate the coupling constant $g_{DDa_2}$, with $a_2$ the light tensor meson, via the QCD sum rule approach.

  9. EFFECT OF DIELECTRIC CONSTANT ON THE EXCITON GROUND STATE ENERGY OF CdSe QUANTUM DOTS

    Institute of Scientific and Technical Information of China (English)

    HUI PING

    2000-01-01

    The B-spline technique is used in the calculation of the exciton ground state energy based on the effective mass approximation (EMA) model.The exciton is confined in CdSe microspherical crystallites with a finite-height potential wall (dots).In this approach,(a) the wave function is allowed to penetrate to the outside of the dots; (b) the dielectric constants of the quantum dot and the surrounding material are considered to be different; and (c) the dielectric constant of the dots are size-dependent.The exciton energies as functions of radii of the dots in the range 0.5-3.5nm are calculated and compared with experimental and previous theoretical data.The results show that: (1) The exciton energy is convergent as the radius of the dot becomes very small.(2) A good agreement with the experimental data better than other theoretical results is achieved.(3) The penetration (or leaking) of the wave function and the difference of the dielectric constants in different regions are necessary for correcting the Coulomb interaction energy and reproducing experimental data.(4) The EMA model with B-spline technique can describe the status of excition confined in quantum dot very well.

  10. Superconducting, energy variable heavy ion linac with constant β, multicell cavities of CH-type

    Directory of Open Access Journals (Sweden)

    S. Minaev

    2009-12-01

    Full Text Available An energy variable ion linac consisting of multigap, constant-β cavities was developed. The effect of phase sliding, unavoidable in any constant-β section, is leading to a coherent rf phase motion, which fits well to the H-type structures with their long π-mode sections and separated lenses. The exact periodicity of the cell lengths within each cavity results in technical advantages, such as higher calculation accuracy when only one single period can be simulated, simpler manufacturing, and tuning. This is most important in the case of superconducting cavities. By using this concept, an improved design for a 217 MHz cw superconducting heavy ion linac with energy variation has been worked out. The small output energy spread of ±3  AkeV is provided over the whole range of energy variation from 3.5 to 7.3 AMeV. These capabilities would allow for a competitive research in the field of radiochemistry and for a production of super heavy elements (SHE, especially. A first 19-cell cavity of that type was designed, built, and rf tested successfully at the Institute for Applied Physics (IAP Frankfurt. A 325.224 MHz, seven-cell cavity with constant β=0.16 is under development and will be operated in a frequency controlled mode. It will be equipped with a power coupler and beam tests with Unilac beams at GSI are foreseen.

  11. Contribution of Disclination Lines to Free Energy of Liquid Crystals in Single-Elastic Constant Approximation

    Institute of Scientific and Technical Information of China (English)

    YANGGuo-Hong; WANGYu-Sheng; DUANYi-Shi

    2004-01-01

    In the light of C-mapping method and topological current theory, the contribution of disclination lines to free energy density of liquid crystals is studied in the single-elastic constant approximation. It is pointed out that the total free energy density can be divided into two parts. One is the usual distorted energy density of director field around the disclination lines. The other is the free energy density of disclination lines themselves, which is shown to be centralized at the disclination lines and to be topologically quantized in the unit of kn/2. The topological quantum numbers are determined by the Hopf indices and Brouwer degrees of the director l~eld at the disclination lines, i.e. the disclination strengths. From the Lagrange's method of multipliers, the equilibrium equation and the molecular field ofliquid crystals are also obtained. The physical meaning of the Lagrangian multiplier is just the distorted energy density.

  12. Contribution of Disclination Lines to Free Energy of Liquid Crystals in Single-Elastic Constant Approximation

    Institute of Scientific and Technical Information of China (English)

    YANG Guo-Hong; WANG Yu-Sheng; DUAN Yi-Shi

    2004-01-01

    In the light of φ-mapping method and topological current theory, the contribution of disclination lines to free energy density of liquid crystals is studied in the single-elastic constant approximation. It is pointed out that the total free energy density can be divided into two parts. One is the usual distorted energy density of director field around the disclination lines. The other is the free energy density of disclination lines themselves, which is shown to be centralized at the disclination lines and to be topologically quantized in the unit of kπ /2. The topological quantum numbers are determined by the Hopf indices and Brouwer degrees of the director field at the disclination lines, i.e. the disclination strengths. From the Lagrange's method of multipliers, the equilibrium equation and the molecular field of liquid crystals are also obtained. The physical meaning of the Lagrangian multiplier is just the distorted energy density.

  13. Lemaître Class Dark Energy Model for Relaxing Cosmological Constant

    Directory of Open Access Journals (Sweden)

    Irina Dymnikova

    2017-05-01

    Full Text Available Cosmological constant corresponds to the maximally symmetric cosmological term with the equation of state p = − ρ . Introducing a cosmological term with the reduced symmetry, p r = − ρ in the spherically symmetric case, makes cosmological constant intrinsically variable component of a variable cosmological term which describes time-dependent and spatially inhomogeneous vacuum dark energy. Relaxation of the cosmological constant from the big initial value to the presently observed value can be then described in general setting by the spherically symmetric cosmology of the Lemaître class. We outline in detail the cosmological model with the global structure of the de Sitter spacetime distinguished by the holographic principle as the only stable product of quantum evaporation of the cosmological horizon entirely determined by its quantum dynamics. Density of the vacuum dark energy is presented by semiclassical description of vacuum polarization in the spherically symmetric gravitational field, and its initial value is chosen at the GUT scale. The final non-zero value of the cosmological constant is tightly fixed by the quantum dynamics of evaporation and appears in the reasonable agreement with its observational value.

  14. A potential for Th from inversion of cohesive energy: Elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszewicz, S., E-mail: jaroszew@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Mosca, H.O. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Garces, J.E. [DAEE, Centro Atomico Bariloche, Comision Nacional de Energia Atomica (Argentina)

    2012-08-15

    An interatomic pair potential for Th was derived by using the Chen-Mobius lattice inversion of cohesive energy for fcc Th as a starting point to develop a free-parameter potential suitable to be used in molecular dynamic calculations for predicting microstructure evolution and thermal properties in multicomponent nuclear fuel. The cohesive energy versus lattice parameter of Th was computed from first principles electronic structure calculations. The elastic constants for fcc Th were calculated by applying different types of strain to the starting crystal. Based on this information, the shear modulus, the Youngs modulus and the Poissons ratio were obtained. The computed elastic constants of fcc Th are found to be in a good agreement with experiments and previous theoretical results.

  15. Low-energy constants and condensates from the V-A spectrum

    CERN Document Server

    Boito, D; Jamin, M; Maltman, K; Peris, S

    2013-01-01

    We present an analysis of the isospin-one V-A correlator based on our successful simultaneous description of the OPAL V and A non-strange tau spectral data. We discuss the values obtained for the Chiral Perturbation Theory low-energy constants L_10 and C_87 as well as the dimension-six and eight condensates and compare them with those in the literature.

  16. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  17. Ab initio calculation of optical constants from visible to x-ray energies

    Science.gov (United States)

    Prange, M. P.; Rivas, G.; Ankudinov, A. L.; Rehr, J. J.

    2004-03-01

    We present a semi-automated approach for ab initio calculations of optical constants of materials from the visible to the hard x-ray energies. The approach is based on a generalization of the real space Green's formalism implemented in the FEFF8 spectroscopy code to include optical spectra. The method includes self-consistent potentials, core-hole and self-energy effects, inelastic losses and a full- or high order multiple-scattering. The procedure is based on calculations of the imaginary part of the dielectric function ɛ2 summed over all edges, from which other optical constants are derived using Kramers-Kronig transforms and analytical relations. These constants include the complex index of refraction, the real part of the dielectric function, and energy loss spectra. In contrast to standard atomic tables, the calculations include solid-state corrections, such as fine structure, Debye-Waller factors, lifetime broadening, etc. Typical results for several materials are presented and compared with experiment.

  18. Wave energy converter test application

    OpenAIRE

    Hottola, Niko

    2016-01-01

    This thesis was made for wave energy company Wello Oy. Given assignment was to find the suitable generator and frequency converter for a wave energy converter test application. The primary objective was to find a suitable generator for direct drive, in order to avoid the weight of the test application rising too high. In this thesis the possible machine types for test application are presented and what are their advenatages and disadvantages. In addition, the operation of the frequency co...

  19. Direct application of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  20. Monte Carlo-based revised values of dose rate constants at discrete photon energies

    Directory of Open Access Journals (Sweden)

    T Palani Selvam

    2014-01-01

    Full Text Available Absorbed dose rate to water at 0.2 cm and 1 cm due to a point isotropic photon source as a function of photon energy is calculated using the EDKnrc user-code of the EGSnrc Monte Carlo system. This code system utilized widely used XCOM photon cross-section dataset for the calculation of absorbed dose to water. Using the above dose rates, dose rate constants are calculated. Air-kerma strength S k needed for deriving dose rate constant is based on the mass-energy absorption coefficient compilations of Hubbell and Seltzer published in the year 1995. A comparison of absorbed dose rates in water at the above distances to the published values reflects the differences in photon cross-section dataset in the low-energy region (difference is up to 2% in dose rate values at 1 cm in the energy range 30-50 keV and up to 4% at 0.2 cm at 30 keV. A maximum difference of about 8% is observed in the dose rate value at 0.2 cm at 1.75 MeV when compared to the published value. S k calculations based on the compilation of Hubbell and Seltzer show a difference of up to 2.5% in the low-energy region (20-50 keV when compared to the published values. The deviations observed in the values of dose rate and S k affect the values of dose rate constants up to 3%.

  1. Optofluidics for energy applications

    Science.gov (United States)

    Erickson, David; Sinton, David; Psaltis, Demetri

    2011-10-01

    Since its emergence as a field, optofluidics has developed unique tools and techniques for enabling the simultaneous delivery of light and fluids with microscopic precision. In this Review, we describe the possibilities for applying these same capabilities to the field of energy. We focus in particular on optofluidic opportunities in sunlight-based fuel production in photobioreactors and photocatalytic systems, as well as optofluidically enabled solar energy collection and control. We then provide a series of physical and scaling arguments that demonstrate the potential benefits of incorporating optofluidic elements into energy systems. Throughout the Review we draw attention to the ways in which optofluidics must evolve to enable the up-scaling required to impact the energy field.

  2. Evidence for a Constant `Edge' in Proton-Proton Scattering at Very High Energies

    CERN Document Server

    Block, Martin M; Halzen, Francis; Stodolsky, Leo; Weiler, Thomas J

    2014-01-01

    Accurate fits to $pp$ and $\\bar pp$ cross section data up to Tevatron energies, incorporating the constraints imposed by analyticity and unitarity, successfully predict the results of recent LHC and cosmic ray measurements, and suggest that the cross sections approach a black disc limit asymptotically. The approach to the limit is, however, very slow. We present a simple geometric picture which explains these features in a natural way. A black disc of logarithmically growing radius is supplemented by a soft `edge' whose properties are invariant with energy. The constancy of the edge results in the prediction that the quantity $(\\sigma^{TOT}-2\\sigma^{El})/\\surd\\sigma^{TOT}$ approaches a constant at high energy. Using the existing fits, this prediction appears to be verified. The value of the limiting constant allows an estimate of the thickness of the edge, which turns out to be on the order of $1\\,{\\rm fm}$. One thus arrives at a picture where the proton-proton scattering at lower energies is dominated by wha...

  3. Constant-momentum acceleration time-of-flight mass spectrometry with energy focusing.

    Science.gov (United States)

    Dennis, Elise A; Ray, Steven J; Gundlach-Graham, Alexander W; Enke, Christie G; Barinaga, Charles J; Koppenaal, David W; Hieftje, Gary M

    2013-12-01

    Fundamental aspects of constant-momentum acceleration time-of-flight mass spectrometry (CMA-TOFMS) are explored as a means to improve mass resolution. By accelerating all ions to the same momentum rather than to the same energy, the effects of the initial ion spatial and energy distributions upon the total ion flight time are decoupled. This decoupling permits the initial spatial distribution of ions in the acceleration region to be optimized independently, and energy focus, including ion turn-around-time error, to be accomplished with a linear-field reflectron. Constant-momentum acceleration also linearly disperses ions across time according to mass-to-charge (m/z) ratio, instead of the quadratic relationship between flight time and m/z found in conventional TOFMS. Here, CMA-TOFMS is shown to achieve simultaneous spatial and energy focusing over a selected portion of the mass spectrum. An orthogonal-acceleration time-of-flight system outfitted with a reduced-pressure DC glow discharge (GD) ionization source is used to demonstrate CMA-TOFMS with atomic ions. The influence of experimental parameters such as the amplitude and width of the time-dependent CMA pulse on mass resolution is investigated, and a useful CMA-TOFMS focusing window of 2 to 18 Da is found for GD-CMA-TOFMS.

  4. SU(2) chiral perturbation theory low-energy constants from staggered 2+1 flavor simulations

    CERN Document Server

    Scholz, Enno E; Durr, Stephan; Fodor, Zoltan; Katz, Sandor D; Krieg, Stefan; Schafer, Andreas; Szabo, Kalman K

    2011-01-01

    We measure the pion mass and decay constant on ensembles generated by the Wuppertal-Budapest Collaboration, and extract the NLO low-energy constants l_3 and l_4 of SU(2) chiral perturbation theory. The data are generated in 2+1 flavor simulations with Symanzik glue and 2-fold stout-smeared staggered fermions, with pion masses varying from 135 MeV to 400 MeV, lattice scales between 0.7 GeV and 2.0 GeV, and m_s kept at its physical value. Furthermore, by excluding the lightest mass points, we are able to test the reliability of SU(2) chPT as a tool to extrapolate towards the physical point from higher pion masses.

  5. How the dark energy can reconcile Planck with local determination of the Hubble constant

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qing-Guo [Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Wang, Ke [Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2016-09-15

    We try to reconcile the tension between the local 2.4 % determination of Hubble constant and its global determination by Planck CMB data and BAO data through modeling the dark energy variously. We find that the chi-square is significantly reduced by Δχ{sup 2}{sub all} = -6.76 in the redshift-binned dark energy model where the 68 % limits of the equation of state of dark energy read w(0 ≤ z ≤ 0.1) = -1.958{sub -0.508}{sup +0.509}, w(0.1 < z ≤ 1.5) = -1.006{sub -0.082}{sup +0.092}, and here w(z > 1.5) is fixed to -1. (orig.)

  6. Microsolvation of methylmercury: structures, energies, bonding and NMR constants ((199)Hg, (13)C and (17)O).

    Science.gov (United States)

    Flórez, Edison; Maldonado, Alejandro F; Aucar, Gustavo A; David, Jorge; Restrepo, Albeiro

    2016-01-21

    Hartree-Fock (HF) and second order perturbation theory (MP2) calculations within the scalar and full relativistic frames were carried out in order to determine the equilibrium geometries and interaction energies between cationic methylmercury (CH3Hg(+)) and up to three water molecules. A total of nine structures were obtained. Bonding properties were analyzed using the Quantum Theory of Atoms In Molecules (QTAIM). The analyses of the topology of electron densities reveal that all structures exhibit a partially covalent HgO interaction between methylmercury and one water molecule. Consideration of additional water molecules suggests that they solvate the (CH3HgOH2)(+) unit. Nuclear magnetic shielding constants σ((199)Hg), σ((13)C) and σ((17)O), as well as indirect spin-spin coupling constants J((199)Hg-(13)C), J((199)Hg-(17)O) and J((13)C-(17)O), were calculated for each one of the geometries. Thermodynamic stability and the values of NMR constants correlate with the ability of the system to directly coordinate oxygen atoms of water molecules to the mercury atom in methylmercury and with the formation of hydrogen bonds among solvating water molecules. Relativistic effects account for 11% on σ((13)C) and 14% on σ((17)O), which is due to the presence of Hg (heavy atom on light atom, HALA effect), while the relativistic effects on σ((199)Hg) are close to 50% (heavy atom on heavy atom itself, HAHA effect). J-coupling constants are highly influenced by relativity when mercury is involved as in J((199)Hg-(13)C) and J((199)Hg-(17)O). On the other hand, our results show that the values of NMR constants for carbon and oxygen, atoms which are connected through mercury (C-HgO), are highly correlated and are greatly influenced by the presence of water molecules. Water molecules introduce additional electronic effects to the relativistic effects due to the mercury atom.

  7. Quantum de Sitter Spacetime and Energy Density Contributed from the Cosmological Constant

    Institute of Scientific and Technical Information of China (English)

    LIU Liao

    2008-01-01

    @@ Previously we introduce a new way to quantize the static Schwarzschild black hole (SSBH), there the SSBH was first treated as a single periodic Euclidean system and then the Bohr-Sommerfeld quantum condition of action was used to obtain a quantum theory of Schwarzschild black hole [Chin. Phys. Lett. (2004) 21 1887]. Here we try to extend the above method to quantize the static de Sitter (SDS) spacetime and establish a quantum theory of both SDS space and the energy density contributed from the cosmological constant.

  8. The effect of interacting dark energy on local measurements of the Hubble constant

    Science.gov (United States)

    Odderskov, Io; Baldi, Marco; Amendola, Luca

    2016-05-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ8. It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ8 in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.

  9. User Manual and Source Code for a LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics (DPD-E)

    Science.gov (United States)

    2014-06-01

    User Manual and Source Code for a LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics ( DPD -E) by James P. Larentzos...Energy Dissipative Particle Dynamics ( DPD -E) James P. Larentzos Engility Corporation John K. Brennan, Joshua D. Moore, and William D. Mattson...Constant Energy Dissipative Particle Dynamics ( DPD -E) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) James P

  10. Analysis of constant tension-induced rupture of lipid membranes using activation energy.

    Science.gov (United States)

    Karal, Mohammad Abu Sayem; Levadnyy, Victor; Yamazaki, Masahito

    2016-05-11

    The stretching of biomembranes and lipid membranes plays important roles in various physiological and physicochemical phenomena. Here we analyzed the rate constant kp of constant tension-induced rupture of giant unilamellar vesicles (GUVs) as a function of tension σ using their activation energy Ua. To determine the values of kp, we applied constant tension to a GUV membrane using the micropipette aspiration method and observed the rupture of GUVs, and then analyzed these data statistically. First, we investigated the temperature dependence of kp for GUVs of charged lipid membranes composed of negatively charged dioleoylphosphatidylglycerol (DOPG) and electrically neutral dioleoylphosphatidylcholine (DOPC). By analyzing this result, the values of Ua of tension-induced rupture of DOPG/DOPC-GUVs were obtained. Ua decreased with an increase in σ, supporting the classical theory of tension-induced pore formation. The analysis of the relationship between Ua and σ using the theory on the electrostatic interaction effects on the tension-induced rupture of GUVs provided the equation of Ua including electrostatic interaction effects, which well fits the experimental data of the tension dependence of Ua. A constant which does not depend on tension, U0, was also found to contribute significantly to Ua. The Arrhenius equations for kp using the equation of Ua and the parameters determined by the above analysis fit well to the experimental data of the tension dependence of kp for DOPG/DOPC-GUVs as well as for DOPC-GUVs. On the basis of these results, we discussed the possible elementary processes underlying the tension-induced rupture of GUVs of lipid membranes. These results indicate that the Arrhenius equation using the experimentally determined Ua is useful in the analysis of tension-induced rupture of GUVs.

  11. A Different Look at Dark Energy and the Time Variation of Fundamental Constants

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Marvin; /SLAC

    2011-02-07

    This paper makes the simple observation that a fundamental length, or cutoff, in the context of Friedmann-Lemaitre-Robertson-Walker (FRW) cosmology implies very different things than for a static universe. It is argued that it is reasonable to assume that this cutoff is implemented by fixing the number of quantum degrees of freedom per co-moving volume (as opposed to a Planck volume) and the relationship of the vacuum-energy of all of the fields in the theory to the cosmological constant (or dark energy) is re-examined. The restrictions that need to be satisfied by a generic theory to avoid conflicts with current experiments are discussed, and it is shown that in any theory satisfying these constraints knowing the difference between w and minus one allows one to predict w. It is argued that this is a robust result and if this prediction fails the idea of a fundamental cutoff of the type being discussed can be ruled out. Finally, it is observed that, within the context of a specific theory, a co-moving cutoff implies a predictable time variation of fundamental constants. This is accompanied by a general discussion of why this is so, what are the strongest phenomenological limits upon this predicted variation, and which limits are in tension with the idea of a co-moving cutoff. It is pointed out, however, that a careful comparison of the predicted time variation of fundamental constants is not possible without restricting to a particular model field-theory and that is not done in this paper.

  12. Low-energy constants and condensates from the tau hadronic spectral functions

    CERN Document Server

    Boito, Diogo; Jamin, Matthias; Maltman, Kim; Peris, Santiago

    2013-01-01

    We use results of fits to the OPAL spectral data, obtained from non-strange hadronic \\tau decays, to evaluate the difference between the vector and axial current correlators, \\Pi_{V-A}(Q^2). The behavior of \\Pi_{V-A}(Q^2) near euclidean momentum Q^2=0 is used to determine the effective low-energy constants L_10^eff and C_87^eff related to the renormalized low-energy constants L_10^r and C_87^r in the chiral lagrangian. We also investigate how well two-loop chiral perturbation theory describes \\Pi_{V-A}(Q^2) as a function of Q^2. This is the first determination of L_10^eff and C_87^eff to employ a fully self-consistent model for the violations of quark-hadron duality in both the vector and axial channels. We also discuss the values of the coefficients C_{6,V-A} and C_{8,V-A} governing the dimension six and eight contributions to the operator product expansion representation of \\Pi_{V-A}(Q^2).

  13. Theoretical and Experimental Approaches to the Dark Energy and the Cosmological Constant Problem

    CERN Document Server

    Borzou, Ahmad

    2016-01-01

    Theoretical and Experimental Approaches to the Dark Energy and theCosmological Constant ProblemAhmad Borzou, Ph.D.Advisor: Kenichi Hatakeyama, Ph.D.The cosmological constant problem is one of the most pressing problems ofphysics at this time. In this dissertation the problem and a set of widely-discussedtheoretical solutions to this problem are reviewed. It is shown that a recently developed Lorentz gauge theory of gravity can provide a natural solution. In this theorypresented here, the metric is not dynamical and it is shown that the Schwartzschildmetric is an exact solution. Also, it is proven that the de Sitter space is an exactvacuum solution and as a result the theory is able to explain the expansion of theuniverse with no need for dark energy. Renormalizability of the theory is studied aswell. It is also shown that, under a certain condition, the theory is power-countingrenormalizable.Supersymmetry provides an alternative solution to the cosmological problem aswell. The idea behind supersymmetry is rev...

  14. Efficient quantum-classical method for computing thermal rate constant of recombination: application to ozone formation.

    Science.gov (United States)

    Ivanov, Mikhail V; Babikov, Dmitri

    2012-05-14

    Efficient method is proposed for computing thermal rate constant of recombination reaction that proceeds according to the energy transfer mechanism, when an energized molecule is formed from reactants first, and is stabilized later by collision with quencher. The mixed quantum-classical theory for the collisional energy transfer and the ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the dynamics of molecule + quencher collision. Efficiency is achieved by sampling simultaneously (i) the thermal collision energy, (ii) the impact parameter, and (iii) the incident direction of quencher, as well as (iv) the rotational state of energized molecule. This approach is applied to calculate third-order rate constant of the recombination reaction that forms the (16)O(18)O(16)O isotopomer of ozone. Comparison of the predicted rate vs. experimental result is presented.

  15. High dielectric constant materials and their application to IC gate stack systems

    Institute of Scientific and Technical Information of China (English)

    TU; Hailing

    2005-01-01

    High dielectric constant (high-k) materials are vital tothe nanoelectronic devices.The paper reviews research development of high-k materials, describes a variety of manufacture technologies and discusses the application of the gate stack systems to non-classical device structures.

  16. Measurements of Creep Internal Stress Based on Constant Strain Rate and Its Application to Engineering

    Institute of Scientific and Technical Information of China (English)

    TAO Wen-liang; WEI Tao

    2006-01-01

    This research is carried out on the basis of Constant Strain Rate(CSR) to measure creep internal stress. Measurements of creep internal stress are conducted on the material test machine by using the CSR method. A mathematical model of creep internal stress is also proposed and its application is presented in this paper.

  17. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    Directory of Open Access Journals (Sweden)

    Andreas Gansäuer

    2013-08-01

    Full Text Available The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG‡ and ΔGR are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically.

  18. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    Science.gov (United States)

    Seddiqzai, Meriam; Dahmen, Tobias; Sure, Rebecca

    2013-01-01

    Summary The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG ‡ and ΔG R) are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically. PMID:24062821

  19. The effect of interacting dark energy on local measurements of the Hubble constant

    CERN Document Server

    Odderskov, Io; Amendola, Luca

    2015-01-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two $\\Lambda$CDM simulations with different values of $\\sigma_8$. It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of $\\sigma_8$ in the coupled cosmologies, though this cannot account for a...

  20. Direct solar thermal energy storage using a semitransparent PCM. Indoor experiment under constant incident radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Makoto; Bando, Yoshiyuki; Kuraishi, Michio; Hahne, E.W.P.

    1987-07-10

    The effect of the optical thickness of a translucent PCM (phase change material) on the temperature distribution and the thermal energy storage efficiency was studied for a passive system of solar thermal energy storage, in which a plane layer of the PCM was directly heated and melted by the solar radiation. Paraffin wax was used as the PCM and a black dye was added to change its absorption coefficient. Samples comprised of the PCM layer and the insulating layer with the adiabatic rear side were tested using a sun simulator capable of constant incident radiation. A theoretical analysis was made by applying the concept of overall specific heat. As the results, the theoretical analysis was proved to be valid, and further it was clarified that the optical thickness of the PCM had a strong influence on the temperature distribution and the thermal energy storage efficiency. The PCM with small optical thickness was found to have greater efficiency because of inner melting. (8 figs, 2 tabs, 7 refs)

  1. On the determination of low-energy constants for $\\Delta S=1$ transitions

    CERN Document Server

    Giusti, Leonardo; Laine, Mikko; Peña, C; Wennekers, J; Wittig, H

    2005-01-01

    We present our preliminary results for three-point correlation functions involving the operators entering the $\\Delta{S}=1$ effective Hamiltonian with an active charm quark, obtained using overlap fermions in the quenched approximation. This is the first computation carried out for valence quark masses small enough so as to permit a matching to Quenched Chiral Perturbation Theory in the $\\epsilon$-regime. The commonly observed large statistical fluctuations are tamed by means of low-mode averaging techniques, combined with restrictions to individual topological sectors. We also discuss the matching of the resulting hadronic matrix elements to the effective low-energy constants for $\\Delta{S}=1$ transitions. This involves (a) finite-volume corrections which can be evaluated at NLO in Quenched Chiral Perturbation Theory, and (b) the short-distance renormalization of the relevant four-quark operators in discretizations based on the overlap operator. We discuss perturbative estimates for the renormalization facto...

  2. Some laws of a system with a constant amount of energy

    Directory of Open Access Journals (Sweden)

    Blagojević D.

    2008-01-01

    Full Text Available In this paper, different relationships and functional dependences of a system with a constant energy U=const., have been analyzed. The combinatorial nature of this analysis enables the conclusion that a family of entropy curves i.e. σ (N, U, for U = const, have an envelope. The envelope theory is very important for consideration of long & short range order of statistic thermodynamic systems. Since, we analyzed a system for U=const, we could explain some non-continual properties of a material. Like an example of this statement, we observed the situation, which is caused by anomaly filling of electronic orbits during the transfer from d to f elements.

  3. Low-energy electron impact cross-sections and rate constants of $NH_2$

    Indian Academy of Sciences (India)

    ANAND BHARADVAJA; SAVINDER KAUR; K L BALUJA

    2017-08-01

    This systematic study reports various electron impact cross-sections, rate constants and transport properties of $NH_2$ radical in the low-energy limit. The collision study is based on $R$-matrix formalism and involves the use of various scattering models employing different active spaces. Both electron excited inelasticcross-sections and resonances are found influenced by correlation and polarization effects. The non-relativistic molecular bremsstrahlung radiation cross-section for soft photons, binary encounter Bethe model-based ionization cross-sections and a few molecular properties of the target radical are also reported. The present calculations are found to be in agreement with the available results. This theoretical study provides a pathway to understand collision dynamics and generates data required in various fields of applied physics.

  4. Estimation of the Hubble Constant and Constraint on Descriptions of Dark Energy

    CERN Document Server

    Greenhill, Lincoln; Hu, Wayne; Macri, Lucas; Murphy, David; Masters, Karen; Hagiwara, Yoshiaki; Kobayashi, Hideyuki; Murata, Yasuhiro

    2009-01-01

    Joint analysis of Cosmic Microwave Background, Baryon Acoustic Oscillation, and supernova data has enabled precision estimation of cosmological parameters. New programs will push to 1% uncertainty in the dark energy equation of state and tightened constraint on curvature, requiring close attention to systematics. Direct 1% measurement of the Hubble constant (H0) would provide a new constraint. It can be obtained without overlapping systematics directly from recessional velocities and geometric distance estimates for galaxies via the mapping of water maser emission that traces the accretion disks of nuclear black holes. We identify redshifts 0.020.02, out of ~100 known masers. A single-dish discovery survey of >10,000 nuclei (>2500 hours on the GBT) would build a sample of tens of potential distance anchors. Beyond 2020, a high-frequency SKA could provide larger maser samples, enabling estimation of H0 from individually less accurate distances, and possibly without the need for peculiar motion corrections.

  5. IDEA Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Robert

    2013-09-30

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nation’s energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEAC’s. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEAC’s for multi building, multi-use projects. The award was instrumental in the development of a first-order screening

  6. Thoracic applications of dual energy.

    Science.gov (United States)

    Remy-Jardin, Martine; Faivre, Jean-Baptiste; Pontana, Francois; Hachulla, Anne-Lise; Tacelli, Nunzia; Santangelo, Teresa; Remy, Jacques

    2010-01-01

    Recent technological advances in multidetector computed tomography (CT) have led to the introduction of dual-source CT, which allows acquisition of CT data at the same energy or at 2 distinct tube voltage settings during a single acquisition. The advantage of the former is improvement of temporal resolution, whereas the latter offers new options for CT imaging, allowing tissue characterization and functional analysis with morphologic evaluation. The most investigated application has been iodine mapping at pulmonary CT angiography. The material decomposition achievable opens up new options for recognizing substances poorly characterized by single-energy CT. Although it is too early to draw definitive conclusions on dual-energy CT applications, this article reviews the results already reported with the first generation of dual-source CT systems.

  7. Midwest Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Cuttica, John; Haefke, Cliff

    2013-12-31

    The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: Market Opportunity Analyses – Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. Education and Outreach – Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. Technical Assistance – Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

  8. Bioprocessing research for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Gaden, E.L. Jr.; Humphrey, A.E.; Carta, G.; Kirwan, D.J.

    1989-04-01

    The new biotechnology that is emerging could have a major impact on many of the industries important to our country, especially those associated with energy production and conservation. Advances in bioprocessing systems will provide important alternatives for the future utilization of various energy resources and for the control of environmental hazards that can result from energy generation. Although research in the fundamental biological sciences has helped set the scene for a ''new biotechnology,'' the major impediment to rapid commercialization for energy applications is the lack of a firm understanding of the necessary engineering concepts. Engineering research is now the essential ''bridge'' that will allow the development of a wide range of energy-related bioprocessing systems. A workshop entitled ''Bioprocessing Research for Energy Applications'' was held to address this technological area, to define the engineering research needs, and to identify those opportunities which would encourage rapid implementation of advanced bioprocessing concepts.

  9. Energy Storage for Aerospace Applications

    Science.gov (United States)

    Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.

    2001-01-01

    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.

  10. A Different Look at Dark Energy and the Time Variation of Fundamental Constants

    CERN Document Server

    Weinstein, Marvin

    2011-01-01

    This paper makes the simple observation that a fundamental length, or cutoff, in the context of Friedmann-Lema\\^itre-Robertson-Walker (FRW) cosmology implies very different things than for a static universe. It is argued that it is reasonable to assume that this cutoff is implemented by fixing the number of quantum degrees of freedom per co-moving volume (as opposed to a Planck volume) and the relationship of the vacuum-energy of all of the fields in the theory to the cosmological constant (or dark energy) is re-examined. The restrictions that need to be satisfied by a generic theory to avoid conflicts with current experiments are discussed, and it is shown that in any theory satisfying these constraints knowing the difference between $w$ and minus one allows one to predict $\\dot{w}$. It is argued that this is a robust result and if this prediction fails the idea of a fundamental cutoff of the type being discussed can be ruled out. Finally, it is observed that, within the context of a specific theory, a co-mo...

  11. Determination of human albumin in serum and urine samples by constant-energy synchronous fluorescence method.

    Science.gov (United States)

    Madrakian, Tayyebeh; Bagheri, Habibollah; Afkhami, Abbas

    2015-08-01

    A sensitive spectrofluorimetric method using constant-energy synchronous fluorescence technique is proposed for the determination of human albumin without separation. In this method, no reagent was used for enhancement of the fluorescence signal of albumin in the solution. Effects of some parameters, such as energy difference between excitation and emission monochromators (ΔE), emission and excitation slit widths and scan rate of wavelength were studied and the optimum conditions were established. For this purpose factorial design and response surface method were employed for optimization of the effective parameters on the fluorescence signal. The results showed that the scan rate of the wavelength has no significant effect on the analytical signal. The calibration curve was linear in the range 0.1-220.0 µg mL(-1) of albumin with a detection limit of 7.0 × 10(-3)  µg mL(-1). The relative standard deviations (RSD) for six replicate measurements of albumin were calculated as 2.2%, 1.7% and 1.3% for 0.5, 10.0 and 100.0 µg mL(-1) albumin, respectively. Furthermore the proposed method has been employed for the determination of albumin in human serum and urine samples.

  12. Energy Method of Finding Distribution Constants of an Antiferromagnetic Vector for an Antidot System in a Two-sublattice Antiferromagnet

    Directory of Open Access Journals (Sweden)

    V.V. Kulish

    2015-06-01

    Full Text Available The paper investigates the antiferromagnetic vector distribution in an antiferromagnetic film with a system of antidots. A static distribution of the antiferromagnetic vector is written and a method – based on the minimization of the antiferromagnet energy – that allows reducing the number of boundary conditions required for finding the constants of this distribution is proposed. Equations for the distribution constants are obtained for the both cases of minimizing the antiferromagnet energy by one and by two distribution constants that enter the expression for the antiferromagnet energy. The method is illustrated on a system of one isolated antidot. For such system, one additional condition – for the case when two boundary conditions on the surface of the antidot are given – and two additional conditions – for the case when one boundary condition on the surface of the antidot is given – on the distribution constants are written.

  13. Quantum theory of the dielectric constant of a magnetized plasma and astrophysical applications. I.

    Science.gov (United States)

    Canuto, V.; Ventura, J.

    1972-01-01

    A quantum mechanical treatment of an electron plasma in a constant and homogeneous magnetic field is considered, with the aim of (1) defining the range of validity of the magnetoionic theory (2) studying the deviations from this theory, in applications involving high densities, and intense magnetic field. While treating the magnetic field exactly, a perturbation approach in the photon field is used to derive general expressions for the dielectric tensor. Numerical estimates on the range of applicability of the magnetoionic theory are given for the case of the 'one-dimensional' electron gas, where only the lowest Landau level is occupied.

  14. Measurement of optical constants of Si and SiO2 from reflection electron energy loss spectra using factor analysis method

    Science.gov (United States)

    Jin, H.; Shinotsuka, H.; Yoshikawa, H.; Iwai, H.; Tanuma, S.; Tougaard, S.

    2010-04-01

    The energy loss functions (ELFs) and optical constants of Si and SiO2 were obtained from quantitative analysis of reflection electron energy loss spectroscopy (REELS) by a new approach. In order to obtain the ELF, which is directly related to the optical constants, we measured series of angular and energy dependent REELS spectra for Si and SiO2. The λ(E )K(ΔE) spectra, which are the product of the inelastic mean free path (IMFP) and the differential inverse IMFP, were obtained from the measured REELS spectra. We used the factor analysis (FA) method to analyze series of λ(E )K(ΔE) spectra for various emission angles at fixed primary beam energy to separate the surface-loss and bulk-loss components. The extracted bulk-loss components enable to obtain the ELFs of Si and SiO2, which are checked by oscillator strength-sum and perfect-screening-sum rules. The real part of the reciprocal of the complex dielectric function was determined by Kramers-Kronig analysis of the ELFs. Subsequently, the optical constants of Si and SiO2 were calculated. The resulting optical constants in terms of the refractive index and the extinction coefficient for Si and SiO2 are in good agreement with Palik's reference data. The results demonstrate the general applicability of FA as an efficient method to obtain the bulk ELF and to determine the optical properties from REELS measurements.

  15. On the determination of low-energy constants for {delta}S=1 transitions

    Energy Technology Data Exchange (ETDEWEB)

    Giusti, L.; Pena, C. [European Organization for Nuclear Research, Geneva (Switzerland); Hernandez, P. [Dpto. Fisica Teorica and IFIC, Edificio Institutos Investigacion, Valencia (Spain); Laine, M. [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Wennekers, J.; Wittig, H. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2005-10-01

    We present our preliminary results for three-point correlation functions involving the operators entering the {delta}S=1 effective Hamiltonian with an active charm quark, obtained using overlap fermions in the quenched approximation. This is the first computation carried out for valence quark masses small enough so as to permit a matching to Quenched Chiral Perturbation Theory in the {epsilon}-regime. The commonly observed large statistical fluctuations are tamed by means of low-mode averaging techniques, combined with restrictions to individual topological sectors. We also discuss the matching of the resulting hadronic matrix elements to the effective low-energy constants for {delta}S=1 transitions. This involves (a) finite-volume corrections which can be evaluated at NLO in Quenched Chiral Perturbation Theory, and (b) the short-distance renormalization of the relevant four-quark operators in discretizations based on the overlap operator. We discuss perturbative estimates for the renormalization factors and possible strategies for their non-perturbative evaluation. Our results can be used to isolate the long-distance contributions to the {delta}I=1/2 rule, coming from physics effects around the intrinsic QCD scale. (orig.)

  16. ACADEMIC TRAINING: Low Energy Experiments that Measure Fundamental Constants and Test Basic Symmetries

    CERN Multimedia

    Françoise Benz

    2002-01-01

    17, 18, 19 , 21 June LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Low Energy Experiments that Measure Fundamental Constants and Test Basic Symmetries by G. GABRIELSE / Professor of Physics and Chair of the Harvard Physics Department, Spokesperson for the ATRAP Collaboration Lecture 1: Particle Traps: the World's Tiniest Accelerators A single elementary particle, or a single ion, can be confined in a tiny accelerator called a particle trap. A single electron was held this way for more than ten months, and antiprotons for months. Mass spectroscopy of exquisite precision is possible with such systems. CERN's TRAP Collaboration thereby compared the charge-to-mass ratios of the antiproton and proton to a precision of 90 parts per trillion, by far the most stringent CPT test done with a baryon system. The important ratio of the masses of the electron and proton have been similarly measured, as have a variety of ions masses, and the neutron mass is most accurately known from such measurements. An i...

  17. Using a Family of Dividing Surfaces Normal to the Minimum EnergyPath for Quantum Instanton Rate Constants

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yimin; Miller, Wlliam H.

    2006-02-22

    One of the outstanding issues in the quantum instanton (QI) theory (or any transition state-type theory) for thermal rate constants of chemical reactions is the choice of an appropriate ''dividing surface'' (DS) that separates reactants and products. (In the general version of the QI theory, there are actually two dividing surfaces involved.) This paper shows one simple and general way for choosing DS's for use in QI Theory, namely using the family of (hyper) planes normal to the minimum energy path (MEP) on the potential energy surface at various distances s along it. Here the reaction coordinate is not one of the dynamical coordinates of the system (which will in general be the Cartesian coordinates of the atoms), but rather simply a parameter which specifies the DS. It is also shown how this idea can be implemented for an N-atom system in 3d space in a way that preserves overall translational and rotational invariance. Numerical application to a simple system (the colliner H + H{sub 2} reaction) is presented to illustrate the procedure.

  18. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes.

    Science.gov (United States)

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-03-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from Vthn to [Vdd - |Vthp|]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21-60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC-DC converter. The converter is 11%-56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO.

  19. Optical constants of materials in the EUV/soft x-ray region for multilayer mirror applications

    Energy Technology Data Exchange (ETDEWEB)

    Soufli, R [Univ. of California, Berkeley, CA (United States)

    1997-12-01

    The response of a given material to an incident electromagnetic wave is described by the energy dependent complex index of refraction n = 1 {minus} {delta} + i{beta}. In the extreme ultraviolet (EUV)/soft x-ray spectral region, the need for accurate determination of n is driven by activity in areas such as synchrotron based research, EUV/x-ray lithography, x-ray astronomy and plasma applications. Knowledge of the refractive index is essential for the design of the optical components of instruments used in experiments and applications. Moreover, measured values of n may be used to evaluate solid state models for the optical behavior of materials. The refractive index n of Si, Mo and Be is investigated in the EUV/soft x-ray region. In the case of Si, angle dependent reflectance measurements are performed in the energy range 50--180 eV. The optical constants {delta}, {beta} are both determined by fitting to the Fresnel equations. The results of this method are compared to the values in the 1993 atomic tables. Photoabsorption measurements for the optical constants of Mo are performed on C/Mo/C foils, in the energy range 60--930 eV. Photoabsorption measurements on Be thin films supported on silicon nitride membranes are performed, and the results are applied in the determination of the absorption coefficient of Be in the energy region 111.5--250 eV. The new results for Si and Mo are applied to the calculation of normal incidence reflectivities of Mo/Si and Mo/Be multilayer mirrors. These calculations show the importance of accurate knowledge of {delta} and {beta} in the prediction and modeling of the performance of multilayer optics.

  20. Optical constants of materials in the EUV/soft x-ray region for multilayer mirror applications

    Energy Technology Data Exchange (ETDEWEB)

    Soufli, Regina [Univ. of California, Berkeley, CA (United States)

    1997-12-01

    The response of a given material to an incident electromagnetic wave is described by the energy dependent complex index of refraction n = 1 - δ + iβ. In the extreme ultraviolet (EUV)/soft x-ray spectral region, the need for accurate determination of n is driven by activity in areas such as synchrotron based research, EUV/x-ray lithography, x-ray astronomy and plasma applications. Knowledge of the refractive index is essential for the design of the optical components of instruments used in experiments and applications. Moreover, measured values of n may be used to evaluate solid state models for the optical behavior of materials. The refractive index n of Si, Mo and Be is investigated in the EUV/soft x-ray region. In the case of Si, angle dependent reflectance measurements are performed in the energy range 50-180 eV. The optical constants δ, β are both determined by fitting to the Fresnel equations. The results of this method are compared to the values in the 1993 atomic tables. Photoabsorption measurements for the optical constants of Mo are performed on C/Mo/C foils, in the energy range 60-930 eV. Photoabsorption measurements on Be thin films supported on silicon nitride membranes are performed, and the results are applied in the determination of the absorption coefficient of Be in the energy region 111.5-250 eV. The new results for Si and Mo are applied to the calculation of normal incidence reflectivities of Mo/Si and Mo/Be multilayer mirrors. These calculations show the importance of accurate knowledge of δ and β in the prediction and modeling of the performance of multilayer optics.

  1. Northeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, Tom

    2013-09-30

    From October 1, 2009 through September 30, 2013 (“contract period”), the Northeast Clean Energy Application Center (“NE-CEAC”) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEAC’s efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: • Reduction of greenhouse gas emissions and criteria pollutants • Improvements in energy efficiency resulting in lower costs of doing business • Productivity gains in industry and efficiency gains in buildings • Lower regional energy costs • Strengthened energy security • Enhanced consumer choice • Reduced price risks for end-users • Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops

  2. A constant air flow rate control of blower for residential applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.M. [Tamkang Univ., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering

    1998-03-01

    This paper presents a technique to control a blower for residential applications at constant air flow rate using an induction motor drive. The control scheme combines a variable volt/hertz ratio inverter drive and an average motor current regulation loop to achieve control of the motor torque-speed characteristics, consequently controlling the air flow rate of the blower which the motor is driving. The controller is simple to implement and practical for commercialization. It is also reliable, since no external pressure or air flow sensor is required. Both a theoretical derivation and an experimental verification for the control scheme are presented in this paper.

  3. Avoiding unrealistic priors: the case of dark energy constraints from the time variation of the fine-structure constant

    CERN Document Server

    Avelino, P P

    2016-01-01

    We critically assess recent claims suggesting that upper limits on the time variation of the fine-structure constant tightly constrain the coupling of a dark energy scalar field to the electromagnetic sector, and, indirectly, the violation of the weak equivalence principle. We show that such constraints depend crucially on the assumed priors, even if the dark energy was described by a dynamical scalar field with a constant equation of state parameter $w$ linearly coupled to the electromagnetic sector through a dimensionless coupling $\\zeta$. We find that, although local atomic clock tests, as well as other terrestrial, astrophysical and cosmological data, put stringent bounds on $|\\zeta| {\\sqrt {|w+1|}}$, the time variation of the fine-structure constant cannot be used to set or to improve upper limits on $|\\zeta|$ or $|w+1|$ without specifying priors, consistent but not favoured by current data, which strongly disfavour low values of $|w+1|$ or $|\\zeta|$, respectively. We briefly discuss how this might chang...

  4. Application of the compensated Arrhenius formalism to explain the dielectric constant dependence of rates for Menschutkin reactions.

    Science.gov (United States)

    Petrowsky, Matt; Glatzhofer, Daniel T; Frech, Roger

    2013-11-21

    The dependence of the reaction rate on solvent dielectric constant is examined for the reaction of trihexylamine with 1-bromohexane in a series of 2-ketones over the temperature range 25-80 °C. The rate constant data are analyzed using the compensated Arrhenius formalism (CAF), where the rate constant assumes an Arrhenius-like equation that also contains a dielectric constant dependence in the exponential prefactor. The CAF activation energies are substantially higher than those obtained using the simple Arrhenius equation. A master curve of the data is observed by plotting the prefactors against the solvent dielectric constant. The master curve shows that the reaction rate has a weak dependence on dielectric constant for values approximately less than 10 and increases more rapidly for dielectric constant values greater than 10.

  5. Contribution of π-bonds to effective charges, cohesive energy, and force constants of graphene-like compounds

    Science.gov (United States)

    Davydov, S. Yu.

    2016-02-01

    For 14 two-dimensional hexagonal compounds IV-IV and III-V, analytical expressions have been obtained using the Harrison bond-orbital method for the contribution from the π-interaction to the polarity of interatomic bonds, the effective atomic and transverse dynamical charges and their dependences on the deformation, as well as to the binding energy, the cohesive energy, and the central and non-central force constants.

  6. Scaling and low energy constants in lattice QCD with N_f=2 maximally twisted Wilson quarks

    CERN Document Server

    Dimopoulos, P; Herdoiza, G; Urbach, C; Wenger, U

    2007-01-01

    We report on the scaling of basic hadronic observables in lattice QCD with N_f=2 maximally twisted Wilson dynamical quarks. We give preliminary results for some of the Gasser-Leutwyler low energy constants, the chiral condensate and the average mass of u and d quarks.

  7. Geometric optimal design of MR damper considering damping force, control energy and time constant

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Q H; Choi, S B [Smart Structures and Systems Laboratory, Department of Mechanical Engineering, INHA University, Incheon 402-751 (Korea, Republic of); Kim, K S [Department of Mechanical and Automotive Engineering, Kongju National University, Chonan 330-240 (Korea, Republic of)], E-mail: seungbok@inha.ac.kr

    2009-02-01

    This paper presents an optimal design of magnetorheological (MR) damper based on finite element analysis. The MR damper is constrained in a specific volume and the optimization problem identifies geometric dimensions of the damper that minimizes an objective function. The objective function is proposed by considering the damping force, dynamic range and the inductive time constant of the damper. After describing the configuration of the MR damper, a quasi-static modelling of the damper is performed based on Bingham model of MR fluid. The initial geometric dimensions of the damper are then determined based on the assumption of constant magnetic flux density throughout the magnetic circuit of the damper. Subsequently, the optimal design variables that minimize the objective function are determined using a golden-section algorithm and a local quadratic fitting technique via commercial finite element method parametric design language. A comparative work on damping force and time constant between the initial and optimal design is undertaken.

  8. Palladium catalysis for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L. D.; Datye, Abhaya

    2001-03-01

    Palladium (Pd) is an attractive catalyst for a range of new combustion applications comprising primary new technologies for future industrial energy needs, including gas turbine catalytic combustion, auto exhaust catalysts, heating and fuel cells. Pd poses particular challenges because it changes both chemical state and morphology as a function of temperature and reactant environment and those changes result in positive and negative changes in activity. Interactions with the support, additives, water, and contaminants as well as carbon formation have also been observed to affect Pd catalyst performance. This report describes the results of a 3.5 year project that resolves some of the conflicting reports in the literature about the performance of Pd-based catalysis.

  9. Energy Harvesting Applications of Ionic Polymers

    OpenAIRE

    Martin, Benjamin Ryan

    2005-01-01

    Energy Harvesting Applications of Ionic Polymers Benjamin R. Martin Abstract The purpose of this thesis is the development and analysis of applications for ionic polymers as energy harvesting devices. The specific need is a self-contained energy harvester to supply renewable power harvested from ambient vibrations to a wireless sensor. Ionic polymers were investigated as mechanical to electrical energy transducers. An ionic polymer device was designed to harvest energy from vi...

  10. Low Energy Constants from the zero mode contribution to the pseudo-scalar correlator

    CERN Document Server

    Shcheredin, S

    2005-01-01

    We apply different types of overlap operators in quenched QCD simulations to compute the zero mode contribution to the pseudo-scalar correlator. In particular we use the conventional Neuberger Dirac operator and the overlap hypercube Dirac operator. Confronting our data with the analytical predictions by Chiral Perturbation Theory we evaluate the pion decay constant and the parameter \\alpha of the quenched chiral Lagrangian.

  11. Minkowski problem, new constant curvature surfaces in R^3, and some applications

    CERN Document Server

    Alarcon, Antonio

    2012-01-01

    Let $m\\in\\mathbb{N},$ $m\\geq 2,$ and let $\\{p_j\\}_{j=1}^m$ be a finite subset of $\\mathbb{S}^2$ such that $0\\in\\mathbb{R}^3$ lies in its positive convex hull. In this paper we make use of the classical Minkowski problem, to show the complete family of smooth convex bodies $K$ in $\\mathbb{R}^3$ whose boundary surface consists of an open surface $S$ with constant Gauss curvature (respectively, constant mean curvature) and $m$ planar compact discs $\\bar{D_1},...,\\bar{D_m},$ such that the Gauss map of $S$ is a homeomorphism onto $\\mathbb{S}^2-\\{p_j\\}_{j=1}^m$ and $D_j\\bot p_j,$ for all $j.$ We derive applications to the generalized Minkowski problem, existence of harmonic diffeomorphisms between domains of $\\mathbb{S}^2,$ existence of capillary surfaces in $\\mathbb{R}^3,$ and a Hessian equation of Monge-Ampere type.

  12. Apparent activation energy for densification of -Al2O3 powder at constant heating-rate sintering

    Indian Academy of Sciences (India)

    W Q Shao; S O Chen; D Li; H S Cao; Y C Zhang; S S Zhang

    2008-11-01

    The apparent activation energy for densification is a characteristic quantity that elucidates the fundamental diffusion mechanisms during the sintering process. Based on the Arrhenius theory, the activation energy for densification of -Al2O3 at constant heating-rates sintering has been estimated. Sintering of -Al2O3 powder has been executed by the way of a push rod type dilatometer. It is shown that the apparent activation energy does not have a single value but depends directly on the relative density. The apparent activation energy corresponding to lower relative density was higher than that corresponding to higher relative density. In addition, the value of the evaluated activation energy is different at the same density level when the Arrhenius plot involves different heating rates.

  13. Magnetic core test stand for energy loss and permeability measurements at a high constant magnetization rate and test results for nanocrystalline and ferrite materials.

    Science.gov (United States)

    Burdt, Russell; Curry, Randy D

    2008-09-01

    A test stand was developed to measure the energy losses and unsaturated permeability of toroidal magnetic cores, relevant to applications of magnetic switching requiring a constant magnetization rate of the order of 1-10 T/micros. These applications in pulsed power include linear induction accelerators, pulse transformers, and discharge switches. The test stand consists of a coaxial transmission line pulse charged up to 100 kV that is discharged into a magnetic core load. Suitable diagnostics measure the voltage across and the current through a winding on the magnetic core load, from which the energy losses and unsaturated permeability are calculated. The development of the test stand is discussed, and test results for ferrite CN20 and the nanocrystalline material Finemet FT-1HS are compared to demonstrate the unique properties of a nanocrystalline material. The experimental data are compared with published data in a similar parameter space to demonstrate the efficacy of the experimental methods.

  14. Solar energy applications in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Ilenikhena, P.A.; Ezemonye, L.I.N.

    2010-09-15

    Solar radiation being abundantly present in Nigeria was one area of focus in renewable energy sources. Researches were carried out and technologies produced for direct harnessing of the energy in six energy centres across the country. Some state governments in collaboration with non-governmental agencies also sponsored solar energy projects in some villages that are not connected to the national grid.

  15. A model of the Universe including Dark Energy accounted for by both a Quintessence Field and a (negative) Cosmological Constant

    CERN Document Server

    Cardenas, R; Martin, O; Quirós, I; Cardenas, Rolando; Gonzalez, Tame; Martin, Osmel; Quiros, Israel

    2003-01-01

    In this work we present a model of the universe in which dark energy is modelled explicitely with both a dynamical quintessence field and a cosmological constant. Our results confirm the possibility of a collapsing universe (for a given region of the parameter space), which is necessary for an adequate definition of string theory. We have also reproduced the measurements of modulus distance from supernovae with good accuracy.

  16. Model of the universe including dark energy accounted for by both a quintessence field and a (negative) cosmological constant

    Science.gov (United States)

    Cardenas, Rolando; Gonzalez, Tame; Leiva, Yoelsy; Martin, Osmel; Quiros, Israel

    2003-04-01

    In this work we present a model of the universe in which dark energy is modeled explicitly with both a dynamical quintessence field and a cosmological constant. Our results confirm the possibility of a future collapsing universe (for a given region of the parameter space), which is necessary for a consistent formulation of both string and quantum field theories. The predictions of this model for distance modulus of supernovae are similar to those of the standard ΛCDM model.

  17. Rotation-vibration energy levels of CO/sub 2/ using effective normal coordinates: definition of the spectroscopic constants

    Energy Technology Data Exchange (ETDEWEB)

    Amat, G.

    1988-08-01

    This paper deals with the calculation of rotation-vibration energy levels of CO/sub 2/ using ''effective normal coordinates''. The formula giving the diagonal matrix elements of the transformed Hamiltonian in terms of quantum numbers and spectroscopic constants can be written in a form simpler than the one previously published and more convenient for the solution of the inverse problem.

  18. Nanoscale applications for information and energy systems

    CERN Document Server

    Korkin, Anatoli

    2012-01-01

    This book presents nanotechnology fundamentals and applications in the key research areas of information technology and solar energy: plasmonics, photovoltaics, transparent conducting electrodes, silicon electroplating, and resistive switching.

  19. Nanoporous materials for energy applications

    Science.gov (United States)

    Yonemoto, Bryan T.

    Batteries have become ubiquitous in modern society by powering small, consumer electronic devices such as flashlights, cell phones, and laptops. Increasingly, batteries are also being examined as a method to improve energy efficiency (and reduce greenhouse gas emissions) for vehicles and power transmission/distribution applications. For lithium-ion based batteries to meet the demands of these new applications, new electrode materials and morphologies are the key to access high energy and/or power density. In this work, the research efforts include two major thrusts, concentrating on the synthesis and understanding of novel porous materials as potential electrodes for rechargeable lithium-ion batteries. The nano-sized walls and multidimensional pore structures allow fast solid state and electrolytic transport, while micron-sized particle ensure better interparticulate contact. The first thrust of research focused on the development of new synthetic approaches for porous material fabrication. A novel ionothermal synthetic method has been developed using deep-eutectic solvents, such as choline chloride and N,N-dimethylurea, to form iron, manganese and cobalt phosphates with a zeotype framework. Through this advanced method the successful synthesis of 4 previously undiscovered metal phosphate zeotypes was achieved. A careful control of water content during the ionothermal synthesis elucidated the multistep decomposition of our framework template and its impacts in the resulting zeotype structures. Upon conclusion of the ionothermal work, the focus shifted to the methodology development for mesoporous metal sulfides. An "oxide-to-sulfide" synthetic strategy was developed for the first time, resulting in the first synthesis of ordered porous iron, cobalt and nickel sulfides. More importantly, this is a general synthetic method, relying primarily on volumetric calculations per metal atom, which could be further extend to other metal-containing compounds, such as metal

  20. Pure Silica Zeolite Beta Membrane: A Potential Low Dielectric Constant Material For Microprocessor Application

    Science.gov (United States)

    Fong, Yeong Yin; Bhatia, Subhash

    The semiconductor industry needs low dielectric constant (low k-value) materials for more advance microprocessor and chips by reducing the size of the device features. In fabricating these contents, a new material with lower k-value than conventional silica (k = 3.9-4.2) is needed in order to improve the circuit performance. The choice of the inorganic zeolite membrane is an attractive option for low k material and suitable for microprocessor applications. A pure silica zeolite beta membrane was synthesized and coated on non-porous stainless steel support using insitu crystallization in the presence of tetraethylammonium hydroxide, TEA (OH), as structure directing agent, fumed silica, HF and deionized water at pH value of 9. The crystallization was carried out for the duration of 14 days under hydrothermal conditions at 130°C. The membrane was characterized by thermogravimetric analysis (TGA), nitrogen adsorption and Scanning Electron Microscope (SEM). SEM results show a highly crystalline; with a truncated square bipyramidal morphology of pure silica zeolite beta membrane strongly adhered on the non-porous stainless steel support. In the present work, the k-value of the membrane was measured as 2.64 which make it suitable for the microprocessor applications.

  1. Second order sliding power control for a variable speed-constant frequency energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Valenciaga, Fernando, E-mail: fval@ing.unlp.edu.a [CONICET, Laboratorio de Electronica Industrial Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC.91, C.P. 1900 La Plata (Argentina)

    2010-12-15

    This paper presents a decoupled active and reactive power control for a variable speed-constant frequency generation system based on a brushless doubly fed reluctance machine. The control design is approached using multi-input second order sliding techniques which are specially appropriate to deal with nonlinear system models in presence of external disturbances and model inaccuracies. The controller synthesized through this theoretical framework presents very good robustness features, a finite reaching time and a chattering-free behavior. The performance of the closed loop system is assessed through representative computer simulations.

  2. Non-constant ponderomotive energy in above threshold ionization by intense short laser pulses

    CERN Document Server

    Della Picca, Renata; Garibotti, Carlos Roberto; López, Sebastián David; Arbó, Diego

    2015-01-01

    We analyze the contribution of the quiver kinetic energy acquired by an electron in an oscillating electric field to the energy balance in atomic ionization processes by a short laser pulse. Due to the time dependence of this additional kinetic energy, a temporal average is assumed to maintain a stationary energy conservation rule. This rule is used to predict the position of the peaks observed in the photo electron spectra (PE). For a flat top pulse envelope, the mean value of the quiver energy over the whole pulse leads to the concept of ponderomotive energy $U_{p}$. However for a short pulse with a fast changing field intensity a stationarity approximation could not be precise. We check these concepts by studying first the photoelectron (PE) spectrum within the Semiclassical Model (SCM) for a multiple steps pulses. The SCM offers the possibility to establish a connection between emission times and the PE spectrum in the energy domain. We show that PE substructures stem from ionization at different times ma...

  3. The WiggleZ Dark Energy Survey: constraining the evolution of Newton's constant using the growth rate of structure

    CERN Document Server

    Nesseris, Savvas; Davis, Tamara; Parkinson, David

    2011-01-01

    We constrain the evolution of Newton's constant using the growth rate of large-scale structure measured by the WiggleZ Dark Energy Survey in the redshift range $0.1 < z < 0.9$. We use this data in two ways. Firstly we constrain the matter density of the Universe, $\\Omega_m$ (assuming General Relativity), and use this to construct a diagnostic to detect the presence of an evolving Newton's constant. Secondly we directly measure the evolution of Newton's constant, $G_{eff}$, that appears in Modified Gravity theories, without assuming General Relativity to be true. The novelty of these approaches are that, contrary to other methods, they do not require knowledge of the expansion history of the Universe, $H(z)$, making them model independent tests. Our constraints for the second derivative of Newton's constant at the present day, assuming it is slowly evolving as suggested by Big Bang Nucleosynthesis constraints, using the WiggleZ data is $\\ddotGeff(t_0)=-1.19\\pm 0.95\\cdot 10^{-20}h^2 yr^{-2}$, where $h$ is...

  4. A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Da, B.; Sun, Y.; Ding, Z. J. [Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People' s Republic of China (China); Mao, S. F. [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People' s Republic of China (China); Zhang, Z. M. [Centre of Physical Experiments, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People' s Republic of China (China); Jin, H.; Yoshikawa, H.; Tanuma, S. [Advanced Surface Chemical Analysis Group, National Institute for Materials Science, 1-2-1 Sengen Tsukuba, Ibaraki 305-0047 (Japan)

    2013-06-07

    A reverse Monte Carlo (RMC) method is developed to obtain the energy loss function (ELF) and optical constants from a measured reflection electron energy-loss spectroscopy (REELS) spectrum by an iterative Monte Carlo (MC) simulation procedure. The method combines the simulated annealing method, i.e., a Markov chain Monte Carlo (MCMC) sampling of oscillator parameters, surface and bulk excitation weighting factors, and band gap energy, with a conventional MC simulation of electron interaction with solids, which acts as a single step of MCMC sampling in this RMC method. To examine the reliability of this method, we have verified that the output data of the dielectric function are essentially independent of the initial values of the trial parameters, which is a basic property of a MCMC method. The optical constants derived for SiO{sub 2} in the energy loss range of 8-90 eV are in good agreement with other available data, and relevant bulk ELFs are checked by oscillator strength-sum and perfect-screening-sum rules. Our results show that the dielectric function can be obtained by the RMC method even with a wide range of initial trial parameters. The RMC method is thus a general and effective method for determining the optical properties of solids from REELS measurements.

  5. A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra

    Science.gov (United States)

    Da, B.; Sun, Y.; Mao, S. F.; Zhang, Z. M.; Jin, H.; Yoshikawa, H.; Tanuma, S.; Ding, Z. J.

    2013-06-01

    A reverse Monte Carlo (RMC) method is developed to obtain the energy loss function (ELF) and optical constants from a measured reflection electron energy-loss spectroscopy (REELS) spectrum by an iterative Monte Carlo (MC) simulation procedure. The method combines the simulated annealing method, i.e., a Markov chain Monte Carlo (MCMC) sampling of oscillator parameters, surface and bulk excitation weighting factors, and band gap energy, with a conventional MC simulation of electron interaction with solids, which acts as a single step of MCMC sampling in this RMC method. To examine the reliability of this method, we have verified that the output data of the dielectric function are essentially independent of the initial values of the trial parameters, which is a basic property of a MCMC method. The optical constants derived for SiO2 in the energy loss range of 8-90 eV are in good agreement with other available data, and relevant bulk ELFs are checked by oscillator strength-sum and perfect-screening-sum rules. Our results show that the dielectric function can be obtained by the RMC method even with a wide range of initial trial parameters. The RMC method is thus a general and effective method for determining the optical properties of solids from REELS measurements.

  6. Einstein-Cartan Gravity with Torsion Field Serving as Origin for Cosmological Constant or Dark Energy Density

    CERN Document Server

    Ivanov, A N

    2016-01-01

    We analyse the Einstein-Cartan gravity in its standard form cal-R = R + cal-K^2, where cal-R and R are the Ricci scalar curvatures in the Einstein-Cartan and Einstein gravity, respectively, and cal-K^2 is the quadratic contribution of torsion in terms of the contorsion tensor cal-K. We treat torsion as an external (or a background) field and show that the contribution of torsion to the Einstein equations can be interpreted in terms of the torsion energy-momentum tensor, local conservation of which in a curved spacetime with an arbitrary metric or an arbitrary gravitational field demands a proportionality of the torsion energy--momentum tensor to a metric tensor, a covariant derivative of which vanishes because of the metricity condition. This allows to claim that torsion can serve as origin for vacuum energy density, given by cosmological constant or dark energy density in the Universe. This is a model-independent result may explain a small value of cosmological constant, which is a long--standing problem of ...

  7. Einstein-Cartan Gravity with Torsion Field Serving as an Origin for the Cosmological Constant or Dark Energy Density

    Science.gov (United States)

    Ivanov, A. N.; Wellenzohn, M.

    2016-09-01

    We analyse the Einstein-Cartan gravity in its standard form { R }=R+{{ K }}2, where { R } {and} R are the Ricci scalar curvatures in the Einstein-Cartan and Einstein gravity, respectively, and {{ K }}2 is the quadratic contribution of torsion in terms of the contorsion tensor { K }. We treat torsion as an external (or background) field and show that its contribution to the Einstein equations can be interpreted in terms of the torsion energy-momentum tensor, local conservation of which in a curved spacetime with an arbitrary metric or an arbitrary gravitational field demands a proportionality of the torsion energy-momentum tensor to a metric tensor, a covariant derivative of which vanishes owing to the metricity condition. This allows us to claim that torsion can serve as an origin for the vacuum energy density, given by the cosmological constant or dark energy density in the universe. This is a model-independent result that may explain the small value of the cosmological constant, which is a long-standing problem in cosmology. We show that the obtained result is valid also in the Poincaré gauge gravitational theory of Kibble, where the Einstein-Hilbert action can be represented in the same form: { R }=R+{{ K }}2.

  8. Renormalization constants of the lattice energy momentum tensor using the gradient flow

    CERN Document Server

    Capponi, Francesco; Patella, Agostino; Rago, Antonio

    2016-01-01

    We employ a new strategy for a non perturbative determination of the renormalized energy momentum tensor. The strategy is based on the definition of suitable lattice Ward identities probed by observables computed along the gradient flow. The new set of identities exhibits many interesting qualities, arising from the UV finiteness of flowed composite operators. In this paper we show how this method can be used to non perturbatively renormalize the energy momentum tensor for a SU(3) Yang-Mills theory, and report our numerical results.

  9. Implications of increased beam energy on QPS, EE, time constants, PC

    CERN Document Server

    Steckert, J

    2011-01-01

    Increasing the beam energy of LHC is coupled with an increase in current in the main dipole and quadrupole circuits. This paper will show the implications of increased beam energy on the circuit protection (CP) systems. Relevant system details and their limits will be discussed for several operational scenarios. The main focus lays on the system’s behavior during the fast power abort (FPA) which is the most challenging mode of operation. Furthermore measures to mitigate the EM-transients during FPAs are shown.

  10. Production, Delivery and Application of Vibration Energy in Healthcare

    Energy Technology Data Exchange (ETDEWEB)

    Abundo, Paolo; Trombetta, Chiara [Medical Engineering Service, Fondazione Policlinico Tor Vergata, Viale Oxford 81 - Roma (Italy); Foti, Calogero; Rosato, Nicola, E-mail: paolo.abundo@ptvonline.it [Tor Vergata University, Physical and Rehabilitation Medicine, Public Health Department, Via Montpellier 1 - Roma (Italy)

    2011-02-01

    In Rehabilitation Medicine therapeutic application of vibration energy in specific clinical treatments and in sport rehabilitation is being affirmed more and more.Vibration exposure can have positive or negative effects on the human body depending on the features and time of the characterizing wave. The human body is constantly subjected to different kinds of vibrations, inducing bones and muscles to actively modify their structure and metabolism in order to fulfill the required functions. Like every other machine, the body supports only certain vibration energy levels over which long term impairments can be recognized. As shown in literature anyway, short periods of vibration exposure and specific frequency values can determine positive adjustments.

  11. Resonance estimates of O(p^6) low-energy constants and QCD short-distance constraints

    CERN Document Server

    Knecht, M; Knecht, Marc; Nyffeler, Andreas

    2001-01-01

    Starting from the study of the low-energy and high-energy behaviours of the QCD three-point functions , and , several O(p^6) low-energy constants of the chiral Lagrangian are evaluated within the framework of the lowest meson dominance (LMD) approximation to the large-N_C limit of QCD. In certain cases, values that differ substantially from estimates based on a resonance Lagrangian are obtained. It is pointed out that the differences arise through the fact that QCD short-distance constraints are in general not correctly taken into account in the approaches using resonance Lagrangians. We discuss the implications of our results for the O(p^6) counterterm contributions to the vector form factor of the pion and to the decay \\pi -> e \

  12. Harnessing Solar Energy for Every Home: Energy Saving Applications

    OpenAIRE

    2014-01-01

    Most of the present day resources of energy are limited and irreplaceable. The next generation will face acute energy crisis if alternate resources of energy are not developed concurrently. Increasing cost and import of conventional resources have bad effect on the economy of a country, and the only cheaper solution is “unlimited power” from the sun. The use of solar energy is so far limited in household applications. In fact, if we harness only 0.0034 percent of the solar energy reaching the...

  13. A methodology to study cyclic debond growth at constant mode-mixity and energy release rate

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    It is well known that face/core debond crack propagation is governed by the critical energy release rate (fracture toughness) and mode-mixity at the crack tip. Thus, the current study focuses on the developing of a methodology to perform fatigue crack growth experiments of debonded sandwich...... and better control of loading conditions at the crack tip will be the most relevant outcomes of using the proposed fatigue test method....

  14. Cellulose-Based Nanomaterials for Energy Applications.

    Science.gov (United States)

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-09-13

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Ngoc-Tram D. [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Nguyen, Duy-Anh P. [Department of Natural Science, Thu Dau Mot University, 6, Tran Van On Street, Thu Dau Mot City, Binh Duong Province (Viet Nam); Hoang, Van-Hung [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: levanhoang@tdt.edu.vn [Atomic Molecular and Optical Physics Research Group, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)

    2016-08-15

    Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.

  16. Geometry dependence of RMT-based methods to extract the low-energy constants Sigma and F

    CERN Document Server

    Lehner, Christoph; Hashimoto, Shoji; Wettig, Tilo

    2011-01-01

    The lowest-order low-energy constants $\\Sigma$ and $F$ of chiral pertubation theory can be extracted from lattice data using methods based on the equivalence of random matrix theory (RMT) and QCD in the epsilon regime. We discuss how the choice of the lattice geometry affects such methods. In particular, we show how to minimize systematic deviations from RMT by an optimal choice of the lattice geometry in the case of two light quark flavors. We illustrate our findings by determining $\\Sigma$ and $F$ from lattice configurations with two dynamical overlap fermions generated by JLQCD, using two different lattice geometries.

  17. Surfactant media for constant-current coulometry. Application for the determination of antioxidants in pharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Ziyatdinova, Guzel, E-mail: Ziyatdinovag@mail.ru [Analytical Chemistry Department, A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyevskaya, 18, Kazan 420008 (Russian Federation); Ziganshina, Endzhe; Budnikov, Herman [Analytical Chemistry Department, A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyevskaya, 18, Kazan 420008 (Russian Federation)

    2012-09-26

    Highlights: Black-Right-Pointing-Pointer Applicability of surfactants in constant-current coulometry is shown for the first time. Black-Right-Pointing-Pointer Reactions of antioxidants with electrogenerated titrants in surfactant media are investigated. Black-Right-Pointing-Pointer Water insoluble antioxidants can be determined in water media with addition of surfactants. Black-Right-Pointing-Pointer Coulometric determination of antioxidants in pharmaceutical dosage forms using surfactants media is developed. - Abstract: Effect of surfactant presence on electrochemical generation of titrants has been evaluated and discussed for the first time. Cationic (1-dodecylpyridinium and cetylpyridinium bromide), anionic (sodium dodecyl sulfate) and nonionic (Triton X100 and Brij{sup Registered-Sign} 35) surfactants as well as nonionic high molecular weight polymer (PEG 4000) do not react with the electrogenerated bromine, iodine and hexacyanoferrate(III) ions. The electrogenerated chlorine chemically interact with Triton X100 and Brij{sup Registered-Sign} 35. The allowable range of surfactants concentrations providing 100% current yield has been found. Chain-breaking low molecular weight antioxidants (ascorbic acid, rutin, {alpha}-tocopherol and retinol) were determined by reaction with the electrogenerated titrants in surfactant media. Nonionic and cationic surfactants can be used for the determination of antioxidants by reaction with the electrogenerated halogens. On contrary, cationic surfactants gives significantly overstated results of antioxidants determination with electrogenerated hexacyanoferrate(III) ions. The use of surfactants in coulometry of {alpha}-tocopherol and retinol provides their solubilization and allows to perform titration in water media. Simple, express and reliable coulometric approach for determination of {alpha}-tocopherol, rutin and ascorbic acid in pharmaceuticals using surfactant media has been developed. The relative standard deviation of the

  18. Electrospinning for advanced energy and environmental applications

    CERN Document Server

    Cavaliere, Sara

    2015-01-01

    Electrospinning for Advanced Energy and Environmental Applications delivers a state-of-the-art overview of the use of electrospun fibers in energy conversion and storage, as well as in environmental sensing and remediation. Featuring contributions from leading experts in electrospinning and its specific applications, this book: Introduces the electrospinning technique and its origins, outlining achievable one-dimensional (1D) nanoscaled materials and their various applicationsDiscusses the use of electrospun materials in energy devices, including low- and high-temperature fuel cells, hydrogen

  19. Distribution of energy of solutions of the wave equation on singular spaces of constant curvature and on a homogeneous tree

    Science.gov (United States)

    Tsvetkova, A. V.

    2016-10-01

    In the paper, the Cauchy problem for the wave equation on singular spaces of constant curvature and on an infinite homogeneous tree is studied. Two singular spaces are considered: the first one consists of a three-dimensional Euclidean space to which a ray is glued, and the other is formed by two three-dimensional Euclidean spaces joined by a segment. The solution of the Cauchy problem for the wave equation on these objects is described and the behavior of the energy of a wave as time tends to infinity is studied. The Cauchy problem for the wave equation on an infinite homogeneous tree is also considered, where the matching conditions for the Laplace operator at the vertices are chosen in the form generalizing the Kirchhoff conditions. The spectrum of such an operator is found, and the solution of the Cauchy problem for the wave equation is described. The behavior of wave energy as time tends to infinity is also studied.

  20. Rationally designed polyimides for high-energy density capacitor applications.

    Science.gov (United States)

    Ma, Rui; Baldwin, Aaron F; Wang, Chenchen; Offenbach, Ido; Cakmak, Mukerrem; Ramprasad, Rampi; Sotzing, Gregory A

    2014-07-01

    Development of new dielectric materials is of great importance for a wide range of applications for modern electronics and electrical power systems. The state-of-the-art polymer dielectric is a biaxially oriented polypropylene (BOPP) film having a maximal energy density of 5 J/cm(3) and a high breakdown field of 700 MV/m, but with a limited dielectric constant (∼2.2) and a reduced breakdown strength above 85 °C. Great effort has been put into exploring other materials to fulfill the demand of continuous miniaturization and improved functionality. In this work, a series of polyimides were investigated as potential polymer materials for this application. Polyimide with high dielectric constants of up to 7.8 that exhibits low dissipation factors (<1%) and high energy density around 15 J/cm(3), which is 3 times that of BOPP, was prepared. Our syntheses were guided by high-throughput density functional theory calculations for rational design in terms of a high dielectric constant and band gap. Correlations of experimental and theoretical results through judicious variations of polyimide structures allowed for a clear demonstration of the relationship between chemical functionalities and dielectric properties.

  1. Solar energy sciences and engineering applications

    CERN Document Server

    Enteria, Napoleon

    2013-01-01

    Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is due to the various barriers to overcome and to deal with the economics of practical utilization of solar energy.This book will introduce the rapid development and progress in the field of solar energy applications for science and technology: the advanc

  2. Energy conversion and management principles and applications

    CERN Document Server

    Petrecca, Giovanni

    2014-01-01

    This book provides an overall view of energy conversion and management in industry and in buildings by following the streams of energy from the site boundaries to the end users. Written for an audience of both practitioners and faculty/students, Energy Conversion and Management: Principles and Applications presents general principles of energy conversion and energy sources, both traditional and renewable, in a broad range of facilities such as electrical substations, boiler plants, heat and power plants, electrical networks, thermal fluid distributions lines and insulations, pumps and fans, ai

  3. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    Science.gov (United States)

    Allison, Thomas C

    2016-03-03

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.

  4. Photovoltaic Solar Energy : From Fundamentals to Applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, P.J.; van Sark, W.G.J.H.M.; Freundlich, A.

    2016-01-01

    Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date

  5. Photovoltaic Solar Energy - From Fundamentals to Applications

    NARCIS (Netherlands)

    Reinders, A.H.M.E.; Verlinden, P.J.; Sark, W.G.J.H.M.; Freundlich, A.

    2017-01-01

    Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date ac

  6. Nanoscale Advances in Catalysis and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  7. Financing renewable energy for Village Power application

    Energy Technology Data Exchange (ETDEWEB)

    Santibanez-Yeneza, G.

    1997-12-01

    When one talks of rural development, no doubt, the issue of rural energy is not far behind. As a significant component of any development strategy, rural energy is seen as the engine for growth that can bring about economic upliftment in the countryside. Many approaches to rural energy development have been tried. These approaches differ from country to country. But regardless of structure and approach, the goal remain essentially the same: to provide rural communities access to reliable energy services at affordable prices. In recent years, as global concern for the environment has increased, many governments have turned to renewable energy as a more environment friendly alternative to rural electrification. Technological advances in renewable energy application has helped to encourage this use. System reliability has improved, development costs have, to some extent been brought down and varied application approaches have been tried and tested in many areas. Indeed, there is huge potential for the development of renewable energy in the rural areas of most developing countries. At the rural level, renewable energy resources are almost always abundantly available: woodwaste, agricultural residues, animal waste, small-scale hydro, wind, solar and even sometimes geothermal resources. Since smaller scale systems are usually expected in these areas, renewable energy technologies can very well serve as decentralized energy systems for rural application. And not only for rural applications, new expansion planning paradigms have likewise led to the emergence of decentralized energy systems not only as supply options but also as corrective measures for maintaining end of line voltage levels. On the other hand, where renewable energy resource can provide significant blocks of power, they can be relied upon to provide indigenous power to the grids.

  8. Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations.

    Science.gov (United States)

    Tadano, T; Gohda, Y; Tsuneyuki, S

    2014-06-04

    A systematic method to calculate anharmonic force constants of crystals is presented. The method employs the direct-method approach, where anharmonic force constants are extracted from the trajectory of first-principles molecular dynamics simulations at high temperature. The method is applied to Si where accurate cubic and quartic force constants are obtained. We observe that higher-order correction is crucial to obtain accurate force constants from the trajectory with large atomic displacements. The calculated harmonic and anharmonic force constants are, then, combined with the Boltzmann transport equation (BTE) and non-equilibrium molecular dynamics (NEMD) methods in calculating the thermal conductivity. The BTE approach successfully predicts the lattice thermal conductivity of bulk Si, whereas NEMD shows considerable underestimates. To evaluate the linear extrapolation method employed in NEMD to estimate bulk values, we analyze the size dependence in NEMD based on BTE calculations. We observe strong nonlinearity in the size dependence of NEMD in Si, which can be ascribed to acoustic phonons having long mean-free-paths and carrying considerable heat. Subsequently, we also apply the whole method to a thermoelectric material Mg2Si and demonstrate the reliability of the NEMD method for systems with low thermal conductivities.

  9. Neutron applications in materials for energy

    CERN Document Server

    Kearley, Gordon J

    2015-01-01

    Neutron Applications in Materials for Energy collects results and conclusions of recent neutron-based investigations of materials that are important in the development of sustainable energy. Chapters are authored by leading scientists with hands-on experience in the field, providing overviews, recent highlights, and case-studies to illustrate the applicability of one or more neutron-based techniques of analysis. The theme follows energy production, storage, and use, but each chapter, or section, can also be read independently, with basic theory and instrumentation for neutron scattering being

  10. Model of constant probability event and its application in information fusion

    Institute of Scientific and Technical Information of China (English)

    邓勇; 施文康

    2004-01-01

    A model of constant probability event is constructed rigorously in event space of PSCEA. It is showed that the numerical-based fusion and the algebraic-based fusion have a consistent result when the weight is regarded as a constant probability event. From the point of view of algebra, we present a novel similarity measure in product space. Based on the similarity degree, we use a similarity aggregation method to fusion experts' evaluation. We also give a numerical example to illustrate the method.

  11. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500

  12. Rate Constants and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical.

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew

    2015-07-01

    Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10(-12) (95% confidence interval (CI): (1.7-2.2) × 10(-12)) and 2.6 × 10(-12) (CI: (2.3-2.9) × 10(-12)) cm(3) molecule(-1) s(-1), respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10(-12) (CI: (2.5-3.2) × 10(-12)) cm(3) molecule(-1) s(-1) and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30-37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5-10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  13. Silicon carbide as platform for energy applications

    DEFF Research Database (Denmark)

    Syväjärvi, Mikael; Jokubavicius, Valdas; Sun, Jianwu

    and solar cells, and further pursue concepts in materials for thermoelectrics, biofuel cells and supercapacitor research proposals. In fact, there are a number of energy applications which can be based on the SiC materials.- Fluorescent SiC for white LED in general lighting - Cubic SiC for a highly.......Common to these SiC applications is the knowhow in growth technology based on SiC processes using the sublimation based method. We will give an overview of this new research field and outline the energy applications that could be adressed in a near future....

  14. Metal halide perovskites for energy applications

    Science.gov (United States)

    Zhang, Wei; Eperon, Giles E.; Snaith, Henry J.

    2016-06-01

    Exploring prospective materials for energy production and storage is one of the biggest challenges of this century. Solar energy is one of the most important renewable energy resources, due to its wide availability and low environmental impact. Metal halide perovskites have emerged as a class of semiconductor materials with unique properties, including tunable bandgap, high absorption coefficient, broad absorption spectrum, high charge carrier mobility and long charge diffusion lengths, which enable a broad range of photovoltaic and optoelectronic applications. Since the first embodiment of perovskite solar cells showing a power conversion efficiency of 3.8%, the device performance has been boosted up to a certified 22.1% within a few years. In this Perspective, we discuss differing forms of perovskite materials produced via various deposition procedures. We focus on their energy-related applications and discuss current challenges and possible solutions, with the aim of stimulating potential new applications.

  15. Maintenance of energy expenditure on high-protein vs. high-carbohydrate diets at a constant body weight may prevent a positive energy balance.

    Science.gov (United States)

    Martens, E A; Gonnissen, H K; Gatta-Cherifi, B; Janssens, P L; Westerterp-Plantenga, M S

    2015-10-01

    Relatively high-protein diets are effective for body weight loss, and subsequent weight maintenance, yet it remains to be shown whether these diets would prevent a positive energy balance. Therefore, high-protein diet studies at a constant body weight are necessary. The objective was to determine fullness, energy expenditure, and macronutrient balances on a high-protein low-carbohydrate (HPLC) diet compared with a high-carbohydrate low-protein (HCLP) diet at a constant body weight, and to assess whether effects are transient or sustained after 12 weeks. A randomized parallel study was performed in 14 men and 18 women [mean ± SD age: 24 ± 5 y; BMI (in kg/m(2)): 22.8 ± 2.0] on diets containing 30/35/35 (HPLC) or 5/60/35 (HCLP) % of energy from protein/carbohydrate/fat. Significant interactions between dietary intervention and time on total energy expenditure (TEE) (P = 0.013), sleeping metabolic rate (SMR) (P = 0.040), and diet-induced thermogenesis (DIT) (P = 0.027) appeared from baseline to wk 12. TEE was maintained in the HPLC diet group, while it significantly decreased throughout the intervention period in the HCLP diet group (wk 1: P = 0.002; wk 12: P = 0.001). Energy balance was maintained in the HPLC diet group, and became positive in the HCLP diet group at wk 12 (P = 0.008). Protein balance varied directly according to the amount of protein in the diet, and diverged significantly between the diets (P = 0.001). Fullness ratings were significantly higher in the HPLC vs. the HCLP diet group at wk 1 (P = 0.034), but not at wk 12. Maintenance of energy expenditure on HPLC vs. HCLP diets at a constant body weight may prevent development of a positive energy balance, despite transiently higher fullness. The study was registered on clinicaltrials.gov with Identifier: NCT01551238. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  16. Relativistic many-body calculation of energies, lifetimes, polarizabilities, blackbody radiative shift, and hyperfine constants in Lu2 +

    Science.gov (United States)

    Safronova, U. I.; Safronova, M. S.; Johnson, W. R.

    2016-09-01

    Energy levels of 30 low-lying states of Lu2 + and allowed electric-dipole matrix elements between these states are evaluated using a relativistic all-order method in which all single, double, and partial triple excitations of Dirac-Fock wave functions are included to all orders of perturbation theory. Matrix elements are critically evaluated for their accuracy and recommended values of the matrix elements are given together with uncertainty estimates. Line strengths, transition rates, and lifetimes of the metastable 5 d3 /2 and 5 d5 /2 states are calculated. Recommended values are given for static polarizabilities of the 6 s , 5 d , and 6 p states and tensor polarizabilities of the 5 d and 6 p3 /2 states. Uncertainties of the polarizability values are estimated in all cases. The blackbody radiation shift of the 6 s1 /2-5 d5 /2 transition frequency of the Lu2 + ion is calculated with the aid of the recommended scalar polarizabilities of the 6 s1 /2 and 5 d5 /2 states. Finally, A and B hyperfine constants are determined for states of 2+175Lu with n ≤9 . This work provides recommended values of transition matrix elements, polarizabilities, and hyperfine constants of Lu2 +, critically evaluated for accuracy, for benchmark tests of high-precision theoretical methodology and planning of future experiments.

  17. A realistic dynamic blower energy consumption model for wastewater applications.

    Science.gov (United States)

    Amerlinck, Y; De Keyser, W; Urchegui, G; Nopens, I

    2016-10-01

    At wastewater treatment plants (WWTPs) aeration is the largest energy consumer. This high energy consumption requires an accurate assessment in view of plant optimization. Despite the ever increasing detail in process models, models for energy production still lack detail to enable a global optimization of WWTPs. A new dynamic model for a more accurate prediction of aeration energy costs in activated sludge systems, equipped with submerged air distributing diffusers (producing coarse or fine bubbles) connected via piping to blowers, has been developed and demonstrated. This paper addresses the model structure, its calibration and application to the WWTP of Mekolalde (Spain). The new model proved to give an accurate prediction of the real energy consumption by the blowers and captures the trends better than the constant average power consumption models currently being used. This enhanced prediction of energy peak demand, which dominates the price setting of energy, illustrates that the dynamic model is preferably used in multi-criteria optimization exercises for minimizing the energy consumption.

  18. Energy landscape analysis of native folding of the prion protein yields the diffusion constant, transition path time, and rates.

    Science.gov (United States)

    Yu, Hao; Gupta, Amar Nath; Liu, Xia; Neupane, Krishna; Brigley, Angela M; Sosova, Iveta; Woodside, Michael T

    2012-09-04

    Protein folding is described conceptually in terms of diffusion over a configurational free-energy landscape, typically reduced to a one-dimensional profile along a reaction coordinate. In principle, kinetic properties can be predicted directly from the landscape profile using Kramers theory for diffusive barrier crossing, including the folding rates and the transition time for crossing the barrier. Landscape theory has been widely applied to interpret the time scales for protein conformational dynamics, but protein folding rates and transition times have not been calculated directly from experimentally measured free-energy profiles. We characterized the energy landscape for native folding of the prion protein using force spectroscopy, measuring the change in extension of a single protein molecule at high resolution as it unfolded/refolded under tension. Key parameters describing the landscape profile were first recovered from the distributions of unfolding and refolding forces, allowing the diffusion constant for barrier crossing and the transition path time across the barrier to be calculated. The full landscape profile was then reconstructed from force-extension curves, revealing a double-well potential with an extended, partially unfolded transition state. The barrier height and position were consistent with the previous results. Finally, Kramers theory was used to predict the folding rates from the landscape profile, recovering the values observed experimentally both under tension and at zero force in ensemble experiments. These results demonstrate how advances in single-molecule theory and experiment are harnessing the power of landscape formalisms to describe quantitatively the mechanics of folding.

  19. Calculation of Bond-length, Bond-energy and Force Constant of Hydrogen Molecule by Classical Mechanics

    Institute of Scientific and Technical Information of China (English)

    ChenJing

    2004-01-01

    Until recently the hydrogen molecule structural parameters are calculated with the methods of quantum mechanics. To achieve results close to experimental values, the wave function used is complicated and has no clear physical meaning. Because the distribution of the electron probability density is a statistical rule, the macro-time has actually been used in the concept on a electron cloud graph. Here are obtained three formulas with a classical mechanics method on the bond-length re , bond-energy De and force constant k of the ground state hydrogen molecule, which have a clear physical meaning but no artificial parameters, and compared with experimental values, the relative errors are respectively less than 1% , 2% and 4% .

  20. Low dielectric constant Parylene-F-like films for intermetal dielectric applications

    Science.gov (United States)

    Hanyaloglu, Bengi; Aydinli, Atilla; Oye, Michael; Aydi, Eray S.

    1999-01-01

    We report on the dielectric properties and thermal stability of thin polymer films that are suitable candidates for replacing silicon dioxide as the intermetal dielectric material in integrated circuits. Parylene-F-like films, (-CF2-C6H4-CF2-)n, were produced by plasma deposition from a mixture of Ar and 1,4-bis(trifluoromethyl)benzene (CF3-C6H4-CF3) discharges and characterized using infrared absorption spectroscopy, spectroscopic ellipsometry, and capacitance measurements. The dielectric constant and the magnitude of the electronic and ionic contributions to the dielectric constant were determined through capacitance measurements and Kramers-Kronig analysis of the infrared absorption data. The film's dielectric constant ranges between 2 and 2.6 depending on the deposition conditions and the largest contribution to the dielectric constant is electronic. The films deposited at 300 °C are stable above 400 °C and further optimization could push this limit to as high as 500 °C.

  1. Kinetic Equations of Potassium Desorption and the Application of Equation Constants

    Institute of Scientific and Technical Information of China (English)

    LUEXIAO-NAN; LUYUN-FU

    1995-01-01

    Elovich,parabolic diffusion,power function and exponential equations were used to describe K desorption kinetics of 12 soils in a constant electric field of electro-ultrafiltration(EUF),Results showed that the Elovich,parabolic diffusion and power function equations could describe K desorption kinetics well owing to their high correlation coefficients and low standard errors;but the exponential equation was not suitable to be used in this study due to its relatively low correlation coefficients and relatively high standard errors.This work established successfully the relationships between the constants(slope or intercept)of kinetic equations and the barley responses to K fertilizer in the multiple-site field experiments and K-supplying status of soilsk,the constants of Elovich,parabolic diffusion and power function equations were very significantly or significantly correlated to the soil available K,relative yield of barley and K uptake of barley in NP plot.It was suggested that the kinetic equation constants could be used to estimate K-supplying power of soils.

  2. Electrospinning of Nanofibers for Energy Applications.

    Science.gov (United States)

    Sun, Guiru; Sun, Liqun; Xie, Haiming; Liu, Jia

    2016-07-02

    With global concerns about the shortage of fossil fuels and environmental issues, the development of efficient and clean energy storage devices has been drastically accelerated. Nanofibers are used widely for energy storage devices due to their high surface areas and porosities. Electrospinning is a versatile and efficient fabrication method for nanofibers. In this review, we mainly focus on the application of electrospun nanofibers on energy storage, such as lithium batteries, fuel cells, dye-sensitized solar cells and supercapacitors. The structure and properties of nanofibers are also summarized systematically. The special morphology of nanofibers prepared by electrospinning is significant to the functional materials for energy storage.

  3. Electrospinning of Nanofibers for Energy Applications

    Directory of Open Access Journals (Sweden)

    Guiru Sun

    2016-07-01

    Full Text Available With global concerns about the shortage of fossil fuels and environmental issues, the development of efficient and clean energy storage devices has been drastically accelerated. Nanofibers are used widely for energy storage devices due to their high surface areas and porosities. Electrospinning is a versatile and efficient fabrication method for nanofibers. In this review, we mainly focus on the application of electrospun nanofibers on energy storage, such as lithium batteries, fuel cells, dye-sensitized solar cells and supercapacitors. The structure and properties of nanofibers are also summarized systematically. The special morphology of nanofibers prepared by electrospinning is significant to the functional materials for energy storage.

  4. Applications and challenges for thermal energy storage

    Science.gov (United States)

    Kannberg, L. D.; Tomlinson, J. T.

    1991-04-01

    New thermal energy storage (TES) technologies are being developed and applied as society strives to relieve increasing energy and environmental stresses. Applications for these new technologies range from residential and district heating and cooling using waste and solar energy, to high-temperature energy storage for power production and industrial processes. In the last two decades there has been great interest and development of heat storage systems, primarily for residential and commercial buildings. While development has continued, the rate of advancement has slowed with current technology considered adequate for electrically charged heat storage furnaces. Use of chill storage for building diurnal cooling has received substantial development.

  5. The 'Densitometric Image Analysis Software' and its application to determine stepwise equilibrium constants from electrophoretic mobility shift assays.

    Science.gov (United States)

    van Oeffelen, Liesbeth; Peeters, Eveline; Nguyen Le Minh, Phu; Charlier, Daniël

    2014-01-01

    Current software applications for densitometric analysis, such as ImageJ, QuantityOne (BioRad) and the Intelligent or Advanced Quantifier (Bio Image) do not allow to take the non-linearity of autoradiographic films into account during calibration. As a consequence, quantification of autoradiographs is often regarded as problematic, and phosphorimaging is the preferred alternative. However, the non-linear behaviour of autoradiographs can be described mathematically, so it can be accounted for. Therefore, the 'Densitometric Image Analysis Software' has been developed, which allows to quantify electrophoretic bands in autoradiographs, as well as in gels and phosphorimages, while providing optimized band selection support to the user. Moreover, the program can determine protein-DNA binding constants from Electrophoretic Mobility Shift Assays (EMSAs). For this purpose, the software calculates a chosen stepwise equilibrium constant for each migration lane within the EMSA, and estimates the errors due to non-uniformity of the background noise, smear caused by complex dissociation or denaturation of double-stranded DNA, and technical errors such as pipetting inaccuracies. Thereby, the program helps the user to optimize experimental parameters and to choose the best lanes for estimating an average equilibrium constant. This process can reduce the inaccuracy of equilibrium constants from the usual factor of 2 to about 20%, which is particularly useful when determining position weight matrices and cooperative binding constants to predict genomic binding sites. The MATLAB source code, platform-dependent software and installation instructions are available via the website http://micr.vub.ac.be.

  6. Characterizing Energy per Job in Cloud Applications

    Directory of Open Access Journals (Sweden)

    Thi Thao Nguyen Ho

    2016-12-01

    Full Text Available Energy efficiency is a major research focus in sustainable development and is becoming even more critical in information technology (IT with the introduction of new technologies, such as cloud computing and big data, that attract more business users and generate more data to be processed. While many proposals have been presented to optimize power consumption at a system level, the increasing heterogeneity of current workloads requires a finer analysis in the application level to enable adaptive behaviors and in order to reduce the global energy usage. In this work, we focus on batch applications running on virtual machines in the context of data centers. We analyze the application characteristics, model their energy consumption and quantify the energy per job. The analysis focuses on evaluating the efficiency of applications in terms of performance and energy consumed per job, in particular when shared resources are used and the hosts on which the virtual machines are running are heterogeneous in terms of energy profiles, with the aim of identifying the best combinations in the use of resources.

  7. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  8. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.

    Science.gov (United States)

    Lin, Chenxi; Povinelli, Michelle L

    2009-10-26

    In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.

  9. S3 HMBC: Spin-State-Selective HMBC for accurate measurement of homonuclear coupling constants. Application to strychnine yielding thirteen hitherto unreported JHH

    DEFF Research Database (Denmark)

    Kjaerulff, Louise; Benie, Andrew J.; Hoeck, Casper

    2016-01-01

    A novel method, Spin-State-Selective (S3) HMBC, for accurate measurement of homonuclear coupling constants is introduced. As characteristic for S3 techniques, S3 HMBC yields independent subspectra corresponding to particular passive spin states and thus allows determination of coupling constants ...... are demonstrated by an application to strychnine where thirteen JHH coupling constants not previously reported could be measured....

  10. Remarks on the sharp constant for the Schrodinger Strichartz estimate and applications

    Directory of Open Access Journals (Sweden)

    Alessandro Selvitella

    2015-10-01

    Full Text Available In this article, we compute the sharp constant for the homogeneous Schrodinger Strichartz inequality, and for the Fourier restriction inequality on the paraboloid in any dimension under the condition conjectured (and proved for dimensions 1 and 2 that the maximizers are Gaussians. We observe also how this would imply a far from optimal, but "cheap" and sufficient, criterion of the global wellposedness in the $L^2$-critical case $p=1+4/n$.

  11. Controllable reduction of graphene oxide and its application during the fabrication of high dielectric constant composites

    Science.gov (United States)

    Liu, Hui; Xu, Peng; Yao, Haibo; Chen, Wenhui; Zhao, Jianying; Kang, Chuanqing; Bian, Zheng; Gao, Lianxun; Guo, Haiquan

    2017-10-01

    The synthesis of reduced graphene oxide (RGO) with various reduction extents was carried out in organic solvent using 1,4-diiodobutane as the reducing agent at moderate temperatures. Results showed that the C/O ratio of RGO nanosheet surface could be tailored by adjusting the ratio of graphene oxide (GO) and reducing agent. The controllable reduction strategy was applied to the fabrication of high dielectric constant graphene/polyimide composites via the in situ reduction of GO. The reduction extents of RGO in polymer matrix can be readily manipulated just through altering the addition of the reducing agent. The dielectric constants of gaphene/polyimide composites were significantly enhanced with the increasing of the reduction extent of RGO. Moreover, the mechanical properties of the composites were also affected by the reduction extent of RGO due to the decreases of the oxygen functional groups of RGO surface. Hence, the in situ controllable reduction of GO should be quite an ideal method for the fabrication of high dielectric constant composites with the tunable combination properties.

  12. Carbon nanotubes for sustainable energy applications.

    Science.gov (United States)

    Centi, Gabriele; Perathoner, Siglinda

    2011-07-18

    The grand challenge of a sustainable production and use of energy has focused research on the nanostructure of materials. This aspect is considered of critical importance for improving the performance of advanced materials and electrodes to meet demanding expectations. Carbon nanotubes (CNTs) are the first and most-successful example of nanomaterials, and play a central role in the development of advanced solutions for sustainable energy applications. However, notwithstanding the rising scientific and technological interest in CNTs, their use is still largely based on phenomenological observations that miss the complexities of the nanostructure and characteristics of these materials. This Concept paper addresses the need for a rational design of CNTs for energy applications, based on an understanding of the key aspects to be considered for their optimization in different applications such as lithium ion batteries, supercapacitors, solar cells, and fuel cells.

  13. One-loop omega-potential of quantum fields with ellipsoid constant-energy surface dispersion law

    Science.gov (United States)

    Kazinski, P. O.; Shipulya, M. A.

    2011-10-01

    Rapidly convergent expansions of a one-loop contribution to the partition function of quantum fields with ellipsoid constant-energy surface dispersion law are derived. The omega-potential is naturally decomposed into three parts: the quasiclassical contribution, the contribution from the branch cut of the dispersion law, and the oscillating part. The low- and high-temperature expansions of the quasiclassical part are obtained. An explicit expression and a relation of the contribution from the cut with the Casimir term and vacuum energy are established. The oscillating part is represented in the form of the Chowla-Selberg expansion of the Epstein zeta function. Various resummations of this expansion are considered. The general procedure developed is then applied to two models: massless particles in a box both at zero and nonzero chemical potential, and electrons in a thin metal film. Rapidly convergent expansions of the partition function and average particle number are obtained for these models. In particular, the oscillations of the chemical potential of conduction electrons in graphene and a thin metal film due to a variation of size of the crystal are described.

  14. Resonant vibrational-excitation cross sections and rate constants for low-energy electron scattering by molecular oxygen

    CERN Document Server

    Laporta, V; Tennyson, J

    2016-01-01

    Resonant vibrational-excitation cross sections and rate constants for electron scattering by molecular oxygen are presented. Transitions between all 42 vibrational levels of O$_2(\\textrm{X}\\ ^3\\Sigma_g^- $) are considered. Molecular rotations are parameterized by the rotational quantum number $J$ which is considered in the range 1 to 151. The lowest four resonant states of O$_2^-$, $^2\\Pi_g$, $^2\\Pi_u$, $^4\\Sigma_u^-$ and $^2\\Sigma_u^-$, are taken into account. The calculations are performed using the fixed-nuclei R-matrix approach to determine the resonance positions and widths, and the boomerang model to characterize the nuclei motion. Two energy regions below and above 4~eV are investigated: the first one is characterized by sharp structures in the cross section, and the second by a broad resonance peaked at 10~eV. The computed cross sections are compared with theoretical and experimental results available in literature for both the energy regions, and are made available for use by modelers. The effect of ...

  15. Relativistic many-body calculations of energy levels, hyperfine constants, electric-dipole matrix elements and static polarizabilities for alkali-metal atoms

    CERN Document Server

    Safronova, M S; Derevianko, S A

    1999-01-01

    Removal energies and hyperfine constants of the lowest four $ns, np_{1/2}$ and $np_{3/2}$ states in Na, K, Rb and Cs are calculated; removal energies of the n=7--10 states and hyperfine constants of the n=7 and 8 states in Fr are also calculated. The calculations are based on the relativistic single-double (SD) approximation in which single and double excitations of Dirac-Hartree-Fock (DHF) wave functions are included to all-orders in perturbation theory. Using SD wave functions, accurate values of removal energies, electric-dipole matrix elements and static polarizabilities are obtained, however, SD wave functions give poor values of magnetic-dipole hyperfine constants for heavy atoms. To obtain accurate values of hyperfine constants for heavy atoms, we include triple excitations partially in the wave functions. The present calculations provide the basis for reevaluating PNC amplitudes in Cs and Fr.

  16. 75 FR 38514 - Application to Export Electric Energy; Brookfield Energy Marketing LP

    Science.gov (United States)

    2010-07-02

    ... Application to Export Electric Energy; Brookfield Energy Marketing LP AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Brookfield Energy Marketing LP... power marketing agencies and other entities within the United States. The existing...

  17. Z-Pinch Fusion for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  18. Metal chalcogenide nanostructures for renewable energy applications

    CERN Document Server

    Qurashi, Ahsanulhaq

    2014-01-01

    This first ever reference book that focuses on metal chalcogenide semiconductor nanostructures for renewable energy applications encapsulates the state-of-the-art in multidisciplinary research on the metal chalcogenide semiconductor nanostructures (nanocrystals, nanoparticles, nanorods, nanowires,  nanobelts, nanoflowers, nanoribbons and more).  The properties and synthesis of a class of nanomaterials is essential to renewable energy manufacturing and this book focuses on the synthesis of metal chalcogendie nanostructures, their growth mechanism, optical, electrical, and other important prop

  19. Exhaust Gas Energy Recovery Technology Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Robert M [ORNL; Szybist, James P [ORNL

    2014-01-01

    Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

  20. Application guide for source PM10 measurement with constant sampling rate

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, W.E.; Dawes, S.S.

    1989-05-01

    The manual presents a method, Constant Sampling Rate (CSR), which allows determination of stationary source PM-10 emissions with hardware similar to that used for Methods 5 or 17. The operating principle of the method is to extract a multipoint sample so that errors due to spatial variation of particle size and anisokinetic sampling are kept within predetermined limits. The manual specifically addresses the use of the CSR methodology for determination of stationary source PM-10 emissions. Material presented in the manual includes calibration of sampling train components, pretest setup calculations, sample recovery, test data reduction, and routine equipment maintenance.

  1. Entropy relations and the application of black holes with cosmological constant and Gauss-Bonnet term

    CERN Document Server

    Xu, Wei; Meng, Xin-he

    2015-01-01

    Based on the entropy relations, we derive thermodynamic bound for entropy and area of horizons of Schwarzschild-dS black hole, including the event horizon, Cauchy horizon and negative horizon (i.e. the horizon with negative value), which are all geometrical bound and made up of the cosmological radius. Consider the first derivative of entropy relations together, we get the first law of thermodynamics for all horizons. We also obtain the Smarr relation of horizons by using the scaling discussion. For thermodynamics of all horizons, the cosmological constant is treated as a thermodynamical variable. Especially for thermodynamics of negative horizon, it is defined well in the $r<0$ side of spacetime. The validity of this formula seems to work well for three-horizons black holes. We also generalize the discussion to thermodynamics for event horizon and Cauchy horizon of Gauss-Bonnet charged flat black holes, as the Gauss-Bonnet coupling constant is also considered as thermodynamical variable. These give furthe...

  2. Measurement of third-order elastic constants and applications to loaded structural materials.

    Science.gov (United States)

    Takahashi, Sennosuke; Motegi, Ryohei

    2015-01-01

    The objective of this study is to obtain the propagation velocity of an elastic wave in a loaded isotropic solid and to show the usefulness of the third-order elastic constant in determining properties of practical materials. As is well known, the infinitesimal elastic theory is unable to express the influence of stress on elastic wave propagating in loaded materials. To solve this problem, the authors derive an equation of motion for elastic wave in a finitely deformed state and use the Lagrangian description where the state before deformation is used as a reference, and Murnaghans finite deformation theory for the unidirectional deformed isotropic solid. Ordinary derivatives were used for the mathematical treatment and although the formulas are long the content is simple. The theory is applied to the measurement of the third-order elastic constants of common steels containing carbon of 0.22 and 0.32 wt%. Care is taken in preparing specimens to precise dimensions, in properly adhering of transducer to the surface of the specimen, and in having good temperature control during the measurements to obtain precise data. As a result, the stress at various sites in the structural materials could be estimated by measuring the elastic wave propagation times. The results obtained are graphed for illustration.

  3. Cold wire constant voltage anemometry to measure temperature fluctuations and its application in a thermoacoustic system

    Science.gov (United States)

    Cleve, Sarah; Jondeau, Emmanuel; Blanc-Benon, Philippe; Comte-Bellot, Geneviève

    2017-04-01

    The knowledge of temperature fluctuations is essential for most thermoacoustic systems. In the present paper, cold wire constant-voltage anemometry (CVA) to measure temperature fluctuations is presented. Corrections for the thermal inertia and for the end losses of the wire are applied during the post-processing. The correction for the thermal inertia of the cold wire is achieved by applying a time dependent thermal lag as proposed originally for a constant-current anemometry (CCA) system. This thermal lag is measured in parallel by a hot wire. The thermal end losses of the wires to their supports are also considered and approximate corrections are proposed. The procedure for the cold wire CVA is validated in the acoustic field of an acoustic resonator with wires of different lengths. A comparison between a CVA and a CCA measurement also confirms the CVA measurement. Furthermore, the proposed measurement procedure is applied close to the stack of a thermoacoustic refrigerator. Supposing a two-dimensional flow, the simultaneous measurement of velocity and temperature fluctuations is possible. This allows a detailed examination of the acoustic field close to the stack, including the study of the correlation between temperature and velocity.

  4. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge

    2013-01-01

    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  5. Applications for Energy Recovering Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  6. Foundations of Isomer Physics for Energy Applications

    Science.gov (United States)

    2008-10-16

    energy density sources are needed for modern aero - space devices and for other applications. A compact, portable and safe source can attract...channel of the IBR-2 reactor. The outer and inner channels used in this work are separated by only air and a shutter is opened when the outer

  7. Welding of Materials for Energy Applications

    Science.gov (United States)

    DuPont, John N.; Babu, Suresh; Liu, Stephen

    2013-07-01

    Materials will play a critical role in power generation from both new and existing plants that rely on coal, nuclear, and oil/gas as energy supplies. High efficiency power plants are currently being designed that will require materials with improved mechanical properties and corrosion resistance under conditions of elevated temperature, stress, and aggressive gaseous environments. Most of these materials will require welding during initial fabrication and plant maintenance. The severe thermal and strain cycles associated with welding can produce large gradients in microstructure and composition within the heat-affected and fusion zones of the weld, and these gradients are commonly accompanied by deleterious changes to properties. Thus, successful use of materials in energy applications hinges on the ability to understand, predict, and control the processing-microstructure-property relations during welding. This article highlights some of the current challenges associated with fusion welding of materials for energy applications.

  8. Northwest Region Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Sjoding, David

    2013-09-30

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  9. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  10. Solid-state fast voltage compensator for pulsed power applications requiring constant AC power consumption

    CERN Document Server

    Magallanes, Francisco Cabaleiro; Viarouge, Philippe; Cros, Jérôme

    2015-01-01

    This paper proposes a novel topological solution for pulsed power converters based on capacitor-discharge topologies, integrating a Fast Voltage Compensator which allows an operation at constant power consumption from the utility grid. This solution has been retained as a possible candidate for the CLIC project under study at CERN, which requires more than a thousand synchronously-operated klystron modulators producing a total pulsed power of almost 40 GW. The proposed Fast Voltage Compensator is integrated in the modulator such that it only has to treat the capacitor charger current and a fraction of the charging voltage, meaning that its dimensioning power and cost are minimized. This topology can be used to improve the AC power quality of any pulsed converters based on capacitor-discharge concept. A prototype has been built and exploited to validate the operating principle and demonstrate the benefits of the proposed solution.

  11. Organic/Inorganic Nano-hybrids with High Dielectric Constant for Organic Thin Film Transistor Applications

    Science.gov (United States)

    Yu, Yang-Yen; Jiang, Ai-Hua; Lee, Wen-Ya

    2016-11-01

    The organic material soluble polyimide (PI) and organic-inorganic hybrid PI-barium titanate (BaTiO3) nanoparticle dielectric materials (IBX, where X is the concentration of BaTiO3 nanoparticles in a PI matrix) were successfully synthesized through a sol-gel process. The effects of various BaTiO3 contents on the hybrid film performance and performance optimization were investigated. Furthermore, pentacene-based organic thin film transistors (OTFTs) with PI-BaTiO3/polymethylmethacrylate or cyclic olefin copolymer (COC)-modified gate dielectrics were fabricated and examined. The hybrid materials showed effective dispersion of BaTiO3 nanoparticles in the PI matrix and favorable thermal properties. X-ray diffraction patterns revealed that the BaTiO3 nanoparticles had a perovskite structure. The hybrid films exhibited high formability and planarity. The IBX hybrid dielectric films exhibited tunable insulating properties such as the dielectric constant value and capacitance in ranges of 4.0-8.6 and 9.2-17.5 nF cm-2, respectively. Adding the modified layer caused the decrease of dielectric constant values and capacitances. The modified dielectric layer without cross-linking displayed a hydrophobic surface. The electrical characteristics of the pentacene-based OTFTs were enhanced after the surface modification. The optimal condition for the dielectric layer was 10 wt% hybrid film with the COC-modified layer; moreover, the device exhibited a threshold voltage of 0.12 V, field-effect mobility of 4.32 × 10-1 cm2 V-1 s-1, and on/off current of 8.4 × 107.

  12. Relativistic many-body calculation of energies, lifetimes, polarizabilities, blackbody radiative shift and hyperfine constants in Lu2+

    CERN Document Server

    Safronova, U I; Johnson, W R

    2016-01-01

    Energy levels of 30 low-lying states of Lu2+ and allowed electric-dipole matrix elements between these states are evaluated using a relativistic all-order method in which all single, double and partial triple excitations of Dirac-Fock wave functions are included to all orders of perturbation theory. Matrix elements are critically evaluated for their accuracy and recommended values of the matrix elements are given together with uncertainty estimates. Line strengths, transition rates and lifetimes of the metastable 5d(3/2) and 5d(5/2) states are calculated. Recommended values are given for static polarizabilities of the 6s, 5d and 6p states and tensor polarizabilities of the 5d and 6p(3/2) states. Uncertainties of the polarizability values are estimated in all cases. The blackbody radiation shift of the 6s(1/2)-5d(5/2) transition frequency of the Lu2+ ion is calculated with the aid of the recommended scalar polarizabilities of the 6s(1/2) and 5d(5/2) states. Finally, A and B hyperfine constants are determined f...

  13. The ‘Densitometric Image Analysis Software’ and Its Application to Determine Stepwise Equilibrium Constants from Electrophoretic Mobility Shift Assays

    Science.gov (United States)

    van Oeffelen, Liesbeth; Peeters, Eveline; Nguyen Le Minh, Phu; Charlier, Daniël

    2014-01-01

    Current software applications for densitometric analysis, such as ImageJ, QuantityOne (BioRad) and the Intelligent or Advanced Quantifier (Bio Image) do not allow to take the non-linearity of autoradiographic films into account during calibration. As a consequence, quantification of autoradiographs is often regarded as problematic, and phosphorimaging is the preferred alternative. However, the non-linear behaviour of autoradiographs can be described mathematically, so it can be accounted for. Therefore, the ‘Densitometric Image Analysis Software’ has been developed, which allows to quantify electrophoretic bands in autoradiographs, as well as in gels and phosphorimages, while providing optimized band selection support to the user. Moreover, the program can determine protein-DNA binding constants from Electrophoretic Mobility Shift Assays (EMSAs). For this purpose, the software calculates a chosen stepwise equilibrium constant for each migration lane within the EMSA, and estimates the errors due to non-uniformity of the background noise, smear caused by complex dissociation or denaturation of double-stranded DNA, and technical errors such as pipetting inaccuracies. Thereby, the program helps the user to optimize experimental parameters and to choose the best lanes for estimating an average equilibrium constant. This process can reduce the inaccuracy of equilibrium constants from the usual factor of 2 to about 20%, which is particularly useful when determining position weight matrices and cooperative binding constants to predict genomic binding sites. The MATLAB source code, platform-dependent software and installation instructions are available via the website http://micr.vub.ac.be. PMID:24465496

  14. The 'Densitometric Image Analysis Software' and its application to determine stepwise equilibrium constants from electrophoretic mobility shift assays.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Current software applications for densitometric analysis, such as ImageJ, QuantityOne (BioRad and the Intelligent or Advanced Quantifier (Bio Image do not allow to take the non-linearity of autoradiographic films into account during calibration. As a consequence, quantification of autoradiographs is often regarded as problematic, and phosphorimaging is the preferred alternative. However, the non-linear behaviour of autoradiographs can be described mathematically, so it can be accounted for. Therefore, the 'Densitometric Image Analysis Software' has been developed, which allows to quantify electrophoretic bands in autoradiographs, as well as in gels and phosphorimages, while providing optimized band selection support to the user. Moreover, the program can determine protein-DNA binding constants from Electrophoretic Mobility Shift Assays (EMSAs. For this purpose, the software calculates a chosen stepwise equilibrium constant for each migration lane within the EMSA, and estimates the errors due to non-uniformity of the background noise, smear caused by complex dissociation or denaturation of double-stranded DNA, and technical errors such as pipetting inaccuracies. Thereby, the program helps the user to optimize experimental parameters and to choose the best lanes for estimating an average equilibrium constant. This process can reduce the inaccuracy of equilibrium constants from the usual factor of 2 to about 20%, which is particularly useful when determining position weight matrices and cooperative binding constants to predict genomic binding sites. The MATLAB source code, platform-dependent software and installation instructions are available via the website http://micr.vub.ac.be.

  15. Calculations with spectroscopic accuracy for energies, transition rates, hyperfine interaction constants, and Landé gJ-factors in nitrogen-like Kr XXX

    Science.gov (United States)

    Wang, K.; Li, S.; Jönsson, P.; Fu, N.; Dang, W.; Guo, X. L.; Chen, C. Y.; Yan, J.; Chen, Z. B.; Si, R.

    2017-01-01

    Extensive self-consistent multi-configuration Dirac-Fock (MCDF) calculations and second-order many-body perturbation theory (MBPT) calculations are performed for the lowest 272 states belonging to the 2s22p3, 2s2p4, 2p5, 2s22p23l, and 2s2p33l (l=s, p, d) configurations of N-like Kr XXX. Complete and consistent data sets of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, AJ, BJ hyperfine interaction constants, Landé gJ-factors, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates among all these levels are given. The present MCDF and MBPT results are compared with each other and with other available experimental and theoretical results. The mean relative difference between our two sets of level energies is only about 0.003% for these 272 levels. The accuracy of the present calculations are high enough to facilitate identification of many observed spectral lines. These accurate data can be served as benchmark for other calculations and can be useful for fusion plasma research and astrophysical applications.

  16. APPLICATION OF EXPLOSIVE ENERGY IN METALWORKING

    Directory of Open Access Journals (Sweden)

    Vječislav Bohanek

    2013-07-01

    Full Text Available When an explosive charge is detonate, considerable amount of energy in a very short period of time is released. Energy, released in this way, is used for performing various kinds of useful work. Most explosives are consumed to obtain mineral raw materials in the mining industry and for various excavations in the construction industry. One of the specific areas of application explosive energy is an area of explosive metalworking. Using energy of explosive metal is welded, formed, cuts, harden etc. This paper presents an overview of the existing explosive metalworking methods. Methods are explained and comparative advantages in comparison to conventional metalworking methods are given (the paper is published in Croatian.

  17. Potency of Solar Energy Applications in Indonesia

    Directory of Open Access Journals (Sweden)

    Noer Abyor Handayani

    2012-07-01

    Full Text Available Currently, 80% of conventional energy is used to fulfill general public's needs andindustries. The depletion of oil and gas reserves and rapid growth in conventional energyconsumption have continuously forced us to discover renewable energy sources, like solar, wind,biomass, and hydropower, to support economic development in the future. Solar energy travels at aspeed of 186,000 miles per second. Only a small part of the radiant energy that the sun emits intospace ever reaches the Earth, but that is more than enough to supply all our energy demand.Indonesia is a tropical country and located in the equator line, so it has an abundant potential ofsolar energy. Most of Indonesian area get enough intensity of solar radiation with the average dailyradiation around 4 kWh/m2. Basically, the solar systems use solar collectors and concentrators forcollecting, storing, and using solar radiation to be applied for the benefit of domestics, commercials,and industrials. Common applications for solar thermal energy used in industry are the SWHs, solardryers, space heating, cooling systems and water desalination.

  18. Flywheel Energy Storage for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Magnus Hedlund

    2015-09-01

    Full Text Available A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%, 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS applications. The industry estimates the mass-production cost of a specific consumer-car flywheel system to be 2000 USD. For regular cars, this system has been shown to save 35% fuel in the U.S. Federal Test Procedure (FTP drive cycle.

  19. Application of cavity ring-down spectroscopy to the Boltzmann constant determination.

    Science.gov (United States)

    Sun, Y R; Pan, H; Cheng, C-F; Liu, A-W; Zhang, J-T; Hu, S-M

    2011-10-10

    The Boltzmann constant can be optically determined by measuring the Doppler width of an absorption line of molecules at gas phase. We propose to apply a near infrared cavity ring-down (CRD) spectrometer for this purpose. The superior sensitivity of CRD spectroscopy and the good performance of the near-ir lasers can provide ppm (part-per-million) accuracy which will be competitive to present most accurate result obtained from the speed of sound in argon measurement. The possible influence to the uncertainty of the determined Doppler width from different causes are investigated, which includes the signal-to-noise level, laser frequency stability, detecting nonlinearity, and pressure broadening effect. The analysis shows that the CRD spectroscopy has some remarkable advantages over the direct absorption method proposed before. The design of the experimental setup is presented and the measurement of C2H2 line near 0.8 μm at room temperature has been carried out as a test of the instrument.

  20. Utilization of superconductivity in energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, J.T.; Mikkonen, R.; Lahtinen, M.; Paasi, J. [Tampere Univ. of Technology (Finland). Laboratory of Electricity and Magnetism

    1998-12-31

    The technical potential of high temperature superconductors has been demonstrated in energy power applications. The magnetisation coils of the constructed 1.5 kW synchronous motor are made of bismuth-based material, the efficiency of the motor being 82 %. The same material is utilised in a 5 kJ magnetic energy storage in order to compensate for a short-term loss of power. Fast activation time and high efficiency are the benefits compared to traditional UPS systems. The operation temperature of 20-30 K enables the usage of mechanical cooling which is one major advantage compared to conventional liquid helium cooled systems. (orig.)

  1. Gulf Coast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Dillingham, Gavin

    2013-09-30

    The Gulf Coast Clean Energy Application Center was initiated to significantly improve market and regulatory conditions for the implementation of combined heat and power technologies. The GC CEAC was responsible for the development of CHP in Texas, Louisiana and Oklahoma. Through this program we employed a variety of outreach and education techniques, developed and deployed assessment tools and conducted market assessments. These efforts resulted in the growth of the combined heat and power market in the Gulf Coast region with a realization of more efficient energy generation, reduced emissions and a more resilient infrastructure. Specific t research, we did not formally investigate any techniques with any formal research design or methodology.

  2. Multi-configuration Dirac-Hartree-Fock calculations of excitation energies, oscillator strengths and hyperfine structure constants for low-lying levels of Sm I

    CERN Document Server

    Zhou, Fuyang; Li, Jiguang; Wang, Jianguo

    2015-01-01

    The multi-configuration Dirac-Hartree-Fock method was employed to calculate the total and excitation energies, oscillator strengths and hyperfine structure constants for low-lying levels of Sm I. In the first-order perturbation approximation, we systematically analyzed correlation effects from each electrons and electron pairs. It was found that the core correlations are of importance for physical quantities concerned. Based on the analysis, the important configuration state wave functions were selected to constitute atomic state wave functions. By using this computational model, our excitation energies, oscillator strengths, and hyperfine structure constants are in better agreement with experimental values than earlier theoretical works.

  3. A promising method to derive the temperature coefficients of material constants of SAW and BAW materials. first application to LGS.

    Science.gov (United States)

    Nicolay, Pascal; Aubert, Thierry

    2014-08-01

    Langasite (LGS) is a promising material for SAW applications at high temperature. However, the temperature coefficients of LGS material constants are not accurate enough to perform reliable simulations, and therefore to make good use of available design tools, above 300°C. In the first part of the paper, we describe a new possible way to derive these coefficients in a wider temperature range. The method is based on Simulated Annealing, a well-known optimization algorithm. The algorithm converges toward a set of optimized temperature coefficients of the stiffness constants which are used to perform accurate simulations up to at least 800°C. In the second part, a deeper analysis of the algorithm outputs demonstrates some of its strengths but also some of its main limitations. Possible solutions are described to predict and then improve the accuracy of the optimized coefficient values. In particular, one solution making use of additional BAW target curves is tested. A promising solution to extend the optimization to the temperature coefficients of piezoelectric constants is also discussed.

  4. Mechanical First Law of Black Hole Spacetimes with Cosmological Constant and Its Application to Schwarzschild-de Sitter Spacetime

    CERN Document Server

    Urano, Miho; Saida, Hiromi

    2009-01-01

    The mechanical first law (MFL) of black hole spacetimes is a geometrical relation which relates variations of mass parameter and horizon area. While it is well known that the MFL of asymptotic flat black hole is equivalent to its thermodynamical first law, however we do not know the detail of MFL of black hole spacetimes with cosmological constant which possess black hole and cosmological event horizons. Then this paper aims to formulate an MFL of the two-horizon spacetimes. For this purpose, we try to include the effects of two horizons in the MFL. To do so, we make use of the Iyer-Wald formalism and extend it to regard the mass parameter and the cosmological constant as two independent variables which make it possible to treat the two horizons on the same footing. Our extended Iyer-Wald formalism preserves the existence of conserved Noether current and its associated Noether charge, and gives the abstract form of MFL of black hole spacetimes with cosmological constant. Then, as a representative application ...

  5. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  6. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  7. Assessing the Energy Consumption of Smartphone Applications

    Science.gov (United States)

    Abousaleh, Mustafa M.

    Mobile devices are increasingly becoming essential in people's lives. The advancement in technology and mobility factor are allowing users to utilize mobile devices for communication, entertainment, financial planning, fitness tracking, etc. As a result, mobile applications are also becoming important factors contributing to user utility. However, battery capacity is the limiting factor impacting the quality of user experience. Hence, it is imperative to understand how much energy impact do mobile apps have on the system relative to other device activities. This thesis presents a systematic studying of the energy impact of mobile apps features. Time-series electrical current measurements are collected from 4 different modern smartphones. Statistical analysis methodologies are used to calculate the energy impact of each app feature by identifying and extracting mobile app-feature events from the overall current signal. In addition, the app overhead energy costs are also computed. Total energy consumption equations for each component is developed and an overall total energy consumption equation is presented. Minutes Lost (ML) of normal phone operations due to the energy consumption of the mobile app functionality is computed for cases where the mobile app is simulated to run on the various devices for 30 minutes. Tutela Technologies Inc. mobile app, NAT, is used for this study. NAT has two main features: QoS and Throughput. The impact of the QoS feature is indistinguishable, i.e. ML is zero, relative to other phone activities. The ML with only the TP feature enabled is on average 2.1 minutes. Enabling the GPS increases the ML on average to 11.5 minutes. Displaying the app GUI interface in addition to running the app features and enabling the GPS results in an average ML of 12.4 minutes. Amongst the various mobile app features and components studied, the GPS consumes the highest amount of energy. It is estimated that the GPS increases the ML by about 448%.

  8. Efficient Energy use in Different Applications

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lars

    2007-05-15

    There is a steadily growing awareness for environmental issues caused by the increased energy use, mainly in the industrial world. The use of fossil fuels has reached the point where it can not be looked at as an endless source. The resources are decreasing at a pace where alternative energy sources will be a necessity for this and future generations. Global warming, due to increased concentration of greenhouse gases in the atmosphere, has become one of the most important issues on the political agenda at all levels. A widespread opinion is that energy conservation technologies are needed and a shift towards renewable energy sources is required to attain a sustainable development of our society and a progress in the developing countries. This thesis is focusing on two different energy conservation technologies in different applications. The open absorption system, a modification of an absorption heat pump is a promising technique in moist air processes, recovering the latent heat in the air and decreasing the total heat demand. The technology has been tested in two full scale pilot plants at a sawmill operating four timber dryers and another unit installed at an indoor swimming pool. The technique has had positive outcomes in both operational and energy conservation respects. It has been shown that the energy demand was decreased considerably in both applications. The investment cost has proved to be relatively high, but optimization of operational parameters shows a potential to decrease the initial investment and make the technology more competitive. Pressurized entrained-flow high temperature black liquor gasification (PEHT-BLG), developed by Chemrec AB, is another novel technique presented in this thesis. Black liquor is an important by-product in the papermaking process. Chemicals and energy is recovered in the conventional recovery boiler where superheated steam is produced to generate electricity and process heat. The cooking chemicals are recovered from the

  9. Computational materials design for energy applications

    Science.gov (United States)

    Ozolins, Vidvuds

    2013-03-01

    General adoption of sustainable energy technologies depends on the discovery and development of new high-performance materials. For instance, waste heat recovery and electricity generation via the solar thermal route require bulk thermoelectrics with a high figure of merit (ZT) and thermal stability at high-temperatures. Energy recovery applications (e.g., regenerative braking) call for the development of rapidly chargeable systems for electrical energy storage, such as electrochemical supercapacitors. Similarly, use of hydrogen as vehicular fuel depends on the ability to store hydrogen at high volumetric and gravimetric densities, as well as on the ability to extract it at ambient temperatures at sufficiently rapid rates. We will discuss how first-principles computational methods based on quantum mechanics and statistical physics can drive the understanding, improvement and prediction of new energy materials. We will cover prediction and experimental verification of new earth-abundant thermoelectrics, transition metal oxides for electrochemical supercapacitors, and kinetics of mass transport in complex metal hydrides. Research has been supported by the US Department of Energy under grant Nos. DE-SC0001342, DE-SC0001054, DE-FG02-07ER46433, and DE-FC36-08GO18136.

  10. Dispersion-model-free determination of optical constants: application to materials for organic thin film devices.

    Science.gov (United States)

    Flämmich, Michael; Danz, Norbert; Michaelis, Dirk; Bräuer, Andreas; Gather, Malte C; Kremer, Jonas H-W M; Meerholz, Klaus

    2009-03-10

    We describe a method to determine the refractive index and extinction coefficient of thin film materials without prior knowledge of the film thickness and without the assumption of a dispersion model. A straightforward back calculation to the optical parameters can be performed starting from simple measurements of reflection and transmission spectra of a 100-250 nm thick supported film. The exact film thickness is found simultaneously by fulfilling the intrinsic demand of continuity of the refractive index as a function of wavelength. If both the layer and the substrate are homogeneous and isotropic media with plane and parallel interfaces, effects like surface roughness, scattering, or thickness inhomogeneities can be neglected. Then, the accuracy of the measurement is approximately 10(-2) and 10(-3) for the refractive index and the extinction coefficient, respectively. The error of the thin film thickness determination is well below 1 nm. Thus this technique is well suited to determine the input parameters for optical simulations of organic thin film devices, such as organic light-emitting diodes (OLEDs) or organic photovoltaic (OPV) cells. We apply the method to the electroluminescent polymer poly(2,5-dioctyl-p-phenylene vinylene) (PDO-PPV) and show its applicability by comparing the measured and calculated reflection and transmission spectra of OLED stacks with up to five layers.

  11. Exact two-component relativistic energy band theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian, E-mail: liuwj@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)

    2016-01-28

    An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results.

  12. Exact two-component relativistic energy band theory and application.

    Science.gov (United States)

    Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian

    2016-01-28

    An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results.

  13. Constant energy DFT molecular dynamics simulations of solvated carbohydrates at the B3LYP/6-31+G* level of theory

    Science.gov (United States)

    The disaccharide, alpha/beta-maltose, has been studied using constant energy ab initio molecular dynamics at the B3LYP/6-31+G* COSMO (solvent) level of theory. Maltose is of particular interest as the variation in glycosidic dihedral angles is dependent upon the starting hydroxyl conformation. Tha...

  14. Applications of GARCH models to energy commodities

    Science.gov (United States)

    Humphreys, H. Brett

    This thesis uses GARCH methods to examine different aspects of the energy markets. The first part of the thesis examines seasonality in the variance. This study modifies the standard univariate GARCH models to test for seasonal components in both the constant and the persistence in natural gas, heating oil and soybeans. These commodities exhibit seasonal price movements and, therefore, may exhibit seasonal variances. In addition, the heating oil model is tested for a structural change in variance during the Gulf War. The results indicate the presence of an annual seasonal component in the persistence for all commodities. Out-of-sample volatility forecasting for natural gas outperforms standard forecasts. The second part of this thesis uses a multivariate GARCH model to examine volatility spillovers within the crude oil forward curve and between the London and New York crude oil futures markets. Using these results the effect of spillovers on dynamic hedging is examined. In addition, this research examines cointegration within the oil markets using investable returns rather than fixed prices. The results indicate the presence of strong volatility spillovers between both markets, weak spillovers from the front of the forward curve to the rest of the curve, and cointegration between the long term oil price on the two markets. The spillover dynamic hedge models lead to a marginal benefit in terms of variance reduction, but a substantial decrease in the variability of the dynamic hedge; thereby decreasing the transactions costs associated with the hedge. The final portion of the thesis uses portfolio theory to demonstrate how the energy mix consumed in the United States could be chosen given a national goal to reduce the risks to the domestic macroeconomy of unanticipated energy price shocks. An efficient portfolio frontier of U.S. energy consumption is constructed using a covariance matrix estimated with GARCH models. The results indicate that while the electric

  15. 76 FR 20968 - Application To Export Electric Energy; DC Energy Texas, LLC

    Science.gov (United States)

    2011-04-14

    ... Application To Export Electric Energy; DC Energy Texas, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... application from DCE Texas requesting authority to transmit electric energy from the United States to...

  16. Energy-saving Design of Multi-pump Control Constant Pressure Water Supply System by Single Converter%单变频器多泵恒压供水系统节能设计

    Institute of Scientific and Technical Information of China (English)

    李焦明

    2009-01-01

    介绍了基于多泵控制器的多泵恒压供水控制系统的结构,给出了一用一备定时换泵加附属小泵恒压供水系统、多泵恒压供水固定泵变频控制系统、多泵恒压供水循环软启动方式控制系统的电气工作原理、设计要点与性能特点.应用实践表明,基于多泵控制器的多泵恒压供水控制系统应用简单、功能强大、节能效果显著.%The multi-pump control constant pressure water supply system structure was introduced. One pump to run a backup from time to time to exchange the water pump plus affiliated small pump constant pres-sure water supply systems, multi-pump constant pressure water supply fixed pump frequency control systems, multi-pump constant pressure water supply cycle soft-start control system for electrical working principle, de-sign features and performance characteristics were given. Application of practice shows, that based on multi-pump controller, the multi-pump constant pressure water supply control system is simple, powerful, and has obvious energy-saving results.

  17. Energy Recovery Linacs for Light Source Applications

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  18. Centrifugal Spinning and Its Energy Storage Applications

    Science.gov (United States)

    Yao, Lu

    Lithium-ion batteries (LIBs) and supercapacitors are important electrochemical energy storage systems. LIBs have high specific energy density, long cycle life, good thermal stability, low self-discharge, and no memory effect. However, the low abundance of Li in the Earth's crust and the rising cost of LIBs urge the attempts to develop alternative energy storage systems. Recently, sodium-ion batteries (SIBs) have become an attractive alternative to LIBs due to the high abundance and low cost of Na. Although the specific capacity and energy density of SIBs are not as high as LIBs, SIBs can still be promising power sources for certain applications such as large-scale, stationary grids. Supercapacitors are another important class of energy storage devices. Electric double-layer capacitors (EDLCs) are one important type of supercapacitors and they exhibit high power density, long cycle life, excellent rate capability and environmental friendliness. The potential applications of supercapacitors include memory protection in electronic circuitry, consumer portable electronic devices, and electrical hybrid vehicles. The electrochemical performance of SIBs and EDLCs is largely dependent on the electrode materials. Therefore, development of superior electrodes is the key to achieve highperformance alternative energy storage systems. Recently, one-dimensional nano-/micro-fiber based electrodes have become promising candidates in energy storage because they possess a variety of desirable properties including large specific surface area, well-guided ionic/electronic transport, and good electrode-electrolyte contact, which contribute to enhanced electrochemical performance. Currently, most nano-/micro-fiber based electrodes are prepared via electrospinning method. However, the low production rate of this approach hinders its practical application in the production of fibrous electrodes. Thus, it is significantly important to employ a rapid, low-cost and scalable nano

  19. Piezoelectric Nanowires in Energy Harvesting Applications

    Directory of Open Access Journals (Sweden)

    Zhao Wang

    2015-01-01

    Full Text Available Recently, the nanogenerators which can convert the mechanical energy into electricity by using piezoelectric one-dimensional nanomaterials have exhibited great potential in microscale power supply and sensor systems. In this paper, we provided a comprehensive review of the research progress in the last eight years concerning the piezoelectric nanogenerators with different structures. The fundamental piezoelectric theory and typical piezoelectric materials are firstly reviewed. After that, the working mechanism, modeling, and structure design of piezoelectric nanogenerators were discussed. Then the recent progress of nanogenerators was reviewed in the structure point of views. Finally, we also discussed the potential application and future development of the piezoelectric nanogenerators.

  20. Porous polymers: enabling solutions for energy applications.

    Science.gov (United States)

    Thomas, Arne; Kuhn, Pierre; Weber, Jens; Titirici, Maria-Magdalena; Antonietti, Markus

    2009-02-18

    A new generation of porous polymers was made for various energy-related applications, e.g., as fuel cell membranes, as electrode materials for batteries, for gas storage, partly from renewable resources. This review intends to catch this emerging field by reporting on a variety of different approaches to make high performing polymers porous. This includes template techniques, polymers with inherent microporosity, polymer frameworks by ionothermal polymerization, and the polymerization of carbon from appropriate precursors and by hydrothermal polymerization. In this process, we try to not only identify the current status of the field, but also point to open question and tasks to identify the potentially relevant progress.

  1. Spectral editing of weakly coupled spins using variable flip angles in PRESS constant echo time difference spectroscopy: Application to GABA

    Science.gov (United States)

    Snyder, Jeff; Hanstock, Chris C.; Wilman, Alan H.

    2009-10-01

    A general in vivo magnetic resonance spectroscopy editing technique is presented to detect weakly coupled spin systems through subtraction, while preserving singlets through addition, and is applied to the specific brain metabolite γ-aminobutyric acid (GABA) at 4.7 T. The new method uses double spin echo localization (PRESS) and is based on a constant echo time difference spectroscopy approach employing subtraction of two asymmetric echo timings, which is normally only applicable to strongly coupled spin systems. By utilizing flip angle reduction of one of the two refocusing pulses in the PRESS sequence, we demonstrate that this difference method may be extended to weakly coupled systems, thereby providing a very simple yet effective editing process. The difference method is first illustrated analytically using a simple two spin weakly coupled spin system. The technique was then demonstrated for the 3.01 ppm resonance of GABA, which is obscured by the strong singlet peak of creatine in vivo. Full numerical simulations, as well as phantom and in vivo experiments were performed. The difference method used two asymmetric PRESS timings with a constant total echo time of 131 ms and a reduced 120° final pulse, providing 25% GABA yield upon subtraction compared to two short echo standard PRESS experiments. Phantom and in vivo results from human brain demonstrate efficacy of this method in agreement with numerical simulations.

  2. Numerical calculation of the decay widths, the decay constants, and the decay energy spectra of the resonances of the delta-shell potential

    Energy Technology Data Exchange (ETDEWEB)

    Madrid, Rafael de la, E-mail: rafael.delamadrid@lamar.edu

    2017-06-15

    We express the resonant energies of the delta-shell potential in terms of the Lambert W function, and we calculate their decay widths and decay constants. The ensuing numerical results strengthen the interpretation of such decay widths and constants as a way to quantify the coupling between a resonance and the continuum. We calculate explicitly the decay energy spectrum of the resonances of the delta-shell potential, and we show numerically that the lineshape of such spectrum is not the same as, and can be very different from, the Breit–Wigner (Lorentzian) distribution. We argue that the standard Golden Rule cannot describe the interference of two resonances, and we show how to describe such interference by way of the decay energy spectrum of two resonant states.

  3. DNA genetic artificial fish swarm constant modulus blind equalization algorithm and its application in medical image processing.

    Science.gov (United States)

    Guo, Y C; Wang, H; Zhang, B L

    2015-10-02

    This study proposes use of the DNA genetic artificial fish swarm constant modulus blind equalization algorithm (DNA-G-AFS-CMBEA) to overcome the local convergence of the CMBEA. In this proposed algorithm, after the fusion of the fast convergence of the AFS algorithm and the global search capability of the DNA-G algorithm to drastically optimize the position vector of the artificial fish, the global optimal position vector is obtained and used as the initial optimal weight vector of the CMBEA. The result of application of this improved method in medical image processing demonstrates that the proposed algorithm outperforms the CMBEA and the AFS-CMBEA in removing the noise in a medical image and improving the peak signal to noise ratio.

  4. Microwave assisted sol-gel synthesis of high dielectric constant CCTO and BFN ceramics for MLC applications

    Directory of Open Access Journals (Sweden)

    Sonia

    2017-06-01

    Full Text Available Ba(Fe1/2Nb1/2O3 (BFN and CaCu3Ti4O12 (CCTO ceramic powders were synthesized by microwave assisted sol-gel synthesis technique and sintered at 1100°C and 1000°C, respectively. Calcination and sintering processes were carried out in a microwave furnace. Dielectric constant (εr~2450 and dielectric loss (tan δ~0.5 at frequency of 1 kHz and 20°C were observed for the BFN ceramic samples. Higher value of εr ~ 3600 and lower value of tan δ ~ 0.07 at frequency of 1 kHz and in 20-60°C temperature range for the CCTO ceramic samples suggested its utility for MLC applications. Sharp decrease of εr and sharp increase of tan δ at higher frequencies of BFN ceramic samples indicated the presence of Debye like relaxation.

  5. Varying Constants

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume

    2003-01-01

    We review some string-inspired theoretical models which incorporate a correlated spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring unnatural fine-tunings of parameters, a variation of the fine-structure constant as large as that recently ``observed'' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universality of free fall, such as MICROSCOPE and STEP. Recent claims by Bekenstein that fine-structure-constant variability does not imply detectable violations of the equivalence principle are shown to be untenable.

  6. High Energy Density Capacitors for Pulsed Power Applications

    Science.gov (United States)

    2009-07-01

    high energy density energy storage capacitors. High efficency capacitors are available with energy densities as high as 3 J/cc for 1000 shots or...GENERAL ATOMICS ENERGY PRODUCTS Engineering Bulletin HIGH ENERGY DENSITY CAPACITORS FOR PULSED POWER APPLICATIONS Fred MacDougall, Joel...00-2009 4. TITLE AND SUBTITLE High Energy Density Capacitors for Pulsed Power Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  7. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity

    NARCIS (Netherlands)

    Coomans, C.P.; Berg, S.A.A. van den; Houben, T.; Klinken, J.B. van; Berg, R. van den; Pronk, A.C.M.; Havekes, L.M.; Romijn, J.A.; Dijk, K.W. van; Biermasz, N.R.; Meijer, J.H.

    2013-01-01

    Circadian rhythm disturbances are observed in, e.g., aging and neurodegenerative diseases and are associated with an increased incidence of obesity and diabetes. We subjected male C57Bl/6J mice to constant light [12-h light-light (LL) cycle] to examine the effects of a disturbed circadian rhythm on

  8. Biomass compositional analysis for energy applications.

    Science.gov (United States)

    Hames, Bonnie R

    2009-01-01

    In its broadest definition, biomass can be described as all material that was or is a part of a living organism. For renewable energy applications, however, the definition of biomass is usually limited to include only materials that are plant-derived such as agricultural residues (e.g., wheat straw, corn stover) by-products of industrial processes (e.g., sawdust, sugar cane bagasse, pulp residues, distillers grains), or dedicated energy crops (e.g., switchgrass, sorghum, Miscanthus, short-rotation woody crops). This chapter describes analytical methods developed to measure plant components with an emphasis on the measurement of components that are important for biomass conversion. The methods described here can be viewed as a portfolio of analytical methods, with consistent assumptions and compatible sample preparation steps, selected for simplicity, robust application, and the ability to obtain a summative mass closure on most samples that accurately identifies greater than 95% of the mass of a plant biomass sample. The portfolio of methods has been successfully applied to a wide variety of biomass feedstock as well as liquid and solid fractions of both thermochemical pretreatment and enzymatic saccharification (1).

  9. Biomass Compositional Analysis for Energy Applications

    Science.gov (United States)

    Hames, Bonnie R.

    In its broadest definition, biomass can be described as all material that was or is a part of a living organism. For renewable energy applications, however, the definition of biomass is usually limited to include only materials that are plant-derived such as agricultural residues (e.g., wheat straw, corn stover) by-products of industrial processes (e.g., sawdust, sugar cane bagasse, pulp residues, distillers grains), or dedicated energy crops (e.g., switchgrass, sorghum, Miscanthus, short-rotation woody crops). This chapter describes analytical methods developed to measure plant components with an emphasis on the measurement of components that are important for biomass conversion. The methods described here can be viewed as a portfolio of analytical methods, with consistent assumptions and compatible sample preparation steps, selected for simplicity, robust application, and the ability to obtain a summative mass closure on most samples that accurately identifies greater than 95% of the mass of a plant biomass sample. The portfolio of methods has been successfully applied to a wide variety of biomass feedstock as well as liquid and solid fractions of both thermochemical pretreatment and enzymatic saccharification (1).

  10. ENERGY AUDIT ANALYSIS BY BUSINESS INTELLIGENCE APPLICATION

    Directory of Open Access Journals (Sweden)

    Alfa Firdaus

    2015-12-01

    Full Text Available Energy audit is one of the first tasks to be performed in the accomplishment of an effective energy cost control program. To obtain the best information for a successful energy audit, the auditor must make some measurements during the audit visit. One of the tools that primarily used in audit visit is the portable Power Quality Analyzers (PQA for measuring single to three-phase lines with a high degree of precision and accuracy. It is utilized for monitoring and recording power supply anomalies. For most survey applications, changing currents makes it mandatory for data to be compiled over a period of time with enormous amount of electricity data. Hence, this paper proposed a Business Intelligence approach that can facilitate the auditor to quickly analyze the PQA data. There are five Key Performance Indicators (KPI to be displayed for analyze in form of dashboard. The method that uses to construct the dashboard is classification and association rules with the help of orange dataminer tools. Classification method is utilized to display the data distributions by frequency on a bar chart. Once we got the frequent sets, they allow us to extract association rules among the item sets, where we make some statement about how likely are two sets of items to co-occur or to conditionally occur. The result of this paper is a dashboard of five scorecards, namely unbalanced voltage, unbalanced currents, voltage harmonic, currents harmonic, and power factor. 

  11. 77 FR 20805 - Application to Export Electric Energy; PPL EnergyPlus, LLC

    Science.gov (United States)

    2012-04-06

    ... Application to Export Electric Energy; PPL EnergyPlus, LLC AGENCY: Office of Electricity Delivery and Energy... renew its authority to transmit electric energy from the United States to Canada pursuant to section 202.... EA-210 authorizing PPL EnergyPlus to transmit electric energy from the United States to Canada as...

  12. 78 FR 14778 - Application to Export Electric Energy; Shell Energy North America (US), L.P.

    Science.gov (United States)

    2013-03-07

    ... Application to Export Electric Energy; Shell Energy North America (US), L.P. AGENCY: Office of Electricity... (US), L.P. (Shell Energy) has applied to renew its authority to transmit electric energy from the..., which authorized Shell Energy to transmit electric energy from the United States to Mexico as a...

  13. 76 FR 69713 - Application To Export Electric Energy; BP Energy Company

    Science.gov (United States)

    2011-11-09

    ... Application To Export Electric Energy; BP Energy Company AGENCY: Office of Electricity Delivery and Energy... its authority to transmit electric energy from the United States to Mexico pursuant to section 202(e... Order No. EA-314, which authorized BP Energy to transmit electric energy from the United States...

  14. 75 FR 12737 - Application To Export Electric Energy; Integrys Energy Services, Inc.

    Science.gov (United States)

    2010-03-17

    ... Application To Export Electric Energy; Integrys Energy Services, Inc. AGENCY: Office of Electricity Delivery.... (Integrys Energy) has applied to renew its authority to transmit electric energy from the United States to... authorizing Integrys Energy to transmit electric energy from the United States to Canada as a power......

  15. 76 FR 69712 - Application To Export Electric Energy; BP Energy Company

    Science.gov (United States)

    2011-11-09

    ... Application To Export Electric Energy; BP Energy Company AGENCY: Office of Electricity Delivery and Energy... its authority to transmit electric energy from the United States to Canada pursuant to section 202(e... (DOE) issued Order No. EA-315, which authorized BP Energy to transmit electric energy from the...

  16. 77 FR 31341 - Application To Export Electric Energy; DC Energy, LLC

    Science.gov (United States)

    2012-05-25

    ... Application To Export Electric Energy; DC Energy, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... Energy to transmit electric energy from the United States to Canada as a power marketer for a...

  17. 78 FR 14779 - Application to Export Electric Energy; Shell Energy North America (US), L.P.

    Science.gov (United States)

    2013-03-07

    ... Application to Export Electric Energy; Shell Energy North America (US), L.P. AGENCY: Office of Electricity... (US), L.P. (Shell Energy) has applied to renew its authority to transmit electric energy from the..., which authorized Shell Energy to transmit electric energy from the United States to Canada as a...

  18. New Recursive Representations for the Favard Constants with Application to Multiple Singular Integrals and Summation of Series

    Directory of Open Access Journals (Sweden)

    Snezhana Georgieva Gocheva-Ilieva

    2013-01-01

    Full Text Available There are obtained integral form and recurrence representations for some Fourier series and connected with them Favard constants. The method is based on preliminary integration of Fourier series which permits to establish general recursion formulas for Favard constants. This gives the opportunity for effective summation of infinite series and calculation of some classes of multiple singular integrals by the Favard constants.

  19. Study of the Pion-Nucleon Coupling Constant Charge Dependence on the Basis of the Low-Energy Data on Nucleon-Nucleon Interaction

    CERN Document Server

    Babenko, V A

    2016-01-01

    We study relationship between the physical quantities that characterize pion-nucleon and nucleon-nucleon interaction on the basis of the fact that nuclear forces in the nucleon-nucleon system at low energies are mainly determined by the one-pion exchange mechanism. By making use of the recommended proton-proton low-energy scattering parameters, we obtain the following value for the charged pion-nucleon coupling constant g$_{\\pi ^{\\pm }}^{2}/4\\pi =14.55(13)$. Calculated value of this quantity is in excellent agreement with the experimental result g$_{\\pi ^{\\pm }}^{2}/4\\pi =14.52(26)$ of the Uppsala Neutron Research Group. At the same time, the obtained value of the charged pion-nucleon coupling constant differs markedly from the value of the neutral pion-nucleon coupling constant g$_{\\pi ^{0}}^{2}/4\\pi =13.55(13)$. Thus, our results show considerable charge splitting of the pion-nucleon coupling constant.

  20. Electrospun Fibers for Energy, Electronic, & Environmental Applications

    Science.gov (United States)

    Bedford, Nicholas M.

    Electrospinning is an established method for creating polymer and bio-polymer fibers of dimensions ranging from ˜10 nanometers to microns. The process typically involves applying a high voltage between a solution source (usually at the end of a capillary or syringe) and a substrate on which the nanofibers are deposited. The high electric field distorts the shape of the liquid droplet, creating a Taylor cone. Additional applied voltage ejects a liquid jet of the polymer solution in the Taylor cone toward the counter electrode. The formation of fibers is generated by the rapid electrostatic elongation and solvent evaporation of this viscoelastic jet, which typically generates an entangled non-woven mesh of fibers with a high surface area to volume ratio. Electrospinning is an attractive alternative to other processes for creating nano-scale fibers and high surface area to volume ratio surfaces due to its low start up cost, overall simplicity, wide range of processable materials, and the ability to generate a moderate amount of fibers in one step. It has also been demonstrated that coaxial electrospinning is possible, wherein the nanofiber has two distinct phases, one being the core and another being the sheath. This method is advantageous because properties of two materials can be combined into one fiber, while maintaining two distinct material phases. Materials that are inherently electrospinable could be made into fibers using this technique as well. The most common applications areas for electrospun fibers are in filtration and biomedical areas, with a comparatively small amount of work done in energy, environmental, and sensor applications. Furthermore, the use of biologically materials in electrospun fibers is an avenue of research that needs more exploration, given the unique properties these materials can exhibit. The research aim of this thesis is to explore the use of electrospun fibers for energy, electrical and environmental applications. For energy

  1. 75 FR 57911 - Application To Export Electric Energy; GDF SUEZ Energy Marketing NA, Inc.

    Science.gov (United States)

    2010-09-23

    ... Application To Export Electric Energy; GDF SUEZ Energy Marketing NA, Inc. AGENCY: Office of Electricity..., Inc. (GSEMNA) has applied for authority to transmit electric energy from the United States to Canada... received an application from GSEMNA for authority to transmit electric energy from the United States...

  2. 75 FR 12737 - Applications To Export Electric Energy; Noble Energy Marketing and Trade Corp.

    Science.gov (United States)

    2010-03-17

    ... Applications To Export Electric Energy; Noble Energy Marketing and Trade Corp. AGENCY: Office of Electricity... applications, Noble Energy Marketing and Trade Corp. (NEMT) has applied for authority to transmit electric... electric energy from the United States to Mexico and from the United States to Canada as a power...

  3. 75 FR 57912 - Application To Export Electric Energy; Rainbow Energy Marketing Corporation

    Science.gov (United States)

    2010-09-23

    ... Application To Export Electric Energy; Rainbow Energy Marketing Corporation AGENCY: Office of Electricity... Corporation (Rainbow) has applied for authority to transmit electric energy from the United States to Mexico... received an application from Rainbow for authority to transmit electric energy from the United States...

  4. 76 FR 11437 - Application To Export Electric Energy; Societe Generale Energy Corp.

    Science.gov (United States)

    2011-03-02

    ... Application To Export Electric Energy; Societe Generale Energy Corp. AGENCY: Office of Electricity Delivery.... (SGEC) has applied for authority to transmit electric energy from the United States to Canada pursuant... application from the SGEC for authority to transmit electric energy from the United States to Canada as...

  5. 77 FR 31342 - Application To Export Electric Energy; Emera Energy Services Subsidiaries

    Science.gov (United States)

    2012-05-25

    ... Application To Export Electric Energy; Emera Energy Services Subsidiaries AGENCY: Office of Electricity... EA-325, authorizing the Emera Subsidiaries to transmit electric energy from the United States to... date listed above. Comments on the Emera applications to export electric energy to Canada should...

  6. 76 FR 30325 - Application to Export Electric Energy; E-T Global Energy, LLC

    Science.gov (United States)

    2011-05-25

    ...] Application to Export Electric Energy; E-T Global Energy, LLC AGENCY: Office of Electricity Delivery and... applied for authority to transmit electric energy from the United States to Mexico pursuant to section 202... an application from E-T Global for authority to transmit electric energy from the United States...

  7. Applications of CCTO supercapacitor in energy storage and electronics

    Directory of Open Access Journals (Sweden)

    R. K. Pandey

    2013-06-01

    Full Text Available Since the discovery of colossal dielectric constant in CCTO supercapacitor in 2000, development of its practical application to energy storage has been of great interest. In spite of intensive efforts, there has been thus far, no report of proven application. The object of this research is to understand the reason for this lack of success and to find ways to overcome this limitation. Reported herein is the synthesis of our research in ceramic processing of this material and its characterization, particularly with the objective of identifying potential applications. Experimental results have shown that CCTO's permittivity and loss tangent, the two most essential dielectric parameters of fundamental importance for the efficiency of a capacitor device, are intrinsically coupled. They increase or decrease in tandem. Therefore, efforts to simultaneously retain the high permittivity while minimizing the loss tangent of CCTO might not succeed unless an entirely non-typical approach is taken for processing this material. Based on the experimental results and their analysis, it has been identified that it is possible to produce CCTO bulk ceramics with conventional processes having properties that can be exploited for fabricating an efficient energy storage device (EDS. We have additionally identified that CCTO can be used for the development of efficient solid state capacitors of Class II type comparable to the widely used barium titanate (BT capacitors. Based on high temperature studies of the resistivity and the Seebeck coefficient it is found that CCTO is a wide bandgap n-type semiconductor material which could be used for high temperature electronics. The temperature dependence of the linear thermal expansion of CCTO shows the presence of possible phase changes at 220 and 770 °C the origin of which remains unexplained.

  8. Applications of CCTO supercapacitor in energy storage and electronics

    Science.gov (United States)

    Pandey, R. K.; Stapleton, W. A.; Tate, J.; Bandyopadhyay, A. K.; Sutanto, I.; Sprissler, S.; Lin, S.

    2013-06-01

    Since the discovery of colossal dielectric constant in CCTO supercapacitor in 2000, development of its practical application to energy storage has been of great interest. In spite of intensive efforts, there has been thus far, no report of proven application. The object of this research is to understand the reason for this lack of success and to find ways to overcome this limitation. Reported herein is the synthesis of our research in ceramic processing of this material and its characterization, particularly with the objective of identifying potential applications. Experimental results have shown that CCTO's permittivity and loss tangent, the two most essential dielectric parameters of fundamental importance for the efficiency of a capacitor device, are intrinsically coupled. They increase or decrease in tandem. Therefore, efforts to simultaneously retain the high permittivity while minimizing the loss tangent of CCTO might not succeed unless an entirely non-typical approach is taken for processing this material. Based on the experimental results and their analysis, it has been identified that it is possible to produce CCTO bulk ceramics with conventional processes having properties that can be exploited for fabricating an efficient energy storage device (EDS). We have additionally identified that CCTO can be used for the development of efficient solid state capacitors of Class II type comparable to the widely used barium titanate (BT) capacitors. Based on high temperature studies of the resistivity and the Seebeck coefficient it is found that CCTO is a wide bandgap n-type semiconductor material which could be used for high temperature electronics. The temperature dependence of the linear thermal expansion of CCTO shows the presence of possible phase changes at 220 and 770 °C the origin of which remains unexplained.

  9. Molten salts database for energy applications

    CERN Document Server

    Serrano-López, Roberto; Cuesta-López, Santiago

    2013-01-01

    The growing interest in energy applications of molten salts is justified by several of their properties. Their possibilities of usage as a coolant, heat transfer fluid or heat storage substrate, require thermo-hydrodynamic refined calculations. Many researchers are using simulation techniques, such as Computational Fluid Dynamics (CFD) for their projects or conceptual designs. The aim of this work is providing a review of basic properties (density, viscosity, thermal conductivity and heat capacity) of the most common and referred salt mixtures. After checking data, tabulated and graphical outputs are given in order to offer the most suitable available values to be used as input parameters for other calculations or simulations. The reviewed values show a general scattering in characterization, mainly in thermal properties. This disagreement suggests that, in several cases, new studies must be started (and even new measurement techniques should be developed) to obtain accurate values.

  10. High energy laser demonstrators for defense applications

    Science.gov (United States)

    Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.

    2017-01-01

    Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.

  11. Theory and Applications of Ignition with Variable Activation Energy

    Institute of Scientific and Technical Information of China (English)

    G.C.Wake; X.D.Chen; 等

    1992-01-01

    The determination of critical conditions for thermal ingition of combustible materials has been traditionally studied by the use of one overall reaction with bounded parameter values for the activation energy and other chemical constants.Significant errors can occur in the values of the threshold parameters for ignition when there are two(or more)simultaneous reactions present with distinct values of the chemical ocnstantsRecent work with simultaneous parallel reactions showed the thresholds for ignition could be lowered in this case.In this paper,motivated by experimental results for forest litter and cola,it is shown that for sequential reactions (different values of parameters in different temperature ranges)that the threshold conditions are changed(safer for lower ambient temperatures and less safe for higher ambient temperatures).The mathematical analysis is summarised and a detailed analysis is given for the forest litter and crushed coal applications,The experimental results show that variable activation energy dose occur and that this extension of the classical Frank-Kamenetskii theory is needed.Here the analysis is confined to the slab geometry only but the ideas developed can easily be extended to more general systems,including those involving mass transport,consumption and phase changes.

  12. Application of Neural Networks for Energy Reconstruction

    CERN Document Server

    Damgov, Jordan

    2002-01-01

    The possibility to use Neural Networks for reconstruction ofthe energy deposited in the calorimetry system of the CMS detector is investigated. It is shown that using feed-forward neural network, good linearity, Gaussian energy distribution and good energy resolution can be achieved. Significant improvement of the energy resolution and linearity is reached in comparison with other weighting methods for energy reconstruction.

  13. Perspective: Dynamic Shadowing Growth and its Energy Applications

    Directory of Open Access Journals (Sweden)

    Yiping eZhao

    2014-09-01

    Full Text Available The unique features of dynamic shadowing growth (DSG in structural and compositional design of nanomaterials are discussed. Their recent applications in energy storage, fuel cell, and solar energy conversion have been reviewed briefly. Future directions for applying DSG nanostructures in renewable energy applications are presented.

  14. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting wind fields are valuable in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning are addressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms in Denmark Horns Rev and Nysted are identified. A region of reduced wind speed is found downstream of both wind farms from the SAR wind fields. The wake extent and magnitude depends on the wind speed, the atmospheric stability, and the fraction of turbines operating. Wind farm wake effects are detected up to 20 km downwind of the last turbine. This distance is longer than predicted by state-of-the art wake models. Wake losses are typically 10-20% near the wind farms. Secondly, the potential of using SAR wind maps in offshore wind resource assessment is investigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive to the wind speed and the highest possible accuracy on SAR wind retrievals is therefore sought. A 1.1 m s{sup -1} deviation on the mean wind speed is found through comparison with mast measurements at Horns Rev. The accuracy on mean wind speeds and energy densities found from satellite measurements varies with different empirical model functions. Additional uncertainties are introduced by the infrequent satellite sampling at fixed times of the day. The accuracy on satellite based wind resource

  15. 78 FR 65978 - Application to Export Electric Energy; Brookfield Energy Marketing Inc.

    Science.gov (United States)

    2013-11-04

    ... Application to Export Electric Energy; Brookfield Energy Marketing Inc. AGENCY: Office of Electricity Delivery.... (BEMI) has applied to renew its authority to transmit electric energy from the United States to Canada... electric energy that BEMI proposes to export to Canada would be surplus energy purchased from...

  16. 77 FR 50486 - Application To Export Electric Energy; TexMex Energy, LLC

    Science.gov (United States)

    2012-08-21

    ... Application To Export Electric Energy; TexMex Energy, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... authorized TexMex to transmit electric energy from the United States to Mexico as a power marketer for a...

  17. 77 FR 50487 - Application To Export Electric Energy; RBC Energy Services LP

    Science.gov (United States)

    2012-08-21

    ... Application To Export Electric Energy; RBC Energy Services LP AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Canada pursuant to... Order No. EA-328 authorizing RBC Energy to transmit electric energy from the United States to Canada...

  18. 76 FR 3882 - Application To Export Electric Energy; Intercom Energy, Inc.

    Science.gov (United States)

    2011-01-21

    ... Application To Export Electric Energy; Intercom Energy, Inc. AGENCY: Office of Electricity Delivery and Energy... renew its authority to transmit electric energy from the United States to Mexico pursuant to section 202... authorized Intercom to transmit electric energy from the United States to Mexico as a power marketer for...

  19. 77 FR 20375 - Application to Export Electric Energy; Rainbow Energy Marketing Corporation

    Science.gov (United States)

    2012-04-04

    ... Application to Export Electric Energy; Rainbow Energy Marketing Corporation AGENCY: Office of Electricity... Corporation (Rainbow) has applied to renew its authority to transmit electric energy from the United States to... Department of Energy (DOE) issued Order No. EA-296 authorizing Rainbow to transmit electric energy from...

  20. 75 FR 75994 - Application To Export Electric Energy; Sempra Energy Trading LLC

    Science.gov (United States)

    2010-12-07

    ... Application To Export Electric Energy; Sempra Energy Trading LLC AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Canada pursuant to... authorized Sempra Energy Trading Corp. (SETC) to transmit electric energy from the United States to...

  1. 77 FR 15091 - Application To Export Electric Energy; DTE Energy Trading, Inc.

    Science.gov (United States)

    2012-03-14

    ... Application To Export Electric Energy; DTE Energy Trading, Inc. AGENCY: Office of Electricity Delivery and... Trading) has applied to renew its authority to transmit electric energy from the United States to Canada... Order No. EA-211, which authorized DTE Energy Trading to transmit electric energy from the United...

  2. 78 FR 64207 - Application To Export Electric Energy; TEC Energy Inc.

    Science.gov (United States)

    2013-10-28

    ... Application To Export Electric Energy; TEC Energy Inc. AGENCY: Office of Electricity Delivery and Energy... transmit electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power... transmit electric energy from the United States to Canada for five years as a power marketer using...

  3. Nanostructured graphene nanoplatelets for energy storage applications

    Science.gov (United States)

    Monga, Anchita

    There is an increasing demand for high performance compact batteries for diverse applications ranging from portable electronics to electric automotive vehicles. This need has driven the direction of research towards newer materials, improved synthesis and architectured assembly. This research addresses the gravimetric and volumetric density challenges as well as the cost issues faced by energy storage devices by developing structured graphitic materials, aiming at better electrochemical performance, improved energy density and reduced cost. The few layer graphene nanoplatelets (GnP) used in this study can be produced from natural graphite in thicknesses from 1-10 nm and in widths from 0.3 to 50 microns via an acid intercalation/thermal exfoliation process. The GnP serves as an inexpensive alternative to carbon nanotubes and single graphene sheets. The ability to nanostructure GnP and tailor its inherent properties for lithium storage and electrical conductivity, allows it to be used for customized applications in three different lithium ion battery components viz., active anode material, current collector and conducting additive. Metal nanoparticle doped GnP in which nanosized metal particles are coated onto the GnP basal surface, have been assembled to make a 'pillared' nanostructure in which the particles maintain a fixed distance between adjacent GnPs facilitating improved transport and enhanced lithium storage capacity, especially at faster charge rates. Graphene nanoplatelets synthesized with different sizes of metal nanoparticles effectively create a nano-architectured GnP multilayer assembly with flexible interlayer spacing. The creation of a lithium ion battery anode with controllable GnP interlayer spacing facilitates lithium ion diffusion through the electrode, and this in turn leads to improved transport and enhanced capacity. Graphene nanoplatelets are also intrinsically excellent electrical conductors, which can be assembled into continuous conductive

  4. Identification of the predicted 5s-4f level crossing optical lines with applications to metrology and searches for the variation of fundamental constants.

    Science.gov (United States)

    Windberger, A; Crespo López-Urrutia, J R; Bekker, H; Oreshkina, N S; Berengut, J C; Bock, V; Borschevsky, A; Dzuba, V A; Eliav, E; Harman, Z; Kaldor, U; Kaul, S; Safronova, U I; Flambaum, V V; Keitel, C H; Schmidt, P O; Ullrich, J; Versolato, O O

    2015-04-17

    We measure optical spectra of Nd-like W, Re, Os, Ir, and Pt ions of particular interest for studies of a possibly varying fine-structure constant. Exploiting characteristic energy scalings we identify the strongest lines, confirm the predicted 5s-4f level crossing, and benchmark advanced calculations. We infer two possible values for optical M2/E3 and E1 transitions in Ir^{17+} that have the highest predicted sensitivity to a variation of the fine-structure constant among stable atomic systems. Furthermore, we determine the energies of proposed frequency standards in Hf^{12+} and W^{14+}.

  5. Efficient method for the determination of extreme-ultraviolet optical constants in reactive materials: application to scandium and titanium.

    Science.gov (United States)

    Uspenskii, Yu A; Seely, John E; Popov, N L; Vinogradov, A V; Pershin, Yu P; Kondratenko, V V

    2004-02-01

    The chemical reaction of a sample with atmospheric gases causes a significant error in the determinantion of the complex refractive index n = 1 - delta + ibeta in the extreme-ultraviolet region. The protection of samples removes this effect but hampers the interpretation of measurements. To overcome this difficulty, we derive the exact dependences on film thickness of the reflectivity and transmissivity of a protected film. These dependences greatly simplify the determination of delta and beta when the spectra of several films with different thickness and identical protection are measured. They also allow the verification of the delta(omega) obtained from the Kramers-Kronig relation and even make the Kramers-Kronig method unnecessary in many cases. As a practical application, the optical constants of Sc and Ti are determined at h omega = 18-70 eV and 18-99 eV, respectively. The essential feature of our experimental technique is deposition of a film sample directly on a silicon photodiode that allows easy operation with both thin (approximately 10-nm) and thick (approximately 100-nm) films. The comparison of calculated reflectivities of Si-Sc multilayers with the measured values shows the high accuracy of the determined delta(omega) and beta(omega).

  6. House of clean Energy application centre for renewable energies. Hessen

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Daniela; Cornelsen, Christiane; Osada, Roman [Hessisches Anwendungszentrum fuer Erneuerbare Energien und Energieeffizienz e.V. c/o RMD Rhein-Main Deponie GmbH, Floersheim-Wicker (Germany). House of clean Energy

    2012-11-01

    What form can the energy turnaround and the energy mix of the future be expected to take? What new paths of technology and research promise to yield the most effective solutions? How will it be possible to ensure a reliable energy supply sufficient to safeguard the existence and further development of modern industrial societies? These are the questions which are dominating the political debate throughout the world. (orig.)

  7. MATHEMATICAL CONSTANTS.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, H.P.; Potter, Elinor

    1971-03-01

    This collection of mathematical data consists of two tables of decimal constants arranged according to size rather than function, a third table of integers from 1 to 1000, giving some of their properties, and a fourth table listing some infinite series arranged according to increasing size of the coefficients of the terms. The decimal values of Tables I and II are given to 20 D.

  8. Hemaka's constant

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    As proposed in a previous paper, the decorations of ancient objects can provide some information on the approximate evaluations of constant {\\pi}, the ratio of circumference to diameter. Here we discuss some disks found in the tomb of Hemaka, the chancellor of a king of the First Dynasty of Egypt, about 3000 BC. The discussion is based on measurements of the dimensionless ratio of lengths.

  9. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  10. Determination of magnetic anisotropy constants and domain wall pinning energy of Fe/MgO(001) ultrathin film by anisotropic magnetoresistance.

    Science.gov (United States)

    Hu, Bo; He, Wei; Ye, Jun; Tang, Jin; Zhang, Yong-Sheng; Ahmad, Syed Sheraz; Zhang, Xiang-Qun; Cheng, Zhao-Hua

    2015-09-15

    It is challenging to determine domain wall pinning energy and magnetic anisotropy since both coherent rotation and domain wall displacement coexist during magnetization switching process. Here, angular dependence anisotropic magnetoresistance (AMR) measurements at different magnetic fields were employed to determine magnetic anisotropy constants and domain wall pinning energy of Fe/MgO(001) ultrathin film. The AMR curves at magnetic fields which are high enough to ensure the coherent rotation of magnetization indicate a smooth behavior without hysteresis between clockwise (CW) and counter-clockwise (CCW) rotations. By analyzing magnetic torque, the magnetic anisotropy constants can be obtained. On the other hand, the AMR curves at low fields show abrupt transitions with hysteresis between CW and CCW rotations, suggesting the presence of multi-domain structures. The domain wall pinning energy can be obtained by analyzing different behaviors of AMR. Our work suggests that AMR measurements can be employed to figure out precisely the contributions of magnetic anisotropy and domain wall pinning energy, which is still a critical issue for spintronics.

  11. The effect of dielectric constant on binding energy and impurity self-polarization in a GaAs-Ga1- x Al x As spherical quantum dot

    Science.gov (United States)

    Mese, A. I.; Cicek, E.; Erdogan, I.; Akankan, O.; Akbas, H.

    2017-03-01

    The ground state, 1s, and the excited state, 2p, energies of a hydrogenic impurity in a GaAs-Ga1- x Al x As spherical quantum dot, are computed as a function of the donor positions. We study how the impurity self-polarization depends on the location of the impurity and the dielectric constant. The excited state anomalous impurity self-polarization in the quantum dot is found to be present in the absence of any external influence and strongly depends on the impurity position and the radius of the dot. Therefore, the excited state anomalous impurity self-polarization can give information about the impurity position in the system. Also, the variation of E_{b1s} and E_{b2p} with the dielectric constant can be utilized as a tool for finding out the correct dielectric constant of the dot material by measuring the 1s or 2p state binding energy for a fixed dot radius and a fixed impurity position.

  12. 75 FR 51025 - Application to Export Electric Energy; Vitol Inc.

    Science.gov (United States)

    2010-08-18

    ... Application to Export Electric Energy; Vitol Inc. AGENCY: Office of Electricity Delivery and Energy... transmit electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power... service area. The electric energy that Vitol proposes to export to Canada would be surplus...

  13. 78 FR 65978 - Application To Export Electric Energy; Powerex Corp.

    Science.gov (United States)

    2013-11-04

    ... Application To Export Electric Energy; Powerex Corp. AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... Powerex to transmit electric energy from the United States to Mexico as a power marketer for a...

  14. 75 FR 45607 - Application To Export Electric Energy; Manitoba Hydro

    Science.gov (United States)

    2010-08-03

    ... Application To Export Electric Energy; Manitoba Hydro AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... Order No. EA-281, which authorized Manitoba to transmit electric energy from the United States to...

  15. 75 FR 54116 - Application To Export Electric Energy; Powerex Corp

    Science.gov (United States)

    2010-09-03

    ...] [FR Doc No: 2010-22064] DEPARTMENT OF ENERGY [OE Docket No. EA-171-C] Application To Export Electric... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... term. The electric energy that Powerex proposes to export to Canada would be surplus energy...

  16. 77 FR 20374 - Application To Export Electric Energy; WSPP Inc.

    Science.gov (United States)

    2012-04-04

    ... Application To Export Electric Energy; WSPP Inc. AGENCY: Office of Electricity Delivery and Energy Reliability... members, to renew the authority of those members to transmit electric energy from the United States to... new export authority for two other members to transmit electric energy from the United States...

  17. Nanostructured Thermoelectric Oxides for Energy Harvesting Applications

    KAUST Repository

    Abutaha, Anas I.

    2015-11-24

    As the world strives to adapt to the increasing demand for electrical power, sustainable energy sources are attracting significant interest. Around 60% of energy utilized in the world is wasted as heat. Different industrial processes, home heating, and exhausts in cars, all generate a huge amount of unused waste heat. With such a huge potential, there is also significant interest in discovering inexpensive technologies for power generation from waste heat. As a result, thermoelectric materials have become important for many renewable energy research programs. While significant advancements have been done in improving the thermoelectric properties of the conventional heavy-element based materials (such as Bi2Te3 and PbTe), high-temperature applications of thermoelectrics are still limited to one materials system, namely SiGe, since the traditional thermoelectric materials degrade and oxidize at high temperature. Therefore, oxide thermoelectrics emerge as a promising class of materials since they can operate athigher temperatures and in harsher environments compared to non-oxide thermoelectrics. Furthermore, oxides are abundant and friendly to the environment. Among oxides, crystalline SrTiO3 and ZnO are promising thermoelectric materials. The main objective of this work is therefore to pursue focused investigations of SrTiO3 and ZnO thin films and superlattices grown by pulsed laser deposition (PLD), with the goal of optimizing their thermoelectric properties by following different strategies. First, the effect of laser fluence on the thermoelectric properties of La doped epitaxial SrTiO3 films is discussed. Films grown at higher laser fluences exhibit better thermoelectric performance. Second, the role of crystal orientation in determining the thermoelectric properties of epitaxial Al doped ZnO (AZO) films is explained. Vertically aligned (c-axis) AZO films have superior thermoelectric properties compared to other films with different crystal orientations. Third

  18. Power electronic converter systems for direct drive renewable energy applications

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic conversion systems for wind and marine energy generation applications, in particular, direct drive generator energy conversion systems. Various topologies are presented and system design optimization and reliability are briefly discussed....

  19. Residual energy applications program systems analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Yngve, P.W.

    1980-10-01

    Current DOE plans call for building an Energy Applied Systems Test (EAST) Facility at the Savannah River Plant in close proximity to the 140 to 150/sup 0/F waste heat from one of several operating nuclear reactors. The waste water flow from each reactor, approximately 165,000 gpm, provides a unique opportunity to test the performance and operating characteristics of large-scale waste heat power generation and heat pump system concepts. This report provides a preliminary description of the potential end-use market, parametric data on heat pump and the power generation system technology, a preliminary listing of EAST Facility requirements, and an example of an integrated industrial park utilizing the technology to maximize economic pay back. The parametric heat pump analysis concluded that dual-fluid Rankine cycle heat pumps with capacities as high as 400 x 10/sup 6/ Btu/h, can utilize large sources of low temperature residual heat to provide 300/sup 0/F saturatd steam for an industrial park. The before tax return on investment for this concept is 36.2%. The analysis also concluded that smaller modular heat pumps could fulfill the same objective while sacrificing only a moderate rate of return. The parametric power generation analysis concluded that multi-pressure Rankine cycle systems not only are superior to single pressure systems, but can also be developed for large systems (approx. = 17 MW/sub e/). This same technology is applicable to smaller systems at the sacrifice of higher investment per unit output.

  20. Thermophotovoltaic Energy Conversion for Space Applications

    Science.gov (United States)

    Teofilo, V. L.; Choong, P.; Chen, W.; Chang, J.; Tseng, Y.-L.

    2006-01-01

    Thermophotovoltaic (TPV) energy conversion cells have made steady and over the years considerable progress since first evaluated by Lockheed Martin for direct conversion using nuclear power sources in the mid 1980s. The design trades and evaluations for application to the early defensive missile satellites of the Strategic Defense Initiative found the cell technology to be immature with unacceptably low cell efficiencies comparable to thermoelectric of innovative monolithic integrated cell architecture, and bandpass tandem filter have, in concert, significantly improved cell efficiencies to 25% with the promise of 35% using solar cell like multi-junction approach in the near future. Recent NASA sponsored design and feasibility testing programs have demonstrated the potential for 19% system efficiency for 100 We radioisotopic power sources at an integrated specific power of ~14 We/kg. Current state of TPV cell technology however limits the operating temperature of the converter cells to architecture for elevated TPV operation can be found to out-perform the state-of-the-art TPV at an elevated temperature.

  1. 76 FR 50476 - Application To Export Electric Energy; Glacial Energy of Texas, Inc.

    Science.gov (United States)

    2011-08-15

    ... Application To Export Electric Energy; Glacial Energy of Texas, Inc. AGENCY: Office of Electricity Delivery.... (Glacial) has applied for authority to transmit electric energy from the United States to Mexico pursuant...)). On July 14, 2011, DOE received an application from Glacial for authority to transmit electric...

  2. Future scientific applications for high-energy lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.W. [comp.

    1994-08-01

    This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

  3. Solar energy application, economics, and public perception

    CERN Document Server

    Adaramola, Muyiwa

    2015-01-01

    Due to climate change, the rise in energy demand, and issues of energy security, more countries are being forced to reexamine their energy policies and consider more renewable sources of energy. Solar power is expected to play a significant role in the changing face of energy economies, due in a large part to the recent technological advances in the field and the significant decrease in cost. This book describes these advances and examines the current state of solar power from a variety of angles. The various sections of the book cover the following topics: an overview of hybrid solar energy s

  4. An Energy Based Scheme for Reconstruction of Piecewise Constant Signals observed in the Movement of Molecular Machines

    CERN Document Server

    Rosskopf, Joachim; Plenio, Martin B; Michaelis, Jens

    2015-01-01

    Analyzing the physical and chemical properties of single DNA based molecular machines such as polymerases and helicases often necessitates to track stepping motion on the length scale of base pairs. Although high resolution instruments have been developed that are capable of reaching that limit, individual steps are oftentimes hidden by experimental noise which complicates data processing. Here, we present an effective two-step algorithm which detects steps in a high bandwidth signal by minimizing an energy based model (Energy based step-finder, EBS). First, an efficient convex denoising scheme is applied which allows compression to tupels of amplitudes and plateau lengths. Second, a combinatorial optimization algorithm formulated on a graph is used to assign steps to the tupel data while accounting for prior information. Performance of the algorithm was tested on poissonian stepping data simulated based on published kinetics data of RNA Polymerase II (Pol II). Comparison to existing step-finding methods show...

  5. Constraints on phase stability, defect energies, and elastic constants of metals described by EAM-type potentials

    Science.gov (United States)

    Sukhomlinov, Sergey V.; Müser, Martin H.

    2016-10-01

    We demonstrate that the embedded-atom method and related potentials predict many dimensionless properties of simple metals to depend predominantly on a single coefficient μ, which typically lies between 0.3 and 0.45. Among other relations presented in this work, we find that {{E}\\text{c}}\\propto {{Z}μ} , {{E}\\text{v}}/{{E}\\text{c}}=μ , and G/B\\propto μ hold within 25% accuracy and also find a linear dependence of the melting temperature on μ. The used variables are cohesive energy E c, coordination number Z, vacancy energy E v, and bulk modulus B, while G is the average of ordinary and tetragonal shear modulus. We provide analytical arguments for these findings, which are obeyed reasonably well by several metals.

  6. Energy balance in the solar transition region. III - Helium emission in hydrostatic, constant-abundance models with diffusion

    Science.gov (United States)

    Fontenla, J. M.; Avrett, E. H.; Loeser, R.

    1993-01-01

    In our previous papers we described the mathematical formalism and the computed results for energy-balance hydrostatic models of the solar transition region. In this paper we discuss in some detail the limitations of the hydrostatic and one-dimensional assumptions used. Then we analyze the determination of helium emission when diffusion is included. We use transport coefficients estimated from kinetic theory to determine the helium departures from local ionization balance. We calculate the helium spectra for each of our models and evaluate the role of helium in the energy transport. Also, we investigate the effects of coronal illumination on the structure of the transition region and upper chromosphere, and show how coronal illumination affects various EUV lines and the He I 10830 A line. Comparing with both absolute intensities and detailed line profiles, we show that our models are consistent not only with the observed hydrogen spectra but also with the available helium spectra.

  7. Wireless energy transmission to supplement energy harvesters in sensor network applications

    Energy Technology Data Exchange (ETDEWEB)

    Farinholt, Kevin M [Los Alamos National Laboratory; Taylor, Stuart G [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

    2010-01-01

    In this paper we present a method for coupling wireless energy transmission with traditional energy harvesting techniques in order to power sensor nodes for structural health monitoring applications. The goal of this study is to develop a system that can be permanently embedded within civil structures without the need for on-board power sources. Wireless energy transmission is included to supplement energy harvesting techniques that rely on ambient or environmental, energy sources. This approach combines several transducer types that harvest ambient energy with wireless transmission sources, providing a robust solution that does not rely on a single energy source. Experimental results from laboratory and field experiments are presented to address duty cycle limitations of conventional energy harvesting techniques, and the advantages gained by incorporating a wireless energy transmission subsystem. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  8. Satellite information for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Astrup, P.; Bay Hasager, C.

    2004-11-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resource studies. Comparison results from complex terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined with roughness data from field observation or literature values. Land cover type maps constitute an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEM and land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface wind data from several types of satellite observations. The RWT software allows an optimal calculation of SAR wind resource statistics. A tab-file with SAR-based observed wind climate (OWC) data can be obtained for 10 m above sea level and used in WASP. RWT uses a footprint averaging technique to obtain data as similar as possible to mast observations. Maximum-likelihood fitting is used to calculate the Weibull A and k parameters from the constrained data set. Satellite SAR wind maps cover the coastal zone from 3 km and offshore with very detailed information of 400 m by 400 m grid resolution. Spatial trends in mean wind, energy density, Weibull A and k and uncertainty values are provided for the area of interest. Satellite scatterometer wind observations have a spatial resolution of 25 km by 25 km. These data typically represent a site further offshore, and the tab-file statistics should be used in WASP combined with topography and roughness information to assess the coastal wind power potential. Scatterometer wind data are observed {approx} twice per day, whereas SAR only

  9. Identifying The Most Applicable Renewable Energy Systems Of Iran

    Directory of Open Access Journals (Sweden)

    Nasibeh Mousavi

    2015-08-01

    Full Text Available These years because of energy crisis all of country try to find a new way to reduce energy consumptions and obtain maximum use of renewable energy. Iran also is not an exception of this progress. Renewable energy is energy that is provided by renewable sources such as the sun or wind. In general renewable energies are not adaptable to every single community. Because of location and special climate conditions of Iran most applicable renewable energy systems in Iran are solar and wind energy. Main purpose of this paper is to review and identify most applicable renewable energy systems of Iran and also review on traditional and current methods that utilized to obtain maximum use of these renewable energies.

  10. Nuclear Energy CFD Application Management System

    Energy Technology Data Exchange (ETDEWEB)

    Hyung Lee; Kimberlyn C. Mousseau

    2001-09-01

    In modeling and simulation (M&S), it is virtually impossible to separately evaluate the effectiveness of the model from the data used because the results produced rely heavily on the interaction between the two. Both the data and the simulation are responsible for achieving the ultimate goal of providing defensible research and development (R&D) products and decisions. It is therefore vital that data verification and validation (V&V) activities, along with stringent configuration management, be considered part of the overall M&S accreditation process. In support of these goals is the Nuclear Energy CFD Application Management System (NE-CAMS) for nuclear system design and safety analysis. Working with Bettis Laboratory and Utah State University, a plan of action is being developed by the Idaho National Laboratory (INL) that will address the highest and most immediate needs to track and manage computational fluid dynamics (CFD) models and experimental data in an electronic database. The database will intrinsically incorporate the Nuclear Regulatory Commission (NRC) approved policies and procedures for quality. The quality requirements will be such that the model and data must conform to the quality specifications outlined by the NRC before they can be entered into the database. The primary focus of this database is CFD V&V for nuclear industry needs and will, in practice, serve as the best practice guideline that will accommodate NRC regulations. Such a database, along with a prescriptive methodology for how to utilize it, will provide the NRC with accepted CFD results that could potentially be used for licensing. NE-CAMS will incorporate data V&V as key precursors to the distribution of nuclear systems design and safety data, ensuring that these data are appropriate for use in a particular M&S application. Verification will be conducted to provide a level of confidence that the data selected are the most appropriate for the simulation and are properly prepared, i

  11. 75 FR 76962 - Application To Export Electric Energy; MAG Energy Solutions, Inc.

    Science.gov (United States)

    2010-12-10

    ... Application To Export Electric Energy; MAG Energy Solutions, Inc. AGENCY: Office of Electricity Delivery and....) has applied to renew its authority to transmit electric energy from the United States to Canada..., which authorized MAG E.S. to transmit electric energy from the United States to Canada for a...

  12. 77 FR 23238 - Application To Export Electric Energy; Citigroup Energy Canada ULC

    Science.gov (United States)

    2012-04-18

    ... Application To Export Electric Energy; Citigroup Energy Canada ULC AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Canada pursuant to.... EA-326 authorizing CECU to transmit electric energy from the United States to Canada as a...

  13. 77 FR 1474 - Application To Export Electric Energy; AEP Energy Partners, Inc.

    Science.gov (United States)

    2012-01-10

    ... Application To Export Electric Energy; AEP Energy Partners, Inc. AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Mexico pursuant to... (DOE) issued Order No. EA-318, which authorized CSW Power Marketing to transmit electric energy...

  14. 75 FR 78980 - Application to Export Electric Energy; Direct Energy Marketing, Inc.

    Science.gov (United States)

    2010-12-17

    ... Application to Export Electric Energy; Direct Energy Marketing, Inc. AGENCY: Office of Electricity Delivery.... (DEMI) has applied to renew its authority to transmit electric energy from the United States to Canada... to transmit electric energy from the United States to Canada for a two-year term as a power...

  15. 75 FR 11153 - Hydro Energy Technologies, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2010-03-10

    ... Energy Regulatory Commission Hydro Energy Technologies, LLC; Notice of Preliminary Permit Application.... On November 6, 2009, Hydro Energy Technologies, LLC (Hydro Energy Technologies) filed an application...-hours. Hydro Energy Technologies: Anthony J. Marra Jr., President, Hydro Energy Technologies, LLC.,...

  16. The use of high resolution electron-energy-loss spectroscopy for refining the infrared optical constants of GaS, GaSe, and InSe

    Science.gov (United States)

    Yu, Li-Ming; Thiry, P. A.; Degiovanni, A.; Conard, Th.; Leclerc, G.; Caudano, R.; Lambin, Ph.; Debever, J.-M.

    1994-06-01

    Cleaved surfaces of III-VI lamellar semiconducting compounds GaS, GaSe, and InSe have been studied by high resolution electron-energy-loss spectroscopy (HREELS). The infrared optical constants of the materials were retrieved by using the dielectric theory taking account of the resonance frequencies published from infrared reflectivity (IRS) data. The limitations of the HREELS and IRS measurements in the case of these materials are discussed in detail. However, it is shown that, by combining the informations from both spectroscopies, it is possible to refine some of the oscillator strengths of these materials.

  17. Energy-based scheme for reconstruction of piecewise constant signals observed in the movement of molecular machines

    Science.gov (United States)

    Rosskopf, Joachim; Paul-Yuan, Korbinian; Plenio, Martin B.; Michaelis, Jens

    2016-08-01

    Analyzing the physical and chemical properties of single DNA-based molecular machines such as polymerases and helicases requires to track stepping motion on the length scale of base pairs. Although high-resolution instruments have been developed that are capable of reaching that limit, individual steps are oftentimes hidden by experimental noise which complicates data processing. Here we present an effective two-step algorithm which detects steps in a high-bandwidth signal by minimizing an energy-based model (energy-based step finder, EBS). First, an efficient convex denoising scheme is applied which allows compression to tuples of amplitudes and plateau lengths. Second, a combinatorial clustering algorithm formulated on a graph is used to assign steps to the tuple data while accounting for prior information. Performance of the algorithm was tested on Poissonian stepping data simulated based on published kinetics data of RNA polymerase II (pol II). Comparison to existing step-finding methods shows that EBS is superior in speed while providing competitive step-detection results, especially in challenging situations. Moreover, the capability to detect backtracked intervals in experimental data of pol II as well as to detect stepping behavior of the Phi29 DNA packaging motor is demonstrated.

  18. Non-Friedmann cosmology for the Local Universe, significance of the universal Hubble constant and short-distance indicators of dark energy

    CERN Document Server

    Chernin, A D; Baryshev, Y V; Chernin, Arthur D.; Teerikorpi, Pekka; Baryshev, Yurij V.

    2006-01-01

    Basing on the increasing evidence for the cosmological relevance of the local Hubble flow, we consider a simple analytical cosmological model for the Local Universe. This is a non-Friedmann model with a non-uniform static space-time. The major dynamical factor controlling the local expansion is the antigravity produced by the omnipresent and permanent dark energy of the cosmic vacuum (or the cosmological constant). The antigravity dominates at distances larger than 1-2 Mpc from the center of the Local Group. The model gives a natural explanation of the two key quantitative characteristics of the local expansion flow, which are the local Hubble constant and the velocity dispersion of the flow. The observed kinematical similarity of the local and global flows of expansion is clarified by the model. We demonstrate analytically the efficiency of the vacuum cooling mechanism that allows one to see the Hubble flow so close to the Local Group. Special significance is argued for the 'universal Hubble constant' H_V, d...

  19. Application of solar energy to air-conditioning

    Science.gov (United States)

    Harstad, A. J.; Nash, J. M.

    1978-01-01

    Results of survey of application of solar energy to air-conditioning systems are summarized in report. Survey reviewed air-conditioning techniques that are most likely to find residential applications and that are compatible with solar-energy systems being developed.

  20. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-11-01

    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  1. Applications analysis of high energy lasers

    Science.gov (United States)

    Arno, R. D.; Mackay, J. S.; Nishioka, K.

    1972-01-01

    An analysis and comparison of laser technology with competing technologies were made to determine possible laser applications. The analysis was undertaken as follows: (1) possible applications were listed and categorized; (2) required components were enumerated and the characteristics of these components were extrapolated; (3) complete system characteristics were calculated parametrically for selected applications using the postulated component characteristics; and (4) where possible and appropriate, comparisons were made with competing systems. It was found that any large scale replacement of existing systems and methods by lasers requires many technological advances in laser and associated systems. However, several applications appear feasible, such as low orbit drag make-up, orbit changing, communications, and illumination applications.

  2. Military Wastes-to-Energy Applications,

    Science.gov (United States)

    1980-11-01

    Excluding Nuclear ) .... ......... 42 10 Department of Defense Energy Consumption and Costs . 43 11 DOD Petroleum Demand, FY 1976 ..... ............. 45...EQUIVALENT Source: Ref. 41 Figure 9. DOD Energy Demand (Excluding Nuclear ) 42 * BILLIONS OF DOLLARS (0) CD woIo CM wz 00 z 4) W 0...of silvicultural energy planta - tions (Refs. 103, 105, 106, and 107). The study considered short-rotation management, land availability, conversion

  3. Renewable Energy Applications for Existing Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, S. J.; Kandt, A.

    2011-08-01

    This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

  4. Cosmological Constant, Fine Structure Constant and Beyond

    CERN Document Server

    Wei, Hao; Li, Hong-Yu; Xue, Dong-Ze

    2016-01-01

    In this work, we consider the cosmological constant model $\\Lambda\\propto\\alpha^{-6}$, which is well motivated from three independent approaches. As is well known, the evidence of varying fine structure constant $\\alpha$ was found in 1998. If $\\Lambda\\propto\\alpha^{-6}$ is right, it means that the cosmological constant $\\Lambda$ should be also varying. In this work, we try to develop a suitable framework to model this varying cosmological constant $\\Lambda\\propto\\alpha^{-6}$, in which we view it from an interacting vacuum energy perspective. We propose two types of models to describe the evolutions of $\\Lambda$ and $\\alpha$. Then, we consider the observational constraints on these models, by using the 293 $\\Delta\\alpha/\\alpha$ data from the absorption systems in the spectra of distant quasars, and the data of type Ia supernovae (SNIa), cosmic microwave background (CMB), baryon acoustic oscillation (BAO). We find that the model parameters can be tightly constrained to the narrow ranges of ${\\cal O}(10^{-5})$ t...

  5. Metallic bionanocatalysts: potential applications as green catalysts and energy materials.

    Science.gov (United States)

    Macaskie, Lynne E; Mikheenko, Iryna P; Omajai, Jacob B; Stephen, Alan J; Wood, Joseph

    2017-08-22

    Microbially generated or supported nanocatalysts have potential applications in green chemistry and environmental application. However, precious (and base) metals biorefined from wastes may be useful for making cheap, low-grade catalysts for clean energy production. The concept of bionanomaterials for energy applications is reviewed with respect to potential fuel cell applications, bio-catalytic upgrading of oils and manufacturing 'drop-in fuel' precursors. Cheap, effective biomaterials would facilitate progress towards dual development goals of sustainable consumption and production patterns and help to ensure access to affordable, reliable, sustainable and modern energy. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. S3 HMBC: Spin-State-Selective HMBC for accurate measurement of homonuclear coupling constants. Application to strychnine yielding thirteen hitherto unreported JHH

    Science.gov (United States)

    Kjaerulff, Louise; Benie, Andrew J.; Hoeck, Casper; Gotfredsen, Charlotte H.; Sørensen, Ole W.

    2016-02-01

    A novel method, Spin-State-Selective (S3) HMBC, for accurate measurement of homonuclear coupling constants is introduced. As characteristic for S3 techniques, S3 HMBC yields independent subspectra corresponding to particular passive spin states and thus allows determination of coupling constants between detected spins and homonuclear coupling partners along with relative signs. In the presented S3 HMBC experiment, spin-state selection occurs via large one-bond coupling constants ensuring high editing accuracy and unequivocal sign determination of the homonuclear long-range relative to the associated one-bond coupling constant. The sensitivity of the new experiment is comparable to that of regular edited HMBC and the accuracy of the J/RDC measurement is as usual for E.COSY and S3-type experiments independent of the size of the homonuclear coupling constant of interest. The merits of the method are demonstrated by an application to strychnine where thirteen JHH coupling constants not previously reported could be measured.

  7. Infrared termography application in energy audits of buildings

    OpenAIRE

    Palma Sellés, Pablo; Piedecausa García, Beatriz; López Davó, Joaquín

    2015-01-01

    The main objectives of this research are (i) to determine the correct use of infrared thermography in the energy analysis of buildings and to verify its application in conducting energy audits thereof; (ii) to conduct a proposal for a standard methodology (with its corresponding final report) for energy audit of buildings based on currently applicable regulations, specifying the parts of the audit process where the authors propose to include thermal inspections by using infrared thermography.

  8. Advanced nanomaterials and their applications in renewable energy

    CERN Document Server

    Liu, Jingbo Louise

    2015-01-01

    Advanced Nanomaterials and Their Applications in Renewable Energy presents timely topics related to nanomaterials' feasible synthesis and characterization, and their application in the energy fields. In addition, the book provides insights and scientific discoveries in toxicity study, with information that is easily understood by a wide audience. Advanced energy materials are important in designing materials that have greater physical, electronic, and optical properties. This book emphasizes the fundamental physics and chemistry underlying the techniques used to develop solar and fuel cell

  9. Energy conversion with application of biotechnology. Baio riyo energy henkan

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T.; Uozumi, N. (Nagoya Univ., Nagoya (Japan). Faculty of Engineering)

    1992-09-05

    Biological resources are produced by photosynthetic action of plants by the use of solar energy and decomposed and circulated mainly by microorganisms in the ecological system. Various energy conversions are possible by the use of functions of microorganisms. The paper overviews the various energy conversion systems under investigation. A bioreactor to produce hydrogen by the use of a certain microorganism from organic compounds in a dark condition is studied in combination with oxygen and nitrogen removal system. Anaerobic methane fermentation has been used practically and the process is noteworthy to use marine biomass as the raw materials. Eucalyptus, Ricinus (castor oil plant) and Hevea (para rubber plant) attract attention on direct production of hydrocarbons. While alcoholic fermentation is known since ancient times, ethanol is now used in automobile fuel, and cellulose is a subject of a study as a raw material of fermentation instead of starch. The investigation includes effective utilization techniques of cellulose by degradation and higher efficiency of photosynthesis by use of technologies of genetic engineering. 1 ref., 2 figs.

  10. Solar energy in California industry - Applications, characteristics and potential

    Science.gov (United States)

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  11. Solar energy in California industry - Applications, characteristics and potential

    Science.gov (United States)

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  12. First principles calculations of formation energies and elastic constants of inclusions α-Al2O3, MgO and AlN in aluminum alloy

    Science.gov (United States)

    Liu, Yu; Huang, Yuanchun; Xiao, Zhengbing; Yang, Chuge; Reng, Xianwei

    2016-05-01

    In this paper, the formation energies and elastic constants of α-Al2O3, MgO and AlN in both rock salt (cubic) and wurtzite (hexagonal) structures were investigated by first principles calculations. The results show that the formation energy being -17.8, -6.3, -3.06 and -3.46 eV/formula unit for α-Al2O3, MgO, AlN (rock salt) and AlN (wurtzite). It suggests that in the ground state, α-Al2O3 is relatively more stable than MgO and AlN. The elastic properties for a polycrystalline in the ground state were calculated with the obtained elastic constants, the elastic properties reveal the rock salt structure AlN is the hardest particles among all the inclusions, and all of these inclusions are classified as brittle materials, which is detrimental to the ductile nature of aluminum matrix. The calculated anisotropy index shows that the AlN (wurtzite) and α-Al2O3 have a lower degree of anisotropy compared with MgO and AlN (rock salt). The calculated results are in good agreement with the values of experimental and other works.

  13. Energy Consumption in Location Sharing Protocols for Android Applications

    OpenAIRE

    Prihodko, Mihails

    2012-01-01

    This thesis studies the Message Queue Telemetry Transport protocol (MQTT) as an application layer protocol in geographical location sharing applications using third generation cellular communication (3G). The MQTT protocol is compared in terms of energy efficiency and amount of data generated with the Hypertext Transfer Protocol (HTTP), which is currently used in typical location sharing applications. In order to compare the communication energy efficiency of both protocols a location sharing...

  14. An initial-abstraction, constant-loss model for unit hydrograph modeling for applicable watersheds in Texas

    Science.gov (United States)

    Asquith, William H.; Roussel, Meghan C.

    2007-01-01

    Estimation of representative hydrographs from design storms, which are known as design hydrographs, provides for cost-effective, riskmitigated design of drainage structures such as bridges, culverts, roadways, and other infrastructure. During 2001?07, the U.S. Geological Survey (USGS), in cooperation with the Texas Department of Transportation, investigated runoff hydrographs, design storms, unit hydrographs,and watershed-loss models to enhance design hydrograph estimation in Texas. Design hydrographs ideally should mimic the general volume, peak, and shape of observed runoff hydrographs. Design hydrographs commonly are estimated in part by unit hydrographs. A unit hydrograph is defined as the runoff hydrograph that results from a unit pulse of excess rainfall uniformly distributed over the watershed at a constant rate for a specific duration. A time-distributed, watershed-loss model is required for modeling by unit hydrographs. This report develops a specific time-distributed, watershed-loss model known as an initial-abstraction, constant-loss model. For this watershed-loss model, a watershed is conceptualized to have the capacity to store or abstract an absolute depth of rainfall at and near the beginning of a storm. Depths of total rainfall less than this initial abstraction do not produce runoff. The watershed also is conceptualized to have the capacity to remove rainfall at a constant rate (loss) after the initial abstraction is satisfied. Additional rainfall inputs after the initial abstraction is satisfied contribute to runoff if the rainfall rate (intensity) is larger than the constant loss. The initial abstraction, constant-loss model thus is a two-parameter model. The initial-abstraction, constant-loss model is investigated through detailed computational and statistical analysis of observed rainfall and runoff data for 92 USGS streamflow-gaging stations (watersheds) in Texas with contributing drainage areas from 0.26 to 166 square miles. The analysis is

  15. Electrical energy efficiency technologies and applications

    CERN Document Server

    Sumper, Andreas

    2012-01-01

    The improvement of electrical energy efficiency is fast becoming one of the most essential areas of sustainability development, backed by political initiatives to control and reduce energy demand. Now a major topic in industry and the electrical engineering research community, engineers have started to focus on analysis, diagnosis and possible solutions. Owing to the complexity and cross-disciplinary nature of electrical energy efficiency issues, the optimal solution is often multi-faceted with a critical solutions evaluation component to ensure cost effectiveness. This single-source refer

  16. Annual Cycle Energy System concept and application

    Energy Technology Data Exchange (ETDEWEB)

    Moyers, J. C.; Hise, E. C.

    1977-01-01

    The Annual Cycle Energy System (ACES), under development at ERDA's Oak Ridge National Laboratory, promises to provide space heating, air conditioning, and water heating at a significantly lower expenditure of energy than conventional space conditioning and water heating systems. The ACES embodies heat pumping, thermal storage and, where climate dictates, solar assistance. The concept is described, along with variations in design that permit flexibility to maximize energy conservation or to provide load management capabilities. Installations that exist or are under construction are described and variations that are incorporated to meet specific objectives are discussed.

  17. 78 FR 9687 - Prineville Energy Storage, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2013-02-11

    ... Energy Regulatory Commission Prineville Energy Storage, LLC; Notice of Preliminary Permit Application..., 2012, Prineville Energy Storage, LLC, filed an application for a preliminary permit, pursuant to...-hours. Applicant Contact: Mr. Matthew Shapiro, Chief Executive Officer, Prineville Energy Storage,...

  18. APPLICATION OF ALTERNATIVE ENERGIES IN THE AUSTRALIAN OFFSHORE SECTOR

    OpenAIRE

    M. F. HJ. MOHD AMIN; C. K. H. CHIN; V. GARANIYA

    2016-01-01

    Fossil fuel is not practically renewable and therefore the world is at risk of fossil fuel depletion. This gives urgency to investigate alternative energies, especially for industries that rely entirely on energies for operations, such as offshore industry. The use of alternative energies in this industry has been in place for a while now. This paper discusses the application of various alternative energy sources to assist powering the Goodwyn Alpha (A) Platform, located on the North West ...

  19. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  20. Energy Efficiency Studies of Mont Blanc Applications

    OpenAIRE

    2013-01-01

    In this thesis, the performance and energy efficiency of four different implementations of matrix multiplication, written in OmpSs and OpenCL, is tested and evaluated. The benchmarking is done using an Intel Ivy Bridge Core i7 3770K. The results are evaluated and discussed with regards to different optimization configurations, like vectorization and multi-threading. Energy measurements are taken using PAPI, which in turn uses the Running Average Power Limit interface in the Intel processor to...

  1. Dependence of rate constants on vibrational temperatures - An Arrhenius description

    Science.gov (United States)

    Ford, D. I.; Johnson, R. E.

    1988-01-01

    An interpretation of the variation of rate constants with vibrational temperature is proposed which introduces parameters analogous to those of the classical Arrhenius expression. The constancy of vibrational activation energy is studied for the dissociaton of NO, the ion-molecular reaction of O(+) with N2, and the atom exchange reaction of I with H2. It is found that when a Boltzmann distribution for vibrational states is applicable, the variation of the rate constant with the vibrational temperature can be used to define a vibrational activation energy. The method has application to exchange reactions where a vibrational energy threshold exists.

  2. Nanoparticle modifications of photodefined nanostructures for energy applications.

    Energy Technology Data Exchange (ETDEWEB)

    Polsky, Ronen; Xiao, Xiaoyin; Burckel, David Bruce; Brozik, Susan Marie; Washburn, Cody M.; Wheeler, David Roger

    2011-10-01

    The advancement of materials technology towards the development of novel 3D nanostructures for energy applications has been a long-standing challenge. The purpose of this project was to explore photolithographically defineable pyrolyzed photoresist carbon films for possible energy applications. The key attributes that we explored were as follows: (1) Photo-interferometric fabrication methods to produce highly porous (meso, micro, and nano) 3-D electrode structures, and (2) conducting polymer and nanoparticle-modification strategies on these structures to provide enhanced catalytic capabilities and increase conductivity. The resulting electrodes were then explored for specific applications towards possible use in battery and energy platforms.

  3. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  4. Measurements of Enthalpy Change of Reaction of Formation, Molar Heat Capacity and Constant-Volume Combustion Energy of Solid Complex Yb(Et2dtc)3(phen)

    Institute of Scientific and Technical Information of China (English)

    Song Weiming; Hu Qilin; Chang Xuan; Chen Sanping; Xie Gang; Gao Shengli

    2006-01-01

    A ternary solid complex Yb(Et2dtc)3(phen) was obtained from the reaction of hydrous ytterbium chloride with sodium diethyldithiocarbamate (NaEt2dtc), and 1, 10-phenanthroline (o-phen·H2O) in absolute ethanol.The bonding characteristics of the complex were characterized by IR.The result shows Yb3+ bands with two sulfur atoms in the Na(Et2dtc)3 and two nitrogen atoms in the o-phen.The enthalpy change of liquid-phase reaction of formation of the complex ΔrHθm (l), was determined as being (-24.838±0.114) kJ·mol-1 at 298.15 K, by an RD-496 Ⅲ type heat conduction microcalormeter.The enthalpy change of the solid-phase reaction of formation of the complex ΔrHθm (s), was calculated as being (108.015±0.479) kJ·mol-1 on the basis of an appropriate thermochemistry cycle.The thermodynamics of liquid-phase reaction of formation of the complex was investigated by changing the temperature during the liquid-phase reaction.Fundamental parameters, the activation enthalpy, ΔHθ≠, the activation entropy, ΔSθ≠, the activation free energy, ΔGθ≠, the apparent reaction rate constant k, the apparent activation energy E, the pre-exponential constant A, and the reaction order n, were obtained by a combination of the reaction thermodynamic and kinetic equations with the data from the thermokinetic experiments.At the same time, the molar heat capacity of the complex cm, p, was determined to be (86.34±1.74) J·mol-1·K-1 by the same microcalormeter.The constant-volume combustion energy of the complex, ΔcU, was determined to be (-17954.08±8.11) kJ·mol-1 by an RBC-Ⅱ type rotating-bomb calorimeter at 298.15 K.Its standard enthalpy of combustion, ΔcHθm, and standard enthalpy of formation, ΔfHθm, were calculated to be (-17973.29±8.11) kJ·mol-1 and (-770.36±9.02) kJ·mol-1, respectively.

  5. Determination of the strong coupling constant from transverse energy-energy correlations in multi-jet events in pp collisions at 13 TeV using the ATLAS detector at the LHC

    CERN Document Server

    Alvarez, Manuel; Llorente, Javier

    This analysis presents measurements of transverse energy-energy correlations (TEEC) and its associated asymmetry (ATEEC) in multi-jet events in bins of the scalar sum of the two leading jets transverse momenta. The data are unfolded to the particle level and compared to Monte Carlo generators like PYTHIA8, HERWIG++ and SHERPA. A comparison with NLOJET++ predictions is also performed. The value of the strong coupling constant is extracted and the running is tested up to scales beyond 1 TeV.

  6. The Interacting and Non-constant Cosmological Constant

    CERN Document Server

    Verma, Murli Manohar

    2009-01-01

    We propose a time-varying cosmological constant with a fixed equation of state, which evolves mainly through its interaction with the background during most of the long history of the universe. However, such interaction does not exist in the very early and the late-time universe and produces the acceleration during these eras when it becomes very nearly a constant. It is found that after the initial inflationary phase, the cosmological constant, that we call as lambda parameter, rolls down from a large constant value to another but very small constant value and further dominates the present epoch showing up in form of the dark energy driving the acceleration.

  7. Heterogeneous catalysis at nanoscale for energy applications

    CERN Document Server

    Tao, Franklin (Feng); Kamat, Prashant V

    2015-01-01

    This book presents both the fundamentals concepts and latest achievements of a field that is growing in importance since it represents a possible solution for global energy problems.  It focuses on an atomic-level understanding of heterogeneous catalysis involved in important energy conversion processes. It presents a concise picture for the entire area of heterogeneous catalysis with vision at the atomic- and nano- scales, from synthesis, ex-situ and in-situ characterization, catalytic activity and selectivity, to mechanistic understanding based on experimental exploration and theoretical si

  8. Cross Section Measurement of ^2H(n,np)n at 16 MeV in Symmetric Constant Relative Energy Configurations

    Science.gov (United States)

    Couture, A.; Clegg, T. B.; Howell, C. R.; Tajima, S.; Crowell, A.; Esterline, J.; Fallin, B.; Cumberbatch, L.; Crowe, B.; Markoff, D.; Pedroni, R.

    2010-11-01

    We have made cross-section measurements of neutron-deuteron breakup at an incident neutron energy of 16 MeV. The scattered proton was detected in coincidence with one of the neutrons and their energies were determined via time-of-flight techniques. Target-beam luminosity is obtained from n-d elastic scattering performed concurrently with the main experiment by detecting the scattered deuteron. Our current measurements are of two special cases of the Symmetric Constant Relative Energy Configuration: the space-star and the coplanar star. Data are compared with theoretical predictions [1] through Monte Carlo calculations which smear point geometry predictions over the finite beam, target, and detectors. Preliminary results for the space star are in agreement with previous experimental measurements [2] and are at least 20% larger than theoretical predictions. [4pt] [1] H Witala and W Glóckle. J. Phys. G: Nucl. Part. Phys. 37 064003 (2010). [0pt] [2] C.R. Howell, Nucl. Phys. A 689, 298c (2001).

  9. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy...

  10. Enhanced effects of variation of the fundamental constants in laser interferometers and application to dark matter detection

    CERN Document Server

    Stadnik, Y V

    2015-01-01

    We outline new laser interferometer measurements to search for variation of the electromagnetic fine-structure constant $\\alpha$ and particle masses (including a non-zero photon mass). We propose a strontium optical lattice clock -- silicon single-crystal cavity interferometer as a novel small-scale platform for these new measurements. Multiple passages of a light beam inside an interferometer enhance the effects due to variation of the fundamental constants by the mean number of passages ($N_{\\textrm{eff}} \\sim 10^2$ for a large-scale gravitational-wave detector, such as LIGO, Virgo, GEO600 or TAMA300, while $N_{\\textrm{eff}} \\sim 10^5$ for a strontium clock -- silicon cavity interferometer). Our proposed laser interferometer measurements may be implemented as an extremely precise tool in the direct detection of scalar dark matter that forms an oscillating classical field or topological defects.

  11. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  12. Renewable energy forecasts for solar applications : an Environment Canada perspective

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, L. [Environment Canada, Montreal, PQ (Canada). Meteorological Service of Canada

    2006-07-01

    The Meteorological Service of Canada has made weather datasets available in real-time on the Internet, for use by those with an interest in solar applications. Ensemble weather models can be used to produce medium range forecasts of weather events and to predict the likely available kilowatt-hours (kWhrs) of solar energy. As such, solar sites can maximize their harvest and use of solar energy. This presentation highlighted several different types of renewable energy forecasts obtained from weather models, including forecasts of expected kWhrs from solar panels and wind turbines, daily forecasts of expected solar heated water volumes and forecasts of water collection potential from impending precipitation events. The value of renewable energy forecasts in helping the solar energy sector monitor daily energy loads as well as daily and weekly solar energy supply was emphasized. It was suggested that renewable energy forecasts could raise public awareness of the potential of solar energy applications and help promote the solar energy market. Vendors of solar technology can also use the forecasts to help customers harmonize predicted solar energy coming to their sites with daily energy use patterns. figs.

  13. Electrical machine characterisation and analysis for renewable energy applications

    OpenAIRE

    Cashman, David P.

    2010-01-01

    There has been an increased use of the Doubly-Fed Induction Machine (DFIM) in ac drive applications in recent times, particularly in the field of renewable energy systems and other high power variable-speed drives. The DFIM is widely regarded as the optimal generation system for both onshore and offshore wind turbines and has also been considered in wave power applications. Wind power generation is the most mature renewable technology. However, wave energy has attracted a large interest recen...

  14. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  15. Energy efficiency in air handling applications

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, P. [Australian Baldor (Australia)

    1995-07-01

    It is estimated that the cost of air handling in a typical office building is $25,000 to $60,000 per 10,000 sq metres. New technologies are now available to reduce this by 50 percent with an investment that is recoverable within two years. Old systems of air handling operated at full speed with flow rates changed by mechanical vanes or dampers. The excess capacity generated is wasting energy which could be saved using modern motor controls that match the system output with actual needs. Comparisons of relative energy consumptions of different fan flow control methods show that the more time a system spends throttled down, the better candidate it is for the more efficient Variable Speed Drive (VSD) device which matches the motor`s speed to actual needs. The use of VSD instead of vanes and dampers reduces operating costs which impacts directly on profitability. 2 tables, 1 fig.

  16. Wind speed forecasting for wind energy applications

    Science.gov (United States)

    Liu, Hong

    With more wind energy being integrated into our grid systems, forecasting wind energy has become a necessity for all market participants. Recognizing the market demands, a physical approach to site-specific hub-height wind speed forecasting system has been developed. This system is driven by the outputs from the Canadian Global Environmental Multiscale (GEM) model. A simple interpolation approach benchmarks the forecasting accuracy inherited from GEM. Local, site specific winds are affected on a local scale by a variety of factors including representation of the land surface and local boundary-layer process over heterogeneous terrain which have been a continuing challenge in NWP models like GEM with typical horizontal resolution of order 15-km. In order to resolve these small scale effects, a wind energy industry standard model, WAsP, is coupled with GEM to improve the forecast. Coupling the WAsP model with GEM improves the overall forecasts, but remains unsatisfactory for forecasting winds with abrupt surface condition changes. Subsequently in this study, a new coupler that uses a 2-D RANS model of boundary-layer flow over surface condition changes with improved physics has been developed to further improve the forecasts when winds coming from a water surface to land experience abrupt changes in surface conditions. It has been demonstrated that using vertically averaged wind speeds to represent geostrophic winds for input into the micro-scale models could reduce forecast errors. The hub-height wind speed forecasts could be further improved using a linear MOS approach. The forecasting system has been evaluated, using a wind energy standard evaluation matrix, against data from an 80-m mast located near the north shore of Lake Erie. Coupling with GEM-LAM and a power conversion model using a theoretical power curve have also been investigated. For hub-height wind speeds GEM appears to perform better with a 15-Ian grid than the high resolution GEM-2.5Ian version at the

  17. Review of feasible solar energy applications to water processes

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.; Malato, S.; Fernandez-Ibanez, P.; Alarcon, D.; Gernjak, W.; Maldonado, M.I. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Plataforma Solar de Almeria (CIEMAT-PSA), Tabernas (Almeria) (Spain)

    2009-08-15

    In the context of an upcoming energy crisis due to the decline of the Oil Era, water problems are expected to substantially worsen. And vice versa, due to the close relationship between water and energy issues, water problems are also expected to contribute to increased energy problems. Furthermore, environmental considerations, such as global warming, will surely add significant pressure. In this scenario, renewable energies are rapidly increasing their contribution to the global mix, with solar energy clearly having the greatest potential, and in view of the worldwide coincidence that where there is water stress and/or scarcity, there are also good solar radiation levels, the conclusion seems clear suitable technologies must be developed to permit the use of solar energy to simultaneously help solve energy and water problems. The main solar energy applications for water processes presented in this paper are: (1) solar desalination; (2) solar detoxification and; (3) solar disinfection. (author)

  18. 75 FR 74703 - Leader One Energy, LLC; Notice of Application

    Science.gov (United States)

    2010-12-01

    ... COMMISSION Leader One Energy, LLC; Notice of Application November 23, 2010 Take notice that on November 15, 2010, Leader One Energy, LLC (Leader One), 4643 South Ulster Street, Suite 1100, Denver, Colorado 80237...) seeking authorization to construct and operate the Leader One Gas Storage Project in Adams...

  19. Variation of Fundamental Constants

    Science.gov (United States)

    Flambaum, V. V.

    2006-11-01

    Theories unifying gravity with other interactions suggest temporal and spatial variation of the fundamental ``constants'' in expanding Universe. The spatial variation can explain a fine tuning of the fundamental constants which allows humans (and any life) to appear. We appeared in the area of the Universe where the values of the fundamental constants are consistent with our existence. We present a review of recent works devoted to the variation of the fine structure constant α, strong interaction and fundamental masses. There are some hints for the variation in quasar absorption spectra. Big Bang nucleosynthesis, and Oklo natural nuclear reactor data. A very promising method to search for the variation of the fundamental constants consists in comparison of different atomic clocks. Huge enhancement of the variation effects happens in transition between accidentally degenerate atomic and molecular energy levels. A new idea is to build a ``nuclear'' clock based on the ultraviolet transition between very low excited state and ground state in Thorium nucleus. This may allow to improve sensitivity to the variation up to 10 orders of magnitude! Huge enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feshbach resonance.

  20. Quasirelativistic theory for the magnetic shielding constant. III. Quasirelativistic second-order Møller-Plesset perturbation theory and its application to tellurium compounds.

    Science.gov (United States)

    Fukuda, Ryoichi; Nakatsuji, Hiroshi

    2005-07-22

    The quasirelativistic (QR) generalized unrestricted Hartree-Fock method for the magnetic shielding constant [R. Fukuda, M. Hada, and H. Nakatsuji, J. Chem. Phys. 118, 1015 (2003); R. Fukuda, M. Hada, and H. Nakatsuji, J. Chem. Phys.118, 1027 (2003)] has been extended to include the electron correlation effect in the level of the second-order Møller-Plesset perturbation theory (MP2). We have implemented the energy gradient and finite-perturbation methods to calculate the magnetic shielding constant at the QR MP2 level and applied to the magnetic shielding constants and the NMR chemical shifts of 125Te nucleus in various tellurium compounds. The calculated magnetic shielding constants and NMR chemical shifts well reproduced the experimental values. The relations of the chemical shifts with the natures of ligands, and the tellurium oxidation states were investigated. The chemical shifts in different valence states were explained by the paramagnetic shielding and spin-orbit terms. The tellurium 5p electrons are the dominant origin of the chemical shifts in the Te I and Te II compounds and the chemical shifts were explained by the p-hole mechanism. The tellurium d electrons also play an important role in the chemical shifts of the hypervalent compounds.

  1. Improving weather forecasts for wind energy applications

    Science.gov (United States)

    Kay, Merlinde; MacGill, Iain

    2010-08-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms-1 and around 25 ms-1. A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  2. Enhanced effects of variation of the fundamental constants in laser interferometers and application to dark-matter detection

    Science.gov (United States)

    Stadnik, Y. V.; Flambaum, V. V.

    2016-06-01

    We outline laser interferometer measurements to search for variation of the electromagnetic fine-structure constant α and particle masses (including a nonzero photon mass). We propose a strontium optical lattice clock—silicon single-crystal cavity interferometer as a small-scale platform for these measurements. Our proposed laser interferometer measurements, which may also be performed with large-scale gravitational-wave detectors, such as LIGO, Virgo, GEO600, or TAMA300, may be implemented as an extremely precise tool in the direct detection of scalar dark matter that forms an oscillating classical field or topological defects.

  3. Advanced Functional Materials for Energy Related Applications

    Science.gov (United States)

    Sasan, Koroush

    The current global heavy dependency on fossil fuels gives rise to two critical problems: I) fossil fuels will be depleted in the near future; II) the release of green house gas CO2 generated by the combustion of fossil fuels contributes to global warming. To potentially address both problems, this dissertation documents three primary areas of investigation related to the development of alternative energy sources: electrocatalysts for fuel cells, photocatalysts for hydrogen generation, and photoreduction catalysts for converting CO2 to CH4. Fuel cells could be a promising source of alternative energy. Decreasing the cost and improving the durability and power density of Pt/C as a catalyst for reducing oxygen are major challenges for developing fuel cells. To address these concerns, we have synthesized a Nitrogen-Sulfur-Iron-doped porous carbon material. Our results indicate that the synthesized catalyst exhibits not only higher current density and stability but also higher tolerance to crossover chemicals than the commercial Pt/C catalyst. More importantly, the synthetic method is simple and inexpensive. Using photocatalysts and solar energy is another potential alternative solution for energy demand. We have synthesized a new biomimetic heterogeneous photocatalyst through the incorporation of homogeneous complex 1 [(i-SCH 2)2NC(O)C5H4N]-Fe2(CO) 6] into the highly robust zirconium-porphyrin based metal-organic framework (ZrPF). As photosensitizer ZrPF absorbs the visible light and produces photoexcited electrons that can be transferred through axial covalent bond to di-nuclear complex 1 for hydrogen generation. Additionally, we have studied the photoreduction of CO2 to CH4 using self-doped TiO2 (Ti+3@TiO 2) as photocatalytic materials. The incorporation of Ti3+ into TiO2 structures narrows the band gap, leading to significantly increased photocatalytic activity for the reduction of CO2 into renewable hydrocarbon fuel in the presence of water vapor under visible

  4. Preresonance Raman studies of metal-to-ligand charge transfer in (NH sub 3 ) sub 4 Ru(2,2 prime -bpy) sup 2+. In situ bond length changes, force constants, and reorganization energies

    Energy Technology Data Exchange (ETDEWEB)

    Doorn, S.K.; Hupp, J.T. (Northwestern Univ., Evanston, IL (USA))

    1989-06-21

    As a prototype for charge-transfer reactions in general, the intense metal-to-ligand charge-transfer transition occurring in Ru(NH{sub 3}){sub 4}(bpy){sup 2+} (bpy = 2,2{prime}-bipyridine) has been examined experimentally by resonance and preresonance Raman spectroscopy and analytically by time-dependent scattering theory. To their knowledge, the present example represents the first application of the theory to charge-transfer problems. From the experiments and corresponding theory, the normal-coordinate changes accompanying the transition have been calculated. Both metal-ligand and intraligand bonds are found to distort significantly. When the distortion data are combined with the observed vibrational frequencies, a mode-by-mode assessment of the inner-shell reorganization energy is possible. Further experiments, in which the nature of the solvent is systematically varied, show that selected force constants (and therefore selected components of the internal reorganization energy) are modulated significantly (ca. 6-11 %) by ligand-solvent hydrogen bonding. Finally, variations in the nature of the solvent are found to shift ground- and/or excited-state energies in such a way as to either enhance or attenuate the occurrence of net photochemistry.

  5. Value of Energy Storage for Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Jorgenson, J.; Hummon, M.; Jenkin, T.; Palchak, D.; Kirby, B.; Ma, O.; O' Malley, M.

    2013-05-01

    This analysis evaluates several operational benefits of electricity storage, including load-leveling, spinning contingency reserves, and regulation reserves. Storage devices were simulated in a utility system in the western United States, and the operational costs of generation was compared to the same system without the added storage. This operational value of storage was estimated for devices of various sizes, providing different services, and with several sensitivities to fuel price and other factors. Overall, the results followed previous analyses that demonstrate relatively low value for load-leveling but greater value for provision of reserve services. The value was estimated by taking the difference in operational costs between cases with and without energy storage and represents the operational cost savings from deploying storage by a traditional vertically integrated utility. The analysis also estimated the potential revenues derived from a merchant storage plant in a restructured market, based on marginal system prices. Due to suppression of on-/off-peak price differentials and incomplete capture of system benefits (such as the cost of power plant starts), the revenue obtained by storage in a market setting appears to be substantially less than the net benefit provided to the system. This demonstrates some of the additional challenges for storage deployed in restructured energy markets.

  6. Fully Coriolis-coupled quantum studies of the H + O2 (upsilon i = 0-2, j i = 0,1) --> OH + O reaction on an accurate potential energy surface: integral cross sections and rate constants.

    Science.gov (United States)

    Lin, Shi Ying; Sun, Zhigang; Guo, Hua; Zhang, Dong Hui; Honvault, Pascal; Xie, Daiqian; Lee, Soo-Y

    2008-01-31

    We present accurate quantum calculations of the integral cross section and rate constant for the H + O2 --> OH + O combustion reaction on a recently developed ab initio potential energy surface using parallelized time-dependent and Chebyshev wavepacket methods. Partial wave contributions up to J = 70 were computed with full Coriolis coupling, which enabled us to obtain the initial state-specified integral cross sections up to 2.0 eV of the collision energy and thermal rate constants up to 3000 K. The integral cross sections show a large reaction threshold due to the quantum endothermicity of the reaction, and they monotonically increase with the collision energy. As a result, the temperature dependence of the rate constant is of the Arrhenius type. In addition, it was found that reactivity is enhanced by reactant vibrational excitation. The calculated thermal rate constant shows a significant improvement over that obtained on the DMBE IV potential, but it still underestimates the experimental consensus.

  7. Advanced DC/AC inverters applications in renewable energy

    CERN Document Server

    Luo, Fang Lin

    2013-01-01

    DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,

  8. Fusion Based Neutron Sources for Security Applications: Energy Optimisation

    OpenAIRE

    Albright, S.; Seviour, Rebecca

    2014-01-01

    There is a growing interest in the use of neutrons for na- tional security. The majority of work on security focuses on the use of either sealed tube DT fusors or fission sources, e.g. Cf-252. Fusion reactions enable the energy of the neu- tron beam to be chosen to suit the application, rather than the application being chosen based on the available neu- tron beam energy. In this paper we discuss simulations of fusion reactions demonstrating the broad range of energies available and methods f...

  9. Entropy relations and the application of black holes with the cosmological constant and Gauss–Bonnet term

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2015-03-01

    Full Text Available Based on entropy relations, we derive the thermodynamic bound for entropy and the area of horizons for a Schwarzschild–dS black hole, including the event horizon, Cauchy horizon, and negative horizon (i.e., the horizon with negative value, which are all geometrically bound and comprised by the cosmological radius. We consider the first derivative of the entropy relations to obtain the first law of thermodynamics for all horizons. We also obtain the Smarr relation for the horizons using the scaling discussion. For the thermodynamics of all horizons, the cosmological constant is treated as a thermodynamic variable. In particular, the thermodynamics of the negative horizon are defined well in the r<0 side of space–time. This formula appears to be valid for three-horizon black holes. We also generalize the discussion to thermodynamics for the event horizon and Cauchy horizon of Gauss–Bonnet charged flat black holes because the Gauss–Bonnet coupling constant is also considered to be thermodynamic variable. These results provide further insights into the crucial role played by the entropy relations of multi-horizons in black hole thermodynamics as well as improving our understanding of entropy at the microscopic level.

  10. Twelve Principles for Green Energy Storage in Grid Applications.

    Science.gov (United States)

    Arbabzadeh, Maryam; Johnson, Jeremiah X; Keoleian, Gregory A; Rasmussen, Paul G; Thompson, Levi T

    2016-01-19

    The introduction of energy storage technologies to the grid could enable greater integration of renewables, improve system resilience and reliability, and offer cost effective alternatives to transmission and distribution upgrades. The integration of energy storage systems into the electrical grid can lead to different environmental outcomes based on the grid application, the existing generation mix, and the demand. Given this complexity, a framework is needed to systematically inform design and technology selection about the environmental impacts that emerge when considering energy storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental principles specific to the design and grid application of energy storage systems are developed to inform policy makers, designers, and operators. The principles are grouped into three categories: (1) system integration for grid applications, (2) the maintenance and operation of energy storage, and (3) the design of energy storage systems. We illustrate the application of each principle through examples published in the academic literature, illustrative calculations, and a case study with an off-grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge between principles are highlighted.

  11. [Applications of GIS in biomass energy source research].

    Science.gov (United States)

    Su, Xian-Ming; Wang, Wu-Kui; Li, Yi-Wei; Sun, Wen-Xiang; Shi, Hai; Zhang, Da-Hong

    2010-03-01

    Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.

  12. Deoxyribonucleic acid-based hybrid thin films for potential application as high energy density capacitors

    Science.gov (United States)

    Joyce, Donna M.; Venkat, Narayanan; Ouchen, Fahima; Singh, Kristi M.; Smith, Steven R.; Grabowski, Christopher A.; Terry Murray, P.; Grote, James G.

    2014-03-01

    Deoxyribonucleic acid (DNA) based hybrid films incorporating sol-gel-derived ceramics have shown strong promise as insulating dielectrics for high voltage capacitor applications. Our studies of DNA-CTMA (cetyltrimethylammonium) complex/sol-gel ceramic hybrid thin film devices have demonstrated reproducibility and stability in temperature- and frequency-dependent dielectric properties with dielectric constant k ˜ 5.0 (1 kHz), as well as reliability in DC voltage breakdown measurements, attaining values consistently in the range of 300-350 V/μm. The electrical/dielectric characteristics of DNA-CTMA films with sol-gel-derived ceramics were examined to determine the critical energy storage parameters such as voltage breakdown and dielectric constant.

  13. Effective energy measurement using radiochromic film: application of a mobile scanner

    Science.gov (United States)

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki; Takeda, Yoshihiro

    2016-12-01

    The effective energy calculated using the half-value layer (HVL) is an important parameter for quality assurance (QA) and quality control (QC). However constant monitoring has not been performed because measurements using an ionization chamber (IC) are time-consuming and complicated. To solve these problems, a method using radiochromic film (GAFCHROMIC EBT2 dosimetry film (GAF-EBT2) with slight energy dependency errors), a mobile scanner and step-shaped aluminum (SSAl) filter is developed. The results of the method using a mobile scanner were compared with those of the recommended method using an IC in order to evaluate its applicability. The difference ratios of the effective energies by each method using a mobile scanner with GAF-EBT2 were less than 5% compared with results of an IC. It is considered that this method offers a simple means of determining HVL for QA and QC consistently and quickly without the need for an IC dosimeter.

  14. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, J. C.

    2011-09-01

    It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.

  15. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    Energy Technology Data Exchange (ETDEWEB)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  16. Advanced Energy Saving and its Applications in Industry

    CERN Document Server

    Matsuda, Kazuo; Fushimi, Chihiro; Tsutsumi, Atsushi; Kishimoto, Akira

    2013-01-01

    The conventional approach for energy saving in a process system is to maximize heat recovery without changing any process conditions by using pinch technology. “Self-heat recuperation technology” was developed to achieve further energy saving in the process system by eliminating the necessity for any external heat input, such as firing or imported steam. Advanced Energy Saving and its Applications in Industry introduces the concept of self-heat recuperation and the application of such technology to a wide range of processes from heavy chemical complexes to other processes such as drying and gas separation processes, which require heating and cooling during operation.   Conventional energy saving items in a utility system are applied and implemented based on a single site approach, however, when looking at heavy chemical complexes, it was apparent that the low-grade heat discharged as waste from a refinery could also be used in an adjacent petrochemical plant. There could therefore be a large energy savin...

  17. High-Performance Energy Applications and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Barton [Univ. of Wisconsin, Madison, WI (United States)

    2014-01-01

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “Foundational Tools for Petascale Computing”, SC0003922/FG02-10ER25940, UW PRJ27NU.

  18. High-Performance Energy Applications and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Barton

    2014-05-19

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “Foundational Tools for Petascale Computing”, SC0003922/FG02-10ER25940, UW PRJ27NU.

  19. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Böhlen, T.T.; Cerutti, F.; Chin, M.P.W. [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Fassò, A. [ELI Beamlines, Harfa Office Park Ceskomoravská 2420/15a, 190 93 Prague 9 (Czech Republic); Ferrari, A., E-mail: alfredo.ferrari@cern.ch [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Ortega, P.G. [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Mairani, A. [Unità di Fisica Medica, Fondazione CNAO, I-27100 Pavia (Italy); Sala, P.R. [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Smirnov, G.; Vlachoudis, V. [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland)

    2014-06-15

    The FLUKA Monte Carlo code is used extensively at CERN for all beam-machine interactions, radioprotection calculations and facility design of forthcoming projects. Such needs require the code to be consistently reliable over the entire energy range (from MeV to TeV) for all projectiles (full suite of elementary particles and heavy ions). Outside CERN, among various applications worldwide, FLUKA serves as a core tool for the HIT and CNAO hadron-therapy facilities in Europe. Therefore, medical applications further impose stringent requirements in terms of reliability and predictive power, which demands constant refinement of sophisticated nuclear models and continuous code improvement. Some of the latest developments implemented in FLUKA are presented in this paper, with particular emphasis on issues and concerns pertaining to CERN and medical applications.

  20. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications

    CERN Document Server

    Böhlen, T T; Chin, M P W; Fassò, A; Ferrari, A; Ortega, P G; Mairani, A; Sala, P R; Smirnov, G; Vlachoudis, V

    2014-01-01

    The FLUKA Monte Carlo code is used extensively at CERN for all beam-machine interactions, radioprotection calculations and facility design of forthcoming projects. Such needs require the code to be consistently reliable over the entire energy range (from MeV to TeV) for all projectiles (full suite of elementary particles and heavy ions). Outside CERN, among various applications worldwide, FLUKA serves as a core tool for the HIT and CNAO hadron-therapy facilities in Europe. Therefore, medical applications further impose stringent requirements in terms of reliability and predictive power, which demands constant refinement of sophisticated nuclear models and continuous code improvement. Some of the latest developments implemented in FLUKA are presented in this paper, with particular emphasis on issues and concerns pertaining to CERN and medical applications.

  1. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications

    Science.gov (United States)

    Böhlen, T. T.; Cerutti, F.; Chin, M. P. W.; Fassò, A.; Ferrari, A.; Ortega, P. G.; Mairani, A.; Sala, P. R.; Smirnov, G.; Vlachoudis, V.

    2014-06-01

    The FLUKA Monte Carlo code is used extensively at CERN for all beam-machine interactions, radioprotection calculations and facility design of forthcoming projects. Such needs require the code to be consistently reliable over the entire energy range (from MeV to TeV) for all projectiles (full suite of elementary particles and heavy ions). Outside CERN, among various applications worldwide, FLUKA serves as a core tool for the HIT and CNAO hadron-therapy facilities in Europe. Therefore, medical applications further impose stringent requirements in terms of reliability and predictive power, which demands constant refinement of sophisticated nuclear models and continuous code improvement. Some of the latest developments implemented in FLUKA are presented in this paper, with particular emphasis on issues and concerns pertaining to CERN and medical applications.

  2. Legislative and policy in energy efficient designing and renewable energy sources: Application in Serbia

    Directory of Open Access Journals (Sweden)

    Pucar Mila

    2007-01-01

    Full Text Available This paper analyses political and legislative frames in the field of energy efficient building and renewable energy sources in planning and implementation in Serbia. „Development strategy until 2015.“ is reviewed in concise portrait. This strategy maps a way for the application of energy services of much higher quality than ones offered at a present day. It reviews relevant laws concerning the subject, as well as institutions, programs and their implementation. Basic principles of energy policy in Serbia and their achievement are also given by that strategy. Serbia's energy policies are designed to allow new legislative, structural, organizational, institutional, and economic frames and visions of unification of Serbian energetics into regional and Pan-European integrations. One of the key factors is the inclusion of sustainable development and energy efficient design concerned policies. Application of these, almost completely neglected, energy sources, for which there is high potential in Serbia, would allow preservation of primary energy sources and local environment. This potential hasn't seen significant research, and therefore, neither the technical improvement. Apart from that, one of the goals of wider application of renewable energy sources is lowering the poverty level. This helps avoiding the already used “dirty development” method. .

  3. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    Science.gov (United States)

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Applications of energy harvesting for ultralow power technology

    Science.gov (United States)

    Pop-Vadean, A.; Pop, P. P.; Barz, C.; Chiver, O.

    2015-06-01

    Ultra-low-power (ULP) technology is enabling a wide range of new applications that harvest ambient energy in very small amounts and need little or no maintenance - self-sustaining devices that are capable of perpetual or nearly perpetual operation. These new systems, which are now appearing in industrial and consumer electronics, also promise great changes in medicine and health. Until recently, the idea of micro-scale energy harvesting, and collecting miniscule amounts of ambient energy to power electronic systems, was still limited to research proposals and laboratory experiments.Today an increasing number of systems are appearing that take advantage of light, vibrations and other forms of previously wasted environmental energy for applications where providing line power or maintaining batteries is inconvenient. In the industrial world, where sensors gather information from remote equipment and hazardous processes; in consumer electronics, where mobility and convenience are served; and in medical systems, with unique requirements for prosthetics and non-invasive monitoring, energy harvesting is rapidly expanding into new applications.This paper serves as a survey for applications of energy harvesting for ultra low power technology based on various technical papers available in the public domain.

  5. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  6. Safe Upper-Bounds Inference of Energy Consumption for Java Bytecode Applications

    Science.gov (United States)

    Navas, Jorge; Mendez-Lojo, Mario; Hermenegildo, Manuel V.

    2008-01-01

    Many space applications such as sensor networks, on-board satellite-based platforms, on-board vehicle monitoring systems, etc. handle large amounts of data and analysis of such data is often critical for the scientific mission. Transmitting such large amounts of data to the remote control station for analysis is usually too expensive for time-critical applications. Instead, modern space applications are increasingly relying on autonomous on-board data analysis. All these applications face many resource constraints. A key requirement is to minimize energy consumption. Several approaches have been developed for estimating the energy consumption of such applications (e.g. [3, 1]) based on measuring actual consumption at run-time for large sets of random inputs. However, this approach has the limitation that it is in general not possible to cover all possible inputs. Using formal techniques offers the potential for inferring safe energy consumption bounds, thus being specially interesting for space exploration and safety-critical systems. We have proposed and implemented a general frame- work for resource usage analysis of Java bytecode [2]. The user defines a set of resource(s) of interest to be tracked and some annotations that describe the cost of some elementary elements of the program for those resources. These values can be constants or, more generally, functions of the input data sizes. The analysis then statically derives an upper bound on the amount of those resources that the program as a whole will consume or provide, also as functions of the input data sizes. This article develops a novel application of the analysis of [2] to inferring safe upper bounds on the energy consumption of Java bytecode applications. We first use a resource model that describes the cost of each bytecode instruction in terms of the joules it consumes. With this resource model, we then generate energy consumption cost relations, which are then used to infer safe upper bounds. How

  7. Naturally Time Dependent Cosmological Constant

    CERN Document Server

    Gregori, A

    2004-01-01

    In the light of the proposal of hep-th/0207195, we discuss in detail the issue of the cosmological constant, explaining how can string theory naturally predict the value which is experimentally observed, without low-energy supersymmetry.

  8. The Application of Quantum Energy Saver on Engine

    Directory of Open Access Journals (Sweden)

    Fang Xiong

    2016-01-01

    Full Text Available In order to reduce diesel fuel consumption, this paper conducts the research in view of a new type of quantum energy saving device, and then produce the sample and applied on automobile engine, Detect fuel use of an automobile by automobile fuel saving technology as-sessment methods from the department of transportation. Compare the changes of fuel use be-fore and after installation of quantum energy saving device on the same car, and give the feed-back of energy saving capability. The result shows, after installed quantum energy saver, both fuel consumption and the smoke of tail gas has decreased. The analysis and application of this paper carry out the conclusion that the quantum energy saver can play an important role in en-ergy saving and emission reduction, and provide a reference for other related research.

  9. Understanding energy consumption of sensor enabled applications on mobile phones.

    Science.gov (United States)

    Crk, Igor; Albinali, Fahd; Gniady, Chris; Hartman, John

    2009-01-01

    Recent research in ubiquitous and mobile computing uses mobile phones and wearable accelerometers to monitor individuals' physical activities for personalized and proactive health care. The goal of this project is to measure and reduce the energy demand placed on mobile phones that monitor individuals' physical activities for extended periods of time with limited access to battery recharging and mobile phone reception. Many issues must be addressed before mobile phones become a viable platform for remote health monitoring, including: security, reliability, privacy, and, most importantly, energy. Mobile phones are battery-operated, making energy a critical resource that must be carefully managed to ensure the longest running time before the battery is depleted. In a sense, all other issues are secondary, since the mobile phone will simply not function without energy. In this project, we therefore focus on understanding the energy consumption of a mobile phone that runs MIT wockets, physical activity monitoring applications, and consider ways to reduce its energy consumption.

  10. Damn You, Little h! (or, Real-World Applications Of The Hubble Constant Using Observed And Simulated Data)

    CERN Document Server

    Croton, Darren

    2013-01-01

    The Hubble constant, H_0, or its dimensionless equivalent, "little h", is a fundamental cosmological property that is now known to an accuracy better than a few percent. Despite its cosmological nature, little h commonly appears in the measured properties of individual galaxies. This can pose unique challenges for users of such data, particularly with survey data. In this paper we show how little h arises in the measurement of galaxies, how to compare like-properties from different datasets that have assumed different little h cosmologies, and how to fairly compare theoretical data with observed data, where little h can manifest in vastly different ways. This last point is particularly important when observations are used to calibrate galaxy formation models, as calibrating with the wrong (or no) little h can lead to disastrous results when the model is later converted to the correct h cosmology. We argue that in this modern age little h is an anachronism, being one of least uncertain parameters in astrophysi...

  11. Multiconfiguration Dirac-Hartree-Fock energy levels, oscillator strengths, transition probabilities, hyperfine constants and Landé g-factor of intermediate Rydberg series in neutral argon atom

    Science.gov (United States)

    Salah, Wa'el; Hassouneh, Ola

    2017-04-01

    We computed the energy levels, oscillator strengths f_{ij}, the radiative transition rates A_{ij}, the Landé g -factor, the magnetic dipole moment and the electric quadrupole hyperfine constants of the intermediate Rydberg series ns [k]J ( 4 ≤ n ≤ 6), nd [k]J (3 ≤ n ≤ 4), np [k]J (4 ≤ n ≤ 5) relative to the ground state 3p6 1S0 for neutral argon atom spectra. The values are obtained in the framework of the multiconfiguration Dirac-Hartree-Fock (MCDHF) approach. In this approach, Breit interaction, leading quantum electrodynamics (QED) effects and self-energy correction are taken into account. Moreover, these spectroscopic parameters have been calculated for many levels belonging to the configuration 3p54s, 3p55s, 3p56s, 3p53d, 3p54d, 3p54p, 3p55p as well as for transitions between levels 3p54s-3p54p, 3p54p-3p53d, 3p54p-3p55s, 3p55s-3p55p and 3p55p-3p56s. The large majority of the lines from the 4p-5s and 4p-3d, 5s-5p and 5p-6s transition arrays have been observed and the calculations are consistent with the J -file-sum rule. The obtained theoretical values are compared with previous experimental and theoretical data available in the literature. An overall satisfactory agreement is noticed allowing assessing the reliability of our data.

  12. A calorimetric measurement of the strong coupling constant in electron-positron annihilation at a center-of-mass energy of 91.6 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Martirena, Saul Gonzalez [Stanford Univ., CA (United States)

    1994-04-01

    In this work, a measurement of the strong coupling constant αs in e+e- annihilation at a center-of-mass energy of 91.6 GeV is presented. The measurement was performed with the SLD at the Stanford Linear Collider facility located at the Stanford Linear Accelerator Center in California. The procedure used consisted of measuring the rate of hard gluon radiation from the primary quarks in a sample of 9,878 hadronic events. After defining the asymptotic manifestation of partons as `jets`, various phenomenological models were used to correct for the hadronization process. A value for the QCD scale parameter Λ$\\bar{MS}$, defined in the $\\bar{MS}$ renormalization convention with 5 active quark flavors, was then obtained by a direct fit to O(αs2) calculations. The value of αs obtained was αs (M) = 0.122 ± 0.004 $+0.008\\atop{-0.007}$ where the uncertainties are experimental (combined statistical and systematic) and theoretical (systematic) respectively. Equivalently, Λ$\\bar{MS}$ = 0.28 $+0.16\\atop{0.10}$ GeV where the experimental and theoretical uncertainties have been combined.

  13. Rungs 1 to 4 of DFT Jacob's ladder: Extensive test on the lattice constant, bulk modulus, and cohesive energy of solids

    Science.gov (United States)

    Tran, Fabien; Stelzl, Julia; Blaha, Peter

    2016-05-01

    A large panel of old and recently proposed exchange-correlation functionals belonging to rungs 1 to 4 of Jacob's ladder of density functional theory are tested (with and without a dispersion correction term) for the calculation of the lattice constant, bulk modulus, and cohesive energy of solids. Particular attention will be paid to the functionals MGGA_MS2 [J. Sun et al., J. Chem. Phys. 138, 044113 (2013)], mBEEF [J. Wellendorff et al., J. Chem. Phys. 140, 144107 (2014)], and SCAN [J. Sun et al., Phys. Rev. Lett. 115, 036402 (2015)] which are meta-generalized gradient approximations (meta-GGA) and are developed with the goal to be universally good. Another goal is also to determine for which semilocal functionals and groups of solids it is beneficial (or not necessary) to use the Hartree-Fock exchange or a dispersion correction term. It is concluded that for strongly bound solids, functionals of the GGA, i.e., rung 2 of Jacob's ladder, are as accurate as the more sophisticated functionals of the higher rungs, while it is necessary to use dispersion corrected functionals in order to expect at least meaningful results for weakly bound solids. If results for finite systems are also considered, then the meta-GGA functionals are overall clearly superior to the GGA functionals.

  14. A calorimetric measurement of the strong coupling constant in electron-positron annihilation at a center-of-mass energy of 91.6 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Martirena, S.G.

    1994-04-01

    In this work, a measurement of the strong coupling constant {alpha}{sub s} in e{sup +}e{sup {minus}} annihilation at a center-of-mass energy of 91.6 GeV is presented. The measurement was performed with the SLD at the Stanford Linear Collider facility located at the Stanford Linear Accelerator Center in California. The procedure used consisted of measuring the rate of hard gluon radiation from the primary quarks in a sample of 9,878 hadronic events. After defining the asymptotic manifestation of partons as `jets`, various phenomenological models were used to correct for the hadronization process. A value for the QCD scale parameter {Lambda}{sub bar MS}, defined in the {sub bar MS} renormalization convention with 5 active quark flavors, was then obtained by a direct fit to O({alpha}{sub s}{sup 2}) calculations. The value of {alpha}{sub s} obtained was {alpha}{sub s}(M{sub z0}) = 0.122 {plus_minus} 0.004 {sub {minus}0.007} {sup +0.008} where the uncertainties are experimental (combined statistical and systematic) and theoretical (systematic) respectively. Equivalently, {Lambda}{sub bar MS} = 0.28 {sub {minus}0.10}{sup +0.16} GeV where the experimental and theoretical uncertainties have been combined.

  15. Application of diffusion research to solar energy policy issues

    Energy Technology Data Exchange (ETDEWEB)

    Roessner, J. D.; Posner, D.; Shoemaker, F.; Shama, A.

    1979-03-01

    This paper examines two types of information requirements that appear to be basic to DOE solar-energy-policy decisions: (1) how can the future market success of solar energy technologies be estimated, and (2) what factors influence the adoption of solar energy technologies, and what specific programs could promote solar energy adoption most effectively. This paper assesses the ability of a body of research, referred to here as diffusion research, to supply information that could partially satisfy these requirements. This assessment proceeds, first, by defining in greater detail a series of policy issues that face DOE. These are divided into cost reduction and performance improvement issues which include issues confronting the technology development component of the solar energy program, and barriers and incentives issues which are most relevant to problems of solar energy application. Second, these issues are translated into a series of questions that the diffusion approach can help resolve. Third, various elements within diffusion research are assessed in terms of their abilities to answer policy questions. Finally, the strengths and limitations of current knowledge about the diffusion of innovations are summarized, the applicability of both existing knowledge and the diffusion approach to the identified solar-energy-policy issues are discussed, and ways are suggested in which diffusion approaches can be modified and existing knowledge employed to meet short- and long-term goals of DOE. The inquiry covers the field of classical diffusion research, market research and consumer behavior, communication research, and solar-energy market-penetration modeling.

  16. Plasmonic materials for energy: From physics to applications

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2013-10-01

    Full Text Available Physical mechanisms unique to plasmonic materials, which can be exploited for the existing and emerging applications of plasmonics for renewable energy technologies, are reviewed. The hybrid nature of surface plasmon (SP modes – propagating surface plasmon polaritons (SPPs and localized surface plasmons (LSPs – as collective photon–electron oscillations makes them attractive candidates for energy applications. A high density of optical states in the vicinity of plasmonic structures enhances light absorption and emission, enables localized heating, and drives near-field heat exchange between hot and cold surfaces. SP modes channel the energy of absorbed photons directly to the free electrons, and the generated hot electrons can be utilized in thermoelectric, photovoltaic and photo-catalytic platforms. The advantages and disadvantages of using plasmonics over conventional technologies for solar energy and waste heat harvesting are discussed, and areas where plasmonics is expected to lead to performance improvements not achievable by other methods are identified.

  17. Supercritical fluid technology for energy and environmental applications

    CERN Document Server

    Anikeev, Vladimir

    2014-01-01

    Supercritical Fluid Technology for Energy and Environmental Applications covers the fundamental principles involved in the preparation and characterization of supercritical fluids (SCFs) used in the energy production and other environmental applications. Energy production from diversified resources - including renewable materials - using clean processes can be accomplished using technologies like SCFs. This book is focused on critical issues scientists and engineers face in applying SCFs to energy production and environmental protection, the innovative solutions they have found, and the challenges they need to overcome. The book also covers the basics of sub- and supercritical fluids, like the thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations. A supercritical fluid is any substance at a temperature and pressure above its critical point where distinct liquid and gas phases do not exist. At this state the compound demonstrates unique properties, which can be "fine...

  18. Plasmonic materials for energy: from physics to applications

    CERN Document Server

    Boriskina, Svetlana V; Chen, Gang

    2013-01-01

    Physical mechanisms unique to plasmonic materials, which can be exploited for the existing and emerging applications of plasmonics for renewable energy technologies, are reviewed. The hybrid nature of surface plasmon (SP) modes - propagating surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) - as collective photon-electron oscillations makes them attractive candidates for energy applications. High density of optical states in the vicinity of plasmonic structures enhances light absorption and emission, enables localized heating, and drives near-field heat exchange between hot and cold surfaces. SP modes channel the energy of absorbed photons directly to the free electrons, and the generated hot electrons can be utilized in thermoelectric, photovoltaic and photo-catalytic platforms. Advantages and disadvantages of using plasmonics over conventional technologies for solar energy and waste heat harvesting are discussed, and areas where plasmonics is expected to lead to performance improvement...

  19. Screening constant by unit nuclear charge calculations of resonance energies and widths of the 3pns 1,3P° and 3pnd 1P° Rydberg series of Mg-like (Z=13-26) ions

    Science.gov (United States)

    Khatri, Indu; Goyal, Arun; Diouldé Ba, Mamadou; Faye, Maurice; Sow, Malick; Sakho, Ibrahima; Singh, A. K.; Mohan, Man; Wagué, Ahmadou

    2017-01-01

    Resonance energies and total natural width of the 3pns 1P° and 3pnd 1P° Rydberg series of Mg-like (Z=13-26) ions are reported. Resonance energies of the Mg-like Al+ belonging to the 3pns 3P°→ 2 p63 p 1/2 0 2P and 3pns 3P°→ 2 p63 p3/2 0 3P transitions are also tabulated. The calculations are made in the framework of the Screening constant by unit nuclear charge (SCUNC) formalism. Excellent agreements between experiments at ALS and R-matrix calculations are obtained for both 3pns 1,3P° and 3pnd 1P° Rydberg series of the Mg-like Al+ ions. The present results for Mg-like Si2+, S4+, Cl5+, and Ar6+, compared with the only existing R-matrix calculations indicate lack of accuracy in the Mg-like Si2+ data obtained from noniterative formulation of the eigenchannel R-matrix method. New precise data for Mg-like P3+, K7+, Ca8+, Sc9+, Ti10+, V11+, Cr12+, Mn13+, and Fe14+ ions are presented as useful guidelines for investigators focusing their challenge on the Photoionization of Mg-like heavy charged ions in connection with their application in laboratory, astrophysics, and plasma physics.

  20. Time to shine applications of solar energy technology

    CERN Document Server

    Grupp, Michael

    2012-01-01

    As solar energy becomes increasingly more important in all of our lives, it is more important to learn how it works and how it can be implemented. This book is the perfect primer for the engineer, scientist, and layperson alike, for learning about the practical applications of solar energy technology and how it is being used today to heat homes, light city streets, and provide power worldwide.

  1. Electrochemical supercapacitors for energy storage and delivery fundamentals and applications

    CERN Document Server

    Yu, Aiping

    2013-01-01

    Although recognized as an important component of all energy storage and conversion technologies, electrochemical supercapacitators (ES) still face development challenges in order to reach their full potential. A thorough examination of development in the technology during the past decade, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications provides a comprehensive introduction to the ES from technical and practical aspects and crystallization of the technology, detailing the basics of ES as well as its components and characterization techniques. The b

  2. Single-Walled Carbon Nanohorns for Energy Applications.

    Science.gov (United States)

    Zhang, Zhichao; Han, Shuang; Wang, Chao; Li, Jianping; Xu, Guobao

    2015-10-21

    With the growth of the global economy and population, the demand for energy is increasing sharply. The development of environmentally a benign and reliable energy supply is very important and urgent. Single-walled carbon nanohorns (SWCNHs), which have a horn-shaped tip at the top of single-walled nanotube, have emerged as exceptionally promising nanomaterials due to their unique physical and chemical properties since 1999. The high purity and thermal stability, combined with microporosity and mesoporosity, high surface area, internal pore accessibility, and multiform functionalization make SWCNHs promising candidates in many applications, such as environment restoration, gas storage, catalyst support or catalyst, electrochemical biosensors, drug carrier systems, magnetic resonance analysis and so on. The aim of this review is to provide a comprehensive overview of SWCNHs in energy applications, including energy conversion and storage. The commonly adopted method to access SWCNHs, their structural modifications, and their basic properties are included, and the emphasis is on their application in different devices such as fuel cells, dye-sensitized solar cells, supercapacitors, Li-ion batteries, Li-S batteries, hydrogen storage, biofuel cells and so forth. Finally, a perspective on SWCNHs' application in energy is presented.

  3. Single-Walled Carbon Nanohorns for Energy Applications

    Directory of Open Access Journals (Sweden)

    Zhichao Zhang

    2015-10-01

    Full Text Available With the growth of the global economy and population, the demand for energy is increasing sharply. The development of environmentally a benign and reliable energy supply is very important and urgent. Single-walled carbon nanohorns (SWCNHs, which have a horn-shaped tip at the top of single-walled nanotube, have emerged as exceptionally promising nanomaterials due to their unique physical and chemical properties since 1999. The high purity and thermal stability, combined with microporosity and mesoporosity, high surface area, internal pore accessibility, and multiform functionalization make SWCNHs promising candidates in many applications, such as environment restoration, gas storage, catalyst support or catalyst, electrochemical biosensors, drug carrier systems, magnetic resonance analysis and so on. The aim of this review is to provide a comprehensive overview of SWCNHs in energy applications, including energy conversion and storage. The commonly adopted method to access SWCNHs, their structural modifications, and their basic properties are included, and the emphasis is on their application in different devices such as fuel cells, dye-sensitized solar cells, supercapacitors, Li-ion batteries, Li-S batteries, hydrogen storage, biofuel cells and so forth. Finally, a perspective on SWCNHs’ application in energy is presented.

  4. Variation of fundamental constants

    CERN Document Server

    Flambaum, V V

    2006-01-01

    We present a review of recent works devoted to the variation of the fine structure constant alpha, strong interaction and fundamental masses. There are some hints for the variation in quasar absorption spectra, Big Bang nucleosynthesis, and Oklo natural nuclear reactor data. A very promising method to search for the variation of the fundamental constants consists in comparison of different atomic clocks. Huge enhancement of the variation effects happens in transition between accidentally degenerate atomic and molecular energy levels. A new idea is to build a ``nuclear'' clock based on the ultraviolet transition between very low excited state and ground state in Thorium nucleus. This may allow to improve sensitivity to the variation up to 10 orders of magnitude! Huge enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feschbach resonance.

  5. Anharmonic interatomic force constants and thermal conductivity from Grüneisen parameters: An application to graphene

    Science.gov (United States)

    Lee, Ching Hua; Gan, Chee Kwan

    2017-07-01

    Phonon-mediated thermal conductivity, which is of great technological relevance, arises due fundamentally to anharmonic scattering from interatomic potentials. Despite its prevalence, accurate first-principles calculations of thermal conductivity remain challenging, primarily due to the high computational cost of anharmonic interatomic force constant (IFC) calculations. Meanwhile, the related anharmonic phenomenon of thermal expansion is much more tractable, being computable from the Grüneisen parameters associated with phonon frequency shifts due to crystal deformations. In this work, we propose an approach for computing the largest cubic IFCs from the Grüneisen parameter data. This allows an approximate determination of the thermal conductivity via a much less expensive route. The key insight is that although the Grüneisen parameters cannot possibly contain all the information on the cubic IFCs, being derivable from spatially uniform deformations, they can still unambiguously and accurately determine the largest and most physically relevant ones. By fitting the anisotropic Grüneisen parameter data along judiciously designed deformations, we can deduce (i.e., reverse-engineer) the dominant cubic IFCs and estimate three-phonon scattering amplitudes. We illustrate our approach by explicitly computing the largest cubic IFCs and thermal conductivity of graphene, especially for its out-of-plane (flexural) modes that exhibit anomalously large anharmonic shifts and thermal conductivity contributions. Our calculations on graphene not only exhibit reasonable agreement with established density-functional theory results, but they also present a pedagogical opportunity for introducing an elegant analytic treatment of the Grüneisen parameters of generic two-band models. Our approach can be readily extended to more complicated crystalline materials with nontrivial anharmonic lattice effects.

  6. Determination of temperature dependent Henry's law constants of polychlorinated naphthalenes: Application to air-sea exchange in Izmir Bay, Turkey

    Science.gov (United States)

    Odabasi, Mustafa; Adali, Mutlu

    2016-12-01

    The Henry's law constant (H) is a crucial variable to investigate the air-water exchange of persistent organic pollutants. H values for 32 polychlorinated naphthalene (PCN) congeners were measured using an inert gas-stripping technique at five temperatures ranging between 5 and 35 °C. H values in deionized water (at 25 °C) varied between 0.28 ± 0.08 Pa m3 mol-1 (PCN-73) and 18.01 ± 0.69 Pa m3 mol-1 (PCN-42). The agreement between the measured and estimated H values from the octanol-water and octanol-air partition coefficients was good (measured/estimated ratio = 1.00 ± 0.41, average ± SD). The calculated phase change enthalpies (ΔHH) were within the interval previously determined for other several semivolatile organic compounds (42.0-106.4 kJ mol-1). Measured H values, paired atmospheric and aqueous concentrations and meteorological variables were also used to reveal the level and direction of air-sea exchange fluxes of PCNs at the coast of Izmir Bay, Turkey. The net PCN air-sea exchange flux varied from -0.55 (volatilization, PCN-24/14) to 2.05 (deposition, PCN-23) ng m-2 day-1. PCN-19, PCN-24/14, PCN-42, and PCN-33/34/37 were mainly volatilized from seawater while the remaining congeners were mainly deposited. The overall number of the cases showing deposition was higher (67.9%) compared to volatilization (21.4%) and near equilibrium (10.7%).

  7. Energy flow in a hadronic cascade: Application to hadron calorimetry

    CERN Document Server

    Groom, D E

    1994-01-01

    The hadronic cascade description developed in an earlier paper is extended to the response of an idealized fine-sampling hadron calorimeter. Calorimeter response is largely determined by the transfer of energy $E_e$ from the hadronic to the electromagnetic sector via $\\pi^0$ production. Fluctuations in this quantity produce the "constant term" in hadron calorimeter resolution. The increase of its fractional mean, $f_{\\rm em}^0 = \\vev{E_e}/E$, with increasing incident energy $E$ causes the energy dependence of the $\\pi/e$ ratio in a noncompensating calorimeter. The mean hadronic energy fraction, $f_h^0 = 1-f_{\\rm em}^0$, was shown to scale very nearly as a power law in $E$: $f_h^0 = (E/E_0)^{m-1}$, where $E_0\\approx1$~GeV for pions, and $m\\approx0.83$. It follows that $\\pi/e=1-(1-h/e)(E/E_0)^{m-1}$, where electromagnetic and hadronic energy deposits are detected with efficiencies $e$ and $h$, respectively. Fluctuations in these quantities, along with sampling fluctuations, are incorporated to give an overall u...

  8. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO{sub 3} films grown by pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Punitha, K. [Department of Physics, Alagappa University, Karaikudi 630 004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi 630 004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi 630 004 (India)

    2014-03-21

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO{sub 3}) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO{sub 2}:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO{sub 3} films deposited on SnO{sub 2}:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO{sub 3} film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10{sup −3}. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (E{sub d}) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (E{sub o}) of WO{sub 3} films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The E{sub o} is change between 6.30 and 3.88 eV, while the E{sub d} varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm{sup −1} attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  9. Stochastic Model Predictive Control with Applications in Smart Energy Systems

    DEFF Research Database (Denmark)

    2012-01-01

    function). This is convenient for energy systems, since some constraints are very important to satisfy with a high probability, whereas violation of others are less prone to have a large economic penalty. In MPC applications the control action is obtained by solving an optimization problem at each sampling......In response to growing concerns related to environmental issues, limited resources and security of supply, the energy industry is changing. One of the most significant developments has been the penetration of renewable energy sources. In Denmark, the share of wind power generation is expected...

  10. Metrology, applications and methods with high energy CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, N.; Voland, V.; Salamon, M.; Hebele, S.; Boehnel, M.; Reims, N.; Schmitt, M.; Kasperl, S. [Fraunhofer IIS/EZRT, Development Center X-Ray Technology, Flugplatzstrasse 75, 90768 Fürth (Germany); Hanke, R. [Chair of X-ray Microscopy, University of Würzburg - Physics and Astronomy (Germany)

    2014-02-18

    The increase of Computed Tomography (CT) as an applicable metrology and Non Destructive Testing (NDT) method raises interest on developing the application fields to larger objects, which were rarely used in the past due to their requirements on the imaging system. Especially the classical X-ray generation techniques based on standard equipment restricted the applications of CT to typical material penetration lengths of only a few cm of steel. Even with accelerator technology that offers a suitable way to overcome these restrictions just the 2D radioscopy technique found a widespread application. Beside the production and detection of photons in the MeV range itself, the achievable image quality is limited using standard detectors due to the dominating absorption effect of Compton Scattering at high energies. Especially for CT reconstruction purposes these effects have to be considered on the development path from 2D to 3D imaging. Most High Energy CT applications are therefore based on line detectors shielding scattered radiation to a maximum with an increase in imaging quality but with time consuming large volume scan capabilities. In this contribution we present the High-Energy X-ray Imaging project at the Fraunhofer Development Centre for X-ray Technology with the characterization and the potential of the CT-system according to metrological and other application capabilities.

  11. Energy flow theory of nonlinear dynamical systems with applications

    CERN Document Server

    Xing, Jing Tang

    2015-01-01

    This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...

  12. Electric utility applications of hydrogen energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  13. TOPICAL REVIEW: Carbon nanotubes for clean energy applications

    Science.gov (United States)

    Liu, Chang; Cheng, Hui-Ming

    2005-07-01

    The issue of the sustainability of energy supply has attracted worldwide concern given the rapid depletion of fossil energy sources amid increasingly worsening environmental pollution and the drive to develop alternative, environment-friendly, renewable energy sources and energy carriers to secure our energy supply and sustainable development. Hydrogen is considered to be among the best solutions available, although technical barriers, in particular effective hydrogen storage, need to be dealt with. Quasi-one-dimensional carbon nanotubes (CNTs) with rich nanosized pore structures are considered to be a potential hydrogen storage medium; however, controversy over and discrepancies in both the experimental and theoretical results do exist. Therefore, the latest research progress in and the current situation pertaining to hydrogen storage in CNTs are reviewed and discussed in detail. Moreover, CNTs can have wide applications as alternative energy storage media, utilizing fully their unique structural characteristics. We summarize and analyse the advantages as well as the research progress made in using CNTs as electrode materials in lithium-ion batteries and supercapacitors. Further, future applications of CNTs in the energy storage field are explored.

  14. Energy harvesting from low frequency applications using piezoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel, E-mail: zhiqun.deng@pnnl.gov [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States)

    2014-12-15

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters.

  15. A Case for Application Oblivious Energy-Efficient MPI Runtime

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, Akshay; Vishnu, Abhinav; Hamidouche, Khaled; Tallent, Nathan R.; Panda, Dhabaleswar; Kerbyson, Darren J.; Hoisie, Adolfy

    2015-10-19

    Power has become the major impediment in designing large scale high-end systems. Message Passing Interface (MPI) is the {\\em de facto} communication interface used as the back-end for designing applications, programming models and runtime for these systems. Slack --- the time spent by an MPI process in a single MPI call --- provides a potential for energy and power savings, if an appropriate power reduction technique such as core-idling/Dynamic Voltage and Frequency Scaling (DVFS) can be applied without perturbing application's execution time. Existing techniques that exploit slack for power savings assume that application behavior repeats across iterations/executions. However, an increasing use of adaptive, data-dependent workloads combined with system factors (OS noise, congestion) makes this assumption invalid. This paper proposes and implements Energy Aware MPI (EAM) --- an application-oblivious energy-efficient MPI runtime. EAM uses a combination of communication models of common MPI primitives (point-to-point, collective, progress, blocking/non-blocking) and an online observation of slack for maximizing energy efficiency. Each power lever incurs time overhead, which must be amortized over slack to minimize degradation. When predicted communication time exceeds a lever overhead, the lever is used {\\em as soon as possible} --- to maximize energy efficiency. When mis-prediction occurs, the lever(s) are used automatically at specific intervals for amortization. We implement EAM using MVAPICH2 and evaluate it on ten applications using up to 4096 processes. Our performance evaluation on an InfiniBand cluster indicates that EAM can reduce energy consumption by 5--41\\% in comparison to the default approach, with negligible (less than 4\\% in all cases) performance loss.

  16. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    Science.gov (United States)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  17. Calculation of generalized spin stiffness constant of strongly correlated doped quantum antiferromagnet on two-dimensional lattice and it's application to effective exchange constant for semi-itinerant systems

    Science.gov (United States)

    Bhattacharjee, Suraka; Chaudhury, Ranjan

    2016-11-01

    The generalized spin stiffness constant for a doped quantum antiferromagnet has been investigated both analytically and numerically as a function of doping concentration at zero temperature, based on the strongly correlated t-J model on two-dimensional square lattice. The nature of the theoretical dependence of the stiffness constant on doping shows a striking similarity with that of the effective exchange constant, obtained from the combination of other theoretical and experimental techniques in the low doping region. This correspondence once again establishes that spin stiffness can very well play the role of an effective exchange constant even in the strongly correlated semi-itinerant systems. Our theoretical plot of the stiffness constant against doping concentration in the whole doping region exhibits the various characteristic features like a possible crossover in the higher doping regions and persistence of short range ordering even for very high doping with the complete vanishing of spin stiffness occurring only close to 100% doping. Our results receive very good support from various other theoretical approaches and also brings out a few limitations of some of them. Our detailed analysis highlights the crucial importance of the study of spin stiffness for the proper understanding of magnetic correlations in a semi-itinerant magnetic system described by the strongly correlated t-J model. Moreover, our basic formalism can also be utilized for determination of the effective exchange constant and magnetic correlations for itinerant magnetic systems, in general in a novel way.

  18. Valorization of jatropha fruit biomass for energy applications

    NARCIS (Netherlands)

    Marasabessy, A.

    2015-01-01

    Valorization of Jatropha fruit biomass for energy applications Ahmad Marasabessy

    Thesis Abstract

    Our research objectives were to develop sustainable technologies of Jatropha oil extraction and Jatropha biomass fractionatio

  19. Applications of NAA at Institute of High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiyong; Chai Zhifang [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2003-03-01

    Recent achievements in application studies of neutron activation analysis (NAA) at Institute of High Energy Physics, The Chinese Academy of Sciences are briefly described. A small number of selected areas and problems, particularly in life sciences, are highlighted because they present challenges for NAA and its prospects in the future. (author)

  20. Ceramic Integration Technologies for Energy and Aerospace Applications

    Science.gov (United States)

    Singh, Mrityunjay; Asthana, Ralph N.

    2007-01-01

    Robust and affordable integration technologies for advanced ceramics are required to improve the performance, reliability, efficiency, and durability of components, devices, and systems based on them in a wide variety of energy, aerospace, and environmental applications. Many thermochemical and thermomechanical factors including joint design, analysis, and optimization must be considered in integration of similar and dissimilar material systems.

  1. Valorization of jatropha fruit biomass for energy applications

    NARCIS (Netherlands)

    Marasabessy, A.

    2015-01-01

    Valorization of Jatropha fruit biomass for energy applications Ahmad Marasabessy

    Thesis Abstract

    Our research objectives were to develop sustainable technologies of Jatropha oil extraction and Jatropha biomass fractionatio

  2. Bilevel programming problems theory, algorithms and applications to energy networks

    CERN Document Server

    Dempe, Stephan; Pérez-Valdés, Gerardo A; Kalashnykova, Nataliya; Kalashnikova, Nataliya

    2015-01-01

    This book describes recent theoretical findings relevant to bilevel programming in general, and in mixed-integer bilevel programming in particular. It describes recent applications in energy problems, such as the stochastic bilevel optimization approaches used in the natural gas industry. New algorithms for solving linear and mixed-integer bilevel programming problems are presented and explained.

  3. Wind energy applications in agriculture: executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    David, M.L.; Buzenberg, R.J.; Glynn, E.F.; Johnson, G.L.; Shultis, J.K.; Wagner, J.P.

    1979-08-01

    This report presents an assessment of the potential use of wind turbine generator systems (WTGS) in US agriculture. In particular, this report presents the number of WTGS's economically feasible for use in US agriculture and the conditions which yielded economic feasibility of WTGS's for certain agricultural applications. In addition, for each case, i.e., set of assumed conditions, under which WTGS's were found to be economically feasible, this report identifies (1) the agricultural WTGS applications in terms of location, type and size (complete farm and dedicated-use applications); (2) the number of WTGS's by wind machine and generator size category; (3) aggregate energy conversion potential; and (4) other technical and economic WTGS performance data for particular applications. This report also describes the methodology, data and assumptions used for the analysis. A major part of the study was the development and use of a rigorous analytical system to assess an application's wind power generation and use potential.

  4. Energy flow in a hadronic cascade: Application to hadroncalorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Groom, Donald E.

    2006-05-17

    The hadronic cascade description developed in an earlierpaper is extended to the response of an idealized fine-sampling hadroncalorimeter. Calorimeter response is largely determined by the transferof energy E_e from the hadronic to the electromagnetic sector via \\pi0production. Fluctuations in this quantity produce the "constant term" inhadron calorimeter resolution. The increase of its fractional mean, f_\\rmem^0= \\vevE_e/E, with increasing incident energy E causes the energydependence of the \\pi/e ratio in a noncompensating calorimeter. The meanhadronic energy fraction, f_h0 = 1-f_\\rm em0, was shown to scaleverynearly as a power law in E: f_h0 = (E/E_0)m-1, where E_0\\approx1~;GeV forpions, and m\\approx0.83. It follows that \\pi/e=1-(1-h/e)(E/E_0)m-1, whereelectromagnetic and hadronic energy deposits are detected withefficiencies e and h, respectively. Fluctuations in these quantities,along with sampling fluctuations, are in corporated to give an overallunderstanding of resolution, which is different from the usual treatmentsin interesting ways. The conceptual framework is also extended to theresponse to jets and the difference between pi and presponse.

  5. Nanostructured conducting polymers for energy applications: towards a sustainable platform

    Science.gov (United States)

    Ghosh, Srabanti; Maiyalagan, Thandavarayan; Basu, Rajendra N.

    2016-03-01

    Recently, there has been tremendous progress in the field of nanodimensional conducting polymers with the objective of tuning the intrinsic properties of the polymer and the potential to be efficient, biocompatible, inexpensive, and solution processable. Compared with bulk conducting polymers, conducting polymer nanostructures possess a high electrical conductivity, large surface area, short path length for ion transport and superior electrochemical activity which make them suitable for energy storage and conversion applications. The current status of polymer nanostructure fabrication and characterization is reviewed in detail. The present review includes syntheses, a deeper understanding of the principles underlying the electronic behavior of size and shape tunable polymer nanostructures, characterization tools and analysis of composites. Finally, a detailed discussion of their effectiveness and perspectives in energy storage and solar light harvesting is presented. In brief, a broad overview on the synthesis and possible applications of conducting polymer nanostructures in energy domains such as fuel cells, photocatalysis, supercapacitors and rechargeable batteries is described.

  6. Nanostructured conducting polymer hydrogels for energy storage applications.

    Science.gov (United States)

    Shi, Ye; Peng, Lele; Yu, Guihua

    2015-08-14

    Conducting polymer hydrogels are emerging as a promising class of polymeric materials for various technological applications, especially for energy storage devices due to their unique combination of advantageous features of conventional polymers and organic conductors. To overcome the drawbacks of conventional synthesis, new synthetic routes in which acid molecules are adopted as both crosslinkers and dopants have been developed for conducting polymer hydrogels with unique 3D hierarchical porous nanostructures, resulting in high electrical conductivity, large surface area, structural tunability and hierarchical porosity for rapid mass/charge transport. The newly developed conducting polymer hydrogels exhibit high performance when applied as active electrode materials for electrochemical capacitors or as functional binder materials for high-energy lithium-ion batteries. This feature article summarizes the synthesis of conducting polymer hydrogels, presents their applications in energy storage, and discusses further opportunities and challenges.

  7. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  8. Elastic collisions between Si and D atoms at low temperatures and accurate analytic potential energy function and molecular constants of the SiD(X2∏) radical

    Institute of Scientific and Technical Information of China (English)

    Shi De-Heng; Zhang Jin-Ping; Sun Jin-Feng; Zhu Zun-Lue

    2009-01-01

    Interaction potential of the SiD(X2∏) radical is constructed by using the CCSD(T) theory in combination with the largest correlation-consistent quintuple basis set augmented with the diffuse functions in the valence range. Using the interaction potential, the spectroscopic parameters are accurately determined. The present D0, De, Re, ωe, αe and Be values are of 3.0956 eV, 3.1863 eV, 0.15223 nm, 1472.894 cm-1, 0.07799 cm-1 and 3.8717 cm-1, respectively,which are in excellent agreement with the measurements. A total of 26 vibrational states is predicted when J = 0 by solving the radial Schr(o)dinger equation of nuclear motion. The complete vibrational levels, classical turning points,initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which are in good accord with the available experiments. The total and various partial-wave cross sections are calculated for the elastic collisions between Si and D atoms in their ground states at 1.0×10-11-1.0×10-3 a.u. when the two atoms approach each other along the SiD(X2∏) potential energy curve. Four shape resonances are found in the total elastic cross sections, and their resonant energies are of 1.73×10-5, 4.0×10-5, 6.45×10-5 and 5.5×10-4 a.u., respectively. Each shape resonance in the total elastic cross sections is carefully investigated. The results show that the shape of the total elastic cross sections is mainly dominated by the s partial wave at very low temperatures. Because of the weakness of the shape resonances coming from the higher partial waves, most of them are passed into oblivion by the strong s partial-wave elastic cross sections.

  9. Analysis of Energy Efficiency in WSN by Considering SHM Application

    Science.gov (United States)

    Kumar, Pawan; Naresh Babu, Merugu; Raju, Kota Solomon, Dr; Sharma, Sudhir Kumar, Dr; Jain, Vaibhav

    2017-08-01

    The Wireless Sensor Network is composed of a significant number of autonomous nodes deployed in an extensive or remote area. In WSN, the sensor nodes have a limited transmission range, processing speed and storage capabilities as well as their energy resources are also limited. In WSN all nodes are not directly connected. The primary objective for all kind of WSN is to enhance and optimize the network lifetime i.e. to minimize the energy consumption in the WSN. There are lots of applications of WSN out of which this research paper focuses upon the Structural Health Monitoring application in which 50 Meter bridge has been taken as a test application for the simulation purpose.

  10. Wind energy conversion systems with electric transmission to the water pumping with field control to constant flow; Sistema de conversao de energia eolica com transmissao eletrica para bombeamento de agua com controle de campo a fluxo constante

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Juraci Carlos de Castro

    1989-07-01

    The stead-state analysis of a Wind Energy Conversion Systems, consisting on a Windmill, Synchronous Generator, transmission Line and Induction Motor driving a Centrifugal Pump is developed. The performance of the system operating at variable Speed with a flux control is examined using mathematical and digital simulation. The control scheme is proposed and tested in laboratory and a tested in laboratory and a test centre to be compared with simulation results. (author)

  11. Measurement of transverse energy-energy correlations in multi-jet events in $pp$ collisions at $\\sqrt{s} = 7$ TeV using the ATLAS detector and determination of the strong coupling constant $\\alpha_{\\mathrm{s}}(m_Z)$

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; do Vale, Maria Aline Barros; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; L{ö}sel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-01-01

    High transverse momentum jets produced in pp collisions at a centre of mass energy of 7 TeV are used to measure the transverse energy--energy correlation function and its associated azimuthal asymmetry. The data were recorded with the ATLAS detector at the LHC in the year 2011 and correspond to an integrated luminosity of 158 $\\mathrm{pb}^{-1}$. The selection criteria demand the average transverse momentum of the two leading jets in an event to be larger than 250 GeV. The data at detector level are well described by Monte Carlo event generators. They are unfolded to the particle level and compared with theoretical calculations at next-to-leading-order accuracy. The agreement between data and theory is good and provides a precision test of perturbative Quantum Chromodynamics at large momentum transfers. From this comparison, the strong coupling constant given at the $Z$ boson mass is determined to be $\\alpha_{\\mathrm{s}}(m_Z) = 0.1173 \\pm 0.0010 \\mbox{ (exp.) }^{+0.0065}_{-0.0026} \\mbox{ (theo.)}$.

  12. 75 FR 33610 - Application To Export Electric Energy; H.Q. Energy Services (U.S.) Inc.

    Science.gov (United States)

    2010-06-14

    ... Application To Export Electric Energy; H.Q. Energy Services (U.S.) Inc. AGENCY: Office of Electricity Delivery.... (HQUS) has applied to renew its authority to transmit electric energy from the United States to Canada... Department of Energy (DOE) issued Order No. EA-182, which authorized HQUS to transmit electric energy...

  13. Universe of constant

    Science.gov (United States)

    Yongquan, Han

    2016-10-01

    The ideal gas state equation is not applicable to ordinary gas, it should be applied to the Electromagnetic ``gas'' that is applied to the radiation, the radiation should be the ultimate state of matter changes or initial state, the universe is filled with radiation. That is, the ideal gas equation of state is suitable for the Singular point and the universe. Maybe someone consider that, there is no vessel can accommodate radiation, it is because the Ordinary container is too small to accommodate, if the radius of your container is the distance that Light through an hour, would you still think it can't accommodates radiation? Modern scientific determinate that the radius of the universe now is about 1027 m, assuming that the universe is a sphere whose volume is approximately: V = 4.19 × 1081 cubic meters, the temperature radiation of the universe (cosmic microwave background radiation temperature of the universe, should be the closest the average temperature of the universe) T = 3.15k, radiation pressure P = 5 × 10-6 N / m 2, according to the law of ideal gas state equation, PV / T = constant = 6 × 1075, the value of this constant is the universe, The singular point should also equal to the constant Author: hanyongquan

  14. U.S. DOE Intermountain Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Case, Patti

    2013-09-30

    The Intermountain Clean Energy Application Center helped promote, assist, and transform the market for combined heat and power (CHP), including waste heat to power and district energy with CHP, in the intermountain states of Arizona, Colorado, New Mexico, Utah, and Wyoming. We accomplished these objectives through a combination of the following methods, which proved in concert to be a technically and economically effective strategy: o Identifying and facilitating high-impact CHP projects o Helping industrial, commercial, institutional, federal, and other large energy users in evaluating the economic and technical viability of potential CHP systems o Disseminating essential information about CHP including benefits, technologies, applications, project development, project financing, electric and gas utility incentives, and state policies o Coordinating and collaborating on CHP advancement with regional stakeholders including electric utilities, gas utilities, state energy offices, municipal development and planning personnel, trade associations, industry groups, non-profits, energy users, and others Outcomes of the project included increased understanding of and deployment of efficient and well-designed CHP systems in the states of Arizona, Colorado, New Mexico, Utah, and Wyoming. Increased CHP deployment helps the United States to enhance energy efficiency, strengthen the competitiveness of American industries, promote economic growth, foster a robust and resilient energy infrastructure, reduce emissions of air pollutants and greenhouse gases, and increase the use of market-ready advanced technologies. Specific outcomes included direct assistance to energy-intensive industrial facilities and other businesses, workshops and CHP tours, communication materials, and state policy education, all contributing to implementation of CHP systems in the intermountain region.

  15. Renewable energy technology from underpinning physics to engineering application

    Science.gov (United States)

    Infield, D. G.

    2008-03-01

    The UK Energy Research Centre (UKERC) in it's submission to the DTI's 2006 Energy Review reminded us that the ''UK has abundant wind, wave and tidal resources available; its mild climate lends itself to bio-energy production, and solar radiation levels are sufficient to sustain a viable solar industry''. These technologies are at different stages of development but they all draw on basic and applied Science and Engineering. The paper will briefly review the renewable energy technologies and their potential for contributing to a sustainable energy supply. Three research topics will be highlighted that bridge the gap between the physics underpinning the energy conversion, and the engineering aspects of development and deployment; all three are highly relevant to the Government's programme on micro-generation. Two are these are taken from field of thin film photovoltaics (PV), one related to novel device development and the other to a measurement technique for assessing the manufacturing quality of PV modules and their performance. The third topic concerns the development of small building integrated wind turbines and examines the complex flow associated with such applications. The paper will conclude by listing key research challenges that are central to the search for efficient and cost-effective renewable energy generation.

  16. Analog Ensemble Methodology: Expansion and Optimization for Renewable Energy Applications

    Science.gov (United States)

    Harding, L.; Cervone, G.; Delle Monache, L.

    2015-12-01

    Renewable energy is fundamental for sustaining and developing society. Solar and wind energy are promising sources because of their decreased environmental impact relative to conventional energy sources, improved efficiency, and increased use. A key challenge with renewable energy production is the generation of accurate renewable energy forecasts at varying spatial and temporal scales to assist utility companies in effective energy management. Specifically, this research applies the Analog Ensemble (AnEn) methodology to short-term (0-48 hour) wind speed forecasting for power generation and short-term (0-72) hour solar power measured (PM) output predictions. AnEn uses a set of past observations corresponding to the best analogs of a deterministic numerical weather prediction model to generate a probability distribution of future atmospheric states: an ensemble of analogs. Currently the AnEn methodology equally weights predictors and only handles 1D(time). We determine an optimal distribution of predictor weights based upon parameter characteristics, investigate spatial variations in the application of the methodology and develop a theory expanding the methodology into 2D. The AnEn methodology improves short-term prediction accuracy, decreases computational costs and provides uncertainty quantification allowing utility companies to manage over- or under power generation for renewable energy sources.

  17. Comparison of the rate constants for energy transfer in the light-harvesting protein, C-phycocyanin, calculated from Foerster`s theory and experimentally measured by time-resolved fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Debreczeny, M.P.

    1994-05-01

    We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.

  18. The mechanical first law of black hole spacetimes with a cosmological constant and its application to the Schwarzschild-de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Urano, Miho; Tomimatsu, Akira [Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Saida, Hiromi, E-mail: urano@gravity.phys.nagoya-u.ac.j, E-mail: atomi@gravity.phys.nagoya-u.ac.j, E-mail: saida@daido-it.ac.j [Department of Physics, Daido Institute of Technology , Nagoya 457-8530 (Japan)

    2009-05-21

    The mechanical first law (MFL) of black hole spacetimes is a geometrical relation which relates variations of the mass parameter and horizon area. While it is well known that the MFL of an asymptotic flat black hole is equivalent to its thermodynamical first law, however we do not know the detail of the MFL of black hole spacetimes with a cosmological constant which possess a black hole and cosmological event horizons. This paper aims to formulate an MFL of the two-horizon spacetimes. For this purpose, we try to include the effects of two horizons in the MFL. To do so, we make use of the Iyer-Wald formalism and extend it to regard the mass parameter and the cosmological constant as two independent variables which make it possible to treat the two horizons on the same footing. Our extended Iyer-Wald formalism preserves the existence of the conserved Noether current and its associated Noether charge, and gives an abstract form of the MFL of black hole spacetimes with a cosmological constant. Then, as a representative application of this formalism, we derive the MFL of the Schwarzschild-de Sitter (SdS) spacetime. Our MFL of the SdS spacetime relates the variations of three quantities: the mass parameter, the total area of the two horizons and the volume enclosed by the two horizons. If our MFL is regarded as a thermodynamical first law of the SdS spacetime, it offers a thermodynamically consistent description of the SdS black hole evaporation process: the mass decreases while the volume and the entropy increase. In our suggestion, a generalized second law is not needed to ensure the second law of SdS thermodynamics for its evaporation process.

  19. Innovative thermal energy harvesting for future autonomous applications

    Science.gov (United States)

    Monfray, Stephane

    2013-12-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies & Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market.

  20. Capacitive Cells for Dielectric Constant Measurement

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  1. Capacitive Cells for Dielectric Constant Measurement

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  2. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  3. Design of advanced photocatalytic materials for energy and environmental applications

    CERN Document Server

    Coronado, Juan M; Hernández-Alonso, María D; Portela, Raquel

    2013-01-01

    Research for the development of more efficient photocatalysts has experienced an almost exponential growth since its popularization in early 1970's. Despite the advantages of the widely used TiO2, the yield of the conversion of sun power into chemical energy that can be achieved with this material is limited prompting the research and development of  a number of structural, morphological and chemical modifications of TiO2 , as well as a number of novel photocatalysts with very different composition. Design of Advanced Photocatalytic Materials for Energy and Environmental Applications provides

  4. Electroactive polymer based porous membranes for energy storage applications

    OpenAIRE

    Costa, Carlos Miguel da Silva

    2014-01-01

    Tese de doutoramento em Ciências (ramo de conhecimento em Física) In the field of mobile applications the efficient storage of energy is one of the most critical issues. Lithium ion batteries are lighter, cheaper, show higher energy density (210Wh kg-1), no memory effect, longer service-life and higher number of charge/discharge cycles than other battery solutions. The separator membrane is placed between the anode and cathode and serves as the medium for the transfer of charge, being a c...

  5. Solar radiation practical modeling for renewable energy applications

    CERN Document Server

    Myers, Daryl Ronald

    2013-01-01

    Written by a leading scientist with over 35 years of experience working at the National Renewable Energy Laboratory (NREL), Solar Radiation: Practical Modeling for Renewable Energy Applications brings together the most widely used, easily implemented concepts and models for estimating broadband and spectral solar radiation data. The author addresses various technical and practical questions about the accuracy of solar radiation measurements and modeling. While the focus is on engineering models and results, the book does review the fundamentals of solar radiation modeling and solar radiation m

  6. Energy conversion via ferroic materials: Materials, mechanisms, and applications

    Science.gov (United States)

    Chin, Huai-An

    Energy conversion is a process converting one form of energy into another. Significant research effort has been dedicated to energy conversion mechanisms for portable energy conversion. Specifically, mechanisms based on ferroic materials have been widely explored for this goal. Ferroic materials include ferromagnetic, ferroelectric and ferroelastic materials. This thesis is focused on two ferroic materials: ferromagnetic TbxDy1-xFe2 (x ˜ 0.3, Terfenol-D), and ferroelectric barium strontium titanate (BST) including its paraelectric phase, for their energy conversion mechanisms. We grew and characterized these materials, followed by device fabrication to study potential energy conversion mechanisms in resulting devices. With Terfenol-D, we demonstrated a wireless energy-conversion process via the Villari effect, i.e. magnetic flux change induced by mechanical input. A new technique of transfer-printing a Terfenol-D film onto a flexible substrate was developed to study this mechanism. The transferred Terfenol-D showed a high saturation magnetization (˜ 1.3 T) and flexibility (strain ˜ 1.9 %). Subsequently, the Villari effect was successfully utilized to convert mechanical energy, from a mechanical source and a simulated biomechanical source, into electricity. For next projects, another ferroic material, a high-permittivity (dielectric constant ˜ 200) BST was sputtered on Pt/SiO2/Si or stainless steels to form a metal-insulator(BST)-metal heterostructure. The BST was found to be paraelectric when grown upon Pt/SiO2/Si, whereas it was ferroelectric when grown on the stainless steel. Two different mechanisms were therefore studied on these two modifications. In the paraelectric BST we found a new thermal-electric response via a flexoelectricity-mediated mechanism, which was enabled by a large strain gradient (> 104/m) produced by lattice mismatch. With the enhanced flexoelectricity from the large strain gradient, electrical output was generated under thermal cycling

  7. Thermal energy storage using phase change materials fundamentals and applications

    CERN Document Server

    Fleischer, Amy S

    2015-01-01

    This book presents a comprehensive introduction to the use of solid‐liquid phase change materials to store significant amounts of energy in the latent heat of fusion. The proper selection of materials for different applications is covered in detail, as is the use of high conductivity additives to enhance thermal diffusivity. Dr. Fleischer explores how applications of PCMS have expanded over the past 10 years to include the development of high efficiency building materials to reduce heating and cooling needs, smart material design for clothing, portable electronic systems thermal management, solar thermal power plant design and many others. Additional future research directions and challenges are also discussed.

  8. Tin-based inorganic-organic hybrid polymers for high energy-density applications

    Science.gov (United States)

    Tran, Huan; Kuma, Arun; Pilania, Ghanshyam; Ramprasad, Rampi

    2014-03-01

    In one of our recent works[1], an organotin polymer was synthesized and suggested to be promising polymeric dielectric, simultaneously exhibiting a high dielectric constant ɛ and a high band gap Eg. Motivated by this result, we study a family of inorganic-organic hybrid polymers based on -(SnF2) x-(CH2) y - as the repeating structural unit (x = 2 , y = 4 , 8 , and 12). The stable structures of these hybrid polymers, predicted by the minima-hopping method, are studied by first-principles calculations at the level of density functional theory. Our calculations show that these polymers are wide band gap materials (up to 6.07 eV). In addition, their dielectric constants are between 4.6 and 7.8, well above that of polypropylene (ɛ ~= 2 . 2), the standard dielectric material for high energy-density capacitors. Therefore, we suggest that the hybrid polymers based on -(SnF2) x-(CH2) y - are promising candidates for high energy-density applications. Our work is supported by the Office of Naval Research through the Multidisciplinary University Research Initiative (MURI).

  9. U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC)

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, Tim; Kammen, Dan; McDonell, Vince; Samuelsen, Scott; Beyene, Asfaw; Ganji, Ahmad

    2013-09-30

    The U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC) was formed in 2009 by the U.S. Department of Energy (DOE) and the California Energy Commission to provide education, outreach, and technical support to promote clean energy -- combined heat and power (CHP), district energy, and waste energy recovery (WHP) -- development in the Pacific Region. The region includes California, Nevada, Hawaii, and the Pacific territories. The PCEAC was operated as one of nine regional clean energy application centers, originally established in 2003/2004 as Regional Application Centers for combined heat and power (CHP). Under the Energy Independence and Security Act of 2007, these centers received an expanded charter to also promote district energy and waste energy recovery, where economically and environmentally advantageous. The centers are working in a coordinated fashion to provide objective information on clean energy system technical and economic performance, direct technical assistance for clean energy projects and additional outreach activities to end users, policy, utility, and industry stakeholders. A key goal of the CEACs is to assist the U.S. in achieving the DOE goal to ramp up the implementation of CHP to account for 20% of U.S. generating capacity by 2030, which is estimated at a requirement for an additional 241 GW of installed clean technologies. Additional goals include meeting the Obama Administration goal of 40 GW of new CHP by 2020, key statewide goals such as renewable portfolio standards (RPS) in each state, California’s greenhouse gas emission reduction goals under AB32, and Governor Brown’s “Clean Energy Jobs Plan” goal of 6.5 GW of additional CHP over the next twenty years. The primary partners in the PCEAC are the Department of Civil and Environmental Engineering and the Energy and Resources Group (ERG) at UC Berkeley, the Advanced Power and Energy Program (APEP) at UC Irvine, and the Industrial Assessment Centers (IAC

  10. Is the empirical approximation Y/G approx constant applicable to high-pressure and high-temperature environments for metals?

    CERN Document Server

    Hua, J S; Hua, T; Hu, S L

    2002-01-01

    Recently, we have found, by means of a shock wave experiment, that an empirical relation Y/G approx 1.9x10 sup - sup 2 (Y is the yield strength and G is the shear modulus) is applicable for describing the strength effect for shocked 93W (93% W with 7% Fe-Ni-Co as binder) in the pressure range up to 150 GPa. This represents an extension of existing knowledge of the empirical approximation Y/G approx constant for potassium obtained at liquid-N sub 2 temperature and in the pressure range below 0.55 GPa. This approximation is advantageous in allowing one to simply and conveniently construct the constitutive equation for shocked metals.

  11. Using NASA Satellite and Model Analysis for Renewable Energy and Energy Efficiency Applications

    Science.gov (United States)

    Hoell, J. M.; Stackhouse, P. W.; Chandler, W. S.; Whitlock, C. H.; Westberg, D. J.; Zhang, T.

    2009-12-01

    This presentation describes the successful tailoring of NASA research data sets to meet environmental information needs of the renewable energy sector. The data sets currently used for these purposes include the NASA/GEWEX (Global Energy and Water Cycle Experiment) Surface Radiation Budget data set (SRB), the FLASHFlux (Fast Longwave and SHortwave Fluxes from Global CERES and MODIS observations), and the NASA GSFC Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) versions 4.0.3 and 5.0/5.1. These data are available through the Surface meteorology and Solar Energy (SSE) web interface (http://eosweb.larc.nasa.gov/sse). The NASA Earth Science Applied Science program has supported the development of the SSE web interface through a project called the Prediction of World Energy Resource (POWER, http://power.larc.nasa.gov/). The paths of modifying/preparing these data sets for energy applications for the SSE web site are described. These data help engineers, architects, and project analysts develop feasibility studies for renewable energy technology projects, make regional assessments and long-term energy market forecasts. Thus, small-scale projects to regional energy analysis may benefit from this information. The SSE web site has nearly 50,000 users worldwide and version 6.0 is now averaging 250,000 and 60,000 hits and data downloads per month, respectively. Examples of the usage of these data sets are shown to help describe the need and impact of this information. These examples come from the many collaborative partners in this work such as the DOE National Renewable Energy Laboratory (NREL), the Pacific Northwest National Laboratory (PNNL), and the Natural Resources Canada RETScreen project. The presentation also gives potential future data needs of these types of technologies and how NASA data could help contribute to meeting those needs. This is particularly pertinent facing the growing needs to develop clean energy sources to

  12. Energy-Aware Routing for E-Textile Applications

    CERN Document Server

    Kao, Jung-Chun

    2011-01-01

    As the scale of electronic devices shrinks, "electronic textiles" (e-textiles) will make possible a wide variety of novel applications which are currently unfeasible. Due to the wearability concerns, low-power techniques are critical for e-textile applications. In this paper, we address the issue of the energy-aware routing for e-textile platforms and propose an efficient algorithm to solve it. The platform we consider consists of dedicated components for e-textiles, including computational modules, dedicated transmission lines and thin-film batteries on fiber substrates. Furthermore, we derive an analytical upper bound for the achievable number of jobs completed over all possible routing strategies. From a practical standpoint, for the Advanced Encryption Standard (AES) cipher, the routing technique we propose achieves about fifty percent of this analytical upper bound. Moreover, compared to the non-energy-aware counterpart, our routing technique increases the number of encryption jobs completed by one order...

  13. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    Directory of Open Access Journals (Sweden)

    Lijia Pan

    2010-07-01

    Full Text Available Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  14. Conducting polymer nanostructures: template synthesis and applications in energy storage.

    Science.gov (United States)

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-07-02

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  15. Investment costs incurring with the application of alternative energies

    Energy Technology Data Exchange (ETDEWEB)

    Mengeringhausen, M.

    1982-09-01

    The application of alternative methods of energy utilization must lead to significant savings in comparison to the conventional methods if it is to be done in a degree which can affect the national economy. Especially in systems with integrated heat pumps, the amount of the investment costs plays an important role. Starting from these statements the author emphasizes the necessity of seeing the possibilities of electronic data processing as a ''complementary technology'' to the alternative energies. The author shows the usefulness of the procedure referring to a calculation method. At the example of the new building of the MERO-factory the applicability of the method is demonstrated.

  16. Recent GRC Aerospace Technologies Applicable to Terrestrial Energy Systems

    Science.gov (United States)

    Kankam, David; Lyons, Valerie J.; Hoberecht, Mark A.; Tacina, Robert R.; Hepp, Aloysius F.

    2000-01-01

    This paper is an overview of a wide range of recent aerospace technologies under development at the NASA Glenn Research Center, in collaboration with other NASA centers, government agencies, industry and academia. The focused areas are space solar power, advanced power management and distribution systems, Stirling cycle conversion systems, fuel cells, advanced thin film photovoltaics and batteries, and combustion technologies. The aerospace-related objectives of the technologies are generation of space power, development of cost-effective and reliable, high performance power systems, cryogenic applications, energy storage, and reduction in gas-turbine emissions, with attendant clean jet engines. The terrestrial energy applications of the technologies include augmentation of bulk power in ground power distribution systems, and generation of residential, commercial and remote power, as well as promotion of pollution-free environment via reduction in combustion emissions.

  17. Review—Two-Dimensional Layered Materials for Energy Storage Applications

    KAUST Repository

    Kumar, Pushpendra

    2016-07-02

    Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.

  18. APPLICATION OF ALTERNATIVE ENERGIES IN THE AUSTRALIAN OFFSHORE SECTOR

    Directory of Open Access Journals (Sweden)

    M. F. HJ. MOHD AMIN

    2016-09-01

    Full Text Available Fossil fuel is not practically renewable and therefore the world is at risk of fossil fuel depletion. This gives urgency to investigate alternative energies, especially for industries that rely entirely on energies for operations, such as offshore industry. The use of alternative energies in this industry has been in place for a while now. This paper discusses the application of various alternative energy sources to assist powering the Goodwyn Alpha (A Platform, located on the North West Shelf (NWS of Australia. The three alternative energy sources under discussion are: wind, wave and solar. The extraction devices used are the Horizontal and Vertical-Axis Wind Turbines - for wind; Pelamis, PowerBuoy and Wave Dragon - for wave; and the solar parabolic dish of SunBeam and Photovoltaic (PV cells of SunPower - for solar. These types of devices are installed within the same offshore platform area. Technical, environmental and economic aspects are taken into consideration before the best selection is made. The results showed that PowerBuoy used for wave energy, is the best device to be used on offshore platforms where operators could save up to 9% of power; $603,083 of natural gas; and 10,848 tonnes of CO2 per year.

  19. Guest Editorial Electric Machines in Renewable Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard; Brown, Ian; Chiba, Akira; Dorrell, David; Erlich, Istvan; Kerszenbaum, Isidor Izzy; Levi, Emil; Mayor, Kevin; Mohammed, Osama; Papathanassiou, Stavros; Popescu, Mircea; Qiao, Wei; Wu, Dezheng

    2015-12-01

    The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewable energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.

  20. Effective cosmological constant induced by stochastic fluctuations of Newton's constant

    Science.gov (United States)

    de Cesare, Marco; Lizzi, Fedele; Sakellariadou, Mairi

    2016-09-01

    We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.

  1. Effective cosmological constant induced by stochastic fluctuations of Newton's constant

    CERN Document Server

    de Cesare, Marco; Sakellariadou, Mairi

    2016-01-01

    We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.

  2. Energy Storage Options for Low-Cost Spacecraft Applications

    OpenAIRE

    Pennington, D.F.; Wecker, S.E.; Wright, R. D.; Coates, D.K.

    1995-01-01

    Several energy storage options currently exist for small satellite power systems. These include nickel-hydrogen, nickel-cadmium and nickel-metal hydride batteries. Nickel-hydrogen is available only as a spaceflight qualified system and is therefore relatively high in cost. Nickel-metal hydride batteries are available only in a small capacity, commercial cylindrical version which limits usefulness in aerospace applications. Both aerospace and commercial nickel-cadmium batteries are available, ...

  3. Application of Solar Energy to Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    M, Nash J; J, Harstad A

    1976-11-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/ Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  4. Application of solar energy to air conditioning systems

    Science.gov (United States)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  5. Workshop on environmental and energy applications of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, S.

    1995-03-01

    This report consists of the abstracts for the papers given at the conference. Applications of neural networks in the environmental, energy and biomedical fields are discussed. Some of the topics covered are: predicting atmospheric pollutant concentrations due to fossil-fired electric power generation; hazardous waste characterization; nondestructive TRU (transuranic) waste assay; risk analysis; load forecasting for electric utilities; design of a wind power storage and generation system; nuclear fuel management; etc.

  6. Alternative dark energy from the holographic equipartition law with a modified R\\'{e}nyi entropy: A thermodynamic scenario for the cosmological constant problem

    CERN Document Server

    Komatsu, Nobuyoshi

    2016-01-01

    Cosmological equations were recently derived by Padmanabhan from the expansion of cosmic space due to the difference between the degrees of freedom on the surface and in the bulk in a region of space. In this study, a modified R\\'{e}nyi entropy is applied to Padmanabhan's `holographic equipartition law', by regarding the Bekenstein--Hawking entropy as a nonextensive Tsallis entropy and using a logarithmic formula of the original R\\'{e}nyi entropy. Consequently, the acceleration equation including an extra driving term can be derived in a homogeneous, isotropic, and spatially flat universe. When a specific condition is mathematically satisfied, the extra driving term is found to be constant-like as if it is a cosmological constant. Interestingly, the order of the constant-like term is naturally consistent with the order of the cosmological constant measured by observations because, without tuning, the specific condition constrains the value of the constant-like term. The present model should provide new insigh...

  7. Plasma Synthesis of Nanoparticles for Nanocomposite Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Kong; Alex W. Kawczak

    2008-09-01

    The nanocomposite energy applications for plasma reactor produced nanoparticles are reviewed. Nanoparticles are commonly defined as particles less than 100 nm in diameter. Due to this small size, nanoparticles have a high surface-to-volume ratio. This increases the surface energy compared to the bulk material. The high surface-to-volume ratio and size effects (quantum effects) give nanoparticles distinctive chemical, electronic, optical, magnetic and mechanical properties from those of the bulk material. Nanoparticles synthesis can be grouped into 3 broad approaches. The first one is wet phase synthesis (sol-gel processing), the second is mechanical attrition, and the third is gas-phase synthesis (aerosol). The properties of the final product may differ significantly depending on the fabrication route. Currently, there are no economical large-scale production processes for nanoparticles. This hinders the widespread applications of nanomaterials in products. The Idaho National Laboratory (INL) is engaging in research and development of advanced modular hybrid plasma reactors for low cost production of nanoparticles that is predicted to accelerate application research and enable the formation of technology innovation alliances that will result in the commercial production of nanocomposites for alternative energy production devices such as fuel cells, photovoltaics and electrochemical double layer capacitors.

  8. The Quantum Energy Saver design and Fuel-saving application

    Science.gov (United States)

    Fang, Xiong; Mao, Wenwu; Shen, Xisheng; LI, Jianyu; Huang, Wenchao; Chen, Zhixin

    2016-11-01

    In order to reduce the high fuel consumption of the shipping industry, a new type of quantum energy saver device is studied and developed. According to a period of time to use the energy saving device and the users’ feedback, by recording the fuel consumption of diesel engine usage, and comparing the changes in fuel consumption before and after the installation of quantum economizer in the same ship, it can reflected the ability of the fuel consumption. After analyzing the data, it shows that the installation of quantum economizer can significantly reduce the fuel consumption of a diesel engine ship. The analysis and application of this paper can play an important role in saving energy and reducing consumption, and provide a reference for other related research.

  9. Industrial application of geothermal energy in Southeast Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

    1980-02-01

    Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

  10. Testing simulation and structural models with applications to energy demand

    Science.gov (United States)

    Wolff, Hendrik

    2007-12-01

    This dissertation deals with energy demand and consists of two parts. Part one proposes a unified econometric framework for modeling energy demand and examples illustrate the benefits of the technique by estimating the elasticity of substitution between energy and capital. Part two assesses the energy conservation policy of Daylight Saving Time and empirically tests the performance of electricity simulation. In particular, the chapter "Imposing Monotonicity and Curvature on Flexible Functional Forms" proposes an estimator for inference using structural models derived from economic theory. This is motivated by the fact that in many areas of economic analysis theory restricts the shape as well as other characteristics of functions used to represent economic constructs. Specific contributions are (a) to increase the computational speed and tractability of imposing regularity conditions, (b) to provide regularity preserving point estimates, (c) to avoid biases existent in previous applications, and (d) to illustrate the benefits of our approach via numerical simulation results. The chapter "Can We Close the Gap between the Empirical Model and Economic Theory" discusses the more fundamental question of whether the imposition of a particular theory to a dataset is justified. I propose a hypothesis test to examine whether the estimated empirical model is consistent with the assumed economic theory. Although the proposed methodology could be applied to a wide set of economic models, this is particularly relevant for estimating policy parameters that affect energy markets. This is demonstrated by estimating the Slutsky matrix and the elasticity of substitution between energy and capital, which are crucial parameters used in computable general equilibrium models analyzing energy demand and the impacts of environmental regulations. Using the Berndt and Wood dataset, I find that capital and energy are complements and that the data are significantly consistent with duality

  11. Review of the application of energy harvesting in buildings

    Science.gov (United States)

    Matiko, J. W.; Grabham, N. J.; Beeby, S. P.; Tudor, M. J.

    2014-01-01

    This review presents the state of the art of the application of energy harvesting in commercial and residential buildings. Electromagnetic (optical and radio frequency), kinetic, thermal and airflow-based energy sources are identified as potential energy sources within buildings and the available energy is measured in a range of buildings. Suitable energy harvesters are discussed and the available and the potential harvested energy calculated. Calculations based on these measurements, and the technical specifications of state-of-the-art harvesters, show that typical harvested powers are: (1) indoor solar cell (active area of 9 cm2, volume of 2.88 cm3): ˜300 µW from a light intensity of 1000 lx; (2) thermoelectric harvester (volume of 1.4 cm3): 6 mW from a thermal gradient of 25 °C (3) periodic kinetic energy harvester (volume of 0.15 cm3): 2 µW from a vibration acceleration of 0.25 m s-2 at 45 Hz (4) electromagnetic wave harvester (13 cm antenna length and conversion efficiency of 0.7): 1 µW with an RF source power of -25 dBm; and (5) airflow harvester (wind turbine blade of 6 cm diameter and generator efficiency of 0.41): 140 mW from an airflow of 8 m s-1. These results highlight the high potential of energy harvesting technology in buildings and the relative attractions of various harvester technologies. The harvested power could either be used to replace batteries or to prolong the life of rechargeable batteries for low-power (˜1 mW) electronic devices.

  12. Modelling climate change policies : an application of ENERGY2020

    Energy Technology Data Exchange (ETDEWEB)

    Timilsina, G.; Bhargava, A. [Canadian Energy Research Inst., Calgary, AB (Canada); Backus, G. [Policy Assessment Corp., Arvada, CO (United States)

    2005-04-01

    Researches and policy-makers are increasingly analyzing the economic impacts of the Kyoto Protocol at national, regional and global levels. The analyses are generally based on numerical models integrating energy, environment and the economy. Most models range from partial equilibrium types to complex multi-sector general equilibrium models, and typically represent the energy sector at an aggregate level, which limits their ability to reflect details of different sectors. In Canada, a model called ENERGY2020 has been widely used by the federal and provincial governments to analyze the sectoral and provincial impacts of implementing the Kyoto Protocol. ENERGY2020 uses stocks and flows simulation that captures the physical aspects of the processes utilizing energy, as well as the qualitative choice theory which captures human behavioural aspects. The model also has a database containing 20 years of time-series on all economic, environmental and energy variables, enabling the model to derive most parameters endogenously through econometric estimations. It has the capacity to analyze consumer and business responses over a wide range of policy initiatives such as energy environment taxes, regulatory standards for buildings, equipment and motor vehicles, grants, rebates and subsidy initiatives, consumer awareness initiatives, technology improvements, moratoriums and mandated cut-backs. It is also capable of producing long-term energy market forecasts as well as analyzing the impacts of policies in the markets. It was concluded that the model's application will serve as a useful analytical tool for a range of issues, and may be useful to developing countries and economies in transition. 6 refs., 5 figs.

  13. Industrial applications of hot dry rock geothermal energy

    Science.gov (United States)

    Duchane, D. V.

    1992-07-01

    Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

  14. Industrial applications of hot dry rock geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Duchane, D.V.

    1992-09-01

    Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

  15. Infrared propagator corrections for constant deceleration

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, T M; Miao, S P; Prokopec, T [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands); Woodard, R P [Department of Physics, University of Florida Gainesville, FL 32611 (United States)], E-mail: T.M.Janssen@uu.nl, E-mail: S.Miao@uu.nl, E-mail: T.Prokopec@uu.nl, E-mail: woodard@phys.ufl.edu

    2008-12-21

    We derive the propagator for a massless, minimally coupled scalar on a D-dimensional, spatially flat, homogeneous and isotropic background with arbitrary constant deceleration parameter. Our construction uses the operator formalism by integrating the Fourier mode sum. We give special attention to infrared corrections from the nonzero lower limit associated with working on finite spatial sections. These corrections eliminate infrared divergences that would otherwise be incorrectly treated by dimensional regularization, resulting in off-coincidence divergences for those special values of the deceleration parameter at which the infrared divergence is logarithmic. As an application we compute the expectation value of the scalar stress-energy tensor.

  16. Gravitational Instantons and Cosmological Constant

    CERN Document Server

    Cyriac, Josily

    2015-01-01

    The cosmological dynamics of an otherwise empty universe in the presence of vacuum fields is considered. Quantum fluctuations at the Planck scale leads to a dynamical topology of space-time at very small length scales, which is dominated by compact gravitational instantons. The Planck scale vacuum energy acts as a source for the curvature of the these compact gravitational instantons and decouples from the large scale energy momentum tensor of the universe, thus making the observable cosmological constant vanish. However, a Euclidean functional integral over all possible topologies of the gravitational instantons generates a small non-zero value for the large scale cosmological constant, which agrees with the present observations.

  17. U.S. DOE Southeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Panzarella, Isaac [North Carolina State Univ., Raleigh, NC (United States); Mago, Pedro [North Carolina State Univ., Raleigh, NC (United States); Kalland, Stephen [North Carolina State Univ., Raleigh, NC (United States)

    2013-12-31

    Between 2010 and 2013, the U.S. Department of Energy (DOE) funded the Southeast Clean Energy Application Center (SE-CEAC), co-located at the North Carolina Solar Center at NC State University (NCSU) and at Mississippi State University. The SE-CEAC was one of eight regional CEACs established to promote and assist in transforming the market for combined heat and power (CHP), district energy (DE) and waste heat to power (WHP) throughout the U.S. CHP locates power generation at the point of demand and makes productive use of the residual thermal energy for process and space heating in factories and businesses, thus lowering the cost of meeting electricity and heat requirements and increasing energy efficiency. The overall goal of the SE-CEAC was to support end-user implementation and overall market transformation for CHP and related clean energy technologies. Five objectives were targeted to achieve the goal: 1. Market Analysis and Information Dissemination 2. Outreach and Education for Potential CHP End-users 3. Policy Support for State and Regional Stakeholders 4. Technical Assistance to Support CHP Deployment 5. Collaboration with DOE and other CEACs Throughout the project, the CEACs provided key services of education and outreach, technical assistance and market analysis in support of project objectives. These services were very effective at achieving key objectives of assisting prospective CHP end-users and informing policy makers, utilities and others about the benefits of CHP. There is a marked increase in the awareness of CHP technologies and applications as an energy resource among end-users, policymakers, utility regulators, electric utilities and natural gas utilities in the Southeast region as a result. At the end of 2013, a number of best-practice policies for CHP were applied or under consideration in various Southeast states. The SE-CEAC met its targets for providing technical assistance with over 50 analyses delivered for 412 MW of potential end

  18. 76 FR 3881 - Application To Export Electric Energy; TransAlta Energy Marketing (U.S.) Inc.

    Science.gov (United States)

    2011-01-21

    ... Application To Export Electric Energy; TransAlta Energy Marketing (U.S.) Inc. AGENCY: Office of Electricity....S.) Inc. (TEMUS) has applied to renew its authority to transmit electric energy from the United... Order No. EA-216, which authorized TEMUS to transmit electric energy from the United States to Canada...

  19. 78 FR 64207 - Application To Export Electric Energy; New Brunswick Energy Marketing Corporation (f/k/a New...

    Science.gov (United States)

    2013-10-28

    ... Application To Export Electric Energy; New Brunswick Energy Marketing Corporation (f/k/a New Brunswick Power... Power Generation Corporation, has applied to renew its authority to transmit electric energy from the... Generation Corporation, to transmit electric energy from the United States to Canada as a power marketer...

  20. 77 FR 39689 - Application To Export Electric Energy; IPR-GDF SUEZ Energy Marketing North America, Inc.

    Science.gov (United States)

    2012-07-05

    ... No: 2012-16464] DEPARTMENT OF ENERGY [OE Docket No. EA-386] Application To Export Electric Energy.... (GSEMNA) has applied for authority to transmit electric energy from the United States to Mexico pursuant... authority to transmit electric energy from the United States to Mexico for five years as a power...

  1. Energy return on investment: Theory and application to biophysical economics

    Science.gov (United States)

    Murphy, David J.

    This dissertation is comprised of an introduction and five manuscripts split into two main sections: theory and application. Manuscripts one and four have been published, manuscript three has been accepted for publication, and manuscripts two and five are currently in review for publication. The theory sections contains the first two manuscripts. The first manuscript is a review of the literature on Energy Return on Investment (EROI) analysis. I cover five areas in this manuscript, including: (1) EROI and corn ethanol, (2) EROI for most major fuels, (3) alternative EROI applications, (4) EROI and the economy, and (5) the minimum EROI for society. The second manuscript provides a methodological framework for performing EROI analysis. I cover the following areas in this manuscript: (1) boundaries of analysis, (2) energy quality corrections, (3) energy intensity values, and lastly (4) alternative EROI statistics. The applications section contains manuscripts three through five. The third manuscript provides a biophysical model of economic growth indicating that the feedback mechanisms between oil supply and oil price have created a growth paradox: maintaining business as usual economic growth will require the production of new sources of oil, yet the only sources of oil remaining require high oil prices, thus hampering economic growth. The fourth manuscript is a study on the geographic variability of corn ethanol production. The main conclusions of this study were: (1) the statistical error associated with calculating the EROI of corn ethanol was enough to cast doubt as to whether corn ethanol yields net energy, and (2) failure to account for the geographic variation in corn yields and fertilizer inputs artificially inflated previous estimates of the EROI or corn ethanol. In the fifth manuscript I measure the impact of the Urban Heat Island within the metropolitan area of San Juan, Puerto Rico, on the electricity demand within the city. I calculated that the UHI

  2. High energy density capacitors for low cost applications

    Science.gov (United States)

    Iyore, Omokhodion David

    Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a

  3. Potential impacts of nanotechnology on energy transmission applications and needs.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Environmental Science Division

    2007-11-30

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

  4. Analytic Continuation in the Coupling Constant Method for the Dirac Equation

    Institute of Scientific and Technical Information of China (English)

    张时声; 郭建友; 张双全; 孟杰

    2004-01-01

    On the basis of the Dirac equation, the analytic continuation in the coupling constant method is employed to investigate the energies and widths of single-particle resonant in square-well, harmonic-oscillator, and Woodsconvergent energies and widths of single-particle resonant states can be obtained, which makes the application of the analytic continuation in the coupling constant for the relativistic mean field theory possible.

  5. The CUNY Energy Institute Electrical Energy Storage Development for Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Sanjoy

    2013-03-31

    1. Project Objectives The objectives of the project are to elucidate science issues intrinsic to high energy density electricity storage (battery) systems for smart-grid applications, research improvements in such systems to enable scale-up to grid-scale and demonstrate a large 200 kWh battery to facilitate transfer of the technology to industry. 2. Background Complex and difficult to control interfacial phenomena are intrinsic to high energy density electrical energy storage systems, since they are typically operated far from equilibrium. One example of such phenomena is the formation of dendrites. Such dendrites occur on battery electrodes as they cycle, and can lead to internal short circuits, reducing cycle life. An improved understanding of the formation of dendrites and their control can improve the cycle life and safety of many energy storage systems, including rechargeable lithium and zinc batteries. Another area where improved understanding is desirable is the application of ionic liquids as electrolytes in energy storage systems. An ionic liquid is typically thought of as a material that is fully ionized (consisting only of anions and cations) and is fluid at or near room temperature. Some features of ionic liquids include a generally high thermal stability (up to 450 °C), a high electrochemical window (up to 6 V) and relatively high intrinsic conductivities. Such features make them attractive as battery or capacitor electrolytes, and may enable batteries which are safer (due to the good thermal stability) and of much higher energy density (due to the higher voltage electrode materials which may be employed) than state of the art secondary (rechargeable) batteries. Of particular interest is the use of such liquids as electrolytes in metal air batteries, where energy densities on the order of 1-2,000 Wh / kg are possible; this is 5-10 times that of existing state of the art lithium battery technology. The Energy Institute has been engaged in the

  6. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications.

    Science.gov (United States)

    Su, Dang Sheng; Schlögl, Robert

    2010-02-22

    Electrochemical energy storage is one of the important technologies for a sustainable future of our society, in times of energy crisis. Lithium-ion batteries and supercapacitors with their high energy or power densities, portability, and promising cycling life are the cores of future technologies. This Review describes some materials science aspects on nanocarbon-based materials for these applications. Nanostructuring (decreasing dimensions) and nanoarchitecturing (combining or assembling several nanometer-scale building blocks) are landmarks in the development of high-performance electrodes for with long cycle lifes and high safety. Numerous works reviewed herein have shown higher performances for such electrodes, but mostly give diverse values that show no converging tendency towards future development. The lack of knowledge about interface processes and defect dynamics of electrodes, as well as the missing cooperation between material scientists, electrochemists, and battery engineers, are reasons for the currently widespread trial-and-error strategy of experiments. A concerted action between all of these disciplines is a prerequisite for the future development of electrochemical energy storage devices.

  7. Electrospinning of Nanofibers and Their Applications for Energy Devices

    Directory of Open Access Journals (Sweden)

    Xiaomin Shi

    2015-01-01

    Full Text Available With the depletion of fossil fuels and the increasing demand of energy for economic development, it is urgent to develop renewable energy technologies to sustain the economic growth. Electrospinning is a versatile and efficient fabrication method for one-dimensional (1D nanostructured fibers of metals, metal oxides, hydrocarbons, composites, and so forth. The resulting nanofibers (NFs with controllable diameters ranging from nanometer to micrometer scale possess unique properties such as a high surface-area-to-volume and aspect ratio, low density, and high pore volume. These properties make 1D nanomaterials more advantageous than conventional materials in energy harvesting, conversion, and storage devices. In this review, the key parameters for e-spinning are discussed and the properties of electrospun NFs and applications in solar cells, fuel cells, nanogenerators, hydrogen energy harvesting and storage, lithium-ion batteries, and supercapacitors are reviewed. The advantages and disadvantages of electrospinning and an outlook on the possible future directions are also discussed.

  8. Direct application of geothermal energy: 2005 Worldwide review

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L. [Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR 97601 (United States); Freeston, Derek H. [Geothermal Institute, University of Auckland, Auckland (New Zealand)

    2005-12-01

    This paper is a review of worldwide direct applications of geothermal energy. It attempts to update the surveys presented at and after the World Geothermal Congresses of 1995, 2000 and 2005. Seventy-two countries report direct utilization of geothermal energy. In May 2005, the direct-use projects had an estimated installed thermal capacity of 28,268MWt. The thermal energy usage is 273,372TJ/year (75,943GWh/year), a 43% increase over 2000; the annual compound growth rate is 7.5%. The distribution of thermal energy used by category is approximately 32% for geothermal heat pumps, 30% for bathing and swimming (including balneology), 20% for space heating (of which 83% is for district heating), 7.5% for greenhouse and open-ground heating, 4% for industrial process heat, 4% for aquaculture pond and raceway heating, <1% for agricultural drying, <1% for snow melting and cooling, and <0.5% for other uses. The equivalent annual savings in fuel oil amounts to 170 million barrels (25.4 million tonnes) and 24 million tonnes in carbon emissions to the atmosphere. (author)

  9. Modern wind energy technology for Russian applications. Main report

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Winther-Jensen, Martin; Bindner, Henrik W.

    1999-01-01

    The general objective of the project is to establish a technical foundation for an intensified application of wind energy in Russia with medium to large wind turbines and transfer/adaptation of Danish and European wind turbine technology as a basis forfuture joint ventures and technology exports...... the project reported herein. The main purpose of phase 1 is to assess the needs for modifications and adaptations of established standard (in casu Danish) windturbine designs for decentralised energy systems with a limited number of medium sized wind turbines and for grid connected wind turbines in cold...... climate and in-land sites of Russia. As part of this work it is necessary to clarify the types of operationalconditions and requirements that are to be met by wind turbines operating in such conditions, and to outline suitable test procedures and test set-up’s for verifications of such adapted...

  10. Old bulgarian architecture - an university of solar energy application

    Energy Technology Data Exchange (ETDEWEB)

    Dobrinova, Annie [Bulgarian Solar Energy Society, Sofia (Bulgaria)

    2008-07-01

    The impressing involvement of the ancient Bulgarian houses in the surroundings and their composition reveal nearly all aspects of Solar Energy (SE) and energy efficiency(EE) tools' application. In this paper are concerned (and richly illustrated), namely: direct/indirect gains, thermal mass, convectional loops, sun spaces (atrium case), solar chimney, synthesis exterior/interior; etc. The joint effect is highly convincing in the SE and EE knowledge of ancient anonymous master-builder. The SE conception is obviously always well considered, readable, well planned and its combined effect is not accidental at all. Such investigation could be of great importance for a new meaning (not only in Bulgaria) to History of Architecture. Investigations like this could motivate a future unwritten yet Bioclimatic history of world architecture. (orig.)

  11. Biomass measurement from LANDSAT: Drought and energy applications

    Science.gov (United States)

    Maxwell, E. L.

    1981-01-01

    The theory supporting the use of vegetation indices derived from LANDSAT data for the direct measurement of biomass is reviewed. The use of multispectral data to measure biomass is a natural and viable application since the photosynthetic production of biomass gives vegetation its unique spectral properties. Vegetation indices also perform a normalization function which tends to make them insensitive to atmospheric and soil color variations. Optical and digital LANDSAT products are discussed relative to the use of vegetation indices to monitor drought impact. Based on results obtained in Colorado, operational use of LANDSAT to monitor drought is cost effective, practical and ready for implementation today. The direct measurement of biomass energy resources may also benefit from LANDSAT technology. Measurement of total biomass and annual primary production may be feasible. Identification of that component of biomass resources available for energy use will require other sources of information, however.

  12. Electromagnetic Lead Screw for Potential Wave Energy Application

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin

    2014-01-01

    This paper presents a new type electromagnetic lead screw (EMLS) intended for wave energy application. Similar to the mechanical lead screw, this electromagnetic version can transfer slow linear motion to high-rotational motion, offering gearing effects. Compared with the existing pure magnetic...... lead screw (MLS) employing permanent magnets only, the new EMLS proposed uses dc current to provide the required helical-shape magnetic field, offering a much simpler, robust structure compared with the MLS. The working principle and the performances of this EMLS are analyzed in this paper. Comparison...

  13. A Flywheel Energy Storage System Demonstration for Space Applications

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy

    2003-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented.

  14. Application of Diamond Nanoparticles in Low-Energy Neutron Physics

    Directory of Open Access Journals (Sweden)

    Alexander Strelkov

    2010-03-01

    Full Text Available Diamond, with its exceptionally high optical nuclear potential and low absorption cross-section, is a unique material for a series of applications in VCN (very cold neutron physics and techniques. In particular, powder of diamond nanoparticles provides the best reflector for neutrons in the complete VCN energy range. It allowed also the first observation of quasi-specular reflection of cold neutrons (CN from disordered medium. Effective critical velocity for such a quasi-specular reflection is higher than that for the best super-mirror. Nano-diamonds survive in high radiation fluxes; therefore they could be used, under certain conditions, in the vicinity of intense neutron sources.

  15. Thermal energy harvesting for application at MEMS scale

    CERN Document Server

    Percy, Steven; McGarry, Scott; Post, Alex; Moore, Tim; Cavanagh, Kate

    2014-01-01

    This book discusses the history of thermal heat generators and focuses on the potential for these processes using micro-electrical mechanical systems (MEMS) technology for this application. The main focus is on the capture of waste thermal energy for example from industrial processes, transport systems or the human body to generate useable electrical power.  A wide range of technologies is discussed, including external combustion heat cycles at MEMS ( Brayton, Stirling and Rankine), Thermoacoustic, Shape Memory Alloys (SMAs), Multiferroics, Thermionics, Pyroelectric, Seebeck, Alkali Metal Thermal, Hydride Heat Engine, Johnson Thermo Electrochemical Converters, and the Johnson Electric Heat Pipe.

  16. Application of Solar energy for sustainable Dairy Development

    Directory of Open Access Journals (Sweden)

    Istiyak Chauhan

    2013-06-01

    Full Text Available At the time of independence milk production in India was only 17 million tones perannum. Today India has become number one in milk production, producing 127 milliontones per annum with approx. 20% of the total milk production is handled by theorganized sectors. Dairy and food industries are fast growing industries and day-by-daynewer technologies are being introduced to get better quality of foods. Use ofconventional energy is common practice for major processing of milk. At present all mostall dairy operations are performed using grid supply with diesel gen-set as backup. Milkprocurement system has changed in India and now milk is being procured by maintainingcold chain to improve its microbial quality. The village level co-operative societies for milkcollections are provided by bulk milk coolers operating on conventional grid supply ofelectricity and in case of unavailability of electric supply diesel generator sets are providedfor cooling the milk. To overcome the problem of continuous grid supply of electricityand diesel generator sets, solar based refrigeration system for milk cooling at society levelis quiet feasible. Most of the milk processing operations, room conditioning for milkproduct packaging and cold stores for milk & milk products are operating on grid electricsupply. To overcome problem of peak load penalty, the part load can be shared by solarbased vapour absorption system for such operations. The use of solar energy in the dairyis generally found for hot water supply to boiler, hot water generator for processing ofmilk or for CIP cleaning. The field level application of solar based refrigeration system formilk cooling and solar based vapour absorption system for commercial application formilk and milk related cooling operations and for room conditioning for cold stores andpackaging rooms for milk and milk products are minimum. There is an urgent need todevelop commercially viable solar based refrigeration system for such

  17. Bioinspired Nanoscale Materials for Biomedical and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Du, Dan; Lin, Yuehe

    2014-05-01

    The demand of green, affordable and environmentally sustainable materials has encouraged scientists in different fields to draw inspiration from nature in developing materials with unique properties such as miniaturization, hierarchical organization, and adaptability. Together with the exceptional properties of nanomaterials, over the past century, the field of bioinspired nanomaterials has taken huge leaps. While on one hand, the sophistication of hierarchical structures endow biological systems with multifunctionality, the synthetic control on the creation of nanomaterials enables the design of materials with specific functionalities. The aim of this review is to provide a comprehensive, up-to-date overview of the field of bioinspired nanomaterials, which we have broadly categorized into biotemplates and biomimics. We will discuss the application of bioinspired nanomaterials as biotemplates in catalysis, nanomedicine, immunoassays and in energy, drawing attention to novel materials such as protein cages. Further, the applications of bioinspired materials in tissue engineering and biomineralization will also be discussed.

  18. Energy efficiency. A constant challenge to science and practice. Proceedings. 2. ed.; Energieeffizienz. Eine stete Herausforderung an Wissenschaft und Praxis. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ulrich (ed.)

    2011-07-01

    Within the meeting ''Energy efficiency'' of the Research Center for Energy Economics (Munich, Federal Republic of Germany) from 12th to 13th May, 2011, at the Munich Residenz (Munich, Federal Republic of Germany) the following lectures were presented: (1) Innovation and research for an enhanced energy efficiency - New accents in the energy research politics of the Federal Government (Knut Kuebler); (2) Revolution of efficiency in the monastery St. Ottilien (Wolfgang Mauch); (3) From the maser plan to the local plan of energy utilization (Tobias Schmid); (4) The life cycle approach as a driver for innovative energy contracting (Alfred Gayer); (5) Energy efficiency networks (Anna Gruber); (6) Grid expansion for an enhanced utilization of renewable energies (Martin Fuchs); (7) Storage requirement in the electrical grid; (8) Scenarios for the development of the electromobility in Munich (Stephan Brunnert); (9) Li ion batteries for electrified automobiles - Demands and status (Peter Lamp); (10) Marketing of wind power (Serafin von Roon); (11) Demand side management in non-residential buildings (Johannes Jungwirth); (12) Energy future 2050 (Ulrich Wagner); (13) Decentral and renewable power generation (Ulli Arndt); (14) Electromobility - is that the future? (Markus Lienkamp); (14) Electric power - Reason or solution of the climate problem? (Harald Lesch).

  19. Application of Liquid Hydrogen with SMES for Efficient Use of Renewable Energy in the Energy Internet

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-02-01

    Full Text Available Considering that generally frequency instability problems occur due to abrupt variations in load demand growth and power variations generated by different renewable energy sources (RESs, the application of superconducting magnetic energy storage (SMES may become crucial due to its rapid response features. In this paper, liquid hydrogen with SMES (LIQHYSMES is proposed to play a role in the future energy internet in terms of its combination of the SMES and the liquid hydrogen storage unit, which can help to overcome the capacity limit and high investment cost disadvantages of SMES. The generalized predictive control (GPC algorithm is presented to be appreciatively used to eliminate the frequency deviations of the isolated micro energy grid including the LIQHYSMES and RESs. A benchmark micro energy grid with distributed generators (DGs, electrical vehicle (EV stations, smart loads and a LIQHYSMES unit is modeled in the Matlab/Simulink environment. The simulation results show that the proposed GPC strategy can reschedule the active power output of each component to maintain the stability of the grid. In addition, in order to improve the performance of the SMES, a detailed optimization design of the superconducting coil is conducted, and the optimized SMES unit can offer better technical advantages in damping the frequency fluctuations.

  20. Application and verification of ECMWF seasonal forecast for wind energy

    Science.gov (United States)

    Žagar, Mark; Marić, Tomislav; Qvist, Martin; Gulstad, Line

    2015-04-01

    A good understanding of long-term annual energy production (AEP) is crucial when assessing the business case of investing in green energy like wind power. The art of wind-resource assessment has emerged into a scientific discipline on its own, which has advanced at high pace over the last decade. This has resulted in continuous improvement of the AEP accuracy and, therefore, increase in business case certainty. Harvesting the full potential output of a wind farm or a portfolio of wind farms depends heavily on optimizing operation and management strategy. The necessary information for short-term planning (up to 14 days) is provided by standard weather and power forecasting services, and the long-term plans are based on climatology. However, the wind-power industry is lacking quality information on intermediate scales of the expected variability in seasonal and intra-annual variations and their geographical distribution. The seasonal power forecast presented here is designed to bridge this gap. The seasonal power production forecast is based on the ECMWF seasonal weather forecast and the Vestas' high-resolution, mesoscale weather library. The seasonal weather forecast is enriched through a layer of statistical post-processing added to relate large-scale wind speed anomalies to mesoscale climatology. The resulting predicted energy production anomalies, thus, include mesoscale effects not captured by the global forecasting systems. The turbine power output is non-linearly related to the wind speed, which has important implications for the wind power forecast. In theory, the wind power is proportional to the cube of wind speed. However, due to the nature of turbine design, this exponent is close to 3 only at low wind speeds, becomes smaller as the wind speed increases, and above 11-13 m/s the power output remains constant, called the rated power. The non-linear relationship between wind speed and the power output generally increases sensitivity of the forecasted power