WorldWideScience

Sample records for conservation ofprotein fold

  1. Structural proteomics of minimal organisms: conservation ofprotein fold usage and evolutionary implications

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Kim, Sung-Hou

    2006-03-15

    Background: Determining the complete repertoire of proteinstructures for all soluble, globular proteins in a single organism hasbeen one of the major goals of several structural genomics projects inrecent years. Results: We report that this goal has nearly been reachedfor several "minimal organisms"--parasites or symbionts with reducedgenomes--for which over 95 percent of the soluble, globular proteins maynow be assigned folds, overall 3-D backbone structures. We analyze thestructures of these proteins as they relate to cellular functions, andcompare conservation off old usage between functional categories. We alsocompare patterns in the conservation off olds among minimal organisms andthose observed between minimal organisms and other bacteria. Conclusion:We find that proteins performing essential cellular functions closelyrelated to transcription and translation exhibit a higher degree ofconservation in fold usage than proteins in other functional categories.Folds related to transcription and translation functional categories werealso over represented in minimal organisms compared to otherbacteria.

  2. Fold and Fit: Space Conserving Shape Editing

    KAUST Repository

    Ibrahim, Mohamed; Yan, Dong-Ming

    2017-01-01

    We present a framework that folds man-made objects in a structure-aware manner for space-conserving storage and transportation. Given a segmented 3D mesh of a man-made object, our framework jointly optimizes for joint locations, the folding order

  3. Fold and Fit: Space Conserving Shape Editing

    KAUST Repository

    Ibrahim, Mohamed

    2017-09-01

    We present a framework that folds man-made objects in a structure-aware manner for space-conserving storage and transportation. Given a segmented 3D mesh of a man-made object, our framework jointly optimizes for joint locations, the folding order, and folding angles for each part of the model, enabling it to transform into a spatially efficient configuration while keeping its original functionality as intact as possible. That is, if a model is supposed to withstand several forces in its initial state to serve its functionality, our framework places the joints between the parts of the model such that the model can withstand forces with magnitudes that are comparable to the magnitudes applied on the unedited model. Furthermore, if the folded shape is not compact, our framework proposes further segmentation of the model to improve its compactness in its folded state.

  4. Relative Stabilities of Conserved and Non-Conserved Structures in the OB-Fold Superfamily

    Directory of Open Access Journals (Sweden)

    Andrei T. Alexandrescu

    2009-05-01

    Full Text Available The OB-fold is a diverse structure superfamily based on a β-barrel motif that is often supplemented with additional non-conserved secondary structures. Previous deletion mutagenesis and NMR hydrogen exchange studies of three OB-fold proteins showed that the structural stabilities of sites within the conserved β-barrels were larger than sites in non-conserved segments. In this work we examined a database of 80 representative domain structures currently classified as OB-folds, to establish the basis of this effect. Residue-specific values were obtained for the number of Cα-Cα distance contacts, sequence hydrophobicities, crystallographic B-factors, and theoretical B-factors calculated from a Gaussian Network Model. All four parameters point to a larger average flexibility for the non-conserved structures compared to the conserved β-barrels. The theoretical B-factors and contact densities show the highest sensitivity.Our results suggest a model of protein structure evolution in which novel structural features develop at the periphery of conserved motifs. Core residues are more resistant to structural changes during evolution since their substitution would disrupt a larger number of interactions. Similar factors are likely to account for the differences in stability to unfolding between conserved and non-conserved structures.

  5. Structural Conservation of the Myoviridae Phage Tail Sheath Protein Fold

    Energy Technology Data Exchange (ETDEWEB)

    Aksyuk, Anastasia A.; Kurochkina, Lidia P.; Fokine, Andrei; Forouhar, Farhad; Mesyanzhinov, Vadim V.; Tong, Liang; Rossmann, Michael G. (SOIBC); (Purdue); (Columbia)

    2012-02-21

    Bacteriophage phiKZ is a giant phage that infects Pseudomonas aeruginosa, a human pathogen. The phiKZ virion consists of a 1450 {angstrom} diameter icosahedral head and a 2000 {angstrom}-long contractile tail. The structure of the whole virus was previously reported, showing that its tail organization in the extended state is similar to the well-studied Myovirus bacteriophage T4 tail. The crystal structure of a tail sheath protein fragment of phiKZ was determined to 2.4 {angstrom} resolution. Furthermore, crystal structures of two prophage tail sheath proteins were determined to 1.9 and 3.3 {angstrom} resolution. Despite low sequence identity between these proteins, all of these structures have a similar fold. The crystal structure of the phiKZ tail sheath protein has been fitted into cryo-electron-microscopy reconstructions of the extended tail sheath and of a polysheath. The structural rearrangement of the phiKZ tail sheath contraction was found to be similar to that of phage T4.

  6. An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins.

    Directory of Open Access Journals (Sweden)

    Marcin Michalik

    Full Text Available An intimate interaction between a pair of amino acids, a tyrosine and glycine on neighboring β-strands, has been previously reported to be important for the structural stability of autotransporters. Here, we show that the conservation of this interacting pair extends to nearly all major families of outer membrane β-barrel proteins, which are thought to have originated through duplication events involving an ancestral ββ hairpin. We analyzed the function of this motif using the prototypical outer membrane protein OmpX. Stopped-flow fluorescence shows that two folding processes occur in the millisecond time regime, the rates of which are reduced in the tyrosine mutant. Folding assays further demonstrate a reduction in the yield of folded protein for the mutant compared to the wild-type, as well as a reduction in thermal stability. Taken together, our data support the idea of an evolutionarily conserved 'folding core' that affects the folding, membrane insertion, and thermal stability of outer membrane protein β-barrels.

  7. The structure of a conserved Piezo channel domain reveals a novel beta sandwich fold

    Science.gov (United States)

    Kamajaya, Aron; Kaiser, Jens; Lee, Jonas; Reid, Michelle; Rees, Douglas C.

    2014-01-01

    Summary Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a novel beta sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in Dehydrated Hereditary Stomatocytosis (DHS) patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels. PMID:25242456

  8. The structure of a conserved piezo channel domain reveals a topologically distinct β sandwich fold.

    Science.gov (United States)

    Kamajaya, Aron; Kaiser, Jens T; Lee, Jonas; Reid, Michelle; Rees, Douglas C

    2014-10-07

    Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2,000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a topologically distinct β sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in dehydrated hereditary stomatocytosis patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be-identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Conserved nucleation sites reinforce the significance of Phi value analysis in protein-folding studies.

    Science.gov (United States)

    Gianni, Stefano; Jemth, Per

    2014-07-01

    The only experimental strategy to address the structure of folding transition states, the so-called Φ value analysis, relies on the synergy between site directed mutagenesis and the measurement of reaction kinetics. Despite its importance, the Φ value analysis has been often criticized and its power to pinpoint structural information has been questioned. In this hypothesis, we demonstrate that comparing the Φ values between proteins not only allows highlighting the robustness of folding pathways but also provides per se a strong validation of the method. © 2014 International Union of Biochemistry and Molecular Biology.

  10. Toxin structures as evolutionary tools: Using conserved 3D folds to study the evolution of rapidly evolving peptides.

    Science.gov (United States)

    Undheim, Eivind A B; Mobli, Mehdi; King, Glenn F

    2016-06-01

    Three-dimensional (3D) structures have been used to explore the evolution of proteins for decades, yet they have rarely been utilized to study the molecular evolution of peptides. Here, we highlight areas in which 3D structures can be particularly useful for studying the molecular evolution of peptide toxins. Although we focus our discussion on animal toxins, including one of the most widespread disulfide-rich peptide folds known, the inhibitor cystine knot, our conclusions should be widely applicable to studies of the evolution of disulfide-constrained peptides. We show that conserved 3D folds can be used to identify evolutionary links and test hypotheses regarding the evolutionary origin of peptides with extremely low sequence identity; construct accurate multiple sequence alignments; and better understand the evolutionary forces that drive the molecular evolution of peptides. Also watch the video abstract. © 2016 WILEY Periodicals, Inc.

  11. The formation of a native-like structure containing eight conserved hydrophobic residues is rate limiting in two-state protein folding of ACBP

    DEFF Research Database (Denmark)

    Kragelund, Birthe Brandt; Osmark, Peter; Neergaard, Thomas B.

    1999-01-01

    The acyl-coenzyme A-binding proteins (ACBPs) contain 26 highly conserved sequence positions. The majority of these have been mutated in the bovine protein, and their influence on the rate of two-state folding and unfolding has been measured. The results identify eight sequence positions, out of 24...... probed, that are critical for fast productive folding. The residues are all hydrophobic and located in the interface between the N- and C-terminal helices. The results suggest that one specific site dominated by conserved hydrophobic residues forms the structure of the productive rate-determining folding...... step and that a sequential framework model can describe the protein folding reaction....

  12. The Structure of a Conserved Domain of TamB Reveals a Hydrophobic β Taco Fold.

    Science.gov (United States)

    Josts, Inokentijs; Stubenrauch, Christopher James; Vadlamani, Grishma; Mosbahi, Khedidja; Walker, Daniel; Lithgow, Trevor; Grinter, Rhys

    2017-12-05

    The translocation and assembly module (TAM) plays a role in the transport and insertion of proteins into the bacterial outer membrane. TamB, a component of this system spans the periplasmic space to engage with its partner protein TamA. Despite efforts to characterize the TAM, the structure and mechanism of action of TamB remained enigmatic. Here we present the crystal structure of TamB amino acids 963-1,138. This region represents half of the conserved DUF490 domain, the defining feature of TamB. TamB 963-1138 consists of a concave, taco-shaped β sheet with a hydrophobic interior. This β taco structure is of dimensions capable of accommodating and shielding the hydrophobic side of an amphipathic β strand, potentially allowing TamB to chaperone nascent membrane proteins from the aqueous environment. In addition, sequence analysis suggests that the structure of TamB 963-1138 is shared by a large portion of TamB. This architecture could allow TamB to act as a conduit for membrane proteins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. HMMerThread: detecting remote, functional conserved domains in entire genomes by combining relaxed sequence-database searches with fold recognition.

    Directory of Open Access Journals (Sweden)

    Charles Richard Bradshaw

    Full Text Available Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes. We find ∼4500 cross-species validated, remotely conserved domain predictions in the human proteome alone. As an example, we find a DNA-binding domain in the C-terminal part of the A-kinase anchor protein 10 (AKAP10, a PKA adaptor that has been implicated in cardiac arrhythmias and premature cardiac death, which upon stress likely translocates from mitochondria to the nucleus/nucleolus. Based on our prediction, we propose that with this HLH-domain, AKAP10 is involved in the transcriptional control of stress response. Further remotely conserved domains we discuss are examples from areas such as sporulation, chromosome segregation and signalling during immune response. The HMMerThread algorithm is able to automatically detect the presence of remotely conserved domains in

  14. Folding behavior of four silks of giant honey bee reflects the evolutionary conservation of aculeate silk proteins.

    Science.gov (United States)

    Maitip, Jakkrawut; Trueman, Holly E; Kaehler, Benjamin D; Huttley, Gavin A; Chantawannakul, Panuwan; Sutherland, Tara D

    2015-04-01

    Multiple gene duplication events in the precursor of the Aculeata (bees, ants, hornets) gave rise to four silk genes. Whilst these homologs encode proteins with similar amino acid composition and coiled coil structure, the retention of all four homologs implies they each are important. In this study we identified, produced and characterized the four silk proteins from Apis dorsata, the giant Asian honeybee. The proteins were readily purified, allowing us to investigate the folding behavior of solutions of individual proteins in comparison to mixtures of all four proteins at concentrations where they assemble into their native coiled coil structure. In contrast to solutions of any one protein type, solutions of a mixture of the four proteins formed coiled coils that were stable against dilution and detergent denaturation. The results are consistent with the formation of a heteromeric coiled coil protein complex. The mechanism of silk protein coiled coil formation and evolution is discussed in light of these results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Conservation

    NARCIS (Netherlands)

    Noteboom, H.P.

    1985-01-01

    The IUCN/WWF Plants Conservation Programme 1984 — 1985. World Wildlife Fund chose plants to be the subject of their fund-raising campaign in the period 1984 — 1985. The objectives were to: 1. Use information techniques to achieve the conservation objectives of the Plants Programme – to save plants;

  16. Conservation.

    Science.gov (United States)

    National Audubon Society, New York, NY.

    This set of teaching aids consists of seven Audubon Nature Bulletins, providing the teacher and student with informational reading on various topics in conservation. The bulletins have these titles: Plants as Makers of Soil, Water Pollution Control, The Ground Water Table, Conservation--To Keep This Earth Habitable, Our Threatened Air Supply,…

  17. Vocal Fold Paralysis

    Science.gov (United States)

    ... here Home » Health Info » Voice, Speech, and Language Vocal Fold Paralysis On this page: What is vocal fold ... Where can I get additional information? What is vocal fold paralysis? Structures involved in speech and voice production ...

  18. Flips for 3-folds and 4-folds

    CERN Document Server

    Corti, Alessio

    2007-01-01

    This edited collection of chapters, authored by leading experts, provides a complete and essentially self-contained construction of 3-fold and 4-fold klt flips. A large part of the text is a digest of Shokurov's work in the field and a concise, complete and pedagogical proof of the existence of 3-fold flips is presented. The text includes a ten page glossary and is accessible to students and researchers in algebraic geometry.

  19. Covering folded shapes

    Directory of Open Access Journals (Sweden)

    Oswin Aichholzer

    2014-05-01

    Full Text Available Can folding a piece of paper flat make it larger? We explore whether a shape S must be scaled to cover a flat-folded copy of itself. We consider both single folds and arbitrary folds (continuous piecewise isometries \\(S\\to\\mathbb{R}^2\\. The underlying problem is motivated by computational origami, and is related to other covering and fixturing problems, such as Lebesgue's universal cover problem and force closure grasps. In addition to considering special shapes (squares, equilateral triangles, polygons and disks, we give upper and lower bounds on scale factors for single folds of convex objects and arbitrary folds of simply connected objects.

  20. [Clinical analysis of vocal fold firbrous mass].

    Science.gov (United States)

    Chen, Hao; Sun, Jing Wu; Wan, Guang Lun; Hu, Yan Ming

    2018-03-01

    To explore the character of laryngoscopy finding, voice, and therapy of vocal fold fibrous mass. Clinical data, morphology, voice character, surgery and pathology of 15 cases with vocal fold fibrous mass were analyzed. The morbidity of vocal fold fibrous mass might be related to overuse of voice and laryngopharyngeal reflex. Laryngoscopy revealed shuttle line appearance, smoothness and decreased mucosal wave of vocal fold. These patients were invalid for voice training and might be improved by surgery, but recovery is slow. The morbidity of vocal fold fibrous mass might be related to overuse of voice and laryngopharyngeal reflex. Conservative treatment is ineffective for this disease, and surgery might improve. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  1. Vocal Fold Collision Modeling

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas; Misztal, M. K.

    2015-01-01

    When vocal folds vibrate at normal speaking frequencies, collisions occurs. The numerics and formulations behind a position-based continuum model of contact is an active field of research in the contact mechanics community. In this paper, a frictionless three-dimensional finite element model...

  2. Folding worlds between pages

    CERN Multimedia

    Meier, Matthias

    2010-01-01

    "We all remember pop-up books form our childhood. As fascinated as we were back then, we probably never imagined how much engineering know-how went into these books. Pop-up engineer Anton Radevsky has even managed to fold a 27-kilometre particle accelerator into a book" (4 pages)

  3. Folds and Etudes

    Science.gov (United States)

    Bean, Robert

    2007-01-01

    In this article, the author talks about "Folds" and "Etudes" which are images derived from anonymous typing exercises that he found in a used copy of "Touch Typing Made Simple". "Etudes" refers to the musical tradition of studies for a solo instrument, which is a typewriter. Typing exercises are repetitive attempts to type words and phrases…

  4. Physics of protein folding

    Science.gov (United States)

    Finkelstein, A. V.; Galzitskaya, O. V.

    2004-04-01

    Protein physics is grounded on three fundamental experimental facts: protein, this long heteropolymer, has a well defined compact three-dimensional structure; this structure can spontaneously arise from the unfolded protein chain in appropriate environment; and this structure is separated from the unfolded state of the chain by the “all-or-none” phase transition, which ensures robustness of protein structure and therefore of its action. The aim of this review is to consider modern understanding of physical principles of self-organization of protein structures and to overview such important features of this process, as finding out the unique protein structure among zillions alternatives, nucleation of the folding process and metastable folding intermediates. Towards this end we will consider the main experimental facts and simple, mostly phenomenological theoretical models. We will concentrate on relatively small (single-domain) water-soluble globular proteins (whose structure and especially folding are much better studied and understood than those of large or membrane and fibrous proteins) and consider kinetic and structural aspects of transition of initially unfolded protein chains into their final solid (“native”) 3D structures.

  5. The Complexity of Folding Self-Folding Origami

    Directory of Open Access Journals (Sweden)

    Menachem Stern

    2017-12-01

    Full Text Available Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of “distractor” folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal’s paradox and other NP-hard satisfiability (SAT problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out (“folding islands”. Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.

  6. The Complexity of Folding Self-Folding Origami

    Science.gov (United States)

    Stern, Menachem; Pinson, Matthew B.; Murugan, Arvind

    2017-10-01

    Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of "distractor" folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal's paradox) and other NP-hard satisfiability (SAT) problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out ("folding islands"). Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.

  7. RNA folding: structure prediction, folding kinetics and ion electrostatics.

    Science.gov (United States)

    Tan, Zhijie; Zhang, Wenbing; Shi, Yazhou; Wang, Fenghua

    2015-01-01

    Beyond the "traditional" functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important "new" biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.

  8. Vocal fold injection medialization laryngoplasty.

    Science.gov (United States)

    Modi, Vikash K

    2012-01-01

    Unilateral vocal fold paralysis (UVFP) can cause glottic insufficiency that can result in hoarseness, chronic cough, dysphagia, and/or aspiration. In rare circumstances, UVFP can cause airway obstruction necessitating a tracheostomy. The treatment options for UVFP include observation, speech therapy, vocal fold injection medialization laryngoplasty, thyroplasty, and laryngeal reinnervation. In this chapter, the author will discuss the technique of vocal fold injection for medialization of a UVFP. Copyright © 2012 S. Karger AG, Basel.

  9. Transiently disordered tails accelerate folding of globular proteins.

    Science.gov (United States)

    Mallik, Saurav; Ray, Tanaya; Kundu, Sudip

    2017-07-01

    Numerous biological proteins exhibit intrinsic disorder at their termini, which are associated with multifarious functional roles. Here, we show the surprising result that an increased percentage of terminal short transiently disordered regions with enhanced flexibility (TstDREF) is associated with accelerated folding rates of globular proteins. Evolutionary conservation of predicted disorder at TstDREFs and drastic alteration of folding rates upon point-mutations suggest critical regulatory role(s) of TstDREFs in shaping the folding kinetics. TstDREFs are associated with long-range intramolecular interactions and the percentage of native secondary structural elements physically contacted by TstDREFs exhibit another surprising positive correlation with folding kinetics. These results allow us to infer probable molecular mechanisms behind the TstDREF-mediated regulation of folding kinetics that challenge protein biochemists to assess by direct experimental testing. © 2017 Federation of European Biochemical Societies.

  10. How old is your fold?

    NARCIS (Netherlands)

    Winstanley, Henry F.; Abeln, Sanne; Deane, Charlotte M.

    Motivation: At present there exists no age estimate for the different protein structures found in nature. It has become clear from occurrence studies that different folds arose at different points in evolutionary time. An estimation of the age of different folds would be a starting point for many

  11. Teaching computers to fold proteins

    DEFF Research Database (Denmark)

    Winther, Ole; Krogh, Anders Stærmose

    2004-01-01

    A new general algorithm for optimization of potential functions for protein folding is introduced. It is based upon gradient optimization of the thermodynamic stability of native folds of a training set of proteins with known structure. The iterative update rule contains two thermodynamic averages...

  12. Periodic folding of viscous sheets

    Science.gov (United States)

    Ribe, Neil M.

    2003-09-01

    The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to determine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall, and the fluid properties. As the buoyancy increases, the system bifurcates from “forced” folding driven kinematically by fluid extrusion to “free” folding in which viscous resistance to bending is balanced by buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with laboratory experiments.

  13. Curved Folded Plate Timber Structures

    OpenAIRE

    Buri, Hans Ulrich; Stotz, Ivo; Weinand, Yves

    2011-01-01

    This work investigates the development of a Curved Origami Prototype made with timber panels. In the last fifteen years the timber industry has developed new, large size, timber panels. Composition and dimensions of these panels and the possibility of milling them with Computer Numerical Controlled machines shows great potential for folded plate structures. To generate the form of these structures we were inspired by Origami, the Japanese art of paper folding. Common paper tessellations are c...

  14. Repairing the vibratory vocal fold.

    Science.gov (United States)

    Long, Jennifer L

    2018-01-01

    A vibratory vocal fold replacement would introduce a new treatment paradigm for structural vocal fold diseases such as scarring and lamina propria loss. This work implants a tissue-engineered replacement for vocal fold lamina propria and epithelium in rabbits and compares histology and function to injured controls and orthotopic transplants. Hypotheses were that the cell-based implant would engraft and control the wound response, reducing fibrosis and restoring vibration. Translational research. Rabbit adipose-derived mesenchymal stem cells (ASC) were embedded within a three-dimensional fibrin gel, forming the cell-based outer vocal fold replacement (COVR). Sixteen rabbits underwent unilateral resection of vocal fold epithelium and lamina propria, as well as reconstruction with one of three treatments: fibrin glue alone with healing by secondary intention, replantation of autologous resected vocal fold cover, or COVR implantation. After 4 weeks, larynges were examined histologically and with phonation. Fifteen rabbits survived. All tissues incorporated well after implantation. After 1 month, both graft types improved histology and vibration relative to injured controls. Extracellular matrix (ECM) of the replanted mucosa was disrupted, and ECM of the COVR implants remained immature. Immune reaction was evident when male cells were implanted into female rabbits. Best histologic and short-term vibratory outcomes were achieved with COVR implants containing male cells implanted into male rabbits. Vocal fold cover replacement with a stem cell-based tissue-engineered construct is feasible and beneficial in acute rabbit implantation. Wound-modifying behavior of the COVR implant is judged to be an important factor in preventing fibrosis. NA. Laryngoscope, 128:153-159, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  15. NoFold: RNA structure clustering without folding or alignment.

    Science.gov (United States)

    Middleton, Sarah A; Kim, Junhyong

    2014-11-01

    Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function-for example, recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets. Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families, achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and report 213 enriched motifs, including both known and novel structures. © 2014 Middleton and Kim; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. The four-fold way

    International Nuclear Information System (INIS)

    Terazawa, H.

    1986-01-01

    The four-fold way is proposed in a minimal composite model of quarks and leptons. Various new pictures and consequences are presented and discussed. They include 1) generation, 2) quark-lepton mass spectrum, 3) quark mixing, 4) supersymmetry, 5) effective gauge theory. (author)

  17. Force generation by titin folding.

    Science.gov (United States)

    Mártonfalvi, Zsolt; Bianco, Pasquale; Naftz, Katalin; Ferenczy, György G; Kellermayer, Miklós

    2017-07-01

    Titin is a giant protein that provides elasticity to muscle. As the sarcomere is stretched, titin extends hierarchically according to the mechanics of its segments. Whether titin's globular domains unfold during this process and how such unfolded domains might contribute to muscle contractility are strongly debated. To explore the force-dependent folding mechanisms, here we manipulated skeletal-muscle titin molecules with high-resolution optical tweezers. In force-clamp mode, after quenching the force (force trace contained rapid fluctuations and a gradual increase of average force, indicating that titin can develop force via dynamic transitions between its structural states en route to the native conformation. In 4 M urea, which destabilizes H-bonds hence the consolidated native domain structure, the net force increase disappeared but the fluctuations persisted. Thus, whereas net force generation is caused by the ensemble folding of the elastically-coupled domains, force fluctuations arise due to a dynamic equilibrium between unfolded and molten-globule states. Monte-Carlo simulations incorporating a compact molten-globule intermediate in the folding landscape recovered all features of our nanomechanics results. The ensemble molten-globule dynamics delivers significant added contractility that may assist sarcomere mechanics, and it may reduce the dissipative energy loss associated with titin unfolding/refolding during muscle contraction/relaxation cycles. © 2017 The Protein Society.

  18. Spontaneous resolution of hemorrhagic polyps of the true vocal fold.

    Science.gov (United States)

    Klein, Adam M; Lehmann, Marcus; Hapner, Edie R; Johns, Michael M

    2009-01-01

    Hemorrhagic polyps are the most common benign lesions surgically removed from the vocal folds. Although this modality does offer satisfactory results in most of the cases, there is a subset of polyps that seems to resolve with conservative therapy. This study was performed to examine this subset of polyps. Thirty-four consecutive subjects diagnosed with hemorrhagic polyps of the true vocal fold were retrospectively reviewed to determine the incidence of spontaneous resolution of the lesions with nonsurgical therapy. Sixteen subjects began conservative therapy, consisting of voice therapy and proper vocal hygiene, often while awaiting an optimal personal time for surgical intervention. Of these subjects, nine (56.3%) experienced a resolution of their lesion and symptoms without undergoing surgical therapy. Surgical removal of hemorrhagic polyps is often considered the standard of treatment for these benign lesions. However, these observations support a regimen of voice therapy and observation in select cases.

  19. Synovial folds in equine articular process joints

    DEFF Research Database (Denmark)

    Thomsen, Line Nymann; Berg, Lise Charlotte; Markussen, Bo

    2013-01-01

    Cervical synovial folds have been suggested as a potential cause of neck pain in humans. Little is known about the extent and characteristics of cervical synovial folds in horses.......Cervical synovial folds have been suggested as a potential cause of neck pain in humans. Little is known about the extent and characteristics of cervical synovial folds in horses....

  20. Conservation Value

    OpenAIRE

    Tisdell, Clement A.

    2010-01-01

    This paper outlines the significance of the concept of conservation value and discusses ways in which it is determined paying attention to views stemming from utilitarian ethics and from deontological ethics. The importance of user costs in relation to economic decisions about the conservation and use of natural resources is emphasised. Particular attention is given to competing views about the importance of conserving natural resources in order to achieve economic sustainability. This then l...

  1. Functional analysis of propeptide as an intramolecular chaperone for in vivo folding of subtilisin nattokinase.

    Science.gov (United States)

    Jia, Yan; Liu, Hui; Bao, Wei; Weng, Meizhi; Chen, Wei; Cai, Yongjun; Zheng, Zhongliang; Zou, Guolin

    2010-12-01

    Here, we show that during in vivo folding of the precursor, the propeptide of subtilisin nattokinase functions as an intramolecular chaperone (IMC) that organises the in vivo folding of the subtilisin domain. Two residues belonging to β-strands formed by conserved regions of the IMC are crucial for the folding of the subtilisin domain through direct interactions. An identical protease can fold into different conformations in vivo due to the action of a mutated IMC, resulting in different kinetic parameters. Some interfacial changes involving conserved regions, even those induced by the subtilisin domain, blocked subtilisin folding and altered its conformation. Insight into the interaction between the subtilisin and IMC domains is provided by a three-dimensional structural model. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Understanding ensemble protein folding at atomic detail

    International Nuclear Information System (INIS)

    Wallin, Stefan; Shakhnovich, Eugene I

    2008-01-01

    Although far from routine, simulating the folding of specific short protein chains on the computer, at a detailed atomic level, is starting to become a reality. This remarkable progress, which has been made over the last decade or so, allows a fundamental aspect of the protein folding process to be addressed, namely its statistical nature. In order to make quantitative comparisons with experimental kinetic data a complete ensemble view of folding must be achieved, with key observables averaged over the large number of microscopically different folding trajectories available to a protein chain. Here we review recent advances in atomic-level protein folding simulations and the new insight provided by them into the protein folding process. An important element in understanding ensemble folding kinetics are methods for analyzing many separate folding trajectories, and we discuss techniques developed to condense the large amount of information contained in an ensemble of trajectories into a manageable picture of the folding process. (topical review)

  3. Effects of gravity in folding

    Science.gov (United States)

    Minkel, Donald Howe

    Effects of gravity on buckle folding are studied using a Newtonian fluid finite element model of a single layer embedded between two thicker less viscous layers. The methods allow arbitrary density jumps, surface tension coefficients, resistance to slip at the interfaces, and tracking of fold growth to a large amplitudes. When density increases downward in two equal jumps, a layer buckles less and thickens more than with uniform density. When density increases upward in two equal jumps, it buckles more and thickens less. A low density layer with periodic thickness variations buckles more, sometimes explosively. Thickness variations form, even if not present initially. These effects are greater with; smaller viscosities, larger density jump, larger length scale, and slower shortening rate. They also depend on wavelength and amplitude, and these dependencies are described in detail. The model is applied to the explosive growth of the salt anticlines of the Paradox Basin, Colorado and Utah. There, shale (higher density) overlies salt (lower density). Methods for simulating realistic earth surface erosion and deposition conditions are introduced. Growth rates increase both with ease of slip at the salt-shale interface, and when earth surface relief stays low due to erosion and deposition. Model anticlines grow explosively, attaining growth rates and amplitudes close to those of the field examples. Fastest growing wavelengths are the same as seen in the field. It is concluded that a combination of partial-slip at the salt-shale interface, with reasonable earth surface conditions, promotes sufficiently fast buckling of the salt-shale interface due to density inversion alone. Neither basement faulting, nor tectonic shortening is required to account for the observed structures. Of fundamental importance is the strong tendency of gravity to promote buckling in low density layers with thickness variations. These develop, even if not present initially. folds

  4. Protein folding and wring resonances

    DEFF Research Database (Denmark)

    Bohr, Jakob; Bohr, Henrik; Brunak, Søren

    1997-01-01

    The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested that prot......The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested...... that protein folding takes place when the amplitude of a wring excitation becomes so large that it is energetically favorable to bend the protein backbone. The condition under which such structural transformations can occur is found, and it is shown that both cold and hot denaturation (the unfolding...

  5. Dynamics of Folds in the Plane

    Science.gov (United States)

    Krylov, Nikolai A.; Rogers, Edwin L.

    2011-01-01

    Take a strip of paper and fold a crease intersecting the long edges, creating two angles. Choose one edge and consider the angle with the crease. Fold the opposite edge along the crease, creating a new crease that bisects the angle. Fold again, this time using the newly created crease and the initial edge, creating a new angle along the chosen…

  6. Insights into the fold organization of TIM barrel from interaction energy based structure networks.

    Science.gov (United States)

    Vijayabaskar, M S; Vishveshwara, Saraswathi

    2012-01-01

    There are many well-known examples of proteins with low sequence similarity, adopting the same structural fold. This aspect of sequence-structure relationship has been extensively studied both experimentally and theoretically, however with limited success. Most of the studies consider remote homology or "sequence conservation" as the basis for their understanding. Recently "interaction energy" based network formalism (Protein Energy Networks (PENs)) was developed to understand the determinants of protein structures. In this paper we have used these PENs to investigate the common non-covalent interactions and their collective features which stabilize the TIM barrel fold. We have also developed a method of aligning PENs in order to understand the spatial conservation of interactions in the fold. We have identified key common interactions responsible for the conservation of the TIM fold, despite high sequence dissimilarity. For instance, the central beta barrel of the TIM fold is stabilized by long-range high energy electrostatic interactions and low-energy contiguous vdW interactions in certain families. The other interfaces like the helix-sheet or the helix-helix seem to be devoid of any high energy conserved interactions. Conserved interactions in the loop regions around the catalytic site of the TIM fold have also been identified, pointing out their significance in both structural and functional evolution. Based on these investigations, we have developed a novel network based phylogenetic analysis for remote homologues, which can perform better than sequence based phylogeny. Such an analysis is more meaningful from both structural and functional evolutionary perspective. We believe that the information obtained through the "interaction conservation" viewpoint and the subsequently developed method of structure network alignment, can shed new light in the fields of fold organization and de novo computational protein design.

  7. Anatomy and Histology of an Epicanthal Fold.

    Science.gov (United States)

    Park, Jae Woo; Hwang, Kun

    2016-06-01

    The aim of this study is to elucidate the precise anatomical and histological detail of the epicanthal fold.Thirty-two hemifaces of 16 Korean adult cadavers were used in this study (30 hemifaces with an epicanthal fold, 2 without an epicanthal fold). In 2 patients who had an epicanthoplasty, the epicanthal folds were sampled.In a dissection, the periorbital skin and subcutaneous tissues were removed and the epicanthal fold was observed in relation to each part of the orbicularis oculi muscle. Specimens including the epicanthal fold were embeddedin in paraffin, sectioned at 10 um, and stained with Hematoxylin-Eosin. The horizontal section in the level of the paplebral fissure was made and the prepared slides were observed under a light microscope.In the specimens without an epicanthal fold, no connection between the upper preseptal muscle and the lower preseptal muscle was found. In the specimens with an epicanthal fold, a connection of the upper preseptal muscle to the lower preseptal muscle was observed. It was present in all 15 hemifaces (100%). There was no connection between the pretarsal muscles. In a horizontal section, the epicanthal fold was composed of 3 compartments: an outer skin lining, a core structure, and an innerskin lining. The core structure was mainly composed of muscular fibers and fibrotic tissue and they were intermingled.Surgeons should be aware of the anatomical details of an epicanthal fold. In removing or reconstructing an epicanthal fold, the fibromuscular core band should also be removed or reconstructed.

  8. Anatomical study of minor alterations in neonate vocal folds.

    Science.gov (United States)

    Silva, Adriano Rezende; Machado, Almiro José; Crespo, Agrício Nubiato

    2014-01-01

    Minor structural alterations of the vocal fold cover are frequent causes of voice abnormalities. They may be difficult to diagnose, and are expressed in different manners. Cases of intracordal cysts, sulcus vocalis, mucosal bridge, and laryngeal micro-diaphragm form the group of minor structural alterations of the vocal fold cover investigated in the present study. The etiopathogenesis and epidemiology of these alterations are poorly known. To evaluate the existence and anatomical characterization of minor structural alterations in the vocal folds of newborns. 56 larynxes excised from neonates of both genders were studied. They were examined fresh, or defrosted after conservation via freezing, under a microscope at magnifications of 25× and 40×. The vocal folds were inspected and palpated by two examiners, with the aim of finding minor structural alterations similar to those described classically, and other undetermined minor structural alterations. Larynges presenting abnormalities were submitted to histological examination. Six cases of abnormalities were found in different larynges: one (1.79%) compatible with a sulcus vocalis and five (8.93%) compatible with a laryngeal micro-diaphragm. No cases of cysts or mucosal bridges were found. The observed abnormalities had characteristics similar to those described in other age groups. Abnormalities similar to sulcus vocalis or micro-diaphragm may be present at birth. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  9. Conservation endocrinology

    Science.gov (United States)

    McCormick, Stephen; Romero, L. Michael

    2017-01-01

    Endocrinologists can make significant contributions to conservation biology by helping to understand the mechanisms by which organisms cope with changing environments. Field endocrine techniques have advanced rapidly in recent years and can provide substantial information on the growth, stress, and reproductive status of individual animals, thereby providing insight into current and future responses of populations to changes in the environment. Environmental stressors and reproductive status can be detected nonlethally by measuring a number of endocrine-related endpoints, including steroids in plasma, living and nonliving tissue, urine, and feces. Information on the environmental or endocrine requirements of individual species for normal growth, development, and reproduction will provide critical information for species and ecosystem conservation. For many taxa, basic information on endocrinology is lacking, and advances in conservation endocrinology will require approaches that are both “basic” and “applied” and include integration of laboratory and field approaches.

  10. An atlas of the thioredoxin fold class reveals the complexity of function-enabling adaptations.

    Science.gov (United States)

    Atkinson, Holly J; Babbitt, Patricia C

    2009-10-01

    The group of proteins that contain a thioredoxin (Trx) fold is huge and diverse. Assessment of the variation in catalytic machinery of Trx fold proteins is essential in providing a foundation for understanding their functional diversity and predicting the function of the many uncharacterized members of the class. The proteins of the Trx fold class retain common features-including variations on a dithiol CxxC active site motif-that lead to delivery of function. We use protein similarity networks to guide an analysis of how structural and sequence motifs track with catalytic function and taxonomic categories for 4,082 representative sequences spanning the known superfamilies of the Trx fold. Domain structure in the fold class is varied and modular, with 2.8% of sequences containing more than one Trx fold domain. Most member proteins are bacterial. The fold class exhibits many modifications to the CxxC active site motif-only 56.8% of proteins have both cysteines, and no functional groupings have absolute conservation of the expected catalytic motif. Only a small fraction of Trx fold sequences have been functionally characterized. This work provides a global view of the complex distribution of domains and catalytic machinery throughout the fold class, showing that each superfamily contains remnants of the CxxC active site. The unifying context provided by this work can guide the comparison of members of different Trx fold superfamilies to gain insight about their structure-function relationships, illustrated here with the thioredoxins and peroxiredoxins.

  11. Asymmetric hindwing foldings in rove beetles.

    Science.gov (United States)

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  12. Kinetic partitioning mechanism of HDV ribozyme folding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing, E-mail: wbzhang@whu.edu.cn [Department of Physics, Wuhan University, Wuhan, Hubei 430072 (China)

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  13. Vocal Fold Vibratory Changes Following Surgical Intervention.

    Science.gov (United States)

    Chen, Wenli; Woo, Peak; Murry, Thomas

    2016-03-01

    High-speed videoendoscopy (HSV) captures direct cycle-to-cycle visualization of vocal fold movement in real time. This ultrafast recording rate is capable of visualizing the vibratory motion of the vocal folds in severely disordered phonation and provides a direct method for examining vibratory changes after vocal fold surgery. The purpose of this study was to examine the vibratory motion before and after surgical intervention. HSV was captured from two subjects with identifiable midvocal fold benign lesions and six subjects with highly aperiodic vocal fold vibration before and after phonosurgery. Digital kymography (DKG) was used to extract high-speed kymographic vocal fold images sampled at the midmembranous, anterior 1/3, and posterior 1/3 region. Spectral analysis was subsequently applied to the DKG to quantify the cycle-to-cycle movements of the left and the right vocal fold, expressed as a spectrum. Before intervention, the vibratory spectrum consisted of decreased and flat-like spectral peaks with robust power asymmetry. After intervention, increases in spectral power and decreases in power symmetry were noted. Spectral power increases were most remarkable in the midmembranous region of the vocal fold. Surgical modification resulted in improved lateral excursion of the vocal folds, vibratory function, and perceptual measures of Voice Handicap Index-10. These changes in vibratory behavior trended toward normal vocal fold vibration. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. [Conservation Units.

    Science.gov (United States)

    Texas Education Agency, Austin.

    Each of the six instructional units deals with one aspect of conservation: forests, water, rangeland, minerals (petroleum), and soil. The area of the elementary school curriculum with which each correlates is indicated. Lists of general and specific objectives are followed by suggested teaching procedures, including ideas for introducing the…

  15. Creative conservation

    NARCIS (Netherlands)

    Bentham, Roelof J.

    1968-01-01

    The increasing exploitation of our natural resources, the unlimited occupation of ever more new areas, and the intensification of land-use, make it necessary for us to expand the concept of conservation. But we also need to reconsider that concept itself. For the changing conditions in the

  16. Reshaping conservation

    DEFF Research Database (Denmark)

    Funder, Mikkel; Danielsen, Finn; Ngaga, Yonika

    2013-01-01

    members strengthen the monitoring practices to their advantage, and to some extent move them beyond the reach of government agencies and conservation and development practitioners. This has led to outcomes that are of greater social and strategic value to communities than the original 'planned' benefits...

  17. Adaptive Origami for Efficiently Folded Structures

    Science.gov (United States)

    2016-02-01

    heating. Although a large fold angle at a high temperature is desirable in order to extrapolate the origami geometry toward closure, more emphasis is...AFRL-RQ-WP-TR-2016-0020 ADAPTIVE ORIGAMI FOR EFFICIENTLY FOLDED STRUCTURES James J. Joo and Greg Reich Design and Analysis Branch... ORIGAMI FOR EFFICIENTLY FOLDED STRUCTURES 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) James J

  18. Vocal fold paralysis secondary to phonotrauma.

    Science.gov (United States)

    Klein, Travis A L; Gaziano, Joy E; Ridley, Marion B

    2014-01-01

    A unique case of acute onset vocal fold paralysis secondary to phonotrauma is presented. The cause was forceful vocalization by a drill instructor on a firearm range. Imaging studies revealed extensive intralaryngeal and retropharyngeal hemorrhage. Laryngoscopy showed a complete left vocal fold paralysis. Relative voice rest was recommended, and the patient regained normal vocal fold mobility and function after approximately 12 weeks. Copyright © 2014 The Voice Foundation. All rights reserved.

  19. Spherical images and inextensible curved folding

    Science.gov (United States)

    Seffen, Keith A.

    2018-02-01

    In their study, Duncan and Duncan [Proc. R. Soc. London A 383, 191 (1982), 10.1098/rspa.1982.0126] calculate the shape of an inextensible surface folded in two about a general curve. They find the analytical relationships between pairs of generators linked across the fold curve, the shape of the original path, and the fold angle variation along it. They present two special cases of generator layouts for which the fold angle is uniform or the folded curve remains planar, for simplifying practical folding in sheet-metal processes. We verify their special cases by a graphical treatment according to a method of Gauss. We replace the fold curve by a piecewise linear path, which connects vertices of intersecting pairs of hinge lines. Inspired by the d-cone analysis by Farmer and Calladine [Int. J. Mech. Sci. 47, 509 (2005), 10.1016/j.ijmecsci.2005.02.013], we construct the spherical images for developable folding of successive vertices: the operating conditions of the special cases in Duncan and Duncan are then revealed straightforwardly by the geometric relationships between the images. Our approach may be used to synthesize folding patterns for novel deployable and shape-changing surfaces without need of complex calculation.

  20. Quantification of Porcine Vocal Fold Geometry.

    Science.gov (United States)

    Stevens, Kimberly A; Thomson, Scott L; Jetté, Marie E; Thibeault, Susan L

    2016-07-01

    The aim of this study was to quantify porcine vocal fold medial surface geometry and three-dimensional geometric distortion induced by freezing the larynx, especially in the region of the vocal folds. The medial surface geometries of five excised porcine larynges were quantified and reported. Five porcine larynges were imaged in a micro-CT scanner, frozen, and rescanned. Segmentations and three-dimensional reconstructions were used to quantify and characterize geometric features. Comparisons were made with geometry data previously obtained using canine and human vocal folds as well as geometries of selected synthetic vocal fold models. Freezing induced an overall expansion of approximately 5% in the transverse plane and comparable levels of nonuniform distortion in sagittal and coronal planes. The medial surface of the porcine vocal folds was found to compare reasonably well with other geometries, although the compared geometries exhibited a notable discrepancy with one set of published human female vocal fold geometry. Porcine vocal folds are qualitatively geometrically similar to data available for canine and human vocal folds, as well as commonly used models. Freezing of tissue in the larynx causes distortion of around 5%. The data can provide direction in estimating uncertainty due to bulk distortion of tissue caused by freezing, as well as quantitative geometric data that can be directly used in developing vocal fold models. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. Conservation of Charge and Conservation of Current

    OpenAIRE

    Eisenberg, Bob

    2016-01-01

    Conservation of current and conservation of charge are nearly the same thing: when enough is known about charge movement, conservation of current can be derived from conservation of charge, in ideal dielectrics, for example. Conservation of current is enforced implicitly in ideal dielectrics by theories that conserve charge. But charge movement in real materials like semiconductors or ionic solutions is never ideal. We present an apparently universal derivation of conservation of current and ...

  2. Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments

    DEFF Research Database (Denmark)

    Seemann, Ernst Stefan; Gorodkin, Jan; Backofen, Rolf

    2008-01-01

    Computational methods for determining the secondary structure of RNA sequences from given alignments are currently either based on thermodynamic folding, compensatory base pair substitutions or both. However, there is currently no approach that combines both sources of information in a single...... the corresponding probability of being single stranded. Furthermore, we found that structurally conserved RNA motifs are mostly supported by folding energies. Other problems (e.g. RNA-folding kinetics) may also benefit from employing the principles of the model we introduce. Our implementation, PETfold, was tested...

  3. Guiding the folding pathway of DNA origami.

    Science.gov (United States)

    Dunn, Katherine E; Dannenberg, Frits; Ouldridge, Thomas E; Kwiatkowska, Marta; Turberfield, Andrew J; Bath, Jonathan

    2015-09-03

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short 'staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its

  4. Approaching climate-adaptive facades with foldings

    DEFF Research Database (Denmark)

    Sack-Nielsen, Torsten

    2014-01-01

    envelopes based on folding principles such as origami. Three major aspects cover the project’s interest in this topic: Shape, kinetics and the application of new multi-functional materials form the interdisciplinary framework of this research. Shape// Initially small paper sketch models demonstrate folding...

  5. Monadic Maps and Folds for Arbitrary Datatypes

    NARCIS (Netherlands)

    Fokkinga, M.M.

    Each datatype constructor comes equiped not only with a so-called map and fold (catamorphism), as is widely known, but, under some condition, also with a kind of map and fold that are related to an arbitrary given monad. This result follows from the preservation of initiality under lifting

  6. Merging monads and folds for functional programming

    NARCIS (Netherlands)

    Meijer, E.; Jeuring, J.T.

    1995-01-01

    These notes discuss the simultaneous use of generalised fold operators and monads to structure functional programs. Generalised fold operators structure programs after the decomposition of the value they consume. Monads structure programs after the computation of the value they produce. Our programs

  7. Theoretical study of the folded waveguide

    International Nuclear Information System (INIS)

    Chen, G.L.; Owens, T.L.; Whealton, J.H.

    1988-01-01

    We have applied a three-dimensional (3-D) algorithm for solving Maxwell's equations to the analysis of foleded waveguides used for fusion plasma heating at the ion cyclotron resonance frequency. A rigorous analysis of the magnetic field structure in the folded waveguide is presented. The results are compared to experimenntal measurements. Optimum conditions for the folded waveguide are discussed. 6 refs., 10 figs

  8. Experimental investigation into the mechanism of folding

    NARCIS (Netherlands)

    Kuenen, Ph.H.; Sitter, de L.U.

    1938-01-01

    The investigation of geological structures due to folding led de Sitter to form an opinion on the mechanical problems involved (Bibl. 7). His principal contention is that in simple cases the relative movements of particles with respect to eachother during deformation leading to a fold, have been

  9. A comparison of RNA folding measures

    Directory of Open Access Journals (Sweden)

    Gardner Paul P

    2005-10-01

    Full Text Available Abstract Background In the last few decades there has been a great deal of discussion concerning whether or not noncoding RNA sequences (ncRNAs fold in a more well-defined manner than random sequences. In this paper, we investigate several existing measures for how well an RNA sequence folds, and compare the behaviour of these measures over a large range of Rfam ncRNA families. Such measures can be useful in, for example, identifying novel ncRNAs, and indicating the presence of alternate RNA foldings. Results Our analysis shows that ncRNAs, but not mRNAs, in general have lower minimal free energy (MFE than random sequences with the same dinucleotide frequency. Moreover, even when the MFE is significant, many ncRNAs appear to not have a unique fold, but rather several alternative folds, at least when folded in silico. Furthermore, we find that the six investigated measures are correlated to varying degrees. Conclusion Due to the correlations between the different measures we find that it is sufficient to use only two of them in RNA folding studies, one to test if the sequence in question has lower energy than a random sequence with the same dinucleotide frequency (the Z-score and the other to see if the sequence has a unique fold (the average base-pair distance, D.

  10. Muscular anatomy of the human ventricular folds.

    Science.gov (United States)

    Moon, Jerald; Alipour, Fariborz

    2013-09-01

    Our purpose in this study was to better understand the muscular anatomy of the ventricular folds in order to help improve biomechanical modeling of phonation and to better understand the role of these muscles during phonatory and nonphonatory tasks. Four human larynges were decalcified, sectioned coronally from posterior to anterior by a CryoJane tape transfer system, and stained with Masson's trichrome. The total and relative areas of muscles observed in each section were calculated and used for characterizing the muscle distribution within the ventricular folds. The ventricular folds contained anteriorly coursing thyroarytenoid and ventricularis muscle fibers that were in the lower half of the ventricular fold posteriorly, and some ventricularis muscle was evident in the upper and lateral portions of the fold more anteriorly. Very little muscle tissue was observed in the medial half of the fold, and the anterior half of the ventricular fold was largely devoid of any muscle tissue. All 4 larynges contained muscle bundles that coursed superiorly and medially through the upper half of the fold, toward the lateral margin of the epiglottis. Although variability of expression was evident, a well-defined thyroarytenoid muscle was readily apparent lateral to the arytenoid cartilage in all specimens.

  11. Graph-representation of oxidative folding pathways

    Directory of Open Access Journals (Sweden)

    Kaján László

    2005-01-01

    Full Text Available Abstract Background The process of oxidative folding combines the formation of native disulfide bond with conformational folding resulting in the native three-dimensional fold. Oxidative folding pathways can be described in terms of disulfide intermediate species (DIS which can also be isolated and characterized. Each DIS corresponds to a family of folding states (conformations that the given DIS can adopt in three dimensions. Results The oxidative folding space can be represented as a network of DIS states interconnected by disulfide interchange reactions that can either create/abolish or rearrange disulfide bridges. We propose a simple 3D representation wherein the states having the same number of disulfide bridges are placed on separate planes. In this representation, the shuffling transitions are within the planes, and the redox edges connect adjacent planes. In a number of experimentally studied cases (bovine pancreatic trypsin inhibitor, insulin-like growth factor and epidermal growth factor, the observed intermediates appear as part of contiguous oxidative folding pathways. Conclusions Such networks can be used to visualize folding pathways in terms of the experimentally observed intermediates. A simple visualization template written for the Tulip package http://www.tulip-software.org/ can be obtained from V.A.

  12. Geometric U-folds in four dimensions

    Science.gov (United States)

    Lazaroiu, C. I.; Shahbazi, C. S.

    2018-01-01

    We describe a general construction of geometric U-folds compatible with a non-trivial extension of the global formulation of four-dimensional extended supergravity on a differentiable spin manifold. The topology of geometric U-folds depends on certain flat fiber bundles which encode how supergravity fields are globally glued together. We show that smooth non-trivial U-folds of this type can exist only in theories where both the scalar and space-time manifolds have non-trivial fundamental group and in addition the scalar map of the solution is homotopically non-trivial. Consistency with string theory requires smooth geometric U-folds to be glued using subgroups of the effective discrete U-duality group, implying that the fundamental group of the scalar manifold of such solutions must be a subgroup of the latter. We construct simple examples of geometric U-folds in a generalization of the axion-dilaton model of \

  13. Sarcoidosis Presenting as Bilateral Vocal Fold Immobility.

    Science.gov (United States)

    Hintze, Justin M; Gnagi, Sharon H; Lott, David G

    2018-05-01

    Bilateral true vocal fold paralysis is rarely attributable to inflammatory diseases. Sarcoidosis is a rare but important etiology of bilateral true vocal fold paralysis by compressive lymphadenopathy, granulomatous infiltration, and neural involvement. We describe the first reported case of sarcoidosis presenting as bilateral vocal fold immobility caused by direct fixation by granulomatous infiltration severe enough to necessitate tracheostomy insertion. In addition, we discuss the presentation, the pathophysiology, and the treatment of this disease with a review of the literature of previously reported cases of sarcoidosis-related vocal fold immobility. Sarcoidosis should therefore be an important consideration for the otolaryngologist's differential diagnosis of true vocal fold immobility. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. Microvascular lesions of the true vocal fold.

    Science.gov (United States)

    Postma, G N; Courey, M S; Ossoff, R H

    1998-06-01

    Microvascular lesions, also called varices or capillary ectasias, in contrast to vocal fold polyps with telangiectatic vessels, are relatively small lesions arising from the microcirculation of the vocal fold. Varices are most commonly seen in female professional vocalists and may be secondary to repetitive trauma, hormonal variations, or repeated inflammation. Microvascular lesions may either be asymptomatic or cause frank dysphonia by interrupting the normal vibratory pattern, mass, or closure of the vocal folds. They may also lead to vocal fold hemorrhage, scarring, or polyp formation. Laryngovideostroboscopy is the key in determining the functional significance of vocal fold varices. Management of patients with a varix includes medical therapy, speech therapy, and occasionally surgical vaporization. Indications for surgery are recurrent hemorrhage, enlargement of the varix, development of a mass in conjunction with the varix or hemorrhage, and unacceptable dysphonia after maximal medical and speech therapy due to a functionally significant varix.

  15. Coarsely resolved topography along protein folding pathways

    Science.gov (United States)

    Fernández, Ariel; Kostov, Konstantin S.; Berry, R. Stephen

    2000-03-01

    The kinetic data from the coarse representation of polypeptide torsional dynamics described in the preceding paper [Fernandez and Berry, J. Chem. Phys. 112, 5212 (2000), preceding paper] is inverted by using detailed balance to obtain a topographic description of the potential-energy surface (PES) along the dominant folding pathway of the bovine pancreatic trypsin inhibitor (BPTI). The topography is represented as a sequence of minima and effective saddle points. The dominant folding pathway displays an overall monotonic decrease in energy with a large number of staircaselike steps, a clear signature of a good structure-seeker. The diversity and availability of alternative folding pathways is analyzed in terms of the Shannon entropy σ(t) associated with the time-dependent probability distribution over the kinetic ensemble of contact patterns. Several stages in the folding process are evident. Initially misfolded states form and dismantle revealing no definite pattern in the topography and exhibiting high Shannon entropy. Passage down a sequence of staircase steps then leads to the formation of a nativelike intermediate, for which σ(t) is much lower and fairly constant. Finally, the structure of the intermediate is refined to produce the native state of BPTI. We also examine how different levels of tolerance to mismatches of side chain contacts influence the folding kinetics, the topography of the dominant folding pathway, and the Shannon entropy. This analysis yields upper and lower bounds of the frustration tolerance required for the expeditious and robust folding of BPTI.

  16. Melody discrimination and protein fold classification

    Directory of Open Access Journals (Sweden)

    Robert P. Bywater

    2016-10-01

    Full Text Available One of the greatest challenges in theoretical biophysics and bioinformatics is the identification of protein folds from sequence data. This can be regarded as a pattern recognition problem. In this paper we report the use of a melody generation software where the inputs are derived from calculations of evolutionary information, secondary structure, flexibility, hydropathy and solvent accessibility from multiple sequence alignment data. The melodies so generated are derived from the sequence, and by inference, of the fold, in ways that give each fold a sound representation that may facilitate analysis, recognition, or comparison with other sequences.

  17. A bidirectional shape memory alloy folding actuator

    International Nuclear Information System (INIS)

    Paik, Jamie K; Wood, Robert J

    2012-01-01

    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso- and microscale systems. Despite the advantages of shape memory alloys—high strain, silent operation, and mechanical simplicity—their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180° motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the folding sections. The actuator has a thin ( < 1 mm) profile, making it appropriate for use in robotic origami. Various design parameters and fabrication variants are described and experimentally explored in the actuator prototype. (paper)

  18. Folded Plate Structures as Building Envelopes

    DEFF Research Database (Denmark)

    Falk, Andreas; Buelow, Peter von; Kirkegaard, Poul Henning

    2012-01-01

    This paper treats applications of cross-laminated timber (CLT) in structural systems for folded façade solutions. Previous work on CLT-based systems for folded roofs has shown a widening range of structural possibilities to develop timber-based shells. Geometric and material properties play...... CLT-based systems, which are studied and analysed by using a combination of digital tools for structural and environmental design and analysis. The results show gainful, rational properties of folded systems and beneficial effects from an integration of architectural and environmental performance...... criteria in the design of CLT-based façades....

  19. Mechanical Models of Fault-Related Folding

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A. M.

    2003-01-09

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  20. Topology Explains Why Automobile Sunshades Fold Oddly

    Science.gov (United States)

    Feist, Curtis; Naimi, Ramin

    2009-01-01

    Automobile sunshades always fold into an "odd" number of loops. The explanation why involves elementary topology (braid theory and linking number, both explained in detail here with definitions and examples), and an elementary fact from algebra about symmetric group.

  1. Reinke Edema: Watch For Vocal Fold Cysts.

    Science.gov (United States)

    Tüzüner, Arzu; Demirci, Sule; Yavanoglu, Ahmet; Kurkcuoglu, Melih; Arslan, Necmi

    2015-06-01

    Reinke edema is one of the common cause of dysphonia middle-aged population, and severe thickening of vocal folds require surgical treatment. Smoking plays a major role on etiology. Vocal fold cysts are also benign lesions and vocal trauma blamed for acquired cysts. We would like to present 3 cases with vocal fold cyst related with Reinke edema. First case had a subepidermal epidermoid cyst with Reinke edema, which could be easily observed before surgery during laryngostroboscopy. Second case had a mucous retention cyst into the edematous Reinke tissue, which was detected during surgical intervention, and third case had a epidermoid cyst that occurred 2 months after before microlaryngeal operation regarding Reinke edema reduction. These 3 cases revealed that surgical management of Reinke edema needs a careful dissection and close follow-up after surgery for presence of vocal fold cysts.

  2. Origami: Paper Folding--The Algorithmic Way.

    Science.gov (United States)

    Heukerott, Pamela Beth

    1988-01-01

    Describes origami, the oriental art of paper folding as an activity to teach upper elementary students concepts and skills in geometry involving polygons, angles, measurement, symmetry, and congruence. (PK)

  3. Frustration in Condensed Matter and Protein Folding

    Science.gov (United States)

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.

    2014-03-01

    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  4. Self-folding miniature elastic electric devices

    International Nuclear Information System (INIS)

    Miyashita, Shuhei; Meeker, Laura; Rus, Daniela; Tolley, Michael T; Wood, Robert J

    2014-01-01

    Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor. (paper)

  5. Benign Lesions of The Vocal Fold

    Directory of Open Access Journals (Sweden)

    Ozgur Surmelioglu

    2013-02-01

    Full Text Available Benign lesions of vocal folds are common disorders. Fifty percent of patients who have sound complaints are found to have these lesions after endoscopic and stroboscopic examinations. Benign vocal fold diseases are primarily caused by vibratory trauma. However they may also occur as a result of viral infections and congenital causes. These lesions are often presented with the complaints of dysphonia. [Archives Medical Review Journal 2013; 22(1.000: 86-95

  6. Folding of non-Euclidean curved shells

    Science.gov (United States)

    Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan

    2015-03-01

    Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.

  7. Vocal fold hemorrhage: factors predicting recurrence.

    Science.gov (United States)

    Lennon, Christen J; Murry, Thomas; Sulica, Lucian

    2014-01-01

    Vocal fold hemorrhage is an acute phonotraumatic injury treated with voice rest; recurrence is a generally accepted indication for surgical intervention. This study aims to identify factors predictive of recurrence based on outcomes of a large clinical series. Retrospective cohort. Retrospective review of cases of vocal fold hemorrhage presenting to a university laryngology service. Demographic information was compiled. Videostroboscopic exams were evaluated for hemorrhage extent, presence of varix, mucosal lesion, and/or vocal fold paresis. Vocal fold hemorrhage recurrence was the main outcome measure. Follow-up telephone survey was used to complement clinical data. Forty-seven instances of vocal fold hemorrhage were evaluated (25M:22F; 32 professional voice users). Twelve of the 47 (26%) patients experienced recurrence. Only the presence of varix demonstrated significant association with recurrence (P = 0.0089) on multivariate logistic regression. Vocal fold hemorrhage recurred in approximately 26% of patients. Varix was a predictor of recurrence, with 48% of those with varix experiencing recurrence. Monitoring, behavioral management and/or surgical intervention may be indicated to treat patients with such characteristics. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Experimental investigation of protein folding and misfolding.

    Science.gov (United States)

    Dobson, Christopher M

    2004-09-01

    Newly synthesised proteins need to fold, often to intricate and close-packed structures, in order to function. The underlying mechanism by which this complex process takes place both in vitro and in vivo is now becoming understood, at least in general terms, as a result of the application of a wide range of biophysical and computational methods used in combination with the techniques of biochemistry and protein engineering. It is increasingly apparent, however, that folding is not only crucial for generating biological activity, but that it is also coupled to a wide range of processes within the cell, ranging from the trafficking of proteins to specific organelles to the regulation of cell growth and differentiation. Not surprisingly, therefore, the failure of proteins to fold appropriately, or to remain correctly folded, is associated with a large number of cellular malfunctions that give rise to disease. Misfolding, and its consequences such as aggregation, can be investigated by extending the types of techniques used to study the normal folding process. Application of these techniques is enabling the development of a unified description of the interconversion and regulation of the different conformational states available to proteins in living systems. Such a description proves a generic basis for understanding the fundamental links between protein misfolding and its associated clinical disorders, such as Alzheimer's disease and Type II diabetes, and for exploring novel therapeutic strategies directed at their prevention and treatment on a rational basis.

  9. Kinetics and Thermodynamics of Membrane Protein Folding

    Directory of Open Access Journals (Sweden)

    Ernesto A. Roman

    2014-03-01

    Full Text Available Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.

  10. Bifurcation of self-folded polygonal bilayers

    Science.gov (United States)

    Abdullah, Arif M.; Braun, Paul V.; Hsia, K. Jimmy

    2017-09-01

    Motivated by the self-assembly of natural systems, researchers have investigated the stimulus-responsive curving of thin-shell structures, which is also known as self-folding. Self-folding strategies not only offer possibilities to realize complicated shapes but also promise actuation at small length scales. Biaxial mismatch strain driven self-folding bilayers demonstrate bifurcation of equilibrium shapes (from quasi-axisymmetric doubly curved to approximately singly curved) during their stimulus-responsive morphing behavior. Being a structurally instable, bifurcation could be used to tune the self-folding behavior, and hence, a detailed understanding of this phenomenon is appealing from both fundamental and practical perspectives. In this work, we investigated the bifurcation behavior of self-folding bilayer polygons. For the mechanistic understanding, we developed finite element models of planar bilayers (consisting of a stimulus-responsive and a passive layer of material) that transform into 3D curved configurations. Our experiments with cross-linked Polydimethylsiloxane samples that change shapes in organic solvents confirmed our model predictions. Finally, we explored a design scheme to generate gripper-like architectures by avoiding the bifurcation of stimulus-responsive bilayers. Our research contributes to the broad field of self-assembly as the findings could motivate functional devices across multiple disciplines such as robotics, artificial muscles, therapeutic cargos, and reconfigurable biomedical devices.

  11. An atlas of the thioredoxin fold class reveals the complexity of function-enabling adaptations.

    Directory of Open Access Journals (Sweden)

    Holly J Atkinson

    2009-10-01

    Full Text Available The group of proteins that contain a thioredoxin (Trx fold is huge and diverse. Assessment of the variation in catalytic machinery of Trx fold proteins is essential in providing a foundation for understanding their functional diversity and predicting the function of the many uncharacterized members of the class. The proteins of the Trx fold class retain common features-including variations on a dithiol CxxC active site motif-that lead to delivery of function. We use protein similarity networks to guide an analysis of how structural and sequence motifs track with catalytic function and taxonomic categories for 4,082 representative sequences spanning the known superfamilies of the Trx fold. Domain structure in the fold class is varied and modular, with 2.8% of sequences containing more than one Trx fold domain. Most member proteins are bacterial. The fold class exhibits many modifications to the CxxC active site motif-only 56.8% of proteins have both cysteines, and no functional groupings have absolute conservation of the expected catalytic motif. Only a small fraction of Trx fold sequences have been functionally characterized. This work provides a global view of the complex distribution of domains and catalytic machinery throughout the fold class, showing that each superfamily contains remnants of the CxxC active site. The unifying context provided by this work can guide the comparison of members of different Trx fold superfamilies to gain insight about their structure-function relationships, illustrated here with the thioredoxins and peroxiredoxins.

  12. Non-cylindrical fold growth in the Zagros fold and thrust belt (Kurdistan, NE-Iraq)

    Science.gov (United States)

    Bartl, Nikolaus; Bretis, Bernhard; Grasemann, Bernhard; Lockhart, Duncan

    2010-05-01

    The Zagros mountains extends over 1800 km from Kurdistan in N-Iraq to the Strait of Hormuz in Iran and is one of the world most promising regions for the future hydrocarbon exploration. The Zagros Mountains started to form as a result of the collision between the Eurasian and Arabian Plates, whose convergence began in the Late Cretaceous as part of the Alpine-Himalayan orogenic system. Geodetic and seismological data document that both plates are still converging and that the fold and thrust belt of the Zagros is actively growing. Extensive hydrocarbon exploration mainly focuses on the antiforms of this fold and thrust belt and therefore the growth history of the folds is of great importance. This work investigates by means of structural field work and quantitative geomorphological techniques the progressive fold growth of the Permam, Bana Bawi- and Safeen- Anticlines located in the NE of the city of Erbil in the Kurdistan region of Northern Iraq. This part of the Zagros fold and thrust belt belongs to the so-called Simply Folded Belt, which is dominated by gentle to open folding. Faults or fault related folds have only minor importance. The mechanical anisotropy of the formations consisting of a succession of relatively competent (massive dolomite and limestone) and incompetent (claystone and siltstone) sediments essentially controls the deformation pattern with open to gentle parallel folding of the competent layers and flexural flow folding of the incompetent layers. The characteristic wavelength of the fold trains is around 10 km. Due to faster erosion of the softer rock layers in the folded sequence, the more competent lithologies form sharp ridges with steeply sloping sides along the eroded flanks of the anticlines. Using an ASTER digital elevation model in combination with geological field data we quantified 250 drainage basins along the different limbs of the subcylindrical Permam, Bana Bawi- and Safeen- Anticlines. Geomorphological indices of the drainage

  13. The Risk of Vocal Fold Atrophy after Serial Corticosteroid Injections of the Vocal Fold.

    Science.gov (United States)

    Shi, Lucy L; Giraldez-Rodriguez, Laureano A; Johns, Michael M

    2016-11-01

    The aim of this study was to illustrate the risk of vocal fold atrophy in patients who receive serial subepithelial steroid injections for vocal fold scar. This study is a retrospective case report of two patients who underwent a series of weekly subepithelial infusions of 10 mg/mL dexamethasone for benign vocal fold lesion. Shortly after the procedures, both patients developed a weak and breathy voice. The first patient was a 53-year-old man with radiation-induced vocal fold stiffness. Six injections were performed unilaterally, and 1 week later, he developed unilateral vocal fold atrophy with new glottal insufficiency. The second patient was a 67-year-old woman with severe vocal fold inflammation related to laryngitis and calcinosis, Raynaud's phenomenon, esophagean dysmotility, sclerodactyly, and telangiectasia (CREST) syndrome. Five injections were performed bilaterally, and 1 week later, she developed bilateral vocal fold atrophy with a large midline glottal gap during phonation. In both cases, the steroid-induced vocal atrophy resolved spontaneously after 4 months. Serial subepithelial steroid infusions of the vocal folds, although safe in the majority of patients, carry the risk of causing temporary vocal fold atrophy when given at short intervals. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. Improvement of a Vocal Fold Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Krauter, K. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-01

    Medical professionals can better serve their patients through continual update of their imaging tools. A wide range of pathologies and disease may afflict human vocal cords or, as they’re also known, vocal folds. These diseases can affect human speech hampering the ability of the patient to communicate. Vocal folds must be opened for breathing and the closed to produce speech. Currently methodologies to image markers of potential pathologies are difficult to use and often fail to detect early signs of disease. These current methodologies rely on a strobe light and slower frame rate camera in an attempt to obtain images as the vocal folds travel over the full extent of their motion.

  15. Analysis of high-fold gamma data

    International Nuclear Information System (INIS)

    Radford, D. C.; Cromaz, M.; Beyer, C. J.

    1999-01-01

    Historically, γ-γ and γ-γ-γ coincidence spectra were utilized to build nuclear level schemes. With the development of large detector arrays, it has became possible to analyze higher fold coincidence data sets. This paper briefly reports on software to analyze 4-fold coincidence data sets that allows creation of 4-fold histograms (hypercubes) of at least 1024 channels per side (corresponding to a 43 gigachannel data space) that will fit onto a few gigabytes of disk space, and extraction of triple-gated spectra in a few seconds. Future detector arrays may have even much higher efficiencies, and detect as many as 15 or 20 γ rays simultaneously; such data will require very different algorithms for storage and analysis. Difficulties inherent in the analysis of such data are discussed, and two possible new solutions are presented, namely adaptive list-mode systems and 'list-list-mode' storage

  16. Extreme Mechanics: Self-Folding Origami

    Science.gov (United States)

    Santangelo, Christian D.

    2017-03-01

    Origami has emerged as a tool for designing three-dimensional structures from flat films. Because they can be fabricated by lithographic or roll-to-roll processing techniques, they have great potential for the manufacture of complicated geometries and devices. This article discusses the mechanics of origami and kirigami with a view toward understanding how to design self-folding origami structures. Whether an origami structure can be made to fold autonomously depends strongly on the geometry and kinematics of the origami fold pattern. This article collects some of the results on origami rigidity into a single framework, and discusses how these aspects affect the foldability of origami. Despite recent progress, most problems in origami and origami design remain completely open.

  17. In vitro folding of inclusion body proteins.

    Science.gov (United States)

    Rudolph, R; Lilie, H

    1996-01-01

    Insoluble, inactive inclusion bodies are frequently formed upon recombinant protein production in transformed microorganisms. These inclusion bodies, which contain the recombinant protein in an highly enriched form, can be isolated by solid/liquid separation. After solubilization, native proteins can be generated from the inactive material by using in vitro folding techniques. New folding procedures have been developed for efficient in vitro reconstitution of complex hydrophobic, multidomain, oligomeric, or highly disulfide-bonded proteins. These protocols take into account process parameters such as protein concentration, catalysis of disulfide bond formation, temperature, pH, and ionic strength, as well as specific solvent ingredients that reduce unproductive side reactions. Modification of the protein sequence has been exploited to improve in vitro folding.

  18. Solvent Effects on Protein Folding/Unfolding

    Science.gov (United States)

    García, A. E.; Hillson, N.; Onuchic, J. N.

    Pressure effects on the hydrophobic potential of mean force led Hummer et al. to postulate a model for pressure denaturation of proteins in which denaturation occurs by means of water penetration into the protein interior, rather than by exposing the protein hydrophobic core to the solvent --- commonly used to describe temperature denaturation. We study the effects of pressure in protein folding/unfolding kinetics in an off-lattice minimalist model of a protein in which pressure effects have been incorporated by means of the pair-wise potential of mean force of hydrophobic groups in water. We show that pressure slows down the kinetics of folding by decreasing the reconfigurational diffusion coefficient and moves the location of the folding transition state.

  19. Exact folded-band chaotic oscillator.

    Science.gov (United States)

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  20. SDEM modelling of fault-propagation folding

    DEFF Research Database (Denmark)

    Clausen, O.R.; Egholm, D.L.; Poulsen, Jane Bang

    2009-01-01

    and variations in Mohr-Coulomb parameters including internal friction. Using SDEM modelling, we have mapped the propagation of the tip-line of the fault, as well as the evolution of the fold geometry across sedimentary layers of contrasting rheological parameters, as a function of the increased offset......Understanding the dynamics and kinematics of fault-propagation-folding is important for evaluating the associated hydrocarbon play, for accomplishing reliable section balancing (structural reconstruction), and for assessing seismic hazards. Accordingly, the deformation style of fault-propagation...... a precise indication of when faults develop and hence also the sequential evolution of secondary faults. Here we focus on the generation of a fault -propagated fold with a reverse sense of motion at the master fault, and varying only the dip of the master fault and the mechanical behaviour of the deformed...

  1. Heterochiral Knottin Protein: Folding and Solution Structure.

    Science.gov (United States)

    Mong, Surin K; Cochran, Frank V; Yu, Hongtao; Graziano, Zachary; Lin, Yu-Shan; Cochran, Jennifer R; Pentelute, Bradley L

    2017-10-31

    Homochirality is a general feature of biological macromolecules, and Nature includes few examples of heterochiral proteins. Herein, we report on the design, chemical synthesis, and structural characterization of heterochiral proteins possessing loops of amino acids of chirality opposite to that of the rest of a protein scaffold. Using the protein Ecballium elaterium trypsin inhibitor II, we discover that selective β-alanine substitution favors the efficient folding of our heterochiral constructs. Solution nuclear magnetic resonance spectroscopy of one such heterochiral protein reveals a homogeneous global fold. Additionally, steered molecular dynamics simulation indicate β-alanine reduces the free energy required to fold the protein. We also find these heterochiral proteins to be more resistant to proteolysis than homochiral l-proteins. This work informs the design of heterochiral protein architectures containing stretches of both d- and l-amino acids.

  2. Vascular lesions of the vocal fold.

    Science.gov (United States)

    Gökcan, Kürşat Mustafa; Dursun, Gürsel

    2009-04-01

    The aim of the study was to present symptoms, laryngological findings, clinical course, management modalities, and consequences of vascular lesions of vocal fold. This study examined 162 patients, the majority professional voice users, with vascular lesions regarding their presenting symptoms, laryngological findings, clinical courses and treatment results. The most common complaint was sudden hoarseness with hemorrhagic polyp. Microlaryngoscopic surgery was performed in 108 cases and the main indication of surgery was the presence of vocal fold mass or development of vocal polyp during clinical course. Cold microsurgery was utilized for removal of vocal fold masses and feeding vessels cauterized using low power, pulsed CO(2) laser. Acoustic analysis of patients revealed a significant improvement of jitter, shimmer and harmonics/noise ratio values after treatment. Depending on our clinical findings, we propose treatment algorithm where voice rest and behavioral therapy is the integral part and indications of surgery are individualized for each patient.

  3. Natural triple beta-stranded fibrous folds.

    Science.gov (United States)

    Mitraki, Anna; Papanikolopoulou, Katerina; Van Raaij, Mark J

    2006-01-01

    A distinctive family of beta-structured folds has recently been described for fibrous proteins from viruses. Virus fibers are usually involved in specific host-cell recognition. They are asymmetric homotrimeric proteins consisting of an N-terminal virus-binding tail, a central shaft or stalk domain, and a C-terminal globular receptor-binding domain. Often they are entirely or nearly entirely composed of beta-structure. Apart from their biological relevance and possible gene therapy applications, their shape, stability, and rigidity suggest they may be useful as blueprints for biomechanical design. Folding and unfolding studies suggest their globular C-terminal domain may fold first, followed by a "zipping-up" of the shaft domains. The C-terminal domains appear to be important for registration because peptides corresponding to shaft domains alone aggregate into nonnative fibers and/or amyloid structures. C-terminal domains can be exchanged between different fibers and the resulting chimeric proteins are useful as a way to solve structures of unknown parts of the shaft domains. The following natural triple beta-stranded fibrous folds have been discovered by X-ray crystallography: the triple beta-spiral, triple beta-helix, and T4 short tail fiber fold. All have a central longitudinal hydrophobic core and extensive intermonomer polar and nonpolar interactions. Now that a reasonable body of structural and folding knowledge has been assembled about these fibrous proteins, the next challenge and opportunity is to start using this information in medical and industrial applications such as gene therapy and nanotechnology.

  4. Folding models for elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1982-01-01

    The most widely used models are the optical model potential (OMP) for elastic scattering, and its generalization to non-spherical shapes, the deformed optical model potential (DOMP) for inelastic scattering. These models are simple and phenomenological; their parameters are adjusted so as to reproduce empirical data. Nonetheless, there are certain, not always well-defined, constraints to be imposed. The potential shapes and their parameter values must be reasonable and should vary in a smooth and systematic way with the masses of the colliding nuclei and their energy. One way of satisfying these constraints, without going back to a much more fundamental theory, is through the use of folding models. The basic justification for using potentials of the Woods-Saxon shape for nucleon-nucleus scattering, for example, is our knowledge that a nuclear density distribution is more-or-less constant in the nuclear interior with a diffuse surface. When this is folded with a short-range nucleon-nucleon interaction, the result is a similar shape with a more diffuse surface. Folding procedures allow us to incorporate many aspects of nuclear structure (although the nuclear size is one of the most important), as well as theoretical ideas about the effective interaction of two nucleons within nuclear matter. It also provides us with a means of linking information obtained from nuclear (hadronic) interactions with that from other sources, as well as correlating that from the use of different hadronic probes. Folding model potentials, single-folded potentials, and the double-folding model including applications to heavy-ion scattering are discussed

  5. Laryngeal ultrasound and pediatric vocal fold nodules.

    Science.gov (United States)

    Ongkasuwan, Julina; Devore, Danielle; Hollas, Sarah; Jones, Jeremy; Tran, Brandon

    2017-03-01

    The term vocal fold nodules refers to bilateral thickening of the membranous folds with minimal impairment of the vibratory properties of the mucosa. Nodules are thought to be related to repetitive mechanical stress, associated with voice use patterns. Diagnosis is typically made in the office via either rigid or flexible laryngeal stroboscopy. Depending on the individual child, obtaining an optimal view of the larynx can be difficult if not impossible. Recent advances in high-frequency ultrasonography allows for transcervical examination of laryngeal structures. The goal of this project was to determine if laryngeal ultrasound (LUS) can be used to identify vocal fold nodules in dysphonic children. Prospective case-control study in which the patient acted as his or her own control. Forty-six pediatric patients were recruited for participation in this study; the mean age was 4.8 years. Twenty-three did not have any vocal fold lesions and 23 had a diagnosis of vocal fold nodules on laryngeal stroboscopy. Recorded LUSs were reviewed by two pediatric radiologists who were blinded to the nodule status. There was substantial inter-rater agreement (κ = 0.70, 95% confidence interval [CI]: 0.50-0.89) between the two radiologists regarding the presence of nodules. There was also substantial agreement (κ = 0.87, 95% CI: 0.72-1) between LUS and laryngeal stroboscopy. Sensitivity of LUS was 100% (95% CI: 85%-100%) and specificity was 87% (95% CI: 66%-97%). LUS can be used to identify vocal fold nodules in children with substantial agreement with laryngeal stroboscopy. 3b Laryngoscope, 127:676-678, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Stretching and folding mechanism in foams

    International Nuclear Information System (INIS)

    Tufaile, Alberto; Pedrosa Biscaia Tufaile, Adriana

    2008-01-01

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board

  7. Assessment of thyroplasty for vocal fold paralysis

    DEFF Research Database (Denmark)

    Grøntved, Ågot Møller; Faber, Christian; Jakobsen, John

    2009-01-01

    INTRODUCTION: Thyroplasty with silicone rubber implantation is a surgical procedure for treatment of patients with vocal fold paralysis. The aim of the present study was to evaluate the outcome of the operation and to monitor which of the analyses were the more beneficial. MATERIAL AND METHODS...... because it offers a quantitative measure of the voice capacity and intensity, which are the major problems experienced by patients with vocal fold paralysis. Used together, these tools are highly instrumental in guiding the patient's choice of surgery or no surgery. Udgivelsesdato: 2009-Jan-12...

  8. Stretching and folding mechanism in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, Alberto [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)], E-mail: tufaile@usp.br; Pedrosa Biscaia Tufaile, Adriana [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)

    2008-10-13

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board.

  9. Structure of a Trypanosoma brucei α/β-hydrolase fold protein with unknown function

    International Nuclear Information System (INIS)

    Merritt, Ethan A.; Holmes, Margaret; Buckner, Frederick S.; Van Voorhis, Wesley C.; Quartly, Erin; Phizicky, Eric M.; Lauricella, Angela; Luft, Joseph; DeTitta, George; Neely, Helen; Zucker, Frank; Hol, Wim G. J.

    2008-01-01

    T. brucei gene Tb10.6k15.0140 codes for an α/β-hydrolase fold protein of unknown function. The 2.2 Å crystal structure shows that members of this sequence family retain a conserved Ser residue at the expected site of a catalytic nucleophile, but that trypanosomatid sequences lack structural homologs for the other expected residues of the catalytic triad. The structure of a structural genomics target protein, Tbru020260AAA from Trypanosoma brucei, has been determined to a resolution of 2.2 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protein belongs to Pfam sequence family PF08538 and is only distantly related to previously studied members of the α/β-hydrolase fold family. Structural superposition onto representative α/β-hydrolase fold proteins of known function indicates that a possible catalytic nucleophile, Ser116 in the T. brucei protein, lies at the expected location. However, the present structure and by extension the other trypanosomatid members of this sequence family have neither sequence nor structural similarity at the location of other active-site residues typical for proteins with this fold. Together with the presence of an additional domain between strands β6 and β7 that is conserved in trypanosomatid genomes, this suggests that the function of these homologs has diverged from other members of the fold family

  10. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    International Nuclear Information System (INIS)

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C. K.

    2010-01-01

    The crystal structure of phenolic acid decarboxylase from B. pumilus strain UI-670 has been determined and refined at 1.69 Å resolution. The enzyme is a dimer, with each subunit adopting a β-barrel structure belonging to the lipocalin fold. The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a β-barrel structure and two α-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the β-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site

  11. Folding of multidomain proteins: biophysical consequences of tethering even in apparently independent folding.

    Science.gov (United States)

    Arviv, Oshrit; Levy, Yaakov

    2012-12-01

    Most eukaryotic and a substantial fraction of prokaryotic proteins are composed of more than one domain. The tethering of these evolutionary, structural, and functional units raises, among others, questions regarding the folding process of conjugated domains. Studying the folding of multidomain proteins in silico enables one to identify and isolate the tethering-induced biophysical determinants that govern crosstalks generated between neighboring domains. For this purpose, we carried out coarse-grained and atomistic molecular dynamics simulations of two two-domain constructs from the immunoglobulin-like β-sandwich fold. Each of these was experimentally shown to behave as the "sum of its parts," that is, the thermodynamic and kinetic folding behavior of the constituent domains of these constructs seems to occur independently, with the folding of each domain uncoupled from the folding of its partner in the two-domain construct. We show that the properties of the individual domains can be significantly affected by conjugation to another domain. The tethering may be accompanied by stabilizing as well as destabilizing factors whose magnitude depends on the size of the interface, the length, and the flexibility of the linker, and the relative stability of the domains. Accordingly, the folding of a multidomain protein should not be viewed as the sum of the folding patterns of each of its parts, but rather, it involves abrogating several effects that lead to this outcome. An imbalance between these effects may result in either stabilization or destabilization owing to the tethering. Copyright © 2012 Wiley Periodicals, Inc.

  12. A comparison of RNA folding measures

    DEFF Research Database (Denmark)

    Freyhult, E.; Gardner, P. P.; Moulton, V.

    2005-01-01

    the behaviour of these measures over a large range of Rfam ncRNA families. Such measures can be useful in, for example, identifying novel ncRNAs, and indicating the presence of alternate RNA foldings. Results Our analysis shows that ncRNAs, but not mRNAs, in general have lower minimal free energy (MFE) than....... Conclusion Due to the correlations between the different measures we find that it is sufficient to use only two of them in RNA folding studies, one to test if the sequence in question has lower energy than a random sequence with the same dinucleotide frequency (the Z-score) and the other to see......Background In the last few decades there has been a great deal of discussion concerning whether or not noncoding RNA sequences (ncRNAs) fold in a more well-defined manner than random sequences. In this paper, we investigate several existing measures for how well an RNA sequence folds, and compare...

  13. Mapping the universe of RNA tetraloop folds

    DEFF Research Database (Denmark)

    Bottaro, Sandro; Lindorff-Larsen, Kresten

    2017-01-01

    We report a map of RNA tetraloop conformations constructed by calculating pairwise distances among all experimentally determined four-nucleotide hairpin loops. Tetraloops with similar structures are clustered together and, as expected, the two largest clusters are the canonical GNRA and UNCG fold...

  14. Fold in Origami and Unfold Math

    Science.gov (United States)

    Georgeson, Joseph

    2011-01-01

    Students enjoy origami and like making everything from paper cranes to footballs out of small, colorful squares of paper. They can invent their own shapes and are intrigued by the polyhedrons that they can construct. Paper folding is fun, but where is the math? Unless teachers develop lessons that address mathematical objectives, origami could be…

  15. Self-folding graphene-polymer bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Tao [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Yoon, ChangKyu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Jin, Qianru [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Mingen [Department of Physics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Liu, Zewen [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Gracias, David H., E-mail: dgracias@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2015-05-18

    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  16. Targeted transtracheal stimulation for vocal fold closure.

    Science.gov (United States)

    Hadley, Aaron J; Thompson, Paul; Kolb, Ilya; Hahn, Elizabeth C; Tyler, Dustin J

    2014-06-01

    Paralysis of the structures in the head and neck due to stroke or other neurological disorder often causes dysphagia (difficulty in swallowing). Patients with dysphagia have a significantly higher incidence of aspiration pneumonia and death. The recurrent laryngeal nerve (RLN), which innervates the intrinsic laryngeal muscles that control the vocal folds, travels superiorly in parallel to the trachea in the tracheoesophageal groove. This study tests the hypothesis that functional electrical stimulation (FES) applied via transtracheal electrodes can produce controlled vocal fold adduction. Bipolar electrodes were placed at 15° intervals around the interior mucosal surface of the canine trachea, and current was applied to the tissue while electromyography (EMG) from the intrinsic laryngeal muscles and vocal fold movement visualization via laryngoscopy were recorded. The lowest EMG thresholds were found at an average location of 100° to the left of the ventral midsagittal line and 128° to the right. A rotatable pair of bipolar electrodes spaced 230° apart were able to stimulate bilaterally both RLNs in every subject. Laryngoscopy showed complete glottal closure with transtracheal stimulation in six of the eight subjects, and this closure was maintained under simultaneous FES-induced laryngeal elevation. Transtracheal stimulation is an effective tool for minimally invasive application of FES to induce vocal fold adduction, providing an alternative mechanism to study airway protection.

  17. Amylose folding under the influence of lipids

    NARCIS (Netherlands)

    Lopez, Cesar A.; de Vries, Alex H.; Marrink, Siewert J.

    2012-01-01

    The molecular dynamics simulation technique was used to study the folding and complexation process of a short amylose fragment in the presence of lipids. In aqueous solution, the amylose chain remains as an extended left-handed helix. After the addition of lipids in the system, however, we observe

  18. MARATHON DESPITE UNILATERAL VOCAL FOLD PARALYSIS

    Directory of Open Access Journals (Sweden)

    Matthias Echternach

    2008-06-01

    Full Text Available The principal symptoms of unilateral vocal fold paralysis are hoarseness and difficulty in swallowing. Dyspnea is comparatively rare (Laccourreye et al., 2003. The extent to which unilateral vocal fold paralysis may lead to respiratory problems at all - in contrast to bilateral vocal fold paralysis- has not yet well been determined. On the one hand, inspiration is impaired with unilateral vocal fold paralysis; on the other hand, neither the position of the vocal fold paralysis nor the degree of breathiness correlates with respiratory parameters (Cantarella et al., 2003; 2005. The question of what respiratory stress a patient with a vocal fold paresis can endure has not yet been dealt with.A 43 year-old female patient was suffering from recurrent unspecific respiratory complaints for four months after physical activity. During training for a marathon, she experienced no difficulty in breathing. These unspecific respiratory complaints occurred only after athletic activity and persisted for hours. The patient observed neither an increased coughing nor a stridor. Her voice remained unaltered during the attacks, nor were there any signs of a symptomatic gastroesophageal reflux or infectious disease. A cardio-pulmonary and a radiological examination by means of an X-ray of the thorax also revealed no pathological phenomena. As antiallergic and antiobstructive therapy remained unsuccessful, a laryngological examination was performed in order to exclude a vocal cord dysfunction.Surprisingly enough, the laryngostroboscopy showed, as an initial description, a vocal fold paralysis of the left vocal fold in median position (Figure 1. The anamnestic background for the cause was unclear. The only clue was a thoracotomy on the left side due to a pleuritis in childhood. A subsequent laryngoscopic examination had never been performed. Good mucosa waves and amplitudes were shown bilateral with complete glottal closure. Neither in the acoustic analysis, nor in the

  19. Towards a systematic classification of protein folds

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Bohr, Henrik

    1997-01-01

    structures are given a unique name, which simultaneously represent a linear string of physical coupling constants describing hinge spin interactions. We have defined a metric and a precise distance measure between the fold classes. An automated procedure is constructed in which any protein structure...

  20. Vocal fold submucosal infusion technique in phonomicrosurgery.

    Science.gov (United States)

    Kass, E S; Hillman, R E; Zeitels, S M

    1996-05-01

    Phonomicrosurgery is optimized by maximally preserving the vocal fold's layered microstructure (laminae propriae). The technique of submucosal infusion of saline and epinephrine into the superficial lamina propria (SLP) was examined to delineate how, when, and why it was helpful toward this surgical goal. A retrospective review revealed that the submucosal infusion technique was used to enhance the surgery in 75 of 152 vocal fold procedures that were performed over the last 2 years. The vocal fold epithelium was noted to be adherent to the vocal ligament in 29 of the 75 cases: 19 from previous surgical scarring, 4 from cancer, 3 from sulcus vocalis, 2 from chronic hemorrhage, and 1 from radiotherapy. The submucosal infusion technique was most helpful when the vocal fold epithelium required resection and/or when extensive dissection in the SLP was necessary. The infusion enhanced the surgery by vasoconstriction of the microvasculature in the SLP, which improved visualization during cold-instrument tangential dissection. Improved visualization facilitated maximal preservation of the SLP, which is necessary for optimal pliability of the overlying epithelium. The infusion also improved the placement of incisions at the perimeter of benign, premalignant, and malignant lesions, and thereby helped preserve epithelium uninvolved by the disorder.

  1. Delayed cerebral infarction due to stent folding deformation following carotid artery stenting

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwon Duk; Lee, Kyung Yul; Suh, Sang Hyun [Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Byung Moon [Dept. of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    We report a case of delayed cerebral infarction due to stent longitudinal folding deformation following carotid artery stenting using a self-expandable stent with an open-cell design. The stented segment of the left common carotid artery was divided into two different lumens by this folding deformation, and the separated lumens became restricted with in-stent thrombosis. Although no established method of managing this rare complication exists, a conservative approach was taken with administration of anticoagulant and dual antiplatelet therapy. No neurological symptoms were observed during several months of clinical follow-up after discharge.

  2. Folding and Fracturing of Rocks: the background

    Science.gov (United States)

    Ramsay, John G.

    2017-04-01

    This book was generated by structural geology teaching classes at Imperial College. I was appointed lecturer during 1957 and worked together with Dr Gilbert Wilson teaching basic structural geology at B.Sc level. I became convinced that the subject, being essentially based on geometric field observations, required a firm mathematical basis for its future development. In particular it seemed to me to require a very sound understanding of stress and strain. My field experience suggested that a knowledge of two- and three-demensional strain was critical in understanding natural tectonic processes. I found a rich confirmation for this in early publications of deformed fossils, oolitic limestones and spotted slates made by several geologists around the beginning of the 20th century (Sorby, Philips, Haughton, Harker) often using surprisingly sophisticated mathematical methods. These methods were discussed and elaborated in Folding and Fracturing of Rocks in a practical way. The geometric features of folds were related to folding mechanisms and the fold related small scale structures such as cleavage, schistosity and lineation explained in terms of rock strain. My work in the Scottish Highlands had shown just how repeated fold superposition could produce very complex geometric features, while further work in other localities suggested that such geometric complications are common in many orogenic zones. From the development of structural geological studies over the past decades it seems that the readers of this book have found many of the ideas set out are still of practical application. The mapping of these outcrop-scale structures should be emphasised in all field studies because they can be seen as ''fingerprints'' of regional scale tectonic processes. My own understanding of structural geology has been inspired by field work and I am of the opinion that future progress in understanding will be likewise based on careful observation and measurement of the features of

  3. ETIOLOGICAL FACTORS FOR VOCAL FOLD POLYP FORMATION

    Directory of Open Access Journals (Sweden)

    DAŠA GLUVAJIĆ

    2016-05-01

    Full Text Available Background: Vocal fold polyp is one of the most common causes for hoarseness. Many different etiological factors contribute to vocal fold polyp formation. The aim of the study was to find out whether the etiological factors for polyp formation have changed in the last 30 years.Methods: Eighty-one patients with unilateral vocal fold polyp were included in the study. A control group was composed of 50 volunteers without voice problems who matched the patients by age and gender. The data about etiological factors and the findings of phoniatric examination were obtained from the patients' medical documentation and from the questionnaires for the control group. The incidence of etiological factors was compared between the two groups. The program SPSS, Version 18 was used for statistical analysis.Results: The most frequent etiological factors were occupational voice load, GER, allergy and smoking. In 79% of patients 2 – 6 contemporary acting risk factors were found. Occupational voice load (p=0,018 and GER (p=0,004 were significantly more frequent in the patients than in the controls. The other factors did not significantly influence the polyp formation.Conclusions: There are several factors involved simultaneously in the formation of vocal fold polyps both nowadays and 30 years ago. Some of the most common factors remain the same (voice load, smoking, others are new (GER, allergy, which is probably due to the different lifestyle and working conditions than 30 years ago. Occupational voice load and GER were significantly more frequently present in the patients with polyp than in the control group. Regarding the given results it is important to instruct workers with professional vocal load about etiological factors for vocal fold polyp formation.

  4. Inverse folding of RNA pseudoknot structures

    Directory of Open Access Journals (Sweden)

    Li Linda YM

    2010-06-01

    Full Text Available Abstract Background RNA exhibits a variety of structural configurations. Here we consider a structure to be tantamount to the noncrossing Watson-Crick and G-U-base pairings (secondary structure and additional cross-serial base pairs. These interactions are called pseudoknots and are observed across the whole spectrum of RNA functionalities. In the context of studying natural RNA structures, searching for new ribozymes and designing artificial RNA, it is of interest to find RNA sequences folding into a specific structure and to analyze their induced neutral networks. Since the established inverse folding algorithms, RNAinverse, RNA-SSD as well as INFO-RNA are limited to RNA secondary structures, we present in this paper the inverse folding algorithm Inv which can deal with 3-noncrossing, canonical pseudoknot structures. Results In this paper we present the inverse folding algorithm Inv. We give a detailed analysis of Inv, including pseudocodes. We show that Inv allows to design in particular 3-noncrossing nonplanar RNA pseudoknot 3-noncrossing RNA structures-a class which is difficult to construct via dynamic programming routines. Inv is freely available at http://www.combinatorics.cn/cbpc/inv.html. Conclusions The algorithm Inv extends inverse folding capabilities to RNA pseudoknot structures. In comparison with RNAinverse it uses new ideas, for instance by considering sets of competing structures. As a result, Inv is not only able to find novel sequences even for RNA secondary structures, it does so in the context of competing structures that potentially exhibit cross-serial interactions.

  5. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.

    Science.gov (United States)

    Zhu, Jianwei; Zhang, Haicang; Li, Shuai Cheng; Wang, Chao; Kong, Lupeng; Sun, Shiwei; Zheng, Wei-Mou; Bu, Dongbo

    2017-12-01

    Accurate recognition of protein fold types is a key step for template-based prediction of protein structures. The existing approaches to fold recognition mainly exploit the features derived from alignments of query protein against templates. These approaches have been shown to be successful for fold recognition at family level, but usually failed at superfamily/fold levels. To overcome this limitation, one of the key points is to explore more structurally informative features of proteins. Although residue-residue contacts carry abundant structural information, how to thoroughly exploit these information for fold recognition still remains a challenge. In this study, we present an approach (called DeepFR) to improve fold recognition at superfamily/fold levels. The basic idea of our approach is to extract fold-specific features from predicted residue-residue contacts of proteins using deep convolutional neural network (DCNN) technique. Based on these fold-specific features, we calculated similarity between query protein and templates, and then assigned query protein with fold type of the most similar template. DCNN has showed excellent performance in image feature extraction and image recognition; the rational underlying the application of DCNN for fold recognition is that contact likelihood maps are essentially analogy to images, as they both display compositional hierarchy. Experimental results on the LINDAHL dataset suggest that even using the extracted fold-specific features alone, our approach achieved success rate comparable to the state-of-the-art approaches. When further combining these features with traditional alignment-related features, the success rate of our approach increased to 92.3%, 82.5% and 78.8% at family, superfamily and fold levels, respectively, which is about 18% higher than the state-of-the-art approach at fold level, 6% higher at superfamily level and 1% higher at family level. An independent assessment on SCOP_TEST dataset showed consistent

  6. Four residues of propeptide are essential for precursor folding of nattokinase.

    Science.gov (United States)

    Jia, Yan; Cao, Xinhua; Deng, Yu; Bao, Wei; Tang, Changyan; Ding, Hanjing; Zheng, Zhongliang; Zou, Guolin

    2014-11-01

    Subtilisin propeptide functions as an intramolecular chaperone that guides precursor folding. Nattokinase, a member of subtilisin family, is synthesized as a precursor consisting of a signal peptide, a propeptide, and a subtilisin domain, and the mechanism of its folding remains to be understood. In this study, the essential residues of nattokinase propeptide which contribute to precursor folding were determined. Deletion analysis showed that the conserved regions in propeptide were important for precursor folding. Single-site and multi-site mutagenesis studies confirmed the role of Tyr10, Gly13, Gly34, and Gly35. During stage (i) and (ii) of precursor folding, Tyr10 and Gly13 would form the part of interface with subtilisin domain. While Gly34 and Gly35 connected with an α-helix that would stabilize the structure of propeptide. The quadruple Ala mutation, Y10A/G13A/G34A/G35A, resulted in a loss of the chaperone function for the propeptide. This work showed the essential residues of propeptide for precursor folding via secondary structure and kinetic parameter analyses. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  7. Ca-Dependent Folding of Human Calumenin

    Science.gov (United States)

    Mazzorana, Marco; Hussain, Rohanah; Sorensen, Thomas

    2016-01-01

    Human calumenin (hCALU) is a six EF-hand protein belonging to the CREC family. As other members of the family, it is localized in the secretory pathway and regulates the activity of SERCA2a and of the ryanodine receptor in the endoplasmic reticulum (ER). We have studied the effects of Ca2+ binding to the protein and found it to attain a more compact structure upon ion binding. Circular Dichroism (CD) measurements suggest a major rearrangement of the protein secondary structure, which reversibly switches from disordered at low Ca2+ concentrations to predominantly alpha-helical when Ca2+ is added. SAXS experiments confirm the transition from an unfolded to a compact structure, which matches the structural prediction of a trilobal fold. Overall our experiments suggest that calumenin is a Ca2+ sensor, which folds into a compact structure, capable of interacting with its molecular partners, when Ca2+ concentration within the ER reaches the millimolar range. PMID:26991433

  8. Self-folding micropatterned polymeric containers.

    Science.gov (United States)

    Azam, Anum; Laflin, Kate E; Jamal, Mustapha; Fernandes, Rohan; Gracias, David H

    2011-02-01

    We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.

  9. Dynamics in thin folded polymer films

    Science.gov (United States)

    Croll, Andrew; Rozairo, Damith

    Origami and Kirigami inspired structures depend on a complex interplay between geometry and material properties. While clearly important to the overall function, very little attention has focused on how extreme curvatures and singularities in real materials influence the overall dynamic behaviour of folded structures. In this work we use a set of three polymer thin films in order to closely examine the interaction of material and geometry. Specifically, we use polydimethylsiloxane (PDMS), polystyrene (PS) and polycarbonate (PC) thin films which we subject to loading in several model geometries of varying complexity. Depending on the material, vastly different responses are noted in our experiments; D-cones can annihilate, cut or lead to a crumpling cascade when pushed through a film. Remarkably, order can be generated with additional perturbation. Finally, the role of adhesion in complex folded structures can be addressed. AFOSR under the Young Investigator Program (FA9550-15-1-0168).

  10. Folding pathways explored with artificial potential functions

    International Nuclear Information System (INIS)

    Ulutaş, B; Bozma, I; Haliloglu, T

    2009-01-01

    This paper considers the generation of trajectories to a given protein conformation and presents a novel approach based on artificial potential functions—originally proposed for multi-robot navigation. The artificial potential function corresponds to a simplified energy model, but with the novelty that—motivated by work on robotic navigation—a nonlinear compositional scheme of constructing the energy model is adapted instead of an additive formulation. The artificial potential naturally gives rise to a dynamic system for the protein structure that ensures collision-free motion to an equilibrium point. In cases where the equilibrium point is the native conformation, the motion trajectory corresponds to the folding pathway. This framework is used to investigate folding in a variety of protein structures, and the results are compared with those of other approaches including experimental studies

  11. Folded membrane dialyzer with mechanically sealed edges

    Energy Technology Data Exchange (ETDEWEB)

    Markley, F.W.

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  12. PREFACE Protein folding: lessons learned and new frontiers Protein folding: lessons learned and new frontiers

    Science.gov (United States)

    Pappu, Rohit V.; Nussinov, Ruth

    2009-03-01

    In appropriate physiological milieux proteins spontaneously fold into their functional three-dimensional structures. The amino acid sequences of functional proteins contain all the information necessary to specify the folds. This remarkable observation has spawned research aimed at answering two major questions. (1) Of all the conceivable structures that a protein can adopt, why is the ensemble of native-like structures the most favorable? (2) What are the paths by which proteins manage to robustly and reproducibly fold into their native structures? Anfinsen's thermodynamic hypothesis has guided the pursuit of answers to the first question whereas Levinthal's paradox has influenced the development of models for protein folding dynamics. Decades of work have led to significant advances in the folding problem. Mean-field models have been developed to capture our current, coarse grain understanding of the driving forces for protein folding. These models are being used to predict three-dimensional protein structures from sequence and stability profiles as a function of thermodynamic and chemical perturbations. Impressive strides have also been made in the field of protein design, also known as the inverse folding problem, thereby testing our understanding of the determinants of the fold specificities of different sequences. Early work on protein folding pathways focused on the specific sequence of events that could lead to a simplification of the search process. However, unifying principles proved to be elusive. Proteins that show reversible two-state folding-unfolding transitions turned out to be a gift of natural selection. Focusing on these simple systems helped researchers to uncover general principles regarding the origins of cooperativity in protein folding thermodynamics and kinetics. On the theoretical front, concepts borrowed from polymer physics and the physics of spin glasses led to the development of a framework based on energy landscape theories. These

  13. Image Analysis for Nail-fold Capillaroscopy

    OpenAIRE

    Vucic, Vladimir

    2015-01-01

    Detection of diseases in an early stage is very important since it can make the treatment of patients easier, safer and more ecient. For the detection of rheumatic diseases, and even prediction of tendencies towards such diseases, capillaroscopy is becoming an increasingly recognized method. Nail-fold capillaroscopy is a non-invasive imaging technique that is used for analysis of microcirculation abnormalities that may lead todisease like systematic sclerosis, Reynauds phenomenon and others. ...

  14. Coherent topological phenomena in protein folding

    DEFF Research Database (Denmark)

    Bohr, Henrik; Brunak, Søren; Bohr, Jakob

    1997-01-01

    A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long......-range excitations, `wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force....

  15. Evolution of a protein folding nucleus.

    Science.gov (United States)

    Xia, Xue; Longo, Liam M; Sutherland, Mason A; Blaber, Michael

    2016-07-01

    The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome. © 2015 The Protein Society.

  16. Folding Membrane Proteins by Deep Transfer Learning

    KAUST Repository

    Wang, Sheng

    2017-08-29

    Computational elucidation of membrane protein (MP) structures is challenging partially due to lack of sufficient solved structures for homology modeling. Here, we describe a high-throughput deep transfer learning method that first predicts MP contacts by learning from non-MPs and then predicts 3D structure models using the predicted contacts as distance restraints. Tested on 510 non-redundant MPs, our method has contact prediction accuracy at least 0.18 better than existing methods, predicts correct folds for 218 MPs, and generates 3D models with root-mean-square deviation (RMSD) less than 4 and 5 Å for 57 and 108 MPs, respectively. A rigorous blind test in the continuous automated model evaluation project shows that our method predicted high-resolution 3D models for two recent test MPs of 210 residues with RMSD ∼2 Å. We estimated that our method could predict correct folds for 1,345–1,871 reviewed human multi-pass MPs including a few hundred new folds, which shall facilitate the discovery of drugs targeting at MPs.

  17. Protein Folding: Search for Basic Physical Models

    Directory of Open Access Journals (Sweden)

    Ivan Y. Torshin

    2003-01-01

    Full Text Available How a unique three-dimensional structure is rapidly formed from the linear sequence of a polypeptide is one of the important questions in contemporary science. Apart from biological context of in vivo protein folding (which has been studied only for a few proteins, the roles of the fundamental physical forces in the in vitro folding remain largely unstudied. Despite a degree of success in using descriptions based on statistical and/or thermodynamic approaches, few of the current models explicitly include more basic physical forces (such as electrostatics and Van Der Waals forces. Moreover, the present-day models rarely take into account that the protein folding is, essentially, a rapid process that produces a highly specific architecture. This review considers several physical models that may provide more direct links between sequence and tertiary structure in terms of the physical forces. In particular, elaboration of such simple models is likely to produce extremely effective computational techniques with value for modern genomics.

  18. Hierarchical Diagnosis of Vocal Fold Disorders

    Science.gov (United States)

    Nikkhah-Bahrami, Mansour; Ahmadi-Noubari, Hossein; Seyed Aghazadeh, Babak; Khadivi Heris, Hossein

    This paper explores the use of hierarchical structure for diagnosis of vocal fold disorders. The hierarchical structure is initially used to train different second-level classifiers. At the first level normal and pathological signals have been distinguished. Next, pathological signals have been classified into neurogenic and organic vocal fold disorders. At the final level, vocal fold nodules have been distinguished from polyps in organic disorders category. For feature selection at each level of hierarchy, the reconstructed signal at each wavelet packet decomposition sub-band in 5 levels of decomposition with mother wavelet of (db10) is used to extract the nonlinear features of self-similarity and approximate entropy. Also, wavelet packet coefficients are used to measure energy and Shannon entropy features at different spectral sub-bands. Davies-Bouldin criterion has been employed to find the most discriminant features. Finally, support vector machines have been adopted as classifiers at each level of hierarchy resulting in the diagnosis accuracy of 92%.

  19. Thermostability in endoglucanases is fold-specific

    Science.gov (United States)

    2011-01-01

    Background Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy) database. Results Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion. Conclusions Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient. PMID:21291533

  20. Thermostability in endoglucanases is fold-specific

    Directory of Open Access Journals (Sweden)

    Wolt Jeffrey D

    2011-02-01

    Full Text Available Abstract Background Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy database. Results Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion. Conclusions Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient.

  1. Wrinkles, folds, and plasticity in granular rafts

    Science.gov (United States)

    Jambon-Puillet, Etienne; Josserand, Christophe; Protière, Suzie

    2017-09-01

    We investigate the mechanical response of a compressed monolayer of large and dense particles at a liquid-fluid interface: a granular raft. Upon compression, rafts first wrinkle; then, as the confinement increases, the deformation localizes in a unique fold. This characteristic buckling pattern is usually associated with floating elastic sheets, and as a result, particle laden interfaces are often modeled as such. Here, we push this analogy to its limits by comparing quantitative measurements of the raft morphology to a theoretical continuous elastic model of the interface. We show that, although powerful to describe the wrinkle wavelength, the wrinkle-to-fold transition, and the fold shape, this elastic description does not capture the finer details of the experiment. We describe an unpredicted secondary wavelength, a compression discrepancy with the model, and a hysteretic behavior during compression cycles, all of which are a signature of the intrinsic discrete and frictional nature of granular rafts. It suggests also that these composite materials exhibit both plastic transition and jamming dynamics.

  2. Araguaia fold belt, new geochronological data

    International Nuclear Information System (INIS)

    Lafon, J.M.; Macambira, J.B.; Macambira, M.J.B.; Moura, C.A.V.; Souza, A.C.C.

    1990-01-01

    The northern part of the Araguaia Fold Belt (AFB) outcrops in a N-S direction for about 400 km in the state of Tocantins. Dome-like structures occur in this fold belt also in a N-S direction. Both deformation and metamorphism increase from the West to the East. The basement of the AFB consist of Colmeia complex and Cantao gneiss, which crop out mainly in the core of the dome-like structures. The supracrustals rocks of the fold belt belongs to the Baixo Araguaia supergroup which is divided into the lower Estrondo group and the upper Tocantins group. Preliminary Sm-Nd data from the Colmeia complex (Grota Rica dome) gave Archean model ages of 2.8 Ga (TNd sub(DM)) while Rb-Sr data in the same rocks give an age of 2530 ± 200 Ma. In the others dome-like structures, the Rb-Sr systematics gave ages for the Colmeia a complex of 2239 ± 47 Ma (Colmeia structure) and 1972 ± 46 Ma (Lontra structure). These younger ages are believed to represent partial to total isotopic resetting of the Rb-Sr system during the Transamazonian Event. The Rb-Sr studies of the Cantao gneiss gave an age of 1774 ± 31 Ma. (author)

  3. Functional results after external vocal fold medialization thyroplasty with the titanium vocal fold medialization implant.

    Science.gov (United States)

    Schneider, Berit; Denk, Doris-Maria; Bigenzahn, Wolfgang

    2003-04-01

    A persistent insufficiency of glottal closure is mostly a consequence of a unilateral vocal fold movement impairment. It can also be caused by vocal fold atrophy or scarring processes with regular bilateral respiratory vocal fold function. Because of consequential voice, breathing, and swallowing impairments, a functional surgical treatment is required. The goal of the study was to outline the functional results after medialization thyroplasty with the titanium vocal fold medialization implant according to Friedrich. In the period of 1999 to 2001, an external vocal fold medialization using the titanium implant was performed on 28 patients (12 women and 16 men). The patients were in the age range of 19 to 84 years. Twenty-two patients had a paralysis of the left-side vocal fold, and six patients, of the right-side vocal fold. Detailed functional examinations were executed on all patients before and after the surgery: perceptive voice sound analysis according to the "roughness, breathiness, and hoarseness" method, judgment of the s/z ratio and voice dysfunction index, voice range profile measurements, videostroboscopy, and pulmonary function tests. In case of dysphagia/aspiration, videofluoroscopy of swallowing was also performed. The respective data were statistically analyzed (paired t test, Wilcoxon-test). All patients reported on improvement of voice, swallowing, and breathing functions postoperatively. Videostroboscopy revealed an almost complete glottal closure after surgery in all of the patients. All voice-related parameters showed a significant improvement. An increase of the laryngeal resistance by the medialization procedure could be excluded by analysis of the pulmonary function test. The results confirm the external medialization of the vocal folds as an adequate method in the therapy of voice, swallowing, and breathing impairment attributable to an insufficient glottal closure. The titanium implant offers, apart from good tissue tolerability, the

  4. Glass ionomer application for vocal fold augmentation: Histopathological analysis on rabbit vocal fold.

    Science.gov (United States)

    Demirci, Sule; Tuzuner, Arzu; Callıoglu, Elif Ersoy; Yumusak, Nihat; Arslan, Necmi; Baltacı, Bülent

    2016-04-01

    The aim of this study was to investigate the use of glass ionomer cement (GIC) as an injection material for vocal fold augmentation and to evaluate the biocompatibility of the material. Ten adult New Zealand rabbits were used. Under general anesthesia, 0.1-cc GIC was injected to one vocal fold and the augmentation of vocal fold was observed. No injection was applied to the opposite side, which was accepted as the control group. The animals were sacrificed after 3 months and the laryngeal specimens were histopathologically evaluated. The injected and the noninjected control vocal folds were analyzed. The GIC particles were observed in histological sections on the injected side, and no foreign body giant cells, granulomatous inflammation, necrosis, or marked chronic inflammation were detected around the glass ionomer particles. Mild inflammatory reactions were noticed in only two specimens. The noninjected sides of vocal folds were completely normal. The findings of this study suggest that GIC is biocompatible and may be further investigated as an alternative injection material for augmentation of the vocal fold. Further studies are required to examine the viscoelastic properties of GIC and the long-term effects in experimental studies. NA. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  5. A Rat Excised Larynx Model of Vocal Fold Scar

    Science.gov (United States)

    Welham, Nathan V.; Montequin, Douglas W.; Tateya, Ichiro; Tateya, Tomoko; Choi, Seong Hee; Bless, Diane M.

    2009-01-01

    Purpose: To develop and evaluate a rat excised larynx model for the measurement of acoustic, aerodynamic, and vocal fold vibratory changes resulting from vocal fold scar. Method: Twenty-four 4-month-old male Sprague-Dawley rats were assigned to 1 of 4 experimental groups: chronic vocal fold scar, chronic vocal fold scar treated with 100-ng basic…

  6. Conservation potential of agricultural water conservation subsidies

    Science.gov (United States)

    Huffaker, Ray

    2008-07-01

    A current policy subsidizes farmers to invest in improved on-farm irrigation efficiency, expecting water to be conserved off farm. Contrary to expectation, water has been increasingly depleted in some regions after such improvements. This paper investigates the policy's failure to conserve water consistently by (1) formulating an economic model of irrigated crop production to determine a profit-maximizing irrigator's range of responses to a subsidy and (2) embedding these responses into hypothetical streamflow diagrams to ascertain their potential to conserve water under various hydrologic regimes. Testable hypotheses are developed to predict the conservation potential of a subsidy in real-world application.

  7. Nanoscale Dewetting Transition in Protein Complex Folding

    Science.gov (United States)

    Hua, Lan; Huang, Xuhui; Liu, Pu; Zhou, Ruhong; Berne, Bruce J.

    2011-01-01

    In a previous study, a surprising drying transition was observed to take place inside the nanoscale hydrophobic channel in the tetramer of the protein melittin. The goal of this paper is to determine if there are other protein complexes capable of displaying a dewetting transition during their final stage of folding. We searched the entire protein data bank (PDB) for all possible candidates, including protein tetramers, dimers, and two-domain proteins, and then performed the molecular dynamics (MD) simulations on the top candidates identified by a simple hydrophobic scoring function based on aligned hydrophobic surface areas. Our large scale MD simulations found several more proteins, including three tetramers, six dimers, and two two-domain proteins, which display a nanoscale dewetting transition in their final stage of folding. Even though the scoring function alone is not sufficient (i.e., a high score is necessary but not sufficient) in identifying the dewetting candidates, it does provide useful insights into the features of complex interfaces needed for dewetting. All top candidates have two features in common: (1) large aligned (matched) hydrophobic areas between two corresponding surfaces, and (2) large connected hydrophobic areas on the same surface. We have also studied the effect on dewetting of different water models and different treatments of the long-range electrostatic interactions (cutoff vs PME), and found the dewetting phenomena is fairly robust. This work presents a few proteins other than melittin tetramer for further experimental studies of the role of dewetting in the end stages of protein folding. PMID:17608515

  8. Incremental fold tests of remagnetized carbonate rocks

    Science.gov (United States)

    Van Der Voo, R.; van der Pluijm, B.

    2017-12-01

    Many unmetamorphosed carbonates all over the world are demonstrably remagnetized, with the age of the secondary magnetizations typically close to that of the nearest orogeny in space and time. This observation did not become compelling until the mid-1980's, when the incremental fold test revealed the Appalachian carbonates to carry a syn-deformational remanence of likely Permian age (Scotese et al., 1982, Phys. Earth Planet. Int., v. 30, p. 385-395; Cederquist et al., 2006, Tectonophysics v. 422, p. 41-54). Since that time scores of Appalachian and Rocky Mountain carbonate rocks have added results to the growing database of paleopoles representing remagnetizations. Late Paleozoic remagnetizations form a cloud of results surrounding the reference poles of the Laurentian APWP. Remagnetizations in other locales and with inferred ages coeval with regional orogenies (e.g., Taconic, Sevier/Laramide, Variscan, Indosinian) are also ubiquitous. To be able to transform this cornucopia into valuable anchor-points on the APWP would be highly desirable. This may indeed become feasible, as will be explained next. Recent studies of faulted and folded carbonate-shale sequences have shown that this deformation enhances the illitization of smectite (Haines & van der Pluijm, 2008, Jour. Struct. Geol., v. 30, p. 525-538; Fitz-Diaz et al., 2014, International Geol. Review, v. 56, p. 734-755). 39Ar-40Ar dating of the authigenic illite (neutralizing any detrital illite contribution by taking the intercept of a mixing line) yields, therefore, the age of the deformation. We know that this date is also the age of the syndeformational remanence; thus we have the age of the corresponding paleopole. Results so far are obtained for the Canadian and U.S. Rocky Mountains and for the Spanish Cantabrian carbonates (Tohver et al., 2008, Earth Planet. Sci. Lett., v. 274, p. 524-530) and make good sense in accord with geological knowledge. Incremental fold tests are the tools used for this

  9. Synovial folds in the knee joint

    International Nuclear Information System (INIS)

    Schaefer, H.

    1987-01-01

    Stimulated by arthroscopic insight into central abnormalities of the knee joint and by the large number of unexplained case of 'anterior knee pain', we have studied the synovia in more than 2000 contrast examinations of the joint. Surprisingly, and contrary to the views expressed in the literature, the clinically significant plica parapatellaris medialis was seen as frequently during pneumo-arthrography as during more complex procedures. Abnormalities in the synovial fold emerged as a discreet disease identified as the 'medial shelf syndrome' and should be included in the differential diagnosis of causes of pain round the lower end of the femur and patella. (orig.) [de

  10. Folding model analysis of alpha radioactivity

    International Nuclear Information System (INIS)

    Basu, D N

    2003-01-01

    Radioactive decay of nuclei via emission of α-particles has been studied theoretically in the framework of a superasymmetric fission model using the double folding (DF) procedure for obtaining the α-nucleus interaction potential. The DF nuclear potential has been obtained by folding in the density distribution functions of the α nucleus and the daughter nucleus with a realistic effective interaction. The M3Y effective interaction has been used for calculating the nuclear interaction potential which has been supplemented by a zero-range pseudo-potential for exchange along with the density dependence. The nuclear microscopic α-nucleus potential thus obtained has been used along with the Coulomb interaction potential to calculate the action integral within the WKB approximation. This subsequently yields calculations for the half-lives of α decays of nuclei. The density dependence and the exchange effects have not been found to be very significant. These calculations provide reasonable estimates for the lifetimes of α-radioactivity of nuclei

  11. Structural Insights into DD-Fold Assembly and Caspase-9 Activation by the Apaf-1 Apoptosome.

    Science.gov (United States)

    Su, Tsung-Wei; Yang, Chao-Yu; Kao, Wen-Pin; Kuo, Bai-Jiun; Lin, Shan-Meng; Lin, Jung-Yaw; Lo, Yu-Chih; Lin, Su-Chang

    2017-03-07

    Death domain (DD)-fold assemblies play a crucial role in regulating the signaling to cell survival or death. Here we report the crystal structure of the caspase recruitment domain (CARD)-CARD disk of the human apoptosome. The structure surprisingly reveals that three 1:1 Apaf-1:procaspase-9 CARD protomers form a novel helical DD-fold assembly on the heptameric wheel-like platform of the apoptosome. The small-angle X-ray scattering and multi-angle light scattering data also support that three protomers could form an oligomeric complex similar to the crystal structure. Interestingly, the quasi-equivalent environment of CARDs could generate different quaternary CARD assemblies. We also found that the type II interaction is conserved in all DD-fold complexes, whereas the type I interaction is found only in the helical DD-fold assemblies. This study provides crucial insights into the caspase activation mechanism, which is tightly controlled by a sophisticated and highly evolved CARD assembly on the apoptosome, and also enables better understanding of the intricate DD-fold assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.

    Science.gov (United States)

    Melvin, Iain; Ie, Eugene; Kuang, Rui; Weston, Jason; Stafford, William Noble; Leslie, Christina

    2007-05-22

    Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available to the bioinformatics community. We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called SVM-Fold, which can be found at http://svm-fold.c2b2.columbia.edu. Our system uses an efficient implementation of a state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach

  13. Dysphonia and vocal fold telangiectasia in hereditary hemorrhagic telangiectasia.

    Science.gov (United States)

    Chang, Joseph; Yung, Katherine C

    2014-11-01

    This case report is the first documentation of dysphonia and vocal fold telangiectasia as a complication of hereditary hemorrhagic telangiectasia (HHT). Case report of a 40-year-old man with HHT presenting with 2 years of worsening hoarseness. Hoarseness corresponded with a period of anticoagulation. Endoscopy revealed vocal fold scarring, vocal fold telangiectasias, and plica ventricular is suggestive of previous submucosal vocal fold hemorrhage and subsequent counterproductive compensation with ventricular phonation. Hereditary hemorrhagic telangiectasia may present as dysphonia with vocal fold telangiectasias and place patients at risk of vocal fold hemorrhage. © The Author(s) 2014.

  14. Improving decoy databases for protein folding algorithms

    KAUST Repository

    Lindsey, Aaron

    2014-01-01

    Copyright © 2014 ACM. Predicting protein structures and simulating protein folding are two of the most important problems in computational biology today. Simulation methods rely on a scoring function to distinguish the native structure (the most energetically stable) from non-native structures. Decoy databases are collections of non-native structures used to test and verify these functions. We present a method to evaluate and improve the quality of decoy databases by adding novel structures and removing redundant structures. We test our approach on 17 different decoy databases of varying size and type and show significant improvement across a variety of metrics. We also test our improved databases on a popular modern scoring function and show that they contain a greater number of native-like structures than the original databases, thereby producing a more rigorous database for testing scoring functions.

  15. Folded tandem ion accelerator facility at BARC

    International Nuclear Information System (INIS)

    Agarwal, Arun; Padmakumar, Sapna; Subrahmanyam, N.B.V.; Singh, V.P.; Bhatt, J.P.; Ware, Shailaja V.; Pol, S.S; Basu, A.; Singh, S.K.; Krishnagopal, S.; Bhagwat, P.V.

    2017-01-01

    The 5.5 MV single stage Van de Graaff (VDG) accelerator was in continuous operation at Nuclear Physics Division (NPD), Bhabha Atomic Research Centre (BARC) since its inception in 1962. During 1993-96, VDG accelerator was converted to a Folded Tandem Ion Accelerator (FOTIA). The scientists and engineers of NPD, IADD (then a part of NPD) along with several other divisions of BARC joined hands together in designing, fabrication, installation and commissioning of the FOTIA for the maximum terminal voltage of 6 MV. After experiencing the first accelerated ion beam on the target from FOTIA during April 2000, different ion species were accelerated and tested. Now this accelerator FOTIA is in continuous use for different kind of experiments

  16. Electrotransfection of Polyamine Folded DNA Origami Structures.

    Science.gov (United States)

    Chopra, Aradhana; Krishnan, Swati; Simmel, Friedrich C

    2016-10-12

    DNA origami structures are artificial molecular nanostructures in which DNA double helices are forced into a closely packed configuration by a multitude of DNA strand crossovers. We show that three different types of origami structures (a flat sheet, a hollow tube, and a compact origami block) can be formed in magnesium-free buffer solutions containing low (origami folding is proportional to the DNA concentration. At excessive amounts, the structures aggregate and precipitate. In contrast to origami structures formed in conventional buffers, the resulting structures are stable in the presence of high electric field pulses, such as those commonly used for electrotransfection experiments. We demonstrate that spermidine-stabilized structures are stable in cell lysate and can be delivered into mammalian cells via electroporation.

  17. Some physical approaches to protein folding

    Science.gov (United States)

    Bascle, J.; Garel, T.; Orland, H.

    1993-02-01

    To understand how a protein folds is a problem which has important biological implications. In this article, we would like to present a physics-oriented point of view, which is twofold. First of all, we introduce simple statistical mechanics models which display, in the thermodynamic limit, folding and related transitions. These models can be divided into (i) crude spin glass-like models (with their Mattis analogs), where one may look for possible correlations between the chain self-interactions and the folded structure, (ii) glass-like models, where one emphasizes the geometrical competition between one- or two-dimensional local order (mimicking α helix or β sheet structures), and the requirement of global compactness. Both models are too simple to predict the spatial organization of a realistic protein, but are useful for the physicist and should have some feedback in other glassy systems (glasses, collapsed polymers .... ). These remarks lead us to the second physical approach, namely a new Monte-Carlo method, where one grows the protein atom-by-atom (or residue-by-residue), using a standard form (CHARMM .... ) for the total energy. A detailed comparison with other Monte-Carlo schemes, or Molecular Dynamics calculations, is then possible; we will sketch such a comparison for poly-alanines. Our twofold approach illustrates some of the difficulties one encounters in the protein folding problem, in particular those associated with the existence of a large number of metastable states. Le repliement des protéines est un problème qui a de nombreuses implications biologiques. Dans cet article, nous présentons, de deux façons différentes, un point de vue de physicien. Nous introduisons tout d'abord des modèles simples de mécanique statistique qui exhibent, à la limite thermodynamique, des transitions de repliement. Ces modèles peuvent être divisés en (i) verres de spin (éventuellement à la Mattis), où l'on peut chercher des corrélations entre les

  18. The review on tessellation origami inspired folded structure

    Science.gov (United States)

    Chu, Chai Chen; Keong, Choong Kok

    2017-10-01

    Existence of folds enhances the load carrying capacity of a folded structure which makes it suitable to be used for application where large open space is required such as large span roof structures and façade. Folded structure is closely related to origami especially the tessellation origami. Tessellation origami provides a folded configuration with facetted surface as a result from repeated folding pattern. Besides that, tessellation origami has flexible folding mechanism that produced a variety of 3-dimensional folded configurations. Despite the direct relationship between fold in origami and folded structure, the idea of origami inspired folded structure is not properly reviewed in the relevant engineering field. Hence, this paper aims to present the current studies from related discipline which has direct relation with application of tessellation origami in folded structure. First, tessellation origami is properly introduced and defined. Then, the review covers the topic on the origami tessellation design suitable for folded structure, its modeling and simulation method, and existing studies and applications of origami as folded structure is presented. The paper also includes the discussion on the current issues related to each topic.

  19. Improving Protein Fold Recognition by Deep Learning Networks

    Science.gov (United States)

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-12-01

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl’s benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.

  20. Improving Protein Fold Recognition by Deep Learning Networks.

    Science.gov (United States)

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-12-04

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl's benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.

  1. RNAiFold: a web server for RNA inverse folding and molecular design.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter; Dotu, Ivan

    2013-07-01

    Synthetic biology and nanotechnology are poised to make revolutionary contributions to the 21st century. In this article, we describe a new web server to support in silico RNA molecular design. Given an input target RNA secondary structure, together with optional constraints, such as requiring GC-content to lie within a certain range, requiring the number of strong (GC), weak (AU) and wobble (GU) base pairs to lie in a certain range, the RNAiFold web server determines one or more RNA sequences, whose minimum free-energy secondary structure is the target structure. RNAiFold provides access to two servers: RNA-CPdesign, which applies constraint programming, and RNA-LNSdesign, which applies the large neighborhood search heuristic; hence, it is suitable for larger input structures. Both servers can also solve the RNA inverse hybridization problem, i.e. given a representation of the desired hybridization structure, RNAiFold returns two sequences, whose minimum free-energy hybridization is the input target structure. The web server is publicly accessible at http://bioinformatics.bc.edu/clotelab/RNAiFold, which provides access to two specialized servers: RNA-CPdesign and RNA-LNSdesign. Source code for the underlying algorithms, implemented in COMET and supported on linux, can be downloaded at the server website.

  2. Glycoprotein folding and quality-control mechanisms in protein-folding diseases

    Directory of Open Access Journals (Sweden)

    Sean P. Ferris

    2014-03-01

    Full Text Available Biosynthesis of proteins – from translation to folding to export – encompasses a complex set of events that are exquisitely regulated and scrutinized to ensure the functional quality of the end products. Cells have evolved to capitalize on multiple post-translational modifications in addition to primary structure to indicate the folding status of nascent polypeptides to the chaperones and other proteins that assist in their folding and export. These modifications can also, in the case of irreversibly misfolded candidates, signal the need for dislocation and degradation. The current Review focuses on the glycoprotein quality-control (GQC system that utilizes protein N-glycosylation and N-glycan trimming to direct nascent glycopolypeptides through the folding, export and dislocation pathways in the endoplasmic reticulum (ER. A diverse set of pathological conditions rooted in defective as well as over-vigilant ER quality-control systems have been identified, underlining its importance in human health and disease. We describe the GQC pathways and highlight disease and animal models that have been instrumental in clarifying our current understanding of these processes.

  3. Effect of Vocal Fold Medialization on Dysphagia in Patients with Unilateral Vocal Fold Immobility.

    Science.gov (United States)

    Cates, Daniel J; Venkatesan, Naren N; Strong, Brandon; Kuhn, Maggie A; Belafsky, Peter C

    2016-09-01

    The effect of vocal fold medialization (VFM) on vocal improvement in persons with unilateral vocal fold immobility (UVFI) is well established. The effect of VFM on the symptom of dysphagia is uncertain. The purpose of this study is to evaluate dysphagia symptoms in patients with UVFI pre- and post-VFM. Case series with chart review. Academic tertiary care medical center. The charts of 44 persons with UVFI who underwent VFM between June 1, 2013, and December 31, 2014, were abstracted from a prospectively maintained database at the University of California, Davis, Voice and Swallowing Center. Patient demographics, indications, and type of surgical procedure were recorded. Self-reported swallowing impairment was assessed with the validated 10-item Eating Assessment Tool (EAT-10) before and after surgery. A paired samples t test was used to compare pre- and postmedialization EAT-10 scores. Forty-four patients met criteria and underwent either vocal fold injection (73%) or thyroplasty (27%). Etiologies of vocal fold paralysis were iatrogenic (55%), idiopathic (29%), benign or malignant neoplastic (9%), traumatic (5%), or related to the late effects of radiation (2%). EAT-10 (mean ± SD) scores improved from 12.2 ± 11.1 to 7.7 ± 7.2 after medialization (P dysphagia and report significant improvement in swallowing symptoms following VFM. The symptomatic improvement appears to be durable over time. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  4. Self-folding origami at any energy scale

    Science.gov (United States)

    Pinson, Matthew B.; Stern, Menachem; Carruthers Ferrero, Alexandra; Witten, Thomas A.; Chen, Elizabeth; Murugan, Arvind

    2017-05-01

    Programmable stiff sheets with a single low-energy folding motion have been sought in fields ranging from the ancient art of origami to modern meta-materials research. Despite such attention, only two extreme classes of crease patterns are usually studied; special Miura-Ori-based zero-energy patterns, in which crease folding requires no sheet bending, and random patterns with high-energy folding, in which the sheet bends as much as creases fold. We present a physical approach that allows systematic exploration of the entire space of crease patterns as a function of the folding energy. Consequently, we uncover statistical results in origami, finding the entropy of crease patterns of given folding energy. Notably, we identify three classes of Mountain-Valley choices that have widely varying `typical' folding energies. Our work opens up a wealth of experimentally relevant self-folding origami designs not reliant on Miura-Ori, the Kawasaki condition or any special symmetry in space.

  5. Kinematics of large scale asymmetric folds and associated smaller ...

    Indian Academy of Sciences (India)

    The present work reiterates the importance of analysis of ... these models is the assumption that the folds are passive folds ... applicability of these models is thus limited in the case of ...... with contrasted rheological properties, a theory for the.

  6. Phonosurgery of vocal fold polyps, cysts and nodules is beneficial

    DEFF Research Database (Denmark)

    Jensen, Jane Bjerg; Rasmussen, Niels

    2013-01-01

    This study reports our experience with microscopic phonosurgery (PS) of benign lesions of the vocal folds.......This study reports our experience with microscopic phonosurgery (PS) of benign lesions of the vocal folds....

  7. Diagnostic and therapeutic pitfalls in benign vocal fold diseases

    Science.gov (United States)

    Bohlender, Jörg

    2013-01-01

    More than half of patients presenting with hoarseness show benign vocal fold changes. The clinician should be familiar with the anatomy, physiology and functional aspects of voice disorders and also the modern diagnostic and therapeutic possibilities in order to ensure an optimal and patient specific management. This review article focuses on the diagnostic and therapeutic limitations and difficulties of treatment of benign vocal fold tumors, the management and prevention of scarred vocal folds and the issue of unilateral vocal fold paresis. PMID:24403969

  8. Conservation: Toward firmer ground

    Science.gov (United States)

    1975-01-01

    The following aspects of energy conservation were reviewed in order to place the problems in proper perspective: history and goals, conservation accounting-criteria, and a method to overcome obstacles. The effect of changing prices and available supplies of energy sources and their causes on consumption levels during the last few decades were described. Some examples of attainable conservation goals were listed and justified. A number of specific criteria applicable to conservation accounting were given. Finally, a discussion was presented to relate together the following aspects of energy conservation: widespread impact, involvement of government, industry, politics, moral and ethical aspects, urgency and time element.

  9. Folds in multilayered rocks of Proterozoic age, Rajasthan, India

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Johnson and Johnson 2002 etc) shows that the fold shape modification may be brought about by buckling and flattening operating simultaneously throughout the development of fold. In the present paper a series of F1 folds devel- oped in slates with interlayered alternations with quartzite of Proterozoic age and unaffected ...

  10. Nomenclature proposal to describe vocal fold motion impairment

    NARCIS (Netherlands)

    Rosen, Clark A.; Mau, Ted; Remacle, Marc; Hess, Markus; Eckel, Hans E.; Young, VyVy N.; Hantzakos, Anastasios; Yung, Katherine C.; Dikkers, Frederik G.

    2016-01-01

    The terms used to describe vocal fold motion impairment are confusing and not standardized. This results in a failure to communicate accurately and to major limitations of interpreting research studies involving vocal fold impairment. We propose standard nomenclature for reporting vocal fold

  11. Nomenclature proposal to describe vocal fold motion impairment

    NARCIS (Netherlands)

    Rosen, Clark A.; Mau, Ted; Remacle, Marc; Hess, Markus; Eckel, Hans E.; Young, VyVy N.; Hantzakos, Anastasios; Yung, Katherine C.; Dikkers, Frederik G.

    The terms used to describe vocal fold motion impairment are confusing and not standardized. This results in a failure to communicate accurately and to major limitations of interpreting research studies involving vocal fold impairment. We propose standard nomenclature for reporting vocal fold

  12. Factors that affect coseismic folds in an overburden layer

    Science.gov (United States)

    Zeng, Shaogang; Cai, Yongen

    2018-03-01

    Coseismic folds induced by blind thrust faults have been observed in many earthquake zones, and they have received widespread attention from geologists and geophysicists. Numerous studies have been conducted regarding fold kinematics; however, few have studied fold dynamics quantitatively. In this paper, we establish a conceptual model with a thrust fault zone and tectonic stress load to study the factors that affect coseismic folds and their formation mechanisms using the finite element method. The numerical results show that the fault dip angle is a key factor that controls folding. The greater the dip angle is, the steeper the fold slope. The second most important factor is the overburden thickness. The thicker the overburden is, the more gradual the fold. In this case, folds are difficult to identify in field surveys. Therefore, if a fold can be easily identified with the naked eye, the overburden is likely shallow. The least important factors are the mechanical parameters of the overburden. The larger the Young's modulus of the overburden is, the smaller the displacement of the fold and the fold slope. Strong horizontal compression and vertical extension in the overburden near the fault zone are the main mechanisms that form coseismic folds.

  13. Technique to achieve the symmetry of the new inframammary fold

    Science.gov (United States)

    Pozzi, Marcello; Zoccali, Giovanni; Buccheri, Ernesto Maria; de Vita, Roy

    2014-01-01

    Summary The literature outlines several surgical techniques to restore inframmammary fold definition, but symmetry of the fold is often left to irreproducible procedures. We report our personal technique to restore the symmetry of the inframmammary fold during multistep breast reconstruction. PMID:25078934

  14. Folding very short peptides using molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Bosco K Ho

    2006-04-01

    Full Text Available Peptides often have conformational preferences. We simulated 133 peptide 8-mer fragments from six different proteins, sampled by replica-exchange molecular dynamics using Amber7 with a GB/SA (generalized-Born/solvent-accessible electrostatic approximation to water implicit solvent. We found that 85 of the peptides have no preferred structure, while 48 of them converge to a preferred structure. In 85% of the converged cases (41 peptides, the structures found by the simulations bear some resemblance to their native structures, based on a coarse-grained backbone description. In particular, all seven of the beta hairpins in the native structures contain a fragment in the turn that is highly structured. In the eight cases where the bioinformatics-based I-sites library picks out native-like structures, the present simulations are largely in agreement. Such physics-based modeling may be useful for identifying early nuclei in folding kinetics and for assisting in protein-structure prediction methods that utilize the assembly of peptide fragments.

  15. Delayed Collapse of Wooden Folding Stairs

    Science.gov (United States)

    Krentowski, Janusz; Chyzy, Tadeusz

    2017-10-01

    During operation of folding stairs, a fastener joining the ladder hanger with the frame was torn off. A person using the stairs sustained serious injury. In several dozen other locations similar accidents were observed. As a result of inspections, some threaded parts of the screws were found in the gaps between the wooden elements of the stairs’ flaps. In the construction a hatch made of wooden strips is attached to an external frame by means of metal hangers. Laboratory strength tests were conducted on three samples made of wooden elements identical to the ones used in the damaged stairs. Due to complex load distribution mechanism acting on the base of the structure, a three-dimensional FEM model was created. An original software was used for calculations. Five computational model variants were considered. As a result of the numerical analyses, it was unquestionably shown that faulty connections were the cause of the destruction of the stairs. The weakest link in the load transmission chain were found to have been the screws connecting the hatch board with the hangers.

  16. Folding and unfolding phylogenetic trees and networks.

    Science.gov (United States)

    Huber, Katharina T; Moulton, Vincent; Steel, Mike; Wu, Taoyang

    2016-12-01

    Phylogenetic networks are rooted, labelled directed acyclic graphswhich are commonly used to represent reticulate evolution. There is a close relationship between phylogenetic networks and multi-labelled trees (MUL-trees). Indeed, any phylogenetic network N can be "unfolded" to obtain a MUL-tree U(N) and, conversely, a MUL-tree T can in certain circumstances be "folded" to obtain aphylogenetic network F(T) that exhibits T. In this paper, we study properties of the operations U and F in more detail. In particular, we introduce the class of stable networks, phylogenetic networks N for which F(U(N)) is isomorphic to N, characterise such networks, and show that they are related to the well-known class of tree-sibling networks. We also explore how the concept of displaying a tree in a network N can be related to displaying the tree in the MUL-tree U(N). To do this, we develop aphylogenetic analogue of graph fibrations. This allows us to view U(N) as the analogue of the universal cover of a digraph, and to establish a close connection between displaying trees in U(N) and reconciling phylogenetic trees with networks.

  17. The pathophysiology of the nodular and micronodular small bowel fold

    International Nuclear Information System (INIS)

    Olmsted, W.W.; Ros, P.R.; Moser, R.P.; Shekita, K.M.; Lichtenstein, J.E.

    1986-01-01

    The normal small bowel fold is easily seen on conventional studies of the small intestine, but visualization of the small bowel villus is at the limit of resolution of current roentgenographic technique. When the villi are enlarged, they appear radiographically as an irregularity or micronodularity of the small bowel fold. The anatomy of the fold and the pathophysiology of diseases producing fold nodularity (tumor,inflammatory disease, NLH, mastocytosis) and micronodularity (lymphangiectasia, Waldenstrom macroglobulinemia, Whipple disease) are presented, with an emphasis on radiologic-pathologic correlation. The radiologist should suggest certain diseases or conditions based on the roentgenographic characteristics of the closely analyzed small bowel fold

  18. Pathophysiology of the nodular and micronodular small bowel fold

    International Nuclear Information System (INIS)

    Olmstead, W.W.; Ros, P.R.; Moser, R.P.; Shekitka, K.M.; Lichtenstein, J.E.; Buck, J.L.

    1987-01-01

    The normal small bowel fold is easily seen on conventional studies of the small intestine, but visualization of the small bowel villus is just at the resolution of current roentgenographic technique. When the villi are enlarged, they can be seen radiographically as an irregularity or micronodularity of the small bowel fold. The anatomy of the fold and the pathophysiology of diseases producing fold nodularity (tumor, inflammatory disease, NLH, mastocytosis) and micronodularity (lymphangiectasia, Waldenstrom macroglobulinemia, Whipple disease) are presented, with an emphasis on radiologic-pathologic correlation. The radiologist should suggest certain diseases or conditions based on the roentgenographic characteristics of the closely analyzed small bowel fold

  19. TurboFold: Iterative probabilistic estimation of secondary structures for multiple RNA sequences

    Directory of Open Access Journals (Sweden)

    Sharma Gaurav

    2011-04-01

    Full Text Available Abstract Background The prediction of secondary structure, i.e. the set of canonical base pairs between nucleotides, is a first step in developing an understanding of the function of an RNA sequence. The most accurate computational methods predict conserved structures for a set of homologous RNA sequences. These methods usually suffer from high computational complexity. In this paper, TurboFold, a novel and efficient method for secondary structure prediction for multiple RNA sequences, is presented. Results TurboFold takes, as input, a set of homologous RNA sequences and outputs estimates of the base pairing probabilities for each sequence. The base pairing probabilities for a sequence are estimated by combining intrinsic information, derived from the sequence itself via the nearest neighbor thermodynamic model, with extrinsic information, derived from the other sequences in the input set. For a given sequence, the extrinsic information is computed by using pairwise-sequence-alignment-based probabilities for co-incidence with each of the other sequences, along with estimated base pairing probabilities, from the previous iteration, for the other sequences. The extrinsic information is introduced as free energy modifications for base pairing in a partition function computation based on the nearest neighbor thermodynamic model. This process yields updated estimates of base pairing probability. The updated base pairing probabilities in turn are used to recompute extrinsic information, resulting in the overall iterative estimation procedure that defines TurboFold. TurboFold is benchmarked on a number of ncRNA datasets and compared against alternative secondary structure prediction methods. The iterative procedure in TurboFold is shown to improve estimates of base pairing probability with each iteration, though only small gains are obtained beyond three iterations. Secondary structures composed of base pairs with estimated probabilities higher than a

  20. Ethics of conservation triage

    Directory of Open Access Journals (Sweden)

    Kerrie A Wilson

    2016-09-01

    Full Text Available Conservation triage seems to be at a stalemate between those who accept triage based on utilitarian rationalization, and those that reject it based on a number of ethical principles. We argue that without considered attention to the ethics of conservation triage we risk further polarization in the field of conservation. We draw lessons from the medical sector, where triage is more intuitive and acceptable, and also from disaster planning, to help navigate the challenges that triage entails for conservation science, practice, and policy. We clarify the consequentialist, deontological, and virtue ethical stances that influence the level of acceptance of triage. We emphasize the ethical dimensions of conservation triage in principle and in practice, particularly in the context of stakeholder diversity, a wide range of possible objectives and actions, broader institutions, and significant uncertainties. A focus on a more diverse set of ethics, more considered choice of triage as a conservation tool, open communication of triage objectives and protocols, greater consideration of risk preferences, and regular review and adaptation of triage protocols is required for conservation triage to become more acceptable among diverse conservation practitioners, institutions, and the general public. Accepting conservation triage as fundamentally an ethical problem would foster more open dialogue and constructive debate about the role of conservation triage in a wider system of care.

  1. Protein Folding Free Energy Landscape along the Committor - the Optimal Folding Coordinate.

    Science.gov (United States)

    Krivov, Sergei V

    2018-06-06

    Recent advances in simulation and experiment have led to dramatic increases in the quantity and complexity of produced data, which makes the development of automated analysis tools very important. A powerful approach to analyze dynamics contained in such data sets is to describe/approximate it by diffusion on a free energy landscape - free energy as a function of reaction coordinates (RC). For the description to be quantitatively accurate, RCs should be chosen in an optimal way. Recent theoretical results show that such an optimal RC exists; however, determining it for practical systems is a very difficult unsolved problem. Here we describe a solution to this problem. We describe an adaptive nonparametric approach to accurately determine the optimal RC (the committor) for an equilibrium trajectory of a realistic system. In contrast to alternative approaches, which require a functional form with many parameters to approximate an RC and thus extensive expertise with the system, the suggested approach is nonparametric and can approximate any RC with high accuracy without system specific information. To avoid overfitting for a realistically sampled system, the approach performs RC optimization in an adaptive manner by focusing optimization on less optimized spatiotemporal regions of the RC. The power of the approach is illustrated on a long equilibrium atomistic folding simulation of HP35 protein. We have determined the optimal folding RC - the committor, which was confirmed by passing a stringent committor validation test. It allowed us to determine a first quantitatively accurate protein folding free energy landscape. We have confirmed the recent theoretical results that diffusion on such a free energy profile can be used to compute exactly the equilibrium flux, the mean first passage times, and the mean transition path times between any two points on the profile. We have shown that the mean squared displacement along the optimal RC grows linear with time as for

  2. Design and simulation of origami structures with smooth folds.

    Science.gov (United States)

    Peraza Hernandez, E A; Hartl, D J; Lagoudas, D C

    2017-04-01

    Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds . This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh ), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh.

  3. Single-Chain Folding of Synthetic Polymers: A Critical Update.

    Science.gov (United States)

    Altintas, Ozcan; Barner-Kowollik, Christopher

    2015-11-23

    The current contribution serves as a critical update to a previous feature article from us (Macromol. Rapid Commun. 2012, 33, 958-971), and highlights the latest advances in the preparation of single chain polymeric nanoparticles and initial-yet promising-attempts towards mimicking the structure of natural biomacromolecules via single-chain folding of well-defined linear polymers via so-called single chain selective point folding and repeat unit folding. The contribution covers selected examples from the literature published up to ca. September 2015. Our aim is not to provide an exhaustive review but rather highlight a selection of new and exciting examples for single-chain folding based on advanced macromolecular precision chemistry. Initially, the discussion focuses on the synthesis and characterization of single-chain folded structures via selective point folding. The second part of the feature article addresses the folding of well-defined single-chain polymers by means of repeat unit folding. The current state of the art in the field of single-chain folding indicates that repeat unit folding-driven nanoparticle preparation is well-advanced, while initial encouraging steps towards building selective point folding systems have been taken. In addition, a summary of the-in our view-open key questions is provided that may guide future biomimetic design efforts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quality of the voice after injection of hyaluronic acid into the vocal fold.

    Science.gov (United States)

    Szkiełkowska, Agata; Miaśkiewicz, Beata; Remacle, Marc; Krasnodębska, Paulina; Skarżyński, Henryk

    2013-04-17

    Voice disorders resulting from glottic insufficiency are a significant clinical problem in everyday phoniatric practice. One method of treatment is injection laryngoplasty. Our study aimed to assess the voice quality of patients treated with hyaluronic acid injection into the vocal fold. We studied 25 patients suffering from dysphonia, conducting laryngological and phoniatric examination, including videostroboscopy and acoustic voice analysis, before the operation and 1, 3, and 6 months later. In all cases there was complete or almost complete glottic closure after the operation. One month after the procedure, videostroboscopic examination revealed reappearance of vocal fold vibration in 8 cases; after 3 months this had risen to 15 cases. Perceptual voice quality (as assessed by the GRBAS scale) in patients with glottic insufficiency was improved. The most significant improvement was obtained 1 month after surgery (p=0.0002), and within the next months further statistically significant improvements (p=0.000002) were noted. Multidimensional voice analysis showed statistically significant and rapid improvement in frequency parameters, especially vFo. Other parameters were also improved 3 and 6 months after surgery. Injection of hyaluronic acid into the vocal fold improves phonatory functions of the larynx and the quality of voice in patients with glottic insufficiency. It may be a safe and conservative method for treatment of voice disorders. Hyaluronic acid injection to the vocal fold is an easy, effective, and fast method for restoration of good voice quality.

  5. A case of successfully cured carcinoma of the true vocal folds in the larynx

    International Nuclear Information System (INIS)

    Shivarov, G.; Tomov, D.

    2017-01-01

    Objective and subject of the study: Laryngeal carcinoma is a socially significant malignancy in our country as well. Between 1981 and 2010, standardized morbidity (global standard) of 100,000 in Bulgaria increased in men from 6.4 to 9.1, and in women - from 0.3 to 0.7. Recently, a number of reports were published, showing that timely individualized treatment leads to definitive curing of patients with this disease. Methods used: A 37 years old man was hospitalized with a complaint of dysphonia persisting despite conservative treatment for two months. Results: Objectively thickened vocal folds were observed. In this case, the left one was uneven, bruised and with unrestricted mobility. The histological examination of the biopsy material shows moderately differentiated spinocellular carcinoma in the left and squamous papilloma T1 No Mx - in the right fold. A planned hemylarringectomy was performed. Intraoperatively, a susceptible stretch in the right vocal fold was detected, proved in two weeks to be squamous cell carcinoma. A lower tracheotomy was performed, followed by telangatherapy alone. The four-year follow-up indicates a favorable course of the disease and a lack of relapse. Conclusion: The combination of surgical intervention with telegamma therapy in cases of isolated carcinoma of the true vocal folds in the larynx can be applied to strictly selected patients in order to achieve optimal therapeutic outcomes. [bg

  6. Conservation: Toward firmer ground

    Science.gov (United States)

    1975-01-01

    The following aspects of energy conservation were discussed: conservation history and goals, conservation modes, conservation accounting-criteria, and a method to overcome obstacles. The conservation modes tested fall into one of the following categories: reduced energy consumption, increased efficiency of energy utilization, or substitution of one or more forms of energy for another which is in shorter supply or in some sense thought to be of more value. The conservation accounting criteria include net energy reduction, economic, and technical criteria. A method to overcome obstacles includes (approaches such as: direct personal impact (life style, income, security, aspiration), an element of crisis, large scale involvement of environmental, safety, and health issues, connections to big government, big business, big politics, involvement of known and speculative science and technology, appeal to moral and ethical standards, the transient nature of opportunities to correct the system.

  7. Econometric modelling of conservation

    International Nuclear Information System (INIS)

    Parker, J.C.; Seal, D.J.

    1990-01-01

    The issue of energy conservation in general, and conservation in the natural gas markets in particular, has recently had a much lower profile than in the past, when energy prices were significantly higher and energy costs composed a much larger proportion of industrial operating costs than today. The recent downward trend in energy prices has diverted attention away from this issue. In the face of expected significant real price increases, increasing pressure from environmental groups, and directives on the part of regulator authorities, conservation is once again becoming a topic of consideration in the energy industry. From the point of view of gas demand forecasting, conservation has received too little attention. The intentions of this paper are to establish the need for forecasting conservation in the natural gas utility sector, and to construct a model of industrial demand which incorporates conservation and is appropriate for use as a forecasting tool

  8. Handbook on energy conservation

    International Nuclear Information System (INIS)

    1989-12-01

    This book shows energy situation in recent years, which includes reserves of energy resource in the world, crude oil production records in OPEC and non OPEC, supply and demand of energy in important developed countries, prospect of supply and demand of energy and current situation of energy conservation in developed countries. It also deals with energy situation in Korea reporting natural resources status, energy conservation policy, measurement for alternative energy, energy management of Korea, investment in equipment and public education for energy conservation.

  9. Formation of hydrogen bonds precedes the rate-limiting formation of persistent structure in the folding of ACBP

    DEFF Research Database (Denmark)

    Teilum, K; Kragelund, B B; Knudsen, J

    2000-01-01

    A burst phase in the early folding of the four-helix two-state folder protein acyl-coenzyme A binding protein (ACBP) has been detected using quenched-flow in combination with site-specific NMR-detected hydrogen exchange. Several of the burst phase structures coincide with a structure consisting...... of eight conserved hydrophobic residues at the interface between the two N and C-terminal helices. Previous mutation studies have shown that the formation of this structure is rate limiting for the final folding of ACBP. The burst phase structures observed in ACBP are different from the previously reported...

  10. Accurately controlled sequential self-folding structures by polystyrene film

    Science.gov (United States)

    Deng, Dongping; Yang, Yang; Chen, Yong; Lan, Xing; Tice, Jesse

    2017-08-01

    Four-dimensional (4D) printing overcomes the traditional fabrication limitations by designing heterogeneous materials to enable the printed structures evolve over time (the fourth dimension) under external stimuli. Here, we present a simple 4D printing of self-folding structures that can be sequentially and accurately folded. When heated above their glass transition temperature pre-strained polystyrene films shrink along the XY plane. In our process silver ink traces printed on the film are used to provide heat stimuli by conducting current to trigger the self-folding behavior. The parameters affecting the folding process are studied and discussed. Sequential folding and accurately controlled folding angles are achieved by using printed ink traces and angle lock design. Theoretical analyses are done to guide the design of the folding processes. Programmable structures such as a lock and a three-dimensional antenna are achieved to test the feasibility and potential applications of this method. These self-folding structures change their shapes after fabrication under controlled stimuli (electric current) and have potential applications in the fields of electronics, consumer devices, and robotics. Our design and fabrication method provides an easy way by using silver ink printed on polystyrene films to 4D print self-folding structures for electrically induced sequential folding with angular control.

  11. Vocal fold paresis - a debilitating and underdiagnosed condition.

    Science.gov (United States)

    Harris, G; O'Meara, C; Pemberton, C; Rough, J; Darveniza, P; Tisch, S; Cole, I

    2017-07-01

    To review the clinical signs of vocal fold paresis on laryngeal videostroboscopy, to quantify its impact on patients' quality of life and to confirm the benefit of laryngeal electromyography in its diagnosis. Twenty-nine vocal fold paresis patients were referred for laryngeal electromyography. Voice Handicap Index 10 results were compared to 43 patients diagnosed with vocal fold paralysis. Laryngeal videostroboscopy analysis was conducted to determine side of paresis. Blinded laryngeal electromyography confirmed vocal fold paresis in 92.6 per cent of cases, with vocal fold lag being the most common diagnostic sign. The laryngology team accurately predicted side of paresis in 76 per cent of cases. Total Voice Handicap Index 10 responses were not significantly different between vocal fold paralysis and vocal fold paresis groups (26.08 ± 0.21 and 22.93 ± 0.17, respectively). Vocal fold paresis has a significant impact on quality of life. This study shows that laryngeal electromyography is an important diagnostic tool. Patients with persisting dysphonia and apparently normal vocal fold movement, who fail to respond to appropriate speech therapy, should be investigated for a diagnosis of vocal fold paresis.

  12. Quantitative electromyographic characteristics of idiopathic unilateral vocal fold paralysis.

    Science.gov (United States)

    Chang, Wei-Han; Fang, Tuan-Jen; Li, Hsueh-Yu; Jaw, Fu-Shan; Wong, Alice M K; Pei, Yu-Cheng

    2016-11-01

    Unilateral vocal fold paralysis with no preceding causes is diagnosed as idiopathic unilateral vocal fold paralysis. However, comprehensive guidelines for evaluating the defining characteristics of idiopathic unilateral vocal fold paralysis are still lacking. In the present study, we hypothesized that idiopathic unilateral vocal fold paralysis may have different clinical and neurologic characteristics from unilateral vocal fold paralysis caused by surgical trauma. Retrospective, case series study. Patients with unilateral vocal fold paralysis were evaluated using quantitative laryngeal electromyography, videolaryngostroboscopy, voice acoustic analysis, the Voice Outcome Survey, and the Short Form-36 Health Survey quality-of-life questionnaire. Patients with idiopathic and iatrogenic vocal fold paralysis were compared. A total of 124 patients were recruited. Of those, 17 with no definite identified causes after evaluation and follow-up were assigned to the idiopathic group. The remaining 107 patients with surgery-induced vocal fold paralysis were assigned to the iatrogenic group. Patients in the idiopathic group had higher recruitment of the thyroarytenoid-lateral cricoarytenoid muscle complex and better quality of life compared with the iatrogenic group. Idiopathic unilateral vocal fold paralysis has a distinct clinical presentation, with relatively minor denervation changes in the involved laryngeal muscles, and less impact on quality of life compared with iatrogenic vocal fold paralysis. 4. Laryngoscope, 126:E362-E368, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  13. A comparative method for finding and folding RNA secondary structures within protein-coding regions

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Meyer, Irmtraud Margret; Forsberg, Roald

    2004-01-01

    that RNA-DECODER's parameters can be automatically trained to successfully fold known secondary structures within the HCV genome. We scan the genomes of HCV and polio virus for conserved secondary-structure elements, and analyze performance as a function of available evolutionary information. On known...... secondary structures, RNA-DECODER shows a sensitivity similar to the programs MFOLD, PFOLD and RNAALIFOLD. When scanning the entire genomes of HCV and polio virus for structure elements, RNA-DECODER's results indicate a markedly higher specificity than MFOLD, PFOLD and RNAALIFOLD....

  14. Biodiversity Conservation and Conservation Biotechnology Tools

    Science.gov (United States)

    This special issue is dedicated to the in vitro tools and methods used to conserve the genetic diversity of rare and threatened species from around the world. Species that are on the brink of extinction, due to the rapid loss of genetic diversity and habitat, come mainly from resource poor areas the...

  15. Paradigms for parasite conservation.

    Science.gov (United States)

    Dougherty, Eric R; Carlson, Colin J; Bueno, Veronica M; Burgio, Kevin R; Cizauskas, Carrie A; Clements, Christopher F; Seidel, Dana P; Harris, Nyeema C

    2016-08-01

    Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite-inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid-20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host-density threshold and cost-benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host-parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of

  16. Deformation and kinematics of the central Kirthar Fold Belt, Pakistan

    Science.gov (United States)

    Hinsch, Ralph; Hagedorn, Peter; Asmar, Chloé; Nasim, Muhammad; Aamir Rasheed, Muhammad; Kiely, James M.

    2017-04-01

    The Kirthar Fold Belt is part of the lateral mountain belts in Pakistan linking the Himalaya orogeny with the Makran accretionary wedge. This region is deforming very oblique/nearly parallel to the regional plate motion vector. The study area is situated between the prominent Chaman strike-slip fault in the West and the un-deformed foreland (Kirthar Foredeep/Middle Indus Basin) in the East. The Kirthar Fold Belt is subdivided into several crustal blocks/units based on structural orientation and deformation style (e.g. Kallat, Khuzdar, frontal Kirthar). This study uses newly acquired and depth-migrated 2D seismic lines, surface geology observations and Google Earth assessments to construct three balanced cross sections for the frontal part of the fold belt. Further work was done in order to insure the coherency of the built cross-sections by taking a closer look at the regional context inferred from published data, simple analogue modelling, and constructed regional sketch sections. The Khuzdar area and the frontal Kirthar Fold Belt are dominated by folding. Large thrusts with major stratigraphic repetitions are not observed. Furthermore, strike-slip faults in the Khuzdar area are scarce and not observed in the frontal Kirthar Fold Belt. The regional structural elevation rises from the foreland across the Kirthar Fold Belt towards the hinterland (Khuzdar area). These observations indicate that basement-involved deformation is present at depth. The domination of folding indicates a weak decollement below the folds (soft-linked deformation). The fold pattern in the Khuzdar area is complex, whereas the large folds of the central Kirthar Fold Belt trend SSW-NNE to N-S and are best described as large detachment folds that have been slightly uplifted by basement involved transpressive deformation underneath. Towards the foreland, the deformation is apparently more hard-linked and involves fault-propagation folding and a small triangle zone in Cretaceous sediments

  17. Cation-induced folding of alginate-bearing bilayer gels: an unusual example of spontaneous folding along the long axis.

    Science.gov (United States)

    Athas, Jasmin C; Nguyen, Catherine P; Kummar, Shailaa; Raghavan, Srinivasa R

    2018-04-04

    The spontaneous folding of flat gel films into tubes is an interesting example of self-assembly. Typically, a rectangular film folds along its short axis when forming a tube; folding along the long axis has been seen only in rare instances when the film is constrained. Here, we report a case where the same free-swelling gel film folds along either its long or short axis depending on the concentration of a solute. Our gels are sandwiches (bilayers) of two layers: a passive layer of cross-linked N,N'-dimethylyacrylamide (DMAA) and an active layer of cross-linked DMAA that also contains chains of the biopolymer alginate. Multivalent cations like Ca2+ and Cu2+ induce these bilayer gels to fold into tubes. The folding occurs instantly when a flat film of the gel is introduced into a solution of these cations. The likely cause for folding is that the active layer stiffens and shrinks (because the alginate chains in it get cross-linked by the cations) whereas the passive layer is unaffected. The resulting mismatch in swelling degree between the two layers creates internal stresses that drive folding. Cations that are incapable of cross-linking alginate, such as Na+ and Mg2+, do not induce gel folding. Moreover, the striking aspect is the direction of folding. When the Ca2+ concentration is high (100 mM or higher), the gels fold along their long axis, whereas when the Ca2+ concentration is low (40 to 80 mM), the gels fold along their short axis. We hypothesize that the folding axis is dictated by the inhomogeneous nature of alginate-cation cross-linking, i.e., that the edges get cross-linked before the faces of the gel. At high Ca2+ concentration, the stiffer edges constrain the folding; in turn, the gel folds such that the longer edges are deformed less, which explains the folding along the long axis. At low Ca2+ concentration, the edges and the faces of the gel are more similar in their degree of cross-linking; therefore, the gel folds along its short axis. An analogy

  18. Introducing Conservation of Momentum

    Science.gov (United States)

    Brunt, Marjorie; Brunt, Geoff

    2013-01-01

    The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…

  19. Water Conservation Resource List.

    Science.gov (United States)

    NJEA Review, 1981

    1981-01-01

    Alarmed by the growing water shortage, the New Jersey State Office of Dissemination has prepared this annotated list of free or inexpensive instructional materials for teaching about water conservation, K-l2. A tipsheet for home water conservation is appended. (Editor/SJL)

  20. Controllability of conservative behaviours

    NARCIS (Netherlands)

    Rao, Shodhan

    2012-01-01

    In this article, we first define the class of J-conservative behaviours with observable storage functions, where J is a symmetric two-variable polynomial matrix. We then provide two main results. The first result states that if J(-xi,xi) is nonsingular, the input cardinality of a J-conservative

  1. Conservation Science Fair Projects.

    Science.gov (United States)

    Soil Conservation Society of America, Ankeny, IA.

    Included are ideas, suggestions, and examples for selecting and designing conservation science projects. Over 70 possible conservation subject areas are presented with suggested projects. References are cited with each of these subject areas, and a separate list of annotated references is included. The references pertain to general subject…

  2. Fixism and conservation science.

    Science.gov (United States)

    Robert, Alexandre; Fontaine, Colin; Veron, Simon; Monnet, Anne-Christine; Legrand, Marine; Clavel, Joanne; Chantepie, Stéphane; Couvet, Denis; Ducarme, Frédéric; Fontaine, Benoît; Jiguet, Frédéric; le Viol, Isabelle; Rolland, Jonathan; Sarrazin, François; Teplitsky, Céline; Mouchet, Maud

    2017-08-01

    The field of biodiversity conservation has recently been criticized as relying on a fixist view of the living world in which existing species constitute at the same time targets of conservation efforts and static states of reference, which is in apparent disagreement with evolutionary dynamics. We reviewed the prominent role of species as conservation units and the common benchmark approach to conservation that aims to use past biodiversity as a reference to conserve current biodiversity. We found that the species approach is justified by the discrepancy between the time scales of macroevolution and human influence and that biodiversity benchmarks are based on reference processes rather than fixed reference states. Overall, we argue that the ethical and theoretical frameworks underlying conservation research are based on macroevolutionary processes, such as extinction dynamics. Current species, phylogenetic, community, and functional conservation approaches constitute short-term responses to short-term human effects on these reference processes, and these approaches are consistent with evolutionary principles. © 2016 Society for Conservation Biology.

  3. Setting conservation priorities.

    Science.gov (United States)

    Wilson, Kerrie A; Carwardine, Josie; Possingham, Hugh P

    2009-04-01

    A generic framework for setting conservation priorities based on the principles of classic decision theory is provided. This framework encapsulates the key elements of any problem, including the objective, the constraints, and knowledge of the system. Within the context of this framework the broad array of approaches for setting conservation priorities are reviewed. While some approaches prioritize assets or locations for conservation investment, it is concluded here that prioritization is incomplete without consideration of the conservation actions required to conserve the assets at particular locations. The challenges associated with prioritizing investments through time in the face of threats (and also spatially and temporally heterogeneous costs) can be aided by proper problem definition. Using the authors' general framework for setting conservation priorities, multiple criteria can be rationally integrated and where, how, and when to invest conservation resources can be scheduled. Trade-offs are unavoidable in priority setting when there are multiple considerations, and budgets are almost always finite. The authors discuss how trade-offs, risks, uncertainty, feedbacks, and learning can be explicitly evaluated within their generic framework for setting conservation priorities. Finally, they suggest ways that current priority-setting approaches may be improved.

  4. Madagascar Conservation & Development

    African Journals Online (AJOL)

    Madagascar Conservation & Development welcomes the results of original research, field surveys, advances in field and laboratory techniques, book reviews, and informal status reports from research, conservation, development and management programs and in-field projects in Madagascar. In addition, notes on changes ...

  5. Resource Conservation Glossary.

    Science.gov (United States)

    Soil Conservation Society of America, Ankeny, IA.

    This glossary is a composite of terms selected from 13 technologies, and is the expanded revision of the original 1952 edition of "The Soil and Water Conservation Glossary." The terms were selected from these areas: agronomy, biology, conservation, ecology, economics, engineering, forestry, geology, hydrology, range, recreation, soils, and…

  6. Creative Soil Conservation

    Science.gov (United States)

    Smith, Martha

    2010-01-01

    Take plant lessons outdoors with this engaging and inquiry-based activity in which third-grade students learn how to apply soil conservation methods to growing plants. They also collect data and draw conclusions about the effectiveness of their method of soil conservation. An added benefit to this activity is that the third-grade students played…

  7. The Ventricular-Fold Dynamics in Human Phonation

    OpenAIRE

    Bailly , Lucie; Henrich Bernardoni , Nathalie; Müller , Frank; Rohlfs , Anna-Katharina; Hess , Markus

    2014-01-01

    International audience; Purpose: In this study, the authors aimed (a) to provide a classification of the ventricular-fold dynamics during voicing, (b) to study the aerodynamic impact of these motions on vocal-fold vibrations, and (c) to assess whether ventricularfold oscillations could be sustained by aerodynamic coupling with the vocal folds. Method: A 72-sample database of vocal gestures accompanying different acoustical events comprised highspeed cinematographic, audio, and electroglottogr...

  8. Comparing the Folding and Misfolding Energy Landscapes of Phosphoglycerate Kinase

    OpenAIRE

    Agocs, Gergely; Szabo, Bence T.; Koehler, Gottfried; Osvath, Szabolcs

    2012-01-01

    Partitioning of polypeptides between protein folding and amyloid formation is of outstanding pathophysiological importance. Using yeast phosphoglycerate kinase as model, here we identify the features of the energy landscape that decide the fate of the protein: folding or amyloidogenesis. Structure formation was initiated from the acid-unfolded state, and monitored by fluorescence from 10 ms to 20 days. Solvent conditions were gradually shifted between folding and amyloidogenesis, and the prop...

  9. Ligand-promoted protein folding by biased kinetic partitioning.

    Science.gov (United States)

    Hingorani, Karan S; Metcalf, Matthew C; Deming, Derrick T; Garman, Scott C; Powers, Evan T; Gierasch, Lila M

    2017-04-01

    Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems.

  10. Iterative Controller Tuning for Process with Fold Bifurcations

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Poulsen, Niels Kjølstad; Jørgensen, Sten Bay

    2007-01-01

    Processes involving fold bifurcation are notoriously difficult to control in the vicinity of the fold where most often optimal productivity is achieved . In cases with limited process insight a model based control synthesis is not possible. This paper uses a data driven approach with an improved...... version of iterative feedback tuning to optimizing a closed loop performance criterion, as a systematic tool for tuning process with fold bifurcations....

  11. Current Understanding and Future Directions for Vocal Fold Mechanobiology

    Science.gov (United States)

    Li, Nicole Y.K.; Heris, Hossein K.; Mongeau, Luc

    2013-01-01

    The vocal folds, which are located in the larynx, are the main organ of voice production for human communication. The vocal folds are under continuous biomechanical stress similar to other mechanically active organs, such as the heart, lungs, tendons and muscles. During speech and singing, the vocal folds oscillate at frequencies ranging from 20 Hz to 3 kHz with amplitudes of a few millimeters. The biomechanical stress associated with accumulated phonation is believed to alter vocal fold cell activity and tissue structure in many ways. Excessive phonatory stress can damage tissue structure and induce a cell-mediated inflammatory response, resulting in a pathological vocal fold lesion. On the other hand, phonatory stress is one major factor in the maturation of the vocal folds into a specialized tri-layer structure. One specific form of vocal fold oscillation, which involves low impact and large amplitude excursion, is prescribed therapeutically for patients with mild vocal fold injuries. Although biomechanical forces affect vocal fold physiology and pathology, there is little understanding of how mechanical forces regulate these processes at the cellular and molecular level. Research into vocal fold mechanobiology has burgeoned over the past several years. Vocal fold bioreactors are being developed in several laboratories to provide a biomimic environment that allows the systematic manipulation of physical and biological factors on the cells of interest in vitro. Computer models have been used to simulate the integrated response of cells and proteins as a function of phonation stress. The purpose of this paper is to review current research on the mechanobiology of the vocal folds as it relates to growth, pathogenesis and treatment as well as to propose specific research directions that will advance our understanding of this subject. PMID:24812638

  12. Japan's energy conservation policy

    International Nuclear Information System (INIS)

    Yoda, Kenichi

    1990-01-01

    This article reviews developments in Japanese energy conservation since the 1970s. The industrial sector has achieved the greatest success, due to industrial restructuring as well as improvements in energy efficiency. In the residential/commercial sector, the efficiency of appliances has been much improved. Although improvements have been made in the fuel efficiency of passenger cars, energy consumption in the transportation sector has risen slightly owing to increased transport of passengers and freight. The overall responsibility for energy conservation policy rests with the Ministry of International Trade and Industry. MITI is also responsible for implementing specific conservation policies in regard to the industrial and commercial sectors. In the residential sector, MITI works with the Ministry of Construction and in the transportation sector with the Ministry of Transport. To realize the goals of energy conservation policy through general research, dissemination of public information and other activities, MITI works with the Energy Conservation Center (ECC). (author). 2 figs, 3 tabs

  13. Tests of conservation laws

    International Nuclear Information System (INIS)

    Goldhaber, M.

    1988-01-01

    For quite a while it has been realized that some discrete quantum numbers are conserved in some interactions but not in others. The most conspicuous cases are parity P, charge conjugation C, and the product CP which are conserved in strong and electromagnetic interactions but not in weak interactions. The question arises whether for some of the other conserved quantities, which are conserved in strong, electromagnetic and weak interactions, there is an interaction intermediate in strength between weak and gravitational which violates these quantum numbers, e.g., baryon number B and lepton number L. The possibility exists that these conservation laws, if they are broken at all, are only broken by the gravitational force which would make the mass of an intermediate boson which induces the break-down equal to the Planck mass. (orig.)

  14. Competition between folding and glycosylation in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Holst, B; Bruun, A W; Kielland-Brandt, Morten

    1996-01-01

    Using carboxypeptidase Y in Saccharomyces cerevisiae as a model system, the in vivo relationship between protein folding and N-glycosylation was studied. Seven new sites for N-glycosylation were introduced at positions buried in the folded protein structure. The level of glycosylation of such new...... acceptor sites. In some cases, all the newly synthesized mutant protein was modified at the novel site while in others no modification took place. In the most interesting category of mutants, the level of glycosylation was dependent on the conditions for folding. This shows that folding and glycosylation...

  15. Folding System for the Clothes by a Robot and Tools

    OpenAIRE

    大澤, 文明; 関, 啓明; 神谷, 好承

    2004-01-01

    The works of a home robot has the laundering. The purpose of this study is to find a means of folding of the clothes and store the clothes in a drawer by a home robot. Because the shape of cloth tends to change in various ways depending on the situation, it is difficult for robot hands to fold the clothes. In this paper, we propose a realistic folding system for the clothes by a robot and tools. The function of a tool is folding the clothes in half by inserting the clothes using two plates. T...

  16. Thermodynamics of protein folding: a random matrix formulation.

    Science.gov (United States)

    Shukla, Pragya

    2010-10-20

    The process of protein folding from an unfolded state to a biologically active, folded conformation is governed by many parameters, e.g. the sequence of amino acids, intermolecular interactions, the solvent, temperature and chaperon molecules. Our study, based on random matrix modeling of the interactions, shows, however, that the evolution of the statistical measures, e.g. Gibbs free energy, heat capacity, and entropy, is single parametric. The information can explain the selection of specific folding pathways from an infinite number of possible ways as well as other folding characteristics observed in computer simulation studies. © 2010 IOP Publishing Ltd

  17. Specific features of vocal fold paralysis in functional computed tomography

    International Nuclear Information System (INIS)

    Laskowska, K.; Mackiewicz-Nartowicz, H.; Serafin, Z.; Nawrocka, E.

    2008-01-01

    Vocal fold paralysis is usually recognized in laryngological examination, and detailed vocal fold function may be established based on laryngovideostroboscopy. Additional imaging should exclude any morphological causes of the paresis, which should be treated pharmacologically or surgically. The aim of this paper was to analyze the computed tomography (CT) images of the larynx in patients with unilateral vocal fold paralysis. CT examinations of the larynx were performed in 10 patients with clinically defined unilateral vocal fold paralysis. The examinations consisted of unenhanced acquisition and enhanced 3-phased acquisition: during free breathing, Valsalva maneuver, and phonation. The analysis included the following morphologic features of the paresis.the deepened epiglottic vallecula, the deepened piriform recess, the thickened and medially positioned aryepiglottic fold, the widened laryngeal pouch, the anteriorly positioned arytenoid cartilage, the thickened vocal fold, and the filled infraglottic space in frontal CT reconstruction. CT images were compared to laryngovideostroboscopy. The most common symptoms of vocal cord paralysis in CT were the deepened epiglottic vallecula and piriform recess, the widened laryngeal pouch with the filled infraglottic space, and the thickened aryepiglottic fold. Regarding the efficiency of the paralysis determination, the three functional techniques of CT larynx imaging used did not differ significantly, and laryngovideostroboscopy demonstrated its advantage over CT. CT of the larynx is a supplementary examination in the diagnosis of vocal fold paralysis, which may enable topographic analysis of the fold dysfunction. The knowledge of morphological CT features of the paralysis may help to prevent false-positive diagnosis of laryngeal cancer. (author)

  18. Arytenoid and posterior vocal fold surgery for bilateral vocal fold immobility.

    Science.gov (United States)

    Young, VyVy N; Rosen, Clark A

    2011-12-01

    Many procedures exist to address the airway restriction often seen with bilateral vocal fold immobility. We review the most recent studies involving arytenoid and/or posterior vocal fold surgery to provide an update on the issues related to these procedures. Specific focus is placed on selection of the surgical approach and operative side, use of adjunctive therapies, and outcome measures including decannulation rate, revision and complication rate, and postoperative results. Ten studies were identified between 2004 and 2011. Modifications to the orginal transverse cordotomy and medial arytenoidectomy techniques continue to be investigated to seek improvement in dyspnea symptoms with minimal decline in voice and/or swallowing function. Decannulation rates for these approaches are high. Postoperative dysphagia appears to be less commonly observed but requires continued study. The use of mitomycin-C in these procedures has been poorly studied to date. Both transverse cordotomy and medial arytenoidectomy procedures result in high success rates. However, many questions related to these procedures remain unanswered, particularly with respect to preoperative and postoperative evaluations of voice quality, swallowing function, and pulmonary status. There is need for rigorous prospective clinical studies to address these many issues further.

  19. Endo-extralaryngeal Laterofixation of the Vocal Folds in Patients with Bilateral Vocal Fold Immobility.

    Science.gov (United States)

    Wiegand, Susanne; Teymoortash, Afshin; Hanschmann, Holger

    2017-01-01

    Bilateral vocal fold paralysis can result in shortness of breath and severe dyspnea which can be life-threatening. Thirty-five patients with bilateral vocal fold paralysis who underwent endo-extralaryngeal laterofixation according to Lichtenberger were retrospectively analyzed regarding etiology, symptoms, treatment and complications. In 27 patients, laterofixation of the vocal cord alone was performed. Eight patients underwent laterofixation and additional posterior chordectomy of the opposite vocal cord according to Dennis and Kashima. The time of intervention ranged from 1 day to 38 years after the onset of bilateral vocal cord immobility. The intraoperative course was uneventful in all patients. None of the patients had postoperative aspiration. Postoperative voice function was acceptable in all patients. Complications of suture laterofixation were laryngeal edema, formation of fibrin, and malposition of the suture. Laterofixation of the vocal cords according to Lichtenberger is a safe and easy method that can be used as a first-stage treatment of vocal cord paralysis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. The relationship of protein conservation and sequence length

    Directory of Open Access Journals (Sweden)

    Panchenko Anna R

    2002-11-01

    Full Text Available Abstract Background In general, the length of a protein sequence is determined by its function and the wide variance in the lengths of an organism's proteins reflects the diversity of specific functional roles for these proteins. However, additional evolutionary forces that affect the length of a protein may be revealed by studying the length distributions of proteins evolving under weaker functional constraints. Results We performed sequence comparisons to distinguish highly conserved and poorly conserved proteins from the bacterium Escherichia coli, the archaeon Archaeoglobus fulgidus, and the eukaryotes Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. For all organisms studied, the conserved and nonconserved proteins have strikingly different length distributions. The conserved proteins are, on average, longer than the poorly conserved ones, and the length distributions for the poorly conserved proteins have a relatively narrow peak, in contrast to the conserved proteins whose lengths spread over a wider range of values. For the two prokaryotes studied, the poorly conserved proteins approximate the minimal length distribution expected for a diverse range of structural folds. Conclusions There is a relationship between protein conservation and sequence length. For all the organisms studied, there seems to be a significant evolutionary trend favoring shorter proteins in the absence of other, more specific functional constraints.

  1. Incidence of vocal fold immobility in patients with dysphagia.

    Science.gov (United States)

    Leder, Steven B; Ross, Douglas A

    2005-01-01

    This study prospectively investigated the incidence of vocal fold immobility, unilateral and bilateral, and its influence on aspiration status in a referred population of 1452 patients for a dysphagia evaluation from a large, urban, tertiary-care, teaching hospital. Main outcome measures included overall incidence of vocal fold immobility and aspiration status, with specific emphasis on age, etiology, and side of vocal fold immobility, i.e., right, left, or bilateral. Overall incidence of vocal fold immobility was 5.6% (81 of 1452 patients), including 47 males (mean age 55.7 yr) and 34 females (mean age 59.7 yr). In the subgroup of patients with vocal fold immobility, 31% (25 of 81) exhibited unilateral right, 60% (49 of 81) unilateral left, and 9% (7 of 81) bilateral impairment. Overall incidence of aspiration was found to be 29% (426 of 1452) of all patients referred for a swallow evaluation. Aspiration was observed in 44% (36 of 81) of patients presenting with vocal fold immobility, i.e., 44% (11 of 25) unilateral right, 43% (21 of 49) unilateral left, and 57% (4 of 7) bilateral vocal fold immobility. Left vocal fold immobility occurred most frequently due to surgical trauma. A liquid bolus was aspirated more often than a puree bolus. Side of vocal fold immobility and age were not factors that increased incidence of aspiration. In conclusion, vocal fold immobility, with an incidence of 5.6%, is not an uncommon finding in patients referred for a dysphagia evaluation in the acute-care setting, and vocal fold immobility, when present, was associated with a 15% increased incidence of aspiration when compared with a population already being evaluated for dysphagia.

  2. In vivo measurement of vocal fold surface resistance.

    Science.gov (United States)

    Mizuta, Masanobu; Kurita, Takashi; Dillon, Neal P; Kimball, Emily E; Garrett, C Gaelyn; Sivasankar, M Preeti; Webster, Robert J; Rousseau, Bernard

    2017-10-01

    A custom-designed probe was developed to measure vocal fold surface resistance in vivo. The purpose of this study was to demonstrate proof of concept of using vocal fold surface resistance as a proxy of functional tissue integrity after acute phonotrauma using an animal model. Prospective animal study. New Zealand White breeder rabbits received 120 minutes of airflow without vocal fold approximation (control) or 120 minutes of raised intensity phonation (experimental). The probe was inserted via laryngoscope and placed on the left vocal fold under endoscopic visualization. Vocal fold surface resistance of the middle one-third of the vocal fold was measured after 0 (baseline), 60, and 120 minutes of phonation. After the phonation procedure, the larynx was harvested and prepared for transmission electron microscopy. In the control group, vocal fold surface resistance values remained stable across time points. In the experimental group, surface resistance (X% ± Y% relative to baseline) was significantly decreased after 120 minutes of raised intensity phonation. This was associated with structural changes using transmission electron microscopy, which revealed damage to the vocal fold epithelium after phonotrauma, including disruption of the epithelium and basement membrane, dilated paracellular spaces, and alterations to epithelial microprojections. In contrast, control vocal fold specimens showed well-preserved stratified squamous epithelia. These data demonstrate the feasibility of measuring vocal fold surface resistance in vivo as a means of evaluating functional vocal fold epithelial barrier integrity. Device prototypes are in development for additional testing, validation, and for clinical applications in laryngology. NA Laryngoscope, 127:E364-E370, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Quantification of fold growth of frontal antiforms in the Zagros fold and thrust belt (Kurdistan, NE Iraq)

    Science.gov (United States)

    Bretis, Bernhard; Bartl, Nikolaus; Graseman, Bernhard; Lockhart, Duncan

    2010-05-01

    The Zagros fold and thrust belt is a seismically active orogen, where actual kinematic models based on GPS networks suggest a north-south shortening between Arabian and Eurasian in the order of 1.5-2.5 cm/yr. Most of this deformation is partitioned in south-southwest oriented folding and thrusting with northwest-southeast to north-south trending dextral strike slip faults. The Zagros fold and thrust belt is of great economic interest because it has been estimated that this area contains about 15% of the global recoverable hydrocarbons. Whereas the SE parts of the Zagros have been investigated by detailed geological studies, the NW extent being part of the Republic of Iraq have experienced considerably less attention. In this study we combine field work and remote sensing techniques in order to investigate the interaction of erosion and fold growth in the area NE of Erbil (Kurdistan, Iraq). In particular we focus on the interaction of the transient development of drainage patterns along growing antiforms, which directly reflects the kinematics of progressive fold growth. Detailed geomorphological studies of the Bana Bawi-, Permam- and Safeen fold trains show that these anticlines have not developed from subcylindrical embryonic folds but they have merged from different fold segments that joined laterally during fold amplification. This fold segments with length between 5 and 25 km have been detected by mapping ancient and modern river courses that initially cut the nose of growing folds and eventually got defeated leaving behind a wind gap. Fold segments, propagating in different directions force rivers to join resulting in steep gorges, which dissect the merging fold noses. Along rapidly lateral growing folds (e.g. at the SE end of the Bana Bawi Anticline) we observed "curved wind gaps", a new type of abandoned river course, where form of the wind gap mimics a formed nose of a growing antiform. The inherited curved segments of uplifted curved river courses strongly

  4. Status report on the folded tandem ion accelerator at BARC

    Indian Academy of Sciences (India)

    Folded tandem ion accelerator; charged particle beams; voltage stability; Rutherford backscattering; ion optics; beam lines. Abstract. The folded tandem ion accelerator (FOTIA) facility set up at BARC has become operational. At present, it is used for elemental analysis studies using the Rutherford backscattering technique.

  5. The effect of surface electrical stimulation on vocal fold position.

    Science.gov (United States)

    Humbert, Ianessa A; Poletto, Christopher J; Saxon, Keith G; Kearney, Pamela R; Ludlow, Christy L

    2008-01-01

    Closure of the true and false vocal folds is a normal part of airway protection during swallowing. Individuals with reduced or delayed true vocal fold closure can be at risk for aspiration and may benefit from intervention to ameliorate the problem. Surface electrical stimulation is currently used during therapy for dysphagia, despite limited knowledge of its physiological effects. Prospective single effects study. The immediate physiological effect of surface stimulation on true vocal fold angle was examined at rest in 27 healthy adults using 10 different electrode placements on the submental and neck regions. Fiberoptic nasolaryngoscopic recordings during passive inspiration were used to measure change in true vocal fold angle with stimulation. Vocal fold angles changed only to a small extent during two electrode placements (P vocal fold abduction was 2.4 degrees; while horizontal placements of electrodes in the submental region produced a mean adduction of 2.8 degrees (P = .03). Surface electrical stimulation to the submental and neck regions does not produce immediate true vocal fold adduction adequate for airway protection during swallowing, and one position may produce a slight increase in true vocal fold opening.

  6. Cotranslational protein folding reveals the selective use of ...

    Indian Academy of Sciences (India)

    to fold properly by decelerating the translation rate at these sites. Thus the cotranslational protein folding is believed to be true for many proteins and is an important selection factor for the selective codon usage to optimize proper gene expres- sion and function (Komar 2009). A web server CS and S has been created by ...

  7. Vocal Fold Mucus Aggregation in Persons with Voice Disorders

    Science.gov (United States)

    Bonilha, Heather Shaw; White, Lisa; Kuckhahn, Kelsey; Gerlach, Terri Treman; Deliyski, Dimitar D.

    2012-01-01

    Mucus aggregation on the vocal folds is a common finding from laryngeal endoscopy. Patients with voice disorders report the presence of mucus aggregation. Patients also report that mucus aggregation causes them to clear their throat, a behavior believed to be harmful to vocal fold mucosa. Even though clinicians and patients report and discuss…

  8. Surfing the free energy landscape of flavodoxin folding

    NARCIS (Netherlands)

    Bollen, Y.J.M.

    2004-01-01

    The research described in this thesis has been carried out to obtain a better understanding of the fundamental rules describing protein folding. Protein folding is the process in which a linear chain of amino acids contracts to a compact state in which it is active. Flavodoxin from Azotobacter

  9. New variants of known folds: do they bring new biology?

    International Nuclear Information System (INIS)

    Koonin, Eugene V.

    2010-01-01

    New distinct versions of known protein folds provide a powerful means of protein-function prediction that complements sequence and genomic context analysis. New distinct versions of known protein folds provide a powerful means of protein-function prediction that complements sequence and genomic context analysis. These structures do not supplant direct biochemical experiments, but are indispensable for the complete characterization of proteins

  10. Acute vocal fold hemorrhage caught on video during office exam.

    Science.gov (United States)

    Carroll, Thomas L; Smith, Libby J

    2009-03-01

    This article presents a unique video of a laryngeal exam during which a vocal fold hemorrhage occurs. This patient had likely been suffering from intermittent vocal fold hemorrhages for the last decade due to a persistent vascular lesion and an underlying chronic cough.

  11. Method of generating ploynucleotides encoding enhanced folding variants

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M.; Kiss, Csaba; Waldo, Geoffrey S.

    2017-05-02

    The invention provides directed evolution methods for improving the folding, solubility and stability (including thermostability) characteristics of polypeptides. In one aspect, the invention provides a method for generating folding and stability-enhanced variants of proteins, including but not limited to fluorescent proteins, chromophoric proteins and enzymes. In another aspect, the invention provides methods for generating thermostable variants of a target protein or polypeptide via an internal destabilization baiting strategy. Internally destabilization a protein of interest is achieved by inserting a heterologous, folding-destabilizing sequence (folding interference domain) within DNA encoding the protein of interest, evolving the protein sequences adjacent to the heterologous insertion to overcome the destabilization (using any number of mutagenesis methods), thereby creating a library of variants. The variants in the library are expressed, and those with enhanced folding characteristics selected.

  12. Folding propensity of intrinsically disordered proteins by osmotic stress

    International Nuclear Information System (INIS)

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.

    2016-01-01

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scattering (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.

  13. Basic Tilted Helix Bundle – A new protein fold in human FKBP25/FKBP3 and HectD1

    Energy Technology Data Exchange (ETDEWEB)

    Helander, Sara; Montecchio, Meri [Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping (Sweden); Lemak, Alexander [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Northeast Structural Genomics Consortium, Toronto, Ontario (Canada); Farès, Christophe [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Almlöf, Jonas [Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping (Sweden); Li, Yanjun [Structural Genomics Consortium, University of Toronto, 101 College St, Toronto, Ontario M5G 1L7 (Canada); Yee, Adelinda [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Northeast Structural Genomics Consortium, Toronto, Ontario (Canada); Arrowsmith, Cheryl H. [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Northeast Structural Genomics Consortium, Toronto, Ontario (Canada); Structural Genomics Consortium, University of Toronto, 101 College St, Toronto, Ontario M5G 1L7 (Canada); Dhe-Paganon, Sirano [Structural Genomics Consortium, University of Toronto, 101 College St, Toronto, Ontario M5G 1L7 (Canada); Sunnerhagen, Maria, E-mail: maria.sunnerhagen@liu.se [Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping (Sweden)

    2014-04-25

    Highlights: • We describe the structure of a novel fold in FKBP25 and HectD. • The new fold is named the Basic Tilted Helix Bundle (BTHB) domain. • A conserved basic surface patch is presented, suggesting a functional role. - Abstract: In this paper, we describe the structure of a N-terminal domain motif in nuclear-localized FKBP25{sub 1–73}, a member of the FKBP family, together with the structure of a sequence-related subdomain of the E3 ubiquitin ligase HectD1 that we show belongs to the same fold. This motif adopts a compact 5-helix bundle which we name the Basic Tilted Helix Bundle (BTHB) domain. A positively charged surface patch, structurally centered around the tilted helix H4, is present in both FKBP25 and HectD1 and is conserved in both proteins, suggesting a conserved functional role. We provide detailed comparative analysis of the structures of the two proteins and their sequence similarities, and analysis of the interaction of the proposed FKBP25 binding protein YY1. We suggest that the basic motif in BTHB is involved in the observed DNA binding of FKBP25, and that the function of this domain can be affected by regulatory YY1 binding and/or interactions with adjacent domains.

  14. Basic Tilted Helix Bundle – A new protein fold in human FKBP25/FKBP3 and HectD1

    International Nuclear Information System (INIS)

    Helander, Sara; Montecchio, Meri; Lemak, Alexander; Farès, Christophe; Almlöf, Jonas; Li, Yanjun; Yee, Adelinda; Arrowsmith, Cheryl H.; Dhe-Paganon, Sirano; Sunnerhagen, Maria

    2014-01-01

    Highlights: • We describe the structure of a novel fold in FKBP25 and HectD. • The new fold is named the Basic Tilted Helix Bundle (BTHB) domain. • A conserved basic surface patch is presented, suggesting a functional role. - Abstract: In this paper, we describe the structure of a N-terminal domain motif in nuclear-localized FKBP25 1–73 , a member of the FKBP family, together with the structure of a sequence-related subdomain of the E3 ubiquitin ligase HectD1 that we show belongs to the same fold. This motif adopts a compact 5-helix bundle which we name the Basic Tilted Helix Bundle (BTHB) domain. A positively charged surface patch, structurally centered around the tilted helix H4, is present in both FKBP25 and HectD1 and is conserved in both proteins, suggesting a conserved functional role. We provide detailed comparative analysis of the structures of the two proteins and their sequence similarities, and analysis of the interaction of the proposed FKBP25 binding protein YY1. We suggest that the basic motif in BTHB is involved in the observed DNA binding of FKBP25, and that the function of this domain can be affected by regulatory YY1 binding and/or interactions with adjacent domains

  15. A YEAST SPECIFIC INSERTION AMIDST OBG FOLD IS CRITICAL FOR THE MITOCHONDRIAL FUNCTION OF Mtg2p IN SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Upasana Mehra

    2017-06-01

    Full Text Available Protein expression in mitochondria is carried out by ribosomes that are distinct from their cytosolic counterpart. Mitochondrial ribosomes are made of individual proteins having distinct lineages: those with clear bacterial orthologues, those conserved in eukaryotes only and proteins that are species specific. MTG2 is the mitochondrial member of the universally conserved Obg family of GTPases in Saccharomyces cerevisiae which associates with and regulates mitochondrial large ribosomal subunit assembly. In this study we demonstrate that MTG2, in addition to the universally conserved OBG and GTPase domains, has an essential yeast specific insertion domain positioned within the N terminal OBG fold. Cells expressing mtg2∆201-294, deleted for the insertion domain are not able to support cellular respiration. In addition, we show that large stretches of amino acids can be inserted into MTG2 at the end of the yeast specific insertion domain and the OBG fold without perturbing its cellular functions, consistent with the insertion domain folding into a species specific protein binding platform.

  16. A Resource Conservation Unit.

    Science.gov (United States)

    Porter, Philip D.

    1979-01-01

    Describes a variety of learning activities for teaching elementary and junior high students about air, water, and energy conservation techniques. Suggests community resources, social studies objectives, language skills, and 20 activities. (CK)

  17. Hearing Conservation Team

    Data.gov (United States)

    Federal Laboratory Consortium — The Hearing Conservation Team focuses on ways to identify the early stages of noise-induced damage to the human ear.Our current research involves the evaluation of...

  18. Madagascar Conservation & Development

    African Journals Online (AJOL)

    Madagascar Conservation & Development. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 1 (2014) >. Log in or Register to get access to full text downloads.

  19. Metro Conservation Corridors

    Data.gov (United States)

    Minnesota Department of Natural Resources — The Metro Conservation Corridors (MeCC) grow out of the natural resource analysis work done by the DNR in the late '90's, documented in the Metro Greenprint...

  20. Madagascar Conservation & Development

    African Journals Online (AJOL)

    www.journalmcd.com

    2012-02-19

    Feb 19, 2012 ... MADAGASCAR CONSERVATION & DEVELOPMENT. VOLUME 7 ... die within a short period of time (e.g., infanticide) (Erhart and. Overdorff 1998 .... been as deep or may have healed by the time of examination. Falls during ...

  1. Birds of Conservation Concern

    Data.gov (United States)

    Department of the Interior — The 1988 amendment to the Fish and Wildlife Conservation Act mandates the U.S. Fish and Wildlife Service (USFWS) to “identify species, subspecies, and populations of...

  2. Vocal fold contact patterns based on normal modes of vibration.

    Science.gov (United States)

    Smith, Simeon L; Titze, Ingo R

    2018-05-17

    The fluid-structure interaction and energy transfer from respiratory airflow to self-sustained vocal fold oscillation continues to be a topic of interest in vocal fold research. Vocal fold vibration is driven by pressures on the vocal fold surface, which are determined by the shape of the glottis and the contact between vocal folds. Characterization of three-dimensional glottal shapes and contact patterns can lead to increased understanding of normal and abnormal physiology of the voice, as well as to development of improved vocal fold models, but a large inventory of shapes has not been directly studied previously. This study aimed to take an initial step toward characterizing vocal fold contact patterns systematically. Vocal fold motion and contact was modeled based on normal mode vibration, as it has been shown that vocal fold vibration can be almost entirely described by only the few lowest order vibrational modes. Symmetric and asymmetric combinations of the four lowest normal modes of vibration were superimposed on left and right vocal fold medial surfaces, for each of three prephonatory glottal configurations, according to a surface wave approach. Contact patterns were generated from the interaction of modal shapes at 16 normalized phases during the vibratory cycle. Eight major contact patterns were identified and characterized by the shape of the flow channel, with the following descriptors assigned: convergent, divergent, convergent-divergent, uniform, split, merged, island, and multichannel. Each of the contact patterns and its variation are described, and future work and applications are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Mesocycles in conserving plastics

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2016-01-01

    driven by the need to balance the requirements for reversibility in conservation practices with the artist’s intent and significance. Developments within each of the three mesocycles from the 1990s to date are discussed in this article. Environmental science and toxicology of waste plastics offer a novel...... source of information about real time degradation in terrestrial and marine microenvironments that seems likely to contribute to the conservation of similar materials in contemporary artworks....

  4. Soil conservation measures: exercises

    OpenAIRE

    Figueiredo, Tomás de; Fonseca, Felícia

    2009-01-01

    Exercises proposed under the topic of Soil Conservation Measures addresses to the design of structural measure, namely waterways in the context of a soil conservation plan. However, to get a better insight on the actual meaning of soil loss as a resource loss, a prior exercise is proposed to students. It concerns calculations of soil loss due to sheet (interrill) erosion and to gully erosion, and allows the perception through realistic number of the impact of these mechanism...

  5. Entropic formulation for the protein folding process: Hydrophobic stability correlates with folding rates

    Science.gov (United States)

    Dal Molin, J. P.; Caliri, A.

    2018-01-01

    Here we focus on the conformational search for the native structure when it is ruled by the hydrophobic effect and steric specificities coming from amino acids. Our main tool of investigation is a 3D lattice model provided by a ten-letter alphabet, the stereochemical model. This minimalist model was conceived for Monte Carlo (MC) simulations when one keeps in mind the kinetic behavior of protein-like chains in solution. We have three central goals here. The first one is to characterize the folding time (τ) by two distinct sampling methods, so we present two sets of 103 MC simulations for a fast protein-like sequence. The resulting sets of characteristic folding times, τ and τq were obtained by the application of the standard Metropolis algorithm (MA), as well as by an enhanced algorithm (Mq A). The finding for τq shows two things: (i) the chain-solvent hydrophobic interactions {hk } plus a set of inter-residues steric constraints {ci,j } are able to emulate the conformational search for the native structure. For each one of the 103MC performed simulations, the target is always found within a finite time window; (ii) the ratio τq / τ ≅ 1 / 10 suggests that the effect of local thermal fluctuations, encompassed by the Tsallis weight, provides to the chain an innate efficiency to escape from energetic and steric traps. We performed additional MC simulations with variations of our design rule to attest this first result, both algorithms the MA and the Mq A were applied to a restricted set of targets, a physical insight is provided. Our second finding was obtained by a set of 600 independent MC simulations, only performed with the Mq A applied to an extended set of 200 representative targets, our native structures. The results show how structural patterns should modulate τq, which cover four orders of magnitude; this finding is our second goal. The third, and last result, was obtained with a special kind of simulation performed with the purpose to explore a

  6. The role of the mesenchyme in cranial neural fold elevation

    International Nuclear Information System (INIS)

    Morris-Wiman, J.A.

    1988-01-01

    It has been previously postulated that the expansion of an hyaluronate-rich extracellular matrix in the fold mesenchyme is responsible for neural fold elevation. In this study we provide evidence that such expansions may play an important role in cranial neural fold elevation by pushing the folds towards the dorsal midline to assist in their elevation. For mesenchymal expansion to result in fold elevation, hyaluronate (HA) and mesenchymal cells must be non-randomly distributed within the mesenchyme. Patterns of mesenchymal cell distribution and cell proliferation were analyzed using the computer-assisted method of smoothed spatial averaging. The distribution of Alcian blue-stained and 3 H-glucosamine-labelled HA was also analyzed during cranial neural fold elevation using established image processing techniques. Analysis of the distribution of 3 H-thymidine-labelled mesenchymal cells indicated that differential mitotic activity was not responsible for decreased mesenchymal cell density. Likewise, analysis of distribution patterns of 3 H-glucosamine-labelled HA indicated that decreased HA concentration was not produced by regional differences in HA synthesis. These results suggest that decreases in mesenchymal cell density and HA concentration that occur during neural fold elevation are produced by mesenchymal expansion

  7. Origami-Inspired Folding of Thick, Rigid Panels

    Science.gov (United States)

    Trease, Brian P.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Zirbel, Shannon; Howell, Larry; Lang, Robert

    2014-01-01

    To achieve power of 250 kW or greater, a large compression ratio of stowed-to-deployed area is needed. Origami folding patterns were used to inspire the folding of a solar array to achieve synchronous deployment; however, origami models are generally created for near-zero-thickness material. Panel thickness is one of the main challenges of origami-inspired design. Three origami-inspired folding techniques (flasher, square twist, and map fold) were created with rigid panels and hinges. Hinge components are added to the model to enable folding of thick, rigid materials. Origami models are created assuming zero (or near zero) thickness. When a material with finite thickness is used, the panels are required to bend around an increasingly thick fold as they move away from the center of the model. The two approaches for dealing with material thickness are to use membrane hinges to connect the panels, or to add panel hinges, or hinges of the same thickness, at an appropriate width to enable folding.

  8. Unraveling metamaterial properties in zigzag-base folded sheets.

    Science.gov (United States)

    Eidini, Maryam; Paulino, Glaucio H

    2015-09-01

    Creating complex spatial objects from a flat sheet of material using origami folding techniques has attracted attention in science and engineering. In the present work, we use the geometric properties of partially folded zigzag strips to better describe the kinematics of known zigzag/herringbone-base folded sheet metamaterials such as Miura-ori. Inspired by the kinematics of a one-degree of freedom zigzag strip, we introduce a class of cellular folded mechanical metamaterials comprising different scales of zigzag strips. This class of patterns combines origami folding techniques with kirigami. Using analytical and numerical models, we study the key mechanical properties of the folded materials. We show that our class of patterns, by expanding on the design space of Miura-ori, is appropriate for a wide range of applications from mechanical metamaterials to deployable structures at small and large scales. We further show that, depending on the geometry, these materials exhibit either negative or positive in-plane Poisson's ratios. By introducing a class of zigzag-base materials in the current study, we unify the concept of in-plane Poisson's ratio for similar materials in the literature and extend it to the class of zigzag-base folded sheet materials.

  9. Fluorescence of Alexa fluor dye tracks protein folding.

    Directory of Open Access Journals (Sweden)

    Simon Lindhoud

    Full Text Available Fluorescence spectroscopy is an important tool for the characterization of protein folding. Often, a protein is labeled with appropriate fluorescent donor and acceptor probes and folding-induced changes in Förster Resonance Energy Transfer (FRET are monitored. However, conformational changes of the protein potentially affect fluorescence properties of both probes, thereby profoundly complicating interpretation of FRET data. In this study, we assess the effects protein folding has on fluorescence properties of Alexa Fluor 488 (A488, which is commonly used as FRET donor. Here, A488 is covalently attached to Cys69 of apoflavodoxin from Azotobacter vinelandii. Although coupling of A488 slightly destabilizes apoflavodoxin, the three-state folding of this protein, which involves a molten globule intermediate, is unaffected. Upon folding of apoflavodoxin, fluorescence emission intensity of A488 changes significantly. To illuminate the molecular sources of this alteration, we applied steady state and time-resolved fluorescence techniques. The results obtained show that tryptophans cause folding-induced changes in quenching of Alexa dye. Compared to unfolded protein, static quenching of A488 is increased in the molten globule. Upon populating the native state both static and dynamic quenching of A488 decrease considerably. We show that fluorescence quenching of Alexa Fluor dyes is a sensitive reporter of conformational changes during protein folding.

  10. The impact of intraglottal vortices on vocal fold dynamics

    Science.gov (United States)

    Erath, Byron; Pirnia, Alireza; Peterson, Sean

    2016-11-01

    During voiced speech a critical pressure is produced in the lungs that separates the vocal folds and creates a passage (the glottis) for airflow. As air passes through the vocal folds the resulting aerodynamic loading, coupled with the tissue properties of the vocal folds, produces self-sustained oscillations. Throughout each cycle a complex flow field develops, characterized by a plethora of viscous flow phenomena. Air passing through the glottis creates a jet, with periodically-shed vortices developing due to flow separation and the Kelvin-Helmholtz instability in the shear layer. These vortices have been hypothesized to be a crucial mechanism for producing vocal fold vibrations. In this study the effect of vortices on the vocal fold dynamics is investigated experimentally by passing a vortex ring over a flexible beam with the same non-dimensional mechanical properties as the vocal folds. Synchronized particle image velocimetry data are acquired in tandem with the beam dynamics. The resulting impact of the vortex ring loading on vocal fold dynamics is discussed in detail. This work was supported by the National Science Foundation Grant CBET #1511761.

  11. Idiopathic unilateral vocal-fold paralysis in the adult.

    Science.gov (United States)

    Rubin, F; Villeneuve, A; Alciato, L; Slaïm, L; Bonfils, P; Laccourreye, O

    2018-02-02

    To analyze the characteristics of adult idiopathic unilateral vocal-fold paralysis. Retrospective study of diagnostic problems, clinical data and recovery in an inception cohort of 100 adult patients with idiopathic unilateral vocal-fold paralysis (Group A) and comparison with a cohort of 211 patients with isolated non-idiopathic non-traumatic unilateral vocal-fold paralysis (Group B). Diagnostic problems were noted in 24% of cases in Group A: eight patients with concomitant common upper aerodigestive tract infection, five patients with a concomitant condition liable to induce immunodepression and 11 patients in whom a malignant tumor occurred along the path of the ipsilateral vagus and inferior laryngeal nerves or in the ipsilateral paralyzed larynx. There was no recovery of vocal-fold motion beyond 51 months after onset of paralysis. The 5-year actuarial estimate for recovery differed significantly (Pvocal-fold paralysis. In non-traumatic vocal-fold paralysis in adult patients, without recovery of vocal-fold motion, a minimum three years' regular follow-up is recommended. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Endoscopic Anatomy of the Tensor Fold and Anterior Attic.

    Science.gov (United States)

    Li, Bin; Doan, Phi; Gruhl, Robert R; Rubini, Alessia; Marchioni, Daniele; Fina, Manuela

    2018-02-01

    Objectives The objectives of the study were to (1) study the anatomical variations of the tensor fold and its anatomic relation with transverse crest, supratubal recess, and anterior epitympanic space and (2) explore the most appropriate endoscopic surgical approach to each type of the tensor fold variants. Study Design Cadaver dissection study. Setting Temporal bone dissection laboratory. Subjects and Methods Twenty-eight human temporal bones (26 preserved and 2 fresh) were dissected through an endoscopic transcanal approach between September 2016 and June 2017. The anatomical variations of the tensor fold, transverse crest, supratubal recess, and anterior epitympanic space were studied before and after removing ossicles. Results Three different tensor fold orientations were observed: vertical (type A, 11/28, 39.3%) with attachment to the transverse crest, oblique (type B, 13/28, 46.4%) with attachment to the anterior tegmen tympani, and horizontal (type C, 4/28, 14.3%) with attachment to the tensor tympani canal. The tensor fold was a complete membrane in 20 of 28 (71.4%) specimens, preventing direct ventilation between the supratubal recess and anterior epitympanic space. We identified 3 surgical endoscopic approaches, which allowed visualization of the tensor fold without removing the ossicles. Conclusions The orientation of the tensor fold is the determining structure that dictates the conformation and limits of the epitympanic space. We propose a classification of the tensor fold based on 3 anatomical variants. We also describe 3 different minimally invasive endoscopic approaches to identify the orientation of the tensor fold while maintaining ossicular chain continuity.

  13. A nomenclature paradigm for benign midmembranous vocal fold lesions.

    Science.gov (United States)

    Rosen, Clark A; Gartner-Schmidt, Jackie; Hathaway, Bridget; Simpson, C Blake; Postma, Gregory N; Courey, Mark; Sataloff, Robert T

    2012-06-01

    There is a significant lack of uniform agreement regarding nomenclature for benign vocal fold lesions (BVFLs). This confusion results in difficulty for clinicians communicating with their patients and with each other. In addition, BVFL research and comparison of treatment methods are hampered by the lack of a detailed and uniform BVFL nomenclature. Clinical consensus conferences were held to develop an initial BVFL nomenclature paradigm. Perceptual video analysis was performed to validate the stroboscopy component of the paradigm. The culmination of the consensus conferences and the video-perceptual analysis was used to evaluate the BVFL nomenclature paradigm using a retrospective review of patients with BVFL. An initial BVFL nomenclature paradigm was proposed utilizing detailed definitions relating to vocal fold lesion morphology, stroboscopy, response to voice therapy and intraoperative findings. Video-perceptual analysis of stroboscopy demonstrated that the proposed binary stroboscopy system used in the BVFL nomenclature paradigm was valid and widely applicable. Retrospective review of 45 patients with BVFL followed to the conclusion of treatment demonstrated that slight modifications of the initial BVFL nomenclature paradigm were required. With the modified BVFL nomenclature paradigm, 96% of the patients fit into the predicted pattern and definitions of the BVFL nomenclature system. This study has validated a multidimensional BVFL nomenclature paradigm. This vocal fold nomenclature paradigm includes nine distinct vocal fold lesions: vocal fold nodules, vocal fold polyp, pseudocyst, vocal fold cyst (subepithelial or ligament), nonspecific vocal fold lesion, vocal fold fibrous mass (subepithelial or ligament), and reactive lesion. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  14. Radiation Fibrosis of the Vocal Fold: From Man to Mouse

    Science.gov (United States)

    Johns, Michael M.; Kolachala, Vasantha; Berg, Eric; Muller, Susan; Creighton, Frances X.; Branski, Ryan C.

    2013-01-01

    Objectives To characterize fundamental late tissue effects in the human vocal fold following radiation therapy. To develop a murine model of radiation fibrosis to ultimately develop both treatment and prevention paradigms. Design Translational study using archived human and fresh murine irradiated vocal fold tissue. Methods 1) Irradiated vocal fold tissue from patients undergoing laryngectomy for loss of function from radiation fibrosis were identified from pathology archives. Histomorphometry, immunohistochemistry, and whole-genome microarray as well as real-time transcriptional analyses was performed. 2) Focused radiation to the head and neck was delivered to mice in a survival fashion. One month following radiation, vocal fold tissue was analyzed with histomorphometry, immunohistochemistry, and real-time PCR transcriptional analysis for selected markers of fibrosis. Results Human irradiated vocal folds demonstrated increased collagen transcription with increased deposition and disorganization of collagen in both the thyroarytenoid muscle and the superficial lamina propria. Fibronectin were increased in the superficial lamina propria. Laminin decreased in the thyroarytenoid muscle. Whole genome microarray analysis demonstrated increased transcription of markers for fibrosis, oxidative stress, inflammation, glycosaminoglycan production and apoptosis. Irradiated murine vocal folds demonstrated increases in collagen and fibronectin transcription and deposition in the lamina propria. Transforming growth factor (TGF)-β increased in the lamina propria. Conclusion Human irradiated vocal folds demonstrate molecular changes leading to fibrosis that underlie loss of vocal fold pliability that occurs in patients following laryngeal irradiation. Irradiated murine tissue demonstrates similar findings, and this mouse model may have utility in creating prevention and treatment strategies for vocal fold radiation fibrosis. PMID:23242839

  15. Recoverable and Programmable Collapse from Folding Pressurized Origami Cellular Solids.

    Science.gov (United States)

    Li, S; Fang, H; Wang, K W

    2016-09-09

    We report a unique collapse mechanism by exploiting the negative stiffness observed in the folding of an origami solid, which consists of pressurized cells made by stacking origami sheets. Such a collapse mechanism is recoverable, since it only involves rigid folding of the origami sheets and it is programmable by pressure control and the custom design of the crease pattern. The collapse mechanism features many attractive characteristics for applications such as energy absorption. The reported results also suggest a new branch of origami study focused on its nonlinear mechanics associated with folding.

  16. Water dynamics clue to key residues in protein folding

    International Nuclear Information System (INIS)

    Gao, Meng; Zhu, Huaiqiu; Yao, Xin-Qiu; She, Zhen-Su

    2010-01-01

    A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.

  17. Microwave-enhanced folding and denaturation of globular proteins

    DEFF Research Database (Denmark)

    Bohr, Henrik; Bohr, Jakob

    2000-01-01

    It is shown that microwave irradiation can affect the kinetics of the folding process of some globular proteins, especially beta-lactoglobulin. At low temperature the folding from the cold denatured phase of the protein is enhanced, while at a higher temperature the denaturation of the protein from...... its folded state is enhanced. In the latter case, a negative temperature gradient is needed for the denaturation process, suggesting that the effects of the microwaves are nonthermal. This supports the notion that coherent topological excitations can exist in proteins. The application of microwaves...

  18. Protein folding and the organization of the protein topology universe

    DEFF Research Database (Denmark)

    Lindorff-Larsen,, Kresten; Røgen, Peter; Paci, Emanuele

    2005-01-01

    residues and, in addition, that the topology of the transition state is closer to that of the native state than to that of any other fold in the protein universe. Here, we review the evidence for these conclusions and suggest a molecular mechanism that rationalizes these findings by presenting a view...... of protein folds that is based on the topological features of the polypeptide backbone, rather than the conventional view that depends on the arrangement of different types of secondary-structure elements. By linking the folding process to the organization of the protein structure universe, we propose...

  19. Adjustable thermal resistor by reversibly folding a graphene sheet.

    Science.gov (United States)

    Song, Qichen; An, Meng; Chen, Xiandong; Peng, Zhan; Zang, Jianfeng; Yang, Nuo

    2016-08-11

    Phononic (thermal) devices such as thermal diodes, thermal transistors, thermal logic gates, and thermal memories have been studied intensively. However, tunable thermal resistors have not been demonstrated yet. Here, we propose an instantaneously adjustable thermal resistor based on folded graphene. Through theoretical analysis and molecular dynamics simulations, we study the phonon-folding scattering effect and the dependence of thermal resistivity on the length between two folds and the overall length. Furthermore, we discuss the possibility of realizing instantaneously adjustable thermal resistors in experiment. Our studies bring new insights into designing thermal resistors and understanding the thermal modulation of 2D materials by adjusting basic structure parameters.

  20. Sex Hormone Receptor Expression in the Human Vocal Fold Subunits.

    Science.gov (United States)

    Kirgezen, Tolga; Sunter, Ahmet Volkan; Yigit, Ozgur; Huq, Gulben Erdem

    2017-07-01

    The study aimed to evaluate the existence of sex hormone receptors in the subunits of vocal fold. This is a cadaver study. The androgen, estrogen, and progesterone receptors were examined in the epithelium (EP), superficial layer of the lamina propria (SLP), vocal ligament (VL), and macula flava (MF) of the vocal folds from 42 human cadavers (21 male, 21 female) by immunohistochemical methods. Their staining ratios were scored and statistically compared. The androgen receptor score was significantly higher for the MF than for the EP and SLP (P vocal fold, mostly in the MF and VLs. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. Miniaturization of Multiple-Layer Folded Patch Antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Breinbjerg, Olav

    2009-01-01

    A new folded patch antenna with multiple layers was developed in this paper, by folding the patch in a proper way, and a highly miniaturized antenna can be realized. The multiple layer patch with 4-layer and 6-layer are designed and evaluated at 2.4 GHz, 915 MHz, and 415 MHz respectively. Then a 4...... layer patch is fabricated and measured to validate the design method. The theoretical analysis, design and simulations, fabrications, as well as the measurements are presented in this paper. All the results show that the folded patch antenna is a good candidate in making a highly miniaturized compact...

  2. Endoscopic vocal fold injection using a 25-gauge butterfly needle.

    Science.gov (United States)

    Buchanan, M A; Riffat, F; Palme, C E

    2016-04-01

    To describe a useful technique for infiltrating a bulking agent using a butterfly needle, as part of a transoral endoscopic vocal fold medialisation procedure. This paper describes the procedure of grasping the needle with phonosurgery forceps and administering the injectate to the vocal fold through careful application of the syringe plunger via a length of rubber tubing from outside the mouth. This procedure is performed routinely in our institution without complication. The advantages of this technique are discussed. This is a safe and easy method of injecting into a vocal fold.

  3. Hydrology and Conservation Ecology

    Science.gov (United States)

    Narayanan, M.

    2006-12-01

    Responses to change in the behavior of ecological systems are largely governed by interactions at different levels. Research is essential and is to be necessarily designed to gain insights into various interactions at the community level. Sustainable resource management is only possible if conservation of biodiversity can be accomplished by properly using the knowledge discovered. It is well known that the United States Department of Agriculture provides technical information, resources, and data necessary to assist the researchers in addressing their conservation needs. Conservation aims to protect, preserve and conserve the earth's natural resources. These include, but not limited to the conservation of soil, water, minerals, air, plants and all living beings. The United States Department of Agriculture also encourages farmers and ranchers to voluntarily address threats to soil and water. Protection of wetlands and wildlife habitat has been on the radar screen of conservation experts for a very long time. The main objective has always been to help farmers and landowners conform and comply with federal and state environmental laws. During the implementation phase, farmers should be encouraged to make beneficial, cost-effective changes to methods of irrigation systems. In some cases, the hydrologic regime of the project area can be thought of as principally an issue of river flow regimes for floodplain forests. In this presentation, the author tries to focus on the impact of hydrology and conservation ecology on global warming. He also discusses the impact of hydrology and conservation ecology global air concerns such as greenhouse gas concentrations in the atmosphere. References: Chow, V. T, D. R. Maidment, and L. W. Mays. 1988. Applied Hydrology. McGraw-Hill, Inc. U.S. Soil Conservation Service. Technical Release 55: Urban Hydrology for Small Watersheds. USDA (U.S. Department of Agriculture). June 1986. Lehner, B. and P. Döll (2004). Development and validation

  4. Strategies for measuring evolutionary conservation of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Hofacker Ivo L

    2008-02-01

    Full Text Available Abstract Background Evolutionary conservation of RNA secondary structure is a typical feature of many functional non-coding RNAs. Since almost all of the available methods used for prediction and annotation of non-coding RNA genes rely on this evolutionary signature, accurate measures for structural conservation are essential. Results We systematically assessed the ability of various measures to detect conserved RNA structures in multiple sequence alignments. We tested three existing and eight novel strategies that are based on metrics of folding energies, metrics of single optimal structure predictions, and metrics of structure ensembles. We find that the folding energy based SCI score used in the RNAz program and a simple base-pair distance metric are by far the most accurate. The use of more complex metrics like for example tree editing does not improve performance. A variant of the SCI performed particularly well on highly conserved alignments and is thus a viable alternative when only little evolutionary information is available. Surprisingly, ensemble based methods that, in principle, could benefit from the additional information contained in sub-optimal structures, perform particularly poorly. As a general trend, we observed that methods that include a consensus structure prediction outperformed equivalent methods that only consider pairwise comparisons. Conclusion Structural conservation can be measured accurately with relatively simple and intuitive metrics. They have the potential to form the basis of future RNA gene finders, that face new challenges like finding lineage specific structures or detecting mis-aligned sequences.

  5. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Yongping Yue

    2016-01-01

    Full Text Available Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity.

  6. Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar

    Directory of Open Access Journals (Sweden)

    Angelou Valerie

    2016-01-01

    Full Text Available Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid. Study Design. Animal experiment. Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into three groups. The first group served as control/scarred group. The second one was injected with hyaluronic acid in the vocal folds, and the third received an autologous adipose-derived stem cell infusion in the scarred vocal folds (ADSC group. We measured the variation of thickness of the lamina propria of the vocal folds and analyzed histopathologic changes in each group after three months. Results. The thickness of the lamina propria was significantly reduced in the group that received the ADSC injection, as compared to the normal/scarred group. The collagen deposition, the hyaluronic acid, the elastin levels, and the organization of elastic fibers tend to return to normal after the injection of ADSC. Conclusions. Autologous injection of adipose-derived stem cells on a vocal fold chronic scar enhanced the healing of the vocal folds and the reduction of the scar tissue, even when compared to other treatments.

  7. Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar

    Science.gov (United States)

    Vassiliki, Kalodimou; Irini, Messini; Nikolaos, Psychalakis; Karampela, Eleftheria; Apostolos, Papalois

    2016-01-01

    Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC) on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid. Study Design. Animal experiment. Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into three groups. The first group served as control/scarred group. The second one was injected with hyaluronic acid in the vocal folds, and the third received an autologous adipose-derived stem cell infusion in the scarred vocal folds (ADSC group). We measured the variation of thickness of the lamina propria of the vocal folds and analyzed histopathologic changes in each group after three months. Results. The thickness of the lamina propria was significantly reduced in the group that received the ADSC injection, as compared to the normal/scarred group. The collagen deposition, the hyaluronic acid, the elastin levels, and the organization of elastic fibers tend to return to normal after the injection of ADSC. Conclusions. Autologous injection of adipose-derived stem cells on a vocal fold chronic scar enhanced the healing of the vocal folds and the reduction of the scar tissue, even when compared to other treatments. PMID:26933440

  8. RNAslider: a faster engine for consecutive windows folding and its application to the analysis of genomic folding asymmetry.

    Science.gov (United States)

    Horesh, Yair; Wexler, Ydo; Lebenthal, Ilana; Ziv-Ukelson, Michal; Unger, Ron

    2009-03-04

    Scanning large genomes with a sliding window in search of locally stable RNA structures is a well motivated problem in bioinformatics. Given a predefined window size L and an RNA sequence S of size N (L free energy (MFE) for the folding of each of the L-sized substrings of S. The consecutive windows folding problem can be naively solved in O(NL3) by applying any of the classical cubic-time RNA folding algorithms to each of the N-L windows of size L. Recently an O(NL2) solution for this problem has been described. Here, we describe and implement an O(NLpsi(L)) engine for the consecutive windows folding problem, where psi(L) is shown to converge to O(1) under the assumption of a standard probabilistic polymer folding model, yielding an O(L) speedup which is experimentally confirmed. Using this tool, we note an intriguing directionality (5'-3' vs. 3'-5') folding bias, i.e. that the minimal free energy (MFE) of folding is higher in the native direction of the DNA than in the reverse direction of various genomic regions in several organisms including regions of the genomes that do not encode proteins or ncRNA. This bias largely emerges from the genomic dinucleotide bias which affects the MFE, however we see some variations in the folding bias in the different genomic regions when normalized to the dinucleotide bias. We also present results from calculating the MFE landscape of a mouse chromosome 1, characterizing the MFE of the long ncRNA molecules that reside in this chromosome. The efficient consecutive windows folding engine described in this paper allows for genome wide scans for ncRNA molecules as well as large-scale statistics. This is implemented here as a software tool, called RNAslider, and applied to the scanning of long chromosomes, leading to the observation of features that are visible only on a large scale.

  9. Botulinum toxin in the treatment of vocal fold nodules.

    Science.gov (United States)

    Allen, Jacqui E; Belafsky, Peter C

    2009-12-01

    Promising new techniques in the management of vocal fold nodules have been developed in the past 2 years. Simultaneously, the therapeutic use of botulinum toxin has rapidly expanded. This review explores the use of botulinum toxin in treatment of vocal nodules and summarizes current therapeutic concepts. New microsurgical instruments and techniques, refinements in laser technology, radiosurgical excision and steroid intralesional injections are all promising new techniques in the management of vocal nodules. Botulinum toxin-induced 'voice rest' is a new technique we have employed in patients with recalcitrant nodules. Successful resolution of nodules is possible with this technique, without the risk of vocal fold scarring inherent in dissection/excision techniques. Botulinum toxin usage is exponentially increasing, and large-scale, long-term studies demonstrate its safety profile. Targeted vocal fold temporary paralysis induced by botulinum toxin injection is a new, well tolerated and efficacious treatment in patients with persistent vocal fold nodules.

  10. New Analysis and Theory of Deployable Folded Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A recently developed mathematical folding theory has great value for deployable space structures and in situ manufacture of large beams, panels and cylinders. The...

  11. RNA inverse folding using Monte Carlo tree search.

    Science.gov (United States)

    Yang, Xiufeng; Yoshizoe, Kazuki; Taneda, Akito; Tsuda, Koji

    2017-11-06

    Artificially synthesized RNA molecules provide important ways for creating a variety of novel functional molecules. State-of-the-art RNA inverse folding algorithms can design simple and short RNA sequences of specific GC content, that fold into the target RNA structure. However, their performance is not satisfactory in complicated cases. We present a new inverse folding algorithm called MCTS-RNA, which uses Monte Carlo tree search (MCTS), a technique that has shown exceptional performance in Computer Go recently, to represent and discover the essential part of the sequence space. To obtain high accuracy, initial sequences generated by MCTS are further improved by a series of local updates. Our algorithm has an ability to control the GC content precisely and can deal with pseudoknot structures. Using common benchmark datasets for evaluation, MCTS-RNA showed a lot of promise as a standard method of RNA inverse folding. MCTS-RNA is available at https://github.com/tsudalab/MCTS-RNA .

  12. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  13. Folding two dimensional crystals by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Ochedowski, Oliver; Bukowska, Hanna; Freire Soler, Victor M.; Brökers, Lara; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika

    2014-01-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS 2 and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS 2 does not

  14. Evidence for multiphase folding of the central Indian Ocean lithosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Bull, J.M.; Scrutton, R.A.

    Long-wavelength (100-300 km) folding in the central Indian Ocean associated with the diffuse plate boundary separating the Indian, Australian, and Capricorn plates is Earth's most convincing example of organized large-scale lithospheric deformation...

  15. Nonlinear vs. linear biasing in Trp-cage folding simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spiwok, Vojtěch, E-mail: spiwokv@vscht.cz; Oborský, Pavel; Králová, Blanka [Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28 (Czech Republic); Pazúriková, Jana [Institute of Computer Science, Masaryk University, Botanická 554/68a, 602 00 Brno (Czech Republic); Křenek, Aleš [Institute of Computer Science, Masaryk University, Botanická 554/68a, 602 00 Brno (Czech Republic); Center CERIT-SC, Masaryk Univerzity, Šumavská 416/15, 602 00 Brno (Czech Republic)

    2015-03-21

    Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.

  16. Trends in Utilization of Vocal Fold Injection Procedures.

    Science.gov (United States)

    Rosow, David E

    2015-11-01

    Office-based vocal fold injections have become increasingly popular over the past 15 years. Examination of trends in procedure coding for vocal fold injections in the United States from 2000 to 2012 was undertaken to see if they reflect this shift. The US Part B Medicare claims database was queried from 2000 through 2012 for multiple Current Procedural Terminology codes. Over the period studied, the number of nonoperative laryngoscopic injections (31513, 31570) and operative medialization laryngoplasties (31588) remained constant. Operative vocal fold injection (31571) demonstrated marked linear growth over the 12-year study period, from 744 procedures in 2000 to 4788 in 2012-an increase >640%. The dramatic increased incidence in the use of code 31571 reflects an increasing share of vocal fold injections being performed in the operating room and not in an office setting, running counter to the prevailing trend toward awake, office-based injection procedures. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  17. Traumatic chorioretinal folds treated with intra-vitreal triamcinolone injection

    Directory of Open Access Journals (Sweden)

    Kook Young Kim

    2013-01-01

    Full Text Available A 34-year-old male visited the hospital due to decreased visual acuity in the left eye following an injury from a car accident. In the left eye, best-corrected visual acuity (BCVA was hand motion and intraocular pressure (IOP was 8 mmHg. Choroidal vasodilation and chorioretinal folds were observed by spectral domain-optical coherence tomography (SD-OCT. Topical and systemic steroid treatments did not improve the chorioretinal folds. Twelve months after the injury, intra-vitreal triamcinolone (4 mg/0.1 ml was injected. Six months after intra-vitreal triamcinolone injection, BCVA in the left eye had improved to 20/100. Fundus examination showed improvement in retinal vascular tortuosity and SD-OCT revealed improvements in choroidal vasodilation and chorioretinal folds. Intra-vitreal triamcinolone injection (IVTI was effective against traumatic chorioretinal folds with no recurrence based on objective observation by fundus photography and SD-OCT.

  18. Phonosurgery of the vocal folds : a classification proposal

    NARCIS (Netherlands)

    Remacle, M; Friedrich, G; Dikkers, FG; de Jong, F

    The Phonosurgery Committee of the European Laryngological Society (ELS) has examined the definition and technical description of phonosurgical procedures. Based on this review, the committee has proposed a working classification. The current presentation is restricted to vocal fold surgery (VFS)

  19. Protein folding and misfolding shining light by infrared spectroscopy

    CERN Document Server

    Fabian, Heinz

    2012-01-01

    Infrared spectroscopy is a new and innovative technology to study protein folding/misfolding events in the broad arsenal of techniques conventionally used in this field. The progress in understanding protein folding and misfolding is primarily due to the development of biophysical methods which permit to probe conformational changes with high kinetic and structural resolution. The most commonly used approaches rely on rapid mixing methods to initiate the folding event via a sudden change in solvent conditions. Traditionally, techniques such as fluorescence, circular dichroism or visible absorption are applied to probe the process. In contrast to these techniques, infrared spectroscopy came into play only very recently, and the progress made in this field up to date which now permits to probe folding events over the time scale from picoseconds to minutes has not yet been discussed in a book. The aim of this book is to provide an overview of the developments as seen by some of the main contributors to the field...

  20. Thermal analysis for folded solar array of spacecraft in orbit

    International Nuclear Information System (INIS)

    Yang, W.H.; Cheng, H.E.; Cai, A.

    2004-01-01

    The combined radiation-conduction heat transfer in folded solar array was considered as a three-dimensional anisotropic conduction without inner heat source. The three-dimensional equivalent conductivity in cell plate were obtained. The especially discrete equation coefficients of the nodes on the surfaces of adjacent cell plates were deduced by utilizing the simplified radiation network among the two adjacent cell plate surfaces and the deep cold space. All the thermal influence factors on the temperature response of the folded solar array were considered carefully. SIP method was used to solve the discrete equation. By comparing the calculation results under three cases, the temperature response and the maximum average difference of the folded solar array was obtained during the period of throw-radome of the launch vehicle and spread of the folded solar array. The obtained result is a valuable reference for the selection of the launch time of the spacecraft

  1. Tourism and Conservation

    DEFF Research Database (Denmark)

    Budeanu, Adriana

    2017-01-01

    Tourism is promoted by policy makers and international organizations as a tool for advancing conservation agendas, while contributing to poverty alleviation and human development, under the banner of ecotourism or sustainable tourism. However, the indiscriminating use of complex and ambiguous...... concepts such as “poverty” and “sustainability” hide important nuances with regards to the variety of processes and subsequent effects that are triggered when tourism and conservation are being adjoined. Experiences with tourism developments show that destinations that are weak economically find it harder...... to draw benefits from tourism developments or to decline participation in tourism with only little or no losses of sources of income and wealth. If tourism should fulfil sustainability goals related to conservation, poverty, and human development, it needs consistent governmental intervention...

  2. Conservation of Mangifera sylvatica

    DEFF Research Database (Denmark)

    Akhter, Sayma

    and conservation of these valuable species. The present study considers an underutilised and threatened species of Bangladesh, namely wild mango (Mangifera sylvatica Roxb.). Although this wild mango is one of the genetically closest species to the common mango (Mangifera indica L.) research is very limited...... and mostly focused on wood quality and phylogenetic relationships. Therefore, this study investigated the conservation potential of wild mango considering its contribution for food, nutrition and livelihoods. To do so, an assessment was made of the current and future distribution of the species, which...... explored. The study conveyed five key messages: 1. Wild mango may become extinct under future climate change scenarios so it is high time to start thinking about conservation initiatives. 2. Wild mango is a small sized mango with a large kernel in relation to other Mangifera species which provides...

  3. Resource conservation management

    International Nuclear Information System (INIS)

    Miller, W.

    1999-01-01

    Resource conservation management is a management program similar to financial management in that its success requires commitment by all levels of the organization to the process as well as an accounting procedure and auditing of critical components. Resource conservation management provides a framework for all elements of efficient building operations and maintenance. The savings connected with the program are principally connected with changes in the way buildings are operated and maintained. Given the reduction in rebates for the installation of energy-efficient equipment, this approach has considerable promise. This paper discusses the evolution of the resource conservation management service and the savings associated with a two-year pilot effort with seven school districts, as well as the critical components of a successful program

  4. Conservation reaches new heights.

    Science.gov (United States)

    Pepall, J; Khanal, P

    1992-10-01

    The conservation program with the management assistance of the Woodlands Mountain Institute in 2 contiguous parks, the Mount Everest National Park in Nepal and the Qomolangma Nature Reserve in China, in 2 countries is described. The focus is on conservation of the complex ecosystem with sustainable development by showing local people how to benefit from the park without environmental damage. Cultural diversity is as important as biological diversity. The area has been designated by UNESCO as a World Heritage Site with the "last pure ecological seed" of the Himalayas. The regional geography and culture are presented. Population growth has impacted natural resources through overgrazing, cultivation of marginal land, and deforestation; future plans to build a dam and road bordering the nature reserve pose other threats. Proposed management plans for the Makalu-Barun Nature Park (established in November 1991) and Conservation Area include a division of the park into nature reserve areas free of human activity, protected areas which permit traditional land use, and special sites and trail for tourists and religious pilgrims. The conservation area will act as a buffer for the park and provide economic opportunities; further subdivisions include land use for biodiversity protection, community forest and pasture, agroforestry, and agriculture and settlement. Efforts will be made to increase the welfare of women and local people; proposed projects include the introduction of higher milk-producing animals for stall feeding. Also proposed is a cultural and natural history museum. 70% of the project's resources will be directed to local community participation in consultation and park maintenance. The project is a model of how conservation and protection of natural resources can coexist with local economic development and participation; an integration of preservation of biological diversity, mountain wisdom, and the value of local people as resources for conservation.

  5. Morphometric Study of Vocal Folds in Indian Cadavers

    Directory of Open Access Journals (Sweden)

    Rawal J.D.

    2015-06-01

    Full Text Available Introduction: -The larynx is an air passage and a sphincteric device used in respiration and phonation. The larynx, from inside outwards has a framework of mucosa surrounded by fibro-elastic membrane which in turn is surrounded by cartilages and then a layer of muscles. Vocal folds are intrinsic ligament of larynx covered by mucosal folds. Larynx generates sound through rhythmic opening and closing of the vocal folds. The perceived pitch of human voice mainly depends upon fundamental frequency of sound generated by larynx. Aim: - The aim of present study is to measure various dimensions of vocal folds in Indian cadavers. Material & Methods: - 50 larynx were obtained from embalmed cadavers, of which 10 larynx were of females. Vocal cords were dissected from the larynx and morphometric analysis was done. Results and Conclusions: - The average total length of the vocal folds was found to be 16.11 mm. ± 2.62 mm. in male and 14.10 mm. ± 1.54 mm. in female cadavers. The average width of the vocal folds was found to be 4.38 mm. ± 0.74 mm. in male and 3.60 mm. ± 0.64 mm. in female cadavers. The average total length of the membranous part of the vocal folds was found to be 11.90 mm. ± 1.86 mm. in male and 10.45 mm. ± 1.81 mm. in female cadavers. The average ratio of the length of the membranous and the cartilaginous parts of the vocal folds was calculated to be 3.10 ± 0.96in male and 2.85 ± 0.73in female cadavers.

  6. WW Domain Folding Complexity Revealed by Infrared Spectroscopy

    OpenAIRE

    Davis, Caitlin M.; Dyer, R. Brian

    2014-01-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescen...

  7. Cervical osteophytes presenting as unilateral vocal fold paralysis and dysphagia.

    Science.gov (United States)

    Yoskovitch, A; Kantor, S

    2001-05-01

    Any process involving either the vagus nerve, its recurrent laryngeal branch or the external branch of the superior laryngeal nerve may cause paralysis of the vocal fold. The most common cause is neoplasm. Clinically, the patients often present with a hoarse, breathy voice as well as symptoms of aspiration. The following represents a unique case of unilateral vocal fold paralysis and dysphagia caused by a degenerative disease of the cervical spine, resluting in extrinsic compression of the recurrent laryngeal nerve.

  8. Double folded Yukawa interaction potential between two heavy ions

    International Nuclear Information System (INIS)

    Bulgac, A.; Carstoiu, F.; Dumitrescu, O.

    1980-02-01

    A simple semi-analytical formula for the heavy ion interaction potential within the double-folding model approximation is obtained. The folded interaction is assumed to be expressed in Yukawa terms or the derivatives of them. The densities used can be both experimental or theoretical (of simple ''step-wise'', ''Fermi-Saxon-Woods'' or complicated ''shell model'' structure) densities. A way of inserting the exchange terms is discussed. Numerical calculations for some colliding partners are reported. (author)

  9. The Arterial Folding Point During Flexion of the Hip Joint

    International Nuclear Information System (INIS)

    Park, Sung Il; Won, Je Hwan; Kim, Byung Moon; Kim, Jae Keun; Lee, Do Yun

    2005-01-01

    Purpose: Endovascular stents placed in periarticular vessels may be at a greater risk of neointimal hyperplasia and eventual occlusion than those placed in non-periarticular vessels. The purpose of this study was to investigate the location of maximal conformational change along the iliac and femoral artery, the folding point, during flexion of the hip joint and its location relative to the hip joint and the inguinal ligament. Methods: Seventy patients undergoing femoral artery catheterization were evaluated. The patients were 47 men and 23 women and ranged in age from 26 to 75 years (mean 54 years). The arteries (right:left = 34:36) were measured using a marked catheter for sizing vessels. Fluoroscopic images were obtained in anteroposterior and lateral projections in neutral position, and in the lateral projection in flexed position of the hip joint. The folding point was determined by comparing the lateral projection images in the neutral and flexed positions. The distance from the acetabular roof to the folding point and the distance from the inguinal ligament to the folding point was evaluated. Results: : The folding point was located 42.8 ± 28.6 mm cranial to the acetabular roof and 35.1 ± 30.1 mm cranial to the inguinal ligament. As the patient’s age increased, the folding point was located more cranially (p < 0.001). Conclusions: The folding point during flexion of the hip joint was located 42.8 ± 28.6 mm cranial to the acetabular roof and 35.1 ± 30.1 mm cranial to the inguinal ligament. As the patient's age increased, the folding point was located more cranially. When a stent is inserted over this region, more attention may be needed during follow-up to monitor possible occlusion and stent failure.

  10. Oral and vocal fold diadochokinesis in dysphonic women

    OpenAIRE

    Louzada,Talita; Beraldinelle,Roberta; Berretin-Felix,Giédre; Brasolotto,Alcione Ghedini

    2011-01-01

    The evaluation of oral and vocal fold diadochokinesis (DDK) in individuals with voice disorders may contribute to the understanding of factors that affect the balanced vocal production. Scientific studies that make use of this assessment tool support the knowledge advance of this area, reflecting the development of more appropriate therapeutic planning. Objective: To compare the results of oral and vocal fold DDK in dysphonic women and in women without vocal disorders. Material and methods: F...

  11. Energy conservation in industry

    International Nuclear Information System (INIS)

    Pembleton, P.

    1992-01-01

    Energy Conservation in Industry is the first number in the Energy and Environmental Series of the Industrial and Technological Information Bank (INTIB). The Series supersedes the INECA Journal and reflects the broader information programme undertaken by INTIB. The present number of the Series contains contributions from three major international databases and five topic-specific sources, including three United Nations Organizations. The present publication consists of a recent technical report on a current topic: reducing energy loss in four industrial sectors and improving energy conservation through waste-heat recovery, followed by two sections containing abstracts of technical materials

  12. Local instant conservation equations

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    Local instant conservation equations for two-phase flow are derived. Derivation of the equation starts from the recording of integral laws of conservation for a fixed reference volume, containing both phases. Transformation of the laws, using the Leibniz rule and Gauss theory permits to obtain the sum of two integrals as to the volume and integral as to the surface. Integrals as to the volume result in local instant differential equations, in particular derivatives for each phase, and integrals as to the surface reflect local instant conditions of a jump on interface surface

  13. Diesel conservation: GSRTC'S experience

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Kumar, I V

    1980-01-01

    The Gujarat State Road Transport Corporation (GSRTC) in India has a fleet of about 6000 buses. The increasing cost of fuel and lubricants added to uncertainty in supplies, has necessitated the need for conserving High Speed Diesel Oil (HSD). GSRTC had achieved an overall average Kilometre Per Litre (kmpl) of 4.44 in the year 1976-1977 due to a variety of measures. In the year 1978-1979 the average kmpl was 4.52 and it is expected to be 4.60 for 1979-1980. The case study outlined describes the measures taken by GSRTC in conserving high speed diesel oil by various methods.

  14. Information, conservation and retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Eng, T [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Norberg, E [National Swedish Archives, Stockholm (Sweden); Torbacke, J [Stockholm Univ. (Sweden). Dept. of History; Jensen, M [Swedish Radiation Protection Inst., Stockholm (Sweden)

    1996-12-01

    The seminar took place on the Swedish ship for transportation of radioactive wastes, M/S Sigyn, which at summer time is used for exhibitions. The seminar treated items related to general information needs in society and questions related to radioactive waste, i.e. how knowledge about a waste repository should be passed on to future generations. Three contributions are contained in the report from the seminar and are indexed separately: `Active preservation - otherwise no achieves`; `The conservation and dissemination of information - A democratic issue`; and, `Conservation and retrieval of information - Elements of a strategy to inform future societies about nuclear waste repositories`.

  15. Information, conservation and retrieval

    International Nuclear Information System (INIS)

    Eng, T.; Norberg, E.; Torbacke, J.

    1996-12-01

    The seminar took place on the Swedish ship for transportation of radioactive wastes, M/S Sigyn, which at summer time is used for exhibitions. The seminar treated items related to general information needs in society and questions related to radioactive waste, i.e. how knowledge about a waste repository should be passed on to future generations. Three contributions are contained in the report from the seminar and are indexed separately: 'Active preservation - otherwise no achieves'; 'The conservation and dissemination of information - A democratic issue'; and, 'Conservation and retrieval of information - Elements of a strategy to inform future societies about nuclear waste repositories'

  16. Vocal fold ion transport and mucin expression following acrolein exposure.

    Science.gov (United States)

    Levendoski, Elizabeth Erickson; Sivasankar, M Preeti

    2014-05-01

    The vocal fold epithelium is exposed to inhaled particulates including pollutants during breathing in everyday environments. Yet, our understanding of the effects of pollutants on vocal fold epithelial function is extremely limited. The objective of this study was to investigate the effect of the pollutant acrolein on two vocal fold epithelial mechanisms: ion transport and mucin (MUC) synthesis. These mechanisms were chosen as each plays a critical role in vocal defense and in maintaining surface hydration which is necessary for optimal voice production. Healthy, native porcine vocal folds (N = 85) were excised and exposed to an acrolein or sham challenge. A 60-min acrolein, but not sham challenge significantly reduced ion transport and inhibited cyclic adenosine monophosphate-dependent, increases in ion transport. Decreases in ion transport were associated with reduced sodium absorption. Within the same timeline, no significant acrolein-induced changes in MUC gene or protein expression were observed. These results improve our understanding of the effects of acrolein on key vocal fold epithelial functions and inform the development of future investigations that seek to elucidate the impact of a wide range of pollutant exposures on vocal fold health.

  17. Protein solubility and folding enhancement by interaction with RNA.

    Directory of Open Access Journals (Sweden)

    Seong Il Choi

    Full Text Available While basic mechanisms of several major molecular chaperones are well understood, this machinery has been known to be involved in folding of only limited number of proteins inside the cells. Here, we report a chaperone type of protein folding facilitated by interaction with RNA. When an RNA-binding module is placed at the N-terminus of aggregation-prone target proteins, this module, upon binding with RNA, further promotes the solubility of passenger proteins, potentially leading to enhancement of proper protein folding. Studies on in vitro refolding in the presence of RNA, coexpression of RNA molecules in vivo and the mutants with impaired RNA binding ability suggests that RNA can exert chaperoning effect on their bound proteins. The results suggest that RNA binding could affect the overall kinetic network of protein folding pathway in favor of productive folding over off-pathway aggregation. In addition, the RNA binding-mediated solubility enhancement is extremely robust for increasing soluble yield of passenger proteins and could be usefully implemented for high-throughput protein expression for functional and structural genomic research initiatives. The RNA-mediated chaperone type presented here would give new insights into de novo folding in vivo.

  18. Self-Folding Textiles through Manipulation of Knit Stitch Architecture

    Directory of Open Access Journals (Sweden)

    Chelsea E. Knittel

    2015-12-01

    Full Text Available This research presents a preliminary study on finding predictable methods of controlling the self-folding behaviors of weft knit textiles for use in the development of smart textiles and garment devices, such as those with shape memory, auxetic behavior or transformation abilities. In this work, Shima Seiki SDS-One Apex computer-aided knitting technology, Shima Seiki industrial knitting machines, and the study of paper origami tessellation patterns were used as tools to understand and predict the self-folding abilities of weft knit textiles. A wide range of self-folding weft knit structures was produced, and relationships between the angles and ratios of the knit and purl stitch types were determined. Mechanical testing was used as a means to characterize differences produced by stitch patterns, and to further understand the relationships between angles and folding abilities. By defining a formulaic method for predicting the nature of the folds that occur due to stitch architecture patterns, we can better design self-folding fabrics for smart textile applications.

  19. Multi-crease Self-folding by Global Heating.

    Science.gov (United States)

    Miyashita, Shuhei; Onal, Cagdas D; Rus, Daniela

    2015-01-01

    This study demonstrates a new approach to autonomous folding for the body of a 3D robot from a 2D sheet, using heat. We approach this challenge by folding a 0.27-mm sheetlike material into a structure. We utilize the thermal deformation of a contractive sheet sandwiched by rigid structural layers. During this baking process, the heat applied on the entire sheet induces contraction of the contracting layer and thus forms an instructed bend in the sheet. To attain the targeted folding angles, the V-fold spans method is used. The targeted angle θout can be kinematically encoded into crease geometry. The realization of this angle in the folded structure can be approximately controlled by a contraction angle θin. The process is non-reversible, is reliable, and is relatively fast. Our method can be applied simultaneously to all the folds in multi-crease origami structures. We demonstrate the use of this method to create a lightweight mobile robot.

  20. Synthetic oligorotaxanes exert high forces when folding under mechanical load

    Science.gov (United States)

    Sluysmans, Damien; Hubert, Sandrine; Bruns, Carson J.; Zhu, Zhixue; Stoddart, J. Fraser; Duwez, Anne-Sophie

    2018-01-01

    Folding is a ubiquitous process that nature uses to control the conformations of its molecular machines, allowing them to perform chemical and mechanical tasks. Over the years, chemists have synthesized foldamers that adopt well-defined and stable folded architectures, mimicking the control expressed by natural systems1,2. Mechanically interlocked molecules, such as rotaxanes and catenanes, are prototypical molecular machines that enable the controlled movement and positioning of their component parts3-5. Recently, combining the exquisite complexity of these two classes of molecules, donor-acceptor oligorotaxane foldamers have been synthesized, in which interactions between the mechanically interlocked component parts dictate the single-molecule assembly into a folded secondary structure6-8. Here we report on the mechanochemical properties of these molecules. We use atomic force microscopy-based single-molecule force spectroscopy to mechanically unfold oligorotaxanes, made of oligomeric dumbbells incorporating 1,5-dioxynaphthalene units encircled by cyclobis(paraquat-p-phenylene) rings. Real-time capture of fluctuations between unfolded and folded states reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 pN, and displays transition times of less than 10 μs. While the folding is at least as fast as that observed in proteins, it is remarkably more robust, thanks to the mechanically interlocked structure. Our results show that synthetic oligorotaxanes have the potential to exceed the performance of natural folding proteins.

  1. Science Experience Unit: Conservation.

    Science.gov (United States)

    Ferguson-Florissant School District, Ferguson, MO.

    GRADES OR AGES: Intermediate grades. SUBJECT MATTER: Conservation. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 24 experiments. It is mimeographed and staple-bound with a paper cover. OBJECTIVES AND ACTIVITIES: A specific skill or knowledge objective is stated at the beginning of each experiment. Detailed procedures are listed…

  2. (ICTs) And Environmental Conservation

    African Journals Online (AJOL)

    ICTs have a potential for improving the accessibility of environmental information, and if appropriately applied, they can empower local people to make informed decisions regarding environmental issues, thus enhancing environmental conservation. However, the challenge is on how to define particular roles that ...

  3. Conservative Delta Hedging

    Science.gov (United States)

    1997-09-01

    an exact method for converting such intervals into arbitrage based prices of financial derivatives or industrial or contractual options. We call this...procedure conservative delta hedging . As existing procedures are of an ad hoc nature, the proposed approach will permit an institution’s man agement a greater oversight of its exposure to risk.

  4. [Lateral epicondylitis: conservative - operative].

    Science.gov (United States)

    Altintas, Burak; Greiner, Stefan

    2016-10-01

    Lateral epicondylitis is a common disease of the common extensor origin at the lateral humerus. Despite its common self-limitation it can lead to chronic therapy-resistant pain with remarkable functional disability of the affected arm. Different conservative and operative treatment options of lateral epicondylitis are described and compared regarding benefits and risks. Additionally, recent surgical techniques and their complications are mentioned. Based on the current literature, it is shown which treatment option can be recommended. This review was based on the literature analysis in PubMed regarding "conservative and operative therapy of lateral epicondylitis" as well as the clinical experience of the authors. Conservative treatment is the primary choice for the treatment of lateral epicondylitis if concomitant pathologies such as instability among others can be excluded. It should include strengthening against resistance with eccentric stretching of the extensor group. In persistent cases, operative treatment is warranted. Resection of the pathologic tissue at the extensor origin with debridement and refixation of the healthy tendinous tissue yields good results. Most patients with lateral epicondylitis can be treated conservatively with success. Radiological evaluation should be performed in therapy-resistant cases. In the case of partial or complete rupture of the extensor origin, operative therapy is indicated.

  5. Biological science in conservation

    Science.gov (United States)

    David M. Johns

    2000-01-01

    Large-scale wildlands reserve systems offer one of the best hopes for slowing, if not reversing, the loss of biodiversity and wilderness. Establishing such reserves requires both sound biology and effective advocacy. Attempts by The Wildlands Project and its cooperators to meld science and advocacy in the service of conservation is working, but is not without some...

  6. Speyeria (Lepidoptera: Nymphalidae Conservation

    Directory of Open Access Journals (Sweden)

    Steven R. Sims

    2017-04-01

    Full Text Available Speyeria (Nymphalidae are a conspicuous component of the North American butterfly fauna. There are approximately 16 species and >100 associated subspecies (or geographical variants. Speyeria are univoltine, occupy a wide range of habitats, overwinter as first instar larvae, and feed only on native violets. Speyeria species have become a model group for studies of evolution, speciation, and conservation. Several species and subspecies are threatened or endangered. The reasons for this vary with the taxa involved, but always involve the degradation or loss of quality habitat for larvae and adults. The impacts of climate change must be considered among the causes for habitat degradation and in the establishment of conservation measures. In addition to increasing the available habitat, conservation efforts should consider maintaining habitat in a seral “disturbed” successional stage that selectively favors the growth of violets and preferred adult nectar sources. A major future challenge will be determining the most effective allocation of conservation resources to those species and subspecies that have the greatest potential to respond favorably to these efforts.

  7. Conservation and gene banking

    Science.gov (United States)

    Plant conservation has several objectives the main ones include safeguarding our food supply, preserving crop wild relatives for breeding and selection of new cultivars, providing material for industrial and pharmaceutical uses and preserving the beauty and diversity of our flora for generations to ...

  8. Crowdfunding biodiversity conservation.

    Science.gov (United States)

    Gallo-Cajiao, E; Archibald, C; Friedman, R; Steven, R; Fuller, R A; Game, E T; Morrison, T H; Ritchie, E G

    2018-05-26

    Raising funds is critical for conserving biodiversity and hence so too is scrutinizing emerging financial mechanisms that might help achieve this goal. In this context, anecdotal evidence indicates crowdfunding is being used to support a variety of activities needed for biodiversity conservation, yet its magnitude and allocation remain largely unknown. We conducted a global analysis to help address this knowledge gap, based on empirical data from conservation-focused projects extracted from crowdfunding platforms. For each project, we determined the funds raised, date, country of implementation, proponent characteristics, activity type, biodiversity realm, and target taxa. We identified 72 relevant platforms and 577 conservation-focused projects that have raised US$4 790 634 since 2009. Whilst proponents were based in 38 countries, projects were delivered across 80 countries, indicating a potential mechanism of resource mobilization. Proponents were from non-governmental organizations (35%), universities (30%), or were freelancers (26%). Most projects were for research (40%), persuasion (31%), and on-ground actions (21%). Projects have focused primarily on species (57.7%) and terrestrial ecosystems (20.3%), and less on marine (8.8%) and freshwater ecosystems (3.6%). Projects have focused on 208 species, including a disproportionate number of threatened bird and mammal species. Crowdfunding for biodiversity conservation has now become a global phenomenon and presents signals for potential expansion, despite possible pitfalls. Opportunities arise from its spatial amplifying effect, steady increase over time, inclusion of Cinderella species, adoption by multiple actors, and funding of a range of activities beyond research. Our study paves the way for further research on key questions, such as campaign success rates, effectiveness, and drivers of adoption. Even though the capital input of crowdfunding so far has been modest compared to other conservation finance

  9. RNA folding kinetics using Monte Carlo and Gillespie algorithms.

    Science.gov (United States)

    Clote, Peter; Bayegan, Amir H

    2018-04-01

    RNA secondary structure folding kinetics is known to be important for the biological function of certain processes, such as the hok/sok system in E. coli. Although linear algebra provides an exact computational solution of secondary structure folding kinetics with respect to the Turner energy model for tiny ([Formula: see text]20 nt) RNA sequences, the folding kinetics for larger sequences can only be approximated by binning structures into macrostates in a coarse-grained model, or by repeatedly simulating secondary structure folding with either the Monte Carlo algorithm or the Gillespie algorithm. Here we investigate the relation between the Monte Carlo algorithm and the Gillespie algorithm. We prove that asymptotically, the expected time for a K-step trajectory of the Monte Carlo algorithm is equal to [Formula: see text] times that of the Gillespie algorithm, where [Formula: see text] denotes the Boltzmann expected network degree. If the network is regular (i.e. every node has the same degree), then the mean first passage time (MFPT) computed by the Monte Carlo algorithm is equal to MFPT computed by the Gillespie algorithm multiplied by [Formula: see text]; however, this is not true for non-regular networks. In particular, RNA secondary structure folding kinetics, as computed by the Monte Carlo algorithm, is not equal to the folding kinetics, as computed by the Gillespie algorithm, although the mean first passage times are roughly correlated. Simulation software for RNA secondary structure folding according to the Monte Carlo and Gillespie algorithms is publicly available, as is our software to compute the expected degree of the network of secondary structures of a given RNA sequence-see http://bioinformatics.bc.edu/clote/RNAexpNumNbors .

  10. Visualization of protein folding funnels in lattice models.

    Directory of Open Access Journals (Sweden)

    Antonio B Oliveira

    Full Text Available Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches based on potential energy landscapes address the hierarchical structure of local energy minima through disconnectivity graphs. In this paper, we introduce a metric to describe the distance between any two conformations, which also allows us to go beyond the one-dimensional representation and visualize the folding funnel in 2D and 3D. In this way it is possible to assess the folding process in detail, e.g., by identifying the connectivity between conformations and establishing the paths to reach the native state, in addition to regions where trapping may occur. Unlike the disconnectivity maps method, which is based on the kinetic connections between states, our methodology is based on structural similarities inferred from the new metric. The method was developed in a 27-mer protein lattice model, folded into a 3×3×3 cube. Five sequences were studied and distinct funnels were generated in an analysis restricted to conformations from the transition-state to the native configuration. Consistent with the expected results from the energy landscape theory, folding routes can be visualized to probe different regions of the phase space, as well as determine the difficulty in folding of the distinct sequences. Changes in the landscape due to mutations were visualized, with the comparison between wild and mutated local minima in a single map, which serves to identify different trapping regions. The extension of this approach to more realistic models and its use in combination with other approaches are discussed.

  11. Solitons and protein folding: An In Silico experiment

    International Nuclear Information System (INIS)

    Ilieva, N.; Dai, J.; Sieradzan, A.; Niemi, A.

    2015-01-01

    Protein folding [1] is the process of formation of a functional 3D structure from a random coil — the shape in which amino-acid chains leave the ribosome. Anfinsen’s dogma states that the native 3D shape of a protein is completely determined by protein’s amino acid sequence. Despite the progress in understanding the process rate and the success in folding prediction for some small proteins, with presently available physics-based methods it is not yet possible to reliably deduce the shape of a biologically active protein from its amino acid sequence. The protein-folding problem endures as one of the most important unresolved problems in science; it addresses the origin of life itself. Furthermore, a wrong fold is a common cause for a protein to lose its function or even endanger the living organism. Soliton solutions of a generalized discrete non-linear Schrödinger equation (GDNLSE) obtained from the energy function in terms of bond and torsion angles κ and τ provide a constructive theoretical framework for describing protein folds and folding patterns [2]. Here we study the dynamics of this process by means of molecular-dynamics simulations. The soliton manifestation is the pattern helix–loop–helix in the secondary structure of the protein, which explains the importance of understanding loop formation in helical proteins. We performed in silico experiments for unfolding one subunit of the core structure of gp41 from the HIV envelope glycoprotein (PDB ID: 1AIK [3]) by molecular-dynamics simulations with the MD package GROMACS. We analyzed 80 ns trajectories, obtained with one united-atom and two different all-atom force fields, to justify the side-chain orientation quantification scheme adopted in the studies and to eliminate force-field based artifacts. Our results are compatible with the soliton model of protein folding and provide first insight into soliton-formation dynamics

  12. Solitons and protein folding: An In Silico experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, N., E-mail: nevena.ilieva@parallel.bas.bg [Institute of Information and Communication Technologies, Bulgarian Aacademy of Sciences, Sofia (Bulgaria); Dai, J., E-mail: daijing491@gmail.com [School of Physics, Beijing Institute of Technology, Beijing (China); Sieradzan, A., E-mail: adams86@wp.pl [Faculty of Chemistry, University of Gdańsk, Gdańsk (Poland); Niemi, A., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); LMPT–CNRS, Université de Tours, Tours (France)

    2015-10-28

    Protein folding [1] is the process of formation of a functional 3D structure from a random coil — the shape in which amino-acid chains leave the ribosome. Anfinsen’s dogma states that the native 3D shape of a protein is completely determined by protein’s amino acid sequence. Despite the progress in understanding the process rate and the success in folding prediction for some small proteins, with presently available physics-based methods it is not yet possible to reliably deduce the shape of a biologically active protein from its amino acid sequence. The protein-folding problem endures as one of the most important unresolved problems in science; it addresses the origin of life itself. Furthermore, a wrong fold is a common cause for a protein to lose its function or even endanger the living organism. Soliton solutions of a generalized discrete non-linear Schrödinger equation (GDNLSE) obtained from the energy function in terms of bond and torsion angles κ and τ provide a constructive theoretical framework for describing protein folds and folding patterns [2]. Here we study the dynamics of this process by means of molecular-dynamics simulations. The soliton manifestation is the pattern helix–loop–helix in the secondary structure of the protein, which explains the importance of understanding loop formation in helical proteins. We performed in silico experiments for unfolding one subunit of the core structure of gp41 from the HIV envelope glycoprotein (PDB ID: 1AIK [3]) by molecular-dynamics simulations with the MD package GROMACS. We analyzed 80 ns trajectories, obtained with one united-atom and two different all-atom force fields, to justify the side-chain orientation quantification scheme adopted in the studies and to eliminate force-field based artifacts. Our results are compatible with the soliton model of protein folding and provide first insight into soliton-formation dynamics.

  13. The nature of folded states of globular proteins.

    Science.gov (United States)

    Honeycutt, J D; Thirumalai, D

    1992-06-01

    We suggest, using dynamical simulations of a simple heteropolymer modelling the alpha-carbon sequence in a protein, that generically the folded states of globular proteins correspond to statistically well-defined metastable states. This hypothesis, called the metastability hypothesis, states that there are several free energy minima separated by barriers of various heights such that the folded conformations of a polypeptide chain in each of the minima have similar structural characteristics but have different energies from one another. The calculated structural characteristics, such as bond angle and dihedral angle distribution functions, are assumed to arise from only those configurations belonging to a given minimum. The validity of this hypothesis is illustrated by simulations of a continuum model of a heteropolymer whose low temperature state is a well-defined beta-barrel structure. The simulations were done using a molecular dynamics algorithm (referred to as the "noisy" molecular dynamics method) containing both friction and noise terms. It is shown that for this model there are several distinct metastable minima in which the structural features are similar. Several new methods of analyzing fluctuations in structures belonging to two distinct minima are introduced. The most notable one is a dynamic measure of compactness that can in principle provide the time required for maximal compactness to be achieved. The analysis shows that for a given metastable state in which the protein has a well-defined folded structure the transition to a state of higher compactness occurs very slowly, lending credence to the notion that the system encounters a late barrier in the process of folding to the most compact structure. The examination of the fluctuations in the structures near the unfolding----folding transition temperature indicates that the transition state for the unfolding to folding process occurs closer to the folded state.

  14. Conservation businesses and conservation planning in a biological diversity hotspot.

    Science.gov (United States)

    Di Minin, Enrico; Macmillan, Douglas Craig; Goodman, Peter Styan; Escott, Boyd; Slotow, Rob; Moilanen, Atte

    2013-08-01

    The allocation of land to biological diversity conservation competes with other land uses and the needs of society for development, food, and extraction of natural resources. Trade-offs between biological diversity conservation and alternative land uses are unavoidable, given the realities of limited conservation resources and the competing demands of society. We developed a conservation-planning assessment for the South African province of KwaZulu-Natal, which forms the central component of the Maputaland-Pondoland-Albany biological diversity hotspot. Our objective was to enhance biological diversity protection while promoting sustainable development and providing spatial guidance in the resolution of potential policy conflicts over priority areas for conservation at risk of transformation. The conservation-planning assessment combined spatial-distribution models for 646 conservation features, spatial economic-return models for 28 alternative land uses, and spatial maps for 4 threats. Nature-based tourism businesses were competitive with other land uses and could provide revenues of >US$60 million/year to local stakeholders and simultaneously help meeting conservation goals for almost half the conservation features in the planning region. Accounting for opportunity costs substantially decreased conflicts between biological diversity, agricultural use, commercial forestry, and mining. Accounting for economic benefits arising from conservation and reducing potential policy conflicts with alternative plans for development can provide opportunities for successful strategies that combine conservation and sustainable development and facilitate conservation action. © 2013 Society for Conservation Biology.

  15. Vocal Fold Injection: Review of Indications, Techniques, and Materials for Augmentation

    OpenAIRE

    Mallur, Pavan S.; Rosen, Clark A.

    2010-01-01

    Vocal fold injection is a procedure that has over a 100 year history but was rarely done as short as 20 years ago. A renaissance has occurred with respect to vocal fold injection due to new technologies (visualization and materials) and new injection approaches. Awake, un-sedated vocal fold injection offers many distinct advantages for the treatment of glottal insufficiency (vocal fold paralysis, vocal fold paresis, vocal fold atrophy and vocal fold scar). A review of materials available and ...

  16. WW domain folding complexity revealed by infrared spectroscopy.

    Science.gov (United States)

    Davis, Caitlin M; Dyer, R Brian

    2014-09-02

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics.

  17. Intermediates and the folding of proteins L and G

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Scott; Head-Gordon, Teresa

    2003-07-01

    We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G that are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted {beta}-1 and {beta}-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third {beta}-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.

  18. Fold maps and positive topological quantum field theories

    Energy Technology Data Exchange (ETDEWEB)

    Wrazidlo, Dominik Johannes

    2017-04-12

    The notion of positive TFT as coined by Banagl is specified by an axiomatic system based on Atiyah's original axioms for TFTs. By virtue of a general framework that is based on the concept of Eilenberg completeness of semirings from computer science, a positive TFT can be produced rigorously via quantization of systems of fields and action functionals - a process inspired by Feynman's path integral from classical quantum field theory. The purpose of the present dissertation thesis is to investigate a new differential topological invariant for smooth manifolds that arises as the state sum of the fold map TFT, which has been constructed by Banagl as a example of a positive TFT. By eliminating an internal technical assumption on the fields of the fold map TFT, we are able to express the informational content of the state sum in terms of an extension problem for fold maps from cobordisms into the plane. Next, we use the general theory of generic smooth maps into the plane to improve known results about the structure of the state sum in arbitrary dimensions, and to determine it completely in dimension two. The aggregate invariant of a homotopy sphere, which is derived from the state sum, naturally leads us to define a filtration of the group of homotopy spheres in order to understand the role of indefinite fold lines beyond a theorem of Saeki. As an application, we show how Kervaire spheres can be characterized by indefinite fold lines in certain dimensions.

  19. HEMATOMA OF THE PROXIMAL NAIL FOLD. REPORT OF 41 CASES

    Directory of Open Access Journals (Sweden)

    Chang Patricia

    2011-04-01

    Full Text Available Background: The proximal fold is an important part of the nail apparatus it contributes to the formation of the nail plate and through the cuticle acts as an impermeable barrier protecting it from any cause.Objective: To know the proximal nail fold hematoma caused by the use of pulse oximeter.Material and Methods: A descriptive study was conducted in 41 patients with proximal nail hematoma secondary to the use of oximetry in patients hospitalized in the Intermediate and Intensive Care Unit at the Hospital General de Enfermedades from December 1, 2007 to December 31, 2010.Results: We studied 41 patients with proximal nail fold hematoma secondary to the use of oximeter, 30 (73.1% were males and 11 (26.8% females. The numbers of fingers affected by pulse oximeter were in one digit. 30 (73.1% cases, in two digits 6 (14.6%, in three digits 3 (7.3%, in 4 digits 1 (2.4% and in 5 digits 1 (2.4% case. The most affected proximal nail fold was right index: 24 (58.5%, right middle 11 (26.8%, right ring 6 (14.6%, left index 12 (29.2%, and left middle 6 (14.6% cases.Conclusions: Hematomas of the proximal nail fold may be caused by different traumatisms. The use of pulse oximeter is one of them.

  20. Recurrence of vocal fold leukoplakia after carbon dioxide laser therapy.

    Science.gov (United States)

    Chen, Min; Chen, Jian; Cheng, Lei; Wu, Haitao

    2017-09-01

    This work aims to analyze the recurrence of vocal fold leukoplakia after carbon dioxide (CO 2 ) laser resection. In this retrospective study, all patients undergoing CO 2 laser resection of vocal fold leukoplakia were followed up for at least 2 years. Recurrence was diagnosed as any presence of leukoplakia in the vocal cord subsequent to previous successful complete resection. A total of 326 patients with complete resection of vocal fold leukoplakia and follow-up subsequent surveillance laryngoscopy were studied. The recurrence rate, the recurrence time, and risk factors were evaluated. Of these, 52 (16.0%) patients experienced recurrence with a mean follow-up time of 50.5 ± 15.4 months. The mean time to recurrence was 16.2 ± 14.1 months. Univariate analysis showed that the size of lesion (P vocal fold leukoplakia, long-term follow-up is required after CO 2 laser resection. In conclusion, the size of lesion combined with the pathological grade are important risk factors that predict vocal fold leukoplakia recurrence.

  1. Possible association between Helicobacter pylori infection and vocal fold leukoplakia.

    Science.gov (United States)

    Chen, Min; Chen, Jian; Yang, Yue; Cheng, Lei; Wu, Hai-Tao

    2018-03-06

    Several studies have indicated the larynx as possible Helicobacter pylori (H. pylori) reservoirs. This study explored the association between H. pylori and vocal fold leukoplakia. The case-control study involved 51 patients with vocal fold leukoplakia and 35 control patients with vocal polyps. Helicobacter pylori was detected in tissues by the rapid urease test, nested polymerase chain reaction (PCR), and single-step PCR. The H. pylori-specific immunoglobulin antibodies were detected in plasma by enzyme-linked immunosorbent assay (ELISA). Helicobacter pylori-positive rate of vocal fold leukoplakia and vocal polyps was 23.5% versus 11.4% (P = .157), 37.2% versus 14.3% (P = .020), 27.5% versus 8.6% (P = .031), and 70.6% versus 68.6% (P = .841) detected by rapid urease test, nested PCR, single-step PCR, and ELISA, respectively. Regression analysis indicated that H. pylori infection (P = .044) was the independent risk factor for vocal fold leukoplakia. Helicobacter pylori infection exists in the larynx and may be associated with vocal fold leukoplakia. © 2018 Wiley Periodicals, Inc.

  2. Sulfated glycosaminoglycans in human vocal fold lamina propria

    Directory of Open Access Journals (Sweden)

    Sung Woo Park

    Full Text Available Abstract Introduction: The distribution, concentration and function of glycosaminoglycans in the various vocal fold tissues are still unclear. Objective: To evaluate the distribution and concentration of sulfated glycosaminoglycans in different layers of the human vocal fold according to gender and age. Methods: We used 11 vocal folds obtained from cadavers (7 men and 4 women with no laryngeal lesion, less than 12 h after death, and aged between 35 and 98 years. The folds underwent glycosaminoglycans extraction from the cover and ligament, and post-electrophoresis analysis. Data were compared according to the layer, age and gender. Results: The concentration of dermatan sulfate was significantly higher in all layers. No differences were observed in the total concentrations of glycosaminoglycans in layers studied according to gender. It is significantly lower in the cover of individuals aged below 60 years. Conclusion: Dermatan sulfate, chondroitin sulfate, and heparan sulfate were observed in the human vocal folds cover and ligament of both genders, with the concentration of dermatan sulfate being significantly higher in all layers. Glycosaminoglycans concentration on the cover is significantly lower in individuals below 60 years compared with elderly.

  3. Modeling Vocal Fold Intravascular Flow using Synthetic Replicas

    Science.gov (United States)

    Terry, Aaron D.; Ricks, Matthew T.; Thomson, Scott L.

    2017-11-01

    Vocal fold vibration that is induced by air flowing from the lungs is believed to decrease blood flow through the vocal folds. This is important due to the critical role of blood flow in maintaining tissue health. However, the precise mechanical relationships between vocal fold vibration and blood perfusion remain understudied. A platform for studying liquid perfusion in a synthetic, life-size, self-oscillating vocal fold replica has recently been developed. The replicas are fabricated using molded silicone with material properties comparable to those of human vocal fold tissues and that include embedded microchannels through which liquid is perfused. The replicas are mounted on an air flow supply tube to initiate flow-induced vibration. A liquid reservoir is attached to the microchannel to cause liquid to perfuse through replica in the anterior-posterior direction. As replica vibration is initiated and amplitude increases, perfusion flow rate decreases. In this presentation, the replica design will be presented, along with data quantifying the relationships between parameters such as replica vibration amplitude, stiffness, microchannel diameter, and perfusion flow rate. This work was supported by Grant NIDCD R01DC005788 from the National Institutes of Health.

  4. Recovery of Vocal Fold Epithelium after Acute Phonotrauma.

    Science.gov (United States)

    Rousseau, Bernard; Kojima, Tsuyoshi; Novaleski, Carolyn K; Kimball, Emily E; Valenzuela, Carla V; Mizuta, Masanobu; Daniero, James J; Garrett, C Gaelyn; Sivasankar, M Preeti

    2017-01-01

    We investigated the timeline of tissue repair of vocal fold epithelium after acute vibration exposure using an in vivo rabbit model. Sixty-five New Zealand white breeder rabbits were randomized to 120 min of modal- or raised-intensity phonation. After the larynges were harvested at 0, 4, 8, and 24 h, and at 3 and 7 days, the vocal fold tissue was evaluated using electron microscopy and quantitative real-time polymerase chain reaction. There was an immediate decrease in the microprojection depth and height following raised-intensity phonation, paired with upregulation of cyclooxygenase-2. This initial 24-h period was also characterized by the significant downregulation of junction proteins. Interleukin 1β and transforming growth factor β1 were upregulated for 3 and 7 days, respectively, followed by an increase in epithelial cell surface depth at 3 and 7 days. These data appear to demonstrate a shift from inflammatory response to the initiation of a restorative process in the vocal fold epithelium between 24 h and 3 days. Despite the initial damage from raised-intensity phonation, the vocal fold epithelium demonstrates a remarkable capacity for the expeditious recovery of structural changes from transient episodes of acute phonotrauma. While structurally intact, the return of functional barrier integrity may be delayed by repeated episodes of phonotrauma and may also play an important role in the pathophysiology of vocal fold lesions. © 2017 S. Karger AG, Basel.

  5. Bilateral Vocal Fold Medialization: A Treatment for Abductor Spasmodic Dysphonia.

    Science.gov (United States)

    Dewan, Karuna; Berke, Gerald S

    2017-11-10

    Abductor spasmodic dysphonia, a difficult-to-treat laryngologic condition, is characterized by spasms causing the vocal folds to remain abducted despite efforts to adduct them during phonation. Traditional treatment for abductor spasmodic dysphonia-botulinum toxin injection into the posterior cricoarytenoid muscle-can be both technically challenging and uncomfortable. Due to the difficulty of needle placement, it is often unsuccessful. The purpose of this investigation is to present a previously undescribed treatment for abductor spasmodic dysphonia-bilateral vocal fold medialization. A retrospective case review of all cases of abductor spasmodic dysphonia treated in a tertiary care laryngology practice with bilateral vocal fold medialization over a 10-year period was performed. The Voice Handicap Index and the Voice-Related Quality of Life surveys were utilized to assess patient satisfaction with voice outcome. Six patients with abductor spasmodic dysphonia treated with bilateral vocal fold medialization were identified. Disease severity ranged from mild to severe. All six patients reported statistically significant improvement in nearly all Voice Handicap Index and Voice-Related Quality of Life parameters. They reported fewer voice breaks and greater ease of communication. Results were noted immediately and symptoms continue to be well controlled for many years following medialization. Bilateral vocal fold medialization is a safe and effective treatment for abductor spasmodic dysphonia. It is performed under local anesthesia and provides phonation improvement in the short and long term. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Probabilistic analysis for identifying the driving force of protein folding

    Science.gov (United States)

    Tokunaga, Yoshihiko; Yamamori, Yu; Matubayasi, Nobuyuki

    2018-03-01

    Toward identifying the driving force of protein folding, energetics was analyzed in water for Trp-cage (20 residues), protein G (56 residues), and ubiquitin (76 residues) at their native (folded) and heat-denatured (unfolded) states. All-atom molecular dynamics simulation was conducted, and the hydration effect was quantified by the solvation free energy. The free-energy calculation was done by employing the solution theory in the energy representation, and it was seen that the sum of the protein intramolecular (structural) energy and the solvation free energy is more favorable for a folded structure than for an unfolded one generated by heat. Probabilistic arguments were then developed to determine which of the electrostatic, van der Waals, and excluded-volume components of the interactions in the protein-water system governs the relative stabilities between the folded and unfolded structures. It was found that the electrostatic interaction does not correspond to the preference order of the two structures. The van der Waals and excluded-volume components were shown, on the other hand, to provide the right order of preference at probabilities of almost unity, and it is argued that a useful modeling of protein folding is possible on the basis of the excluded-volume effect.

  7. Methods of equipment conservation of a carboelectric

    International Nuclear Information System (INIS)

    Hurtado Higuera, Julio Cesar

    2001-01-01

    Several conservation methods are mentioned like they are those of conservation in dry, in humid, conservation of bombs of water conservation, of turbines, of generators, of transformers, of electric motors and conservation of coal piles

  8. RNAslider: a faster engine for consecutive windows folding and its application to the analysis of genomic folding asymmetry

    Directory of Open Access Journals (Sweden)

    Ziv-Ukelson Michal

    2009-03-01

    Full Text Available Abstract Background Scanning large genomes with a sliding window in search of locally stable RNA structures is a well motivated problem in bioinformatics. Given a predefined window size L and an RNA sequence S of size N (L 3 by applying any of the classical cubic-time RNA folding algorithms to each of the N-L windows of size L. Recently an O(NL2 solution for this problem has been described. Results Here, we describe and implement an O(NLψ(L engine for the consecutive windows folding problem, where ψ(L is shown to converge to O(1 under the assumption of a standard probabilistic polymer folding model, yielding an O(L speedup which is experimentally confirmed. Using this tool, we note an intriguing directionality (5'-3' vs. 3'-5' folding bias, i.e. that the minimal free energy (MFE of folding is higher in the native direction of the DNA than in the reverse direction of various genomic regions in several organisms including regions of the genomes that do not encode proteins or ncRNA. This bias largely emerges from the genomic dinucleotide bias which affects the MFE, however we see some variations in the folding bias in the different genomic regions when normalized to the dinucleotide bias. We also present results from calculating the MFE landscape of a mouse chromosome 1, characterizing the MFE of the long ncRNA molecules that reside in this chromosome. Conclusion The efficient consecutive windows folding engine described in this paper allows for genome wide scans for ncRNA molecules as well as large-scale statistics. This is implemented here as a software tool, called RNAslider, and applied to the scanning of long chromosomes, leading to the observation of features that are visible only on a large scale.

  9. The use of folding structures in fusion reactors

    International Nuclear Information System (INIS)

    Haines, T.

    1992-01-01

    Folding structures can be used with advantage in fusion machines. They have been used in Space for decades to extend antennas, sensors and solar panels; terrestrial versions have been used as retractable antennas and antennas masts. They have also been used in the Joint European Torus (JET) and other nuclear applications. In this paper, three types are described, together with concepts for use in fusion machines. The Storable Tubular Extendible Member (STEM) was conceived by the National Research Council of Canada and developed by Spar Aerospace Limited. The Astromast is a folding truss developed by Astro Aerospace Corporation, a US subsidiary of Spar. The X-Beam is an ultra-stiff folding truss

  10. Self-organized critical model for protein folding

    Science.gov (United States)

    Moret, M. A.

    2011-09-01

    The major factor that drives a protein toward collapse and folding is the hydrophobic effect. At the folding process a hydrophobic core is shielded by the solvent-accessible surface area of the protein. We study the fractal behavior of 5526 protein structures present in the Brookhaven Protein Data Bank. Power laws of protein mass, volume and solvent-accessible surface area are measured independently. The present findings indicate that self-organized criticality is an alternative explanation for the protein folding. Also we note that the protein packing is an independent and constant value because the self-similar behavior of the volumes and protein masses have the same fractal dimension. This power law guarantees that a protein is a complex system. From the analyzed data, q-Gaussian distributions seem to fit well this class of systems.

  11. A biomorphic origami actuator fabricated by folding a conducting paper

    Energy Technology Data Exchange (ETDEWEB)

    Okuzaki, H; Saido, T; Suzuki, H; Hara, Y; Yan, H [Laboratory of Organic Robotics, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, 400-8511 (Japan)], E-mail: okuzaki@yamanashi.ac.jp

    2008-08-15

    Cooperation between the electrical conductivity and hygroscopic nature of conducting polymers can provide an insight into the development of a new class of electro-active polymer (EAP) actuators or soft robots working in ambient air. In this paper, we describe an 'origami' actuator fabricated by folding a sheet of conducting 'paper'. The principle lies in the electrically induced changes in the elastic modulus of a humidosensitive conducting polymer film through reversible sorption and desorption of water vapor molecules, which is responsible for amplifying a contraction of the film ({approx} 1%) to more than a 100-fold expansion (> 100%) of the origami actuator. Utilizing the origami technique, we have fabricated a biomorphic origami robot by folding an electrochemically synthesized polypyrrole film into the figure of an accordion shape, which can move with a caterpillar-like motion by repeated expansion and contraction at a velocity of 2 cm min{sup -1}.

  12. A biomorphic origami actuator fabricated by folding a conducting paper

    International Nuclear Information System (INIS)

    Okuzaki, H; Saido, T; Suzuki, H; Hara, Y; Yan, H

    2008-01-01

    Cooperation between the electrical conductivity and hygroscopic nature of conducting polymers can provide an insight into the development of a new class of electro-active polymer (EAP) actuators or soft robots working in ambient air. In this paper, we describe an 'origami' actuator fabricated by folding a sheet of conducting 'paper'. The principle lies in the electrically induced changes in the elastic modulus of a humidosensitive conducting polymer film through reversible sorption and desorption of water vapor molecules, which is responsible for amplifying a contraction of the film (∼ 1%) to more than a 100-fold expansion (> 100%) of the origami actuator. Utilizing the origami technique, we have fabricated a biomorphic origami robot by folding an electrochemically synthesized polypyrrole film into the figure of an accordion shape, which can move with a caterpillar-like motion by repeated expansion and contraction at a velocity of 2 cm min -1 .

  13. IMPAIRED MOBILITY OF VOCAL FOLDS - etiology and symptoms

    Directory of Open Access Journals (Sweden)

    Karlo Pintarić

    2015-06-01

    Full Text Available Paresis or paralysis of one or both vocal cords affects some significant aspects of a human life: breathing, swallowing and speech. The major causes for reduced mobility or even immobility are innervation damage, less often fixation of vocal cord or impaired mobility of crycoarytenoid joint. An injury of the superior or/and inferior laryngeal nerve can be a consequence of different medical procedures, tumor growth, trauma, infection, neurological disorders, radiation exposure, toxic damage, impaired circulation of the area or it is idiopathic. The symptoms are different in the case of unilateral and bilateral paresis of the vocal folds. They also depend on the cause for the impaired mobility. In the patients with unilateral vocal fold paresis, hoarseness and aspiration during swallowing are the leading symptoms. In the bilateral vocal fold paralysis, dyspnea prevails. 

  14. Peptide folding in the presence of interacting protein crowders

    Energy Technology Data Exchange (ETDEWEB)

    Bille, Anna, E-mail: anna.bille@thep.lu.se; Irbäck, Anders, E-mail: anders@thep.lu.se [Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund (Sweden); Mohanty, Sandipan, E-mail: s.mohanty@fz-juelich.de [Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-05-07

    Using Monte Carlo methods, we explore and compare the effects of two protein crowders, BPTI and GB1, on the folding thermodynamics of two peptides, the compact helical trp-cage and the β-hairpin-forming GB1m3. The thermally highly stable crowder proteins are modeled using a fixed backbone and rotatable side-chains, whereas the peptides are free to fold and unfold. In the simulations, the crowder proteins tend to distort the trp-cage fold, while having a stabilizing effect on GB1m3. The extent of the effects on a given peptide depends on the crowder type. Due to a sticky patch on its surface, BPTI causes larger changes than GB1 in the melting properties of the peptides. The observed effects on the peptides stem largely from attractive and specific interactions with the crowder surfaces, and differ from those seen in reference simulations with purely steric crowder particles.

  15. Dermofat graft in deep nasolabial fold and facial rhytidectomy.

    Science.gov (United States)

    Hwang, Kun; Han, Jin Yi; Kim, Dae Joong

    2003-01-01

    Fat and dermis or the combined tissues are used commonly in augmentation of the nasolabial fold. Guyuron obtained the dermofat graft from either the suprapubic or the groin region. The thickness of the preauricular skin was measured in seven Korean cadavers, five male and two female. We used the dermofat graft out of the preauricular skin remnant after facial rhytidectomy to augment the deep nasolabial fold in a patient. The average thickness of the epidermis was 56 +/- 12 microm, the dermis was 1820 +/- 265 microm thick, and the subcutaneous tissue was 4783 +/- 137 microm. More dense connective tissues, such as SMAS, are seen in the preauricular skin. The dermofat graft was easily obtained and prepared from the leftover preauricular skin after dissection of the lax skin in face lifting. This technique could be employed effectively and successfully to alleviate a deep nasolabial fold and concomitant facial rhytidectomy in an Asian with a thick preauricular skin.

  16. On momentum conservation

    International Nuclear Information System (INIS)

    Karastoyanov, A.

    1990-01-01

    The relativistic law of momentum transformation shows that the sum of momenta of even isolated particles is not invariable in all inertial reference systems. This is connected with the relativistic change of kinetic energy and mass of a system of particles in result of internal interactions. The paper proposes a short and simple proof on the necessity of potential momentum. The momentum conservation law (for all interactions in the Minkowski world) is expressed in a generalized form. The constancy of the sum of kinetic and potential momentum of closed system of particles is shown. The energy conservation is a necessary condition. The potential momentum is defined as usual (e.g. as in the Berkeley Physics Course). (author). 13 refs

  17. Conservation laws shape dissipation

    Science.gov (United States)

    Rao, Riccardo; Esposito, Massimiliano

    2018-02-01

    Starting from the most general formulation of stochastic thermodynamics—i.e. a thermodynamically consistent nonautonomous stochastic dynamics describing systems in contact with several reservoirs—we define a procedure to identify the conservative and the minimal set of nonconservative contributions in the entropy production. The former is expressed as the difference between changes caused by time-dependent drivings and a generalized potential difference. The latter is a sum over the minimal set of flux-force contributions controlling the dissipative flows across the system. When the system is initially prepared at equilibrium (e.g. by turning off drivings and forces), a finite-time detailed fluctuation theorem holds for the different contributions. Our approach relies on identifying the complete set of conserved quantities and can be viewed as the extension of the theory of generalized Gibbs ensembles to nonequilibrium situations.

  18. Promoting household energy conservation

    International Nuclear Information System (INIS)

    Steg, Linda

    2008-01-01

    It is commonly assumed that households must change their behaviour to reduce the problems caused by increasing levels of fossil energy use. Strategies for behaviour change will be more effective if they target the most important causes of the behaviour in question. Therefore, this paper first discusses the factors influencing household energy use. Three barriers to fossil fuel energy conservation are discussed: insufficient knowledge of effective ways to reduce household energy use, the low priority and high costs of energy savings, and the lack of feasible alternatives. Next, the paper elaborates on the effectiveness and acceptability of strategies aimed to promote household energy savings. Informational strategies aimed at changing individuals' knowledge, perceptions, cognitions, motivations and norms, as well as structural strategies aimed at changing the context in which decisions are made, are discussed. This paper focuses on the psychological literature on household energy conservation, which mostly examined the effects of informational strategies. Finally, this paper lists important topics for future research

  19. Modulating Phonation Through Alteration of Vocal Fold Medial Surface Contour

    Science.gov (United States)

    Mau, Ted; Muhlestein, Joseph; Callahan, Sean; Chan, Roger W.

    2012-01-01

    Objectives 1. To test whether alteration of the vocal fold medial surface contour can improve phonation. 2. To demonstrate that implant material properties affect vibration even when implant is deep to the vocal fold lamina propria. Study Design Induced phonation of excised human larynges. Methods Thirteen larynges were harvested within 24 hours post-mortem. Phonation threshold pressure (PTP) and flow (PTF) were measured before and after vocal fold injections using either calcium hydroxylapatite (CaHA) or hyaluronic acid (HA). Small-volume injections (median 0.0625 mL) were targeted to the infero-medial aspect of the thyroarytenoid (TA) muscle. Implant locations were assessed histologically. Results The effect of implantation on PTP was material-dependent. CaHA tended to increase PTP, whereas HA tended to decrease PTP (Wilcoxon test P = 0.00013 for onset). In contrast, the effect of implantation on PTF was similar, with both materials tending to decrease PTF (P = 0.16 for onset). Histology confirmed implant presence in the inferior half of the vocal fold vertical thickness. Conclusions Taken together, these data suggested the implants may have altered the vocal fold medial surface contour, potentially resulting in a less convergent or more rectangular glottal geometry as a means to improve phonation. An implant with a closer viscoelastic match to vocal fold cover is desirable for this purpose, as material properties can affect vibration even when the implant is not placed within the lamina propria. This result is consistent with theoretical predictions and implies greater need for surgical precision in implant placement and care in material selection. PMID:22865592

  20. Fabrication of ten-fold photonic quasicrystalline structures

    Directory of Open Access Journals (Sweden)

    XiaoHong Sun

    2015-05-01

    Full Text Available Compared to periodic crystals, quasicrystals have higher point group symmetry and are more favorable in achieving complete band-gaps. In this report, a top-cut prism interferometer is designed to fabricate ten-fold photonic quasicrystalline structures. By optimizing the exposing conditions and material characteristics, appropriate quasicrystals have been obtained in the SU8 photoresist films. Atomic Force Microscopy and laser diffraction are used to characterize the fabricated structures. The measurement results show the consistence between the theoretical design and experiments. This will provide guidance for the large-area and fast production of ten-fold quasicrystalline structures with high quality.

  1. Vocal fold composition and early glottic carcinoma infiltration

    Directory of Open Access Journals (Sweden)

    Fang Qin

    2012-08-01

    Full Text Available Abstract Background Current imaging techniques provide only limited information pertaining to the extent of infiltration of laryngeal carcinomas into vocal fold tissue layers. Therefore, it is needed to seek the contribute to the body of knowledge surrounding examination and characterization in laryngeal carcinoma infiltration. Methods Excised larynges were collected from 30 male laryngectomy patients with an average age of 43.5 years (ranging 36 to 55 years and history of smoking (≥10 years exhibiting T1, T2, or subglottal (normal vocal fold carcinomas. Vocal folds were preserved via freezing or immersion in paraffin. The depth of the mucosa, submucosa, and muscular layers in both normal vocal folds and tumor tissues of afflicted vocal folds was measured. Results The average depths of the mucosa, submucosa, and muscular layers in normal vocal folds were 0.15 ± 0.06 mm, 2.30 ± 0.59 mm, and 2.87 ± 0.88 mm, respectively. Infiltration measurements of T1 tumors showed a depth of 1.62 ± 0.51 mm and 1.32 ± 0.49 mm in frozen sections and paraffin-embedded samples, respectively. Similarly, T2 tumors showed a depth of 2.87 ± 0.68 mm and 2.58 ± 0.67 mm in frozen sections and paraffin-embedded samples, respectively. T1 and T2 tumors occupied 24.8 ± 10 and 48.5 ± 15 percent of the normal vocal fold depth, respectively. Conclusion This data provides a baseline for estimating infiltration of laryngeal carcinomas in vocal fold tissue layers, of particular interest to surgeons. This information may be used to assess typical depths of infiltration, thus allowing for more appropriate selection of surgical procedures based on individual patient assessment.

  2. A folding algorithm for extended RNA secondary structures.

    Science.gov (United States)

    Höner zu Siederdissen, Christian; Bernhart, Stephan H; Stadler, Peter F; Hofacker, Ivo L

    2011-07-01

    RNA secondary structure contains many non-canonical base pairs of different pair families. Successful prediction of these structural features leads to improved secondary structures with applications in tertiary structure prediction and simultaneous folding and alignment. We present a theoretical model capturing both RNA pair families and extended secondary structure motifs with shared nucleotides using 2-diagrams. We accompany this model with a number of programs for parameter optimization and structure prediction. All sources (optimization routines, RNA folding, RNA evaluation, extended secondary structure visualization) are published under the GPLv3 and available at www.tbi.univie.ac.at/software/rnawolf/.

  3. Adaptive enhanced sampling with a path-variable for the simulation of protein folding and aggregation

    Science.gov (United States)

    Peter, Emanuel K.

    2017-12-01

    In this article, we present a novel adaptive enhanced sampling molecular dynamics (MD) method for the accelerated simulation of protein folding and aggregation. We introduce a path-variable L based on the un-biased momenta p and displacements dq for the definition of the bias s applied to the system and derive 3 algorithms: general adaptive bias MD, adaptive path-sampling, and a hybrid method which combines the first 2 methodologies. Through the analysis of the correlations between the bias and the un-biased gradient in the system, we find that the hybrid methodology leads to an improved force correlation and acceleration in the sampling of the phase space. We apply our method on SPC/E water, where we find a conservation of the average water structure. We then use our method to sample dialanine and the folding of TrpCage, where we find a good agreement with simulation data reported in the literature. Finally, we apply our methodologies on the initial stages of aggregation of a hexamer of Alzheimer's amyloid β fragment 25-35 (Aβ 25-35) and find that transitions within the hexameric aggregate are dominated by entropic barriers, while we speculate that especially the conformation entropy plays a major role in the formation of the fibril as a rate limiting factor.

  4. Parasupersymmetry and N-fold supersymmetry in quantum many-body systems. I: General formalism and second order

    International Nuclear Information System (INIS)

    Tanaka, Toshiaki

    2007-01-01

    We propose an elegant formulation of parafermionic algebra and parasupersymmetry of arbitrary order in quantum many-body systems without recourse to any specific matrix representation of parafermionic operators and any kind of deformed algebra. Within our formulation, we show generically that every parasupersymmetric quantum system of order p consists of N-fold supersymmetric pairs with N≤p and thus has weak quasi-solvability and isospectral property. We also propose a new type of non-linear supersymmetries, called quasi-parasupersymmetry, which is less restrictive than parasupersymmetry and is different from N-fold supersymmetry even in one-body systems though the conserved charges are represented by higher-order linear differential operators. To illustrate how our formulation works, we construct second-order parafermionic algebra and three simple examples of parasupersymmetric quantum systems of order 2, one is essentially equivalent to the one-body Rubakov-Spiridonov type and the others are two-body systems in which two supersymmetries are folded. In particular, we show that the first model admits a generalized 2-fold superalgebra

  5. Water Well Locations - Conservation Wells

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The conservation well layer identifies the permitted surface location of oil and gas conservation wells that have not been plugged. These include active, regulatory...

  6. Single injection of basic fibroblast growth factor to treat severe vocal fold lesions and vocal fold paralysis.

    Science.gov (United States)

    Kanazawa, Takeharu; Komazawa, Daigo; Indo, Kanako; Akagi, Yusuke; Lee, Yogaku; Nakamura, Kazuhiro; Matsushima, Koji; Kunieda, Chikako; Misawa, Kiyoshi; Nishino, Hiroshi; Watanabe, Yusuke

    2015-10-01

    Severe vocal fold lesions such as vocal fold sulcus, scars, and atrophy induce a communication disorder due to severe hoarseness, but a treatment has not been established. Basic fibroblast growth factor (bFGF) therapies by either four-time repeated local injections or regenerative surgery for vocal fold scar and sulcus have previously been reported, and favorable outcomes have been observed. In this study, we modified bFGF therapy using a single of bFGF injection, which may potentially be used in office procedures. Retrospective chart review. Five cases of vocal fold sulcus, six cases of scars, seven cases of paralysis, and 17 cases of atrophy were treated by a local injection of bFGF. The injection regimen involved injecting 50 µg of bFGF dissolved in 0.5 mL saline only once into the superficial lamina propria using a 23-gauge injection needle. Two months to 3 months after the injection, phonological outcomes were evaluated. The maximum phonation time (MPT), mean airflow rate, pitch range, speech fundamental frequency, jitter, and voice handicap index improved significantly after the bFGF injection. Furthermore, improvement in the MPT was significantly greater in patients with (in increasing order) vocal fold atrophy, scar, and paralysis. The improvement in the MPT among all patients was significantly correlated with age; the MPT improved more greatly in younger patients. Regenerative treatments by bFGF injection—even a single injection—effectively improve vocal function in vocal fold lesions. 4 © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Conservation Education: A Position Statement.

    Science.gov (United States)

    Soil Conservation Society of America, Ankeny, IA.

    The Soil Conservation Society of America's (SCSA) aim is to advance the science and art of good land and water use. Conservation education has a significant role in achieving the wise use of these resources. In this report, perspectives are offered on: (1) the requirements for effective conservation education programs; (2) rationale for…

  8. Madagascar Conservation & Development: Editorial Policies

    African Journals Online (AJOL)

    ... of the Madagascar Conservation & Development community. Finally, Madagascar Conservation & Development serves as a conduit for debate and discussion and welcomes contributions on any aspect of the legal or scientific status of any species living in Madagascar, or on conservation and development philosophy.

  9. Landforms along transverse faults parallel to axial zone of folded ...

    Indian Academy of Sciences (India)

    Himalaya, along the Kali River valley, is defined by folded hanging wall ... role of transverse fault tectonics in the formation of the curvature cannot be ruled out. 1. .... Piedmont surface is made up of gravelliferous and ... made to compute the wedge failure analysis (Hoek .... (∼T2) is at the elevation of ∼272 m asl measured.

  10. A history of folding in mathematics mathematizing the margins

    CERN Document Server

    Friedman, Michael

    2018-01-01

    While it is well known that the Delian problems are impossible to solve with a straightedge and compass – for example, it is impossible to construct a segment whose length is ∛2 with these instruments – the Italian mathematician Margherita Beloch Piazzolla's discovery in 1934 that one can in fact construct a segment of length ∛2 with a single paper fold was completely ignored (till the end of the 1980s). This comes as no surprise, since with few exceptions paper folding was seldom considered as a mathematical practice, let alone as a mathematical procedure of inference or proof that could prompt novel mathematical discoveries. A few question immediately arise: Why did paper folding become a non-instrument? What caused the marginalisation of this technique? And how was the mathematical knowledge, which was nevertheless transmitted and prompted by paper folding, later treated and conceptualised? Aiming to answer these questions, this volume provides, for the first time, an extensive historical study...

  11. Five-fold local symmetry in metallic liquids and glasses

    International Nuclear Information System (INIS)

    Li M Z; Li F X; Zhang H P; Peng H L; Hu Y C; Wang W H

    2017-01-01

    The structure of metallic glasses has been a long-standing mystery. Owing to the disordered nature of atomic structures in metallic glasses, it is a great challenge to find a simple structural description, such as periodicity for crystals, for establishing the structure–property relationship in amorphous materials. In this paper, we briefly review the recent developments of the five-fold local symmetry in metallic liquids and glasses and the understanding of the structure–property relationship based on this parameter. Experimental evidence demonstrates that five-fold local symmetry is found to be general in metallic liquids and glasses. Comprehensive molecular dynamics simulations show that the temperature evolution of five-fold local symmetry reflects the structural evolution in glass transition in cooling process, and the structure–property relationship such as relaxation dynamics, dynamic crossover phenomena, glass transition, and mechanical deformation in metallic liquids and glasses can be well understood base on the simple and general structure parameter of five-fold local symmetry. (paper)

  12. 77 FR 74513 - Folding Gift Boxes From China

    Science.gov (United States)

    2012-12-14

    ... From China Determination On the basis of the record \\1\\ developed in the subject five-year review, the... boxes from China would be likely to lead to continuation or recurrence of material injury to an industry... Publication 4365 (November 2012), entitled Folding Gift Boxes from China: Investigation No. 731-TA-921 (Second...

  13. The Boundary-Hopf-Fold Bifurcation in Filippov Systems

    NARCIS (Netherlands)

    Efstathiou, Konstantinos; Liu, Xia; Broer, Henk W.

    2015-01-01

    This paper studies the codimension-3 boundary-Hopf-fold (BHF) bifurcation of planar Filippov systems. Filippov systems consist of at least one discontinuity boundary locally separating the phase space to disjoint components with different dynamics. Such systems find applications in several fields,

  14. Examining a Thermodynamic Order Parameter of Protein Folding.

    Science.gov (United States)

    Chong, Song-Ho; Ham, Sihyun

    2018-05-08

    Dimensionality reduction with a suitable choice of order parameters or reaction coordinates is commonly used for analyzing high-dimensional time-series data generated by atomistic biomolecular simulations. So far, geometric order parameters, such as the root mean square deviation, fraction of native amino acid contacts, and collective coordinates that best characterize rare or large conformational transitions, have been prevailing in protein folding studies. Here, we show that the solvent-averaged effective energy, which is a thermodynamic quantity but unambiguously defined for individual protein conformations, serves as a good order parameter of protein folding. This is illustrated through the application to the folding-unfolding simulation trajectory of villin headpiece subdomain. We rationalize the suitability of the effective energy as an order parameter by the funneledness of the underlying protein free energy landscape. We also demonstrate that an improved conformational space discretization is achieved by incorporating the effective energy. The most distinctive feature of this thermodynamic order parameter is that it works in pointing to near-native folded structures even when the knowledge of the native structure is lacking, and the use of the effective energy will also find applications in combination with methods of protein structure prediction.

  15. Nonintegrability of the unfolding of the fold-Hopf bifurcation

    Science.gov (United States)

    Yagasaki, Kazuyuki

    2018-02-01

    We consider the unfolding of the codimension-two fold-Hopf bifurcation and prove its meromorphic nonintegrability in the meaning of Bogoyavlenskij for almost all parameter values. Our proof is based on a generalized version of the Morales-Ramis-Simó theory for non-Hamiltonian systems and related variational equations up to second order are used.

  16. Periodic and stochastic thermal modulation of protein folding kinetics.

    Science.gov (United States)

    Platkov, Max; Gruebele, Martin

    2014-07-21

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.

  17. Measurement of flow separation in a human vocal folds model

    Czech Academy of Sciences Publication Activity Database

    Šidlof, Petr; Doaré, O.; Cadot, O.; Chaigne, A.

    2011-01-01

    Roč. 51, č. 1 (2011), s. 123-136 ISSN 0723-4864 R&D Projects: GA AV ČR KJB200760801 Institutional research plan: CEZ:AV0Z20760514 Keywords : vocal folds * flow separation * physical model Subject RIV: BI - Acoustics Impact factor: 1.735, year: 2011 http://www.springerlink.com/content/t81114611760jp23/

  18. Energy Landscapes: From Protein Folding to Molecular Assembly

    Science.gov (United States)

    Databases National Security Education Center (NSEC) Center for Nonlinear Studies Engineering Institute assembly is very common in biology and in nanotechnology. Simple examples of self-assembly are the folding efflux pump machinery, ATP synthase, the ribosome, and many others. In nanotechnology, self-assembly has

  19. Conceptual Transformation and Cognitive Processes in Origami Paper Folding

    Science.gov (United States)

    Tenbrink, Thora; Taylor, Holly A.

    2015-01-01

    Research on problem solving typically does not address tasks that involve following detailed and/or illustrated step-by-step instructions. Such tasks are not seen as cognitively challenging problems to be solved. In this paper, we challenge this assumption by analyzing verbal protocols collected during an Origami folding task. Participants…

  20. 76 FR 74704 - Folded Self-Mailers and Unenveloped Mailpieces

    Science.gov (United States)

    2011-12-01

    ... self-mailers (FSM) and unenveloped mailpieces that are mailed at automation or machinable prices. To... and construction of folded self-mailers and unenveloped mailpieces that are mailed at automation or machinable prices. The proposed standards were issued after two years of collaborative work with mailers to...

  1. Biosimulation of inflammation and healing in surgically injured vocal folds.

    Science.gov (United States)

    Li, Nicole Y K; Vodovotz, Yoram; Hebda, Patricia A; Abbott, Katherine Verdolini

    2010-06-01

    The pathogenesis of vocal fold scarring is complex and remains to be deciphered. The current study is part of research endeavors aimed at applying systems biology approaches to address the complex biological processes involved in the pathogenesis of vocal fold scarring and other lesions affecting the larynx. We developed a computational agent-based model (ABM) to quantitatively characterize multiple cellular and molecular interactions involved in inflammation and healing in vocal fold mucosa after surgical trauma. The ABM was calibrated with empirical data on inflammatory mediators (eg, tumor necrosis factor) and extracellular matrix components (eg, hyaluronan) from published studies on surgical vocal fold injury in the rat population. The simulation results reproduced and predicted trajectories seen in the empirical data from the animals. Moreover, the ABM studies suggested that hyaluronan fragments might be the clinical surrogate of tissue damage, a key variable that in these simulations both is enhanced by and further induces inflammation. A relatively simple ABM such as the one reported in this study can provide new understanding of laryngeal wound healing and generate working hypotheses for further wet-lab studies.

  2. 76 FR 50438 - Folded Self-Mailers and Unenveloped Mailpieces

    Science.gov (United States)

    2011-08-15

    ... orientation. Thickness of attachments or enclosures within a mailpiece. Flap size, style, and orientation... style, and includes closure methods and optional elements that may be incorporated into a basic folded... 111 is proposed to be amended as follows: PART 111--[AMENDED] 1. The authority citation for 39 CFR...

  3. A folded plate clamped along one side only

    Science.gov (United States)

    Nazarov, Serguei A.; Slutskij, Andrey S.

    2017-12-01

    An asymptotic model of a folded thin elastic plate is posed on two plane domains and contains transmission conditions at the common line segment of their boundaries. These conditions become non-local and inhomogeneous if only one side of the plate is fixed. Solvability and smoothness results and error estimates for the model are derived. xml:lang="fr"

  4. Laryngeal Electromyography for Prognosis of Vocal Fold Paralysis.

    Science.gov (United States)

    Pardo-Maza, Adriana; García-Lopez, Isabel; Santiago-Pérez, Susana; Gavilán, Javier

    2017-01-01

    This study aimed to determine the value of laryngeal electromyography in the prognosis of vocal fold paralysis. This is a retrospective descriptive study. This study included 80 patients diagnosed with unilateral or bilateral vocal fold paralysis on flexible laryngoscopy between 2002 and 2014 in a tertiary medical center. Laryngeal electromyography using a standardized protocol was performed; the outcome measures were classified and analyzed into two groups according to the degree of injury. Group 1 included patients with mild to moderate injury, and group 2 included patients with severe to complete injury. Prognosis was correlated with vocal fold motion recovery status with a minimum of 6 months of follow-up since the symptoms onset using positive and negative predictive values. Sixty patients showed acute or chronic recurrent laryngeal neuropathy in laryngeal electromyography. Twelve of 41 patients included in group 1 recovered motion, and 30 of 35 patients included in group 2 did not recover, resulting in 88.2% of positive predictive value and 35.7% of negative predictive value. Our data confirm that laryngeal electromyography is a useful clinical tool in predicting poor recovery in patients with vocal fold paralysis. It allows identification of candidates for early intervention. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Laryngeal Electromyographic findings in patients with vocal fold motion asymmetry.

    Science.gov (United States)

    Woo, Peak; Isseroff, Tova F; Parasher, Arjun; Richards, Amanda; Sivak, Mark

    2016-08-01

    Vocal fold motion asymmetry (VFMA) is often attributed to vocal fold paresis or an anatomical variant. Although laryngeal electromyography (LEMG) may be used to evaluate patients with vocal fold paresis, electrodiagnostic findings in VFMA have not been well defined. Review of a case series Twenty-five symptomatic patients with VFMA were examined by LEMG, and the findings were analyzed. Although all were thought to have unilateral recurrent laryngeal nerve paresis, LEMG showed only nine to have unilateral recurrent nerve paresis. There were nine with both ipsilateral recurrent laryngeal nerve and superior laryngeal nerve paresis, four with bilateral paresis, and three were normal. Reduced total number of units, reduced recruitment, motor units firing fast, and polyphasic units were more common, whereas fibrillation potentials, fasciculation, positive sharp waves, and complex repetitive discharges were uncommon. The LEMG findings are most consistent with old, healed neuropathy. McNemar's test for the acute versus chronic denervation potentials showed significant differences. VFMA has a high incidence of vocal fold paresis that can be better defined by LEMG. The site and side of paresis is often wrong based on laryngoscopy findings alone. The LEMG findings of VFMA appear to be consistent with old, healed neuropathy 4 Laryngoscope, 126:E273-E277, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Radiology findings in adult patients with vocal fold paralysis

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S. [Helsinki Medical Imaging Centre, University of Helsinki, Haartmaninkatu, Helsinki (Finland)]. E-mail: s.robinson@dzu.at; Pitkaeranta, A. [Department of Otorhinolaryngology, Haartmaninkatu, Helsinki (Finland)

    2006-10-15

    Aim: To compile imaging findings in patients with vocal fold paralysis. Materials and methods: A retrospective analysis of the medical charts of 100 consecutive patients, admitted to our department with vocal fold paralysis was undertaken. After laryngoscopy, patients were referred for radiological work-up depending on their clinical history and clinical findings. Ultrasound of the neck and/or contrast-enhanced spiral computed tomography (CT) of the neck and mediastinum was performed, extending to include the whole chest if necessary. In one patient, CT of the brain and in two patients, magnetic resonance angiography was undertaken. Analysis of the clinical and radiological data was performed to assess the most frequent causes for vocal fold paralysis. Results: In 66% of patients, the paralysis was related to previous surgery. Thirty-four percent of cases were labelled idiopathic after clinical examination. After imaging and follow-up, only 8% remained unexplained. Nine patients suffered from neoplasms, four from vascular disease, and 12 from infections. One patient developed encephalomyelitis disseminata on follow-up. Conclusion: Thorough radiological work-up helps to reduce the amount of idiopathic cases of vocal fold paralysis and guides appropriate therapy.

  7. A new generation videokymography for routine clinical vocal fold examination

    NARCIS (Netherlands)

    Qiu, Qingjun; Schutte, Harm K.

    2006-01-01

    Objective. This study aims to introduce a new-generation videokymographic system, which provides simultaneous laryngoscopic and kymographic image, for routine clinical vocal fold examination. Study Design: The authors explored a new imaging method for diagnosis and evaluation of voice disorders.

  8. Radiology findings in adult patients with vocal fold paralysis

    International Nuclear Information System (INIS)

    Robinson, S.; Pitkaeranta, A.

    2006-01-01

    Aim: To compile imaging findings in patients with vocal fold paralysis. Materials and methods: A retrospective analysis of the medical charts of 100 consecutive patients, admitted to our department with vocal fold paralysis was undertaken. After laryngoscopy, patients were referred for radiological work-up depending on their clinical history and clinical findings. Ultrasound of the neck and/or contrast-enhanced spiral computed tomography (CT) of the neck and mediastinum was performed, extending to include the whole chest if necessary. In one patient, CT of the brain and in two patients, magnetic resonance angiography was undertaken. Analysis of the clinical and radiological data was performed to assess the most frequent causes for vocal fold paralysis. Results: In 66% of patients, the paralysis was related to previous surgery. Thirty-four percent of cases were labelled idiopathic after clinical examination. After imaging and follow-up, only 8% remained unexplained. Nine patients suffered from neoplasms, four from vascular disease, and 12 from infections. One patient developed encephalomyelitis disseminata on follow-up. Conclusion: Thorough radiological work-up helps to reduce the amount of idiopathic cases of vocal fold paralysis and guides appropriate therapy

  9. Alternative measures to observe and record vocal fold vibrations

    NARCIS (Netherlands)

    Schutte, HK; McCafferty, G; Coman, W; Carroll, R

    1996-01-01

    Vocal fold vibration patterns form the basis for the production of vocal sound. Over the years much effort has been spend to optimize the ways to visualize and give a description of these patterns. Before video possibilities became available the description of the patterns was Very time-consuming.

  10. Vocal Fold Epithelial Response to Luminal Osmotic Perturbation

    Science.gov (United States)

    Sivasankar, Mahalakshmi; Fisher, Kimberly V.

    2007-01-01

    Purpose: Dry-air challenges increase the osmolarity of fluid lining the luminal surface of the proximal airway. The homeostasis of surface fluid is thought to be essential for voice production and laryngeal defense. Therefore, the authors hypothesized that viable vocal fold epithelium would generate a water flux to reduce an osmotic challenge (150…

  11. Degradation of extracytoplasmic catalysts for protein folding in Bacillus subtilis

    NARCIS (Netherlands)

    Krishnappa, Laxmi; Monteferrante, Carmine G; Neef, Jolanda; Dreisbach, Annette; van Dijl, Jan Maarten

    The general protein secretion pathway of Bacillus subtilis has a high capacity for protein export from the cytoplasm, which is exploited in the biotechnological production of a wide range of enzymes. These exported proteins pass the membrane in an unfolded state, and accordingly, they have to fold

  12. Simply folded band chaos in a VHF microstrip oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, Jonathan N. [US Army Research, Development, and Engineering Command, AMSRD-AMR-WS-ST, Redstone Arsenal, AL 35898 (United States)]. E-mail: jonathan.blakely@us.army.mil; Holder, J. Darryl [US Army Research, Development, and Engineering Command, AMSRD-AMR-WS-ST, Redstone Arsenal, AL 35898 (United States); Corron, Ned J. [US Army Research, Development, and Engineering Command, AMSRD-AMR-WS-ST, Redstone Arsenal, AL 35898 (United States); Pethel, Shawn D. [US Army Research, Development, and Engineering Command, AMSRD-AMR-WS-ST, Redstone Arsenal, AL 35898 (United States)

    2005-10-10

    We present experimental observations of a microstrip circuit that produces Roessler-like chaos with center frequency of 175 MHz. A simply folded band chaotic attractor is created through a period doubling route. The circuit provides an experimental realization of a chaotic neutral delay differential equation, a largely unexplored type of nonlinear dynamical system.

  13. Mechanical Modeling and Computer Simulation of Protein Folding

    Science.gov (United States)

    Prigozhin, Maxim B.; Scott, Gregory E.; Denos, Sharlene

    2014-01-01

    In this activity, science education and modern technology are bridged to teach students at the high school and undergraduate levels about protein folding and to strengthen their model building skills. Students are guided from a textbook picture of a protein as a rigid crystal structure to a more realistic view: proteins are highly dynamic…

  14. Folding and insertion thermodynamics of the transmembrane WALP peptide

    NARCIS (Netherlands)

    Bereau, T.; Bennett, W.F.D.; Pfaendtner, J.; Deserno, M.; Karttunen, M.E.J.

    2015-01-01

    The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)$_n$(L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural

  15. Folding and insertion thermodynamics of the transmembrane WALP peptide

    NARCIS (Netherlands)

    Bereau, T.; Bennett, W.F.D. Drew; Pfaendtner, J.; Deserno, M.; Karttunen, M.

    2015-01-01

    The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural

  16. Approximate self-similarity in models of geological folding

    NARCIS (Netherlands)

    Budd, C.J.; Peletier, M.A.

    2000-01-01

    We propose a model for the folding of rock under the compression of tectonic plates. This models an elastic rock layer imbedded in a viscous foundation by a fourth-order parabolic equation with a nonlinear constraint. The large-time behavior of solutions of this problem is examined and found to be

  17. Computing the Fréchet distance between folded polygons

    NARCIS (Netherlands)

    Cook IV, A.F.; Driemel, A.; Sherette, J.; Wenk, C.

    2015-01-01

    Computing the Fréchet distance for surfaces is a surprisingly hard problem and the only known polynomial-time algorithm is limited to computing it between flat surfaces. We study the problem of computing the Fréchet distance for a class of non-flat surfaces called folded polygons. We present a

  18. Acute dysphonia secondary to vocal fold hemorrhage after vardenafil use.

    Science.gov (United States)

    Singh, Vikas; Cohen, Seth M; Rousseau, Bernard; Noordzij, J Pieter; Garrett, C Gaelyn; Ossoff, Robert H

    2010-06-01

    Owing to their vasodilatory effects, the phosphodiesterase-5 inhibitors have become widely used for the treatment of erectile dysfunction. Among the reported adverse events of these agents are epistaxis, variceal bleeding, intracranial hemorrhage, and hemorrhoidal bleeding. We report a case of vocal fold hemorrhage that occurred after vardenafil use in a 31-year-old man who was a professional singer.

  19. Integrating conservation costs into sea level rise adaptive conservation prioritization

    Directory of Open Access Journals (Sweden)

    Mingjian Zhu

    2015-07-01

    Full Text Available Biodiversity conservation requires strategic investment as resources for conservation are often limited. As sea level rises, it is important and necessary to consider both sea level rise and costs in conservation decision making. In this study, we consider costs of conservation in an integrated modeling process that incorporates a geomorphological model (SLAMM, species habitat models, and conservation prioritization (Zonation to identify conservation priorities in the face of landscape dynamics due to sea level rise in the Matanzas River basin of northeast Florida. Compared to conservation priorities that do not consider land costs in the analysis process, conservation priorities that consider costs in the planning process change significantly. The comparison demonstrates that some areas with high conservation values might be identified as lower priorities when integrating economic costs in the planning process and some areas with low conservation values might be identified as high priorities when considering costs in the planning process. This research could help coastal resources managers make informed decisions about where and how to allocate conservation resources more wisely to facilitate biodiversity adaptation to sea level rise.

  20. Structural and biochemical characterization of the cell fate determining nucleotidyltransferase fold protein MAB21L1.

    Science.gov (United States)

    de Oliveira Mann, Carina C; Kiefersauer, Reiner; Witte, Gregor; Hopfner, Karl-Peter

    2016-06-08

    The exceptionally conserved metazoan MAB21 proteins are implicated in cell fate decisions and share considerable sequence homology with the cyclic GMP-AMP synthase. cGAS is the major innate immune sensor for cytosolic DNA and produces the second messenger 2'-5', 3'-5' cyclic GMP-AMP. Little is known about the structure and biochemical function of other proteins of the cGAS-MAB21 subfamily, such as MAB21L1, MAB21L2 and MAB21L3. We have determined the crystal structure of human full-length MAB21L1. Our analysis reveals high structural conservation between MAB21L1 and cGAS but also uncovers important differences. Although monomeric in solution, MAB21L1 forms a highly symmetric double-pentameric oligomer in the crystal, raising the possibility that oligomerization could be a feature of MAB21L1. In the crystal, MAB21L1 is in an inactive conformation requiring a conformational change - similar to cGAS - to develop any nucleotidyltransferase activity. Co-crystallization with NTP identified a putative ligand binding site of MAB21 proteins that corresponds to the DNA binding site of cGAS. Finally, we offer a structure-based explanation for the effects of MAB21L2 mutations in patients with eye malformations. The underlying residues participate in fold-stabilizing interaction networks and mutations destabilize the protein. In summary, we provide a first structural framework for MAB21 proteins.

  1. Thermodynamic properties of an extremely rapid protein folding reaction.

    Science.gov (United States)

    Schindler, T; Schmid, F X

    1996-12-24

    The cold-shock protein CspB from Bacillus subtilis is a very small beta-barrel protein, which folds with a time constant of 1 ms (at 25 degrees C) in a U reversible N two-state reaction. To elucidate the energetics of this extremely fast reaction we investigated the folding kinetics of CspB as a function of both temperature and denaturant concentration between 2 and 45 degrees C and between 1 and 8 M urea. Under all these conditions unfolding and refolding were reversible monoexponential reactions. By using transition state theory, data from 327 kinetic curves were jointly analyzed to determine the thermodynamic activation parameters delta H H2O++, delta S H2O++, delta G H2O++, and delta C p H2O++ for unfolding and refolding and their dependences on the urea concentration. 90% of the total change in heat capacity and 96% of the change in the m value (m = d delta G/d[urea]) occur between the unfolded state and the activated state. This suggests that for CspB the activated state of folding is unusually well structured and almost equivalent to the native protein in its interactions with the solvent. As a consequence of this native-like activated state a strong temperature-dependent enthalpy/entropy compensation is observed for the refolding kinetics, and the barrier to refolding shifts from being largely enthalpic at low temperature to largely entropic at high temperature. This shift originates not from the changes in the folding protein chains itself, but from the changes in the protein-solvent interactions. We speculate that the absence of intermediates and the native-like activated state in the folding of CspB are correlated with the small size and the structural type of this protein. The stabilization of a small beta-sheet as in CspB requires extensive non-local interactions, and therefore incomplete sheets are unstable. As a consequence, the critical activated state is reached only very late in folding. The instability of partially folded structure is a means to

  2. Swallowing function in pediatric patients with bilateral vocal fold immobility.

    Science.gov (United States)

    Hsu, Jeffrey; Tibbetts, Kathleen M; Wu, Derek; Nassar, Michel; Tan, Melin

    2017-02-01

    Infants with bilateral vocal fold immobility (BVFI) often have poor swallow function in addition to potential airway compromise. While there are several reports on BVFI and its effect on patients' airway status, little is known about long term swallow function. We aim to characterize the swallowing function over time in pediatric patients with bilateral vocal fold immobility. A retrospective review of medical records of infants diagnosed with BVFI at a tertiary care children's hospital between 2005 and 2014 was conducted. Patient demographics, nature and etiology of immobility, laryngoscopy findings, comorbidities, and swallow outcomes at diagnosis and follow-up were recorded. Swallowing outcomes as measured by presence or absence of a gastrostomy tube were compared by etiology, vocal fold status, and normal or developmentally delay using the Fisher's exact test. 110 patients with a diagnosis of vocal fold immobility were identified. Twenty-nine (26%) had BVFI and twenty-three had complete medical records. Etiologies of vocal fold immobility include cardiac related in 13% (3/23), idiopathic in 30% (7/23) prolonged intubation in 26% (6/23) central neurologic in 22% (5/23), trauma in 4% (1/23), and infection in 4% (1/23). Average follow-up time was 44 months (range 5-94 months). Ten patients (56.5%) required a gastrostomy tube at time of diagnosis. Of this cohort who received gastrostomy tubes, three (30%) ultimately transitioned to complete oral feeds. Return of vocal fold mobility did not correlate with swallow function. In those with non-neurologic etiologies, the need for gastrostomy tube at end of follow up was unlikely. There was a statistically significant difference in the percentage of gastrostomy tube-free children at most recent follow up in patients who were normally developed (86%) versus those who were developmentally delayed (33%) (p = 0.02). We characterized the swallowing function of 23 pediatric patients with BVFI. Comorbidities are significant

  3. Single-molecule studies of the Im7 folding landscape.

    Science.gov (United States)

    Pugh, Sara D; Gell, Christopher; Smith, D Alastair; Radford, Sheena E; Brockwell, David J

    2010-04-23

    Under appropriate conditions, the four-helical Im7 (immunity protein 7) folds from an ensemble of unfolded conformers to a highly compact native state via an on-pathway intermediate. Here, we investigate the unfolded, intermediate, and native states populated during folding using diffusion single-pair fluorescence resonance energy transfer by measuring the efficiency of energy transfer (or proximity or P ratio) between pairs of fluorophores introduced into the side chains of cysteine residues placed in the center of helices 1 and 4, 1 and 3, or 2 and 4. We show that while the native states of each variant give rise to a single narrow distribution with high P values, the distributions of the intermediates trapped at equilibrium (denoted I(eqm)) are fitted by two Gaussian distributions. Modulation of the folding conditions from those that stabilize the intermediate to those that destabilize the intermediate enabled the distribution of lower P value to be assigned to the population of the unfolded ensemble in equilibrium with the intermediate state. The reduced stability of the I(eqm) variants allowed analysis of the effect of denaturant concentration on the compaction and breadth of the unfolded state ensemble to be quantified from 0 to 6 M urea. Significant compaction is observed as the concentration of urea is decreased in both the presence and absence of sodium sulfate, as previously reported for a variety of proteins. In the presence of Na(2)SO(4) in 0 M urea, the P value of the unfolded state ensemble approaches that of the native state. Concurrent with compaction, the ensemble displays increased peak width of P values, possibly reflecting a reduction in the rate of conformational exchange among iso-energetic unfolded, but compact conformations. The results provide new insights into the initial stages of folding of Im7 and suggest that the unfolded state is highly conformationally constrained at the outset of folding. (c) 2010 Elsevier Ltd. All rights reserved.

  4. Construction and characterization of a novel vocal fold bioreactor.

    Science.gov (United States)

    Zerdoum, Aidan B; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao

    2014-08-01

    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.

  5. Stretched versus compressed exponential kinetics in α-helix folding

    International Nuclear Information System (INIS)

    Hamm, Peter; Helbing, Jan; Bredenbeck, Jens

    2006-01-01

    In a recent paper (J. Bredenbeck, J. Helbing, J.R. Kumita, G.A. Woolley, P. Hamm, α-helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time resolved IR spectroscopy, Proc. Natl. Acad. Sci USA 102 (2005) 2379), we have investigated the folding of a photo-switchable α-helix with a kinetics that could be fit by a stretched exponential function exp(-(t/τ) β ). The stretching factor β became smaller as the temperature was lowered, a result which has been interpreted in terms of activated diffusion on a rugged energy surface. In the present paper, we discuss under which conditions diffusion problems occur with stretched exponential kinetics (β 1). We show that diffusion problems do have a strong tendency to yield stretched exponential kinetics, yet, that there are conditions (strong perturbation from equilibrium, performing the experiment in the folding direction) under which compressed exponential kinetics would be expected instead. We discuss the kinetics on free energy surfaces predicted by simple initiation-propagation models (zipper models) of α-helix folding, as well as by folding funnel models. We show that our recent experiment has been performed under condition for which models with strong downhill driving force, such as the zipper model, would predict compressed, rather than stretched exponential kinetics, in disagreement with the experimental observation. We therefore propose that the free energy surface along a reaction coordinate that governs the folding kinetics must be relatively flat and has a shape similar to a 1D golf course. We discuss how this conclusion can be unified with the thermodynamically well established zipper model by introducing an additional kinetic reaction coordinate

  6. Time course of recovery of idiopathic vocal fold paralysis.

    Science.gov (United States)

    Husain, Solomon; Sadoughi, Babak; Mor, Niv; Levin, Ariana M; Sulica, Lucian

    2018-01-01

    To clarify the time course of recovery in patients with idiopathic vocal fold paralysis. Retrospective chart review. Medical records for all patients with idiopathic vocal fold paralysis over a 10-year period were reviewed to obtain demographic and clinical information, including onset of disease and recovery of vocal function. Stroboscopic exams of patients who recovered voice were reviewed blindly to assess return of vocal fold motion. Thirty-eight of 55 patients (69%) recovered vocal function. Time course of recovery could be assessed in 34 patients who did not undergo injection augmentation. The mean time to recovery was 152.8 ± 109.3 days (left, 179.8 ± 111.3 days; right, 105.3 ± 93.7 days; P = .088). Two-thirds of patients recovered within 6 months. Probability of recovery declined over time. Five of 22 patients who recovered voice had return of vocal fold motion; 17 did not. The mean time to recovery did not differ between these groups (return of motion, 127.4 ± 132.3 days; no return of motion, 160.1 ± 105.1 days; P = .290). Sixty-nine percent of patients with idiopathic vocal fold paralysis recovered vocal function, two-thirds doing so within 6 months of onset. Age, gender, laterality, use of injection augmentation did not influence recovery rate. Declining probability of recovery over time leads us to consider framework surgery after 6 months in patients with idiopathic paralysis. 4. Laryngoscope, 128:148-152, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Conservation of a helix-stabilizing dipole moment in the PP-fold family of regulatory peptides

    DEFF Research Database (Denmark)

    Bjørnholm, B; Jørgensen, Flemming Steen; Schwartz, T W

    1993-01-01

    arrangement were performed in two ways: (1) by the use of a Poisson-Boltzmann approach which allows for an estimate of the screening effect, and (2) by the use of a uniform dielectric model (Coulomb's law). It is found that the alpha-helix is stabilized by approximately 5-10 kcal/mol due to electrostatic...

  8. Amino acid repeats avert mRNA folding through conservative substitutions and synonymous codons, regardless of codon bias

    Directory of Open Access Journals (Sweden)

    Sailen Barik

    2017-12-01

    Full Text Available A significant number of proteins in all living species contains amino acid repeats (AARs of various lengths and compositions, many of which play important roles in protein structure and function. Here, I have surveyed select homopolymeric single [(An] and double [(ABn] AARs in the human proteome. A close examination of their codon pattern and analysis of RNA structure propensity led to the following set of empirical rules: (1 One class of amino acid repeats (Class I uses a mixture of synonymous codons, some of which approximate the codon bias ratio in the overall human proteome; (2 The second class (Class II disregards the codon bias ratio, and appears to have originated by simple repetition of the same codon (or just a few codons; and finally, (3 In all AARs (including Class I, Class II, and the in-betweens, the codons are chosen in a manner that precludes the formation of RNA secondary structure. It appears that the AAR genes have evolved by orchestrating a balance between codon usage and mRNA secondary structure. The insights gained here should provide a better understanding of AAR evolution and may assist in designing synthetic genes.

  9. Amino acid repeats avert mRNA folding through conservative substitutions and synonymous codons, regardless of codon bias.

    Science.gov (United States)

    Barik, Sailen

    2017-12-01

    A significant number of proteins in all living species contains amino acid repeats (AARs) of various lengths and compositions, many of which play important roles in protein structure and function. Here, I have surveyed select homopolymeric single [(A)n] and double [(AB)n] AARs in the human proteome. A close examination of their codon pattern and analysis of RNA structure propensity led to the following set of empirical rules: (1) One class of amino acid repeats (Class I) uses a mixture of synonymous codons, some of which approximate the codon bias ratio in the overall human proteome; (2) The second class (Class II) disregards the codon bias ratio, and appears to have originated by simple repetition of the same codon (or just a few codons); and finally, (3) In all AARs (including Class I, Class II, and the in-betweens), the codons are chosen in a manner that precludes the formation of RNA secondary structure. It appears that the AAR genes have evolved by orchestrating a balance between codon usage and mRNA secondary structure. The insights gained here should provide a better understanding of AAR evolution and may assist in designing synthetic genes.

  10. Conservative secondary structure motifs already present in early-stage folding (in silico) as found in serpines family.

    Science.gov (United States)

    Brylinski, Michal; Konieczny, Leszek; Kononowicz, Andrzej; Roterman, Irena

    2008-03-21

    The well-known procedure implemented in ClustalW oriented on the sequence comparison was applied to structure comparison. The consensus sequence as well as consensus structure has been defined for proteins belonging to serpine family. The structure of early stage intermediate was the object for similarity search. The high values of W(sequence) appeared to be accordant with high values of W(structure) making possible structure comparison using common criteria for sequence and structure comparison. Since the early stage structural form has been created according to limited conformational sub-space which does not include the beta-structure (this structure is mediated by C7eq structural form), is particularly important to see, that the C7eq structural form may be treated as the seed for beta-structure present in the final native structure of protein. The applicability of ClustalW procedure to structure comparison makes these two comparisons unified.

  11. Hearing Conservation Live #2430

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-09

    Occupational hearing loss is one of the most common work-related illnesses in the United States (US). From 22 to 30 million US workers are exposed to hazardous noise levels at work, and 25% of these workers will develop permanent hearing loss. Hearing loss from noise is slow and painless, and you can have a disability before you notice it. This course presents the hazards associated with workplace noise, the purpose and elements of the Los Alamos National Laboratory (LANL) Hearing Conservation Program (HCP), and controls that are available to reduce your exposure to hazardous levels of noise.

  12. Energy conservation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Courtright, H.A. [Electric Power Research Inst., Palo Alto, CA (United States)

    1993-12-31

    The conservation of energy through the efficiency improvement of existing end-uses and the development of new technologies to replace less efficient systems is an important component of the overall effort to reduce greenhouse gases which may contribute to global climate change. Even though uncertainties exist on the degree and causes of global warming, efficiency improvements in end-use applications remain in the best interest of utilities, their customers and society because efficiency improvements not only reduce environmental exposures but also contribute to industrial productivity, business cost reductions and consumer savings in energy costs.

  13. Integrating Agriculture and Conservation

    Science.gov (United States)

    Vandever, Mark W.

    2010-01-01

    The USGS produces the needed science-based information to guide management actions and policy decisions that support wildlife habitat and other environmental services compatible with USDA conservation goals and farm operations. The Policy Analysis and Science Assistance Branch of the Fort Collins Science Center (FORT) has conducted research involving a national landowner survey and numerous short- and long-term evaluations regarding vegetation responses to land management practices. This research helps land and resource managers to make informed decisions and resolve resource management conflicts.

  14. Ubiquitin--conserved protein or selfish gene?

    Science.gov (United States)

    Catic, André; Ploegh, Hidde L

    2005-11-01

    The posttranslational modifier ubiquitin is encoded by a multigene family containing three primary members, which yield the precursor protein polyubiquitin and two ubiquitin moieties, Ub(L40) and Ub(S27), that are fused to the ribosomal proteins L40 and S27, respectively. The gene encoding polyubiquitin is highly conserved and, until now, those encoding Ub(L40) and Ub(S27) have been generally considered to be equally invariant. The evolution of the ribosomal ubiquitin moieties is, however, proving to be more dynamic. It seems that the genes encoding Ub(L40) and Ub(S27) are actively maintained by homologous recombination with the invariant polyubiquitin locus. Failure to recombine leads to deterioration of the sequence of the ribosomal ubiquitin moieties in several phyla, although this deterioration is evidently constrained by the structural requirements of the ubiquitin fold. Only a few amino acids in ubiquitin are vital for its function, and we propose that conservation of all three ubiquitin genes is driven not only by functional properties of the ubiquitin protein, but also by the propensity of the polyubiquitin locus to act as a 'selfish gene'.

  15. The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies

    OpenAIRE

    Yin, Jun; Zhang, Zhaoyan

    2013-01-01

    The influence of the thyroarytenoid (TA) and cricothyroid (CT) muscle activation on vocal fold stiffness and eigenfrequencies was investigated in a muscularly controlled continuum model of the vocal folds. Unlike the general understanding that vocal fold fundamental frequency was determined by vocal fold tension, this study showed that vocal fold eigenfrequencies were primarily determined by vocal fold stiffness. This study further showed that, with reference to the resting state of zero stra...

  16. What is a conservation actor?

    Directory of Open Access Journals (Sweden)

    Paul Jepson

    2011-01-01

    Full Text Available As a crisis-oriented discipline, conservation biology needs actions to understand the state of nature and thwart declines in biodiversity. Actors-traditionally individuals, institutions, and collectives-have been central to delivering such goals in practice. However, the definition of actors within the discipline has been narrow and their role in influencing conservation outcomes inadequately conceptualised. In this paper, we examine the question ′What is a conservation actor?′ Who or what creates the capacity to influence conservation values and actions? Drawing from theoretical developments in Actor-Network Theory and collective governance, we argue that the concept of an actor in conservation biology should be broadened to include non-humans, such as species and devices, because they have the agency and ability to influence project goals and outcomes. We illustrate this through four examples: the Asian elephant, International Union for Conservation of Nature red lists, the High Conservation Value approach, and an Integrated Conservation and Development Project. We argue that a broader conceptualisation of actors in conservation biology will produce new forms of understanding that could open up new areas of conservation research, enhance practice and draw attention to spheres of conservation activity that might require stronger oversight and governance.

  17. Transient intermediates are populated in the folding pathways of single-domain two-state folding protein L

    Science.gov (United States)

    Maity, Hiranmay; Reddy, Govardhan

    2018-04-01

    Small single-domain globular proteins, which are believed to be dominantly two-state folders, played an important role in elucidating various aspects of the protein folding mechanism. However, recent single molecule fluorescence resonance energy transfer experiments [H. Y. Aviram et al. J. Chem. Phys. 148, 123303 (2018)] on a single-domain two-state folding protein L showed evidence for the population of an intermediate state and it was suggested that in this state, a β-hairpin present near the C-terminal of the native protein state is unfolded. We performed molecular dynamics simulations using a coarse-grained self-organized-polymer model with side chains to study the folding pathways of protein L. In agreement with the experiments, an intermediate is populated in the simulation folding pathways where the C-terminal β-hairpin detaches from the rest of the protein structure. The lifetime of this intermediate structure increased with the decrease in temperature. In low temperature conditions, we also observed a second intermediate state, which is globular with a significant fraction of the native-like tertiary contacts satisfying the features of a dry molten globule.

  18. The pro region required for folding of carboxypeptidase Y is a partially folded domain with little regular structural core

    DEFF Research Database (Denmark)

    Sørensen, P; Winther, Jakob R.; Kaarsholm, N C

    1993-01-01

    The pro region of carboxypeptidase Y (CPY) from yeast is necessary for the correct folding of the enzyme [Winther, J. R., & Sørensen P. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 9330-9334]. Using fluorescence, circular dichroism, and heteronuclear NMR analyses, it is demonstrated that the isolated...

  19. Beyond conservation agriculture.

    Science.gov (United States)

    Giller, Ken E; Andersson, Jens A; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.

  20. Beyond conservation agriculture

    Science.gov (United States)

    Giller, Ken E.; Andersson, Jens A.; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture. PMID:26579139

  1. Beyond Conservation Agriculture

    Directory of Open Access Journals (Sweden)

    Ken E Giller

    2015-10-01

    Full Text Available Global support for Conservation Agriculture (CA as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance, soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals and biotechnology. Over the past ten years CA has been promoted among smallholder farmers in the (sub- tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.

  2. Selling energy conservation.

    Science.gov (United States)

    Hinrichsen, D

    1995-01-01

    This article concerns the Organization of the Petroleum Exporting Countries (OPEC) crisis and its impact on energy efficiency measures in the US. In 1985, when the OPEC collapsed, the US government had avoided the need to construct 350 gigawatts of new electric capacity. The most successful efficiency improvements, especially in household appliances and equipment, lighting and tightened energy efficiency standards in new buildings, resulted from the OPEC event. The real innovation of that time was the change in profit rules for utilities. This revolution and the way some US utilities view energy have not caught on elsewhere. Despite the initiative toward improving energy efficiency in homes, offices and industries, the change has been slow. Partly to blame are the big development banks, which pointed out that short-term conservation and efficiency measures could save at least 15% of the total energy demand without the need for major investment. The benefits of energy conservation was shown during the oil shock when per capita energy consumption fell by 5% in the member states of the Organization of Economic Cooperation and Development, while the per capita gross domestic product grew by a third. There has been a decrease in energy expenditure worldwide, and the scope for further energy savings is enormous, but governments need to recognize and seize the opportunity.

  3. Lyme disease and conservation

    Science.gov (United States)

    Ginsberg, H.

    1994-01-01

    Lyme disease is a tick-borne illness that is wide-spread in North America, especially in the northeastern and northcentral United States. This disease could negatively influence efforts to conserve natural populations in two ways: (1) the disease could directly affect wild animal health; and (2) tick control efforts could adversely affect natural populations and communities. Lyme disease affects several domestic animals, but symptoms have been reported in only a few wild species. Direct effects of Lyme disease on wild animal populations have not been reported, but the disease should be considered as a possible cause in cases of unexplained population declines in endemic areas. Methods available to manage ticks and Lyme disease include human self-protection techniques, manipulation of habitats and hosts species populations, biological control, and pesticide applications. The diversity of available techniques allows selection of approaches to minimize environmental effects by (1) emphasizing personal protection techniques, (2) carefully targeting management efforts to maximize efficiency, and (3) integrating environmentally benign techniques to improve management while avoiding broad-scale environmentally destructive approaches. The environmental effects of Lyme disease depend, to a large extent, on the methods chosen to minimize human exposure to infected ticks. Conservation biologists can help design tick management programs that effectively lower the incidence of human Lyme disease while simultaneously minimizing negative effects on natural populations.

  4. Intensity Conserving Spectral Fitting

    Science.gov (United States)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2015-01-01

    The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.

  5. The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies

    Science.gov (United States)

    Yin, Jun; Zhang, Zhaoyan

    2013-01-01

    The influence of the thyroarytenoid (TA) and cricothyroid (CT) muscle activation on vocal fold stiffness and eigenfrequencies was investigated in a muscularly controlled continuum model of the vocal folds. Unlike the general understanding that vocal fold fundamental frequency was determined by vocal fold tension, this study showed that vocal fold eigenfrequencies were primarily determined by vocal fold stiffness. This study further showed that, with reference to the resting state of zero strain, vocal fold stiffness in both body and cover layers increased with either vocal fold elongation or shortening. As a result, whether vocal fold eigenfrequencies increased or decreased with CT/TA activation depended on how the CT/TA interaction influenced vocal fold deformation. For conditions of strong CT activation and thus an elongated vocal fold, increasing TA contraction reduced the degree of vocal fold elongation and thus reduced vocal fold eigenfrequencies. For conditions of no CT activation and thus a resting or slightly shortened vocal fold, increasing TA contraction increased the degree of vocal fold shortening and thus increased vocal fold eigenfrequencies. In the transition region of a slightly elongated vocal fold, increasing TA contraction first decreased and then increased vocal fold eigenfrequencies. PMID:23654401

  6. Prevention of vocal fold scarring by local application of basic fibroblast growth factor in a rat vocal fold injury model.

    Science.gov (United States)

    Suzuki, Ryo; Kawai, Yoshitaka; Tsuji, Takuya; Hiwatashi, Nao; Kishimoto, Yo; Tateya, Ichiro; Nakamura, Tatsuo; Hirano, Shigeru

    2017-02-01

    Vocal fold scarring, which causes severe hoarseness, is intractable. The optimal treatment for vocal fold scarring has not been established; therefore, prevention of scarring is important. The aim of this study was to clarify the effectiveness of basic fibroblast growth factor (bFGF) for prevention of postsurgical vocal fold scarring. Prospective animal experiments with controls. The vocal folds of Sprague-Dawley rats were injured unilaterally or bilaterally after local application of a 10 μL solution of bFGF. Larynges ware harvested for histological and immunohistochemical examination 2 months postoperation and for quantitative real-time polymerase chain reaction (qRT-PCR) analysis 1 week postoperation. Histological examination showed significantly increased hyaluronic acid and decreased deposition of dense collagen in the bFGF-treated group at 100 ng/10 μL compared with the sham-treated group. Immunohistochemical examination showed significantly decreased collagen type III deposition in the bFGF-treated group at 100 ng/10 μL compared with the sham-treated group. qRT-PCR revealed that hyaluronan synthase 2 (Has2), Has3, and hepatocyte growth factor were upregulated in bFGF-treated groups compared with sham-treated group. The current results suggest that local application of bFGF at the time of injury has the potential to prevent vocal fold scarring. Preventive injection of bFGF could be applied at the time of phonomicrosurgery to avoid postoperative scar formation. N/A. Laryngoscope, 2016 127:E67-E74, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Constraints on a Parity-Conserving Interaction

    Science.gov (United States)

    van Oers, Willem T. H.

    Time-reversal-invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement at CPLEAR. One then can ask the question: What about tests of time-reversal-invariance in systems other than the kaon system? Tests of time-reversal-invariance can be distinguished as belonging to two classes: the first one deals with parity violating (P-odd)/time-reversal-invariance-odd (T-odd) interactions, while the second one deals with P-even/T-odd interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a P-odd/T-odd interaction follow from measurements of the electric dipole moment of the neutron (with a present upper limit of 6 × 10-26 e.cm [95% C.L.]). It provides a limit on a P-odd/T-odd pion-nucleon coupling constant which is less than 10-4 times the weak interaction strength. Experimental limits on a P-even/T-odd interaction are much less stringent. Following the standard approach of describing the nucleon-nucleon interaction in terms of meson exchanges it can be shown that only charged rho-meson exchange and A1-meson exchange can lead to a P-even/T-odd interaction. The better constraints stem from measurements of the electric dipole moment of the neutron and from measurements of charge-symmetry breaking in neutron-proton elastic scattering. The latter experiments were executed at TRIUMF (497 and 347 MeV) and at IUCF (183 MeV). Weak decay experiments may provide limits which will possibly be comparable. All other experiments, like gamma decay experiments, detailed balance experiments, polarization-analyzing power difference determinations, and five-fold correlation experiments with polarized incident nucleons and aligned nuclear targets, have been shown to be at least an order of magnitude less sensitive. The question then emerges: is there room for further experimentation?

  8. Cofactor-binding sites in proteins of deviating sequence: comparative analysis and clustering in torsion angle, cavity, and fold space.

    Science.gov (United States)

    Stegemann, Björn; Klebe, Gerhard

    2012-02-01

    Small molecules are recognized in protein-binding pockets through surface-exposed physicochemical properties. To optimize binding, they have to adopt a conformation corresponding to a local energy minimum within the formed protein-ligand complex. However, their conformational flexibility makes them competent to bind not only to homologous proteins of the same family but also to proteins of remote similarity with respect to the shape of the binding pockets and folding pattern. Considering drug action, such observations can give rise to unexpected and undesired cross reactivity. In this study, datasets of six different cofactors (ADP, ATP, NAD(P)(H), FAD, and acetyl CoA, sharing an adenosine diphosphate moiety as common substructure), observed in multiple crystal structures of protein-cofactor complexes exhibiting sequence identity below 25%, have been analyzed for the conformational properties of the bound ligands, the distribution of physicochemical properties in the accommodating protein-binding pockets, and the local folding patterns next to the cofactor-binding site. State-of-the-art clustering techniques have been applied to group the different protein-cofactor complexes in the different spaces. Interestingly, clustering in cavity (Cavbase) and fold space (DALI) reveals virtually the same data structuring. Remarkable relationships can be found among the different spaces. They provide information on how conformations are conserved across the host proteins and which distinct local cavity and fold motifs recognize the different portions of the cofactors. In those cases, where different cofactors are found to be accommodated in a similar fashion to the same fold motifs, only a commonly shared substructure of the cofactors is used for the recognition process. Copyright © 2011 Wiley Periodicals, Inc.

  9. Language study on Spliced Semigraph using Folding techniques

    Science.gov (United States)

    Thiagarajan, K.; Padmashree, J.

    2018-04-01

    In this paper, we proposed algorithm to identify cut vertices and cut edges for n-Cut Spliced Semigraph and splicing the n-Cut Spliced Semigraph using cut vertices else cut edges or combination of cut vertex and cut edge and applying sequence of folding to the spliced semigraph to obtain the semigraph quadruple η(S)=(2, 1, 1, 1). We observed that the splicing and folding using both cut vertices and cut edges is applicable only for n-Cut Spliced Semigraph where n > 2. Also, we transformed the spliced semigraph into tree structure and studied the language for the semigraph with n+2 vertices and n+1 semivertices using Depth First Edge Sequence algorithm and obtain the language structure with sequence of alphabet ‘a’ and ‘b’.

  10. Impaired folding and subunit assembly as disease mechanism

    DEFF Research Database (Denmark)

    Bross, P; Andresen, B S; Gregersen, N

    1998-01-01

    folding is a common effect of missense mutations occurring in genetic diseases, (ii) increasing the level of available chaperones may augment the level of functional mutant protein in vivo, and (iii) one mutation may have multiple effects. The interplay between the chaperones assisting folding......Rapid progress in DNA technology has entailed the possibility of readily detecting mutations in disease genes. In contrast to this, techniques to characterize the effects of mutations are still very time consuming. It has turned out that many of the mutations detected in disease genes are missense...... mutations. Characterization of the effect of these mutations is particularly important in order to establish that they are disease causing and to estimate their severity. We use the experiences with investigation of medium-chain acyl-CoA dehydrogenase deficiency as an example to illustrate that (i) impaired...

  11. ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS

    Energy Technology Data Exchange (ETDEWEB)

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2012-08-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  12. ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS

    International Nuclear Information System (INIS)

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.

    2012-01-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  13. Mfold web server for nucleic acid folding and hybridization prediction.

    Science.gov (United States)

    Zuker, Michael

    2003-07-01

    The abbreviated name, 'mfold web server', describes a number of closely related software applications available on the World Wide Web (WWW) for the prediction of the secondary structure of single stranded nucleic acids. The objective of this web server is to provide easy access to RNA and DNA folding and hybridization software to the scientific community at large. By making use of universally available web GUIs (Graphical User Interfaces), the server circumvents the problem of portability of this software. Detailed output, in the form of structure plots with or without reliability information, single strand frequency plots and 'energy dot plots', are available for the folding of single sequences. A variety of 'bulk' servers give less information, but in a shorter time and for up to hundreds of sequences at once. The portal for the mfold web server is http://www.bioinfo.rpi.edu/applications/mfold. This URL will be referred to as 'MFOLDROOT'.

  14. The human PDI family: Versatility packed into a single fold

    DEFF Research Database (Denmark)

    Appenzeller-Herzog, Christian; Ellgaard, Lars

    2007-01-01

    in promoting oxidative protein folding in the ER has been extended in recent years to include roles in other processes such as ER-associated degradation (ERAD), trafficking, calcium homeostasis, antigen presentation and virus entry. Some of these functions are performed by non-catalytic members of the family...... that lack the active-site cysteines. Regardless of their function, all human PDIs contain at least one domain of approximately 100 amino acid residues with structural homology to thioredoxin. As we learn more about the individual proteins of the family, a complex picture is emerging that emphasizes as much...... their differences as their similarities, and underlines the versatility of the thioredoxin fold. Here, we primarily explore the diversity of cellular functions described for the human PDIs. Udgivelsesdato: 2007-Dec-3...

  15. Designing cooperatively folded abiotic uni- and multimolecular helix bundles

    Science.gov (United States)

    de, Soumen; Chi, Bo; Granier, Thierry; Qi, Ting; Maurizot, Victor; Huc, Ivan

    2018-01-01

    Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix-turn-helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix-turn-helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.

  16. Developing guinea pig brain as a model for cortical folding.

    Science.gov (United States)

    Hatakeyama, Jun; Sato, Haruka; Shimamura, Kenji

    2017-05-01

    The cerebral cortex in mammals, the neocortex specifically, is highly diverse among species with respect to its size and morphology, likely reflecting the immense adaptiveness of this lineage. In particular, the pattern and number of convoluted ridges and fissures, called gyri and sulci, respectively, on the surface of the cortex are variable among species and even individuals. However, little is known about the mechanism of cortical folding, although there have been several hypotheses proposed. Recent studies on embryonic neurogenesis revealed the differences in cortical progenitors as a critical factor of the process of gyrification. Here, we investigated the gyrification processes using developing guinea pig brains that form a simple but fundamental pattern of gyri. In addition, we established an electroporation-mediated gene transfer method for guinea pig embryos. We introduce the guinea pig brain as a useful model system to understand the mechanisms and basic principle of cortical folding. © 2017 Japanese Society of Developmental Biologists.

  17. Fold points and singularity induced bifurcation in inviscid transonic flow

    International Nuclear Information System (INIS)

    Marszalek, Wieslaw

    2012-01-01

    Transonic inviscid flow equation of elliptic–hyperbolic type when written in terms of the velocity components and similarity variable results in a second order nonlinear ODE having several features typical of differential–algebraic equations rather than ODEs. These features include the fold singularities (e.g. folded nodes and saddles, forward and backward impasse points), singularity induced bifurcation behavior and singularity crossing phenomenon. We investigate the above properties and conclude that the quasilinear DAEs of transonic flow have interesting properties that do not occur in other known quasilinear DAEs, for example, in MHD. Several numerical examples are included. -- Highlights: ► A novel analysis of inviscid transonic flow and its similarity solutions. ► Singularity induced bifurcation, singular points of transonic flow. ► Projection method, index of transonic flow DAEs, linearization via matrix pencil.

  18. 6 MV Folded Tandem Ion Accelerator facility at BARC

    International Nuclear Information System (INIS)

    Gupta, S.K.

    2010-01-01

    The 6 MV Folded Tandem Ion Accelerator (FOTIA) facility is operational round the clock and accelerated beams of both light and heavy ions are being used extensively by various divisions of BARC, Universities, lIT Bombay and other R and D labs across the country. The FOTIA is an upgraded version of the old 5.5 MV single stage Van-de-Graaff accelerator (1962-1992). Since its commissioning in the year 2000, the poor beam transmission through the 180 deg folding magnet was a matter of concern. A systematic study for beam transmission through the accelerator was carried out and progressive modifications in folding magnet chamber, foil stripper holder and improvement in average vacuum level through the accelerator have resulted in large improvement of beam transmission leading to up to 2.0 micro-amp analyzed proton beams on target. Now the utilization of the beams from the accelerator has increased many folds for basic and applied research in the fields of atomic and nuclear physics, material science and radiation biology etc. Few new beam lines after the indigenously developed 5-port switching magnet are added and the experimental setup for PIXE, PIGE, External PIXE, 4 neutron detector, Proton Induced Positron Annihilation Spectroscopy (PIPAS) setup and the general purpose scattering chamber etc have been commissioned in the beam hall. The same team has developed a Low Energy Accelerator Facility (LEAF) which delivers negative ions of light and heavy ions for application in implantation, irradiation damage studies in semiconductor devices and testing of new beam line components being developed for Low Energy High Intensity Proton Accelerator (LEHIPA) programme at BARC. The LEAF has been developed as stand alone facility and can deliver beam quickly with minimum intervention of the operator. Few more features are being planned to deliver uniform scanned beams on large targets. (author)

  19. Positive therapy of andrographolide in vocal fold leukoplakia.

    Science.gov (United States)

    Xu, Jue; Xue, Tao; Bao, Ying; Wang, Dong-Hai; Ma, Bing-Liang; Yin, Chen-Yi; Yang, Guang-Hui; Ren, Gang; Lan, Long-Jiang; Wang, Jian-Qiu; Zhang, Xiao-Lan; Zhao, Yu-Qin

    2014-01-01

    Vocal fold leukoplakia is a premalignant precursor of squamous cell carcinoma. Although many efforts have been contributed to therapy of this disease, none exhibits a satisfactory result. The aims of this study were to investigate the effectiveness and feasibility of andrographolide therapy in vocal fold leukoplakia and to explore the preliminary mechanism underlying. Forty-one eligible patients were enrolled in the study. The patients were treated for 10-minute exposures of 5 ml (25mg/ml) andrographolide injection aerosols twice a day, and 2 weeks was considered as one treatment course. Electronic laryngoscope was used to observe the condition of vocal fold leukoplakia during the treatment. Every patient received one or two treatment courses, and the follow-up was carried out for 12 months. Toxic reactions of treatments were evaluated on the basis of the standards of the United States MD Anderson Cancer Center. Moreover, laryngeal carcinoma cell line Hep2 was applied to explore the mechanism of effect of andrographolide. Anti-proliferative effect on Hep2, cell nuclear morphology, express of mitogen-activated protein kinases (MAPK) and pro-apoptotic protein were detected after andrographolide treatment. We found that andrographolide exhibited significant curative effects on treatments, which were accompanied by thinning of the lesion of leukoplakia, reduction in the whitish surface area, and return of pink or red epithelium. A complete response up to 85% was observed, and no toxic side effect events occurred during the study. No patient with a complete response had a recurrence in the follow-up. Moreover, cellular experiments in Hep2 indicated that andrographolide activated MAPK pathway and caspase cascade, and finally induced apoptosis in laryngeal carcinoma cell. The advantages of andrographolide are connected with minimally invasive and localized character of the treatment and no damage of collagenous tissue structures, which are more convenient and less painful

  20. Registration of Images with N-fold Dihedral Blur

    Czech Academy of Sciences Publication Activity Database

    Pedone, M.; Flusser, Jan; Heikkila, J.

    2015-01-01

    Roč. 24, č. 3 (2015), s. 1036-1045 ISSN 1057-7149 R&D Projects: GA ČR GA13-29225S; GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Image registration * blurred images * N-fold rotational symmetry * dihedral symmetry * phase correlation Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.735, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0441247.pdf

  1. Preparation and self-folding of amphiphilic DNA origami.

    Science.gov (United States)

    Zhou, Chao; Wang, Dianming; Dong, Yuanchen; Xin, Ling; Sun, Yawei; Yang, Zhongqiang; Liu, Dongsheng

    2015-03-01

    Amphiphilic DNA origami is prepared by dressing multiple hydrophobic molecules on a rectangular single layer DNA origami, which is then folded or coupled in sandwich-like structures with two outer DNA origami layer and one inner hydrophobic molecules layer. The preference to form different kinds of structures could be tailored by rational design of DNA origami. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Universal Crease Pattern for Folding Orthogonal Shapes

    Science.gov (United States)

    2009-09-29

    Demaine∗† Martin L. Demaine∗ Aviv Ovadya∗ Abstract We present a universal crease pattern—known in geometry as the tetrakis tiling and in origami as box...13. SUPPLEMENTARY NOTES 14. ABSTRACT We present a universal crease pattern?known in geometry as the tetrakis tiling and in origami as box pleating... origami . Computational Geometry : The- ory and Applications, 16(1):3–21, 2000. [DO07] Erik D. Demaine and Joseph O’Rourke. Geometric Folding Al- gorithms

  3. Protein fold recognition using geometric kernel data fusion.

    Science.gov (United States)

    Zakeri, Pooya; Jeuris, Ben; Vandebril, Raf; Moreau, Yves

    2014-07-01

    Various approaches based on features extracted from protein sequences and often machine learning methods have been used in the prediction of protein folds. Finding an efficient technique for integrating these different protein features has received increasing attention. In particular, kernel methods are an interesting class of techniques for integrating heterogeneous data. Various methods have been proposed to fuse multiple kernels. Most techniques for multiple kernel learning focus on learning a convex linear combination of base kernels. In addition to the limitation of linear combinations, working with such approaches could cause a loss of potentially useful information. We design several techniques to combine kernel matrices by taking more involved, geometry inspired means of these matrices instead of convex linear combinations. We consider various sequence-based protein features including information extracted directly from position-specific scoring matrices and local sequence alignment. We evaluate our methods for classification on the SCOP PDB-40D benchmark dataset for protein fold recognition. The best overall accuracy on the protein fold recognition test set obtained by our methods is ∼ 86.7%. This is an improvement over the results of the best existing approach. Moreover, our computational model has been developed by incorporating the functional domain composition of proteins through a hybridization model. It is observed that by using our proposed hybridization model, the protein fold recognition accuracy is further improved to 89.30%. Furthermore, we investigate the performance of our approach on the protein remote homology detection problem by fusing multiple string kernels. The MATLAB code used for our proposed geometric kernel fusion frameworks are publicly available at http://people.cs.kuleuven.be/∼raf.vandebril/homepage/software/geomean.php?menu=5/. © The Author 2014. Published by Oxford University Press.

  4. Symptomatic unilateral vocal fold paralysis following cardiothoracic surgery.

    Science.gov (United States)

    Puccinelli, Cassandra; Modzeski, Mara C; Orbelo, Diana; Ekbom, Dale C

    Unilateral vocal fold paralysis (UVFP) is a complication associated with cardiothoracic procedures that presents clinically as dysphonia and/or dysphagia with or without aspiration. The literature lacks both data on recovery of mobility and consensus on best management. Herein, our goals are to 1) Identify cardiothoracic procedures associated with symptomatic UVFP at our institution; 2) Review timing and nature of laryngology diagnosis and management; 3) Report spontaneous recovery rate of vocal fold mobility. Retrospective case series at single tertiary referral center between 2002 and 2015. 141 patients were included who underwent laryngology interventions (micronized acellular dermis injection laryngoplasty and/or type 1 thyroplasty) to treat symptomatic UVFP diagnosed subsequent to cardiothoracic surgery. Pulmonary procedures were most often associated with UVFP (n=50/141; 35.5%). 87.2% had left-sided paralysis (n=123/141). Median time to diagnosis was 42days (x¯=114±348). Over time, UVFP was diagnosed progressively earlier after cardiothoracic surgery. 63.4% of patients (n=95/141) underwent injection laryngoplasty as their initial intervention with median time from diagnosis to injection of 11days (x¯=29.6±54). 41.1% (n=58/141) ultimately underwent type 1 thyroplasty at a median of 232.5days (x¯=367±510.2) after cardiothoracic surgery. 10.2% (n=9/88) of those with adequate follow-up recovered full vocal fold mobility. Many cardiothoracic procedures are associated with symptomatic UVFP, predominantly left-sided. Our data showed poor recovery of vocal fold mobility relative to other studies. Early diagnosis and potential surgical medialization is important in the care of these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Fast mapping of global protein folding states by multivariate NMR:

    DEFF Research Database (Denmark)

    Malmendal, Anders; Underhaug, Jarl; Otzen, Daniel

    2010-01-01

    To obtain insight into the functions of proteins and their specific roles, it is important to establish efficient procedures for exploring the states that encapsulate their conformational space. Global Protein folding State mapping by multivariate NMR (GPS NMR) is a powerful high-throughput method......-lactalbumin in the presence of the anionic surfactant sodium dodecyl sulfate, SDS, and compare these with other surfactants, acid, denaturants and heat....

  6. Double folding model including the Pauli exclusion principle

    International Nuclear Information System (INIS)

    Gridnev, K.A.; Soubbotin, V.B.; Oertzen, W. von; Bohlen, H.G.; Vinas, X.

    2002-01-01

    A new method to incorporate the Pauli principle into the double folding approach to the heavy ion potential is proposed. It is shown that in order to take into account the Pauli blocking a redefinition of the density matrices of the free isolated nuclei must be one. A solution to the self-consistent incorporation of the Pauli-blocking effects in the mean-field nucleus-nucleus potential is obtained in the Thomas-Fermi approximation [ru

  7. Oral and vocal fold diadochokinesis in dysphonic women.

    Science.gov (United States)

    Louzada, Talita; Beraldinelle, Roberta; Berretin-Felix, Giédre; Brasolotto, Alcione Ghedini

    2011-01-01

    The evaluation of oral and vocal fold diadochokinesis (DDK) in individuals with voice disorders may contribute to the understanding of factors that affect the balanced vocal production. Scientific studies that make use of this assessment tool support the knowledge advance of this area, reflecting the development of more appropriate therapeutic planning. To compare the results of oral and vocal fold DDK in dysphonic women and in women without vocal disorders. For this study, 28 voice recordings of women from 19 to 54 years old, diagnosed with dysphonia and submitted to a voice assessment from speech pathologist and otorhinolaryngologist, were used. The control group included 30 nondysphonic women evaluated in prior research from normal adults. The analysis parameters like number and duration of emissions, as well as the regularity of the repetition of syllables "pa", "ta", "ka" and the vowels "a" and "i," were provided by the Advanced Motor Speech Profile program (MSP) Model-5141, version-2.5.2 (KayPentax). The DDK sequence "pataka" was analyzed quantitatively through the Sound Forge 7.0 program, as well as manually with the audio-visual help of sound waves. Average values of oral and vocal fold DDK dysphonic and nondysphonic women were compared using the "t Student" test and were considered significant when pwomen (CvP=10.42%, 12.79%, 12.05%; JittP=2.05%, 6.05%, 3.63%) compared to the control group (CvP=8.86%; 10.95%, 11.20%; JittP=1.82%, 2.98%, 3.15%). Although the results do not indicate any difficulties in oral and laryngeal motor control in the dysphonic group, the largest instability in vocal fold DDK in the experimental group should be considered, and studies of this ability in individuals with communication disorders must be intensified.

  8. Glottal aerodynamics in compliant, life-sized vocal fold models

    Science.gov (United States)

    McPhail, Michael; Dowell, Grant; Krane, Michael

    2013-11-01

    This talk presents high-speed PIV measurements in compliant, life-sized models of the vocal folds. A clearer understanding of the fluid-structure interaction of voiced speech, how it produces sound, and how it varies with pathology is required to improve clinical diagnosis and treatment of vocal disorders. Physical models of the vocal folds can answer questions regarding the fundamental physics of speech, as well as the ability of clinical measures to detect the presence and extent of disorder. Flow fields were recorded in the supraglottal region of the models to estimate terms in the equations of fluid motion, and their relative importance. Experiments were conducted over a range of driving pressures with flow rates, given by a ball flowmeter, and subglottal pressures, given by a micro-manometer, reported for each case. Imaging of vocal fold motion, vector fields showing glottal jet behavior, and terms estimated by control volume analysis will be presented. The use of these results for a comparison with clinical measures, and for the estimation of aeroacoustic source strengths will be discussed. Acknowledge support from NIH R01 DC005642.

  9. Lie algebra lattices and strings on T-folds

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Yuji [Institute of Physics, University of Tsukuba,Ibaraki 305-8571 (Japan); Sugawara, Yuji [Department of Physical Sciences, College of Science and Engineering, Ritsumeikan University,Shiga 525-8577 (Japan)

    2017-02-06

    We study the world-sheet conformal field theories for T-folds systematically based on the Lie algebra lattices representing the momenta of strings. The fixed point condition required for the T-duality twist restricts the possible Lie algebras. When the T-duality acts as a simple chiral reflection, one is left with the four cases, A{sub 1},D{sub 2r},E{sub 7},E{sub 8}, among the simple simply-laced algebras. From the corresponding Englert-Neveu lattices, we construct the modular invariant partition functions for the T-fold CFTs in bosonic string theory. Similar construction is possible also by using Euclidean even self-dual lattices. We then apply our formulation to the T-folds in the E{sub 8}×E{sub 8} heterotic string theory. Incorporating non-trivial phases for the T-duality twist, we obtain, as simple examples, a class of modular invariant partition functions parametrized by three integers. Our construction includes the cases which are not reduced to the free fermion construction.

  10. Fractal Folding and Medium Viscoelasticity Contribute Jointly to Chromosome Dynamics

    Science.gov (United States)

    Polovnikov, K. E.; Gherardi, M.; Cosentino-Lagomarsino, M.; Tamm, M. V.

    2018-02-01

    Chromosomes are key players of cell physiology, their dynamics provides valuable information about its physical organization. In both prokaryotes and eukaryotes, the short-time motion of chromosomal loci has been described with a Rouse model in a simple or viscoelastic medium. However, little emphasis has been put on the influence of the folded organization of chromosomes on the local dynamics. Clearly, stress propagation, and thus dynamics, must be affected by such organization, but a theory allowing us to extract such information from data, e.g., on two-point correlations, is lacking. Here, we describe a theoretical framework able to answer this general polymer dynamics question. We provide a scaling analysis of the stress-propagation time between two loci at a given arclength distance along the chromosomal coordinate. The results suggest a precise way to assess folding information from the dynamical coupling of chromosome segments. Additionally, we realize this framework in a specific model of a polymer whose long-range interactions are designed to make it fold in a fractal way and immersed in a medium characterized by subdiffusive fractional Langevin motion with a tunable scaling exponent. This allows us to derive explicit analytical expressions for the correlation functions.

  11. Aggregation of natively folded proteins: a theoretical approach

    International Nuclear Information System (INIS)

    Trovato, Antonio; Maritan, Amos; Seno, Flavio

    2007-01-01

    The reliable identification of β-aggregating stretches in protein sequences is essential for the development of therapeutic agents for Alzheimer's and Parkinson's diseases, as well as other pathological conditions associated with protein deposition. While the list of aggregation related diseases is growing, it has also been shown that many proteins that are normally well behaved can be induced to aggregate in vitro. This fact suggests the existence of a unified framework that could explain both folding and aggregation. By assuming this universal behaviour, we have recently introduced an algorithm (PASTA: prediction of amyloid structure aggregation), which is based on a sequence-specific energy function derived from the propensity of two residue types to be found paired in neighbouring strands within β-sheets in globular proteins. The algorithm is able to predict the most aggregation-prone portions of several proteins initially unfolded, in excellent agreement with experimental results. Here, we apply the method to a set of proteins which are known to aggregate, but which are natively folded. The quality of the prediction is again very high, corroborating the hypothesis that the amyloid structure is stabilized by the same physico-chemical determinants as those operating in folded proteins

  12. Multicore and GPU algorithms for Nussinov RNA folding

    Science.gov (United States)

    2014-01-01

    Background One segment of a RNA sequence might be paired with another segment of the same RNA sequence due to the force of hydrogen bonds. This two-dimensional structure is called the RNA sequence's secondary structure. Several algorithms have been proposed to predict an RNA sequence's secondary structure. These algorithms are referred to as RNA folding algorithms. Results We develop cache efficient, multicore, and GPU algorithms for RNA folding using Nussinov's algorithm. Conclusions Our cache efficient algorithm provides a speedup between 1.6 and 3.0 relative to a naive straightforward single core code. The multicore version of the cache efficient single core algorithm provides a speedup, relative to the naive single core algorithm, between 7.5 and 14.0 on a 6 core hyperthreaded CPU. Our GPU algorithm for the NVIDIA C2050 is up to 1582 times as fast as the naive single core algorithm and between 5.1 and 11.2 times as fast as the fastest previously known GPU algorithm for Nussinov RNA folding. PMID:25082539

  13. Interferences of Silica Nanoparticles in Green Fluorescent Protein Folding Processes.

    Science.gov (United States)

    Klein, Géraldine; Devineau, Stéphanie; Aude, Jean Christophe; Boulard, Yves; Pasquier, Hélène; Labarre, Jean; Pin, Serge; Renault, Jean Philippe

    2016-01-12

    We investigated the relationship between unfolded proteins, silica nanoparticles and chaperonin to determine whether unfolded proteins could stick to silica surfaces and how this process could impair heat shock protein activity. The HSP60 catalyzed green fluorescent protein (GFP) folding was used as a model system. The adsorption isotherms and adsorption kinetics of denatured GFP were measured, showing that denaturation increases GFP affinity for silica surfaces. This affinity is maintained even if the surfaces are covered by a protein corona and allows silica NPs to interfere directly with GFP folding by trapping it in its unstructured state. We determined also the adsorption isotherms of HSP60 and its chaperonin activity once adsorbed, showing that SiO2 NP can interfere also indirectly with protein folding through chaperonin trapping and inhibition. This inhibition is specifically efficient when NPs are covered first with a layer of unfolded proteins. These results highlight for the first time the antichaperonin activity of silica NPs and ask new questions about the toxicity of such misfolded proteins/nanoparticles assembly toward cells.

  14. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E. (Univ. of California, Berkeley (USA))

    1990-08-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a {beta}-turn and an {alpha}-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the {alpha}-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences.

  15. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    International Nuclear Information System (INIS)

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E.

    1990-01-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a β-turn and an α-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the α-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences

  16. Neuromuscular compensation mechanisms in vocal fold paralysis and paresis.

    Science.gov (United States)

    Dewan, Karuna; Vahabzadeh-Hagh, Andrew; Soofer, Donna; Chhetri, Dinesh K

    2017-07-01

    Vocal fold paresis and paralysis are common conditions. Treatment options include augmentation laryngoplasty and voice therapy. The optimal management for this condition is unclear. The objective of this study was to assess possible neuromuscular compensation mechanisms that could potentially be used in the treatment of vocal fold paresis and paralysis. In vivo canine model. In an in vivo canine model, we examined three conditions: 1) unilateral right recurrent laryngeal nerve (RLN) paresis and paralysis, 2) unilateral superior laryngeal nerve (SLN) paralysis, and 3) unilateral vagal nerve paresis and paralysis. Phonatory acoustics and aerodynamics were measured in each of these conditions. Effective compensation was defined as improved acoustic and aerodynamic profile. The most effective compensation for all conditions was increasing RLN activation and decreasing glottal gap. Increasing RLN activation increased the percentage of possible phonatory conditions that achieved phonation onset. SLN activation generally led to decreased number of total phonation onset conditions within each category. Differential effects of SLN (cricothyroid [CT] muscle) activation were seen. Ipsilateral SLN activation could compensate for RLN paralysis; normal CT compensated well in unilateral SLN paralysis; and in vagal paresis/paralysis, contralateral SLN and RLN displayed antagonistic relationships. Methods to improve glottal closure should be the primary treatment for large glottal gaps. Neuromuscular compensation is possible for paresis. This study provides insights into possible compensatory mechanisms in vocal fold paresis and paralysis. NA Laryngoscope, 127:1633-1638, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Equilibrium amide hydrogen exchange and protein folding kinetics

    International Nuclear Information System (INIS)

    Bai Yawen

    1999-01-01

    The classical Linderstrom-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (I↔U↔N). On the other hand, in an on-pathway three-state system (U↔I↔N), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments

  18. On the single-mass model of the vocal folds

    International Nuclear Information System (INIS)

    Howe, M S; McGowan, R S

    2010-01-01

    An analysis is made of the fluid-structure interactions necessary to support self-sustained oscillations of a single-mass mechanical model of the vocal folds subject to a nominally steady subglottal overpressure. The single-mass model of Fant and Flanagan is re-examined and an analytical representation of vortex shedding during 'voiced speech' is proposed that promotes cooperative, periodic excitation of the folds by the glottal flow. Positive feedback that sustains glottal oscillations is shown to occur during glottal contraction, when the flow separates from the 'trailing edge' of the glottis producing a low-pressure 'suction' force that tends to pull the folds together. Details are worked out for flow that can be regarded as locally two-dimensional in the glottal region. Predictions of free-streamline theory are used to model the effects of quasi-static variations in the separation point on the glottal wall. Numerical predictions are presented to illustrate the waveform of the sound radiated towards the mouth from the glottis. The theory is easily modified to include feedback on the glottal flow of standing acoustic waves, both in the vocal tract beyond the glottis and in the subglottal region. (invited paper)

  19. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION.

    Science.gov (United States)

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2014-06-01

    Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression.

  20. Folding and insertion thermodynamics of the transmembrane WALP peptide

    Energy Technology Data Exchange (ETDEWEB)

    Bereau, Tristan, E-mail: bereau@mpip-mainz.mpg.de [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Bennett, W. F. Drew [Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Pfaendtner, Jim [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195 (United States); Deserno, Markus [Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Karttunen, Mikko [Department of Mathematics and Computer Science & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MetaForum, 5600 MB Eindhoven (Netherlands)

    2015-12-28

    The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA){sub n} (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide’s insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum—in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence.

  1. Folding and insertion thermodynamics of the transmembrane WALP peptide

    International Nuclear Information System (INIS)

    Bereau, Tristan; Bennett, W. F. Drew; Pfaendtner, Jim; Deserno, Markus; Karttunen, Mikko

    2015-01-01

    The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA) n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide’s insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum—in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence

  2. Protein folding on the ribosome studied using NMR spectroscopy

    Science.gov (United States)

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  3. Structures of the first representatives of Pfam family PF06938 (DUF1285) reveal a new fold with repeated structural motifs and possible involvement in signal transduction

    International Nuclear Information System (INIS)

    Han, Gye Won; Bakolitsa, Constantina; Miller, Mitchell D.; Kumar, Abhinav; Carlton, Dennis; Najmanovich, Rafael J.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ernst, Dustin; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Jaroszewski, Lukasz; Jin, Kevin K.; Johnson, Hope A.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structures of SPO0140 and Sbal-2486 revealed a two-domain structure that adopts a novel fold. Analysis of the interdomain cleft suggests a nucleotide-based ligand with a genome context indicating signaling as a possible role for this family. The crystal structures of SPO0140 and Sbal-2486 were determined using the semiautomated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). The structures revealed a conserved core with domain duplication and a superficial similarity of the C-terminal domain to pleckstrin homology-like folds. The conservation of the domain interface indicates a potential binding site that is likely to involve a nucleotide-based ligand, with genome-context and gene-fusion analyses additionally supporting a role for this family in signal transduction, possibly during oxidative stress

  4. Conserved structure and expression of hsp70 paralogs in teleost fishes

    DEFF Research Database (Denmark)

    Metzger, David C.H.; Hansen, Jakob Hemmer; Schulte, Patricia M.

    2016-01-01

    present in the F. heteroclitus genome. Comparison of expression patterns in F. heteroclitus and Gasterosteus aculeatus demonstrates that hsp70-2 has a higher fold increase than hsp70-1 following heat shock in gill but not in muscle tissue, revealing a conserved difference in expression patterns between...

  5. Conservation and ethnobotanical exploration.

    Science.gov (United States)

    Martin, G J

    1994-01-01

    In recent years conservationists have realized that the maintenance of protected areas is closely linked to rural development. As part of their efforts to improve local people's standards of living, they have sought the advice of researchers who work in communities, especially those that border on nature reserves. Ethnobotanists, who are turning their attention to the cultural and ecological crises confronting the regions in which they work, are natural allies in this venture. The joint efforts of conservationists and ethnobotanists are being supported by non-profit organizations, intergovernmental agencies and research institutes. The search for new drugs and other natural products from plants is an important element in this collaboration, but it cannot be divorced from the broader objective of promoting the survival of biological and cultural diversity. Conservationists will support biodiversity prospecting and related efforts only if there is a clear benefit for local communities and protected areas. An example of the concrete actions being taken by conservation agencies is the People and Plants Initiative, a joint effort of the World Wide Fund for Nature, the United Nations Educational, Scientific and Cultural Organization and the Royal Botanic Gardens, Kew. The main objective is to support the work of ethnobotanists in developing countries in studies of sustainable plant use and application of their work to conservation and community development. The initiative provides training workshops and relevant literature; coordinators work in collaboration with local people to create inventories of useful plants and appraise the impact of harvesting specific plant resources in and around protected areas. Phytochemical screening of medicinal plants and preparation of extracts are carried out as part of some projects.

  6. Why not energy conservation?

    International Nuclear Information System (INIS)

    Carlson, Shawn

    2016-01-01

    Energy conservation is a deep principle that is obeyed by all of the fundamental forces of nature. It puts stringent constraints on all systems, particularly systems that are ‘isolated,’ meaning that no energy can enter or escape. Notwithstanding the success of the principle of stationary action, it is fair to wonder to what extent physics can be formulated from the principle of stationary energy. We show that if one interprets mechanical energy as a state function, then its stationarity leads to a novel formulation of classical mechanics. However, unlike Lagrangian and Hamiltonian mechanics, which deliver their state functions via algebraic proscriptions (i.e., the Lagrangian is always the difference between a system’s kinetic and potential energies), this new formalism identifies its state functions as the solutions to a differential equation. This is an important difference because differential equations can generate more general solutions than algebraic recipes. When applied to Newtonian systems for which the energy function is separable, these state functions are always the mechanical energy. However, while the stationary state function for a charged particle moving in an electromagnetic field proves not to be energy, the function nevertheless correctly encodes the dynamics of the system. Moreover, the stationary state function for a free relativistic particle proves not to be the energy either. Rather, our differential equation yields the relativistic free-particle Lagrangian (plus a non-dynamical constant) in its correct dynamical context. To explain how this new formalism can consistently deliver stationary state functions that give the correct dynamics but that are not always the mechanical energy, we propose that energy conservation is a specific realization of a deeper principle of stationarity that governs both relativistic and non-relativistic mechanics. (paper)

  7. Folding and fracturing of rock adjacent to salt diapirs

    Science.gov (United States)

    Rowan, Mark G.

    2017-04-01

    When John Ramsay wrote his groundbreaking book in 1967, deformation around salt diapirs was not something he covered. At the time, most geologists considered diapirs to form due to density inversion, rising through thick overlying strata due to buoyancy. In doing so, salt was thought to shove aside the younger rocks, shearing and fracturing them in drag folds and supposedly producing "salt gouge". Even after it was realized that the majority of diapirs spend most of their history growing at or just beneath the surface, the relative rise of salt and sinking of minibasins were (and are) still thought by many to be accommodated in part by shear and fracturing of rocks in a collar zone around the salt. There are two arguments against this model. The first is mechanical: whereas halite behaves as a viscous fluid, even young sediment deforms as a brittle material with layer anisotropy. Thus, the salt-sediment interface is the outer margin of an intrasalt shear zone caused by viscous drag against the diapir margin. The velocity of salt flow decreases dramatically toward the edge of the diapir, so that the outermost salt effectively doesn't move. Hence, no shear or fracturing is expected in surrounding strata. The second and more important argument is that empirical field data do not support the idea of drag folds and associated deformation. Certainly, strata are typically folded and thinned adjacent to diapirs. However, stratal upturn is generated by monoclinal drape folding of the diapir roof over the edge of the rising salt, and thinning is caused by deposition onto the bathymetric highs formed by the diapirs, often supplemented by roof erosion and slumping. Halokinetic sequences observed in numerous salt basins (e.g., Paradox Basin, La Popa Basin, Spanish Pyrenees, Sivas Basin, Zagros Mountains, Kuqa Basin) contain no diapir-parallel shear zones and minimal thinning and fracturing caused by diapir rise. Even megaflaps, in which strata extend for kilometers up the sides

  8. Constraints of a parity-conserving/time-reversal-non-conserving interaction

    International Nuclear Information System (INIS)

    Oers, Willem T.H. van

    2002-01-01

    Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement at CPLEAR. One then can ask the question: What about tests of time-reversal-invariance in systems other than the kaon system? Tests of time-reversal-invariance can be distinguished as belonging to two classes: the first one deals with time-reversal-invariance-non-conserving (T-odd)/parity violating (P-odd) interactions, while the second one deals with T-odd/P-even interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a T-odd/P-odd interaction follow from measurements of the electric dipole moment of the neutron ( -26 e.cm [95% C.L.]). It provides a limit on a T-odd/P-odd pion-nucleon coupling constant which is less than 10 -4 times the weak interaction strength. Experimental limits on a T-odd/P-even interaction are much less stringent. Following the standard approach of describing the nucleon-nucleon interaction in terms of meson exchanges, it can be shown that only charged ρ-meson exchange and A 1 -meson exchange can lead to a T-odd/P-even interaction. The better constraints stem from measurements of the electric dipole moment of the neutron and from measurements of charge-symmetry breaking in neutron-proton elastic scattering. The latter experiments were executed at TRIUMF (497 and 347 MeV) and at IUCF (183 MeV). All other experiments, like detailed balance experiments, polarization - analyzing power difference determinations, and five-fold correlation experiments with polarized incident nucleons and aligned nuclear targets, have been shown to be at least an order to magnitude less sensitive. Is there room for further experimentation?

  9. FOLD-EM: automated fold recognition in medium- and low-resolution (4-15 Å) electron density maps.

    Science.gov (United States)

    Saha, Mitul; Morais, Marc C

    2012-12-15

    Owing to the size and complexity of large multi-component biological assemblies, the most tractable approach to determining their atomic structure is often to fit high-resolution radiographic or nuclear magnetic resonance structures of isolated components into lower resolution electron density maps of the larger assembly obtained using cryo-electron microscopy (cryo-EM). This hybrid approach to structure determination requires that an atomic resolution structure of each component, or a suitable homolog, is available. If neither is available, then the amount of structural information regarding that component is limited by the resolution of the cryo-EM map. However, even if a suitable homolog cannot be identified using sequence analysis, a search for structural homologs should still be performed because structural homology often persists throughout evolution even when sequence homology is undetectable, As macromolecules can often be described as a collection of independently folded domains, one way of searching for structural homologs would be to systematically fit representative domain structures from a protein domain database into the medium/low resolution cryo-EM map and return the best fits. Taken together, the best fitting non-overlapping structures would constitute a 'mosaic' backbone model of the assembly that could aid map interpretation and illuminate biological function. Using the computational principles of the Scale-Invariant Feature Transform (SIFT), we have developed FOLD-EM-a computational tool that can identify folded macromolecular domains in medium to low resolution (4-15 Å) electron density maps and return a model of the constituent polypeptides in a fully automated fashion. As a by-product, FOLD-EM can also do flexible multi-domain fitting that may provide insight into conformational changes that occur in macromolecular assemblies.

  10. Electric energy utilization and conservation

    International Nuclear Information System (INIS)

    Tripathy, S.C.

    1991-01-01

    Various aspects of electric energy utilization and conservation are discussed. First chapter reviews thermodynamic aspects of energy conservation. Subsequent chapters describe possibilities and methods of energy conservation in thermal power plants, airconditioning and ventilation systems, electric lighting systems, electric heating systems in industries, and railway electrification. Chapter 8 describes various modes of energy storage and compares their economies. The next chapter discusses various facets of energy economics and the last chapter discusses the practical aspects of energy conservation in different industries and power utilities. (M.G.B.). 100 refs

  11. Using Trial Vocal Fold Injection to Select Vocal Fold Scar Patients Who May Benefit From More Durable Augmentation.

    Science.gov (United States)

    Carroll, Thomas L; Dezube, Aaron; Bauman, Laura A; Mallur, Pavan S

    2018-02-01

    Clinical indications for vocal fold injection augmentation (VFI) are expanding. Prior studies demonstrate the benefit of trial VFI for select causes of glottic insufficiency. No studies have examined trial VFI for glottic insufficiency resulting from true vocal fold (TVF) scar. Retrospective chart review of patients who underwent trial VFI for a dominant pathology of TVF scar causing dysphonia. Patients who subsequently underwent durable augmentation were identified. The primary study outcome was the difference in Voice Handicap Index-10 (VHI-10) score from pretrial VFI to post-durable augmentation. Twenty-eight patients underwent trial VFI for TVF scar, 22 of whom reported a positive response. Fifteen of 22 subjects who underwent durable augmentation had viable data for analysis. Mean VHI-10 improved from 26.9 to 18.6 ( P 5). A trial VFI is a potentially useful, low-risk procedure that appears to help the patient and clinician identify when global augmentation might improve the voice when vocal fold scar is present. Patients who reported successful trial VFI often demonstrated significant improvement in their VHI-10 after subsequent durable augmentation.

  12. Design and numerical analysis of an SMA mesh-based self-folding sheet

    International Nuclear Information System (INIS)

    Peraza-Hernandez, Edwin A; Hartl, Darren J; Malak Jr, Richard J

    2013-01-01

    Origami engineering, which is the practice of creating useful three-dimensional structures through folding and fold-like operations applied to initially two-dimensional entities, has the potential to impact several areas of design and manufacturing. In some instances, however, it may be impractical to apply external manipulations to produce the desired folds (e.g., as in remote applications such as space systems). In such cases, self-folding capabilities are valuable. A self-folding material or material system is one that can perform folding operations without manipulations from external forces. This work considers a concept for a self-folding material system. The system extends the ‘programmable matter’ concept and consists of an active, self-morphing sheet composed of two meshes of thermally actuated shape memory alloy (SMA) wire separated by a compliant passive layer. The geometric and power input parameters of the self-folding sheet are optimized to achieve the tightest local fold possible subject to stress and temperature constraints. The sheet folding performance considering folds at different angles relative to the orientation of the wire mesh is also analyzed. The optimization results show that a relatively low elastomer thickness is preferable to generate the tightest fold possible. The results also show that the self-folding sheet does not require large power inputs to achieve an optimal folding performance. It was shown that the self-folding sheet is capable of creating similar quality folds at different orientations. (paper)

  13. When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches.

    Science.gov (United States)

    Muñoz, Victor; Cerminara, Michele

    2016-09-01

    Protein folding research stalled for decades because conventional experiments indicated that proteins fold slowly and in single strokes, whereas theory predicted a complex interplay between dynamics and energetics resulting in myriad microscopic pathways. Ultrafast kinetic methods turned the field upside down by providing the means to probe fundamental aspects of folding, test theoretical predictions and benchmark simulations. Accordingly, experimentalists could measure the timescales for all relevant folding motions, determine the folding speed limit and confirm that folding barriers are entropic bottlenecks. Moreover, a catalogue of proteins that fold extremely fast (microseconds) could be identified. Such fast-folding proteins cross shallow free energy barriers or fold downhill, and thus unfold with minimal co-operativity (gradually). A new generation of thermodynamic methods has exploited this property to map folding landscapes, interaction networks and mechanisms at nearly atomic resolution. In parallel, modern molecular dynamics simulations have finally reached the timescales required to watch fast-folding proteins fold and unfold in silico All of these findings have buttressed the fundamentals of protein folding predicted by theory, and are now offering the first glimpses at the underlying mechanisms. Fast folding appears to also have functional implications as recent results connect downhill folding with intrinsically disordered proteins, their complex binding modes and ability to moonlight. These connections suggest that the coupling between downhill (un)folding and binding enables such protein domains to operate analogically as conformational rheostats. © 2016 The Author(s).

  14. Simulation of fault-bend fold by incompressible Newtonian fluid; Hiasshukusei Newton ryutai ni yoru danso oremagari shukyoku kozo no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tamagawa, T; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Tsukui, R [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-10-22

    Incompressible Newtonian fluid simulation is experimentally applied to faults typical of the compression and extension fields. A fault-bend folding structure of the flat-ramp flat fault in the compression field and a folding structure of a normal fault in the extension field are studied, and the results are compared with those obtained by the balanced cross section method. The result of calculation indicates that the velocity gradient with the ramp angle set at 30deg is correspondent to stress and that stress concentration is taking place at the ramp section of the fault. This solution is an approximation and does not necessary support the conservation of area but, when the ramp angle is allowed to change from 10 through 40deg, it is found that the conservation of area holds though roughly. It is found that the configuration of the folding structure formed by a flat-ramp flat fault is positioned between the anomalous-mode layer parallel shear typical of a balanced cross section and the folding structure formed by a vertical shear. 7 refs., 7 figs.

  15. Prairie Conservation in Canada: The Prairie Conservation Action Plan Experience

    Science.gov (United States)

    Dean Nernberg; David Ingstrup

    2005-01-01

    In Canada, grassland conservation has been mobilized and directed through the development of Prairie Conservation Action Plans and Action Plan Committees in the three prairie provinces of Alberta (45 partner agencies and organizations), Saskatchewan (26 partners), and Manitoba (26 partners). In Alberta, 43 percent of the native prairie remains; in Saskatchewan and...

  16. Community markets for conservation: Markets to advance conservation mission

    OpenAIRE

    Fay, J.

    2008-01-01

    This presentation describes the function and economics of COMACO (Community Markets for Conservation), discusses the current reality of climate change, and then explores how possible market mechanism approaches to ameliorating climate change may fit into COMACO's work and research. LTRA-2 (An Agricultural Markets Model for Biodiversity Conservation)

  17. Radiometric Dating of Folds: A new approach to determine the timing of deformation at shallow-crustal conditions, with examples from the Mexican Fold-Thrust Belt

    Science.gov (United States)

    Fitz Diaz, E.; van der Pluijm, B. A.

    2012-12-01

    We are developing a robust method to obtain absolute ages of folds that were formed at shallow crustal conditions. The method takes advantage of illite neocrystallization in folded, clay-bearing layers and the ability to obtain accurate retention and total gas ages from small size fractions using encapsulated Ar analysis, analogous to prior work on fault gouge dating. We illustrate our approach in folded Cretaceous shale-bentonitic layers that are interbedded with carbonates of the Zimapán and the Tampico-Misantla cretaceous basins in central-eastern Mexico. Basinal carbonates were buried by syntectonic turbidites and inverted during the formation of the Mexican Fold-Thrust in the Late Cretaceous. Results were obtained from four chevron folds that are representative of different stages of deformation, burial/temperature conditions and location within this thin-skinned orogenic wedge: two from the Zimapán Basin (Folds 1 and 2) in the west and two from the Tampico-Misantla Basin (Folds 3 and 4) in the east. Mineralogic compositions and variations in illite-polytypes, crystallite-size (CS) and Ar/Ar ages were obtained from size fractions in limbs and hinges of folded layers. Ar retention ages produce a folding age of ~81 Ma for Fold 1 and ~69 Ma for Fold 2, which are fully consistent with stratigraphic limits from syn-orogenic turbidities and observed overprinting events in the Mexican Fold-Thrust Belt. The total gas age of Fold 3, on the easternmost margin of the Tampico-Misantla Basin is similar to that of Fold 2, indicating that the second event is regional in scale. In addition to presenting a new, reliable method to constrain the timing of local deformation, we interpret folding and associated clay neo-mineralization in terms of the regional burial history, and localization and propagation of deformation within a heterogeneous orogenic wedge involving progressive deformation of two basins separated by a platform block.

  18. Complete fold annotation of the human proteome using a novel structural feature space.

    Science.gov (United States)

    Middleton, Sarah A; Illuminati, Joseph; Kim, Junhyong

    2017-04-13

    Recognition of protein structural fold is the starting point for many structure prediction tools and protein function inference. Fold prediction is computationally demanding and recognizing novel folds is difficult such that the majority of proteins have not been annotated for fold classification. Here we describe a new machine learning approach using a novel feature space that can be used for accurate recognition of all 1,221 currently known folds and inference of unknown novel folds. We show that our method achieves better than 94% accuracy even when many folds have only one training example. We demonstrate the utility of this method by predicting the folds of 34,330 human protein domains and showing that these predictions can yield useful insights into potential biological function, such as prediction of RNA-binding ability. Our method can be applied to de novo fold prediction of entire proteomes and identify candidate novel fold families.

  19. Mechanism of Folding and Activation of Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P).

    Science.gov (United States)

    da Palma, Joel Ramos; Cendron, Laura; Seidah, Nabil Georges; Pasquato, Antonella; Kunz, Stefan

    2016-01-29

    The proprotein convertase subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) is implicated in lipid homeostasis, the unfolded protein response, and lysosome biogenesis. The protease is further hijacked by highly pathogenic emerging viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P requires removal of an N-terminal prodomain, by a multistep process, generating the mature enzyme. Here, we uncover a modular structure of the human SKI-1/S1P prodomain and define its function in folding and activation. We provide evidence that the N-terminal AB fragment of the prodomain represents an autonomous structural and functional unit that is necessary and sufficient for folding and partial activation. In contrast, the C-terminal BC fragment lacks a defined structure but is crucial for autoprocessing and full catalytic activity. Phylogenetic analysis revealed that the sequence of the AB domain is highly conserved, whereas the BC fragment shows considerable variation and seems even absent in some species. Notably, SKI-1/S1P of arthropods, like the fruit fly Drosophila melanogaster, contains a shorter prodomain comprised of full-length AB and truncated BC regions. Swapping the prodomain fragments between fly and human resulted in a fully mature and active SKI-1/S1P chimera. Our study suggests that primordial SKI-1/S1P likely contained a simpler prodomain consisting of the highly conserved AB fragment that represents an independent folding unit. The BC region appears as a later evolutionary acquisition, possibly allowing more subtle fine-tuning of the maturation process. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Mechanism of Folding and Activation of Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P)*

    Science.gov (United States)

    da Palma, Joel Ramos; Cendron, Laura; Seidah, Nabil Georges; Pasquato, Antonella; Kunz, Stefan

    2016-01-01

    The proprotein convertase subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) is implicated in lipid homeostasis, the unfolded protein response, and lysosome biogenesis. The protease is further hijacked by highly pathogenic emerging viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P requires removal of an N-terminal prodomain, by a multistep process, generating the mature enzyme. Here, we uncover a modular structure of the human SKI-1/S1P prodomain and define its function in folding and activation. We provide evidence that the N-terminal AB fragment of the prodomain represents an autonomous structural and functional unit that is necessary and sufficient for folding and partial activation. In contrast, the C-terminal BC fragment lacks a defined structure but is crucial for autoprocessing and full catalytic activity. Phylogenetic analysis revealed that the sequence of the AB domain is highly conserved, whereas the BC fragment shows considerable variation and seems even absent in some species. Notably, SKI-1/S1P of arthropods, like the fruit fly Drosophila melanogaster, contains a shorter prodomain comprised of full-length AB and truncated BC regions. Swapping the prodomain fragments between fly and human resulted in a fully mature and active SKI-1/S1P chimera. Our study suggests that primordial SKI-1/S1P likely contained a simpler prodomain consisting of the highly conserved AB fragment that represents an independent folding unit. The BC region appears as a later evolutionary acquisition, possibly allowing more subtle fine-tuning of the maturation process. PMID:26645686

  1. A new class of compact high sensitive tiltmeter based on the UNISA folded pendulum mechanical architecture

    Science.gov (United States)

    Barone, Fabrizio; Giordano, Gerardo

    2018-02-01

    We present the Extended Folded Pendulum Model (EFPM), a model developed for a quantitative description of the dynamical behavior of a folded pendulum generically oriented in space. This model, based on the Tait-Bryan angular reference system, highlights the relationship between the folded pendulum orientation in the gravitational field and its natural resonance frequency. Tis model validated by tests performed with a monolithic UNISA Folded Pendulum, highlights a new technique of implementation of folded pendulum based tiltmeters.

  2. Intergenerational equity and conservation

    Science.gov (United States)

    Otoole, R. P.; Walton, A. L.

    1980-01-01

    The issue of integenerational equity in the use of natural resources is discussed in the context of coal mining conversion. An attempt to determine if there is a clear-cut benefit to future generations in setting minimum coal extraction efficiency standards in mining is made. It is demonstrated that preserving fossil fuels beyond the economically efficient level is not necessarily beneficial to future generations even in terms of their own preferences. Setting fossil fuel conservation targets for intermediate products (i.e. energy) may increase the quantities of fossil fuels available to future generations and hence lower the costs, but there may be serious disadvantages to future generations as well. The use of relatively inexpensive fossil fuels in this generation may result in more infrastructure development and more knowledge production available to future generations. The value of fossil fuels versus these other endowments in the future depends on many factors which cannot possibly be evaluated at present. Since there is no idea of whether future generations are being helped or harmed, it is recommended that integenerational equity not be used as a factor in setting coal mine extraction efficiency standards, or in establishing requirements.

  3. Energy conservation in SIMMER

    International Nuclear Information System (INIS)

    Arnold, L.A.; Knowles, J.B.

    1983-11-01

    The SIMMER code contains models of the many interacting thermo-hydraulic processes that occur during a hypothetical core disruptive accident (HCDA), to provide an overall picture from accident initiation to containment loading. In calculations of roof loadings following the HCDA, errors in computing the overall energy balance were found to be up to ten times the kinetic energy of the sodium slug which creates the loading. On this account, the results were considered to be seriously compromised. This report describes a systematic investigation into the effect, nature and origin of the energy discrepancies. Its main conclusion are that, the errors stem from a systematic rather than a random source, energy errors for individual cells can be two decades larger than the mean value provided by the code, and cellular mass and energy errors are strongly correlated and they can actually increase when the mesh is refined. A likely cause of the conservation errors is identified as the solution of the liquid phase mass and energy equations at effectively different time instants during each timestep. (author)

  4. Trp-cage: Folding free energy landscape in explicit water

    Science.gov (United States)

    Zhou, Ruhong

    2003-11-01

    Trp-cage is a 20-residue miniprotein, which is believed to be the fastest folder known so far. In this study, the folding free energy landscape of Trp-cage has been explored in explicit solvent by using an OPLSAA force field with periodic boundary condition. A highly parallel replica exchange molecular dynamics method is used for the conformation space sampling, with the help of a recently developed efficient molecular dynamics algorithm P3ME/RESPA (particle-particle particle-mesh Ewald/reference system propagator algorithm). A two-step folding mechanism is proposed that involves an intermediate state where two correctly formed partial hydrophobic cores are separated by an essential salt-bridge between residues Asp-9 and Arg-16 near the center of the peptide. This metastable intermediate state provides an explanation for the superfast folding process. The free energy landscape is found to be rugged at low temperatures, and then becomes smooth and funnel-like above 340 K. The lowest free energy structure at 300 K is only 1.50 Å C-RMSD (C-rms deviation) from the NMR structures. The simulated nuclear Overhauser effect pair distances are in excellent agreement with the raw NMR data. The temperature dependence of the Trp-cage population, however, is found to be significantly different from experiment, with a much higher melting transition temperature above 400 K (experimental 315 K), indicating that the current force fields, parameterized at room temperature, need to be improved to correctly predict the temperature dependence.

  5. Chloroplast Chaperonin: An Intricate Protein Folding Machine for Photosynthesis

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2018-01-01

    Full Text Available Group I chaperonins are large cylindrical-shaped nano-machines that function as a central hub in the protein quality control system in the bacterial cytosol, mitochondria and chloroplasts. In chloroplasts, proteins newly synthesized by chloroplast ribosomes, unfolded by diverse stresses, or translocated from the cytosol run the risk of aberrant folding and aggregation. The chloroplast chaperonin system assists these proteins in folding into their native states. A widely known protein folded by chloroplast chaperonin is the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, an enzyme responsible for the fixation of inorganic CO2 into organic carbohydrates during photosynthesis. Chloroplast chaperonin was initially identified as a Rubisco-binding protein. All photosynthetic eucaryotes genomes encode multiple chaperonin genes which can be divided into α and β subtypes. Unlike the homo-oligomeric chaperonins from bacteria and mitochondria, chloroplast chaperonins are more complex and exists as intricate hetero-oligomers containing both subtypes. The Group I chaperonin requires proper interaction with a detachable lid-like co-chaperonin in the presence of ATP and Mg2+ for substrate encapsulation and conformational transition. Besides the typical Cpn10-like co-chaperonin, a unique co-chaperonin consisting of two tandem Cpn10-like domains joined head-to-tail exists in chloroplasts. Since chloroplasts were proposed as sensors to various environmental stresses, this diversified chloroplast chaperonin system has the potential to adapt to complex conditions by accommodating specific substrates or through regulation at both the transcriptional and post-translational levels. In this review, we discuss recent progress on the unique structure and function of the chloroplast chaperonin system based on model organisms Chlamydomonas reinhardtii and Arabidopsis thaliana. Knowledge of the chloroplast chaperonin system may ultimately lead

  6. A digitally assisted, signal folding neural recording amplifier.

    Science.gov (United States)

    Chen, Yi; Basu, Arindam; Liu, Lei; Zou, Xiaodan; Rajkumar, Ramamoorthy; Dawe, Gavin Stewart; Je, Minkyu

    2014-08-01

    A novel signal folding and reconstruction scheme for neural recording applications that exploits the 1/f(n) characteristics of neural signals is described in this paper. The amplified output is 'folded' into a predefined range of voltages by using comparison and reset circuits along with the core amplifier. After this output signal is digitized and transmitted, a reconstruction algorithm can be applied in the digital domain to recover the amplified signal from the folded waveform. This scheme enables the use of an analog-to-digital convertor with less number of bits for the same effective dynamic range. It also reduces the transmission data rate of the recording chip. Both of these features allow power and area savings at the system level. Other advantages of the proposed topology are increased reliability due to the removal of pseudo-resistors, lower harmonic distortion and low-voltage operation. An analysis of the reconstruction error introduced by this scheme is presented along with a behavioral model to provide a quick estimate of the post reconstruction dynamic range. Measurement results from two different core amplifier designs in 65 nm and 180 nm CMOS processes are presented to prove the generality of the proposed scheme in the neural recording applications. Operating from a 1 V power supply, the amplifier in 180 nm CMOS has a gain of 54.2 dB, bandwidth of 5.7 kHz, input referred noise of 3.8 μVrms and power dissipation of 2.52 μW leading to a NEF of 3.1 in spike band. It exhibits a dynamic range of 66 dB and maximum SNDR of 43 dB in LFP band. It also reduces system level power (by reducing the number of bits in the ADC by 2) as well as data rate to 80% of a conventional design. In vivo measurements validate the ability of this amplifier to simultaneously record spike and LFP signals.

  7. On the functioning of folded dipole antennas on conducting masts

    CSIR Research Space (South Africa)

    Mcnamara, DA

    1993-11-01

    Full Text Available dimensions (e.g., d/X) in order to maximize forward gain, or to determine the number and directions of the unwanted pattern maxima there might be once the antenna is mounted in place. Manuscript received July 23, 1991; revised March 15, 1993. D... as the forward gain is concerned. The levels of the pattern maxima decrease for increasing separation. The forward gain curves eventually converge to the gain of a folded dipole in free space (i.e., without a conducting mast present...

  8. Interoperable Archetypes With a Three Folded Terminology Governance.

    Science.gov (United States)

    Pederson, Rune; Ellingsen, Gunnar

    2015-01-01

    The use of openEHR archetypes increases the interoperability of clinical terminology, and in doing so improves upon the availability of clinical terminology for both primary and secondary purposes. Where clinical terminology is employed in the EPR system, research reports conflicting a results for the use of structuring and standardization as measurements of success. In order to elucidate this concept, this paper focuses on the effort to establish a national repository for openEHR based archetypes in Norway where clinical terminology could be included with benefit for interoperability three folded.

  9. Multi-stability in folded shells: non-Euclidean origami

    Science.gov (United States)

    Evans, Arthur

    2015-03-01

    Both natural and man-made structures benefit from having multiple mechanically stable states, from the quick snapping motion of hummingbird beaks to micro-textured surfaces with tunable roughness. Rather than discuss special fabrication techniques for creating bi-stability through material anisotropy, in this talk I will present several examples of how folding a structure can modify the energy landscape and thus lead to multiple stable states. Using ideas from origami and differential geometry, I will discuss how deforming a non-Euclidean surface can be done either continuously or discontinuously, and explore the effects that global constraints have on the ultimate stability of the surface.

  10. Folding of DsbB in mixed micelles

    DEFF Research Database (Denmark)

    Otzen, Daniel

    2003-01-01

    state and an unfolding intermediate that accumulates only under unfolding conditions at high mole fractions of SDS. The stability of DsbB is around 4.4 kcal/mol in DM, and this is halved upon reduction of the two periplasmic disulfide bonds, and is sensitive to mutagenesis. With the caveat that kinetic...... is sensitive to changes in lipid and detergent composition. As an attempt to overcome this problem, I present a kinetic analysis of the folding of a membrane protein, disulfide bond reducing protein B (DsbB), in a mixed micelle system consisting of varying molar ratios of sodium dodecyl sulfate (SDS...

  11. Recurrent Vocal Fold Paralysis and Parsonage-Turner Syndrome

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius Pinto

    2013-01-01

    Full Text Available Background. Parsonage-Turner syndrome, or neuralgic amyotrophy (NA, is an acute brachial plexus neuritis that typically presents with unilateral shoulder pain and amyotrophy but also can affect other peripheral nerves, including the recurrent laryngeal nerve. Idiopathic vocal fold paralysis (VFP represents approximately 12% of the VFP cases and recurrence is extremely rare. Methods and Results. We report a man with isolated recurrent unilateral right VFP and a diagnosis of NA years before. Conclusions. We emphasize that shoulder pain and amyotrophy should be inquired in any patient suffering from inexplicable dysphonia, and Parsonage-Turner syndrome should be considered in the differential diagnosis of idiopathic VFP.

  12. Life Experience of Patients With Unilateral Vocal Fold Paralysis.

    Science.gov (United States)

    Francis, David O; Sherman, Ariel E; Hovis, Kristen L; Bonnet, Kemberlee; Schlundt, David; Garrett, C Gaelyn; Davies, Louise

    2018-05-01

    Clinicians and patients benefit when they have a clear understanding of how medical conditions influence patients' life experiences. Patients' perspectives on life with unilateral vocal fold paralysis have not been well described. To promote patient-centered care by characterizing the patient experiences of living with unilateral vocal fold paralysis. This study used mixed methods: surveys using the voice and dysphagia handicap indexes (VHI and DHI) and semistructured interviews with adults with unilateral vocal cord paralysis recruited from a tertiary voice center. Recorded interviews were transcribed, coded using a hierarchical coding system, and analyzed using an iterative inductive-deductive approach. Symptom domains of the patient experience. In 36 patients (26 [72%] were female, and the median age and interquartile range [IQR] were 63 years [48-68 years]; median interview duration, 42 minutes), median VHI and DHI scores were 96 (IQR, 77-108) and 55.5 (IQR, 35-89) at the time of interviews, respectively. Frustration, isolation, fear, and altered self-identity were primary themes permeating patients' experiences. Frustrations related to limitations in communication, employment, and the medical system. Sources of fear included a loss of control, fear of further dysfunction or permanent disability, concern for health consequences (eg, aspiration pneumonia), and/or an inability to call for help in emergency situations. These experiences were modified by the following factors: resilience, self-efficacy, perceived sense of control, and social support systems. Effects of unilateral vocal fold paralysis extend beyond impaired voice and other somatic symptoms. Awareness of the extent to which these patients experience frustration, isolation, fear, and altered self-identity is important. A patient-centered approach to optimizing unilateral vocal fold paralysis treatment is enhanced by an understanding of both the physical dimension of this condition and how patients

  13. Double-folding model including the Pauli exclusion principle

    International Nuclear Information System (INIS)

    Gridnev, K.A.; Soubbotin, V.B.; Oertzen, W. von; Bohlen, H.G.; Vinas, X.

    2002-01-01

    A new method for incorporating the Pauli exclusion principle into the double-folding approach to the heavy-ion potential is proposed. The description of the exchange terms at the level of the semiclassical one-body density matrix is used. It is shown that, in order to take into account Pauli blocking properly, the density matrices of free isolated nuclei must be redefined. A solution to the self-consistent incorporation of Pauli blocking effects in the mean-field nucleus-nucleus potential is obtained in the Thomas-Fermi approximation

  14. Oral and vocal fold diadochokinesis in dysphonic women

    Directory of Open Access Journals (Sweden)

    Talita Louzada

    2011-12-01

    Full Text Available The evaluation of oral and vocal fold diadochokinesis (DDK in individuals with voice disorders may contribute to the understanding of factors that affect the balanced vocal production. Scientific studies that make use of this assessment tool support the knowledge advance of this area, reflecting the development of more appropriate therapeutic planning. Objective: To compare the results of oral and vocal fold DDK in dysphonic women and in women without vocal disorders. Material and methods: For this study, 28 voice recordings of women from 19 to 54 years old, diagnosed with dysphonia and submitted to a voice assessment from speech pathologist and otorhinolaryngologist, were used. The control group included 30 nondysphonic women evaluated in prior research from normal adults. The analysis parameters like number and duration of emissions, as well as the regularity of the repetition of syllables "pa", "ta", "ka" and the vowels "a" and "i," were provided by the Advanced Motor Speech Profile program (MSP Model-5141, version-2.5.2 (KayPentax. The DDK sequence "pataka" was analyzed quantitatively through the Sound Forge 7.0 program, as well as manually with the audio-visual help of sound waves. Average values of oral and vocal fold DDK dysphonic and nondysphonic women were compared using the "t Student" test and were considered significant when p<0.05. Results: The findings showed no significant differences between populations; however, the coefficient of variation of period (CvP and jitter of period (JittP average of the "ka," "a" and "i" emissions, respectively, were higher in dysphonic women (CvP=10.42%, 12.79%, 12.05%; JittP=2.05%, 6.05%, 3.63% compared to the control group (CvP=8.86%; 10.95%, 11.20%; JittP=1.82%, 2.98%, 3.15%. Conclusion: Although the results do not indicate any difficulties in oral and laryngeal motor control in the dysphonic group, the largest instability in vocal fold DDK in the experimental group should be considered, and

  15. Concrete: Too young for conservation

    NARCIS (Netherlands)

    Heineman, H.A.; Hees, R.P.J. van; Nijland, T.G.

    2008-01-01

    The 20th century built heritage is one of the new conservation challenges, due to its architectural differences from the traditional heritage and new materials. One major new material is concrete; its quantity and importance for the new heritage requires a tailored conservation approach. Until now,

  16. Habitat modeling for biodiversity conservation.

    Science.gov (United States)

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  17. Relativistic dynamics without conservation laws

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan

    2006-01-01

    We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.

  18. Educating Astronauts About Conservation Biology

    Science.gov (United States)

    Robinson, Julie A.

    2001-01-01

    This article reviews the training of astronauts in the interdisciplinary work of conservation biology. The primary responsibility of the conservation biologist at NASA is directing and supporting the photography of the Earth and maintaining the complete database of the photographs. In order to perform this work, the astronauts who take the pictures must be educated in ecological issues.

  19. Is international conservation aid enough?

    Science.gov (United States)

    Law, Elizabeth A.

    2016-02-01

    Bare et al (2015 Environ. Res. Lett. 10 125010) ask an important question: is international conservation enough? Since the 1990’s international conservation donors have spent over 3.4 billion on biodiversity conservation related projects in sub-Saharan Africa. Both donors and recipients have a right to know if this is effective. Surprisingly, this question is rarely asked. It is a difficult question—involving many rival social, environmental, and economic explanations. Bare, Kauffman and Miller uncover some interesting associations, supporting existing hypotheses and proposing their own: that conservation aid alone is insufficient to mitigate drivers of deforestation (and in some cases may even exacerbate forest loss). This controversial result warrants further investigation—but what is needed now is nuance and robustness in further analyses, to have more confidence in the critique and it’s implications for international conservation aid.

  20. Optimal conservation of migratory species.

    Directory of Open Access Journals (Sweden)

    Tara G Martin

    Full Text Available BACKGROUND: Migratory animals comprise a significant portion of biodiversity worldwide with annual investment for their conservation exceeding several billion dollars. Designing effective conservation plans presents enormous challenges. Migratory species are influenced by multiple events across land and sea-regions that are often separated by thousands of kilometres and span international borders. To date, conservation strategies for migratory species fail to take into account how migratory animals are spatially connected between different periods of the annual cycle (i.e. migratory connectivity bringing into question the utility and efficiency of current conservation efforts. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the first framework for determining an optimal conservation strategy for a migratory species. Employing a decision theoretic approach using dynamic optimization, we address the problem of how to allocate resources for habitat conservation for a Neotropical-Nearctic migratory bird, the American redstart Setophaga ruticilla, whose winter habitat is under threat. Our first conservation strategy used the acquisition of winter habitat based on land cost, relative bird density, and the rate of habitat loss to maximize the abundance of birds on the wintering grounds. Our second strategy maximized bird abundance across the entire range of the species by adding the constraint of maintaining a minimum percentage of birds within each breeding region in North America using information on migratory connectivity as estimated from stable-hydrogen isotopes in feathers. We show that failure to take into account migratory connectivity may doom some regional populations to extinction, whereas including information on migratory connectivity results in the protection of the species across its entire range. CONCLUSIONS/SIGNIFICANCE: We demonstrate that conservation strategies for migratory animals depend critically upon two factors: knowledge of

  1. Impact of hydrodynamic interactions on protein folding rates depends on temperature

    Science.gov (United States)

    Zegarra, Fabio C.; Homouz, Dirar; Eliaz, Yossi; Gasic, Andrei G.; Cheung, Margaret S.

    2018-03-01

    We investigated the impact of hydrodynamic interactions (HI) on protein folding using a coarse-grained model. The extent of the impact of hydrodynamic interactions, whether it accelerates, retards, or has no effect on protein folding, has been controversial. Together with a theoretical framework of the energy landscape theory (ELT) for protein folding that describes the dynamics of the collective motion with a single reaction coordinate across a folding barrier, we compared the kinetic effects of HI on the folding rates of two protein models that use a chain of single beads with distinctive topologies: a 64-residue α /β chymotrypsin inhibitor 2 (CI2) protein, and a 57-residue β -barrel α -spectrin Src-homology 3 domain (SH3) protein. When comparing the protein folding kinetics simulated with Brownian dynamics in the presence of HI to that in the absence of HI, we find that the effect of HI on protein folding appears to have a "crossover" behavior about the folding temperature. This means that at a temperature greater than the folding temperature, the enhanced friction from the hydrodynamic solvents between the beads in an unfolded configuration results in lowered folding rate; conversely, at a temperature lower than the folding temperature, HI accelerates folding by the backflow of solvent toward the folded configuration of a protein. Additionally, the extent of acceleration depends on the topology of a protein: for a protein like CI2, where its folding nucleus is rather diffuse in a transition state, HI channels the formation of contacts by favoring a major folding pathway in a complex free energy landscape, thus accelerating folding. For a protein like SH3, where its folding nucleus is already specific and less diffuse, HI matters less at a temperature lower than the folding temperature. Our findings provide further theoretical insight to protein folding kinetic experiments and simulations.

  2. Structural basis of the 9-fold symmetry of centrioles.

    Science.gov (United States)

    Kitagawa, Daiju; Vakonakis, Ioannis; Olieric, Natacha; Hilbert, Manuel; Keller, Debora; Olieric, Vincent; Bortfeld, Miriam; Erat, Michèle C; Flückiger, Isabelle; Gönczy, Pierre; Steinmetz, Michel O

    2011-02-04

    The centriole, and the related basal body, is an ancient organelle characterized by a universal 9-fold radial symmetry and is critical for generating cilia, flagella, and centrosomes. The mechanisms directing centriole formation are incompletely understood and represent a fundamental open question in biology. Here, we demonstrate that the centriolar protein SAS-6 forms rod-shaped homodimers that interact through their N-terminal domains to form oligomers. We establish that such oligomerization is essential for centriole formation in C. elegans and human cells. We further generate a structural model of the related protein Bld12p from C. reinhardtii, in which nine homodimers assemble into a ring from which nine coiled-coil rods radiate outward. Moreover, we demonstrate that recombinant Bld12p self-assembles into structures akin to the central hub of the cartwheel, which serves as a scaffold for centriole formation. Overall, our findings establish a structural basis for the universal 9-fold symmetry of centrioles. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Detecting protein folding by thermal fluctuations of microcantilevers.

    Directory of Open Access Journals (Sweden)

    Romina Muñoz

    Full Text Available The accurate characterization of proteins in both their native and denatured states is essential to effectively understand protein function, folding and stability. As a proof of concept, a micro rheological method is applied, based on the characterization of thermal fluctuations of a micro cantilever immersed in a bovine serum albumin solution, to assess changes in the viscosity associated with modifications in the protein's structure under the denaturant effect of urea. Through modeling the power spectrum density of the cantilever's fluctuations over a broad frequency band, it is possible to implement a fitting procedure to accurately determine the viscosity of the fluid, even at low volumes. Increases in viscosity during the denaturant process are identified using the assumption that the protein is a hard sphere, with a hydrodynamic radius that increases during unfolding. This is modeled accordingly through the Einstein-Batchelor formula. The Einstein-Batchelor formula estimates are verified through dynamic light scattering, which measures the hydrodynamic radius of proteins. Thus, this methodology is proven to be suitable for the study of protein folding in samples of small size at vanishing shear stresses.

  4. Partial wave analysis for folded differential cross sections

    Science.gov (United States)

    Machacek, J. R.; McEachran, R. P.

    2018-03-01

    The value of modified effective range theory (MERT) and the connection between differential cross sections and phase shifts in low-energy electron scattering has long been recognized. Recent experimental techniques involving magnetically confined beams have introduced the concept of folded differential cross sections (FDCS) where the forward (θ ≤ π/2) and backward scattered (θ ≥ π/2) projectiles are unresolved, that is the value measured at the angle θ is the sum of the signal for particles scattered into the angles θ and π - θ. We have developed an alternative approach to MERT in order to analyse low-energy folded differential cross sections for positrons and electrons. This results in a simplified expression for the FDCS when it is expressed in terms of partial waves and thereby enables one to extract the first few phase shifts from a fit to an experimental FDCS at low energies. Thus, this method predicts forward and backward angle scattering (0 to π) using only experimental FDCS data and can be used to determine the total elastic cross section solely from experimental results at low-energy, which are limited in angular range.

  5. Folding and Function of Proteorhodopsins in Photoenergy Transducing Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Spudich, John L. [University of Texas Medical School, Houston, TX (United States). Health Science Center, Dept. of Biochemistry and Molecular Biology

    2012-08-10

    The overall research objectives are to develop proteorhodopsin (PR) proteins as a model system for α-helical membrane protein insertion and folding, and to advance understanding of the diversity and mechanisms of PRs, a large family of photoenergy transducers (~4000 identified) abundant in the world’s oceans. Specific aims are: (1) To develop a high-efficiency genetic selection procedure for light-driven proton-pumping in E. coli cells. Such a procedure would provide a positive selection method for proper folding and function of PRs in the E. coli membrane. (2) Characterize flash-induced absorption changes and photocurrents in PR variants in organisms from various environments, and their expression level and function when expressed in E. coli. Subaims are to: (a) elucidate the relationship of the transport mechanism to mechanisms of other microbial rhodopsins, some of which like PRs function as ion transporters and some of which use light energy to activate signaling pathways (sensory rhodopsins); and (b) identify important residues and chemical events in light-driven proton transport by PRs. In addition to their importance to the energy of the biosphere PRs have attracted interest for their potential for use in making photoenergy-transducing membranes for bioengineering applications.

  6. Crosstalk properties of 36-fold segmented symmetric hexagonal HPGe detectors

    International Nuclear Information System (INIS)

    Bruyneel, Bart; Reiter, Peter; Wiens, Andreas; Eberth, Juergen; Hess, Herbert; Pascovici, Gheorghe; Warr, Nigel; Weisshaar, Dirk

    2009-01-01

    Crosstalk properties of three 36-fold segmented, symmetric, large volume, HPGe detectors from the AGATA Collaboration were deduced from coincidence measurements performed with digitized segment and core signals after interaction of γ rays with energies of 1.33 MeV. The mean energy values measured by the core signal fluctuate for γ-ray interactions with energy deposited in two segments. A regular pattern is observed depending on the hit segment combinations. The core energy shifts deviate 0.03-0.06% from the average energy calibration. The segment-sum energy is reduced with respect to the core energy as a function of the decoupling capacitance and the segment multiplicity. The deviation of the segment-sum energies from multiplicity two events fluctuates within an interval of less than 0.1% depending on the different segment combinations. The energy shifts caused by crosstalk for the core and segment signals are comparable for all three detectors. A linear electronic model of the detector and preamplifier assembly was developed to evaluate the results. The fold-dependent energy shifts of the segment-sum energies are reproduced. The model yields a constant shift in all segments, proportional to the core signal. The measured crosstalk pattern and its intensity variation in the segments agree well with the calculated values. The regular variation observed in the core energies cannot be directly related to crosstalk and may be caused by other effects like electron trapping.

  7. Mechanics of the scrolling and folding of graphene

    Science.gov (United States)

    Li, Hao; Li, Ming; Kang, Zhan

    2018-06-01

    The competition between the out-of-plane rigidity and the van der Waals interaction leads to the scrolled and folded structural configurations of graphene. These configuration changes, as compared with the initially planar geometry, significantly affect the electronic, optical and mechanical properties of graphene, promising exciting applications in graphene-nanoelectronics. We propose a finite-deformation theoretical model, in which no presumed assumptions on the geometries of deformed configurations are required. Both the predicted deformed profiles and the critical conditions show great agreements with molecular dynamics simulations results when compared with existing studies with simple geometrical assumptions. Moreover, MD simulations are performed to explore the morphology transitions between different configurations. It is observed that the folded configuration is energetically favorable for a short graphene sheet, while a long graphene sheet tends to scroll. Of particular interest, we observe the morphology transition from a Fermat scroll to the Archimedean scroll for the bi-scrolled graphene. These findings are useful for understanding the stability of graphene and may provide guidance to the design of programmable graphene-nanoelectronics.

  8. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation.

    Science.gov (United States)

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-06-07

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agreement with hydrodynamic measurements and suggest that the array adopts highly irregular 3D zig-zag conformations at high (physiological) salt concentrations and transitions into the extended "beads-on-a-string" conformation at low salt. Energy analyses indicate that the repulsion among linker DNA leads to this extended form, whereas internucleosome attraction drives the folding at high salt. The balance between these two contributions determines the salt-dependent condensation. Importantly, the internucleosome and linker DNA-nucleosome attractions require histone tails; we find that the H3 tails, in particular, are crucial for stabilizing the moderately folded fiber at physiological monovalent salt.

  9. Separable potential approach in the folding model. Pt. 2

    International Nuclear Information System (INIS)

    Lee, C.L.; Robson, D.

    1982-01-01

    A microscopic folding formalism using a separable potential approach is applied to the elastic scattering of the n-α system. Starting with a separable nucleon-nucleon (NN) potential model, a sum of separable nucleon-nucleus potentials is obtained. A simple structure of the α-particle is assumed and the Tabakin, the Doleschall and the Strobel NN potentials are considered. These phenomenological interactions are of Yukawa or gaussian form with variable parameters for each partial wave. Spin-orbit and tensor forces are included. The resulting potentials developed from our folding calculations give approximately the same ssub(1/2) phase shifts for the n-α elastic scattering. However, in the psub(1/2) and psub(3/2) phase-shift analysis, an effective interaction derived from the NN potential is necessary to reproduce the resonances. One free energy independent parameter is introduced in our approximate G-matrix concept to give a good fit for the phase shifts. Single-nucleon knockout exchange (SNKE) is considered throughout. (orig.)

  10. Protein folding simulations by generalized-ensemble algorithms.

    Science.gov (United States)

    Yoda, Takao; Sugita, Yuji; Okamoto, Yuko

    2014-01-01

    In the protein folding problem, conventional simulations in physical statistical mechanical ensembles, such as the canonical ensemble with fixed temperature, face a great difficulty. This is because there exist a huge number of local-minimum-energy states in the system and the conventional simulations tend to get trapped in these states, giving wrong results. Generalized-ensemble algorithms are based on artificial unphysical ensembles and overcome the above difficulty by performing random walks in potential energy, volume, and other physical quantities or their corresponding conjugate parameters such as temperature, pressure, etc. The advantage of generalized-ensemble simulations lies in the fact that they not only avoid getting trapped in states of energy local minima but also allows the calculations of physical quantities as functions of temperature or other parameters from a single simulation run. In this article we review the generalized-ensemble algorithms. Four examples, multicanonical algorithm, replica-exchange method, replica-exchange multicanonical algorithm, and multicanonical replica-exchange method, are described in detail. Examples of their applications to the protein folding problem are presented.

  11. Co-Transcriptional Folding and Regulation Mechanisms of Riboswitches

    Directory of Open Access Journals (Sweden)

    Sha Gong

    2017-07-01

    Full Text Available Riboswitches are genetic control elements within non-coding regions of mRNA. These self-regulatory elements have been found to sense a range of small metabolites, ions, and other physical signals to exert regulatory control of transcription, translation, and splicing. To date, more than a dozen riboswitch classes have been characterized that vary widely in size and secondary structure. Extensive experiments and theoretical studies have made great strides in understanding the general structures, genetic mechanisms, and regulatory activities of individual riboswitches. As the ligand-dependent co-transcriptional folding and unfolding dynamics of riboswitches are the key determinant of gene expression, it is important to investigate the thermodynamics and kinetics of riboswitches both in the presence and absence of metabolites under the transcription. This review will provide a brief summary of the studies about the regulation mechanisms of the pbuE, SMK, yitJ, and metF riboswitches based on the ligand-dependent co-transcriptional folding of the riboswitches.

  12. Mechanics of the scrolling and folding of graphene.

    Science.gov (United States)

    Li, Hao; Li, Ming; Kang, Zhan

    2018-06-15

    The competition between the out-of-plane rigidity and the van der Waals interaction leads to the scrolled and folded structural configurations of graphene. These configuration changes, as compared with the initially planar geometry, significantly affect the electronic, optical and mechanical properties of graphene, promising exciting applications in graphene-nanoelectronics. We propose a finite-deformation theoretical model, in which no presumed assumptions on the geometries of deformed configurations are required. Both the predicted deformed profiles and the critical conditions show great agreements with molecular dynamics simulations results when compared with existing studies with simple geometrical assumptions. Moreover, MD simulations are performed to explore the morphology transitions between different configurations. It is observed that the folded configuration is energetically favorable for a short graphene sheet, while a long graphene sheet tends to scroll. Of particular interest, we observe the morphology transition from a Fermat scroll to the Archimedean scroll for the bi-scrolled graphene. These findings are useful for understanding the stability of graphene and may provide guidance to the design of programmable graphene-nanoelectronics.

  13. Conservation through the economics lens.

    Science.gov (United States)

    Farley, Joshua

    2010-01-01

    Although conservation is an inherently transdisciplinary issue, there is much to be gained from examining the problem through an economics lens. Three benefits of such an approach are laid out in this paper. First, many of the drivers of environmental degradation are economic in origin, and the better we understand them, the better we can conserve ecosystems by reducing degradation. Second, economics offers us a when-to-stop rule, which is equivalent to a when-to-conserve rule. All economic production is based on the transformation of raw materials provided by nature. As the economic system grows in physical size, it necessarily displaces and degrades ecosystems. The marginal benefits of economic growth are diminishing, and the marginal costs of ecological degradation are increasing. Conceptually, we should stop economic growth and focus on conservation when the two are equal. Third, economics can help us understand how to efficiently and justly allocate resources toward conservation, and this paper lays out some basic principles for doing so. Unfortunately, the field of economics is dominated by neoclassical economics, which builds an analytical framework based on questionable assumptions and takes an excessively disciplinary and formalistic approach. Conservation is a complex problem, and analysis from individual disciplinary lenses can make important contributions to conservation only when the resulting insights are synthesized into a coherent vision of the whole. Fortunately, there are a number of emerging transdisciplines, such as ecological economics and environmental management, that are dedicated to this task.

  14. Making conservation work for everyone

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, J. [Veridian Corp., Ajax, ON (Canada)

    2004-07-01

    This presentation discussed the economic value of conservation, the optimal deployment of energy conservation. A sample load profile was presented to demonstrate how much electricity the average residential customer uses on a summer day. The average customer does not have the tools to understand the financial consequences of conservation for different types of equipment at different times of the day. Smart metering technology could help in this regard. Accurate unsubsidized prices are also considered to be the best incentive to conserve because customers will reduce electricity use when the prices are high. It was also suggested that standards for new appliances should be increased effectively to their economic value. The enablers to energy conservation include solid consumer education programs, real time metering in places where it is cost effective, real time pricing in places where it is practical, and power rates that reflect real costs. Barriers to energy conservation include the residual economic advantage that may be insufficient to justify investment; support from local distribution companies and transmission companies if the lost revenue adjustment mechanism (LRAM) is not sufficient to recover lost revenue and if LDCs are not sufficiently involved in the design of the electricity conservation program. 7 figs.

  15. Space, time and conservation laws

    International Nuclear Information System (INIS)

    Aronov, R.A.; Ugarov, V.A.

    1978-01-01

    The Neter theorem establishing correspondence between conservation laws and symmetry properties (space and time in particular) is considered. The theorem is based on one of the possible ways of finding equations of motion for a physical system. From a certain expression (action functional) equations of motion for a system can be obtained which do not contain new physical assertions in principal in comparison with the Newtonian laws. Neter suggested a way of deriving conservation laws by transforming space and time coordinates. Neter theorem consequences raise a number of problems: 1). Are conservation laws (energy, momentum) consequences of space and time symmetry properties. 2). Is it possible to obtain conservation laws in theory neglecting equations of motion. 3). What is of the primary importance: equations of motion, conservation laws or properties of space and time symmetry. It is shown that direct Neter theorem does not testify to stipulation of conservation laws by properties of space and time symmetry and symmetry properties of other non-space -time properties of material systems in objective reality. It says nothing of whether there is any subordination between symmetry properties and conservation laws

  16. A novel folding blade of wind turbine rotor for effective power control

    International Nuclear Information System (INIS)

    Xie, Wei; Zeng, Pan; Lei, Liping

    2015-01-01

    Highlights: • A novel folding blade for wind turbine power control is proposed. • Wind tunnel experiments were conducted to analyze folding blade validity. • Folding blade is valid to control wind turbine power output. • Compared to pitch control, thrust was reduced by fold control in power regulation. • Optimum fold angles were found for wind turbine start up and aerodynamic brake. - Abstract: A concept of novel folding blade of horizontal axis wind turbine is proposed in current study. The folding blade comprises a stall regulated root blade section and a folding tip blade section with the fold axis inclined relative to blade span. By folding blade, lift force generated on the tip blade section changes and the moment arm also shortens, which leads to variations of power output. The blade folding actuation mechanism with servo motor and worm-gear reducer was designed. Wind turbine rotor control scheme and servo system with double feedback loops for blade fold angle control were proposed. In this study, a small folding blade model was tested in a wind tunnel to analyze its performance. The blade model performance was estimated in terms of rotation torque coefficient and thrust coefficient. Wind tunnel experiments were also conducted for pitch control using the same blade model in order to make a direct comparison. The power control, start up and aerodynamic brake performance of the folding blade were analyzed. According to the wind tunnel experiment results, fold angle magnitude significantly affected blade aerodynamic performance and the thrust characteristic together with the rotation torque characteristic of folding blade were revealed. The experiment results demonstrated that the folding blade was valid to control power output and had advantages in reducing thrust with maximum reduction of 51.1% compared to pitch control. Optimum fold angles of 55° and 90° were also found for start up and aerodynamic brake, respectively

  17. Mistaken identity: activating conservative political identities induces "conservative" financial decisions.

    Science.gov (United States)

    Morris, Michael W; Carranza, Erica; Fox, Craig R

    2008-11-01

    Four studies investigated whether activating a social identity can lead group members to choose options that are labeled in words associated with that identity. When political identities were made salient, Republicans (but not Democrats) became more likely to choose the gamble or investment option labeled "conservative." This shift did not occur in a condition in which the same options were unlabeled. Thus, the mechanism underlying the effect appears to be not activated identity-related values prioritizing low risk, but rather activated identity-related language (the group label "conservative"). Indeed, when political identities were salient, Republicans favored options labeled "conservative" regardless of whether the options were low or high risk. Finally, requiring participants to explain the label "conservative" before making their choice did not diminish the effect, which suggests that it does not merely reflect inattention to content or construct accessibility. We discuss the implications of these results for the literatures on identity, priming, choice, politics, and marketing.

  18. Conservation Lands and Preserves, Private - Volusia County Conservation Corridor

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — The Volusia Conservation Corridor (VCC) is a mosaic of contiguous parcels of land, approximately 55,000 acres in size, which sits essentially in the middle of the...

  19. Urbanization in Africa: challenges and opportunities for conservation

    Science.gov (United States)

    Güneralp, Burak; Lwasa, Shuaib; Masundire, Hillary; Parnell, Susan; Seto, Karen C.

    2017-12-01

    Africa, a continent exceptionally rich in biodiversity, is rapidly urbanizing. Africa’s urbanization is manifest in the growth of its megacities as well as that of its smaller towns and cities. The conservation planning and practice will increasingly need to account for direct and indirect impacts of the continent’s urbanization. The objective of our study is to pinpoint the outstanding challenges and opportunities afforded by the growing cities on the continent to the conservation goals and practices. While there have been many studies on the impacts of urbanization and development on conservation in Africa these studies tended to focus on specific issues. Here, we provide a synthesis of this body of work supported by new analysis. Urban areas, growing both in population and in land cover, pose threats to the integrity of the continent’s ecosystems and biodiversity but their growth also create opportunities for conservation. The burgeoning urban populations, especially in Sub-Saharan Africa, increase the strain on already insufficient infrastructure and bring new governance challenges. Yet, Africa’s ecosystems can serve as foundations for green infrastructure to serve the needs of its urban populations while safeguarding fragile biodiversity. Overall, while worsening social problems overshadow the concerns for biodiversity there are also promising initiatives to bring these concerns into the fold to address social, institutional, and ecological challenges that emerge with the continued urbanization of the continent.

  20. Cache and energy efficient algorithms for Nussinov's RNA Folding.

    Science.gov (United States)

    Zhao, Chunchun; Sahni, Sartaj

    2017-12-06

    An RNA folding/RNA secondary structure prediction algorithm determines the non-nested/pseudoknot-free structure by maximizing the number of complementary base pairs and minimizing the energy. Several implementations of Nussinov's classical RNA folding algorithm have been proposed. Our focus is to obtain run time and energy efficiency by reducing the number of cache misses. Three cache-efficient algorithms, ByRow, ByRowSegment and ByBox, for Nussinov's RNA folding are developed. Using a simple LRU cache model, we show that the Classical algorithm of Nussinov has the highest number of cache misses followed by the algorithms Transpose (Li et al.), ByRow, ByRowSegment, and ByBox (in this order). Extensive experiments conducted on four computational platforms-Xeon E5, AMD Athlon 64 X2, Intel I7 and PowerPC A2-using two programming languages-C and Java-show that our cache efficient algorithms are also efficient in terms of run time and energy. Our benchmarking shows that, depending on the computational platform and programming language, either ByRow or ByBox give best run time and energy performance. The C version of these algorithms reduce run time by as much as 97.2% and energy consumption by as much as 88.8% relative to Classical and by as much as 56.3% and 57.8% relative to Transpose. The Java versions reduce run time by as much as 98.3% relative to Classical and by as much as 75.2% relative to Transpose. Transpose achieves run time and energy efficiency at the expense of memory as it takes twice the memory required by Classical. The memory required by ByRow, ByRowSegment, and ByBox is the same as that of Classical. As a result, using the same amount of memory, the algorithms proposed by us can solve problems up to 40% larger than those solvable by Transpose.