WorldWideScience

Sample records for confronting spectral functions

  1. Confronting species distribution model predictions with species functional traits.

    Science.gov (United States)

    Wittmann, Marion E; Barnes, Matthew A; Jerde, Christopher L; Jones, Lisa A; Lodge, David M

    2016-02-01

    Species distribution models are valuable tools in studies of biogeography, ecology, and climate change and have been used to inform conservation and ecosystem management. However, species distribution models typically incorporate only climatic variables and species presence data. Model development or validation rarely considers functional components of species traits or other types of biological data. We implemented a species distribution model (Maxent) to predict global climate habitat suitability for Grass Carp (Ctenopharyngodon idella). We then tested the relationship between the degree of climate habitat suitability predicted by Maxent and the individual growth rates of both wild (N = 17) and stocked (N = 51) Grass Carp populations using correlation analysis. The Grass Carp Maxent model accurately reflected the global occurrence data (AUC = 0.904). Observations of Grass Carp growth rate covered six continents and ranged from 0.19 to 20.1 g day(-1). Species distribution model predictions were correlated (r = 0.5, 95% CI (0.03, 0.79)) with observed growth rates for wild Grass Carp populations but were not correlated (r = -0.26, 95% CI (-0.5, 0.012)) with stocked populations. Further, a review of the literature indicates that the few studies for other species that have previously assessed the relationship between the degree of predicted climate habitat suitability and species functional traits have also discovered significant relationships. Thus, species distribution models may provide inferences beyond just where a species may occur, providing a useful tool to understand the linkage between species distributions and underlying biological mechanisms.

  2. Spectral functions of hadrons in lattice QCD

    International Nuclear Information System (INIS)

    Nakahara, Y.; Asakawa, M.; Hatsuda, T.

    2000-01-01

    Using the maximum entropy method, spectral functions of the pseudo-scalar and vector mesons are extracted from lattice Monte Carlo data of the imaginary time Green's functions. The resonance and continuum structures as well as the ground state peaks are successfully obtained. Error analysis of the resultant spectral functions is also given on the basis of the Bayes probability theory. (author)

  3. Meson spectral functions at finite temperature

    International Nuclear Information System (INIS)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.

    2001-10-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)

  4. Meson spectral functions at finite temperature

    International Nuclear Information System (INIS)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.

    2002-01-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature

  5. Meson spectral functions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S

    2002-03-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature.

  6. Meson spectral functions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik

    2001-10-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)

  7. Basic Functional Analysis Puzzles of Spectral Flow

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm

    2011-01-01

    We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....

  8. Spectral functions from hadronic τ decays

    International Nuclear Information System (INIS)

    Davier, Michel

    2002-01-01

    Hadronic decays of the τ lepton provide a clean environment to study hadron dynamics in an energy regime dominated by romances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonpertubative contributions. the τ vector spectral functions for the 2π and 4π final states are used together with e p+ e p- data in order to compute vacuum polarization integrals occurring in the calculations of the anomalous magnetic moment of the muon and the running of the electromagnetic coupling

  9. Function of snake mobbing in spectral tarsiers.

    Science.gov (United States)

    Gursky, Sharon

    2006-04-01

    Numerous species are known for their tendency to approach and confront their predators as a group. This behavior is known as mobbing. Snakes seem to be one of the more consistent recipients of this type of predator-directed behavior. This paper explores individual differences (sex and age) in the mobbing behavior of the spectral tarsier toward live and model snakes. This study was conducted at Tangkoko Nature Reserve (Sulawesi, Indonesia) during 2003-2004. During this research, 11 natural mobbing events and 31 artificially induced mobbing events were observed. The mean number of individuals at a mobbing was 5.7. The duration of mobbing events was strongly correlated with the number of assembled mobbers. Adults were more likely than other age classes to participate in mobbings. Males were more likely than females to participate in mobbings. Mobbing groups often contained more than one adult male, despite the fact that no spectral tarsier group contains more than one adult male. No difference in body size between extragroup males and resident males was observed, refuting the "attract the mightier" hypothesis. The number of mobbers did not affect whether the tarsier or the snake retreated first, countering the "move-on" hypothesis. The "perception advertisement" hypothesis was tentatively supported, in that live snakes were rarely seen in the area following mobbing calls, in comparison to when tarsiers either ignored the snake or alarm call. Copyright 2006 Wiley-Liss, Inc.

  10. Spectral functions from Quantum Monte Carlo

    International Nuclear Information System (INIS)

    Silver, R.N.

    1989-01-01

    In his review, D. Scalapino identified two serious limitations on the application of Quantum Monte Carlo (QMC) methods to the models of interest in High T c Superconductivity (HTS). One is the ''sign problem''. The other is the ''analytic continuation problem'', which is how to extract electron spectral functions from QMC calculations of the imaginary time Green's functions. Through-out this Symposium on HTS, the spectral functions have been the focus for the discussion of normal state properties including the applicability of band theory, Fermi liquid theory, marginal Fermi liquids, and novel non-perturbative states. 5 refs., 1 fig

  11. Confrontation clause

    Directory of Open Access Journals (Sweden)

    Tkachuk Sviatoslav

    2016-07-01

    Full Text Available The Sixth Amendment to the United States Constitution enumerates a cluster of rights granted to criminal defendants and is designed to make criminal prosecutions more accurate, fair, and legitimate. The Confrontation Clause, which states that „In all criminal prosecutions, the accused shall enjoy the right…to be confronted with the witness against him” should not be underestimated. This article seeks to analyse the evolution of the Confrontation Clause and the extent of a defendant’s right to face-to-face confrontation. The article analyse the case Crawford v. Washington, which was a key shift in the Supreme Court’s Confrontation Clause jurisprudence.

  12. Functional analysis, spectral theory, and applications

    CERN Document Server

    Einsiedler, Manfred

    2017-01-01

    This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.

  13. Spectral theory and nonlinear functional analysis

    CERN Document Server

    Lopez-Gomez, Julian

    2001-01-01

    This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.

  14. Spectral functions from anisotropic lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aarts, G.; Allton, C. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Amato, A. [Helsinki Institute of Physics and University of Helsinki, Helsinki (Finland); Evans, W. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics Universitat Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Giudice, P. [Institut für Theoretische Physik, Universität Münster, D–48149 Münster (Germany); Harris, T. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Kelly, A. [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland); Kim, S.Y. [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Lombardo, M.P. [INFN–Laboratori Nazionali di Frascati, I–00044 Frascati (RM) (Italy); Praki, K. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Ryan, S.M. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Skullerud, J.-I. [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland)

    2016-12-15

    The FASTSUM collaboration has been carrying out lattice simulations of QCD for temperatures ranging from one third to twice the crossover temperature, investigating the transition region, as well as the properties of the Quark Gluon Plasma. In this contribution we concentrate on quarkonium correlators and spectral functions. We work in a fixed scale scheme and use anisotropic lattices which help achieving the desirable fine resolution in the temporal direction, thus facilitating the (ill posed) integral transform from imaginary time to frequency space. We contrast and compare results for the correlators obtained with different methods, and different temporal spacings. We observe robust features of the results, confirming the sequential dissociation scenario, but also quantitative differences indicating that the methods' systematic errors are not yet under full control. We briefly outline future steps towards accurate results for the spectral functions and their associated statistical and systematic errors.

  15. Spectral function from Reduced Density Matrix Functional Theory

    Science.gov (United States)

    Romaniello, Pina; di Sabatino, Stefano; Berger, Jan A.; Reining, Lucia

    2015-03-01

    In this work we focus on the calculation of the spectral function, which determines, for example, photoemission spectra, from reduced density matrix functional theory. Starting from its definition in terms of the one-body Green's function we derive an expression for the spectral function that depends on the natural occupation numbers and on an effective energy which accounts for all the charged excitations. This effective energy depends on the two-body as well as higher-order density matrices. Various approximations to this expression are explored by using the exactly solvable Hubbard chains.

  16. Spectral functions and transport coefficients from the functional renormalization group

    Energy Technology Data Exchange (ETDEWEB)

    Tripolt, Ralf-Arno

    2015-06-03

    In this thesis we present a new method to obtain real-time quantities like spectral functions and transport coefficients at finite temperature and density using the Functional Renormalization Group approach. Our non-perturbative method is thermodynamically consistent, symmetry preserving and based on an analytic continuation from imaginary to real time on the level of the flow equations. We demonstrate the applicability of this method by calculating mesonic spectral functions as well as the shear viscosity for the quark-meson model. In particular, results are presented for the pion and sigma spectral function at finite temperature and chemical potential, with a focus on the regime near the critical endpoint in the phase diagram of the quark-meson model. Moreover, the different time-like and space-like processes, which give rise to a complex structure of the spectral functions, are discussed. Finally, based on the momentum dependence of the spectral functions, we calculate the shear viscosity and the shear viscosity to entropy density ratio using the corresponding Green-Kubo formula.

  17. Hadronic spectral functions in nuclear matter

    International Nuclear Information System (INIS)

    Post, M.; Leupold, S.; Mosel, U.

    2004-01-01

    We study the in-medium properties of mesons (π,η,ρ) and baryon resonances in cold nuclear matter within a coupled-channel analysis. The meson self energies are generated by particle-hole excitations. Thus multi-peak spectra are obtained for the mesonic spectral functions. In turn this leads to medium-modifications of the baryon resonances. Special care is taken to respect the analyticity of the spectral functions and to take into account effects from short-range correlations both for positive and negative parity states. Our model produces sensible results for pion and Δ dynamics in nuclear matter. We find a strong interplay of the ρ meson and the D 13 (1520), which moves spectral strength of the ρ spectrum to smaller invariant masses and leads to a broadening of the baryon resonance. The optical potential for the η meson resulting from our model is rather attractive whereas the in-medium properties modifications of the S 11 (1535) are found to be quite small

  18. Spectral functions in quantum chromodynamics and applications

    International Nuclear Information System (INIS)

    Tran, M.D.

    1981-01-01

    The longitudinal and transverse spectral functions for arbitrary conserved and non-conserved vector and axial vector currents of massive quarks are calculated to first order in α/sub s/ and exact analytical expressions are given. As an intermediate step the form factors to the same order in α/sub s/ are determined. A remarkably simple result for the combination of the spectral functions corresponding to the Weinberg's first sum rule is derived. It behaves asymptotically like α/sub s/s 2 thus ensuring the convergence of the sum rule. The Weinberg's second sum rule is shown to fail to hold, a new sum rule is then proposed to replace the original one. The current algebra calculation of the pion electromagnetic mass difference is reexamined in the light of quantum chromodynamics. The old analysis cannot be upheld because of the failure of the Weinberg's second sum rule. After a modification based on Dashen's theorem, the proposed sum rule then can be used to obtain a mass difference close to experimental value. Using the derived QCD corrected spectral functions on finite Q 2 sum rules, the current couplings of the five low-lying mesons π, rho, K, K*, A 1 are computed. For values of quark masses m/sub u/ = m/sub d/ = 0.25 GeV, m/sub s/ = 0.4 GeV and of the QCD scale parameter Λ = 0.5 GeV, a striking agreement with experiment is obtained. We investigate decay properties of the intermediate vector bosons Z, W. Gluonic corrections to hadronic decay modes are calculated with the account of quark mass effect. Implications of the results for decay widths, branching ratios are examined. The ratio R of reaction e + e - → hadrons is calculated to first order in α/sub s/, the quark mass effect is shown to be important

  19. Scaling function, spectral function and nucleon momentum distribution in nuclei

    International Nuclear Information System (INIS)

    Antonov, A.N.; Ivanov, M.V.; Caballero, J.A.; Barbaro, M.B.; Udias, J.M.; Moya de Guerra, E.; Donnelly, T.W.

    2010-01-01

    The aim of the study is to find a good simultaneous description of the spectral function and the momentum distribution in relation to the realistic scaling function obtained from inclusive electron-nuclei scattering experiments. We start with a modified Hartree-Fock spectral function in which the energy dependent part (δ-function) is replaced by the Gaussian distributions with hole state widths as free parameters. We calculate the scaling function and the nucleon momentum distribution on the basis of the spectral function constructed in this way, trying to find a good description of the experimental data. The obtained scaling function has a weak asymmetry and the momentum distribution has not got a high-momentum tail in the case when harmonic-oscillator single-particle wave functions are used. So, to improve the behavior of the momentum distribution we used the basis of natural orbitals (NO) in which short-range correlations are partly incorporated. The results for the scaling function show again a weak asymmetry, but in this case the momentum distribution has a high-momentum tail. As a next step we include final-state interactions (FSI) in the calculations to reproduce the experimentally observed asymmetry of the scaling function. (author)

  20. ALEPH Tau Spectral Functions and QCD

    CERN Document Server

    Davier, M; Zhang, Z; Davier, Michel; Hoecker, Andreas; Zhang, Zhiqing

    2007-01-01

    Hadronic $\\tau$ decays provide a clean laboratory for the precise study of quantum chromodynamics (QCD). Observables based on the spectral functions of hadronic $\\tau$ decays can be related to QCD quark-level calculations to determine fundamental quantities like the strong coupling constant, quark and gluon condensates. Using the ALEPH spectral functions and branching ratios, complemented by some other available measurements, and a revisited analysis of the theoretical framework, the value $\\asm = 0.345 \\pm 0.004_{\\rm exp} \\pm 0.009_{\\rm th}$ is obtained. Taken together with the determination of \\asZ from the global electroweak fit, this result leads to the most accurate test of asymptotic freedom: the value of the logarithmic slope of $\\alpha_s^{-1}(s)$ is found to agree with QCD at a precision of 4%. The value of \\asZ obtained from $\\tau$ decays is $\\asZ = 0.1215 \\pm 0.0004_{\\rm exp} \\pm 0.0010_{\\rm th} \\pm 0.0005_{\\rm evol} = 0.1215 \\pm 0.0012$.

  1. Confronting Stereotypes

    Science.gov (United States)

    Buswell, Carol

    2011-01-01

    People confront stereotypes every day, both in and out of the classroom. Some ideas have been carried in the collective memory and classroom textbooks for so long they are generally recognized as fact. Many are constantly being reinforced by personal experiences, family discussions, and Hollywood productions as well. The distinct advantage to…

  2. Effective Spectral Function for Quasielastic Scattering on Nuclei

    OpenAIRE

    Bodek, A.; Christy, M. E.; Coopersmith, B.

    2014-01-01

    Spectral functions that are used in neutrino event generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the $\

  3. Variational principles for the spectral radius of functional operators

    International Nuclear Information System (INIS)

    Antonevich, A B; Zajkowski, K

    2006-01-01

    The spectral radius of a functional operator with positive coefficients generated by a set of maps (a dynamical system) is shown to be a logarithmically convex functional of the logarithms of the coefficients. This yields the following variational principle: the logarithm of the spectral radius is the Legendre transform of a convex functional T defined on a set of vector-valued probability measures and depending only on the original dynamical system. A combinatorial construction of the functional T by means of the random walk process corresponding to the dynamical system is presented in the subexponential case. Examples of the explicit calculation of the functional T and the spectral radius are presented.

  4. Regge expansion of a casual spectral function in electroproduction

    International Nuclear Information System (INIS)

    Ahmed, M.A.; Taha, M.O.

    1975-01-01

    The conjecture that a term in the Regge espansion of the Deser-Gilbert-Sudarshan spectral function in electroproduction may identically vanish is investigated. It is shown that this conjecture does not appear to be in agreement with experiment

  5. Confronting fragmentation function universality with single hadron inclusive production at HERA and e+e- colliders

    International Nuclear Information System (INIS)

    Albino, S.; Kniehl, B.A.; Kramer, G.; Sandoval, C.

    2006-11-01

    Predictions for light charged hadron production data in the current fragmentation region of deeply inelastic scattering from the H1 and ZEUS experiments are calculated using perturbative Quantum Chromodynamics at next-to-leading order, and using fragmentation functions obtained by fitting to similar data from e + e - reactions. General good agreement is found when the magnitude Q 2 of the hard photon's virtuality is sufficiently large. The discrepancy at low Q and small scaled momentum x p is reduced by incorporating mass effects of the detected hadron. By performing quark tagging, the contributions to the overall fragmentation from the various quark flavours in the ep reactions are studied and compared to the contributions in e + e - reactions. The yields of the various hadron species are also calculated. (orig.)

  6. Effective spectral function for quasielastic scattering on nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bodek, A.; Coopersmith, B. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Christy, M.E. [Hampton University, Hampton, VA (United States)

    2014-10-15

    Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν dependence of predictions of these spectral functions for the QE differential cross sections (d{sup 2}σ/dQ{sup 2}dν) are in disagreement with the prediction of the ψ' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ' superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data. (orig.)

  7. Effective spectral function for quasielastic scattering on nuclei

    International Nuclear Information System (INIS)

    Bodek, A.; Coopersmith, B.; Christy, M.E.

    2014-01-01

    Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν dependence of predictions of these spectral functions for the QE differential cross sections (d 2 σ/dQ 2 dν) are in disagreement with the prediction of the ψ' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ' superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data. (orig.)

  8. Composite spectral functions for solving Volterra's population model

    International Nuclear Information System (INIS)

    Ramezani, M.; Razzaghi, M.; Dehghan, M.

    2007-01-01

    An approximate method for solving Volterra's population model for population growth of a species in a closed system is proposed. Volterra's model is a nonlinear integro-differential equation, where the integral term represents the effect of toxin. The approach is based upon composite spectral functions approximations. The properties of composite spectral functions consisting of few terms of orthogonal functions are presented and are utilized to reduce the solution of the Volterra's model to the solution of a system of algebraic equations. The method is easy to implement and yields very accurate result

  9. Uniform convergence of the empirical spectral distribution function

    NARCIS (Netherlands)

    Mikosch, T; Norvaisa, R

    1997-01-01

    Let X be a linear process having a finite fourth moment. Assume F is a class of square-integrable functions. We consider the empirical spectral distribution function J(n,X) based on X and indexed by F. If F is totally bounded then J(n,X) satisfies a uniform strong law of large numbers. If, in

  10. Ten physical applications of spectral zeta functions

    CERN Document Server

    Elizalde, Emilio

    1995-01-01

    Zeta-function regularization is a powerful method in perturbation theory. This book is meant as a guide for the student of this subject. Everything is explained in detail, in particular the mathematical difficulties and tricky points, and several applications are given to show how the procedure works in practice (e.g. Casimir effect, gravity and string theory, high-temperature phase transition, topological symmetry breaking). The formulas some of which are new can be used for accurate numerical calculations. The book is to be considered as a basic introduction and a collection of exercises for those who want to apply this regularization procedure in practice.

  11. Ten physical applications of spectral zeta functions

    CERN Document Server

    Elizalde, Emilio

    2012-01-01

    Zeta-function regularization is a powerful method in perturbation theory, and this book is a comprehensive guide for the student of this subject. Everything is explained in detail, in particular the mathematical difficulties and tricky points, and several applications are given to show how the procedure works in practice, for example in the Casimir effect, gravity and string theory, high-temperature phase transition, topological symmetry breaking, and non-commutative spacetime. The formulae, some of which are new, can be directly applied in creating physically meaningful, accurate numerical calculations. The book acts both as a basic introduction and a collection of exercises for those who want to apply this regularization procedure in practice. Thoroughly revised, updated and expanded, this new edition includes novel, explicit formulas on the general quadratic, the Chowla-Selberg series case, an interplay with the Hadamard calculus, and also features a fresh chapter on recent cosmological applications, inclu...

  12. Topological vertex, string amplitudes and spectral functions of hyperbolic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, M.E.X.; Rosa, T.O. [Universidade Federal Fluminense, Instituto de Fisica, Av. Gal. Milton Tavares de Souza, s/n, CEP 24210-346, Niteroi, RJ (Brazil); Luna, R.M. [Universidade Estadual de Londrina, Departamento de Fisica, Caixa Postal 6001, Londrina, Parana (Brazil)

    2014-05-15

    We discuss the homological aspects of the connection between quantum string generating function and the formal power series associated to the dimensions of chains and homologies of suitable Lie algebras. Our analysis can be considered as a new straightforward application of the machinery of modular forms and spectral functions (with values in the congruence subgroup of SL(2,Z)) to the partition functions of Lagrangian branes, refined vertex and open string partition functions, represented by means of formal power series that encode Lie algebra properties. The common feature in our examples lies in the modular properties of the characters of certain representations of the pertinent affine Lie algebras and in the role of Selberg-type spectral functions of a hyperbolic three-geometry associated with q-series in the computation of the string amplitudes. (orig.)

  13. Spectral functions for the flat plasma sheet model

    International Nuclear Information System (INIS)

    Pirozhenko, I G

    2006-01-01

    The present work is based on Bordag M et al 2005 (J. Phys. A: Math. Gen. 38 11027) where the spectral analysis of the electromagnetic field on the background of an infinitely thin flat plasma layer is carried out. The solutions to Maxwell equations with the appropriate matching conditions at the plasma layer are derived and the spectrum of electromagnetic oscillations is determined. The spectral zeta function and the integrated heat kernel are constructed for different branches of the spectrum in an explicit form. The asymptotic expansion of the integrated heat kernel at small values of the evolution parameter is derived. The local heat kernels are considered also

  14. Evaluation of spectral zeta-functions with the renormalization group

    International Nuclear Information System (INIS)

    Boettcher, Stefan; Li, Shanshan

    2017-01-01

    We evaluate spectral zeta-functions of certain network Laplacians that can be treated exactly with the renormalization group. As specific examples we consider a class of Hanoi networks and those hierarchical networks obtained by the Migdal–Kadanoff bond moving scheme from regular lattices. As possible applications of these results we mention quantum search algorithms as well as synchronization, which we discuss in more detail. (paper)

  15. QCD sum-rules for V-A spectral functions

    International Nuclear Information System (INIS)

    Chakrabarti, J.; Mathur, V.S.

    1980-01-01

    The Borel transformation technique of Shifman et al is used to obtain QCD sum-rules for V-A spectral functions. In contrast to the situation in the original Weinberg sum-rules and those of Bernard et al, the problem of saturating the sum-rules by low lying resonances is brought under control. Furthermore, the present sum-rules, on saturation, directly determine useful phenomenological parameters

  16. Charmonium correlators and spectral functions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ding,H.T.; Kaczmarek, O.; Karsch, F.; Satz, H.

    2008-09-01

    We present an operational approach to address the in-medium behavior of charmonium and analyze the reliability of maximum entropy method (MEM). We study the dependences of the ratio of correlators to the reconstructed one and the free one on the resonance's width and the continuum's threshold. Furthermore, we discuss the issue of the default model dependence of the spectral function obtained from MEM.

  17. The 3He spectral function in light-front dynamics

    Directory of Open Access Journals (Sweden)

    Rinaldi Matteo

    2016-01-01

    Full Text Available A distorted spin-dependent spectral function for 3He is considered for the extraction of the transverse-momentum dependent parton distributions in the neutron from semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers, where final state interactions are taken into account. The generalization of the analysis to a Poincaré covariant framework within the light-front dynamics is outlined.

  18. Measurement of the Strange Spectral Function in Hadronic $\\tau$ Decays

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Menke, S.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    Tau Lepton decays with open strangeness in the final state are measured with the OPAL detector at LEP to determine the strange hadronic spectral function of the tau lepton. The decays tau- -> (Kpi)-nu tau, (Kpipi)-nu tau and (Kpipipi)-nu tau with final states consisting of neutral and charged kaons and pions have been studied. The invariant mass distributions of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including eta mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the tau lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(tau- -> K-pi0nu tau) = (0.471+-0.059stat+-0.023sys)% and B(tau- -> K-pi+pi-nu tau) = (0.415+-0.053stat+-0.040sys)% ha...

  19. Beyond the spectral theorem: Spectrally decomposing arbitrary functions of nondiagonalizable operators

    Science.gov (United States)

    Riechers, Paul M.; Crutchfield, James P.

    2018-06-01

    Nonlinearities in finite dimensions can be linearized by projecting them into infinite dimensions. Unfortunately, the familiar linear operator techniques that one would then hope to use often fail since the operators cannot be diagonalized. The curse of nondiagonalizability also plays an important role even in finite-dimensional linear operators, leading to analytical impediments that occur across many scientific domains. We show how to circumvent it via two tracks. First, using the well-known holomorphic functional calculus, we develop new practical results about spectral projection operators and the relationship between left and right generalized eigenvectors. Second, we generalize the holomorphic calculus to a meromorphic functional calculus that can decompose arbitrary functions of nondiagonalizable linear operators in terms of their eigenvalues and projection operators. This simultaneously simplifies and generalizes functional calculus so that it is readily applicable to analyzing complex physical systems. Together, these results extend the spectral theorem of normal operators to a much wider class, including circumstances in which poles and zeros of the function coincide with the operator spectrum. By allowing the direct manipulation of individual eigenspaces of nonnormal and nondiagonalizable operators, the new theory avoids spurious divergences. As such, it yields novel insights and closed-form expressions across several areas of physics in which nondiagonalizable dynamics arise, including memoryful stochastic processes, open nonunitary quantum systems, and far-from-equilibrium thermodynamics. The technical contributions include the first full treatment of arbitrary powers of an operator, highlighting the special role of the zero eigenvalue. Furthermore, we show that the Drazin inverse, previously only defined axiomatically, can be derived as the negative-one power of singular operators within the meromorphic functional calculus and we give a new general

  20. Analyzing availability using transfer function models and cross spectral analysis

    International Nuclear Information System (INIS)

    Singpurwalla, N.D.

    1980-01-01

    The paper shows how the methods of multivariate time series analysis can be used in a novel way to investigate the interrelationships between a series of operating (running) times and a series of maintenance (down) times of a complex system. Specifically, the techniques of cross spectral analysis are used to help obtain a Box-Jenkins type transfer function model for the running times and the down times of a nuclear reactor. A knowledge of the interrelationships between the running times and the down times is useful for an evaluation of maintenance policies, for replacement policy decisions, and for evaluating the availability and the readiness of complex systems

  1. Audibility of spectral differences in head-related transfer functions

    DEFF Research Database (Denmark)

    Hoffmann, Pablo F.F.; Møller, Henrik

    2006-01-01

    The spatial resolution at which head-related transfer functions (HRTFs) are available is an important aspect in the implementation of three-dimensional sound. Specifically, synthesis of moving sound requires that HRTFs are sufficiently close so the simulated sound is perceived as moving smoothly....... How close they must be, depends directly on how much the characteristics of neighboring HRTFs differ, and, most important, when these differences become audible. Differences between HRTFs exist in the interaural delay (ITD) and in the spectral characteristics, i.e. the magnitude spectrum of the HRTFs...

  2. Approximated Function Based Spectral Gradient Algorithm for Sparse Signal Recovery

    Directory of Open Access Journals (Sweden)

    Weifeng Wang

    2014-02-01

    Full Text Available Numerical algorithms for the l0-norm regularized non-smooth non-convex minimization problems have recently became a topic of great interest within signal processing, compressive sensing, statistics, and machine learning. Nevertheless, the l0-norm makes the problem combinatorial and generally computationally intractable. In this paper, we construct a new surrogate function to approximate l0-norm regularization, and subsequently make the discrete optimization problem continuous and smooth. Then we use the well-known spectral gradient algorithm to solve the resulting smooth optimization problem. Experiments are provided which illustrate this method is very promising.

  3. Measurement of Spectral Functions of Ultracold Atoms in Disordered Potentials

    Science.gov (United States)

    Volchkov, Valentin V.; Pasek, Michael; Denechaud, Vincent; Mukhtar, Musawwadah; Aspect, Alain; Delande, Dominique; Josse, Vincent

    2018-02-01

    We report on the measurement of the spectral functions of noninteracting ultracold atoms in a three-dimensional disordered potential resulting from an optical speckle field. Varying the disorder strength by 2 orders of magnitude, we observe the crossover from the "quantum" perturbative regime of low disorder to the "classical" regime at higher disorder strength, and find an excellent agreement with numerical simulations. The method relies on the use of state-dependent disorder and the controlled transfer of atoms to create well-defined energy states. This opens new avenues for experimental investigations of three-dimensional Anderson localization.

  4. Koopmans-Compliant Spectral Functionals for Extended Systems

    Directory of Open Access Journals (Sweden)

    Ngoc Linh Nguyen

    2018-05-01

    Full Text Available Koopmans-compliant functionals have been shown to provide accurate spectral properties for molecular systems; this accuracy is driven by the generalized linearization condition imposed on each charged excitation, i.e., on changing the occupation of any orbital in the system, while accounting for screening and relaxation from all other electrons. In this work, we discuss the theoretical formulation and the practical implementation of this formalism to the case of extended systems, where a third condition, the localization of Koopmans’s orbitals, proves crucial to reach seamlessly the thermodynamic limit. We illustrate the formalism by first studying one-dimensional molecular systems of increasing length. Then, we consider the band gaps of 30 paradigmatic solid-state test cases, for which accurate experimental and computational results are available. The results are found to be comparable with the state of the art in many-body perturbation theory, notably using just a functional formulation for spectral properties and the generalized-gradient approximation for the exchange and correlation functional.

  5. Koopmans-Compliant Spectral Functionals for Extended Systems

    Science.gov (United States)

    Nguyen, Ngoc Linh; Colonna, Nicola; Ferretti, Andrea; Marzari, Nicola

    2018-04-01

    Koopmans-compliant functionals have been shown to provide accurate spectral properties for molecular systems; this accuracy is driven by the generalized linearization condition imposed on each charged excitation, i.e., on changing the occupation of any orbital in the system, while accounting for screening and relaxation from all other electrons. In this work, we discuss the theoretical formulation and the practical implementation of this formalism to the case of extended systems, where a third condition, the localization of Koopmans's orbitals, proves crucial to reach seamlessly the thermodynamic limit. We illustrate the formalism by first studying one-dimensional molecular systems of increasing length. Then, we consider the band gaps of 30 paradigmatic solid-state test cases, for which accurate experimental and computational results are available. The results are found to be comparable with the state of the art in many-body perturbation theory, notably using just a functional formulation for spectral properties and the generalized-gradient approximation for the exchange and correlation functional.

  6. Hole spectral functions in lightly doped quantum antiferromagnets

    Science.gov (United States)

    Kar, Satyaki; Manousakis, Efstratios

    2011-11-01

    We study the hole and magnon spectral functions as a function of hole doping in the two-dimensional t-J and t-t'-t''-J models working within the limits of spin-wave theory by linearizing the hole-spin-deviation interaction and by adapting the noncrossing approximation. We find that the staggered magnetization decreases rather rapidly with doping and it goes to zero at a few percent of hole concentration in both t-J and t-t'-t''-J models. Furthermore, our results show that the residue of the quasiparticle peak at G⃗=(±π/2,±π/2) decreases very rapidly with doping. We also find pockets centered at G⃗, (i) with an elliptical shape with large eccentricity along the antinodal direction in the case of the t-J model and (ii) with an almost circular shape in the case of the t-t'-t''-J model. Last, we show that the spectral intensity distribution in the doped antiferromagnet has a waterfall-like pattern along the nodal direction of the Brillouin zone, a feature that is also seen in angle-resolved photoemission spectroscopy measurements.

  7. Staircase functions, spectral regidity and a rule for quantizing chaos

    International Nuclear Information System (INIS)

    Aurich, R.; Steiner, F.

    1991-07-01

    Considering the Selberg trace formula as an exact version of Gutzwiller's semiclassical periodic-orbit theory in the case of the free motion on compact Riemann surfaces with constant negative curvature (Hadamard-Gutzwiller model), we study two complementary basic problems in quantum chaology: the computation of the calssical staircase N(l), the number of periodic orbits with length shorter than l, in terms of the quantal energy spectrum {E n }, the computation of the spectral staircase N (E), the number of quantal energies below the energy E, in terms of the length spectrum {l n } of the classical periodic orbits. A formulation of the periodic-orbit theory is presented which is intrinsically unsmoothed, but for which an effective smoothing arises from the limited 'input data', i.e. from the limited knowledge of the periodic orbits in the case of N(E) and the limited knowledge of quantal energies in the case of N(l). Based on the periodic-orbit formula for N(E), we propose a new rule for quantizing chaos, which simply states that the quantal energies are determined by the zeros of the function ξ 1 (E) = cos (πN(E)). The formulas for N(l) and N(E) as well as the new quantization condition are tested numerically. Furthermore, it is shown that the staircase N(E) computed from the length spectrum yields (up to a constant) a good description of the spectral rigidity Δ 3 (L), being the first numerical attempt to compute a statistical property of the quantal energy spectrum of a chaotic system from classical periodic orbits. (orig.)

  8. Spectral and geometrical variation of the bidirectional reflectance distribution function of diffuse reflectance standards.

    Science.gov (United States)

    Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa

    2012-12-20

    A study on the variation of the spectral bidirectional reflectance distribution function (BRDF) of four diffuse reflectance standards (matte ceramic, BaSO(4), Spectralon, and white Russian opal glass) is accomplished through this work. Spectral BRDF measurements were carried out and, using principal components analysis, its spectral and geometrical variation respect to a reference geometry was assessed from the experimental data. Several descriptors were defined in order to compare the spectral BRDF variation of the four materials.

  9. Semiclassical transport of particles with dynamical spectral functions

    International Nuclear Information System (INIS)

    Cassing, W.; Juchem, S.

    2000-01-01

    The conventional transport of particles in the on-shell quasiparticle limit is extended to particles of finite life time by means of a spectral function A(X,P,M 2 ) for a particle moving in an area of complex self-energy Σ ret X =Re Σ ret X -iΓ X /2. Starting from the Kadanoff--Baym equations we derive in first-order gradient expansion equations of motion for testparticles with respect to their time evolution in X,P and M 2 . The off-shell propagation is demonstrated for a couple of model cases that simulate hadron-nucleus collisions. In case of nucleus-nucleus collisions the imaginary part of the hadron self-energy Γ X is determined by the local space-time dependent collision rate dynamically. A first application is presented for A+A reactions up to 95 A MeV, where the effects from the off-shell propagation of nucleons are discussed with respect to high energy proton spectra, high energy photon production as well as kaon yields in comparison to the available data from GANIL

  10. Spectral function for a nonsymmetric differential operator on the half line

    Directory of Open Access Journals (Sweden)

    Wuqing Ning

    2017-05-01

    Full Text Available In this article we study the spectral function for a nonsymmetric differential operator on the half line. Two cases of the coefficient matrix are considered, and for each case we prove by Marchenko's method that, to the boundary value problem, there corresponds a spectral function related to which a Marchenko-Parseval equality and an expansion formula are established. Our results extend the classical spectral theory for self-adjoint Sturm-Liouville operators and Dirac operators.

  11. Confronting an Augmented Reality

    Science.gov (United States)

    Munnerley, Danny; Bacon, Matt; Wilson, Anna; Steele, James; Hedberg, John; Fitzgerald, Robert

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and…

  12. Confronting Ambiguity in Science

    Science.gov (United States)

    Emery, Katherine; Harlow, Danielle; Whitmer, Ali; Gaines, Steven

    2015-01-01

    People are regularly confronted with environmental and science-related issues presented to them in newspapers, on television, or even in their own doctor's office. Often the information they use to inform their decisions on matters of science may be ambiguous and contradictory. This article presents an activity that investigates how students deal…

  13. Advanced spectral processing of broadband light using acousto-optic devices with arbitrary transmission functions.

    Science.gov (United States)

    Molchanov, Vladimir Ya; Yushkov, Konstantin B

    2014-06-30

    In the paper, we developed a dispersive method for transmission function synthesis of collinear and quasi-collinear acousto-optic tunable filters. General theoretical consideration was performed, and modelling was made for broadband and narrowband signals. Experimental results on spectral shaping of femtosecond laser emission were obtained. Binary spectral encoding of broadband emission was demonstrated.

  14. Enkephalins: Raman spectral analysis and comparison as function of pH 1-13

    DEFF Research Database (Denmark)

    Abdali, Salim; Refstrup, Pia; Nielsen, O.F.

    2003-01-01

    Raman spectral studies are carried out on Leu- and Met-enkephalin as a function of the pH value in the range of 1-13. The molecules are dissolved in KCI solvent and the pH is controlled at each value. Spectral analyses reveal the dependence of the structural conformation on the pH, and a comparis...

  15. Fermionic spectral functions in backreacting p-wave superconductors at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, G.L.; Grandi, N.E.; Lugo, A.R. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina)

    2017-04-14

    We investigate the spectral function of fermions in a p-wave superconducting state, at finite both temperature and gravitational coupling, using the AdS/CFT correspondence and extending previous research. We found that, for any coupling below a critical value, the system behaves as its zero temperature limit. By increasing the coupling, the “peak-dip-hump” structure that characterizes the spectral function at fixed momenta disappears. In the region where the normal/superconductor phase transition is first order, the presence of a non-zero order parameter is reflected in the absence of rotational symmetry in the fermionic spectral function at the critical temperature.

  16. Real photon spectral weight functions, imaginary part of vacuum polarization and electromagnetic vertices

    International Nuclear Information System (INIS)

    Chahine, C.; College de France, 75 - Paris. Lab. de Physique Corpusculaire)

    1978-02-01

    The concept of a real photon spectral weight function for any cross-section involving charged particles is introduced as a simple approximation taking into account the soft part of photon emission to all orders in perturbation theory. The spectral weight function replaces the energy-momentum conservation delta function in the elastic cross-section. The spectral weight function is computed in closed form in space-time and in the peaking approximation in momentum space. The spectral weight function description is applied to the imaginary part of vacuum polarization ImPI and to electron-proton scattering. A spectral representation for ImPI is derived and its content compared with the known fourth order result, showing in particular the identity of the soft and peaking approximations in lowest order. The virtual photon radiative corrections are discussed in part, with emphasis on the threshold behavior of the vertex functions. A relativistic generalization of the electric non-relativistic vertex function is given, whose asymptotic behavior is approppriate to use in conjuction with the spectral weight function

  17. Confronting an augmented reality

    Directory of Open Access Journals (Sweden)

    John Hedberg

    2012-08-01

    Full Text Available How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself? In this article, we seek to initiate a discussion that focuses on these questions, and suggest that they be used as drivers for research into effective educational applications of augmented reality. We discuss how multi-modal, sensorial augmentation of reality links to existing theories of education and learning, focusing on ideas of cognitive dissonance and the confrontation of new realities implied by exposure to new and varied perspectives. We also discuss connections with broader debates brought on by the social and cultural changes wrought by the increased digitalisation of our lives, especially the concept of the extended mind. Rather than offer a prescription for augmentation, our intention is to throw open debate and to provoke deep thinking about what interacting with and creating an augmented reality might mean for both teacher and learner.

  18. Spectral transformation chains and some new biorthogonal rational functions

    International Nuclear Information System (INIS)

    Spiridonov, V.

    2000-01-01

    A discrete-time chain, associated with the generalized eigenvalue problem for two Jacobi matrices, is derived. Various discrete and continuous symmetries of this integrable equation are revealed. A class of its rational, elementary and elliptic function solutions, appearing from a similarity reduction, are constructed. The latter lead to large families of biorthogonal rational functions based upon the very-well-posed balanced hypergeometric series of three types: the standard hypergeometric series 9 F 8 , basic series 10 φ 9 and its elliptic analogue 10 E 9 . For an important subclass of the elliptic biorthogonal rational functions the weight function and normalization constants are determined explicitly. (orig.)

  19. Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth.

    Science.gov (United States)

    Buss, Emily; Grose, John

    2018-01-01

    The present study evaluated auditory sensitivity to spectral modulation by determining the modulation depth required to detect modulation phase reversal. This approach may be preferable to spectral modulation detection with a spectrally flat standard, since listeners appear unable to perform the task based on the detection of temporal modulation. While phase reversal thresholds are often evaluated by holding modulation depth constant and adjusting modulation rate, holding rate constant and adjusting modulation depth supports rate-specific assessment of modulation processing. Stimuli were pink noise samples, filtered into seven octave-wide bands (0.125-8 kHz) and spectrally modulated in dB. Experiment 1 measured performance as a function of modulation depth to determine appropriate units for adaptive threshold estimation. Experiment 2 compared thresholds in dB for modulation detection with a flat standard and modulation phase reversal; results supported the idea that temporal cues were available at high rates for the former but not the latter. Experiment 3 evaluated spectral modulation phase reversal thresholds for modulation that was restricted to either one or two neighboring bands. Flanking bands of unmodulated noise had a larger detrimental effect on one-band than two-band targets. Thresholds for high-rate modulation improved with increasing carrier frequency up to 2 kHz, whereas low-rate modulation appeared more consistent across frequency, particularly in the two-band condition. Experiment 4 measured spectral weights for spectral modulation phase reversal detection and found higher weights for bands in the spectral center of the stimulus than for the lowest (0.125 kHz) or highest (8 kHz) band. Experiment 5 compared performance for highly practiced and relatively naïve listeners, and found weak evidence of a larger practice effect at high than low spectral modulation rates. These results provide preliminary data for a task that may provide a better estimate of

  20. Asymptotic Expansions of Generalized Nevanlinna Functions and their Spectral Properties

    NARCIS (Netherlands)

    Derkach, Vladimir; Hassi, Seppo; de Snoo, Hendrik

    2007-01-01

    Asymptotic expansions of generalized Nevanlinna functions Q are investigated by means of a factorization model involving a part of the generalized zeros and poles of nonpositive type of the function Q. The main results in this paper arise from the explicit construction of maximal Jordan chains in

  1. Multiscale finite element methods for high-contrast problems using local spectral basis functions

    KAUST Repository

    Efendiev, Yalchin

    2011-02-01

    In this paper we study multiscale finite element methods (MsFEMs) using spectral multiscale basis functions that are designed for high-contrast problems. Multiscale basis functions are constructed using eigenvectors of a carefully selected local spectral problem. This local spectral problem strongly depends on the choice of initial partition of unity functions. The resulting space enriches the initial multiscale space using eigenvectors of local spectral problem. The eigenvectors corresponding to small, asymptotically vanishing, eigenvalues detect important features of the solutions that are not captured by initial multiscale basis functions. Multiscale basis functions are constructed such that they span these eigenfunctions that correspond to small, asymptotically vanishing, eigenvalues. We present a convergence study that shows that the convergence rate (in energy norm) is proportional to (H/Λ*)1/2, where Λ* is proportional to the minimum of the eigenvalues that the corresponding eigenvectors are not included in the coarse space. Thus, we would like to reach to a larger eigenvalue with a smaller coarse space. This is accomplished with a careful choice of initial multiscale basis functions and the setup of the eigenvalue problems. Numerical results are presented to back-up our theoretical results and to show higher accuracy of MsFEMs with spectral multiscale basis functions. We also present a hierarchical construction of the eigenvectors that provides CPU savings. © 2010.

  2. Spectral zeta function and non-perturbative effects in ABJM Fermi-gas

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki

    2015-03-01

    The exact partition function in ABJM theory on three-sphere can be regarded as a canonical partition function of a non-interacting Fermi-gas with an unconventional Hamiltonian. All the information on the partition function is encoded in the discrete spectrum of this Hamiltonian. We explain how (quantum mechanical) non-perturbative corrections in the Fermi-gas system appear from a spectral consideration. Basic tools in our analysis are a Mellin-Barnes type integral representation and a spectral zeta function. From a consistency with known results, we conjecture that the spectral zeta function in the ABJM Fermi-gas has an infinite number of ''non-perturbative'' poles, which are invisible in the semi-classical expansion of the Planck constant. We observe that these poles indeed appear after summing up perturbative corrections. As a consequence, the perturbative resummation of the spectral zeta function causes non-perturbative corrections to the grand canonical partition function. We also present another example associated with a spectral problem in topological string theory. A conjectured non-perturbative free energy on the resolved conifold is successfully reproduced in this framework.

  3. Spectral Analysis of Traffic Functions in Urban Areas

    Directory of Open Access Journals (Sweden)

    Florin Nemtanu

    2015-12-01

    Full Text Available The paper is focused on the Fourier transform application in urban traffic analysis and the use of said transform in traffic decomposition. The traffic function is defined as traffic flow generated by different categories of traffic participants. A Fourier analysis was elaborated in terms of identifying the main traffic function components, called traffic sub-functions. This paper presents the results of the method being applied in a real case situation, that is, an intersection in the city of Bucharest where the effect of a bus line was analysed. The analysis was done using different time scales, while three different traffic functions were defined to demonstrate the theoretical effect of the proposed method of analysis. An extension of the method is proposed to be applied in urban areas, especially in the areas covered by predictive traffic control.

  4. Spectral Data Captures Important Variability Between and Among Species and Functional Types

    Science.gov (United States)

    Townsend, P. A.; Serbin, S. P.; Kingdon, C.; Singh, A.; Couture, J. J.; Gamon, J. A.

    2013-12-01

    Narrowband spectral data in the visible, near and shortwave infrared (400-2500 nm) are being used increasingly in plant ecology to characterize the biochemical, physiological and water status of vegetation, as well as community composition. In particular, spectroscopic data have recently received considerable attention for their capacity to discriminate plants according to functional properties or 'optical types.' Such measurements can be acquired from airborne/satellite remote sensing imagery or field spectrometers and are commonly used to directly estimate or infer properties important to photosynthesis, carbon and water fluxes, nutrient dynamics, phenology, and disturbance. Spectral data therefore represent proxies for measurements that are otherwise time consuming or expensive to make, and - more importantly - provide the opportunity to characterize the spatial and temporal variability of taxonomic or functional groups. We have found that spectral variation within species and functional types can in fact exceed the variation between types. As such, we recommend that the traditional quantification of characteristics defining species and/or functional types must be modified to include the range of variability in those properties. We provide four examples of the importance of spectral data for describing within-species/functional type variation. First, within temperate forests, the spectral properties of foliage vary considerably with canopy position. This variability is strongly related to differences in specific leaf area between shade- and sun-lit leaves, and the resulting differences among leaves in strategies for light harvesting, photosynthesis, and leaf longevity. These results point to the need to better characterize leaf optical properties throughout a canopy, rather than basing the characterization of ecosystem functioning on only the sunlit portion of the canopy crown. Second, we show considerable differences in optical properties of foliage from

  5. Spectral density analysis of time correlation functions in lattice QCD using the maximum entropy method

    International Nuclear Information System (INIS)

    Fiebig, H. Rudolf

    2002-01-01

    We study various aspects of extracting spectral information from time correlation functions of lattice QCD by means of Bayesian inference with an entropic prior, the maximum entropy method (MEM). Correlator functions of a heavy-light meson-meson system serve as a repository for lattice data with diverse statistical quality. Attention is given to spectral mass density functions, inferred from the data, and their dependence on the parameters of the MEM. We propose to employ simulated annealing, or cooling, to solve the Bayesian inference problem, and discuss the practical issues of the approach

  6. The four-meter confrontation visual field test.

    OpenAIRE

    Kodsi, S R; Younge, B R

    1992-01-01

    The 4-m confrontation visual field test has been successfully used at the Mayo Clinic for many years in addition to the standard 0.5-m confrontation visual field test. The 4-m confrontation visual field test is a test of macular function and can identify small central or paracentral scotomas that the examiner may not find when the patient is tested only at 0.5 m. Also, macular sparing in homonymous hemianopias and quadrantanopias may be identified with the 4-m confrontation visual field test....

  7. Infinite-component conformal fields. Spectral representation of the two-point function

    International Nuclear Information System (INIS)

    Zaikov, R.P.; Tcholakov, V.

    1975-01-01

    The infinite-component conformal fields (with respect to the stability subgroup) are considered. The spectral representation of the conformally invariant two-point function is obtained. This function is nonvanishing as/lso for one ''fundamental'' and one infinite-component field

  8. Diagrammatic expansion for positive spectral functions beyond GW: Application to vertex corrections in the electron gas

    Science.gov (United States)

    Stefanucci, G.; Pavlyukh, Y.; Uimonen, A.-M.; van Leeuwen, R.

    2014-09-01

    We present a diagrammatic approach to construct self-energy approximations within many-body perturbation theory with positive spectral properties. The method cures the problem of negative spectral functions which arises from a straightforward inclusion of vertex diagrams beyond the GW approximation. Our approach consists of a two-step procedure: We first express the approximate many-body self-energy as a product of half-diagrams and then identify the minimal number of half-diagrams to add in order to form a perfect square. The resulting self-energy is an unconventional sum of self-energy diagrams in which the internal lines of half a diagram are time-ordered Green's functions, whereas those of the other half are anti-time-ordered Green's functions, and the lines joining the two halves are either lesser or greater Green's functions. The theory is developed using noninteracting Green's functions and subsequently extended to self-consistent Green's functions. Issues related to the conserving properties of diagrammatic approximations with positive spectral functions are also addressed. As a major application of the formalism we derive the minimal set of additional diagrams to make positive the spectral function of the GW approximation with lowest-order vertex corrections and screened interactions. The method is then applied to vertex corrections in the three-dimensional homogeneous electron gas by using a combination of analytical frequency integrations and numerical Monte Carlo momentum integrations to evaluate the diagrams.

  9. Spectral velocity estimation using autocorrelation functions for sparse data sets

    DEFF Research Database (Denmark)

    2006-01-01

    The distribution of velocities of blood or tissue is displayed using ultrasound scanners by finding the power spectrum of the received signal. This is currently done by making a Fourier transform of the received signal and then showing spectra in an M-mode display. It is desired to show a B......-mode image for orientation, and data for this has to acquired interleaved with the flow data. The power spectrum can be calculated from the Fourier transform of the autocorrelation function Ry (k), where its span of lags k is given by the number of emission N in the data segment for velocity estimation...

  10. Correlation function and electronic spectral line broadening in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    Douis S.

    2013-01-01

    Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.

  11. Statistical Study of Turbulence: Spectral Functions and Correlation Coefficients

    Science.gov (United States)

    Frenkiel, Francois N.

    1958-01-01

    In reading the publications on turbulence of different authors, one often runs the risk of confusing the various correlation coefficients and turbulence spectra. We have made a point of defining, by appropriate concepts, the differences which exist between these functions. Besides, we introduce in the symbols a few new characteristics of turbulence. In the first chapter, we study some relations between the correlation coefficients and the different turbulence spectra. Certain relations are given by means of demonstrations which could be called intuitive rather than mathematical. In this way we demonstrate that the correlation coefficients between the simultaneous turbulent velocities at two points are identical, whether studied in Lagrange's or in Euler's systems. We then consider new spectra of turbulence, obtained by study of the simultaneous velocities along a straight line of given direction. We determine some relations between these spectra and the correlation coefficients. Examining the relation between the spectrum of the turbulence measured at a fixed point and the longitudinal-correlation curve given by G. I. Taylor, we find that this equation is exact only when the coefficient is very small.

  12. Calculation of the pion-nucleon double spectral functions and applications

    International Nuclear Information System (INIS)

    Grether, D.

    1986-01-01

    In the present thesis the latest results from pion-pion and pion-nucleon phase analyses are applied in order to calculate the pion-nucleon double spectral functions which belong to the elastic unitarity in the t-channel. The equivalence of the partial wave projection of these spectral functions in the s-channel with the elastic t-channel unitarity is extensively discussed. After we summarize the aspects of the pion-nucleon system seeming in this connection interesting we discuss the Mandelstam method for the calculation of the spectral functions by means of the elastic t-channel unitarity as well as the applied input and present the results. Thereafter we use these results in order to calculate by means of a fixed t-channel dispersion relation the real parts of the t-channel cuts. Partial wave projections into the t-channel are proved as equivalent to the elastic t-channel unitarity. We study the compatibility of the asymptotic behaviour of the spectral functions relative to the energy with current Regge pole models. Finally we use our results in order to calculate the pion-nucleon partial waves by means of their Froissart-Gribov representations which follow from their analyticity at fixed energy. (orig./HSI) [de

  13. Effects of motor programming on the power spectral density function of finger and wrist movements

    NARCIS (Netherlands)

    Van Galen, G P; Van Doorn, R R; Schomaker, L R

    Power spectral density analysis was applied to the frequency content of the acceleration signal of pen movements in line drawing. The relative power in frequency bands between 1 and 32 Hz was measured as a function of motoric and anatomic task demands. Results showed a decrease of power at the lower

  14. Green's function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case

    KAUST Repository

    Kuchment, Peter

    2012-06-21

    Precise asymptotics known for the Green\\'s function of the Laplace operator have found their analogs for periodic elliptic operators of the second order at and below the bottom of the spectrum. Due to the band-gap structure of the spectra of such operators, the question arises whether similar results can be obtained near or at the edges of spectral gaps. As the result of this work shows, this is possible at a spectral edge when the dimension d ≥ 3. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Green's function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case

    KAUST Repository

    Kuchment, Peter; Raich, Andrew

    2012-01-01

    Precise asymptotics known for the Green's function of the Laplace operator have found their analogs for periodic elliptic operators of the second order at and below the bottom of the spectrum. Due to the band-gap structure of the spectra of such operators, the question arises whether similar results can be obtained near or at the edges of spectral gaps. As the result of this work shows, this is possible at a spectral edge when the dimension d ≥ 3. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    Science.gov (United States)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral

  17. [Biological security confronting bioterrorism].

    Science.gov (United States)

    Suárez Fernández, Guillermo

    2002-01-01

    A review is made on Biosecurity at both local and global level in relationship with Bioterrorism as a real threat and its control and prevention. The function of the network of High Security Laboratories around the world able to make immediate diagnosis, research on vaccines, fundamental and urgent epidemiological studies, conform a steady basis to control natural infections and also the possible bioterrorism attacks.

  18. Measurement of the lepton τ spectral functions and applications to quantum chromodynamic

    International Nuclear Information System (INIS)

    Hoecker, A.

    1997-01-01

    This thesis presents measurements of the τ vector (V) and axial-vector (A) hadronic spectral functions and phenomenological studies in the framework of quantum chromodynamics (QCD). Using the hypothesis of conserved vector currents (CVC), the dominant two- and four-pion vector spectral functions are compared to the corresponding cross sections from e + e - annihilation. A combined fit of the pion form factor from τ decays and e + e - data is performed using different parametrizations. The mass and the width of the ρ ± (770) and the ρ 0 (770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M ρ ± (770) - M ρ 0 (770) =(0.0±1.0) MeV/c 2 and Γ ρ ± (770) - Γ ρ 0 (770) =(0.1 ± 1.9) MeV/c 2 . Several QCD chiral sum rules involving the difference (V - A) of the spectral functions are compared to their measurements. The Borel-transformed Das-Mathur-Okubo sum rule is used to measure the pion polarizability to be α E =(2.68±0.91) x 10 -4 fm 3 . The τ vector and axial-vector hadronic widths and certain spectral moments are exploited to measure α s and non-perturbative contributions at the τ mass scale. The best, and experimentally and theoretically most robust, determination of α s (M τ ) is obtained from the inclusive (V + A) fit that yields α s (M τ )= 0.348±0.017 giving α s (M Z )=0.1211 ± 0.0021 after the evolution to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally by means of an evolution of the τ hadronic width to masses smaller that the τ mass. Using the difference (V - A) of the spectral functions allows one to directly measure the dominant non-perturbative OPE dimension to be D=6.9±0.5. The vector spectral functions are used to improve the precision of the experimental determination of the hadronic contribution to the anomalous magnetic moment of the muon a μ =(g - 2)/2 and to the running of the QED

  19. Spectral synthesis in certain spaces of entire functions of exponential type and its applications

    International Nuclear Information System (INIS)

    Odinokov, O V

    2000-01-01

    We consider certain spaces P Ω of entire functions of exponential type in C n associated with a domain Ω element of R n that are in fact Laplace transforms of distributions in Ω. It is shown that any shift-invariant subspace of these functions admits spectral synthesis, that is, coincides with the closure of the linear span of the exponential polynomials contained in it. As an application of this result, we describe the solution space in P Ω of a system of homogeneous equations of infinite order for differential operators with characteristic functions infinitely differentiable in Ω

  20. Measurement of the spectral functions of vector current hadronic $\\tau$ decays

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Miquel, R; Mir, L M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1997-01-01

    A measurement of the spectral functions of non-strange tau vector current final states is presented, using 124,358 tau pairs recorded by the ALEPH detector at LEP during the years 1991 to 1994. The spectral functions of the dominant two- and four-pion tau decay channels are compared to published results of e+e- annihilation experiments via isospin rotation. A combined fit of the pion form factor from tau decays and e+e- data is performed using different parametrizations. The mass and the width of the charged and the neutral rho(770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M(rho^+/-(770)) - M(rho^0(770)) = (0.0 +/- 1.0) MeV/c^2 and Gamma(rho^+/-(770)) - Gamma(rho^0(770)) = (0.1 +/- 1.9) MeV/c^2.

  1. Simulation and Analysis of Spectral Response Function and Bandwidth of Spectrometer

    Directory of Open Access Journals (Sweden)

    Zhenyu Gao

    2016-01-01

    Full Text Available A simulation method for acquiring spectrometer’s Spectral Response Function (SRF based on Huygens Point Spread Function (PSF is suggested. Taking into account the effects of optical aberrations and diffraction, the method can obtain the fine SRF curve and corresponding spectral bandwidth at any nominal wavelength as early as in the design phase. A prism monochromator is proposed for illustrating the simulation procedure. For comparison, a geometrical ray-tracing method is also provided, with bandwidth deviations varying from 5% at 250 nm to 25% at 2400 nm. Further comparison with reported experiments shows that the areas of the SRF profiles agree to about 1%. However, the weak scattered background light on the level of 10−4 to 10−5 observed by experiment could not be covered by this simulation. This simulation method is a useful tool for forecasting the performance of an underdesigned spectrometer.

  2. A Loudness Function for Maintaining Spectral Balance at Changing Sound Pressure Levels

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal

    Our perception of loudness is a function of frequency as well as sound pressure level as described in ISO226:2003: Normal Equal Loudness Level Contours, which describes the needed sound pressure level for pure tones to be perceived equally loud. At a music performance, this is taking care...... of by the sound engineer by listening to the individual sound sources and adjust and equalize them to the wanted spectral balance including the whole chain of audio equipment and surroundings. At a live venue the sound pressure level will normally change during a concert, and typically increase over time......B is doubling of the effect to the loudspeakers). A level depending digital loudness function has been made based on ISO226:2003, and will be demonstrated. It can maintain the spectral balance at alternating levels and is based on fractional order digital filters. Tutorial. Abstract T3.3 (30th August 16:00 - 17...

  3. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; DeCarvalho Santos, S.H.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a NPP Reactor Building. The main results of this analysis are compared with the ones obtained by deterministic methods

  4. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a reactor building. The main results of this analysis are compared with the ones obtained by deterministic methods. (orig./HP)

  5. The exponential function expansion of the intra-nodal cross sections for the spectral history gradient correction

    International Nuclear Information System (INIS)

    Cho, J. Y.; Noh, J. M.; Cheong, H. K.; Choo, H. K.

    1998-01-01

    In order to simplify the previous spectral history effect correction based on the polynomial expansion nodal method, a new spectral history effect correction is proposed. The new spectral history correction eliminates four microscopic depletion points out of total 13 depletion points in the previous correction by approximating the group cross sections with exponential function. The neutron flux to homogenize the group cross sections for the correction of the spectral history effect is calculated by the analytic function expansion nodal method in stead of the conventional polynomial expansion nodal method. This spectral history correction model is verified against the three MOX benchmark cores: a checkerboard type, a small core with 25 fuel assemblies, and a large core with 177 fuel assemblies. The benchmark results prove that this new spectral history correction model is superior to the previous one even with the reduced number of the local microscopic depletion points

  6. Spectral correlation functions of the sum of two independent complex Wishart matrices with unequal covariances

    International Nuclear Information System (INIS)

    Akemann, Gernot; Checinski, Tomasz; Kieburg, Mario

    2016-01-01

    We compute the spectral statistics of the sum H of two independent complex Wishart matrices, each of which is correlated with a different covariance matrix. Random matrix theory enjoys many applications including sums and products of random matrices. Typically ensembles with correlations among the matrix elements are much more difficult to solve. Using a combination of supersymmetry, superbosonisation and bi-orthogonal functions we are able to determine all spectral k -point density correlation functions of H for arbitrary matrix size N . In the half-degenerate case, when one of the covariance matrices is proportional to the identity, the recent results by Kumar for the joint eigenvalue distribution of H serve as our starting point. In this case the ensemble has a bi-orthogonal structure and we explicitly determine its kernel, providing its exact solution for finite N . The kernel follows from computing the expectation value of a single characteristic polynomial. In the general non-degenerate case the generating function for the k -point resolvent is determined from a supersymmetric evaluation of the expectation value of k ratios of characteristic polynomials. Numerical simulations illustrate our findings for the spectral density at finite N and we also give indications how to do the asymptotic large- N analysis. (paper)

  7. WE-FG-207B-02: Material Reconstruction for Spectral Computed Tomography with Detector Response Function

    International Nuclear Information System (INIS)

    Liu, J; Gao, H

    2016-01-01

    Purpose: Different from the conventional computed tomography (CT), spectral CT based on energy-resolved photon-counting detectors is able to provide the unprecedented material composition. However, an important missing piece for accurate spectral CT is to incorporate the detector response function (DRF), which is distorted by factors such as pulse pileup and charge-sharing. In this work, we propose material reconstruction methods for spectral CT with DRF. Methods: The polyenergetic X-ray forward model takes the DRF into account for accurate material reconstruction. Two image reconstruction methods are proposed: a direct method based on the nonlinear data fidelity from DRF-based forward model; a linear-data-fidelity based method that relies on the spectral rebinning so that the corresponding DRF matrix is invertible. Then the image reconstruction problem is regularized with the isotropic TV term and solved by alternating direction method of multipliers. Results: The simulation results suggest that the proposed methods provided more accurate material compositions than the standard method without DRF. Moreover, the proposed method with linear data fidelity had improved reconstruction quality from the proposed method with nonlinear data fidelity. Conclusion: We have proposed material reconstruction methods for spectral CT with DRF, whichprovided more accurate material compositions than the standard methods without DRF. Moreover, the proposed method with linear data fidelity had improved reconstruction quality from the proposed method with nonlinear data fidelity. Jiulong Liu and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000), and the Shanghai Pujiang Talent Program (#14PJ1404500).

  8. Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.

    Science.gov (United States)

    Yan, Rui; Moon, Seonah; Kenny, Samuel J; Xu, Ke

    2018-03-20

    As an elegant integration of the spatial and temporal dimensions of single-molecule fluorescence, single-molecule localization microscopy (SMLM) overcomes the diffraction-limited resolution barrier of optical microscopy by localizing single molecules that stochastically switch between fluorescent and dark states over time. While this type of super-resolution microscopy (SRM) technique readily achieves remarkable spatial resolutions of ∼10 nm, it typically provides no spectral information. Meanwhile, current scanning-based single-location approaches for mapping the positions and spectra of single molecules are limited by low throughput and are difficult to apply to densely labeled (bio)samples. In this Account, we summarize the rationale, design, and results of our recent efforts toward the integration of the spectral dimension of single-molecule fluorescence with SMLM to achieve spectrally resolved SMLM (SR-SMLM) and functional SRM ( f-SRM). By developing a wide-field scheme for spectral measurement and implementing single-molecule fluorescence on-off switching typical of SMLM, we first showed that in densely labeled (bio)samples it is possible to record the fluorescence spectra and positions of millions of single molecules synchronously within minutes, giving rise to ultrahigh-throughput single-molecule spectroscopy and SR-SMLM. This allowed us to first show statistically that for many dyes, single molecules of the same species exhibit near identical emission in fixed cells. This narrow distribution of emission wavelengths, which contrasts markedly with previous results at solid surfaces, allowed us to unambiguously identify single molecules of spectrally similar dyes. Crosstalk-free, multiplexed SRM was thus achieved for four dyes that were merely 10 nm apart in emission spectrum, with the three-dimensional SRM images of all four dyes being automatically aligned within one image channel. The ability to incorporate single-molecule fluorescence measurement with

  9. Self-Confrontation of Teachers.

    Science.gov (United States)

    Schmuck, Richard A.

    Simply presenting teachers with information about discrepancies between their ideal and their actual classroom performances does not, in itself, lead to constructive change. In part, this is because teachers confronted with such discrepancies experience dissonance which often gives rise to anxiety. This paper discusses the psychological processes…

  10. Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions.

    Science.gov (United States)

    Lei, Youming; Zheng, Fan

    2016-12-01

    Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.

  11. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions

    Science.gov (United States)

    Novosad, Philip; Reader, Andrew J.

    2016-06-01

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  12. Spectral characterization of plastic scintillation detector response as a function of magnetic field strength

    Science.gov (United States)

    Simiele, E.; Kapsch, R.-P.; Ankerhold, U.; Culberson, W.; DeWerd, L.

    2018-04-01

    The purpose of this work was to characterize intensity and spectral response changes in a plastic scintillation detector (PSD) as a function of magnetic field strength. Spectra measurements as a function of magnetic field strength were performed using an optical spectrometer. The response of both a PSD and PMMA fiber were investigated to isolate the changes in response from the scintillator and the noise signal as a function of magnetic field strength. All irradiations were performed in water at a photon beam energy of 6 MV. Magnetic field strengths of (0, ±0.35, ±0.70, ±1.05, and  ±1.40) T were investigated. Four noise subtraction techniques were investigated to evaluate the impact on the resulting noise-subtracted scintillator response with magnetic field strength. The noise subtraction methods included direct spectral subtraction, the spectral method, and variants thereof. The PMMA fiber exhibited changes in response of up to 50% with magnetic field strength due to the directional light emission from \\breve{C} erenkov radiation. The PSD showed increases in response of up to 10% when not corrected for the noise signal, which agrees with previous investigations of scintillator response in magnetic fields. Decreases in the \\breve{C} erenkov light ratio with negative field strength were observed with a maximum change at  ‑1.40 T of 3.2% compared to 0 T. The change in the noise-subtracted PSD response as a function of magnetic field strength varied with the noise subtraction technique used. Even after noise subtraction, the PSD exhibited changes in response of up to 5.5% over the four noise subtraction methods investigated.

  13. Are resting state spectral power measures related to executive functions in healthy young adults?

    Science.gov (United States)

    Gordon, Shirley; Todder, Doron; Deutsch, Inbal; Garbi, Dror; Getter, Nir; Meiran, Nachshon

    2018-01-08

    Resting-state electroencephalogram (rsEEG) has been found to be associated with psychopathology, intelligence, problem solving, academic performance and is sometimes used as a supportive physiological indicator of enhancement in cognitive training interventions (e.g. neurofeedback, working memory training). In the current study, we measured rsEEG spectral power measures (relative power, between-band ratios and asymmetry) in one hundred sixty five young adults who were also tested on a battery of executive function (EF). We specifically focused on upper Alpha, Theta and Beta frequency bands given their putative role in EF. Our indices enabled finding correlations since they had decent-to-excellent internal and retest reliability and very little range restriction relative to a nation-wide representative large sample. Nonetheless, Bayesian statistical inference indicated support for the null hypothesis concerning lack of monotonic correlation between EF and rsEEG spectral power measures. Therefore, we conclude that, contrary to the quite common interpretation, these rsEEG spectral power measures do not indicate individual differences in the measured EF abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Optimisation of chromatographic resolution using objective functions including both time and spectral information.

    Science.gov (United States)

    Torres-Lapasió, J R; Pous-Torres, S; Ortiz-Bolsico, C; García-Alvarez-Coque, M C

    2015-01-16

    The optimisation of the resolution in high-performance liquid chromatography is traditionally performed attending only to the time information. However, even in the optimal conditions, some peak pairs may remain unresolved. Such incomplete resolution can be still accomplished by deconvolution, which can be carried out with more guarantees of success by including spectral information. In this work, two-way chromatographic objective functions (COFs) that incorporate both time and spectral information were tested, based on the peak purity (analyte peak fraction free of overlapping) and the multivariate selectivity (figure of merit derived from the net analyte signal) concepts. These COFs are sensitive to situations where the components that coelute in a mixture show some spectral differences. Therefore, they are useful to find out experimental conditions where the spectrochromatograms can be recovered by deconvolution. Two-way multivariate selectivity yielded the best performance and was applied to the separation using diode-array detection of a mixture of 25 phenolic compounds, which remained unresolved in the chromatographic order using linear and multi-linear gradients of acetonitrile-water. Peak deconvolution was carried out using the combination of orthogonal projection approach and alternating least squares. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. [Colon adenoma detection using Kubelka-Munk spectral function of DNA and protein bands].

    Science.gov (United States)

    Wei, Hua-Jiang; Guo, Zhou-Yi; Xie, Shu-Sen; He, Bo-Hua; Li, Li-Bo; Chen, Xue-Mei; Wu, Guo-Yong; Lu, Jian-Jun

    2009-06-01

    Differential diagnosis of human colon adenoma was studied using the Kubelka-Munk spectral function of the DNA and protein absorption bands at 260 and 280 nm in vitro. Diffuse reflectance spectra of tissue were measured using a spectrophotometer with an integrating sphere attachment. The results of measurement showed that for the spectral range from 590 to 1 064 nm pathological changes of colon epithelial tissues were induced so that there were significant differences in the averaged values of the Kubelka-Munk function f(r infinity) and logarithmic Kubelka-Munk function log [f(r infinity)] of the DNA absorption bands at 260 nm between normal and adenomatous colon epithelial tissues, and the differences were 218% (p function f(r infinity) and logarithmic Kubelka-Munk function log [f(r infinity)] of the protein absorption bands at 280 nm between normal and adenomatous colon epithelial tissues, and the differences were 208% (p function f(r infinity) and logarithmic Kubelka-Munk function log [f(r infinity)] of the beta-carotene absorption bands at 480 nm between normal and adenomatous colon epithelial tissues, and the differences were 41.7% (p < 0.05) and 32.9% (p < 0.05) respectively. Obviously, pathological changes of colon epithelial tissues were induced so that there were significant changes in the contents of the DNA, protein and beta-carotene of colon epithelial tissues. The conclusion can be applied to rapid, low-cost and noninvasive optical biopsy of colon adenoma, and provides a useful reference.

  16. Melting spectral functions of the scalar and vector mesons in a holographic QCD model

    International Nuclear Information System (INIS)

    Fujita, Mitsutoshi; Kikuchi, Toru; Fukushima, Kenji; Misumi, Tatsuhiro; Murata, Masaki

    2010-01-01

    We investigate the finite-temperature spectral functions of heavy quarkonia by using the soft-wall anti-de Sitter/QCD model. We discuss the scalar, the pseudoscalar, the vector, and the axial-vector mesons and compare their qualitative features of the melting temperature and growing width. We find that the axial-vector meson melts earlier than the vector meson, while there appears only a slight difference between the scalar and pseudoscalar mesons, which also melt earlier than the vector meson.

  17. Special function solutions of a spectral problem for a nonlinear quantum oscillator

    International Nuclear Information System (INIS)

    Schulze-Halberg, A; Morris, J R

    2012-01-01

    We construct exact solutions of a spectral problem involving the Schrödinger equation for a nonlinear, one-parameter oscillator potential. In contrast to a previous analysis of the problem (Carinena et al 2007 Ann. Phys. 322 434–59), where solutions were given through a Rodrigues-type formula, our approach leads to closed-form representations of the solutions in terms of special functions, not containing any derivative operators. We show normalizability and orthogonality of our solutions, as well as correct reduction of the problem to the harmonic oscillator model, if the parameter in the potential gets close to zero. (paper)

  18. Quantifying seasonal dynamics of canopy structure and function using inexpensive narrowband spectral radiometers

    Science.gov (United States)

    Vierling, L. A.; Garrity, S. R.; Campbell, G.; Coops, N. C.; Eitel, J.; Gamon, J. A.; Hilker, T.; Krofcheck, D. J.; Litvak, M. E.; Naupari, J. A.; Richardson, A. D.; Sonnentag, O.; van Leeuwen, M.

    2011-12-01

    Increasing the spatial and temporal density of automated environmental sensing networks is necessary to quantify shifts in plant structure (e.g., leaf area index) and function (e.g., photosynthesis). Improving detection sensitivity can facilitate a mechanistic understanding by better linking plant processes to environmental change. Spectral radiometer measurements can be highly useful for tracking plant structure and function from diurnal to seasonal time scales and calibrating and validating satellite- and aircraft-based spectral measurements. However, dense ground networks of such instruments are challenging to establish due to the cost and complexity of automated instrument deployment. We therefore developed simple to operate, lightweight and inexpensive narrowband (~10nm bandwidth) spectral instruments capable of continuously measuring four to six discrete bands that have proven capacity to describe key physiological processes and structural features of plant canopies. These bands are centered at 530, 570, 675, 800, 880, and 970 nm to enable calculation of the physiological reflectance index (PRI), normalized difference vegetation index (NDVI), green NDVI (gNDVI), and water band index (WBI) collected above and within vegetation canopies. To date, measurements have been collected above grassland, semi-arid shrub steppe, piñon-juniper woodland, dense conifer forest, mixed deciduous-conifer forest, and cropland canopies, with additional measurements collected along vertical transects through a temperate conifer rainforest. Findings from this work indicate not only that key shifts in plant phenology, physiology, and structure can be captured using such instruments, but that the temporally dense nature of the measurements can help to disentangle heretofore unreported complexities of simultaneous phenological and structural change on canopy reflectance.

  19. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.

    Science.gov (United States)

    Wang, Menghua

    2016-05-30

    To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335-2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0-30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°-80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude

  20. Self-consistent spectral function for non-degenerate Coulomb systems and analytic scaling behaviour

    International Nuclear Information System (INIS)

    Fortmann, Carsten

    2008-01-01

    Novel results for the self-consistent single-particle spectral function and self-energy are presented for non-degenerate one-component Coulomb systems at various densities and temperatures. The GW (0) -method for the dynamical self-energy is used to include many-particle correlations beyond the quasi-particle approximation. The self-energy is analysed over a broad range of densities and temperatures (n = 10 17 cm -3 -10 27 cm -3 , T = 10 2 eV/k B -10 4 eV/k B ). The spectral function shows a systematic behaviour, which is determined by collective plasma modes at small wavenumbers and converges towards a quasi-particle resonance at higher wavenumbers. In the low density limit, the numerical results comply with an analytic scaling law that is presented for the first time. It predicts a power-law behaviour of the imaginary part of the self-energy, ImΣ ∼ -n 1/4 . This resolves a long time problem of the quasi-particle approximation which yields a finite self-energy at vanishing density

  1. A spectral scheme for Kohn–Sham density functional theory of clusters

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Amartya S., E-mail: baner041@umn.edu; Elliott, Ryan S., E-mail: relliott@umn.edu; James, Richard D., E-mail: james@umn.edu

    2015-04-15

    Starting from the observation that one of the most successful methods for solving the Kohn–Sham equations for periodic systems – the plane-wave method – is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn–Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn–Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.

  2. A spectral scheme for Kohn-Sham density functional theory of clusters

    Science.gov (United States)

    Banerjee, Amartya S.; Elliott, Ryan S.; James, Richard D.

    2015-04-01

    Starting from the observation that one of the most successful methods for solving the Kohn-Sham equations for periodic systems - the plane-wave method - is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn-Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn-Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.

  3. A spectral scheme for Kohn–Sham density functional theory of clusters

    International Nuclear Information System (INIS)

    Banerjee, Amartya S.; Elliott, Ryan S.; James, Richard D.

    2015-01-01

    Starting from the observation that one of the most successful methods for solving the Kohn–Sham equations for periodic systems – the plane-wave method – is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn–Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn–Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed

  4. Principal Components Analysis on the spectral Bidirectional Reflectance Distribution Function of ceramic colour standards.

    Science.gov (United States)

    Ferrero, A; Campos, J; Rabal, A M; Pons, A; Hernanz, M L; Corróns, A

    2011-09-26

    The Bidirectional Reflectance Distribution Function (BRDF) is essential to characterize an object's reflectance properties. This function depends both on the various illumination-observation geometries as well as on the wavelength. As a result, the comprehensive interpretation of the data becomes rather complex. In this work we assess the use of the multivariable analysis technique of Principal Components Analysis (PCA) applied to the experimental BRDF data of a ceramic colour standard. It will be shown that the result may be linked to the various reflection processes occurring on the surface, assuming that the incoming spectral distribution is affected by each one of these processes in a specific manner. Moreover, this procedure facilitates the task of interpolating a series of BRDF measurements obtained for a particular sample. © 2011 Optical Society of America

  5. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: karol.kowalski@pnnl.gov; Bhaskaran-Nair, K.; Shelton, W. A. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352 (United States)

    2014-09-07

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function.

  6. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA; Bhaskaran-Nair, K. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA; Shelton, W. A. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA

    2014-09-07

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N - 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N - 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. Finally, as a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function.

  7. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    International Nuclear Information System (INIS)

    Kowalski, K.; Bhaskaran-Nair, K.; Shelton, W. A.

    2014-01-01

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function

  8. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry.

    Science.gov (United States)

    Aptel, Florent; Sayous, Romain; Fortoul, Vincent; Beccat, Sylvain; Denis, Philippe

    2010-12-01

    To evaluate and compare the regional relationships between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness as measured by spectral-domain optical coherence tomography (OCT) and scanning laser polarimetry. Prospective cross-sectional study. One hundred and twenty eyes of 120 patients (40 with healthy eyes, 40 with suspected glaucoma, and 40 with glaucoma) were tested on Cirrus-OCT, GDx VCC, and standard automated perimetry. Raw data on RNFL thickness were extracted for 256 peripapillary sectors of 1.40625 degrees each for the OCT measurement ellipse and 64 peripapillary sectors of 5.625 degrees each for the GDx VCC measurement ellipse. Correlations between peripapillary RNFL thickness in 6 sectors and visual field sensitivity in the 6 corresponding areas were evaluated using linear and logarithmic regression analysis. Receiver operating curve areas were calculated for each instrument. With spectral-domain OCT, the correlations (r(2)) between RNFL thickness and visual field sensitivity ranged from 0.082 (nasal RNFL and corresponding visual field area, linear regression) to 0.726 (supratemporal RNFL and corresponding visual field area, logarithmic regression). By comparison, with GDx-VCC, the correlations ranged from 0.062 (temporal RNFL and corresponding visual field area, linear regression) to 0.362 (supratemporal RNFL and corresponding visual field area, logarithmic regression). In pairwise comparisons, these structure-function correlations were generally stronger with spectral-domain OCT than with GDx VCC and with logarithmic regression than with linear regression. The largest areas under the receiver operating curve were seen for OCT superior thickness (0.963 ± 0.022; P polarimetry, and was better expressed logarithmically than linearly. Measurements with these 2 instruments should not be considered to be interchangeable. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Nuclear Terrorism and its Confrontation

    International Nuclear Information System (INIS)

    Al Barody, M.M.

    2006-01-01

    The whole world first knew nuclear terrorism during the second world war through the use of excessive violence that to terror exercised by one country against another, as was carried out by USA when it exploded two nuclear bombs over Hiroshima and Nagasaki t the end of the war. there are numerous types of nuclear terrorism that can be performed by individuals or organized groups for achieving political or social objectives. the definition of the term t errorism i s correlated with u sing means capable of creating a case of public dnger . that property exists in all types of direct or indirect nuclear terrorism . the present study is divided into two chapters. Chapter one deals with nuclear terrorism and consists of two sections , the first deals with the identification of the nature of nuclear terrorism an the second deals with organize nuclear terrorism on the international level. Chapter two deals with the confrontation of nuclear terrorism in two sections. the first deals with the role of the state in combating against nuclear terrorism nd the second deals with combating against nuclear terrorism on the international level. while internally it is confronted through promulgation of legislations that deal with the protection against nuclear terrorism as well as the national legal instruments for protection of nuclear materials and installation and combating illicit trafficking of nuclear materials, confrontation of nuclear terrorism on the international level is carried out through the promulgation of international convention such as that on suppression of actions of nuclear terrorism which shall be opened for signature on sept.14 -2005 according to the recommendation the general assembly of the united nations in its 59 t h session

  10. Games Based Study of Nonblind Confrontation

    Directory of Open Access Journals (Sweden)

    Yixian Yang

    2017-01-01

    Full Text Available Security confrontation is the second cornerstone of the General Theory of Security. And it can be divided into two categories: blind confrontation and nonblind confrontation between attackers and defenders. In this paper, we study the nonblind confrontation by some well-known games. We show the probability of winning and losing between the attackers and defenders from the perspective of channel capacity. We establish channel models and find that the attacker or the defender wining one time is equivalent to one bit transmitted successfully in the channel. This paper also gives unified solutions for all the nonblind confrontations.

  11. Navigating between Dialogue and Confrontation

    DEFF Research Database (Denmark)

    Thuesen, Frederik

    2011-01-01

    such as human rights and ethnic discrimination, issues that may involve strong emotions. Drawing inspiration from a qualitative methodology focusing on resistance and power, the article argues that in such situations the interviewer needs to integrate both dialogic and agonistic interview methodologies through...... phronesis, Aristotle’s concept of practical rationality. A phronetic approach, involving reflections on the link between reason and emotions, is well suited for handling both dialogue and confrontation in the interview process. Empirically, the paper draws on interviews with representatives of trade unions...... and employer organizations on the subject of human rights and ethnic discrimination in the Danish labor market....

  12. [Gastric cancer detection using kubelka-Munk spectral function of DNA and protein absorption bands].

    Science.gov (United States)

    Li, Lan-quan; Wei, Hua-jiang; Guo, Zhou-yi; Yang, Hong-qin; Xie, Shu-sen; Chen, Xue-mei; Li, Li-bo; He, Bol-hua; Wu, Guo-yong; Lu, Jian-jun

    2009-09-01

    Differential diagnosis for epithelial tissues of normal human gastric, undifferentiation gastric adenocarcinoma, gastric squamous cell carcinomas, and poorly differentiated gastric adenocarcinoma were studied using the Kubelka-Munk spectral function of the DNA and protein absorption bands at 260 and 280 nm in vitro. Diffuse reflectance spectra of tissue were measured using a spectrophotometer with an integrating sphere attachment. The results of measurement showed that for the spectral range from 250 to 650 nm, pathological changes of gastric epithelial tissues induced that there were significant differences in the averaged value of the Kubelka-Munk function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the DNA absorption bands at 260 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 68.5% (p function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the protein absorption bands at 280 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 86.8% (p function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the carotene absorption bands at 480 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 59.5% (p < 0.05), 73% (p < 0

  13. Rank-shaping regularization of exponential spectral analysis for application to functional parametric mapping

    International Nuclear Information System (INIS)

    Turkheimer, Federico E; Hinz, Rainer; Gunn, Roger N; Aston, John A D; Gunn, Steve R; Cunningham, Vincent J

    2003-01-01

    Compartmental models are widely used for the mathematical modelling of dynamic studies acquired with positron emission tomography (PET). The numerical problem involves the estimation of a sum of decaying real exponentials convolved with an input function. In exponential spectral analysis (SA), the nonlinear estimation of the exponential functions is replaced by the linear estimation of the coefficients of a predefined set of exponential basis functions. This set-up guarantees fast estimation and attainment of the global optimum. SA, however, is hampered by high sensitivity to noise and, because of the positivity constraints implemented in the algorithm, cannot be extended to reference region modelling. In this paper, SA limitations are addressed by a new rank-shaping (RS) estimator that defines an appropriate regularization over an unconstrained least-squares solution obtained through singular value decomposition of the exponential base. Shrinkage parameters are conditioned on the expected signal-to-noise ratio. Through application to simulated and real datasets, it is shown that RS ameliorates and extends SA properties in the case of the production of functional parametric maps from PET studies

  14. Bayesian Approach to Spectral Function Reconstruction for Euclidean Quantum Field Theories

    Science.gov (United States)

    Burnier, Yannis; Rothkopf, Alexander

    2013-11-01

    We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the maximum entropy method. We present a realistic test of our method in the context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD correlators from a previous study and provide an improved potential estimation at T=2.33TC.

  15. Spectral function and quark diffusion constant in non-critical holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bu Yanyan, E-mail: yybu@itp.ac.cn [Institute of Theoretical Physics, Academia Sinica, Beijing 100190 (China); Yang Jinmin, E-mail: jmyang@itp.ac.cn [Institute of Theoretical Physics, Academia Sinica, Beijing 100190 (China)

    2012-02-11

    Motivated by recent studies of intersecting D-brane systems in critical string theory and phenomenological AdS/QCD models, we present a detailed analysis for the vector and scalar fluctuations in a non-critical holographic QCD model in the high temperature phase, i.e., the chiral symmetric phase. This model is described by N{sub f} pairs of D4 and D4{sup Macron} probe branes in a non-critical AdS{sub 6} black hole background. Focusing on the hydrodynamic as well as the high frequency limit, we analytically obtain spectral functions for vector and scalar modes on the flavor probe. Then we extract the light quark diffusion constant for flavor current using three different methods and find that different methods give the same results. We also compute the heavy quark diffusion constant for comparison with the light quark case.

  16. Quarkonium spectral function in medium at next-to-leading order for any quark mass

    International Nuclear Information System (INIS)

    Burnier, Yannis

    2015-01-01

    The vector channel spectral function at zero spatial momentum is calculated at next-to-leading order in thermal QCD for any quark mass. It corresponds to the imaginary part of the massive quark contribution to the photon polarisation tensor. The spectrum shows a well-defined transport peak in contrast to both the heavy quark limit studied previously, where the low frequency domain is exponentially suppressed at this order, and the naive massless case where it vanishes at leading order and diverges at next-to-leading order. From our general expressions, the massless limit can be taken and we show that no divergences occur if done carefully. Finally, we compare the massless limit to results from lattice simulations. (orig.)

  17. Study of $\\tau$ decays involving kaons, spectral functions and determination of the strange quark mass

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Lees, J.P.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Alemany, R.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Park, I.C.; Riu, I.; Colaleo, A.; Creanza, D.; De Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Boix, G.; Cattaneo, M.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Tournefier, E.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Teixeira-Dias, P.; Thompson, A.S.; Buchmuller, O.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Goodsir, S.; Martin, E.B.; Marinelli, N.; Sedgbeer, J.K.; Spagnolo, P.; Thomson, Evelyn J.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A.P.; Bowdery, C.K.; Buck, P.G.; Colrain, P.; Crawford, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Williams, M.I.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; van Gemmeren, P.; Wachsmuth, H.; Zeitnitz, C.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Etienne, F.; Motsch, F.; Payre, P.; Talby, M.; Thulasidas, M.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Buescher, Volker; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Hocker, Andreas; Jacholkowska, A.; Kim, D.W.; Le Diberder, F.; Lefrancois, J.; Lutz, A.M.; Schune, M.H.; Veillet, J.J.; Videau, I.; Zerwas, D.; Bagliesi, Giuseppe; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Ferrante, I.; Foa, L.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Cowan, G.; Green, M.G.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Thompson, J.C.; Bloch-Devaux, Brigitte; Colas, P.; Emery, S.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S.N.; Dann, J.H.; Johnson, R.P.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Kelly, M.S.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Prange, G.; Giannini, G.; Gobbo, B.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Charles, E.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Greening, T.C.; Hayes, O.J.; Hu, H.; Jin, S.; McNamara, P.A., III; Nachtman, J.M.; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    1999-01-01

    All ALEPH measurements of branching ratios of tau decays involving kaons are summarized including a combination of results obtained with K^0_S and K^0_L detection. The decay dynamics are studied, leading to the determination of contributions from vector K^*(892) and K^{*}(1410), and axial-vector K_1(1270) and K_1(1400) resonances. Agreement with isospin symmetry is observed among the different final states. Under the hypothesis of the conserved vector current, the spectral function for the K\\bar{K}\\pi mode is compared with the corresponding cross section for low energy e^+e^- annihilation, yielding an axial-vector fraction of (94^{+6}_{-8})% for this mode. The branching ratio for tau decay into all strange final states is determined to be B(\\tau^-\\to X^-(S=-1)\

  18. Non-canonical spectral decomposition of random functions of the traction voltage and current in electric transportation systems

    Directory of Open Access Journals (Sweden)

    N.A. Kostin

    2015-03-01

    Full Text Available The paper proposes the non-canonical spectral decomposition of random functions of the traction voltages and currents. This decomposition is adapted for the electric transportation systems. The numerical representation is carried out for the random function of voltage on the pantograph of electric locomotives VL8 and DE1.

  19. Enhanced spectral domain optical coherence tomography for pathological and functional studies

    Science.gov (United States)

    Yuan, Zhijia

    Optical coherence tomography (OCT) is a novel technique that enables noninvasive or minimally invasive, cross-sectional imaging of biological tissue at sub-10mum spatial resolution and up to 2-3mm imaging depth. Numerous technological advances have emerged in recent years that have shown great potential to develop OCT into a powerful imaging and diagnostic tools. In particular, the implementation of Fourier-domain OCT (FDOCT) is a major step forward that leads to greatly improved imaging rate and image fidelity of OCT. This dissertation summarizes the work that focuses on enhancing the performances and functionalities of spectral radar based FDOCT (SDOCT) for pathological and functional applications. More specifically, chapters 1-4 emphasize on the development of SDOCT and its utility in pathological studies, including cancer diagnosis. The principle of SDOCT is first briefly outlined, followed by the design of our bench-top SDOCT systems with emphasis on spectral linear interpolation, calibration and system dispersion compensation. For ultrahigh-resolution SDOCT, time-lapse image registration and frame averaging is introduced to effectively reduce speckle noise and uncover subcellular details, showing great promise for enhancing the diagnosis of carcinoma in situ. To overcome the image depth limitation of OCT, a dual-modal imaging method combing SDOCT with high-frequency ultrasound is proposed and examined in animal cancer models to enhance the sensitivity and staging capabilities for bladder cancer diagnosis. Chapters 5-7 summarize the work on developing Doppler SDOCT for functional studies. Digital-frequency-ramping OCT (DFR-OCT) is developed in the study, which has demonstrated the ability to significantly improve the signal-to-noise ratio and thus sensitivity for retrieving subsurface blood flow imaging. New DFR algorithms and imaging processing methods are discussed to further enhance cortical CBF imaging. Applications of DFR-OCT for brain functional studies

  20. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    International Nuclear Information System (INIS)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-01-01

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene

  1. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions.

    Science.gov (United States)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-14

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  2. Confronting the stigma of epilepsy

    Directory of Open Access Journals (Sweden)

    Sanjeev V Thomas

    2011-01-01

    Full Text Available Stigma and resultant psychosocial issues are major hurdles that people with epilepsy confront in their daily life. People with epilepsy, particularly women, living in economically weak countries are often ill equipped to handle the stigma that they experience at multiple levels. This paper offers a systematic review of the research on stigma from sociology and social psychology and details how stigma linked to epilepsy or similar conditions can result in stereotyping, prejudice and discrimination. We also briefly discuss the strategies that are most commonly utilized to mitigate stigma. Neurologists and other health care providers, social workers, support groups and policy makers working with epilepsy need to have a deep understanding of the social and cultural perceptions of epilepsy and the related stigma. It is necessary that societies establish unique determinants of stigma and set up appropriate strategies to mitigate stigma and facilitate the complete inclusion of people with epilepsy as well as mitigating any existing discrimination.

  3. Education confronts the energy dilemma

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The conference was convened to present a role that America's schools could play in solving or coping with the energy crisis. Eleven sessions were conducted to fulfill this concern: Our Energy Crisis and Education: A Critical Assessment; The Energy Agenda at the Office of Education; Energy Resources: Scenarios for the Future; The Moral Dilemma of Energy Education; Constraints Influencing Education's Role; Energy Education: What's Been Done to Date; Practitioners Discuss Their Future Roles, Responsibilities; Politics of Energy Education; Confronting the Energy Dilemma; The Meaning of Scarcity; and The Impact of the Carter Energy Program on American Schools. Summary reports and reactions to the conference conclude the proceedings. (MCW)

  4. Measurement of the lepton {tau} spectral functions and applications to quantum chromodynamic; Mesure des fonctions spectrales du lepton {tau} et applications a la chromodynamique quantique

    Energy Technology Data Exchange (ETDEWEB)

    Hoecker, A [Paris-11 Univ., 91 - Orsay (France). Lab. de l' Accelerateur Lineaire; [Universite de Paris Sud, 91 - Orsay (France)

    1997-04-18

    This thesis presents measurements of the {tau} vector (V) and axial-vector (A) hadronic spectral functions and phenomenological studies in the framework of quantum chromodynamics (QCD). Using the hypothesis of conserved vector currents (CVC), the dominant two- and four-pion vector spectral functions are compared to the corresponding cross sections from e{sup +}e{sup -} annihilation. A combined fit of the pion form factor from {tau} decays and e{sup +}e{sup -} data is performed using different parametrizations. The mass and the width of the {rho}{sup {+-}}(770) and the {rho}{sup 0}(770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M{sub {rho}{sup {+-}}{sub (770)} - M{sub {rho}{sup 0}}{sub (770)}=(0.0{+-}1.0) MeV/c{sup 2} and {gamma}{sub {rho}{sup {+-}}{sub (770)} - {gamma}{sub {rho}{sup 0}}{sub (770)}=(0.1 {+-} 1.9) MeV/c{sup 2}. Several QCD chiral sum rules involving the difference (V - A) of the spectral functions are compared to their measurements. The Borel-transformed Das-Mathur-Okubo sum rule is used to measure the pion polarizability to be {alpha}{sub E}=(2.68{+-}0.91) x 10{sup -4} fm{sup 3}. The {tau} vector and axial-vector hadronic widths and certain spectral moments are exploited to measure {alpha}{sub s} and non-perturbative contributions at the {tau} mass scale. The best, and experimentally and theoretically most robust, determination of {alpha}{sub s}(M{sub {tau}}) is obtained from the inclusive (V + A) fit that yields {alpha}{sub s}(M{sub {tau}})= 0.348{+-}0.017 giving {alpha}{sub s}(M{sub Z})=0.1211 {+-} 0.0021 after the evolution to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally by means of an evolution of the {tau} hadronic width to masses smaller that the {tau} mass. Using the difference (V - A) of the spectral functions allows one to directly measure the dominant non-perturbative OPE dimension to be D=6

  5. Assessing a learning process with functional ANOVA estimators of EEG power spectral densities.

    Science.gov (United States)

    Gutiérrez, David; Ramírez-Moreno, Mauricio A

    2016-04-01

    We propose to assess the process of learning a task using electroencephalographic (EEG) measurements. In particular, we quantify changes in brain activity associated to the progression of the learning experience through the functional analysis-of-variances (FANOVA) estimators of the EEG power spectral density (PSD). Such functional estimators provide a sense of the effect of training in the EEG dynamics. For that purpose, we implemented an experiment to monitor the process of learning to type using the Colemak keyboard layout during a twelve-lessons training. Hence, our aim is to identify statistically significant changes in PSD of various EEG rhythms at different stages and difficulty levels of the learning process. Those changes are taken into account only when a probabilistic measure of the cognitive state ensures the high engagement of the volunteer to the training. Based on this, a series of statistical tests are performed in order to determine the personalized frequencies and sensors at which changes in PSD occur, then the FANOVA estimates are computed and analyzed. Our experimental results showed a significant decrease in the power of [Formula: see text] and [Formula: see text] rhythms for ten volunteers during the learning process, and such decrease happens regardless of the difficulty of the lesson. These results are in agreement with previous reports of changes in PSD being associated to feature binding and memory encoding.

  6. Mesonic correlation functions from light quarks and their spectral representation in hot quenched lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Wissel, S.

    2006-10-15

    In this thesis we investigate thermal in-medium modifications of various mesonic correlation functions by lattice simulations of Quantum Chromodynamics for light valence quark masses and vanishing chemical potential. Mesonic properties are typically extracted from spatial correlation functions. The results presented are based on quenched gauge field configurations generated with the standard Wilson plaquette gauge action. Concerning the fermionic part of the action, we use the non-perturbative O(a) improved Sheikholeslami-Wohlert as well as the truncated hypercube perfect action. Furthermore we utilize the maximum entropy method in order to determine physically relevant pole masses and to investigate thermal modifications of physical states and possible lattice artefacts in the interacting case. The analyses of pole and screening masses, dispersion relations, wave functions, decay constants and spectral functions essentially yield no significant modifications of the zero-temperature behavior up to 0.55 T{sub c}. Close to the phase transition in-medium effects seem to appear, which lead inter alia to significant differences between pole and screening masses. The decay constants are in good agreement with the experimental values. We have simulated above T{sub c} at nearly zero quark masses. At 1.24 T{sub c}, the occurrence of topological effects, a sign for the presence of a still broken U(1){sub A} symmetry, prevent a more thorough analyses close to the phase transition. A complete continuum and infinite volume extrapolation of screening masses, guided by free lattice effective masses is done. It shows that the presence of collective phenomena at 1.5 and 3 T{sub c} cannot be explained by pure lattice artefacts. Unlike the vector meson the pion is far from being considered an unbound state. (orig.)

  7. Mesonic correlation functions from light quarks and their spectral representation in hot quenched lattice QCD

    International Nuclear Information System (INIS)

    Wissel, S.

    2006-10-01

    In this thesis we investigate thermal in-medium modifications of various mesonic correlation functions by lattice simulations of Quantum Chromodynamics for light valence quark masses and vanishing chemical potential. Mesonic properties are typically extracted from spatial correlation functions. The results presented are based on quenched gauge field configurations generated with the standard Wilson plaquette gauge action. Concerning the fermionic part of the action, we use the non-perturbative O(a) improved Sheikholeslami-Wohlert as well as the truncated hypercube perfect action. Furthermore we utilize the maximum entropy method in order to determine physically relevant pole masses and to investigate thermal modifications of physical states and possible lattice artefacts in the interacting case. The analyses of pole and screening masses, dispersion relations, wave functions, decay constants and spectral functions essentially yield no significant modifications of the zero-temperature behavior up to 0.55 T c . Close to the phase transition in-medium effects seem to appear, which lead inter alia to significant differences between pole and screening masses. The decay constants are in good agreement with the experimental values. We have simulated above T c at nearly zero quark masses. At 1.24 T c , the occurrence of topological effects, a sign for the presence of a still broken U(1) A symmetry, prevent a more thorough analyses close to the phase transition. A complete continuum and infinite volume extrapolation of screening masses, guided by free lattice effective masses is done. It shows that the presence of collective phenomena at 1.5 and 3 T c cannot be explained by pure lattice artefacts. Unlike the vector meson the pion is far from being considered an unbound state. (orig.)

  8. Assessing spectral and temporal processing in children and adults using temporal modulation transfer function (TMTF), Iterated Ripple Noise (IRN) perception, and spectral ripple discrimination (SRD).

    Science.gov (United States)

    Peter, Varghese; Wong, Kogo; Narne, Vijaya Kumar; Sharma, Mridula; Purdy, Suzanne C; McMahon, Catherine

    2014-02-01

    There are many clinically available tests for the assessment of auditory processing skills in children and adults. However, there is limited data available on the maturational effects on the performance on these tests. The current study investigated maturational effects on auditory processing abilities using three psychophysical measures: temporal modulation transfer function (TMTF), iterated ripple noise (IRN) perception, and spectral ripple discrimination (SRD). A cross-sectional study. Three groups of subjects were tested: 10 adults (18-30 yr), 10 older children (12-18 yr), and 10 young children (8-11 yr) Temporal envelope processing was measured by obtaining thresholds for amplitude modulation detection as a function of modulation frequency (TMTF; 4, 8, 16, 32, 64, and 128 Hz). Temporal fine structure processing was measured using IRN, and spectral processing was measured using SRD. The results showed that young children had significantly higher modulation thresholds at 4 Hz (TMTF) compared to the other two groups and poorer SRD scores compared to adults. The results on IRN did not differ across groups. The results suggest that different aspects of auditory processing mature at different age periods and these maturational effects need to be considered while assessing auditory processing in children. American Academy of Audiology.

  9. Universality of many-body two-nucleon momentum distributions: Correlated nucleon spectral function of complex nuclei

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Morita, Hiko

    2017-12-01

    Background: The nuclear spectral function is a fundamental quantity that describes the mean-field and short-range correlation dynamics of nucleons embedded in the nuclear medium; its knowledge is a prerequisite for the interpretation of various electroweak scattering processes off nuclear targets aimed at providing fundamental information on strong and weak interactions. Whereas in the case of the three-nucleon and, partly, the four-nucleon systems, the spectral function can be calculated ab initio within a nonrelativistic many-body Schroedinger approach, in the case of complex nuclei only models of the correlated, high-momentum part of the spectral function are available so far. Purpose: The purpose of this paper is to present a new approach such that the spectral function for a specific nucleus can be obtained from a reliable many-body calculation based upon realistic nucleon-nucleon interactions, thus avoiding approximations leading to adjustable parameters. Methods: The expectation value of the nuclear many-body Hamiltonian, containing realistic nucleon-nucleon interaction of the Argonne family, is evaluated variationally by a normalization-conserving linked-cluster expansion and the resulting many-body correlated wave functions are used to calculate the one-nucleon and the two-nucleon momentum distributions; by analyzing the high-momentum behavior of the latter, the spectral function can be expressed in terms of a transparent convolution formula involving the relative and center-of-mass (c.m.) momentum distributions in specific regions of removal energy E and momentum k . Results: It is found that as a consequence of the factorization of the many-body wave functions at short internucleon separations, the high-momentum behavior of the two-nucleon momentum distributions in A =3 ,4 ,12 ,16 ,40 nuclei factorizes, at proper values of the relative and c.m. momenta, into the c.m. and relative momentum distributions, with the latter exhibiting a universal A

  10. Finite-temperature gluon spectral functions from N{sub f} = 2+1+1 lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ilgenfritz, Ernst-Michael; Trunin, Anton [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Pawlowski, Jan M. [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung mbH, Darmstadt (Germany); Rothkopf, Alexander [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany)

    2018-02-15

    We investigate gluon correlation functions and spectral functions at finite temperature in Landau gauge on lattice QCD ensembles with N{sub f} = 2+1+1 dynamical twisted-mass quarks flavors, generated by the tmfT collaboration. They cover a temperature range from 0.8 ≤ T/T{sub C} ≤ 4 using the fixed-scale approach. Our study of spectral properties is based on a novel Bayesian approach for the extraction of non-positive-definite spectral functions. For each binned spatial momentum we take into account the gluon correlation functions at all available discrete imaginary frequencies. Clear indications for the existence of a well defined quasi-particle peak are obtained. Due to a relatively small number of imaginary frequencies available, we focus on the momentum and temperature dependence of the position of this spectral feature. The corresponding dispersion relation reveals different in-medium masses for longitudinal and transversal gluons at high temperatures, qualitatively consistent with weak coupling expectations. (orig.)

  11. Speech recognition in normal hearing and sensorineural hearing loss as a function of the number of spectral channels

    NARCIS (Netherlands)

    Baskent, Deniz

    Speech recognition by normal-hearing listeners improves as a function of the number of spectral channels when tested with a noiseband vocoder simulating cochlear implant signal processing. Speech recognition by the best cochlear implant users, however, saturates around eight channels and does not

  12. Confronting shibboleths of dental education.

    Science.gov (United States)

    Masella, Richard S

    2005-10-01

    Shibboleths are common expressions presented as indisputable truths. When used in educational discussions, they reflect "motherhood and apple pie" viewpoints and tend to bring debate to a halt. Use of shibboleths may precede a desired imposition of "locksteps" in educational programming and are easily perceived as paternalistic by recipients. Nine shibboleths are presented as common beliefs of dental faculty and administrators. Evidence contradicting the veracity of the "obvious truths" is offered. The traditional "splendid isolation" of dentistry contributes to parochialism and belief in false shibboleths. Sound principles of higher and health professions education, student learning, and dental practice apply to dental education as to all health disciplines. Student passivity in dental education is not the best preparation for proficiency in dental practice. The master teacher possesses a repertoire of methodologies specific to meeting defined educational objectives. Active learning experiences bear close resemblances to professional duties and responsibilities and internally motivate future doctors of dental medicine. The difficulty in achieving curricular change leads to curricular entrenchment. Dentistry and dental education should not trade their ethical high ground for the relatively low ethical standards of the business world. Principles of professional ethics should govern relationships between dentists, whether within the dental school workplace or in practice. Suggestions are made on how to confront shibboleths in dental school settings.

  13. Emergency Managers Confront Climate Change

    Directory of Open Access Journals (Sweden)

    John R. Labadie

    2011-08-01

    Full Text Available Emergency managers will have to deal with the impending, uncertain, and possibly extreme effects of climate change. Yet, many emergency managers are not aware of the full range of possible effects, and they are unsure of their place in the effort to plan for, adapt to, and cope with those effects. This may partly reflect emergency mangers’ reluctance to get caught up in the rancorous—and politically-charged—debate about climate change, but it mostly is due to the worldview shared by most emergency managers. We focus on: extreme events; acute vs. chronic hazards (floods vs. droughts; a shorter event horizon (5 years vs. 75–100 years; and a shorter planning and operational cycle. This paper explores the important intersection of emergency management, environmental management, and climate change mitigation and adaptation. It examines the different definitions of terms common to all three fields, the overlapping strategies used in all three fields, and the best means of collaboration and mutual re-enforcement among the three to confront and solve the many possible futures that we may face in the climate change world.

  14. Bosonic Spectral Function and the Electron-Phonon Interaction in HTSC Cuprates

    International Nuclear Information System (INIS)

    Maksimov, E. G.; Tamm, I. E.; Kulic, M.L.; Kulic, M.L.; Dolgov, O. V.

    2010-01-01

    In this paper we discuss experimental evidence related to the structure and origin of the bosonic spectral function a2F(ο) in high-temperature superconducting (HTSC) cuprates at and near optimal doping. Global properties of a2F(ο), such as number and positions of peaks, are extracted by combining optics, neutron scattering, ARPES and tunnelling measurements. These methods give evidence for strong electron-phonon interaction (EPI) with 1<λep <3.5 in cuprates near optimal doping. We clarify how these results are in favor of the modified Migdal-Eliashberg (ME) theory for HTSC cuprates near optimal doping. In Section 2 we discuss theoretical ingredients such as strong EPI, strong correlations which are necessary to explain the mechanism of d-wave pairing in optimally doped cuprates. These comprise the ME theory for EPI in strongly correlated systems which give rise to the forward scattering peak. The latter is supported by the long-range part of EPI due to the weakly screened Madelung interaction in the ionic-metallic structure of layered HTSC cuprates. In this approach EPI is responsible for the strength of pairing while the residual Coulomb interaction and spin fluctuations trigger the d-wave pairing.

  15. THE X-RAY POWER SPECTRAL DENSITY FUNCTION OF THE SEYFERT ACTIVE GALACTIC NUCLEUS NGC 7469

    International Nuclear Information System (INIS)

    Markowitz, A.

    2010-01-01

    We present the broadband X-ray power spectral density (PSD) function of the X-ray-luminous Seyfert 1.2 NGC 7469, measured from Rossi X-ray Timing Explorer monitoring data and two XMM-Newton observations. We find significant evidence for a turnover in the 2-10 keV PSD at a temporal frequency of 2.0 +3.0 -0.8 x 10 -6 Hz or 1.0 +3.0 -0.6 x 10 -6 Hz, depending on the exact form of the break (sharply broken or slowly bending power law, respectively). The 'surrogate' Monte Carlo method of Press et al. was used to map out the probability distributions of PSD model parameters and obtain reliable uncertainties (68% confidence limits quoted here). The corresponding break timescale of 5.8 ± 3.5 days or 11.6 +17.5 -8.7 days, respectively, is consistent with the empirical relation between PSD break timescale, black hole mass, and bolometric luminosity of McHardy et al. Compared to the 2-10 keV PSD, the 10-20 keV PSD has a much flatter shape at high temporal frequencies, and no PSD break is significantly detected, suggesting an energy-dependent evolution not unlike that exhibited by several Galactic black hole systems.

  16. Temperature-dependent dielectric function of germanium in the UV–vis spectral range: A first-principles study

    International Nuclear Information System (INIS)

    Yang, J.Y.; Liu, L.H.; Tan, J.Y.

    2014-01-01

    The study of temperature dependence of thermophysical parameter dielectric function is key to understanding thermal radiative transfer in high-temperature environments. Limited by self-radiation and thermal oxidation, however, it is difficult to directly measure the high-temperature dielectric function of solids with present experimental technologies. In this work, we implement two first-principles methods, the ab initio molecular dynamics (AIMD) and density functional perturbation theory (DFPT), to study the temperature dependence of dielectric function of germanium (Ge) in the UV–vis spectral range in order to provide data of high-temperature dielectric function for radiative transfer study in high-temperature environments. Both the two methods successfully predict the temperature dependence of dielectric function of Ge. Moreover, the good agreement between the calculated results of the AIMD approach and experimental data at 825 K enables us to predict the high-temperature dielectric function of Ge with the AIMD method in the UV–vis spectral range. - Highlights: • The temperature dependence of dielectric function of germanium (Ge) is investigated with two first-principles methods. • The temperature effect on dielectric function of Ge is discussed. • The high-temperature dielectric function of Ge is predicted

  17. Proceedings of RIKEN BNL Research Center Workshop: Understanding QGP through Spectral Functions and Euclidean Correlators (Volume 89)

    International Nuclear Information System (INIS)

    Mocsy, A.; Petreczky, P.

    2008-01-01

    In the past two decades, one of the most important goals of the nuclear physics community has been the production and characterization of the new state of matter--Quark-Gluon Plasma (QGP). Understanding how properties of hadrons change in medium, particularly, the bound state of a very heavy quark and its antiquark, known as quarkonium, as well as determining the transport coefficients is crucial for identifying the properties of QGP and for the understanding of the experimental data from RHIC. On April 23rd, more than sixty physicists from twenty-seven institutions gathered for this three-day topical workshop held at BNL to discuss how to understand the properties of the new state of matter obtained in ultra-relativistic heavy ion collisions (particularly at RHIC-BNL) through spectral functions. In-medium properties of the different particle species and the transport properties of the medium are encoded in spectral functions. The former could yield important signatures of deconfinement and chiral symmetry restoration at high temperatures and densities, while the later are crucial for the understanding of the dynamics of ultra-relativistic heavy ion collisions. Participants at the workshop are experts in various areas of spectral function studies. The workshop encouraged direct exchange of scientific information among experts, as well as between the younger and the more established scientists. The workshops success is evident from the coherent picture that developed of the current understanding of transport properties and in-medium particle properties, illustrated in the current proceedings. The following pages show calculations of meson spectral functions in lattice QCD, as well as implications of these for quarkonia melting/survival in the quark gluon plasma; Lattice calculations of the transport coefficients (shear and bulk viscosities, electric conductivity); Calculation of spectral functions and transport coefficients in field theories using weak coupling

  18. Spectral function calculation of angle wakes, wake moments, and misalignment wakes for the SLAC Damped Detuned Structures (DDS)

    International Nuclear Information System (INIS)

    Jones, R.M.; Miller, R.H.; Kroll, N.M.

    1997-05-01

    Transverse wake functions so far reported for the SLAC DDS have been limited to those caused by uniform offset of the drive beam in a straight perfectly aligned structure. The complete description of the betatron oscillations of wake coupled bunches requires an array of wake functions, referred to as moments. Modifications of these arrays induced by structure misalignments are also of interest. In this paper we express the array elements in terms of a spectral function array. Examples are given based upon DDS1

  19. Confronting New Demands : Inclusive Growth, Inclusive Trade ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Confronting New Demands : Inclusive Growth, Inclusive Trade. Policymakers, businesspeople and civil society advocates need evidence-based research to react ... understood implications, such as labour standards and intellectual property; ...

  20. Asymptotic formula for the Riesz means of the spectral functions of Laplace-Beltrami operator on unit sphere

    Science.gov (United States)

    Fadly Nurullah Rasedee, Ahmad; Ahmedov, Anvarjon; Sathar, Mohammad Hasan Abdul

    2017-09-01

    The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.

  1. Temporal dynamics of spectral bioindicators evidence biological and ecological differences among functional types in a cork oak open woodland

    Science.gov (United States)

    Cerasoli, Sofia; Costa e Silva, Filipe; Silva, João M. N.

    2016-06-01

    The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus ( Cistus salviifolius) and ulex ( Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence ( ΔF/ Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.

  2. Quantitative functional optical imaging of the human skin using multi-spectral imaging

    International Nuclear Information System (INIS)

    Kainerstorfer, J. M.

    2010-01-01

    Light tissue interactions can be described by the physical principles of absorption and scattering. Based on those parameters, different tissue types and analytes can be distinguished. Extracting blood volume and oxygenation is of particular interest in clinical routines for tumor diagnostics and treatment follow up, since they are parameters of angiogenic processes. The quantification of those analytes in tissue can be done by physical modeling of light tissue interaction. The physical model used here is the random walk theory. However, for quantification and clinical usefulness, one has to account for multiple challenges. First, one must consider the effect of topology of the sample on measured physical parameters. Second, diffusion of light inside the tissue is dependent on the structure of the sample imaged. Thus, the structural conformation has to be taken into account. Third, clinical translation of imaging modalities is often hindered due to the complicated post-processing of data, not providing results in real-time. In this thesis, two imaging modalities are being utilized, where the first one, diffuse multi-spectral imaging, is based on absorption contrast and spectral characteristics and the second one, Optical Coherence Tomography (OCT), is based on scattering changes within the tissue. Multi-spectral imaging can provide spatial distributions of blood volume and blood oxygenation and OCT yields 3D structural images with micrometer resolution. In order to address the challenges mentioned above, a curvature correction algorithm for taking the topology into account was developed. Without taking curvature of the object into account, reconstruction of optical properties is not accurate. The method developed removes this artifact and recovers the underlying data, without the necessity of measuring the object's shape. The next step was to recover blood volume and oxygenation values in real time. Principal Component Analysis (PCA) on multi spectral images is

  3. Recognizing, Confronting, and Eliminating Workplace Bullying.

    Science.gov (United States)

    Berry, Peggy Ann; Gillespie, Gordon L; Fisher, Bonnie S; Gormley, Denise K

    2016-07-01

    Workplace bullying (WPB) behaviors negatively affect nurse productivity, satisfaction, and retention, and hinder safe patient care. The purpose of this article is to define WPB, differentiate between incivility and WPB, and recommend actions to prevent WPB behaviors. Informed occupational and environmental health nurses and nurse leaders must recognize, confront, and eliminate WPB in their facilities and organizations. Recognizing, confronting, and eliminating WPB behaviors in health care is a crucial first step toward sustained improvements in patient care quality and the health and safety of health care employees. © 2016 The Author(s).

  4. Confronting new technological challenges in HEP

    International Nuclear Information System (INIS)

    Savoy-Navarro, Aurore

    2000-01-01

    The new technological challenges that will have to be confronted in HEP are mainly due to the new physics issues. What is beyond the standard model? That is the question. This review will first list the physics demands in order to explore this unknown world. It will then show with appropriate examples, how the new physics will require confronting new technological challenges in: designing new accelerators, developing new detectors, designing new front-end readout systems and using the new software and hardware tools for the online readout and DAQ systems

  5. Diversification of non-visual photopigment parapinopsin in spectral sensitivity for diverse pineal functions.

    Science.gov (United States)

    Koyanagi, Mitsumasa; Wada, Seiji; Kawano-Yamashita, Emi; Hara, Yuichiro; Kuraku, Shigehiro; Kosaka, Shigeaki; Kawakami, Koichi; Tamotsu, Satoshi; Tsukamoto, Hisao; Shichida, Yoshinori; Terakita, Akihisa

    2015-09-15

    Recent genome projects of various animals have uncovered an unexpectedly large number of opsin genes, which encode protein moieties of photoreceptor molecules, in most animals. In visual systems, the biological meanings of this diversification are clear; multiple types of visual opsins with different spectral sensitivities are responsible for color vision. However, the significance of the diversification of non-visual opsins remains uncertain, in spite of the importance of understanding the molecular mechanism and evolution of varied non-visual photoreceptions. Here, we investigated the diversification of the pineal photopigment parapinopsin, which serves as the UV-sensitive photopigment for the pineal wavelength discrimination in the lamprey, linking it with other pineal photoreception. Spectroscopic analyses of the recombinant pigments of the two teleost parapinopsins PP1 and PP2 revealed that PP1 is a UV-sensitive pigment, similar to lamprey parapinopsin, but PP2 is a blue-sensitive pigment, with an absorption maximum at 460-480 nm, showing the diversification of non-visual pigment with respect to spectral sensitivity. We also found that PP1 and PP2 exhibit mutually exclusive expressions in the pineal organs of three teleost species. By using transgenic zebrafish in which these parapinopsin-expressing cells are labeled, we found that PP1-expressing cells basically possess neuronal processes, which is consistent with their involvement in wavelength discrimination. Interestingly, however, PP2-expressing cells rarely possess neuronal processes, raising the possibility that PP2 could be involved in non-neural responses rather than neural responses. Furthermore, we found that PP2-expressing cells contain serotonin and aanat2, the key enzyme involved in melatonin synthesis from serotonin, whereas PP1-expressing cells do not contain either, suggesting that blue-sensitive PP2 is instead involved in light-regulation of melatonin secretion. In this paper, we have clearly

  6. Macroeconomic Issues Confronting the Next President.

    Science.gov (United States)

    Solow, Robert M.

    1988-01-01

    Identifies economic issues that confronted the United States in the late 1980's and discusses how the president might deal with them. Highlights the following issues: recession, rising price levels, the budget deficit, international trade imbalance, and revival of U.S. long-term growth. (GEA)

  7. Confronting the neoliberal and libertarian reconceptualisations of ...

    African Journals Online (AJOL)

    Confronting this phenomenon, this paper reviews neoliberal and libertarian understandings of educational equality and democratic education and interrogates the rationale for the justification of markets in education. In the process, I criticise the notion of possessive individualism as a principle of democratic education on the ...

  8. Strong correlation effects on the d-wave superconductor- spectral weight analysis by variational wave functions

    International Nuclear Information System (INIS)

    Chou, C-P; Lee, T K; Ho, C-M

    2009-01-01

    We examine the strong correlation effects of the d-wave superconducting state by including the Gutzwiller projection for no electron double occupancy at each lattice site. The spectral weights (SW's) for adding and removing an electron on the projected superconducting state, the ground state of the 2-dimensional t-t'-t - J model with moderate doped holes describing the high T c cuprates, are studied numerically on finite lattices and compared with the observation made by low-temperature tunneling (particle asymmetry of tunneling conductance) and angle-resolved photoemission (SW transfer from the projected Fermi liquid state) spectroscopies. The contrast with the d-wave case without projection is alo presented.

  9. Special values of the spectral zeta function of the non-commutative harmonic oscillator and confluent Heun equations

    CERN Document Server

    Ichinose, T

    2004-01-01

    We study the special values at $s=2$ and $3$ of the spectral zeta function $\\zeta_Q(s)$ of the non-commutative harmonic oscillator $Q(x,D_x)$ introduced in \\cite{PW1, 2}. It is shown that the series defining $\\zeta_Q(s)$ converges absolutely for Re $s>1$ and further the respective values $\\zeta_Q(2)$ and $\\zeta_Q(3)$ are represented essentially by contour integrals of the solutions, respectively, of a singly confluent Heun's ordinary differential equation and of exactly the same but an inhomogeneous equation. As a by-product of these results, we obtain integral representations of the solutions of these equations by rational functions. \\par\

  10. Spectral analysis of non-self-adjoint Jacobi operator associated with Jacobian elliptic functions

    Czech Academy of Sciences Publication Activity Database

    Siegl, Petr; Štampach, F.

    2017-01-01

    Roč. 11, č. 4 (2017), s. 901-928 ISSN 1846-3886 Grant - others:GA ČR(CZ) GA13-11058S Institutional support: RVO:61389005 Keywords : Non-self-adjoint Jacobi operator * Weyl m-function * Jacobian elliptic functions Subject RIV: BE - Theoretical Physics OBOR OECD: Pure mathematics Impact factor: 0.440, year: 2016

  11. Who confronts prejudice?: the role of implicit theories in the motivation to confront prejudice.

    Science.gov (United States)

    Rattan, Aneeta; Dweck, Carol S

    2010-07-01

    Despite the possible costs, confronting prejudice can have important benefits, ranging from the well-being of the target of prejudice to social change. What, then, motivates targets of prejudice to confront people who express explicit bias? In three studies, we tested the hypothesis that targets who hold an incremental theory of personality (i.e., the belief that people can change) are more likely to confront prejudice than targets who hold an entity theory of personality (i.e., the belief that people have fixed traits). In Study 1, targets' beliefs about the malleability of personality predicted whether they spontaneously confronted an individual who expressed bias. In Study 2, targets who held more of an incremental theory reported that they would be more likely to confront prejudice and less likely to withdraw from future interactions with an individual who expressed prejudice. In Study 3, we manipulated implicit theories and replicated these findings. By highlighting the central role that implicit theories of personality play in targets' motivation to confront prejudice, this research has important implications for intergroup relations and social change.

  12. Fast analytic formulas for the modified Bessel functions of imaginary order for spectral line broadening calculations

    International Nuclear Information System (INIS)

    Poquerusse, A.; Alexiou, S.

    1999-01-01

    In this work we review the status of the standard line broadening theory for plasmas and fill in the existing gap, i.e., the partially overlapping case for ions lines, by deriving expressions as well as fast and accurate numerical approximations for the relevant functions, namely the modified Bessel function of imaginary order and its derivative with respect to argument. These functions also arise in the context of the theory of Coulomb excitation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. CHILD WITNESSES AND THE CONFRONTATION CLAUSE.

    Science.gov (United States)

    Lyon, Thomas D; Dente, Julia A

    2012-01-01

    After the Supreme Court's ruling in Crawford v. Washington that a criminal defendant's right to confront the witnesses against him is violated by the admission of testimonial hearsay that has not been cross-examined, lower courts have overturned convictions in which hearsay from children was admitted after child witnesses were either unwilling or unable to testify. A review of social scientific evidence regarding the dynamics of child sexual abuse suggests a means for facilitating the fair receipt of children's evidence. Courts should hold that defendants have forfeited their confrontation rights if they exploited a child's vulnerabilities such that they could reasonably anticipate that the child would be unavailable to testify. Exploitation includes choosing victims on the basis of their filial dependency, their vulnerability, or their immaturity, as well as taking actions that create or accentuate those vulnerabilities.

  14. Goal preference shapes confrontations of sexism.

    Science.gov (United States)

    Mallett, Robyn K; Melchiori, Kala J

    2014-05-01

    Although most women assume they would confront sexism, assertive responses are rare. We test whether women's preference for respect or liking during interpersonal interactions explains this surprising tendency. Women report preferring respect relative to liking after being asked sexist, compared with inappropriate, questions during a virtual job interview (Study 1, n = 149). Women's responses to sexism increase in assertiveness along with their preference for being respected, and a respect-preference mediates the relation between the type of questions and response assertiveness (Studies 1 and 2). In Study 2 (n = 105), women's responses to sexist questions are more assertive when the sense of belonging is enhanced with a belonging manipulation. Moreover, preference for respect mediates the effect of the type of questions on response assertiveness, but only when belonging needs are met. Thus the likelihood of confrontation depends on the goal to be respected outweighing the goal to be liked.

  15. Conserving relativistic many-body approach: Equation of state, spectral function, and occupation probabilities of nuclear matter

    International Nuclear Information System (INIS)

    de Jong, F.; Malfliet, R.

    1991-01-01

    Starting from a relativistic Lagrangian we derive a ''conserving'' approximation for the description of nuclear matter. We show this to be a nontrivial extension over the relativistic Dirac-Brueckner scheme. The saturation point of the equation of state calculated agrees very well with the empirical saturation point. The conserving character of the approach is tested by means of the Hugenholtz--van Hove theorem. We find the theorem fulfilled very well around saturation. A new value for compression modulus is derived, K=310 MeV. Also we calculate the occupation probabilities at normal nuclear matter densities by means of the spectral function. The average depletion κ of the Fermi sea is found to be κ∼0.11

  16. Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Verreck, Devin, E-mail: devin.verreck@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium); Verhulst, Anne S.; Mocuta, Anda; Collaert, Nadine; Thean, Aaron [imec, Kapeldreef 75, 3001 Leuven (Belgium); Van de Put, Maarten; Magnus, Wim [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Sorée, Bart [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium)

    2015-10-07

    Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In{sub 0.53}Ga{sub 0.47}As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET.

  17. Distorted spin dependent spectral function of {sup 3}He and semi-inclusive deep inelastic scattering processes

    Energy Technology Data Exchange (ETDEWEB)

    Kaptari, Leonya P. [University of Perugia (Italy); INFN-Perugia (Italy); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Joint Inst. for Nuclear Research, Dubna (Russia); Del Dotto, Alessio [University of Rome, Rome (Italy); INFN-Roma (Italy); Pace, Emanuele [University of Rome (Italy); INFN-Tor Vergata (Italy); Salme, Giovanni [INFN-Roma (Italy); Scopetta, Sergio [University of Perugia (Italy); INFN-Perugia (Italy)

    2014-03-01

    The spin dependent spectral function, relevant to describe polarized electron scattering off polarized {sup 3}He, is studied, within the Plane Wave Impulse Approximation and taking into account final state interaction effects (FSI). In particular, the case of semi-inclusive deep inelastic scattering (SiDIS) is considered, evaluating the FSI of the hadronizing quark with the nuclear remnants. It is shown that particular kinematical regions can be selected to minimize the latter effects, so that parton distributions in the neutron can be accessed. On the other side, in the regions where FSI dominates, the considered reactions can elucidate the mechanism of hadronization of quarks during the propagation in the nuclear medium. It is shown that the obtained spin dependent spectral function can be directly applied to investigate the SiDIS reaction e-vector + {sup 3}He-vector to h+X, where the hadron h originates from the current fragmentation. Experiments of this type are being performed at JLab to extract neutron transverse momentum dependent parton distributions. As a case study, a different SiDIS process, with detection of slow (A-1) systems in the final state, is considered in more details, in order to establish when nuclear structure effects and FSI can be distinguished from elementary reactions on quasi-free nucleons. It is argued that, by a proper choice of kinematics, the origin of nuclear effects in polarized DIS phenomena and the details of the interaction between the hadronizing quark and the nuclear medium can be investigated at a level which is not reachable in inclusive deep inelastic scattering.

  18. Spectral Velocity Estimation using the Autocorrelation Function and Sparse data Sequences

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2005-01-01

    Ultrasound scanners can be used for displaying the distribution of velocities in blood vessels by finding the power spectrum of the received signal. It is desired to show a B-mode image for orientation and data for this has to be acquired interleaved with the flow data. Techniques for maintaining...... both the B-mode frame rate, and at the same time have the highest possible $f_{prf}$ only limited by the depth of investigation, are, thus, of great interest. The power spectrum can be calculated from the Fourier transform of the autocorrelation function $R_r(k)$. The lag $k$ corresponds...... of the sequence. The audio signal has also been synthesized from the autocorrelation data by passing white, Gaussian noise through a filter designed from the power spectrum of the autocorrelation function. The results show that both the full velocity range can be maintained at the same time as a B-mode image...

  19. Spectral analysis of structure functions and their scaling exponents in forced isotropic turbulence

    Science.gov (United States)

    Linkmann, Moritz; McComb, W. David; Yoffe, Samuel; Berera, Arjun

    2014-11-01

    The pseudospectral method, in conjunction with a new technique for obtaining scaling exponents ζn from the structure functions Sn (r) , is presented as an alternative to the extended self-similarity (ESS) method and the use of generalized structure functions. We propose plotting the ratio | Sn (r) /S3 (r) | against the separation r in accordance with a standard technique for analysing experimental data. This method differs from the ESS technique, which plots the generalized structure functions Gn (r) against G3 (r) , where G3 (r) ~ r . Using our method for the particular case of S2 (r) we obtain the new result that the exponent ζ2 decreases as the Taylor-Reynolds number increases, with ζ2 --> 0 . 679 +/- 0 . 013 as Rλ --> ∞ . This supports the idea of finite-viscosity corrections to the K41 prediction for S2, and is the opposite of the result obtained by ESS. The pseudospectral method permits the forcing to be taken into account exactly through the calculation of the energy input in real space from the work spectrum of the stirring forces. The combination of the viscous and the forcing corrections as calculated by the pseudospectral method is shown to account for the deviation of S3 from Kolmogorov's ``four-fifths''-law at all scales. This work has made use of the resources provided by the UK supercomputing service HECToR, made available through the Edinburgh Compute and Data Facility (ECDF). A. B. is supported by STFC, S. R. Y. and M. F. L. are funded by EPSRC.

  20. Application of the three-component bidirectional reflectance distribution function model to Monte Carlo calculation of spectral effective emissivities of nonisothermal blackbody cavities.

    Science.gov (United States)

    Prokhorov, Alexander; Prokhorova, Nina I

    2012-11-20

    We applied the bidirectional reflectance distribution function (BRDF) model consisting of diffuse, quasi-specular, and glossy components to the Monte Carlo modeling of spectral effective emissivities for nonisothermal cavities. A method for extension of a monochromatic three-component (3C) BRDF model to a continuous spectral range is proposed. The initial data for this method are the BRDFs measured in the plane of incidence at a single wavelength and several incidence angles and directional-hemispherical reflectance measured at one incidence angle within a finite spectral range. We proposed the Monte Carlo algorithm for calculation of spectral effective emissivities for nonisothermal cavities whose internal surface is described by the wavelength-dependent 3C BRDF model. The results obtained for a cylindroconical nonisothermal cavity are discussed and compared with results obtained using the conventional specular-diffuse model.

  1. Spectral and entropic characterizations of Wigner functions: applications to model vibrational systems.

    Science.gov (United States)

    Luzanov, A V

    2008-09-07

    The Wigner function for the pure quantum states is used as an integral kernel of the non-Hermitian operator K, to which the standard singular value decomposition (SVD) is applied. It provides a set of the squared singular values treated as probabilities of the individual phase-space processes, the latter being described by eigenfunctions of KK(+) (for coordinate variables) and K(+)K (for momentum variables). Such a SVD representation is employed to obviate the well-known difficulties in the definition of the phase-space entropy measures in terms of the Wigner function that usually allows negative values. In particular, the new measures of nonclassicality are constructed in the form that automatically satisfies additivity for systems composed of noninteracting parts. Furthermore, the emphasis is given on the geometrical interpretation of the full entropy measure as the effective phase-space volume in the Wigner picture of quantum mechanics. The approach is exemplified by considering some generic vibrational systems. Specifically, for eigenstates of the harmonic oscillator and a superposition of coherent states, the singular value spectrum is evaluated analytically. Numerical computations are given for the nonlinear problems (the Morse and double well oscillators, and the Henon-Heiles system). We also discuss the difficulties in implementation of a similar technique for electronic problems.

  2. Confronting tracker field quintessence with data

    International Nuclear Information System (INIS)

    Wang, Pao-Yu; Chen, Chien-Wen; Chen, Pisin

    2012-01-01

    We confront tracker field quintessence with observational data. The potentials considered in this paper include V(φ)∝φ −α , exp (M p /φ), exp (M p /φ)−1, exp (βM p /φ) and exp (γM p /φ)−1; while the data come from the latest SN Ia, CMB and BAO observations. Stringent parameter constraints are obtained. In comparison with the cosmological constant via information criteria, it is found that models with potentials exp (M p /φ), exp (M p /φ)−1 and exp (γM p /φ)−1 are not supported by the current data

  3. Dark radiation confronting LHC in Z′ models

    International Nuclear Information System (INIS)

    Solaguren-Beascoa, A.; Gonzalez-Garcia, M.C.

    2013-01-01

    Recent cosmological data favour additional relativistic degrees of freedom beyond the three active neutrinos and photons, often referred to as “dark radiation”. Extensions of the SM involving TeV-scale Z ′ gauge bosons generically contain superweakly interacting light right-handed neutrinos which can constitute this dark radiation. In this Letter we confront the requirement on the parameters of the E 6 Z ′ models to account for the present evidence of dark radiation with the already existing constraints from searches for new neutral gauge bosons at LHC7

  4. FURTHER DEFINING SPECTRAL TYPE 'Y' AND EXPLORING THE LOW-MASS END OF THE FIELD BROWN DWARF MASS FUNCTION

    International Nuclear Information System (INIS)

    Davy Kirkpatrick, J.; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Cushing, Michael C.; Mace, Gregory N.; Wright, Edward L.; McLean, Ian S.; Skrutskie, Michael F.; Eisenhardt, Peter R.; Mainzer, Amanda K.; Burgasser, Adam J.; Tinney, C. G.; Parker, Stephen; Salter, Graeme

    2012-01-01

    We present the discovery of another seven Y dwarfs from the Wide-field Infrared Survey Explorer (WISE). Using these objects, as well as the first six WISE Y dwarf discoveries from Cushing et al., we further explore the transition between spectral types T and Y. We find that the T/Y boundary roughly coincides with the spot where the J – H colors of brown dwarfs, as predicted by models, turn back to the red. Moreover, we use preliminary trigonometric parallax measurements to show that the T/Y boundary may also correspond to the point at which the absolute H (1.6 μm) and W2 (4.6 μm) magnitudes plummet. We use these discoveries and their preliminary distances to place them in the larger context of the solar neighborhood. We present a table that updates the entire stellar and substellar constituency within 8 pc of the Sun, and we show that the current census has hydrogen-burning stars outnumbering brown dwarfs by roughly a factor of six. This factor will decrease with time as more brown dwarfs are identified within this volume, but unless there is a vast reservoir of cold brown dwarfs invisible to WISE, the final space density of brown dwarfs is still expected to fall well below that of stars. We also use these new Y dwarf discoveries, along with newly discovered T dwarfs from WISE, to investigate the field substellar mass function. We find that the overall space density of late-T and early-Y dwarfs matches that from simulations describing the mass function as a power law with slope –0.5 < α < 0.0; however, a power law may provide a poor fit to the observed object counts as a function of spectral type because there are tantalizing hints that the number of brown dwarfs continues to rise from late-T to early-Y. More detailed monitoring and characterization of these Y dwarfs, along with dedicated searches aimed at identifying more examples, are certainly required.

  5. Final Report on LDRD project 130784 : functional brain imaging by tunable multi-spectral Event-Related Optical Signal (EROS).

    Energy Technology Data Exchange (ETDEWEB)

    Speed, Ann Elizabeth; Spahn, Olga Blum; Hsu, Alan Yuan-Chun

    2009-09-01

    Functional brain imaging is of great interest for understanding correlations between specific cognitive processes and underlying neural activity. This understanding can provide the foundation for developing enhanced human-machine interfaces, decision aides, and enhanced cognition at the physiological level. The functional near infrared spectroscopy (fNIRS) based event-related optical signal (EROS) technique can provide direct, high-fidelity measures of temporal and spatial characteristics of neural networks underlying cognitive behavior. However, current EROS systems are hampered by poor signal-to-noise-ratio (SNR) and depth of measure, limiting areas of the brain and associated cognitive processes that can be investigated. We propose to investigate a flexible, tunable, multi-spectral fNIRS EROS system which will provide up to 10x greater SNR as well as improved spatial and temporal resolution through significant improvements in electronics, optoelectronics and optics, as well as contribute to the physiological foundation of higher-order cognitive processes and provide the technical foundation for miniaturized portable neuroimaging systems.

  6. Charged-current inclusive neutrino cross sections: superscaling extension to the pion production and realistic spectral function for quasielastic region

    International Nuclear Information System (INIS)

    Ivanov, A.N.; Antonov, M.V.; Barbaro, J.A.; Caballero, G.A.; Megias, G.D.; González-Jiménez, R.; Giusti, C.; Meucci, A.; Moya de Guerra, E.; Udías, J.M.

    2015-01-01

    Superscaling approximation (SuSA) predictions to neutrino-induced charged-current pion production in the Δ-resonance region are explored under MiniBooNE experimental conditions. The results obtained within SuSA for the flux-averaged double-differential cross sections of the pion production for the ν_μ+CH_2 reaction as a function of the muon kinetic energy and of the scattering angle, the cross sections averaged over the angle, the total cross section for the pion production are compared with the corresponding MiniBooNE experimental data. The SuSA charged-current π"+ predictions are in good agreement with data on neutrino flux average cross-sections. The SuSA extension to the pion production region and the realistic spectral function S(p;ε) for quasielastic scattering are used for predictions of charged current inclusive neutrino-nucleus cross sections. The results are compared with the inclusive neutrino-nucleus data from the T2K experiment. (author)

  7. Light-driven movements of the trifoliate leaves of bean (Phaseolus vulgaris L.). Spectral and functional analysis

    International Nuclear Information System (INIS)

    Koller, D.; Ritter, S.; Fork, D.C.

    1996-01-01

    The light-driven responses of the terminal leaflet of bean were analyzed spectrally and functionally. Laminar elevation increases rapidly in response to continuous overhead exposure of its pulvinus to blue light. This response is enhanced in its early stages by simultaneous exposure to red light. The pulvinus responds similarly to continuous overhead unmixed red, or far-red light, albeit at much lower rates. The response to overhead red, alone, or during enhancement of the response to blue, was not affected by simultaneous far-red. However, the response to blue alone, or enhanced by mixture with red, was partially inhibited by simultaneous exposure to far-red. The results suggest that the response to blue resulted mostly from a blue-absorbing pigment system, but may involve some absorption by phytochrome, while responses to red or far-red, with and without blue, may be mediated by high-irradiance responses of phytochrome. Functional differences between the responses to red and blue become apparent when the abaxial (lower), or lateral sectors of the pulvinus are exposed to them, separately and in combination. These differences suggest that red controls the photonastic unfolding of the pulvinus, whereas blue controls its phototropic responses. These responses co-exist in the same tissue, but are separate and additive. (author)

  8. Three-dimensional free boundary calculations using a spectral Green's function method

    International Nuclear Information System (INIS)

    Hirshman, S.P.; van Rij, W.I.; Merkel, P.

    1986-01-01

    The plasma energy W/sub p/ = integral Ω/sub p/(1/2B 2 + p)dV is minimized over a toroidal domain Ω/sub p/ using an inverse representation for the cylindrical coordinates R = ΣR/sub mn/(s)cos(mθ - n zeta) and Z = ΣZ/sub mn/(s)sin(mθ - n zeta), where (s,θ,zeta) are radial, poloidal, and toroidal flux coordinates, respectively. The radial resolution of the MHD equations is significantly improved by separating R and Z into contributions from even and odd poloidal harmonics which are individually analytic near the magnetic axis. A free boundary equilibrium results when Ω/sub p/ is varied to make the total pressure 1/2B 2 + p continuous at the plasma surface Σ/sub p/ and when the vacuum magnetic field B/sub ν/ satisfies the Neumann condition B/sub ν/ x dΣ/sub p/ = 0. The vacuum field is decomposed as B/sub ν/ = B 0 + del Phi, where B 0 is the field arising from plasma currents and external coils and Phi is a single-valued potential necessary to satisfy B/sub ν/ x dΣ/sub p/ = 0 when p not equal to 0. A Green's function method is used to obtain an integral equation over Σ/sub p/ for the scalar magnetic potential Phi = ΣPhi/sub mn/sin(mθ - n zeta). A linear matrix equation is solved for Phi/sub mn/ to determine 1/2 B/sub ν/ 2 on the boundary. Real experimental conditions are simulated by keeping the external and net plasma currents constant during the iteration. Applications to l = 2 stellarator equilibria are presented

  9. Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements.

    Science.gov (United States)

    Pollet-Villard, Frédéric; Chiquet, Christophe; Romanet, Jean-Paul; Noel, Christian; Aptel, Florent

    2014-05-02

    To evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head (ONH) measurements using spectral-domain optical coherence tomography (SD-OCT). Prospective cross-sectional study conducted on patients with glaucoma, suspected glaucoma, and healthy subjects. Eyes were tested on Cirrus OCT and standard achromatic perimetry. RNFL thickness of 12 peripapillary 30° sectors, neuroretinal rim thickness extracted from 36 neuroretinal rim scans, and Bruch membrane opening minimum rim width (BMO-MRW)-a recently defined parameter-extracted from 36 neuroretinal rim scans were obtained. Correlations between peripapillary RNFL thickness, neuroretinal rim thickness, all six sectors of BMO-MRW, and visual field sensitivity in the six corresponding areas were evaluated using logarithmic regression analysis. Receiver operating curve areas were calculated for each RNFL, ONH, and macular ganglion cell analysis parameter. We included 142 eyes of 142 subjects. The correlations (r(2)) between RNFL thickness, Cirrus-based neuroretinal rim thickness, BMO-MRW and visual field sensitivity ranged from 0.07 to 0.60, 0.15 to 0.49, and 0.24 to 0.66, respectively. The structure-function correlations were stronger with BMO-MRW than with Cirrus-based neuroretinal rim thickness. The largest areas under the receiver operating curve were seen for rim area (0.926 [95% confidence interval 0.875, 0.977]; P function relationship was significantly stronger with BMO-MRW than other ONH SD-OCT parameters. The best diagnostic capabilities were seen with rim area and average RNFL.

  10. Nonlocal Coulomb correlations in pure and electron-doped Sr2IrO4 : Spectral functions, Fermi surface, and pseudo-gap-like spectral weight distributions from oriented cluster dynamical mean-field theory

    Science.gov (United States)

    Martins, Cyril; Lenz, Benjamin; Perfetti, Luca; Brouet, Veronique; Bertran, François; Biermann, Silke

    2018-03-01

    We address the role of nonlocal Coulomb correlations and short-range magnetic fluctuations in the high-temperature phase of Sr2IrO4 within state-of-the-art spectroscopic and first-principles theoretical methods. Introducing an "oriented-cluster dynamical mean-field scheme", we compute momentum-resolved spectral functions, which we find to be in excellent agreement with angle-resolved photoemission spectra. We show that while short-range antiferromagnetic fluctuations are crucial to accounting for the electronic properties of Sr2IrO4 even in the high-temperature paramagnetic phase, long-range magnetic order is not a necessary ingredient of the insulating state. Upon doping, an exotic metallic state is generated, exhibiting cuprate-like pseudo-gap spectral properties, for which we propose a surprisingly simple theoretical mechanism.

  11. Microscopic nucleon spectral function for finite nuclei featuring two- and three-nucleon short-range correlations: The model versus ab initio calculations for three-nucleon systems

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko

    2017-04-01

    Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one

  12. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures

    Science.gov (United States)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003), 10.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013), 10.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S =1 /2 , we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  13. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures.

    Science.gov (United States)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)PRBMDO0163-182910.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S=1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  14. Measurement of $\\alpha_{s}$ and the non-strange spectral functions in hadronic $\\tau$ decays with OPAL

    CERN Document Server

    Menke, S

    1999-01-01

    The spectral functions of the vector current and the axial-vector current have been measured in hadronic tau decays using the OPAL detector at LEP. Within the framework of the Operator Product Expansion a simultaneous determination of the strong coupling constant alpha /sub s/, the non-perturbative operators of dimension 6 and 8 and of the gluon condensate has been performed. Different perturbative descriptions have been compared to the data. The Contour Improved Fixed Order Perturbation Theory gives alpha /sub s/(m/sub tau //sup 2/)=0.348+or-0.009/sub exp/+or-0.019/sub theo/ at the tau - mass scale and alpha /sub s/(m/sub Z//sup 2/)=0.1219+or-0.0010/sub exp/+or-0.0017/sub theo/ at the Z/sup 0/-mass scale. The values obtained for alpha /sub s/(m/sub Z//sup 2/) using Fixed Order Perturbation Theory or Renormalon Chain Resummation are 2.3and 4.1 smaller, respectively. The `running' of the strong coupling between s /sub 0/ approximately=1.3 GeV/sup 2/ and s/sub 0/=m/sub tau //sup 2/ has been tested from direct f...

  15. SPECTRAL INDEX AS A FUNCTION OF MASS ACCRETION RATE IN BLACK HOLE SOURCES: MONTE CARLO SIMULATIONS AND AN ANALYTICAL DESCRIPTION

    International Nuclear Information System (INIS)

    Laurent, Philippe; Titarchuk, Lev

    2011-01-01

    We present herein a theoretical study of correlations between spectral indexes of X-ray emergent spectra and mass accretion rate ( m-dot ) in black hole (BH) sources, which provide a definitive signature for BHs. It has been firmly established, using the Rossi X-ray Timing Explorer (RXTE) in numerous BH observations during hard-soft state spectral evolution, that the photon index of X-ray spectra increases when m-dot increases and, moreover, the index saturates at high values of m-dot . In this paper, we present theoretical arguments that the observationally established index saturation effect versus mass accretion rate is a signature of the bulk (converging) flow onto the BH. Also, we demonstrate that the index saturation value depends on the plasma temperature of converging flow. We self-consistently calculate the Compton cloud (CC) plasma temperature as a function of mass accretion rate using the energy balance between energy dissipation and Compton cooling. We explain the observable phenomenon, index- m-dot correlations using a Monte Carlo simulation of radiative processes in the innermost part (CC) of a BH source and we account for the Comptonization processes in the presence of thermal and bulk motions, as basic types of plasma motion. We show that, when m-dot increases, BH sources evolve to high and very soft states (HSS and VSS, respectively), in which the strong blackbody(BB)-like and steep power-law components are formed in the resulting X-ray spectrum. The simultaneous detections of these two components strongly depends on sensitivity of high-energy instruments, given that the relative contribution of the hard power-law tail in the resulting VSS spectrum can be very low, which is why, to date RXTE observations of the VSS X-ray spectrum have been characterized by the presence of the strong BB-like component only. We also predict specific patterns for high-energy e-fold (cutoff) energy (E fold ) evolution with m-dot for thermal and dynamical (bulk

  16. A universe model confronted to observations

    International Nuclear Information System (INIS)

    Souriau, J.M.

    1982-09-01

    Present work is a detailed study of a Universe model elaborated in several steps, and some of its consequences. Absence zone in quasar spatial distribution is first described; demonstration is made it is sufficient to determine a cosmological model. Each following paragraph is concerned with a type of observation, which is confronted with the model. Universe age and density, redshift-luminosity relation for galaxies and quasars, diameter-redshift relation for radiosources, radiation isotropy at 3 0 K, matter-antimatter contact zone physics. An eventual stratification of universe parallel to this zone is more peculiarly studied; absorption lines in quasar spectra are in way interpreted, just as local super-cluster and local group of galaxies, galaxy HI region orientation, and at last neighbouring galaxy kinematics [fr

  17. Parents’ experience confronting child burning situation

    Directory of Open Access Journals (Sweden)

    Valdira Vieira de Oliveira

    2015-05-01

    Full Text Available Objective: to understand experiences of parents in a child burning situation during the hospitalization process. Methods: phenomenological research in view of Martin Heidegger, held with seven assisting parents at a pediatrics unit of a general hospital in Montes Claros. The information was obtained by phenomenological interview, containing the question guide: “What does it mean to you being with a son who is suffering with burns?”. Results: during the experience, parents revealed anguish, fear, helplessness, concerns and expectations of “being-in-the-world”. Conclusion: respect, understanding and care from the health team were fundamental for the adaptation and the confrontation demanded by the consequent suffering of the event.

  18. Functional imaging of hemodynamic stimulus response in the rat retina with ultrahigh-speed spectral / Fourier domain OCT

    Science.gov (United States)

    Choi, WooJhon; Baumann, Bernhard; Clermont, Allen C.; Feener, Edward P.; Boas, David A.; Fujimoto, James G.

    2013-03-01

    Measuring retinal hemodynamics in response to flicker stimulus is important for investigating pathophysiology in small animal models of diabetic retinopathy, because a reduction in the hyperemic response is thought to be one of the earliest changes in diabetic retinopathy. In this study, we investigated functional imaging of retinal hemodynamics in response to flicker stimulus in the rat retina using an ultrahigh speed spectral / Fourier domain OCT system at 840nm with an axial scan rate of 244kHz. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was +/-37.7mm/s. Pulsatile total retinal arterial blood flow as a function of time was measured using an en face Doppler approach where a 200μm × 200μm area centered at the central retinal artery was repeatedly raster scanned at a volume acquisition rate of 55Hz. Three-dimensional capillary imaging was performed using speckle decorrelation which has minimal angle dependency compared to other angiography techniques based on OCT phase information. During OCT imaging, a flicker stimulus could be applied to the retina synchronously by inserting a dichroic mirror in the imaging interface. An acute transient increase in total retinal blood flow could be detected. At the capillary level, an increase in the degree of speckle decorrelation in capillary OCT angiography images could also be observed, which indicates an increase in the velocity of blood at the capillary level. This method promises to be useful for the investigation of small animal models of ocular diseases.

  19. Confronting hip resurfacing and big femoral head replacement gait analysis

    Directory of Open Access Journals (Sweden)

    Panagiotis K. Karampinas

    2014-03-01

    Full Text Available Improved hip kinematics and bone preservation have been reported after resurfacing total hip replacement (THRS. On the other hand, hip kinematics with standard total hip replacement (THR is optimized with large diameter femoral heads (BFH-THR. The purpose of this study is to evaluate the functional outcomes of THRS and BFH-THR and correlate these results to bone preservation or the large femoral heads. Thirty-one patients were included in the study. Gait speed, postural balance, proprioception and overall performance. Our results demonstrated a non-statistically significant improvement in gait, postural balance and proprioception in the THRS confronting to BFH-THR group. THRS provide identical outcomes to traditional BFH-THR. The THRS choice as bone preserving procedure in younger patients is still to be evaluated.

  20. Confrontation Naming and Reading Abilities at Primary School: A Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Chiara Luoni

    2015-01-01

    naming (i.e., the Boston Naming Test (BNT in a nonclinical sample of Italian primary school children was conducted (n=126, testing them at the end of each school year, to assess nonverbal intelligence, confrontation naming, and reading abilities. Results. Performance on the BNT emerged as a function of IQ and SES. Significant correlations between confrontation naming and reading abilities, especially comprehension, were found; BNT scores correlated better with reading fluency than with reading accuracy. Conclusions. The longitudinal data obtained in this study are discussed with regard to reading abilities, intelligence, age, gender, and socioeconomic status.

  1. To Confront Versus not to Confront: Women’s Perception of Sexual Harassment

    OpenAIRE

    María del Carmen Herrera; Antonio Herrera; Francisca Expósito

    2017-01-01

    Current research has postulated that sexual harassment is one of the most serious social problems. Perceptions of sexual harassment vary according to some factors: gender, context, and perceiver’s ideology. The strategies most commonly used by women to cope with harassment range from avoiding or ignoring the harasser to confronting the harasser or reporting the incident. The aim of this study was to explore women’s perception of sexual harassment, and to assess the implications of different v...

  2. Socratic Confrontation with Athens: an Interpretation

    Directory of Open Access Journals (Sweden)

    Narges Tajik

    2009-08-01

    Full Text Available Impiety was one of the two charges against Socrates. As a civil religion (within which politics and religion are mutually intertwined was the then-dominated religion in Athens, impiety was regarded as a civil laws violation. Thus, charge of impiety, as a political subversion, might lead Socrates to death. However, in Apology there are some signs of Socrates’ religiousness as swearing and the claim to be at service of the Polis’ formal gods and goddess which lead to the question whether Socrates were an impious person, in addition to the question concerning the reasons why Socrates was sentenced to death, while he has showed his religiousness. In this study, we argued the nature of Socrates’ religiousness and offered an interpretation of Socrates’ silent confrontation with Athenians as is described in the court and his advocacy there. Therefore, introducing the state of religion in Athens, it would be shown that Socrates goes not deep in the inspirations, but intervening personal negative accounts, argues for a private religious experience, while does not offers any substitution for the formal religion.

  3. Composite inflation confronts BICEP2 and PLANCK

    International Nuclear Information System (INIS)

    Karwan, Khamphee; Channuie, Phongpichit

    2014-01-01

    We examine observational constraints on single-field inflation in which the inflaton is a composite field stemming from a four-dimensional strongly interacting field theory. We confront the predictions with the Planck and very recent BICEP2 data. In the large non-minimal coupling regions, we discover for the minimal composite inflationary model that the predictions lie well inside the joint 68% CL for the Planck data, but is in tension with the recent BICEP2 observations. In the case of the glueball inflationary model, the predictions satisfy the Planck results. However, this model can produce a large tensor-to-scalar ratio consistent with the recent BICEP2 observations if the number of e-foldings is slightly smaller than the range commonly used. For a super Yang-Mills paradigm, we discover that the predictions satisfy the Planck data, and surprisingly a large tensor-to-scalar ratio consistent with the BICEP2 results can also be produced for an acceptable range of the number of e-foldings and of the confining scale. In the small non-minimal coupling regions, all of the models can satisfy the BICEP2 results. However, the predictions of the glueball and superglueball inflationary models cannot satisfy the observational bound on the amplitude of the curvature perturbation launched by Planck, and the techni-inflaton self-coupling in the minimal composite inflationary model is constrained to be extremely small

  4. Dementia Care: Confronting Myths in Clinical Management.

    Science.gov (United States)

    Neitch, Shirley M; Meadows, Charles; Patton-Tackett, Eva; Yingling, Kevin W

    2016-01-01

    Every day, patients with dementia, their families, and their physicians face the enormous challenges of this pervasive life-changing condition. Seeking help, often grasping at straws, victims, and their care providers are confronted with misinformation and myths when they search the internet or other sources. When Persons with Dementia (PWD) and their caregivers believe and/or act on false information, proper treatment may be delayed, and ultimately damage can be done. In this paper, we review commonly misunderstood issues encountered in caring for PWD. Our goal is to equip Primary Care Practitioners (PCPs) with accurate information to share with patients and families, to improve the outcomes of PWD to the greatest extent possible. While there are innumerable myths about dementia and its causes and treatments, we are going to focus on the most common false claims or misunderstandings which we hear in our Internal Medicine practice at Marshall Health. We offer suggestions for busy practitioners approaching some of the more common issues with patients and families in a clinic setting.

  5. Confronting Higgcision with electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Kingman [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Lee, Jae Sik [Department of Physics, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757 (Korea, Republic of); Senaha, Eibun [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Tseng, Po-Yan [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2014-06-26

    Current data on the signal strengths and angular spectrum of the 125.5 GeV Higgs boson still allow a CP-mixed state, namely, the pseudoscalar coupling to the top quark can be as sizable as the scalar coupling: C{sub u}{sup S}≈C{sub u}{sup P}=1/2. CP violation can then arise and manifest in sizable electric dipole moments (EDMs). In the framework of two-Higgs-doublet models, we not only update the Higgs precision (Higgcision) study on the couplings with the most updated Higgs signal strength data, but also compute all the Higgs-mediated contributions from the 125.5 GeV Higgs boson to the EDMs, and confront the allowed parameter space against the existing constraints from the EDM measurements of Thallium, neutron, Mercury, and Thorium monoxide. We found that the combined EDM constraints restrict the pseudoscalar coupling to be less than about 10{sup −2}, unless there are contributions from other Higgs bosons, supersymmetric particles, or other exotic particles that delicately cancel the current Higgs-mediated contributions.

  6. Confronting Perpetrators of Prejudice: The Inhibitory Effects of Social Costs

    Science.gov (United States)

    Shelton, J. Nicole; Stewart, Rebecca E.

    2004-01-01

    The purpose of this research is to investigate the extent to which social costs influence whether or not targets of prejudice confront individuals who behave in a prejudiced manner during interpersonal interactions. Consistent with our predictions, we found that although women believe they will confront perpetrators of prejudice regardless of the…

  7. Wastewater Use in Irrigated Agriculture : Confronting the Livelihood ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Wastewater Use in Irrigated Agriculture : Confronting the Livelihood and Environmental Realities. Couverture du livre Wastewater Use in Irrigated Agriculture: Confronting the Livelihood and Environmental Realities. Directeur(s) : Christopher Scott, Naser I. Faruqui et Liqa Raschid. Maison(s) d'édition : CABI, IWMI, CRDI.

  8. The Vatican & Population Growth Control: Why an American Confrontation?

    Science.gov (United States)

    Mumford, Stephen D.

    1983-01-01

    The Vatican, because of its position on population growth, threatens the security of all nations. Catholic countries with right-wing dictatorships cannot confront the Vatican on family planning and survive. U.S. Catholics must confront the Vatican on this issue. American lay Catholics must break the American church away from the Vatican control.…

  9. 28 CFR 552.23 - Confrontation avoidance procedures.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Confrontation avoidance procedures. 552... MANAGEMENT CUSTODY Use of Force and Application of Restraints on Inmates § 552.23 Confrontation avoidance... information about the inmate and the immediate situation. Based on their assessment of that information, they...

  10. The role of spectral detail in the binaural transfer function on perceived externalization in a reverberant environment

    DEFF Research Database (Denmark)

    Hassager, Henrik Gert; Gran, Fredrik; Dau, Torsten

    2016-01-01

    . For various filter bandwidths, the modified BRIRs were convolved with broadband noise and listeners judged the perceived position of the noise when virtualized over headphones. Only reductions in spectral details of the direct part obtained with filter bandwidths broader than one equivalent rectangular...... bandwidth affected externalization. Reductions in spectral details of the reverberant part had only little influence on externalization. In both conditions, externalization was not as pronounced at 0° as at 50°. To characterize the auditory processes that may be involved in the perception of externalization...

  11. Measurement of the Strangeness Spectral Function and the Mass of the Strange Quark in Hadronic tau Decays with the OPAL Detector

    CERN Document Server

    Mader, Wolfgang Franz

    2004-01-01

    Tau lepton decays with open strangeness in the final state are measured with the Opal detector at LEP to determine the strange hadronic spectral function of the τ lepton and the mass of the strange quark. The decays τ −→ (Kπ) −ντ , (Kππ) −ντ and (Kπππ) −ντ with final states consisting of neutral and charged kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including η mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the τ lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(τ − → K −π 0 ντ ) = (0.471 ± 0.064stat ± 0.021sys) % B(τ − → K ...

  12. When Do We Confront? Perceptions of Costs and Benefits Predict Confronting Discrimination on Behalf of the Self and Others

    Science.gov (United States)

    Good, Jessica J.; Moss-Racusin, Corinne A.; Sanchez, Diana T.

    2012-01-01

    Across two studies, we tested whether perceived social costs and benefits of confrontation would similarly predict confronting discrimination both when it was experienced and when it was observed as directed at others. Female undergraduate participants were asked to recall past experiences and observations of sexism, as well as their confronting…

  13. Confronting Misinformation in Climate Change Higher Education

    Science.gov (United States)

    Bedford, D. P.

    2012-12-01

    Among the many challenges faced by climate change educators is the highly politicized nature of the subject matter (e.g. McCright and Dunlap, 2011) and the associated misinformation from key media outlets and websites (e.g. see Oreskes and Conway, 2010). Students typically do not enter the classroom as 'blank slates', but often have already formed some opinion about climate change which may or may not be based on reputable sources. Further, many students have lives outside the classroom and/or off campus, and even those who do live in an isolated bubble of campus life will eventually graduate. Thus, providing students with a level of climate change knowledge and understanding robust enough to cope with misinformation may be an important goal for educators. This paper presents a case study of the direct use of climate change misinformation as a college-level classroom activity. Some research from other fields (notably psychology) has found that directly addressing misconceptions in the classroom can be the most effective means of dispelling them (Kowalski and Taylor, 2009). However, directly confronting misinformation in the classroom carries inherent risks, such as reinforcing misconceptions (e.g. Cook and Lewandowsky, 2011). This paper therefore considers approaches to minimizing those risks while attempting to maximize the possible benefits. This paper argues that use of misinformation as a teaching tool can provide useful exercises in critical thinking, testing of content knowledge, and consideration of the nature of science. Cook, J. and S. Lewandowsky. 2011. The Debunking Handbook. Online publication available www.skepticalscience.com/docs/Debunking_Handbook.pdf. Accessed 7 July 2012. Kowalski, P. and A.K. Taylor. 2009. DOI: 10.1080/00986280902959986. McCright, A., and R.T. Dunlap. 2011. The politicization of climate change and polarization in the American public's views of global warming, 2001-2010. The Sociological Quarterly 52:2, 155-194. Oreskes, N. and E

  14. Spectral Theory of Chemical Bonding

    National Research Council Canada - National Science Library

    Langhoff, P. W; Boatz, J. A; Hinde, R. J; Sheehy, J. A

    2004-01-01

    .... Wave function antisymmetry in the aggregate atomic spectral-product basis is enforced by unitary transformation performed subsequent to formation of the Hamiltonian matrix, greatly simplifying its construction...

  15. Measurement of the strangeness spectral function and the mass of the strange quark in hadronic {tau} decays with the OPAL detector

    Energy Technology Data Exchange (ETDEWEB)

    Mader, W.

    2004-03-01

    Tau lepton decays with open strangeness in the final state are measured with the Opal detector at LEP to determine the strange hadronic spectral function of the {tau} lepton and the mass of the strange quark. The decays {tau}{sup -} {yields} (K{pi}){sup -}{nu}{sub {tau}}, (K{pi}{pi}){sup -}{nu}{sub {tau}} and (K{pi}{pi}{pi}){sup -}{nu}{sub {tau}} with final states consisting of neutral and charged kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including {eta} mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the {tau} lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B({tau}{sup -} {yields} K{sup -}{pi}{sup 0}{nu}{sub {tau}}) = (0.471 {+-} 0.064{sub stat} {+-} 0.021{sub sys})%, B({tau}{sup -} {yields} K{sup -}{pi}{sup +}{pi}{sup -}{nu}{sub {tau}}) = (0.415 {+-} 0.059{sub stat} {+-} 0.031{sub sys})% have been measured. From the CKM weighted difference of strange and non-strange spectral moments, the mass of the strange quark at the {tau} mass scale has been determined: m{sub s}(m{sub {tau}}{sup 2}) = (84 {+-} 14{sub exp} {+-} 6{sub V{sub us}} {+-} 17{sub theo}) MeV. Evolving this result to customary scales yields m{sub s}(1 GeV{sup 2}) = (111{sub -35}{sup +26}) MeV, m{sub s}(4 GeV{sup 2}) = (82{sub -25}{sup +19}) MeV. (orig.)

  16. Measurement of the strangeness spectral function and the mass of the strange quark in hadronic τ decays with the OPAL detector

    International Nuclear Information System (INIS)

    Mader, W.

    2004-03-01

    Tau lepton decays with open strangeness in the final state are measured with the Opal detector at LEP to determine the strange hadronic spectral function of the τ lepton and the mass of the strange quark. The decays τ - → (Kπ) - ν τ , (Kππ) - ν τ and (Kπππ) - ν τ with final states consisting of neutral and charged kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including η mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the τ lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(τ - → K - π 0 ν τ ) = (0.471 ± 0.064 stat ± 0.021 sys )%, B(τ - → K - π + π - ν τ ) = (0.415 ± 0.059 stat ± 0.031 sys )% have been measured. From the CKM weighted difference of strange and non-strange spectral moments, the mass of the strange quark at the τ mass scale has been determined: m s (m τ 2 ) = (84 ± 14 exp ± 6 V us ± 17 theo ) MeV. Evolving this result to customary scales yields m s (1 GeV 2 ) = (111 -35 +26 ) MeV, m s (4 GeV 2 ) = (82 -25 +19 ) MeV. (orig.)

  17. To Confront Versus not to Confront: Women’s Perception of Sexual Harassment

    Directory of Open Access Journals (Sweden)

    María del Carmen Herrera

    2017-05-01

    Full Text Available Current research has postulated that sexual harassment is one of the most serious social problems. Perceptions of sexual harassment vary according to some factors: gender, context, and perceiver’s ideology. The strategies most commonly used by women to cope with harassment range from avoiding or ignoring the harasser to confronting the harasser or reporting the incident. The aim of this study was to explore women’s perception of sexual harassment, and to assess the implications of different victim responses to harassment. A total of 138 women were administered a questionnaire where the type of harassment, and victim response were manipulated. Moreover, the influence of ideological variables (i.e. ambivalent sexism and the acceptance of myths of sexual harassment on perception was assessed. Results show perception of sexual harassment was lower in gender harassment than in unwanted sexual attention and participants believed women who confronted their harasser would be evaluated negatively by men. Furthermore, effects of ideology on perception of harassment were found. The results underscore the complexities involved in defining certain behaviours as harassment, and the implications of different victim responses to harassment.

  18. Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Rameshkumar, Perumal; Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-05-15

    A facile synthetic method to decorate amine-functionalized silica spheres (SiO{sub 2}) by silver nanoparticles (Ag NPs) is reported. The transmission electron microscopic (TEM) images showed that spherical Ag NPs with an average particle size of 14 nm were deposited on 250 nm-sized SiO{sub 2} spheres (SiO{sub 2}/Ag NPs). The spectral and colorimetric detection of Hg(II) ions were carried out using the synthesized SiO{sub 2}/Ag NPs with an experimental detection limit of 5 {mu}M. It was found that the addition of Hg(II) ions (150 {mu}M) into the solution of SiO{sub 2}/Ag NPs completely quenched the SPR band of the Ag NPs due to the formation of anisotropic Ag amalgam crystals (AgHg). The selective detection of Hg(II) ions by SiO{sub 2}/Ag NPs in the presence of other environmentally relevant metal ions was also demonstrated using spectral and colorimetric methods.Graphical abstractAmine-functionalized silica spheres are decorated by in situ formation of silver nanoparticles and their spectral and colorimetric detection of Hg(II) ions is reported.

  19. Quasiparticles and phonon satellites in spectral functions of semiconductors and insulators: Cumulants applied to the full first-principles theory and the Fröhlich polaron

    Science.gov (United States)

    Nery, Jean Paul; Allen, Philip B.; Antonius, Gabriel; Reining, Lucia; Miglio, Anna; Gonze, Xavier

    2018-03-01

    The electron-phonon interaction causes thermal and zero-point motion shifts of electron quasiparticle (QP) energies ɛk(T ) . Other consequences of interactions, visible in angle-resolved photoemission spectroscopy (ARPES) experiments, are broadening of QP peaks and appearance of sidebands, contained in the electron spectral function A (k ,ω ) =-ℑ m GR(k ,ω ) /π , where GR is the retarded Green's function. Electronic structure codes (e.g., using density-functional theory) are now available that compute the shifts and start to address broadening and sidebands. Here we consider MgO and LiF, and determine their nonadiabatic Migdal self-energy. The spectral function obtained from the Dyson equation makes errors in the weight and energy of the QP peak and the position and weight of the phonon-induced sidebands. Only one phonon satellite appears, with an unphysically large energy difference (larger than the highest phonon energy) with respect to the QP peak. By contrast, the spectral function from a cumulant treatment of the same self-energy is physically better, giving a quite accurate QP energy and several satellites approximately spaced by the LO phonon energy. In particular, the positions of the QP peak and first satellite agree closely with those found for the Fröhlich Hamiltonian by Mishchenko et al. [Phys. Rev. B 62, 6317 (2000), 10.1103/PhysRevB.62.6317] using diagrammatic Monte Carlo. We provide a detailed comparison between the first-principles MgO and LiF results and those of the Fröhlich Hamiltonian. Such an analysis applies widely to materials with infrared(IR)-active phonons.

  20. Spectral analysis by correlation

    International Nuclear Information System (INIS)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.

    1969-01-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr

  1. Spectral stratigraphy

    Science.gov (United States)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  2. Confronting Female Genital Mutilation: The Role of Youth and ICTs ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-07-14

    Jul 14, 2011 ... Book cover Confronting Female Genital Mutilation: The Role of ... of an innovative research and action project carried out by ENDA Tiers ... Congratulations to the first cohort of Women in Climate Change Science Fellows!

  3. Spectral and partial-wave decomposition of time-dependent wave functions on a grid: Photoelectron spectra of H and H2+ in electromagnetic fields

    International Nuclear Information System (INIS)

    Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Madsen, L. B.

    2007-01-01

    We present a method for spectral (bound and continuum) and partial-wave analysis of a three-dimensional time-dependent wave function, defined on a grid, without projecting onto the field-free eigenstates of the system. The method consists of propagating the time-dependent Schroedinger equation to obtain its autocorrelation function C(t)= after the end of the interaction, at time T, of the system with an external time-dependent field. The Fourier spectrum of this correlation function is directly related to the expansion coefficients of the wave function on the field-free bound and continuum energy eigenstates of the system. By expanding on a spherical harmonics basis we show how to calculate the contribution of the various partial waves to the total photoelectron energy spectrum

  4. Confronting quasi-exponential inflation with WMAP seven

    International Nuclear Information System (INIS)

    Pal, Barun Kumar; Pal, Supratik; Basu, B.

    2012-01-01

    We confront quasi-exponential models of inflation with WMAP seven years dataset using Hamilton Jacobi formalism. With a phenomenological Hubble parameter, representing quasi exponential inflation, we develop the formalism and subject the analysis to confrontation with WMAP seven using the publicly available code CAMB. The observable parameters are found to fair extremely well with WMAP seven. We also obtain a ratio of tensor to scalar amplitudes which may be detectable in PLANCK

  5. The Frontiers of Observational Cosmology and the Confrontation with Theory

    International Nuclear Information System (INIS)

    Longair, Malcolm

    2011-01-01

    The current state of observational cosmology and the confrontation with theory is presented. The review is divided into the following sections: - Basic observations on which the models are based. - Testing the basic assumptions made in the construction of the standard cosmological models. - Structure formation in the standard models; - Observational tests of the standard models - the confrontation with observation; - Basic problems and approaches to their solution; - Future challenges - the ESA EUCLID mission is given as an example.

  6. Spectral transfer functions of body waves propagating through a stratified medium. Part 1: Basic theory by means of matrix propagators

    International Nuclear Information System (INIS)

    Macia, R.; Correig, A.M.

    1987-01-01

    Seismic wave propagation is described by a second order differential equation for medium displacement. By Fourier transforming with respect to time and space, wave equation transforms into a system of first order linear differential equations for the Fourier transform of displacement and stress. This system of differential equations is solved by means of Matrix Propagator and applied to the propagation of body waves in stratified media. The matrix propagators corresponding to P-SV and SH waves in homogeneous medium are found as an intermediate step to obtain the spectral response of body waves propagating through a stratified medium with homogeneous layers. (author) 14 refs

  7. Generalization of Spectral Green's Function nodal method for slab-geometry fixed-source adjoint transport problems in S{sub N} formulation

    Energy Technology Data Exchange (ETDEWEB)

    Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-graduacao em Modelagem Computacional; Garcia, Carlos R., E-mail: cgh@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    Presented here is the application of the adjoint technique for solving source-detector discrete ordinates (S{sub N}) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF{sup †}) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non-zero prescribed boundary conditions for the forward S{sub N} transport problems. The SGF{sup †} method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF{sup †} equations, we use the partial adjoint one-node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)

  8. The use of wavelength-selective plastic cladding materials in horticulture: understanding of crop and fungal responses through the assessment of biological spectral weighting functions.

    Science.gov (United States)

    Paul, Nigel D; Jacobson, Rob J; Taylor, Anna; Wargent, Jason J; Moore, Jason P

    2005-01-01

    Plant responses to light spectral quality can be exploited to deliver a range of agronomically desirable end points in protected crops. This can be achieved using plastics with specific spectral properties as crop covers. We have studied the responses of a range of crops to plastics that have either (a) increased transmission of UV compared with standard horticultural covers, (b) decreased transmission of UV or (c) increased the ratio of red (R) : far-red (FR) radiation. Both the UV-transparent and R : FR increasing films reduced leaf area and biomass, offering potential alternatives to chemical growth regulators. The UV-opaque film increased growth, but while this may be useful in some crops, there were trade-offs with elements of quality, such as pigmentation and taste. UV manipulation may also influence disease control. Increasing UV inhibited not only the pathogenic fungus Botrytis cinerea but also the disease biocontrol agent Trichoderma harzianum. Unlike B. cinerea, T. harzianum was highly sensitive to UV-A radiation. These fungal responses and those for plant growth in the growth room and the field under different plastics are analyzed in terms of alternative biological spectral weighting functions (BSWF). The role of BSWF in assessing general patterns of response to UV modification in horticulture is also discussed.

  9. Generalization of Spectral Green's Function nodal method for slab-geometry fixed-source adjoint transport problems in SN formulation

    International Nuclear Information System (INIS)

    Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C.

    2017-01-01

    Presented here is the application of the adjoint technique for solving source{detector discrete ordinates (S N ) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF † ) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non{zero prescribed boundary conditions for the forward S N transport problems. The SGF † method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF † equations, we use the partial adjoint one{node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)

  10. Long-lasting cerebral functional changes following moderate dose x-radiation treatment to the scalp in childhood: an electroencephalographic power spectral study

    International Nuclear Information System (INIS)

    Yaar, I.; Ron, E.; Modan, B.; Rinott, Y.; Yaar, M.; Modan, M.

    1982-01-01

    EEG tracings were compared in 44 young adults who received scalp x-radiation treatment for tinea capitis during childhood and 59 non-irradiated control subjects. The irradiated subjects were exposed, over 20 years previously, to a mean dose of 130 rads to the brain. Visual analysis of the EEG revealed an insignificant excess of abnormalities among the irradiated subjects compared to the controls. Power spectral density function analysis showed increased power values among the irradiated subjects, particularly in the beta wave frequencies. This finding provides further evidence for suspecting that x-irradiation during brain maturation may cause long-lasting damage to the brain tissue. (author)

  11. Recent advances in the spectral green's function method for monoenergetic slab-geometry fixed-source adjoint transport problems in S{sub N} formulation

    Energy Technology Data Exchange (ETDEWEB)

    Curbelo, Jesus P.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: jperez@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-Graduacao em Modelagem Computacional; Hernandez, Carlos R.G., E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2015-07-01

    The spectral Green's function (SGF) method is a numerical method that is free of spatial truncation errors for slab-geometry fixed-source discrete ordinates (S{sub N}) adjoint problems. The method is based on the standard spatially discretized adjoint S{sub N} balance equations and a nonstandard adjoint auxiliary equation expressing the node-average adjoint angular flux, in each discretization node, as a weighted combination of the node-edge outgoing adjoint fluxes. The auxiliary equation contains parameters which act as Green's functions for the cell-average adjoint angular flux. These parameters are determined by means of a spectral analysis which yields the local general solution of the S{sub N} equations within each node of the discretization grid. In this work a number of advances in the SGF adjoint method are presented: the method is extended to adjoint S{sub N} problems considering linearly anisotropic scattering and non-zero prescribed boundary conditions for the forward source-detector problem. Numerical results to typical model problems are considered to illustrate the efficiency and accuracy of the o offered method. (author)

  12. Wide-spectral/dynamic-range skin-compatible phototransistors enabled by floated heterojunction structures with surface functionalized SWCNTs and amorphous oxide semiconductors.

    Science.gov (United States)

    Hwang, Insik; Kim, Jaehyun; Lee, Minkyung; Lee, Min-Wook; Kim, Hee-Joong; Kwon, Hyuck-In; Hwang, Do Kyung; Kim, Myunggil; Yoon, Haeyoung; Kim, Yong-Hoon; Park, Sung Kyu

    2017-11-09

    Purified semiconducting single-walled carbon nanotubes (sc-SWCNTs) have been researched for optoelectronic applications due to their high absorption coefficient from the visible to even the near-infrared (NIR) region. Nevertheless, the insufficient electrical characteristics and incompatibility with conventional CMOS processing have limited their wide utilization in this emerging field. Here, we demonstrate highly detective and wide spectral/dynamic range phototransistors incorporating floated heterojunction active layers which are composed of low-temperature sol-gel processed n-type amorphous indium gallium zinc oxide (a-IGZO) stacked with a purified p-type sc-SWCNT layer. To achieve a high and broad spectral/dynamic range photo-response of the heterogeneous transistors, photochemically functionalized sc-SWCNT layers were carefully implemented onto the a-IGZO channel area with a floating p-n heterojunction active layer, resulting in the suppression of parasitic charge leakage and good bias driven opto-electrical properties. The highest photosensitivity (R) of 9.6 × 10 2 A W -1 and a photodetectivity (D*) of 4 × 10 14 Jones along with a dynamic range of 100-180 dB were achieved for our phototransistor in the spectral range of 400-780 nm including continuous and minimal frequency independent behaviors. More importantly, to demonstrate the diverse application of the ultra-flexible hybrid photosensor platform as skin compatible electronics, the sc-SWCNT/a-IGZO phototransistors were fabricated on an ultra-thin (∼1 μm) polyimide film along with a severe static and dynamic electro-mechanical test. The skin-like phototransistors showed excellent mechanical stability such as sustainable good electrical performance and high photosensitivity in a wide dynamic range without any visible cracks or damage and little noise interference after being rolled-up on the 150 μm-thick optical fiber as well as more than 1000 times cycling.

  13. Adinkras, Dessins, Origami, and Supersymmetry Spectral Triples

    OpenAIRE

    Marcolli, Matilde; Zolman, Nick

    2016-01-01

    We investigate the spectral geometry and spectral action functionals associated to 1D Supersymmetry Algebras, using the classification of these superalgebras in terms of Adinkra graphs and the construction of associated dessin d'enfant and origami curves. The resulting spectral action functionals are computed in terms of the Selberg (super) trace formula.

  14. Expansions of tau hadronic spectral function moments in a nonpower QCD perturbation theory with tamed large order behavior

    Czech Academy of Sciences Publication Activity Database

    Abbas, G.; Ananthanarayan, B.; Caprini, I.; Fischer, Jan

    2013-01-01

    Roč. 88, č. 3 (2013), "034026-1"-"034026-16" ISSN 1550-7998 Institutional support: RVO:68378271 Keywords : Borel transformation * asymptotic series * Adler function Subject RIV: BE - Theoretical Physics Impact factor: 4.864, year: 2013

  15. The use of phase modulation optimization for power lasers. Minimizing the FM-AM conversion while preserving spectral broadening functionalities required for fusion

    International Nuclear Information System (INIS)

    Hocquet, St.

    2009-11-01

    This research thesis deals with the problem of phase modulations in power lasers (such as the MegaJoule laser which is developed in France) and their impact of different physical phenomena like the suppression of the stimulated Brillouin scattering (which is necessary to avoid optics damage) and the optical smoothing which allows a spatial homogenisation of focal stains. The author deeply discusses the phase modulation counterparts, and more particularly the FM-AM conversion which is the source of unwanted intensity modulation and of energy loss. He reports the development of a comprehensive modelling of phenomena generating FM-AM conversion on a power laser chain. He theoretically and experimentally studies two methods allowing the FM-AM conversion to be reduced to a given spectral distortion: the compensation of transfer functions and the modification of the phase modulation signal to make it less sensitive to spectral distortion effects. For this last method, he determines the ideal spectrum shape for the phase modulation, and proposes a method to approach it. He shows the feasibility of such a method and reports experiments showing to which extent these solutions may improve performance of power lasers. Finally, he proposed optimised solutions for the MegaJoule Laser

  16. Spectral Green’s function nodal method for multigroup SN problems with anisotropic scattering in slab-geometry non-multiplying media

    International Nuclear Information System (INIS)

    Menezes, Welton A.; Filho, Hermes Alves; Barros, Ricardo C.

    2014-01-01

    Highlights: • Fixed-source S N transport problems. • Energy multigroup model. • Anisotropic scattering. • Slab-geometry spectral nodal method. - Abstract: A generalization of the spectral Green’s function (SGF) method is developed for multigroup, fixed-source, slab-geometry discrete ordinates (S N ) problems with anisotropic scattering. The offered SGF method with the one-node block inversion (NBI) iterative scheme converges numerical solutions that are completely free from spatial truncation errors for multigroup, slab-geometry S N problems with scattering anisotropy of order L, provided L < N. As a coarse-mesh numerical method, the SGF method generates numerical solutions that generally do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. Therefore, we describe in this paper a technique for the spatial reconstruction of the coarse-mesh solution generated by the multigroup SGF method. Numerical results are given to illustrate the method’s accuracy

  17. Abundance estimation of spectrally similar minerals

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-07-01

    Full Text Available This paper evaluates a spectral unmixing method for estimating the partial abundance of spectrally similar minerals in complex mixtures. The method requires formulation of a linear function of individual spectra of individual minerals. The first...

  18. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra.

    Science.gov (United States)

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-11-26

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed

  19. CRISS power spectral density

    International Nuclear Information System (INIS)

    Vaeth, W.

    1979-04-01

    The correlation of signal components at different frequencies like higher harmonics cannot be detected by a normal power spectral density measurement, since this technique correlates only components at the same frequency. This paper describes a special method for measuring the correlation of two signal components at different frequencies: the CRISS power spectral density. From this new function in frequency analysis, the correlation of two components can be determined quantitatively either they stem from one signal or from two diverse signals. The principle of the method, suitable for the higher harmonics of a signal as well as for any other frequency combinations is shown for the digital frequency analysis technique. Two examples of CRISS power spectral densities demonstrates the operation of the new method. (orig.) [de

  20. Photovoltaic spectral responsivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  1. Cross-Sectional Analysis of Neurocognitive Function, Retinopathy, and Retinal Thinning by Spectral-Domain Optical Coherence Tomography in Sickle Cell Patients.

    Science.gov (United States)

    Oltra, Erica Z; Chow, Clement C; Wubben, Thomas; Lim, Jennifer I; Chau, Felix Y; Moss, Heather E

    2016-01-01

    The purpose was to examine the relationship between neurocognitive function and two distinct forms of retinopathy in sickle cell disease. Patients with sickle cell disease (n = 44, age range: 19-56 years, 70% female) were prospectively recruited for this cross-sectional study. Retinopathy was characterized by: (1) Presence of focal retinal thinning on spectral domain optical coherence tomography and (2) determination of the sickle retinopathy stage on funduscopic exam based on Goldberg classification. Neurocognitive function was assessed using the Philadelphia Brief Assessment of Cognition (PBAC), a validated test of cognition. Univariate and multivariate analyses for PBAC score outcomes were performed. Retinal thinning and retinopathy stage were primary variables of interest and age, gender, genotype, education, and history of stroke were covariates. Univariate analysis revealed associations with total PBAC score and age (P = 0.049), history of stroke (P = 0.04), and genotype (P retinopathy stage were not associated with each other in this sample. Neither the presence of focal retinal thinning nor degree of retinopathy was associated with total PBAC score in univariate or multivariate analyses. We find an association between lower cognitive function and older age, history of stroke and sickle cell genotype SS in patients with sickle cell disease. Our data do not provide evidence to support an association between cognitive function and retinopathy in sickle cell patients.

  2. The importance of confronting a colonial, patriarchal and racist past ...

    African Journals Online (AJOL)

    The importance of confronting a colonial, patriarchal and racist past in addressing post-apartheid sexual violence. ... It also needs to redress problems of social and economic inequality that exist in South Africa as hangovers from this country's colonial and apartheid-era past. Keywords: Zuma, rape, Kipling, colonialism, ...

  3. Confrontation and Alienation: Education's Flawed Response to Religious Textbook Objections.

    Science.gov (United States)

    Balajthy, Ernest

    Recent controversies over textbooks illustrate objections held by Evangelicals to "secular humanism" in the schools. Educators automatically tend to assume that all religious objections to curricula are clear-cut attempts at censorship. This confrontational attitude on the part of educators can lead to alienation of minority religious…

  4. Challenges confronting health care workers in government's ARV ...

    African Journals Online (AJOL)

    Challenges confronting health care workers in government's ARV rollout: rights and responsibilities. ... Potchefstroom Electronic Law Journal/Potchefstroomse Elektroniese Regsblad ... Unless the rights of HCWs are recognised and their needs adequately addressed, the best laid plans of government will be at risk.

  5. Challenge, Confrontation, and Exhortation as Intentional Invitations by Professional Helpers.

    Science.gov (United States)

    Schmidt, John J.

    1996-01-01

    Examines intentional invitations that challenge, confront, exhort, and persuade people to change their behaviors. Assumes that the sender controls the "intention" and that the receiver determines the degree of "inviting." Suggests that elements of the invitational model serve as a framework to create acceptable inducements in…

  6. Clinical confrontation results of diagnostics and treatment of skin cancer

    International Nuclear Information System (INIS)

    Zikiryakhodjaev, D.Z.; Sanginov, D.R.

    2001-01-01

    In this chapter of book authors investigated the clinical confrontation results of diagnostics and treatment of skin cancer. They noted that diagnostic of skin cancer have to foresee the determination morphologic implements and degree of malignancy tumorous process why in general depend prognosis of illness

  7. Confronting quintessence models with recent high-redshift supernovae data

    International Nuclear Information System (INIS)

    Calvo, G. Barro; Maroto, A. L.

    2006-01-01

    We confront the predictions of different quintessence models with recent measurements of the luminosity distance from two sets of supernovae type Ia. In particular, we consider the 157 SNe Ia in the Gold dataset with z M -α and Ω M -w φ planes for the different models and compare their predictions with dark energy models with constant equation of state

  8. Atmospheric weighting functions and surface partial derivatives for remote sensing of scattering planetary atmospheres in thermal spectral region: general adjoint approach

    International Nuclear Information System (INIS)

    Ustinov, Eugene A.

    2005-01-01

    An approach to formulation of inversion algorithms for remote sensing in the thermal spectral region in the case of a scattering planetary atmosphere, based on the adjoint equation of radiative transfer (Ustinov (JQSRT 68 (2001) 195; JQSRT 73 (2002) 29); referred to as Papers 1 and 2, respectively, in the main text), is applied to the general case of retrievals of atmospheric and surface parameters for the scattering atmosphere with nadir viewing geometry. Analytic expressions for corresponding weighting functions for atmospheric parameters and partial derivatives for surface parameters are derived. The case of pure atmospheric absorption with a scattering underlying surface is considered and convergence to results obtained for the non-scattering atmospheres (Ustinov (JQSRT 74 (2002) 683), referred to as Paper 3 in the main text) is demonstrated

  9. Preparation, crystal structure, vibrational spectral and density functional studies of bis (4-nitrophenol)-2,4,6-triamino-1,3,5-triazine monohydrate

    Science.gov (United States)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-10-01

    An organic-organic salt, bis (4-nitrophenol) 2,4,6-triamino 1,3,5-triazine monohydrate (BNPM) has been prepared by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in triclinic system with centrosymmetric space group P-1. IR and Raman spectra of BNPM have been recorded and analyzed. The study has been extended to confocal Raman spectral analysis. Band assignments have been made for the melamine and p-nitrophenol molecules. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory calculations using Firefly (PC GAMESS) Version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with the experimental one. The Mulliken charges, HOMO-LUMO orbital energies are calculated and analyzed. The chemical structure of the compound was established by 1H NMR and 13C NMR spectra.

  10. Use of Open Source Hardware and Software Platforms to Quantify Spectrally Dependent Differences in Photochemical Efficiency and Functional Absorption Cross Section within the Dinoflagellate Symbiodinium spp.

    Directory of Open Access Journals (Sweden)

    Kenneth D. Hoadley

    2017-11-01

    Full Text Available Active chlorophyll a fluorescence is an essential tool for understanding photosynthetic activity within cnidarian/dinoflagellate symbioses. Fluorescence measurement is typically achieved by utilizing a blue or red monochromatic excitation light source. However, algal photosynthetic pigments can differ in their absorption spectra, potentially leading to excitation wavelength dependent measurements of maximal and light acclimated PSII photosynthetic quantum yield (Fv/Fm or Fq′/Fm′ and functional absorption cross section (σPSII or σPSII′. Here we utilized an open source hardware development platform to construct a multispectral excitation fluorometer to assess spectrally dependent differences in photochemistry within four different Symbiodinium species (two of each ITS2-type A4 and B1. Multivariate analysis of light acclimated photochemical signatures showed separation between most alga types. These spectrally dependent differences in light acclimated PSII efficiency and PSII functional absorption cross section likely reflect changes in light harvesting compounds, their connectivity to the PSII reaction centers and the balance between photochemical and non-photochemical fluorescence quenching. Additionally, acclimation to low (20 μmol photons m−2 s−1 and high (200 μmol photons m−2 s−1 light conditions was examined in two of these symbionts types (ITS-2 type A4 and B1 As expected, chlorophyll a cell−1 decreased under high light acclimation in both symbionts. However, only A4 saw a subsequent reduction in absorbance whereas cellular volume decreased in the B1 (S. minutum symbiont. In response to high light acclimation, Fv/Fm was significantly lower at all excitation wavelengths for the B1 symbiont where as efficiencies remained the same for A4. However, high-light acclimated Fq′/Fm′ levels decreased in both symbionts, but only when measured using the 615 or 625 nm excitation wavelengths. Non-photochemical quenching within the

  11. Determination of spectral, structural and energetic properties of small lithium clusters, within the density functional theory formalism

    International Nuclear Information System (INIS)

    Gardet, G.

    1995-01-01

    A systematic study of small lithium clusters (with size less than 19), within the Density Functional Theory (DFT) formalism is presented. We examine structural properties of the so called local level of approximation. For clusters with size smaller than 8, the conformations are well known from ab initio calculations and are found here at much lower computational cost, with only small differences. For bigger clusters, two growth pattern have been used, based upon the increase of the number of pentagonal subunits in the clusters by absorption of one or two Li atoms. Several new stable structures are proposed. Then DFT gradient-corrected functionals have been used for relative stability determination of these clusters. Ionisation potentials and binding energies are also investigated in regard to clusters size and geometry. Calculations of excited states of lithium clusters (with size less than 9) have been performed within two different approaches. Using a set of Kohn-Sham orbitals to construct wave functions, oscillator strengths calculation of the electric dipole transitions is performed. Transition energies, oscillator strengths and optical absorption presented here are generally in reasonable agreement with the experimental data and the Configuration Interaction calculations. (author)

  12. Integration of spectral domain optical coherence tomography with microperimetry generates unique datasets for the simultaneous identification of visual function and retinal structure in ophthalmological applications

    Science.gov (United States)

    Koulen, Peter; Gallimore, Gary; Vincent, Ryan D.; Sabates, Nelson R.; Sabates, Felix N.

    2011-06-01

    Conventional perimeters are used routinely in various eye disease states to evaluate the central visual field and to quantitatively map sensitivity. However, standard automated perimetry proves difficult for retina and specifically macular disease due to the need for central and steady fixation. Advances in instrumentation have led to microperimetry, which incorporates eye tracking for placement of macular sensitivity values onto an image of the macular fundus thus enabling a precise functional and anatomical mapping of the central visual field. Functional sensitivity of the retina can be compared with the observed structural parameters that are acquired with high-resolution spectral domain optical coherence tomography and by integration of scanning laser ophthalmoscope-driven imaging. Findings of the present study generate a basis for age-matched comparison of sensitivity values in patients with macular pathology. Microperimetry registered with detailed structural data performed before and after intervention treatments provides valuable information about macular function, disease progression and treatment success. This approach also allows for the detection of disease or treatment related changes in retinal sensitivity when visual acuity is not affected and can drive the decision making process in choosing different treatment regimens and guiding visual rehabilitation. This has immediate relevance for applications in central retinal vein occlusion, central serous choroidopathy, age-related macular degeneration, familial macular dystrophy and several other forms of retina related visual disability.

  13. Inhomogeneous spectral moment sum rules for the retarded Green function and self-energy of strongly correlated electrons or ultracold fermionic atoms in optical lattices

    International Nuclear Information System (INIS)

    Freericks, J. K.; Turkowski, V.

    2009-01-01

    Spectral moment sum rules are presented for the inhomogeneous many-body problem described by the fermionic Falicov-Kimball or Hubbard models. These local sum rules allow for arbitrary hoppings, site energies, and interactions. They can be employed to quantify the accuracy of numerical solutions to the inhomogeneous many-body problem such as strongly correlated multilayered devices, ultracold atoms in an optical lattice with a trap potential, strongly correlated systems that are disordered, or systems with nontrivial spatial ordering such as a charge-density wave or a spin-density wave. We also show how the spectral moment sum rules determine the asymptotic behavior of the Green function, self-energy, and dynamical mean field when applied to the dynamical mean-field theory solution of the many-body problem. In particular, we illustrate in detail how one can dramatically reduce the number of Matsubara frequencies needed to solve the Falicov-Kimball model while still retaining high precision, and we sketch how one can incorporate these results into Hirsch-Fye quantum Monte Carlo solvers for the Hubbard (or more complicated) models. Since the solution of inhomogeneous problems is significantly more time consuming than periodic systems, efficient use of these sum rules can provide a dramatic speed up in the computational time required to solve the many-body problem. We also discuss how these sum rules behave in nonequilibrium situations as well, where the Hamiltonian has explicit time dependence due to a driving field or due to the time-dependent change in a parameter such as the interaction strength or the origin of the trap potential.

  14. The proton spectral function of 40Ca and 48Ca studied with the (e,e'p) reaction

    International Nuclear Information System (INIS)

    Kramer, G.J.

    1990-01-01

    This thesis presents the results of an experimental study into the occupation of the orbitals around the Fermi level for 40 Ca and 48 Ca with quasi-elastic proton knock-out (e,e'p). Experiments have been carried out with the 500 MeV electron beam of the linear accelerator MEA at NIKHEF, Amsterdam. For 40 Ca the mechanism of the (e,e'p) reaction has been studied by comparing the measured momentum distributions of some strong transitions to discrete states in 39K , with various theoretical calculations. From this it has been concluded that uncertainties caused by deviations of the impulse approximation can be minimized if the measurements are carried out under parallel kinematical conditions. The spectroscopic strengths of the shell-model orbitals in states just below the Fermi level, for 40 Ca the 1d 3/2 , 1d 5/2 and 2s 1/2 orbitals, turned out to amount 50 to 70% of the IPSM limit. A small part of the missing strength has been found in the 1f 7/2 and 2p 3/2 orbitals which are just above the Fermi level (resp. 11 and 2% of the 2j+1 limit), which is an indication for ground state correlations. The spectroscopic strengths for the 1d 3/2 , 2s 1/2 and 1d 3/2 orbitals of 48 Ca turned out to be the same as for 40C a within the actual measuring accuracy. Above the Fermi level only strength in the 1f 7/2 orbital has been found (1% of the 2j+1 limit). The spectroscopic strengths determined with (e,e'p) experiments are about a factor two smaller than those obtained from (d, 3 He) experiments. This discrepancy has been studied by reviewing the model dependency of the DWBA analysis for the (d, 3 He) reaction with special emphasis on the sensitivities of the spectroscopic factors to the various approximations made in this theory. It is also investigated which part of the bound state wave function is probed by the (e,e'p) and the (d, 3 He) reactions in order to understand the model sensitivities arising from the exact shape of the bound state wave function. (H.W.).97 refs.; 48

  15. Synergistic Exploitation of Hyper- and Multi-Spectral Precursor Sentinel Measurements to Determine Phytoplankton Functional Types (SynSenPFT

    Directory of Open Access Journals (Sweden)

    Svetlana N. Losa

    2017-07-01

    Full Text Available We derive the chlorophyll a concentration (Chla for three main phytoplankton functional types (PFTs – diatoms, coccolithophores and cyanobacteria – by combining satellite multispectral-based information, being of a high spatial and temporal resolution, with retrievals based on high resolution of PFT absorption properties derived from hyperspectral satellite measurements. The multispectral-based PFT Chla retrievals are based on a revised version of the empirical OC-PFT algorithm applied to the Ocean Color Climate Change Initiative (OC-CCI total Chla product. The PhytoDOAS analytical algorithm is used with some modifications to derive PFT Chla from SCIAMACHY hyperspectral measurements. To combine synergistically these two PFT products (OC-PFT and PhytoDOAS, an optimal interpolation is performed for each PFT in every OC-PFT sub-pixel within a PhytoDOAS pixel, given its Chla and its a priori error statistics. The synergistic product (SynSenPFT is presented for the period of August 2002 March 2012 and evaluated against PFT Chla data obtained from in situ marker pigment data and the NASA Ocean Biogeochemical Model simulations and satellite information on phytoplankton size. The most challenging aspects of the SynSenPFT algorithm implementation are discussed. Perspectives on SynSenPFT product improvements and prolongation of the time series over the next decades by adaptation to Sentinel multi- and hyperspectral instruments are highlighted.

  16. Natural bond orbital analysis, electronic structure and vibrational spectral analysis of N-(4-hydroxyl phenyl) acetamide: A density functional theory

    Science.gov (United States)

    Govindasamy, P.; Gunasekaran, S.; Ramkumaar, G. R.

    2014-09-01

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of N-(4-hydroxy phenyl) acetamide (N4HPA) of painkiller agent were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameter, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p) and 6-311++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using Vibrational energy distribution analysis (VEDA 4) program. The oscillator’s strength calculated by TD-DFT and N4HPA is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The molecular electrostatic potential (MESP) and electron density surfaces of the molecule were constructed. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like entropy, heat capacity and zero vibrational energy have been calculated.

  17. Effects of spatial and spectral frequencies on wide-field functional imaging (wifi) characterization of preclinical breast cancer models

    Science.gov (United States)

    Moy, Austin; Kim, Jae G.; Lee, Eva Y. H. P.; Choi, Bernard

    2010-02-01

    A common strategy to study breast cancer is the use of the preclinical model. These models provide a physiologically relevant and controlled environment in which to study both response to novel treatments and the biology of the cancer. Preclinical models, including the spontaneous tumor model and mammary window chamber model, are very amenable to optical imaging and to this end, we have developed a wide-field functional imaging (WiFI) instrument that is perfectly suited to studying tumor metabolism in preclinical models. WiFI combines two optical imaging modalities, spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI). Our current WiFI imaging protocol consists of multispectral imaging in the near infrared (650-980 nm) spectrum, over a wide (7 cm x 5 cm) field of view. Using SFDI, the spatially-resolved reflectance of sinusoidal patterns projected onto the tissue is assessed, and optical properties of the tissue are determined, which are then used to extract tissue chromophore concentrations in the form of oxy-, deoxy-, and total hemoglobin concentrations, and percentage of lipid and water. In the current study, we employ Monte Carlo simulations of SFDI light propagation in order to characterize the penetration depth of light in both the spontaneous tumor model and mammary window chamber model. Preliminary results suggest that different spatial frequency and wavelength combinations have different penetration depths, suggesting the potential depth sectioning capability of the SFDI component of WiFI.

  18. Spectral properties of generalized eigenparameter dependent ...

    African Journals Online (AJOL)

    Jost function, spectrum, the spectral singularities, and the properties of the principal vectors corresponding to the spectral singularities of L, if. ∞Σn=1 n(∣1 - an∣ + ∣bnl) < ∞. Mathematics Subject Classication (2010): 34L05, 34L40, 39A70, 47A10, 47A75. Key words: Discrete equations, eigenparameter, spectral analysis, ...

  19. Correlation between morphological characteristics in spectral-domain-optical coherence tomography, different functional tests and a patient's subjective handicap in acute central serous chorioretinopathy.

    Science.gov (United States)

    Gerendas, Bianca S; Kroisamer, Julia-Sophie; Buehl, Wolf; Rezar-Dreindl, Sandra M; Eibenberger, Katharina M; Pablik, Eleonore; Schmidt-Erfurth, Ursula; Sacu, Stefan

    2018-01-16

    The purpose of this study was to identify quantitatively measurable morphologic optical coherence tomography (OCT) characteristics in patients with an acute episode of central serous chorioretinopathy (CSC) and evaluate their correlation to functional and psychological variables for their use in daily clinical practice. Retinal thickness (RT), the height, area and volume of subretinal fluid (SRF)/pigment epithelium detachments were evaluated using the standardized procedures of the Vienna Reading Center. These morphologic characteristics were compared with functional variables [best-corrected visual acuity (BCVA), contrast sensitivity (CS), retinal sensitivity/microperimetry, fixation stability], and patients' subjective handicap from CSC using the National Eye Institute 25-item Visual Function Questionnaire (NEI VFQ-25). Data from 39 CSC patients were included in this analysis. Three different SRF height measures showed a high negative correlation (r = -0.7) to retinal sensitivity within the central 9°, which was also negatively correlated with SRF area and volume (r = -0.6). The CS score and fixation stability (fixation points within 2°) showed a moderate negative correlation (r = -0.4) with SRF height variables. Comparison of the subjective handicap with morphological characteristics in spectral-domain (SD)-OCT showed SRF height had the highest correlation (r = -0.4) with the subjective problems reported and overall NEI VFQ-25 score. In conclusion, SRF height measured in SD-OCT showed the best correlation with functional variables and patients' subjective handicap caused by the disease and therefore seems to be the best variable to look at in daily clinical routine. Even though area and volume also show a correlation, these cannot be so easily measured as height and are therefore not suggested for daily clinical routine. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  20. Issues confronting women participation in the construction industry

    OpenAIRE

    Aulin, Radhlinah; Jingmond, Monika

    2011-01-01

    This paper raises the issues confronting the minority cohort’s participation in the construction industry. Women in construction are seen as the wrong gender to be around for the construction occupations require not only manual dexterity but physical strength. Currently, the industry is employing less than 10% of the female in the workforce with even lower participation in crafts and trade. This paper discussed about the current women participation in construction focusing on the European Uni...

  1. The Lived Experience of Iranian Women Confronting Breast Cancer Diagnosis

    OpenAIRE

    Esmat Mehrabi; Sepideh Hajian; Masoomeh Simbar; Mohammad Hoshyari; Farid Zayeri

    2016-01-01

    Introduction: The populations who survive from breast cancer are growing; nevertheless, they mostly encounter with many cancer related problems in their life, especially after early diagnosis and have to deal with these problems. Except for the disease entity, several socio-cultural factors may affect confronting this challenge among patients and the way they deal with. Present study was carried out to prepare clear understanding of Iranian women's...

  2. Scheme with two large extra dimensions confronted with neutrino physics

    International Nuclear Information System (INIS)

    Maalampi, J.; Sipilaeinen, V.; Vilja, I.

    2003-01-01

    We investigate a particle physics model in a six-dimensional spacetime, where two extra dimensions form a torus. Particles with standard model charges are confined by interactions with a scalar field to four four-dimensional branes, two vortices accommodating ordinary type fermions and two antivortices accommodating mirror fermions. We investigate the phenomenological implications of this multibrane structure by confronting the model with neutrino physics data

  3. Stop Harassment! Men’s reactions to victims’ confrontation

    Directory of Open Access Journals (Sweden)

    M. Carmen Herrera

    2014-07-01

    Full Text Available Sexual harassment is one of the most widespread forms of gender violence. Perceptions of sexual harassment depend on gender, context, the perceivers’ ideology, and a host of other factors. Research has underscored the importance of coping strategies in raising a victim’s self-confidence by making her feel that she plays an active role in overcoming her own problems. The aim of this study was to assess the men’s perceptions of sexual harassment in relation to different victim responses. The study involved 101 men who were administered a questionnaire focusing on two of the most frequent types of harassment (gender harassment vs. unwanted sexual attention and victim response (confrontation vs. non confrontation, both of which were manipulated. Moreover, the influences of ideological variables, ambivalent sexism, and the acceptance of myths of sexual harassment on perception were also assessed. The results highlight the complexities involved in recognizing certain behaviors as harassment and the implications of different victim responses to incidents of harassment. As the coping strategies used by women to confront harassment entail drawbacks that pose problems or hinder them, the design and implementation of prevention and/or education programs should strive to raise awareness among men and women to further their understanding of this construct.

  4. Confronting Violence, Improving Women's Lives Special Display Opens at NLM | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... of this page please turn JavaScript on. Confronting Violence, Improving Women's Lives Special Display Opens at NLM ... Medicine Division. Photo Courtesy of Lisa Helfert Confronting Violence, Improving Women's Lives is on display in the ...

  5. GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites.

    Science.gov (United States)

    Pearlman, Aaron; Pogorzala, David; Cao, Changyong

    2013-11-01

    The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution.

  6. Some considerations on the restoration of Galilei invariance in the nuclear many-body problem. Pt. I. Mathematical tools, spectral functions and spectroscopic factors of simple bound states

    International Nuclear Information System (INIS)

    Schmid, K.W.

    2001-01-01

    The mathematical tools to restore Galilei invariance in the nuclear many-body problem with the help of projection techniques are presented. For simple oscillator configurations recursion relations for the various elementary contractions are derived. The method is then applied to simple configurations for the ground states of 4 He, 16 O and 40 Ca as well as to the corresponding one-hole and one-particle states. As a first application the spectral functions and spectroscopic factors for the above-mentioned doubly even nuclei are investigated. It turns out that the conventional picture of an uncorrelated system underestimates the single-particle strengths of the hole states from the last occupied shell while that of the higher excited hole states is overestimated considerably. These results are in complete agreement with those derived by Dieperink and de Forest using different methods. Similar effects are seen for the particle states which have not been studied before. All the calculations presented here are performed analytically and thus can be checked explicitly by the interested reader. (orig.)

  7. High-temperature partition functions, specific heats and spectral radiative properties of diatomic molecules with an improved calculation of energy levels

    Science.gov (United States)

    Qin, Z.; Zhao, J. M.; Liu, L. H.

    2018-05-01

    The level energies of diatomic molecules calculated by the frequently used Dunham expansion will become less accurate for high-lying vibrational and rotational levels. In this paper, the potential curves for the lower-lying electronic states with accurate spectroscopic constants are reconstructed using the Rydberg-Klein-Rees (RKR) method, which are extrapolated to the dissociation limits by fitting of the theoretical potentials, and the rest of the potential curves are obtained from the ab-initio results in the literature. Solving the rotational dependence of the radial Schrödinger equation over the obtained potential curves, we determine the rovibrational level energies, which are then used to calculate the equilibrium and non-equilibrium thermodynamic properties of N2, N2+, NO, O2, CN, C2, CO and CO+. The partition functions and the specific heats are systematically validated by available data in the literature. Finally, we calculate the radiative source strengths of diatomic molecules in thermodynamic equilibrium, which agree well with the available values in the literature. The spectral radiative intensities for some diatomic molecules in thermodynamic non-equilibrium are calculated and validated by available experimental data.

  8. Measurement of the Strong Coupling Constant $\\alpha_s$ and the Vector and Axial-Vector Spectral Functions in Hadronic Tau Decays

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Vikas, P; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1999-01-01

    The spectral functions of the vector current and the axial-vector current have been measured in hadronic tau decays using the OPAL detector at LEP. Within the framework of the Operator Product Expansion a simultaneous determination of the strong coupling constant alpha_s, the non-perturbative operators of dimension 6 and 8 and of the gluon condensate has been performed. Different perturbative descriptions have been compared to the data. The Contour Improved Fixed Order Perturbation Theory gives alpha_s(mtau**2) = 0.348 +- 0.009 +- 0.019 at the tau-mass scale and alpha_s(mz**2) = 0.1219 +- 0.0010 +- 0.0017 at the Z-mass scale. The values obtained for alpha_s(mz**2) using Fixed Order Perturbation Theory or Renormalon Chain Resummation are 2.3% and 4.1% smaller, respectively. The running of the strong coupling between s_0 ~1.3 GeV**2 and s_0 = mtau**2 has been tested from direct fits to the integrated differential hadronic decay rate R_tau. A test of the saturation of QCD sum rules at the tau-mass scale has been...

  9. THE X-RAY POWER SPECTRAL DENSITY FUNCTION AND BLACK HOLE MASS ESTIMATE FOR THE SEYFERT ACTIVE GALACTIC NUCLEUS IC 4329a

    International Nuclear Information System (INIS)

    Markowitz, A.

    2009-01-01

    We present the X-ray broadband power spectral density function (PSD) of the X-ray-luminous Seyfert IC 4329a, constructed from light curves obtained via Rossi X-ray Timing Explorer monitoring and an XMM-Newton observation. Modeling the 3-10 keV PSD using a broken power-law PSD shape, a break in power-law slope is significantly detected at a temporal frequency of 2.5 +2.5 -1.7 x 10 -6 Hz, which corresponds to a PSD break timescale T b of 4.6 +10.1 -2.3 days. Using the relation between T b , black hole mass M BH , and bolometric luminosity as quantified by McHardy and coworkers, we infer a black hole mass estimate of M BH = 1.3 +1.0 -0.3 x 10 8 M sun and an accretion rate relative to Eddington of 0.21 +0.06 -0.10 for this source. Our estimate of M BH is consistent with other estimates, including that derived by the relation between M BH and stellar velocity dispersion. We also present PSDs for the 10-20 and 20-40 keV bands; they lack sufficient temporal frequency coverage to reveal a significant break, but are consistent with the same PSD shape and break frequency as in the 3-10 keV band.

  10. Interpretation of resistivity of Nd1.85Ce0.15CuO4-y using the electron-phonon spectral function determined from tunneling data

    International Nuclear Information System (INIS)

    Tralshawala, N.; Zasadzinski, J.F.; Coffey, L.; Huang, Q.

    1991-01-01

    Tunneling measurements of α 2 F(ω) of Nd 1.85 Ce 0.15 CuO 4-y are shown to be in good agreement with recent published results of the phonon density of states F(ω) from neutron scattering. The locations of peaks and valleys in both functions are similar, but the spectral weights differ, suggesting that α 2 has a strong energy dependence. We have used α 2 F(ω) to estimate the phonon contribution, ρ phonon (T), to published data of the temperature-dependent resistivity, ρ(T), for thin films and single crystals of Nd 1.85 Ce 0.15 CuO 4-y . When the phonon contribution is subtracted from the experimental data, a clear T 2 contribution remains over most of the temperature range. The T 2 contribution is interpreted to be due to three-dimensional electron-electron scattering, ρ e-e . There is also a correlation between the magnitude of ρ e-e , and the value of the plasma frequency, ω p [obtained from the determination of ρ phonon (T)], with a scaling which approximates ω p -10/3 . Such a scaling is expected from the carrier-concentration dependence of electron-electron scattering

  11. Theoretical studies on the electronic structures and spectral properties of a series of bis-cyclometalated iridium(III) complexes using density functional theory

    International Nuclear Information System (INIS)

    Han, Deming; Zhang, Gang; Cai, Hongxing; Zhang, Xihe; Zhao, Lihui

    2013-01-01

    We report a quantum-chemistry study of electronic structures and spectral properties of four Ir(III) complexes Ir[2-(2,4-di-X-phenyl)pyridine] 2 (picolinate), where X=–CH 3 (1), –H (2), –CN (3), –NO 2 (4). The absorption and emission spectra were calculated based on the optimized ground state and excited state geometries, respectively, by means of the time-dependent density functional theory (TDDFT). The effect from the electron-withdrawing and electron-donating substituents on charge injection, transport, absorption, and phosphorescent properties has been investigated. The absorption and emission properties can be altered by the different electron-withdrawing and electron-donating groups. Besides, ionization potential (IP), electron affinities (EA) and reorganization energy (λ hole/electron ) were obtained to evaluate the charge transfer and balance properties between hole and electron. The calculated results show that the different substitute groups affect the charge transfer rate and balance. It can be anticipated that the complexes 3 and 4 have good charge transport rates and balance between the hole and electron. -- Highlights: ► Four Ir(III) complexes have been theoretically investigated. ► The different substituents affect the charge transfer rate and balance. ► We design two candidate materials for OLEDs

  12. Theoretical studies on the electronic structures and spectral properties of a series of bis-cyclometalated iridium(III) complexes using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Han, Deming [International Joint Research Center for Nanophotonics and Biophotonics, School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China); Zhang, Gang [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China); Cai, Hongxing; Zhang, Xihe [International Joint Research Center for Nanophotonics and Biophotonics, School of Science, Changchun University of Science and Technology, Changchun 130022 (China); Zhao, Lihui, E-mail: zhaolihui@yahoo.com [International Joint Research Center for Nanophotonics and Biophotonics, School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China)

    2013-06-15

    We report a quantum-chemistry study of electronic structures and spectral properties of four Ir(III) complexes Ir[2-(2,4-di-X-phenyl)pyridine]{sub 2}(picolinate), where X=–CH{sub 3} (1), –H (2), –CN (3), –NO{sub 2} (4). The absorption and emission spectra were calculated based on the optimized ground state and excited state geometries, respectively, by means of the time-dependent density functional theory (TDDFT). The effect from the electron-withdrawing and electron-donating substituents on charge injection, transport, absorption, and phosphorescent properties has been investigated. The absorption and emission properties can be altered by the different electron-withdrawing and electron-donating groups. Besides, ionization potential (IP), electron affinities (EA) and reorganization energy (λ{sub hole/electron}) were obtained to evaluate the charge transfer and balance properties between hole and electron. The calculated results show that the different substitute groups affect the charge transfer rate and balance. It can be anticipated that the complexes 3 and 4 have good charge transport rates and balance between the hole and electron. -- Highlights: ► Four Ir(III) complexes have been theoretically investigated. ► The different substituents affect the charge transfer rate and balance. ► We design two candidate materials for OLEDs.

  13. Asymptotics with respect to the spectral parameter and Neumann series of Bessel functions for solutions of the one-dimensional Schrödinger equation

    Science.gov (United States)

    Kravchenko, Vladislav V.; Torba, Sergii M.

    2017-12-01

    A representation for a solution u(ω, x) of the equation -u″ + q(x)u = ω2u, satisfying the initial conditions u(ω, 0) = 1, u'(ω, 0) = iω, is derived in the form u (ω ,x ) = ei ω x(1 +u/1(x ) ω +u/2(x ) ω2 )+e/-iω xu3(x ) ω2 -1/ω2 ∑n=0 ∞inαn(x ) jn(ω x ) , where um(x), m = 1, 2, 3, are given in a closed form, jn stands for a spherical Bessel function of order n, and the coefficients αn are calculated by a recurrent integration procedure. The following estimate is proved |u (ω ,x ) -uN(ω ,x ) |≤1/|ω|2 ɛ N(x ) √{sinh(2/Imω x ) Imω } for any ω ∈C {0 } , where uN(ω, x) is an approximate solution given by truncating the series in the proposed representation for u(ω, x) and ɛN(x) is a non-negative function tending to zero for all x belonging to a finite interval of interest. In particular, for ω ∈R {0 } , the estimate has the form |u (ω ,x ) -uN(ω ,x ) |≤1/|ω|2 ɛ N(x ) . A numerical illustration of application of the new representation for computing the solution u(ω, x) on large sets of values of the spectral parameter ω with an accuracy nondeteriorating (and even improving) when ω → ±∞ is given.

  14. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Long-Biao eCui

    2015-11-01

    Full Text Available Understanding the neural basis of schizophrenia (SZ is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC, dorsolateral prefrontal cortex (DLPFC, hippocampus, and medial prefrontal cortex (MPFC have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI. Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA in addition to classical inference (t-test. In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, sDCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions.

  15. Security in the Baltic region as a Projection of Global Confrontation between Russia and the USA

    Directory of Open Access Journals (Sweden)

    Vadim Volovoj

    2017-03-01

    Full Text Available This article considers the problem of security in the Baltic region, namely, that of Poland and the Baltics. The authors rely on the works of Karl Deutsch, Emanuel Adler, on Michael Barnett’s theory of security communities and Barry Buzan’s re­gional security complex theory, address Steven Mann’s controlled chaos theory and the concept of Intermarium. Their starting assumption is that the situation in the Baltic depends largely on the politics of external powers — Russia and the United States, — being a projection of their global geopolitical confrontation. The US strategy thus becomes a major part of the equation. The authors believe that since the end of the second Iraq war the American elite has been divided along ideological lines into adherents of the chaos theory and traditionalists thinking in terms of sharing control with the other centres of global power. The US strategy in the Baltic region does not seek an open military conflict with Russia. On the contrary, the US strives to preserve the current level of confrontation between Russia and the EU, convincing the latter of the reality of the Russian threat. Countries that traditionally support confrontation with Russia, Poland and the Bal­tics, serve as a conduit for Washington strategy in Europe and a cordon sanitaire. This function is implemented through the Intermarium project meant to separate Russia from the EU. The four countries are rather active in this area, striving to attain the status of the US principal partners in the region and Europe in general. To retaliate, Moscow does everything within its power to ‘separate’ Brussels from Washington, yet the US influence is still very strong in Europe.

  16. MANAGERIAL PROBLEMS CONFRONTED BY EXECUTIVE CHEFS IN HOTELS

    Directory of Open Access Journals (Sweden)

    Kemal BIRDIR

    2014-07-01

    Full Text Available The study was conducted to determine the managerial problems confronted by executive chefs working at 4 and 5-star hotels in Turkey. A survey developed by the researchers was employed as a data collection tool. Answers given by participants were analyzed using “T-test” and “ANOVA” analyses in order to determine whether there are significant differences of opinion on the subject (collated in answers to the survey questionnaire amongst executive chefs, based on answers given by them (expressed as average figures dependent upon such variables as their “Age”, “Gender”, “Educational Status” and “Star status of the hotel within which they worked.” The study results showed that the most important problem confronting executive chefs was “finding educated/trained kitchen personnel.” On the specific problem, “responsibility and authority is not clear within the kitchen,” there was a significant difference of opinion by the gender of the executive chefs. Moreover, there was a significant difference of opinion dependent upon the star status of the hotels within which the chefs worked on the problem of whether or not “the working hours of kitchen personnel were too long.” The findings suggest that there are important problems confronted by executive chefs. Moreover, male and female executive chefs have different opinions on the magnitudes of some specific problems. Whereas there are various reports and similar publications discussing problems faced by executive chefs, the present study is the first one in the literature that solely explore the managerial problems experienced at a kitchen context.

  17. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  18. Confronting the Consequences of a Permanent Changing Environment

    Directory of Open Access Journals (Sweden)

    Raluca Ioana Vosloban

    2013-05-01

    Full Text Available Businesses and governments choose how they wish to deal with change. Whether this change is organizational, technological, political, financial etc or even individual pursuing actions as usual is likely to lead to a downward path. The authors of this paper are giving a set of tools for confronting and understanding the consequences of this era of permanent changes by building strengths and seeking opportunities within organizations (private or public and within family (including friends. The work environment and the personal life of the individual have a common point which is adaptability, coping efficiently with changes, a demanded ability of the 3rd millennium human being.

  19. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  20. Spectral clustering and biclustering learning large graphs and contingency tables

    CERN Document Server

    Bolla, Marianna

    2013-01-01

    Explores regular structures in graphs and contingency tables by spectral theory and statistical methods This book bridges the gap between graph theory and statistics by giving answers to the demanding questions which arise when statisticians are confronted with large weighted graphs or rectangular arrays. Classical and modern statistical methods applicable to biological, social, communication networks, or microarrays are presented together with the theoretical background and proofs. This book is suitable for a one-semester course for graduate students in data mining, mult

  1. The Lived Experience of Iranian Women Confronting Breast Cancer Diagnosis.

    Science.gov (United States)

    Mehrabi, Esmat; Hajian, Sepideh; Simbar, Masoomeh; Hoshyari, Mohammad; Zayeri, Farid

    2016-03-01

    The populations who survive from breast cancer are growing; nevertheless, they mostly encounter with many cancer related problems in their life, especially after early diagnosis and have to deal with these problems. Except for the disease entity, several socio-cultural factors may affect confronting this challenge among patients and the way they deal with. Present study was carried out to prepare clear understanding of Iranian women's lived experiences confronting breast cancer diagnosis and coping ways they applied to deal with it. This study was carried out by using qualitative phenomenological design. Data gathering was done through purposive sampling using semi-structured, in-depth interviews with 18 women who survived from breast cancer. The transcribed interviews were analyzed using Van Manen's thematic analysis approach. Two main themes were emerged from the interviews including "emotional turbulence" and "threat control". The first, comprised three sub themes including uncertainty, perceived worries, and living with fears. The second included risk control, recurrence control, immediate seeking help, seeking support and resource to spirituality. Emotional response was the immediate reflection to cancer diagnosis. However, during post-treatment period a variety of emotions were not uncommon findings, patients' perceptions have been changing along the time and problem-focused coping strategies have replaced. Although women may experience a degree of improvement and adjustment with illness, the emotional problems are not necessarily resolved, they may continue and gradually engender positive outcomes.

  2. The Lived Experience of Iranian Women Confronting Breast Cancer Diagnosis

    Directory of Open Access Journals (Sweden)

    Esmat Mehrabi

    2016-03-01

    Full Text Available Introduction: The populations who survive from breast cancer are growing; nevertheless, they mostly encounter with many cancer related problems in their life, especially after early diagnosis and have to deal with these problems. Except for the disease entity, several socio-cultural factors may affect confronting this challenge among patients and the way they deal with. Present study was carried out to prepare clear understanding of Iranian women's lived experiences confronting breast cancer diagnosis and coping ways they applied to deal with it. Methods: This study was carried out by using qualitative phenomenological design. Data gathering was done through purposive sampling using semi-structured, in-depth interviews with 18 women who survived from breast cancer. The transcribed interviews were analyzed using Van Manen’s thematic analysis approach. Results: Two main themes were emerged from the interviews including "emotional turbulence" and "threat control". The first, comprised three sub themes including uncertainty, perceived worries, and living with fears. The second included risk control, recurrence control, immediate seeking help, seeking support and resource to spirituality. Conclusion: Emotional response was the immediate reflection to cancer diagnosis. However, during post-treatment period a variety of emotions were not uncommon findings, patients' perceptions have been changing along the time and problem-focused coping strategies have replaced. Although women may experience a degree of improvement and adjustment with illness, the emotional problems are not necessarily resolved, they may continue and gradually engender positive outcomes.

  3. Synergetic Paradigm of Geopolitical Confrontation in the Postmodern Era

    Directory of Open Access Journals (Sweden)

    Sergey N. Teplyakov

    2014-01-01

    Full Text Available The article analyzes current state and mechanisms of geopolitical struggle in postmodern information age that has come. The author judges from assumption that entirely new postmodern society appeared with expansion of information technology, accompanied by cardinal changes in mechanisms of political power. Information technologies have become one of the most important factors contributing to the transformation of modern society from industrial to informational (post-industrial. In modern conditions, ensuring national and global security is a comprehensive process that includes not only measures to ensure information and economic security individually, but also such an integrated component as providing both information and economic security. The author suggests that modem geopolitical confrontation is carried out based on the synergetic paradigm. The main tool is information and energy influence on enemy system weaknesses using information space control, organizing negative information campaigns and applying economic sanctions. If the main focus of geopolitical struggle in modern era was forced expansion of the territory, in information postmodern age control over economic and information space has become priority among forms of geopolitical struggle. Military expansion of modern era becomes substituted by information and economic expansionism of postmodern using synergetic paradigm of geopolitical confrontation in order to control and capture the opponent's political space.

  4. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  5. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  6. Structure-function correlations in glaucoma using matrix and standard automated perimetry versus time-domain and spectral-domain OCT devices.

    Science.gov (United States)

    Pinto, Luciano Moreira; Costa, Elaine Fiod; Melo, Luiz Alberto S; Gross, Paula Blasco; Sato, Eduardo Toshio; Almeida, Andrea Pereira; Maia, Andre; Paranhos, Augusto

    2014-04-10

    We examined the structure-function relationship between two perimetric tests, the frequency doubling technology (FDT) matrix and standard automated perimetry (SAP), and two optical coherence tomography (OCT) devices (time-domain and spectral-domain). This cross-sectional study included 97 eyes from 29 healthy individuals, and 68 individuals with early, moderate, or advanced primary open-angle glaucoma. The correlations between overall and sectorial parameters of retinal nerve fiber layer thickness (RNFL) measured with Stratus and Spectralis OCT, and the visual field sensitivity obtained with FDT matrix and SAP were assessed. The relationship also was evaluated using a previously described linear model. The correlation coefficients for the threshold sensitivity measured with SAP and Stratus OCT ranged from 0.44 to 0.79, and those for Spectralis OCT ranged from 0.30 to 0.75. Regarding FDT matrix, the correlation ranged from 0.40 to 0.79 with Stratus OCT and from 0.39 to 0.79 with Spectralis OCT. Stronger correlations were found in the overall measurements and the arcuate sectors for both visual fields and OCT devices. A linear relationship was observed between FDT matrix sensitivity and the OCT devices. The previously described linear model fit the data from SAP and the OCT devices well, particularly in the inferotemporal sector. The FDT matrix and SAP visual sensitivities were related strongly to the RNFL thickness measured with the Stratus and Spectralis OCT devices, particularly in the overall and arcuate sectors. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  7. Spectral Compressive Sensing with Polar Interpolation

    DEFF Research Database (Denmark)

    Fyhn, Karsten; Dadkhahi, Hamid; F. Duarte, Marco

    2013-01-01

    . In this paper, we introduce a greedy recovery algorithm that leverages a band-exclusion function and a polar interpolation function to address these two issues in spectral compressive sensing. Our algorithm is geared towards line spectral estimation from compressive measurements and outperforms most existing...

  8. Applications of zeta functions and other spectral functions in mathematics and physics: a special issue in honour of Stuart Dowker's 75th birthday Applications of zeta functions and other spectral functions in mathematics and physics: a special issue in honour of Stuart Dowker's 75th birthday

    Science.gov (United States)

    Dowker, Fay; Elizalde, Emilio; Kirsten, Klaus

    2012-09-01

    extension that impacts particles never entering that region. What is the gravitational analogue for that situation? The analogue concerns the impact a localized curvature has, and the cone is an excellent example to shed light on that question. Related to the method of images, Stuart has done an enormous amount of work on the influence of topology and curvature on quantum field theory. An example is [17], where the vacuum stress-energy tensor for Clifford-Klein forms of the flat or spherical type were computed. Another strand we would like to mention is Stuart's interest in higher spin equations. In [18], Steven Weinberg wrote down a set of higher spin equations that took his fancy. They involved angular momentum theory, which has always pleased Stuart, and the description was an alternative to Roger Penrose's use of two-spinors. Investigating the inconsistencies that arose on coupling to gauge theories, Stuart extended the classic results in [19], from electromagnetism to gravity in accordance with his general philosophy; see, e.g., [20, 21, 22]. Lately, Stuart is best known for his many applications in the context of zeta function regularization and its applications to quantum field theory under external conditions and spectral theory. He can be considered the world expert on particular case calculations with a knowledge of the literature, old and recent, that is not seen very often and which originated in the many hours spent at different (mostly British) libraries. His attitude towards explicit computations is nicely summarized by himself: 'I have always been interested in exact solutions, even if unphysical, so long as they are pretty. They seem to be working mechanisms that fit together, complete in themselves, like a watch.' The following issue in honour of Stuart's 75th birthday contains contributions that touch upon the various topics he has worked on. References [1] de Broglie L 1928 La mécanique ondulatoire (Paris: Gauthier-Villars) [2] Castillejo L, Dalitz R H

  9. Normative data set identifying properties of the macula across age groups: integration of visual function and retinal structure with microperimetry and spectral-domain optical coherence tomography.

    Science.gov (United States)

    Sabates, Felix N; Vincent, Ryan D; Koulen, Peter; Sabates, Nelson R; Gallimore, Gary

    2011-01-01

    A normative database of functional and structural parameters of the macula from normal subjects was established to identify reference points for the diagnosis of patients with macular disease using microperimetry and scanning laser ophthalmoscope/spectral-domain optical coherence tomography (SD-OCT). This was a community-based, prospective, cross-sectional study of 169 eyes from subjects aged 21 years to 85 years with best-corrected visual acuity of 20/25 or better and without any ocular disease. Full-threshold macular microperimetry combined with the acquisition of structural parameters of the macula with scanning laser ophthalmoscope/SD-OCT was recorded (SD-OCT/scanning laser ophthalmoscope with add-on Microperimetry module; OPKO). Fixation, central, subfield, and mean retinal thickness were acquired together with macular sensitivity function. Thickness and sensitivity as primary outcome measures were mapped and superimposed correlating topographically differentiated macular thickness with sensitivity. Statistical evaluation was performed with age, gender, and ethnicity as covariates. Subfield and mean retinal thickness and sensitivity were measured with macular microperimetry combined with SD-OCT and differentiated by macular topography and subjects' age, gender, and ethnicity. Mean retinal sensitivity and thickness were calculated for 169 healthy eyes (mean age, 48 ± 17 years). A statistically significant decrease in sensitivity was found only in the age group of participants ≥ 70 years and in peripheral portions of the macula in individuals aged ≥60 years and was more pronounced in the area surrounding the fovea than in the center of the macula, while retinal thickness did not change with age. No statistically significant differences in the primary outcome measures or their correlations were found when using gender or ethnicity as a covariate. A database for normal macular thickness and sensitivity was generated with a combined microperimetry SD

  10. Confronting Uncertainty in Life Cycle Assessment Used for Decision Support

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Zwicky; Sohn, Michael D.

    2014-01-01

    the decision maker (DM) in making the best possible choice for the environment. At present, some DMs do not trust the LCA to be a reliable decisionsupport tool—often because DMs consider the uncertainty of an LCA to be too large. The standard evaluation of uncertainty in LCAs is an ex-post approach that can...... regarding which type of LCA study to employ for the decision context at hand. This taxonomy enables the derivation of an LCA classification matrix to clearly identify and communicate the type of a given LCA. By relating the LCA classification matrix to statistical principles, we can also rank the different......The aim of this article is to help confront uncertainty in life cycle assessments (LCAs) used for decision support. LCAs offer a quantitative approach to assess environmental effects of products, technologies, and services and are conducted by an LCA practitioner or analyst (AN) to support...

  11. Confronting the Danish sectors for food and agriculture with 'terroir'

    DEFF Research Database (Denmark)

    Stoye, Monica

    2007-01-01

    in e.g. PDO and PGI labelling. In the Roman approach, the superior product can be differentiated from all other products by its special taste, identity and/or integrated cultural elements. This definition of superiority is far from the average understanding of high food quality in a Scandinavian......The notion of ‘terroir' originates from wine production in southern Europe. It denotes a traditional approach to food, agriculture and rurality - an approach, which by some scholars has been summarized as a Roman approach. This Roman approach has exerted great influence on EU policies, resulting...... country like Denmark, where uniform products, high nutritional and hygienic levels and veterinary approval characterise an extremely export oriented food sector. However, Danish small scale food producers, who want to implement the terroir approach in their own production, increasingly confront...

  12. Defense Strategy of Aircraft Confronted with IR Guided Missile

    Directory of Open Access Journals (Sweden)

    Hesong Huang

    2017-01-01

    Full Text Available Surface-type infrared (IR decoy can simulate the IR characteristics of the target aircraft, which is one of the most effective equipment to confront IR guided missile. In the air combat, the IR guided missile poses a serious threat to the aircraft when it comes from the front of target aircraft. In this paper, firstly, the model of aircraft and surface-type IR decoy is established. To ensure their authenticity, the aircraft maneuver and radiation models based on real data of flight and exhaust system radiation in the state of different heights and different speeds are established. Secondly, the most effective avoidance maneuver is simulated when the missile comes from the front of the target aircraft. Lastly, combining maneuver with decoys, the best defense strategy is analysed when the missile comes from the front of aircraft. The result of simulation, which is authentic, is propitious to avoid the missile and improve the survivability of aircraft.

  13. Confronting hybrid inflation in supergravity with CMB data

    International Nuclear Information System (INIS)

    Jeannerot, Rachel; Postma, Marieke

    2005-01-01

    F-term GUT inflation coupled to N = 1 supergravity is confronted with CMB data. Corrections to the string mass-per-unit-length away from the Bogomolny limit are taken into account. We find that a superpotential coupling 10 -7 /N∼ -2 /N, with N the dimension of the Higgs-representation, is still compatible with the data. The parameter space is enlarged in warm inflation, as well as in the curvaton and inhomogeneous reheat scenario. F-strings formed at the end of P-term inflation are also considered. Because these strings satisfy the Bogomolny bound the bounds are stronger: the gauge coupling is constrained to the range 10 -7 -4

  14. The latent confrontation: The Korean peninsula’s uncertain future

    Directory of Open Access Journals (Sweden)

    Asier Blas Mendoza

    2007-10-01

    Full Text Available This article covers the changes that have taken place in inter-Korean relations since the fall of the Soviet regimes. In the first few years following the fall of the iron curtain, the Korean perimeter became a scenario of confrontation that seemed to perpetuate theproblem. However, in the second half of the ‘90s, north-east Asia began to undergo a real change that resulted in public contacts between the two Koreas. The new game that was officially opened by the “Sunshine policy” led to a deep-seated rethinking of foreignpolicy by both states, and opened a new chapter in inter-Korean relations that has clearly demonstrated the important dimension and repercussions of the conflict in the geo-strategic framework of the entire East Asian area, as well as in international politics.

  15. Energy condition bounds and their confrontation with supernovae data

    International Nuclear Information System (INIS)

    Lima, M. P.; Vitenti, S.; Reboucas, M. J.

    2008-01-01

    The energy conditions play an important role in the understanding of several properties of the Universe, including the current accelerating expansion phase and the possible existence of the so-called phantom fields. We show that the integrated bounds provided by the energy conditions on cosmological observables such as the distance modulus μ(z) and the lookback time t L (z) are not sufficient (or necessary) to ensure the local fulfillment of the energy conditions, making explicit the limitation of these bounds in the confrontation with observational data. We recast the energy conditions as bounds on the deceleration and normalized Hubble parameters, obtaining new bounds which are necessary and sufficient for the local fulfillment of the energy conditions. A statistical confrontation, with 1σ-3σ confidence levels, between our bounds and supernovae data from the gold and combined samples is made for the recent past. Our analyses indicate, with 3σ confidence levels, the fulfillment of both the weak energy condition (WEC) and dominant energy condition (DEC) for z≤1 and z < or approx. 0.8, respectively. In addition, they suggest a possible recent violation of the null energy condition (NEC) with 3σ, i.e. a very recent phase of superacceleration. Our analyses also show the possibility of violation of the strong energy condition (SEC) with 3σ in the recent past (z≤1), but interestingly the q(z)-best-fit curve crosses the SEC--fulfillment divider at z≅0.67, which is a value very close to the beginning of the epoch of cosmic acceleration predicted by the standard concordance flat ΛCDM scenario.

  16. Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function

    NARCIS (Netherlands)

    Ten Kate, O.M.; De Jong, M.; Hintzen, H.T.; Van der Kolk, E.

    2013-01-01

    Solar cells of which the efficiency is not limited by the Shockley-Queisser limit can be obtained by integrating a luminescent spectral conversion layer into the cell structure. We have calculated the maximum efficiency of state-of-the-art c-Si, pc-Si, a-Si, CdTe, GaAs, CIS, CIGS, CGS, GaSb, and Ge

  17. Intersection numbers of spectral curves

    CERN Document Server

    Eynard, B.

    2011-01-01

    We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the Marino-Vafa formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV, Marino-Vafa formula, and Mumford formula.

  18. Confronting as autonomy promotion: Speaking up against discrimination and psychological well-being in racial minorities.

    Science.gov (United States)

    Sanchez, Diana T; Himmelstein, Mary S; Young, Danielle M; Albuja, Analia F; Garcia, Julie A

    2016-09-01

    Few studies have considered confrontation in the context of coping with discriminatory experiences. These studies test for the first time whether confronting racial discrimination is associated with greater psychological well-being and physical health through the promotion of autonomy. In two separate samples of racial minorities who had experienced racial discrimination, confrontation was associated with greater psychological well-being, and this relationship was mediated by autonomy promotion. These findings did not extend to physical health symptoms. These studies provide preliminary evidence that confrontation may aid in the process of regaining autonomy after experiencing discrimination and therefore promote well-being. © The Author(s) 2015.

  19. Spectral ansatz in quantum electrodynamics

    International Nuclear Information System (INIS)

    Atkinson, D.; Slim, H.A.

    1979-01-01

    An ansatz of Delbourgo and Salam for the spectral representation of the vertex function in quantum electrodynamics. The Ward-Takahashi identity is respected, and the electron propagator does not have a ghost. The infra-red and ultraviolet behaviours of the electron propagator in this theory are considered, and a rigorous existence theorem for the propagator in the Yennie gauge is presented

  20. Computer-assisted spectral design and synthesis

    Science.gov (United States)

    Vadakkumpadan, Fijoy; Wang, Qiqi; Sun, Yinlong

    2005-01-01

    In this paper, we propose a computer-assisted approach for spectral design and synthesis. This approach starts with some initial spectrum, modifies it interactively, evaluates the change, and decides the optimal spectrum. Given a requested change as function of wavelength, we model the change function using a Gaussian function. When there is the metameric constraint, from the Gaussian function of request change, we propose a method to generate the change function such that the result spectrum has the same color as the initial spectrum. We have tested the proposed method with different initial spectra and change functions, and implemented an interactive graphics environment for spectral design and synthesis. The proposed approach and graphics implementation for spectral design and synthesis can be helpful for a number of applications such as lighting of building interiors, textile coloration, and pigment development of automobile paints, and spectral computer graphics.

  1. Intensity Conserving Spectral Fitting

    Science.gov (United States)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2015-01-01

    The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.

  2. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  3. Spectral correlations in Anderson insulating wires

    Science.gov (United States)

    Marinho, M.; Micklitz, T.

    2018-01-01

    We calculate the spectral level-level correlation function of Anderson insulating wires for all three Wigner-Dyson classes. A measurement of its Fourier transform, the spectral form factor, is within reach of state-of-the-art cold atom quantum quench experiments, and we find good agreement with recent numerical simulations of the latter. Our derivation builds on a representation of the level-level correlation function in terms of a local generating function which may prove useful in other contexts.

  4. Chebyshev and Fourier spectral methods

    CERN Document Server

    Boyd, John P

    2001-01-01

    Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.

  5. Confronting uncertainty in wildlife management: performance of grizzly bear management.

    Science.gov (United States)

    Artelle, Kyle A; Anderson, Sean C; Cooper, Andrew B; Paquet, Paul C; Reynolds, John D; Darimont, Chris T

    2013-01-01

    Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone--discrepancy between expected and realized mortality levels--led to excess mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty.

  6. Confronting uncertainty in wildlife management: performance of grizzly bear management.

    Directory of Open Access Journals (Sweden)

    Kyle A Artelle

    Full Text Available Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone--discrepancy between expected and realized mortality levels--led to excess mortality in 19% of cases (population-years examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty.

  7. Some Challenges the Management Confronts with, in the Financial Institutions

    Directory of Open Access Journals (Sweden)

    Laurentiu Mihai Treapat

    2014-02-01

    Full Text Available In this paper, we analyze some features and components of the management in general, and of the management in the financial area in particular. Special attention is given to how they cope with some risk which could affect their activity. Trying to find from practice what kind of difficulties the management faces in their work, for sure, we get to interesting conclusions and furthermore, to optimum solutions. We already have some data, result of some earlier preoccupations of the specialists (Dănilă and Berea, 2000 pp.39-48 while others can be foreseen as specific elements for the beginning of the 3rd millennium, that started with what the rating agencies seem to admit as the most important economic decline and prolonged recession risk within the post World War II history. We consider an evaluation of the challenges the management confronts with, lately - while subject to pressures and to the need for radical changes that come with an astonishing speed and that are enhanced by the shareholders’ desperate need to protect their capital. Findings reveal that, in any business enterprise the shareholders’ strategy and the management’s objectives are earning new clients, enlarging the market share, creating added value and on these bases, maximizing the gained profits. We consider that the volatile and fluctuant nature of the raw material the banks operate with - namely the money – turn the management in this area into a particular one, depicted by some specific features, which we analyze in the following pages.

  8. Dynamics of confrontation : Tarapur and Indo-US relations

    International Nuclear Information System (INIS)

    Banerji, Sanjukta

    1981-01-01

    Under the Tarapur Agreement signed in 1963, the United States is under contractual obligations to supply the enriched uranium fuel for the Tarapur Atomic Power Station. However, the supply of fuel has become an issue of confrontation between India and the United States after India conducted the peaceful nuclear explosion test at Pokhran in 1974. India also refused to sign the Non-Proliferation Treaty (NPT) due to its discriminatory nature. The United States insists on India's signing the NPT under the Nuclear Non-Proliferation Act passed by the American Congress in 1978. During 1977-79 period, a license for 12 tonnes was cleared after a sort of assurance that no nuclear test would be conducted. India refused to accept the full scope safeguards as stipulated in the U.S. Nuclear Non-Proliferation Act. In 1980, a presidential executive order for 40 tonnes of fuel was issued, but only one consignment of 19.6 tonnes was cleared by the American Senate. After Reagan became the U.S. President, the fuel supply completely stopped. Now discussions are taking place to terminate the Tarapur Agreement on mutually acceptable terms. (M.G.B.)

  9. Fear appeals and confronting information campaigns. [Previously: Fear-based information campaigns.

    NARCIS (Netherlands)

    2007-01-01

    Fear appeals or confronting information campaigns confront people in an often hard and sometimes even shocking way with the consequences of risky behaviour. This can have a positive impact on the attitudes and behavioural intentions of the target group, but only if key conditions are met. Those

  10. US-CUBA RELATIONS: A NEW WAVE OF CONFRONTATION?

    Directory of Open Access Journals (Sweden)

    С Перес Бенитес

    2017-12-01

    Full Text Available The article seeks to analyze the role of the changes introduced by the administration of the former president Barack Obama in 2014-2016 into the bilateral US-Cuba relations; and the way in which the new presidential team are to reorganize this direction. The question on the attitude of Donald Trump towards currently existing policies aimed at solving the long-lasting problem with Cuban socialism is especially interesting since new US president has multiple times condemned the old ways practiced by the former establishment, but at the same time has shown readiness to act in a straight-forward and confrontational manner. One of contributors of the paper, Santiago Perez Benitez, deputy director of the Center for International Political Studies in Havana, is attempting to provide his professional expertise in granting an insider view from the Cuban side, evaluating the progress made since the 2014 and interpret the notion of the upcoming policy changes in Washington. The importance of the Cuban issue in the framework of US. policy in the Western hemisphere is explained by the fact that a solution in this sphere could help remake a negative image of Pan-American policies that haunts Washington. Cuban issue has also been long considered a possible key for reestablish-ment of trust between the United States and Latin American countries. For president Trump, quite unpopular judging by the polls, Cuban issue also has a potential to earn support of his own constituents, who strongly support lifting the embargo from Cuba. However now after certain decisions of Donald Trump the future of US-Cuban relations seems to get gloomier by the day.

  11. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  12. Spectral Tensor-Train Decomposition

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.

    2016-01-01

    The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT...... adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online (http://pypi.python.org/pypi/TensorToolbox/)....

  13. Introduction to spectral theory

    CERN Document Server

    Levitan, B M

    1975-01-01

    This monograph is devoted to the spectral theory of the Sturm- Liouville operator and to the spectral theory of the Dirac system. In addition, some results are given for nth order ordinary differential operators. Those parts of this book which concern nth order operators can serve as simply an introduction to this domain, which at the present time has already had time to become very broad. For the convenience of the reader who is not familar with abstract spectral theory, the authors have inserted a chapter (Chapter 13) in which they discuss this theory, concisely and in the main without proofs, and indicate various connections with the spectral theory of differential operators.

  14. [Adolescent confronting cancer and its place in the family].

    Science.gov (United States)

    Chavand, Aurélie; Grandjean, Hélène; Vignes, Michel

    2007-04-01

    Adolescent medicine is expanding in Europe with particular attention being given to cancer of adolescents and its treatment. At a time where specialised units for adolescents are being born, it is essential to collect the current knowledge on the pathological impact of the illness in this age period whose limits themselves are often blurred (13-21 years or 15-25 years). Adolescence is a transition between childhood and adulthood, during which one seeks psychological and emotional development. Cancer, by its direct repercussion on the adolescent and also by the disorganisation of the family, can involve risks impending the process of maturation and can also be a purveyor of psychological after-affects. The occurrence of the illness can isolate the adolescent and leak to a restriction of the psychological investment. The reality of possible death can hinder the ill adolescent from developing his natural opposition to the adults who represent authority such as parents or nurses, thereby hindering access to autonomy, independence and identity construction. One can find oneself locked in a state of trouble, confusion, becoming a stranger to oneself, with an impression of distance waxing between the young patient and others. The parents find themselves weakening and must make calls on their supporters. The siblings see their daily life becoming more unsettled and find themselves confronted by parents less available and reassuring. The impact on the brothers and sisters vary depending on their age and the capacity of the parent's adaptation. From the onset, adolescents struck by cancer necessitate an adaptation of the medical staff. The medical information, the treatment and the aid-care contracts must be approved by the adolescent himself but the parent's involvement remains essential. It is necessary to create an alliance of three. Conflicts and rivalry occur frequently between parents and the medical staff. One must study the possibility of creating a place adapted to

  15. The Heat is On! Confronting Climate Change in the Classroom

    Science.gov (United States)

    Bowman, R.; Atwood-Blaine, D.

    2008-12-01

    This paper discusses a professional development workshop for K-12 science teachers entitled "The Heat is On! Confronting Climate Change in the Classroom." This workshop was conducted by the Center for Remote Sensing of Ice Sheets (CReSIS), which has the primary goal to understand and predict the role of polar ice sheets in sea level change. The specific objectives of this summer workshop were two-fold; first, to address the need for advancement in science technology engineering and mathematics (STEM) education and second, to address the need for science teacher training in climate change science. Twenty-eight Kansas teachers completed four pre-workshop assignments online in Moodle and attended a one-week workshop. The workshop included lecture presentations by scientists (both face-to-face and via video-conference) and collaboration between teachers and scientists to create online inquiry-based lessons on the water budget, remote sensing, climate data, and glacial modeling. Follow-up opportunities are communicated via the CReSIS Teachers listserv to maintain and further develop the collegial connections and collaborations established during the workshop. Both qualitative and quantitative evaluation results indicate that this workshop was particularly effective in the following four areas: 1) creating meaningful connections between K-12 teachers and CReSIS scientists; 2) integrating distance-learning technologies to facilitate the social construction of knowledge; 3) increasing teachers' content understanding of climate change and its impacts on the cryosphere and global sea level; and 4) increasing teachers' self-efficacy beliefs about teaching climate science. Evaluation methods included formative content understanding assessments (via "clickers") during each scientist's presentation, a qualitative evaluation survey administered at the end of the workshop, and two quantitative evaluation instruments administered pre- and post- workshop. The first of these

  16. Modal planes are spectral triples

    International Nuclear Information System (INIS)

    Gayral, Victor; Iochum, Bruno; Schuecker, Thomas; Gracia-Bondia, Jose M.; Varilly, Joseph C.

    2003-09-01

    Axioms for nonunital spectral triples, extending those introduced in the unital case by Connes, are proposed. As a guide, and for the sake of their importance in noncommutative quantum field theory, the spaces R 2N endowed with Moyal products are intensively investigated. Some physical applications, such as the construction of noncommutative Wick monomials and the computation of the Connes-Lott functional action, are given for these noncommutative hyperplanes. (author)

  17. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between ...... observation sites and the turbulence intensity influence the results. The limitations of the theory are discussed....

  18. On the relevance of spectral features for instrument classification

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Sigurdsson, Sigurdur; Hansen, Lars Kai

    2007-01-01

    Automatic knowledge extraction from music signals is a key component for most music organization and music information retrieval systems. In this paper, we consider the problem of instrument modelling and instrument classification from the rough audio data. Existing systems for automatic instrument...... classification operate normally on a relatively large number of features, from which those related to the spectrum of the audio signal are particularly relevant. In this paper, we confront two different models about the spectral characterization of musical instruments. The first assumes a constant envelope...

  19. A confrontation with reality - Proceedings of the 19th Association for Learning Technology Conference

    NARCIS (Netherlands)

    Hawkridge, David; Verjans, Steven; Wilson, Gail

    2012-01-01

    Hawkridge, D., Verjans, S., & Wilson, G. (Eds.) (2012). A confrontation with reality - Proceedings of the 19th Association for Learning Technology Conference (ALT-C 2012). September, 11-14, 2012, Manchester, UK.

  20. Fear appeals and confronting information campaigns. [Previously: Fear-based information campaigns.

    OpenAIRE

    2007-01-01

    Fear appeals or confronting information campaigns confront people in an often hard and sometimes even shocking way with the consequences of risky behaviour. This can have a positive impact on the attitudes and behavioural intentions of the target group, but only if key conditions are met. Those conditions are that the information does not only evoke fear, but also informs the target group individuals of their personal risk and provides them with feasible and effective behavioural alternatives...

  1. Hearing diversity in moths confronting a neotropical bat assemblage.

    Science.gov (United States)

    Cobo-Cuan, Ariadna; Kössl, Manfred; Mora, Emanuel C

    2017-09-01

    The tympanal ear is an evolutionary acquisition which helps moths survive predation from bats. The greater diversity of bats and echolocation strategies in the Neotropics compared with temperate zones would be expected to impose different sensory requirements on the neotropical moths. However, even given some variability among moth assemblages, the frequencies of best hearing of moths from different climate zones studied to date have been roughly the same: between 20 and 60 kHz. We have analyzed the auditory characteristics of tympanate moths from Cuba, a neotropical island with high levels of bat diversity and a high incidence of echolocation frequencies above those commonly at the upper limit of moths' hearing sensitivity. Moths of the superfamilies Noctuoidea, Geometroidea and Pyraloidea were examined. Audiograms were determined by non-invasively measuring distortion-product otoacoustic emissions. We also quantified the frequency spectrum of the echolocation sounds to which this moth community is exposed. The hearing ranges of moths in our study showed best frequencies between 36 and 94 kHz. High sensitivity to frequencies above 50 kHz suggests that the auditory sensitivity of moths is suited to the sounds used by sympatric echolocating bat fauna. Biodiversity characterizes predators and prey in the Neotropics, but the bat-moth acoustic interaction keeps spectrally matched.

  2. Learning theory of distributed spectral algorithms

    International Nuclear Information System (INIS)

    Guo, Zheng-Chu; Lin, Shao-Bo; Zhou, Ding-Xuan

    2017-01-01

    Spectral algorithms have been widely used and studied in learning theory and inverse problems. This paper is concerned with distributed spectral algorithms, for handling big data, based on a divide-and-conquer approach. We present a learning theory for these distributed kernel-based learning algorithms in a regression framework including nice error bounds and optimal minimax learning rates achieved by means of a novel integral operator approach and a second order decomposition of inverse operators. Our quantitative estimates are given in terms of regularity of the regression function, effective dimension of the reproducing kernel Hilbert space, and qualification of the filter function of the spectral algorithm. They do not need any eigenfunction or noise conditions and are better than the existing results even for the classical family of spectral algorithms. (paper)

  3. Estimation of spectral kurtosis

    Science.gov (United States)

    Sutawanir

    2017-03-01

    Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to

  4. Spectrally accurate contour dynamics

    International Nuclear Information System (INIS)

    Van Buskirk, R.D.; Marcus, P.S.

    1994-01-01

    We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use

  5. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  6. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  7. Rectangular spectral collocation

    KAUST Repository

    Driscoll, Tobin A.; Hale, Nicholas

    2015-01-01

    Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon

  8. Vowel Inherent Spectral Change

    CERN Document Server

    Assmann, Peter

    2013-01-01

    It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...

  9. Novel spectral features of nanoelectromechanical systems

    KAUST Repository

    Tahir, M.

    2014-02-17

    Electron transport through a quantum dot or single molecule coupled to a quantum oscillator is studied by the Keldysh nonequilibrium Green\\'s function formalism to obtain insight into the quantum dynamics of the electronic and oscillator degrees of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate voltage. Novel spectral features are identified for the ground and excited states of nanomechanical oscillators that can be used to enhance the measurement sensitivity.

  10. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  11. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    Science.gov (United States)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  12. Novel spectral features of nanoelectromechanical systems

    KAUST Repository

    Tahir, M.; MacKinnon, A.; Schwingenschlö gl, Udo

    2014-01-01

    of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate

  13. Spectral quality requirements for effluent identification

    Science.gov (United States)

    Czerwinski, R. N.; Seeley, J. A.; Wack, E. C.

    2005-11-01

    We consider the problem of remotely identifying gaseous materials using passive sensing of long-wave infrared (LWIR) spectral features at hyperspectral resolution. Gaseous materials are distinguishable in the LWIR because of their unique spectral fingerprints. A sensor degraded in capability by noise or limited spectral resolution, however, may be unable to positively identify contaminants, especially if they are present in low concentrations or if the spectral library used for comparisons includes materials with similar spectral signatures. This paper will quantify the relative importance of these parameters and express the relationships between them in a functional form which can be used as a rule of thumb in sensor design or in assessing sensor capability for a specific task. This paper describes the simulation of remote sensing datacontaining a gas cloud.In each simulation, the spectra are degraded in spectral resolution and through the addition of noise to simulate spectra collected by sensors of varying design and capability. We form a trade space by systematically varying the number of sensor spectral channels and signal-to-noise ratio over a range of values. For each scenario, we evaluate the capability of the sensor for gas identification by computing the ratio of the F-statistic for the truth gas tothe same statistic computed over the rest of the library.The effect of the scope of the library is investigated as well, by computing statistics on the variability of the identification capability as the library composition is varied randomly.

  14. [Modeling and Simulation of Spectral Polarimetric BRDF].

    Science.gov (United States)

    Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu

    2016-01-01

    Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.

  15. The Nuisance of Nuisance Regression: Spectral Misspecification in a Common Approach to Resting-State fMRI Preprocessing Reintroduces Noise and Obscures Functional Connectivity

    OpenAIRE

    Hallquist, Michael N.; Hwang, Kai; Luna, Beatriz

    2013-01-01

    Recent resting-state functional connectivity fMRI (RS-fcMRI) research has demonstrated that head motion during fMRI acquisition systematically influences connectivity estimates despite bandpass filtering and nuisance regression, which are intended to reduce such nuisance variability. We provide evidence that the effects of head motion and other nuisance signals are poorly controlled when the fMRI time series are bandpass-filtered but the regressors are unfiltered, resulting in the inadvertent...

  16. Revisiting the Phase Curves of WASP-43b: Confronting Re-analyzed Spitzer Data with Cloudy Atmospheres

    Science.gov (United States)

    Mendonça, João M.; Malik, Matej; Demory, Brice-Olivier; Heng, Kevin

    2018-04-01

    Recently acquired Hubble and Spitzer phase curves of the short-period hot Jupiter WASP-43b make it an ideal target for confronting theory with data. On the observational front, we re-analyze the 3.6 and 4.5 μm Spitzer phase curves and demonstrate that our improved analysis better removes residual red noise due to intra-pixel sensitivity, which leads to greater fluxes emanating from the nightside of WASP-43b, thus reducing the tension between theory and data. On the theoretical front, we construct cloud-free and cloudy atmospheres of WASP-43b using our Global Circulation Model (GCM), THOR, which solves the non-hydrostatic Euler equations (compared to GCMs that typically solve the hydrostatic primitive equations). The cloud-free atmosphere produces a reasonable fit to the dayside emission spectrum. The multi-phase emission spectra constrain the cloud deck to be confined to the nightside and have a finite cloud-top pressure. The multi-wavelength phase curves are naturally consistent with our cloudy atmospheres, except for the 4.5 μm phase curve, which requires the presence of enhanced carbon dioxide in the atmosphere of WASP-43b. Multi-phase emission spectra at higher spectral resolution, as may be obtained using the James Webb Space Telescope, and a reflected-light phase curve at visible wavelengths would further constrain the properties of clouds in WASP-43b.

  17. Intermediate spectral theory and quantum dynamics

    CERN Document Server

    de Oliveira, Cesar R

    2008-01-01

    The spectral theory of linear operators plays a key role in the mathematical formulation of quantum theory. Furthermore, such a rigorous mathematical foundation leads to a more profound insight into the nature of quantum mechanics. This textbook provides a concise and comprehensible introduction to the spectral theory of (unbounded) self-adjoint operators and its application in quantum dynamics. The book places emphasis on the symbiotic relationship of these two domains by (1) presenting the basic mathematics of nonrelativistic quantum mechanics of one particle, i.e., developing the spectral theory of self-adjoint operators in infinite-dimensional Hilbert spaces from the beginning, and (2) giving an overview of many of the basic functional aspects of quantum theory, from its physical principles to the mathematical models. The book is intended for graduate (or advanced undergraduate) students and researchers interested in mathematical physics. It starts with linear operator theory, spectral questions and self-...

  18. Spectral theory and quotients in Von Neumann algebras | West ...

    African Journals Online (AJOL)

    In this note we consider to what extent the functional calculus and the spectral theory in von Neumann algebras are preserved by the taking of quotients relative to two-sided ideals of the von Neumann algebra. Keywords:von Neumann algebra, functional calculus, spectral theory, quotient algebras. Quaestiones ...

  19. Dielectric function in the spectral range (0.5–8.5)eV of an (AlxGa1−x)2O3 thin film with continuous composition spread

    International Nuclear Information System (INIS)

    Schmidt-Grund, R.; Kranert, C.; Wenckstern, H. von; Zviagin, V.; Lorenz, M.; Grundmann, M.

    2015-01-01

    We determined the dielectric function of the alloy system (Al x Ga 1−x ) 2 O 3 by spectroscopic ellipsometry in the wide spectral range from 0.5 eV to 8.5 eV and for Al contents ranging from x = 0.11 to x = 0.55. For the composition range x < 0.4, we observe single phase material in the β-modification and for larger Al content also the occurrence of γ-(Al,Ga) 2 O 3 . We derived spectra of the refractive index and the absorption coefficient as well as energy parameters of electronic band-band transitions by model analysis of the dielectric function. The dependence of the dielectric functions lineshape and the energy parameters on x is highly continuous, reflecting theoretical expectations. The data presented here provide a basis for a deeper understanding of the electronic properties of this material system and may be useful for device engineering

  20. Spectral representation in stochastic quantization

    International Nuclear Information System (INIS)

    Nakazato, Hiromichi.

    1988-10-01

    A spectral representation of stationary 2-point functions is investigated based on the operator formalism in stochastic quantization. Assuming the existence of asymptotic non-interacting fields, we can diagonalize the total Hamiltonian in terms of asymptotic fields and show that the correlation length along the fictious time is proportional to the physical mass expected in the usual field theory. A relation between renormalization factors in the operator formalism is derived as a byproduct and its validity is checked with the perturbative results calculated in this formalism. (orig.)

  1. From spectral holeburning memory to spatial-spectral microwave signal processing

    International Nuclear Information System (INIS)

    Babbitt, Wm Randall; Barber, Zeb W; Harrington, Calvin; Mohan, R Krishna; Sharpe, Tia; Bekker, Scott H; Chase, Michael D; Merkel, Kristian D; Stiffler, Colton R; Traxinger, Aaron S; Woidtke, Alex J

    2014-01-01

    Many storage and processing systems based on spectral holeburning have been proposed that access the broad bandwidth and high dynamic range of spatial-spectral materials, but only recently have practical systems been developed that exceed the performance and functional capabilities of electronic devices. This paper reviews the history of the proposed applications of spectral holeburning and spatial-spectral materials, from frequency domain optical memory to microwave photonic signal processing systems. The recent results of a 20 GHz bandwidth high performance spectrum monitoring system with the additional capability of broadband direction finding demonstrates the potential for spatial-spectral systems to be the practical choice for solving demanding signal processing problems in the near future. (paper)

  2. Perceptions of racial confrontation: the role of color blindness and comment ambiguity.

    Science.gov (United States)

    Zou, Linda X; Dickter, Cheryl L

    2013-01-01

    Because of its emphasis on diminishing race and avoiding racial discourse, color-blind racial ideology has been suggested to have negative consequences for modern day race relations. The current research examined the influence of color blindness and the ambiguity of a prejudiced remark on perceptions of a racial minority group member who confronts the remark. One hundred thirteen White participants responded to a vignette depicting a White character making a prejudiced comment of variable ambiguity, after which a Black target character confronted the comment. Results demonstrated that the target confronter was perceived more negatively and as responding less appropriately by participants high in color blindness, and that this effect was particularly pronounced when participants responded to the ambiguous comment. Implications for the ways in which color blindness, as an accepted norm that is endorsed across legal and educational settings, can facilitate Whites' complicity in racial inequality are discussed.

  3. Simultaneous measure of a spectral line profile and the apparatus function of a Fabry-Perot spectrometer when continuous background is present

    International Nuclear Information System (INIS)

    Moreno, J.M.; Quintanilla, M.; Mar, S.

    1978-01-01

    A deconvolution method of registered profile on a Fabry-Perot spectrometer is developed, when the actual profile of the source is a Voigt pattern together with a continuous background. The reliability and accuracy of the method is tested with theoreticaly simulated profiles. The method is applied both to measure the real line profiles and to find the Fabry-Perot parameters, as a test of its validity on studies of experimental profiles. Both measure types -source profile and apparatus function- are made simultaneously by means of analysis of the variations of registered profile, at 6438.5A Cd line and 6328A He-Ne laser line, varying the optical path between interferometer mirrors. (author) [es

  4. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity.

    Science.gov (United States)

    Hallquist, Michael N; Hwang, Kai; Luna, Beatriz

    2013-11-15

    Recent resting-state functional connectivity fMRI (RS-fcMRI) research has demonstrated that head motion during fMRI acquisition systematically influences connectivity estimates despite bandpass filtering and nuisance regression, which are intended to reduce such nuisance variability. We provide evidence that the effects of head motion and other nuisance signals are poorly controlled when the fMRI time series are bandpass-filtered but the regressors are unfiltered, resulting in the inadvertent reintroduction of nuisance-related variation into frequencies previously suppressed by the bandpass filter, as well as suboptimal correction for noise signals in the frequencies of interest. This is important because many RS-fcMRI studies, including some focusing on motion-related artifacts, have applied this approach. In two cohorts of individuals (n=117 and 22) who completed resting-state fMRI scans, we found that the bandpass-regress approach consistently overestimated functional connectivity across the brain, typically on the order of r=.10-.35, relative to a simultaneous bandpass filtering and nuisance regression approach. Inflated correlations under the bandpass-regress approach were associated with head motion and cardiac artifacts. Furthermore, distance-related differences in the association of head motion and connectivity estimates were much weaker for the simultaneous filtering approach. We recommend that future RS-fcMRI studies ensure that the frequencies of nuisance regressors and fMRI data match prior to nuisance regression, and we advocate a simultaneous bandpass filtering and nuisance regression strategy that better controls nuisance-related variability. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  6. Spectral backward radiation profile

    International Nuclear Information System (INIS)

    Kwon, Sung Duck; Lee, Keun Hyun; Kim, Bo Ra; Yoon, Suk Soo

    2004-01-01

    Ultrasonic backward radiation profile is frequency-dependent when incident region has deptional gradient of acoustical properties or multi-layers. Until now, we have measured the profiles of principal frequencies of used transducers so that it was not easy to understand the change of the frequency component and spectrum of backward radiation from the profile. We tried to measure the spectral backward radiation profiles using DFP(digital filer package) Lecroy DSO. The very big changes in the shape and pattern of spectral backward radiation profiles leads to the conclusion that this new try could be very effective tool to evaluate frequency dependent surface area.

  7. Live Cells as Dynamic Laboratories: Time Lapse Raman Spectral Microscopy of Nanoparticles with Both IgE Targeting and pH-Sensing Functions

    Directory of Open Access Journals (Sweden)

    Kristy L. Nowak-Lovato

    2012-01-01

    Full Text Available This review captures the use of live cells as dynamic microlaboratories through implementation of labeled nanoparticles (nanosensors that have both sensing and targeting functions. The addition of 2,4-ε-dinitrophenol-L-lysine (DNP as a FcεRI targeting ligand and 4-mercaptopyridine (4-MPy as a pH-sensing ligand enables spatial and temporal monitoring of FcεRI receptors and their pH environment within the endocytic pathway. To ensure reliability, the sensor is calibrated in vivo using the ionophore nigericin and standard buffer solutions to equilibrate the external [H+] concentration with that of the cell compartments. This review highlights the nanosensors, ability to traffic and respond to pH of receptor-bound nanosensors (1 at physiological temperature (37°C versus room temperature (25°C, (2 after pharmacological treatment with bafilomycin, an H+ ATPase pump inhibitor, or amiloride, an inhibitor of Na+/H+ exchange, and (3 in response to both temperature and pharmacological treatment. Whole-cell, time lapse images are demonstrated to show the ability to transform live cells into dynamic laboratories to monitor temporal and spatial endosomal pH. The versatility of these probes shows promise for future applications relevant to intracellular trafficking and intelligent drug design.

  8. Visualizing the principal component of 1H,15N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C

    International Nuclear Information System (INIS)

    Robertson, Ian M.; Boyko, Robert F.; Sykes, Brian D.

    2011-01-01

    Laboratories often repeatedly determine the structure of a given protein under a variety of conditions, mutations, modifications, or in a number of states. This approach can be cumbersome and tedious. Given then a database of structures, identifiers, and corresponding 1 H, 15 N-HSQC NMR spectra for homologous proteins, we investigated whether structural information could be ascertained for a new homolog solely from its 1 H, 15 N-HSQC NMR spectrum. We addressed this question with two different approaches. First, we used a semi-automated approach with the program, ORBplus. ORBplus looks for patterns in the chemical shifts and correlates these commonalities to the explicit property of interest. ORBplus ranks resonances based on consistency of the magnitude and direction of the chemical shifts within the database, and the chemical shift correlation of the unknown protein with the database. ORBplus visualizes the results by a histogram and a vector diagram, and provides residue specific predictions on structural similarities with the database. The second method we used was partial least squares (PLS), which is a multivariate statistical technique used to correlate response and predictor variables. We investigated the ability of these methods to predict the tertiary structure of the contractile regulatory protein troponin C. Troponin C undergoes a closed-to-open conformational change, which is coupled to its function in muscle. We found that both ORBplus and PLS were able to identify patterns in the 1 H, 15 N-HSQC NMR data from different states of troponin C that correlated to its conformation.

  9. Confrontation Between Judicial Activism and State of Exception

    Directory of Open Access Journals (Sweden)

    Alexandre Pedro Moura D’Almeida

    2017-01-01

    Full Text Available The judiciary has excelled in the international and national scene, reaching role of great importance, thus creating opposition to the legislative and executive powers. The center of gravity of the sovereign power of the state moves toward the judiciary, that happens to have a more active role and controlling of the others powers, but also appears as a great defender of social and fundamental rights causes, seeking to make an effective constitution. Its great public notoriety has attracted great distrust of various sectors of society, especially by the two powers that have an increasing interference. Arises, therefore, a speech that the judiciary would be reversing into a big and uncontrollable power, increasing the suspicion that now it would be living in a real dictatorship of the judiciary through judicial activism. There is a growing concern with the expansion of activism and the role of the judiciary. The purpose of this work is to conceptualize and approach the judicial activism and the state of exception to search and reveal if there is any similarity, to then draw up a possible answer to the concern of forming a dictatorship of the judiciary. The state of exception is one of the rule of law paradoxes, while activism is a political manifestation of the judiciary. The similarity between the institutes appears as appalling in a dynamic expansion of political power of a state institution exercising judicial function, putting in check who would be the sovereign in a rule of law and democratic state.

  10. Spectral Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Mandel, Jan; Kasanický, Ivan; Vejmelka, Martin; Fuglík, Viktor; Turčičová, Marie; Eben, Kryštof; Resler, Jaroslav; Juruš, Pavel

    2014-01-01

    Roč. 11, - (2014), EMS2014-446 [EMS Annual Meeting /14./ & European Conference on Applied Climatology (ECAC) /10./. 06.10.2014-10.10.2014, Prague] R&D Projects: GA ČR GA13-34856S Grant - others:NSF DMS-1216481 Institutional support: RVO:67985807 Keywords : data assimilation * spectral filter Subject RIV: DG - Athmosphere Sciences, Meteorology

  11. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.

    1981-01-01

    A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drivemechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displayer rods through the reactor vessel

  12. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.

    1982-01-01

    A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drive mechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displacer rods through the reactor vessel. (author)

  13. Age effects on visual-perceptual processing and confrontation naming.

    Science.gov (United States)

    Gutherie, Audrey H; Seely, Peter W; Beacham, Lauren A; Schuchard, Ronald A; De l'Aune, William A; Moore, Anna Bacon

    2010-03-01

    The impact of age-related changes in visual-perceptual processing on naming ability has not been reported. The present study investigated the effects of 6 levels of spatial frequency and 6 levels of contrast on accuracy and latency to name objects in 14 young and 13 older neurologically normal adults with intact lexical-semantic functioning. Spatial frequency and contrast manipulations were made independently. Consistent with the hypotheses, variations in these two visual parameters impact naming ability in young and older subjects differently. The results from the spatial frequency-manipulations revealed that, in general, young vs. older subjects are faster and more accurate to name. However, this age-related difference is dependent on the spatial frequency on the image; differences were only seen for images presented at low (e.g., 0.25-1 c/deg) or high (e.g., 8-16 c/deg) spatial frequencies. Contrary to predictions, the results from the contrast manipulations revealed that overall older vs. young adults are more accurate to name. Again, however, differences were only seen for images presented at the lower levels of contrast (i.e., 1.25%). Both age groups had shorter latencies on the second exposure of the contrast-manipulated images, but this possible advantage of exposure was not seen for spatial frequency. Category analyses conducted on the data from this study indicate that older vs. young adults exhibit a stronger nonliving-object advantage for naming spatial frequency-manipulated images. Moreover, the findings suggest that bottom-up visual-perceptual variables integrate with top-down category information in different ways. Potential implications on the aging and naming (and recognition) literature are discussed.

  14. Verification and Improvement of the Three-Dimensional Basin Velocity Structure Model in the Osaka Sedimentary Basin, Japan Using Interstation Green's Functions and H/V Spectral Ratios of Microtremors

    Science.gov (United States)

    Asano, K.; Iwata, T.; Sekiguchi, H.; Somei, K.; Nishimura, T.; Miyakoshi, K.; Aoi, S.; Kunugi, T.

    2012-12-01

    as low as 350 m/s in 0.2-0.5 Hz. The second observation is a set of short-time (30~60 min) single-station microtremor observations to obtain H/V spectral ratios at sites. We observed microtremor at 100 strong motion stations of Osaka prefecture government, JMA, K-NET, KiK-net, and other institutes. The peak period of H/V ranges from about 1 to 7 s, and it depends on the bedrock depth at the observation site as previously pointed by Miyakoshi et al. (1997). Though the basin velocity model explains the characteristics of observed H/V spectral ratios at most sites, we found discrepancies between observed and predicted H/V peak periods at north part of Osaka bay area and hill area in southeastern part of the basin. By combining the observed constraints from the group velocities, waveform characteristics of interstation Green's functions, and H/V spectral ratios, we will improve the S-wave velocity structure model inside the Osaka basin.

  15. Limits of clinical tests to screen autonomic function in diabetes type 1.

    Science.gov (United States)

    Ducher, M; Bertram, D; Sagnol, I; Cerutti, C; Thivolet, C; Fauvel, J P

    2001-11-01

    A precocious detection of cardiac autonomic dysfunction is of major clinical interest that could lead to a more intensive supervision of diabetic patients. However, classical clinical exploration of cardiac autonomic function is not easy to undertake in a reproducible way. Thus, respective interests of autonomic nervous parameters provided by both clinical tests and computerized analysis of resting blood pressure were checked in type 1 diabetic patients without orthostatic hypotension and microalbuminuria. Thirteen diabetic subjects matched for age and gender to thirteen healthy subjects volunteered to participate to the study. From clinical tests (standing up, deep breathing, Valsalva maneuver, handgrip test), autonomic function was scored according to Ewing's methodology. Analysis of resting beat to beat blood pressure provided autonomic indices of the cardiac function (spectral analysis or Z analysis). 5 of the 13 diabetic patients exhibited a pathological score (more than one pathological response) suggesting the presence of cardiovascular autonomic dysfunction. The most discriminative test was the deep breathing test. However, spectral indices of BP recordings and baro-reflex sensitivity (BRS) of these 5 subjects were similar to those of healthy subjects and of remaining diabetic subjects. Alteration in Ewing's score given by clinical tests may not reflect an alteration of cardiac autonomic function in asymptomatic type 1 diabetic patients, because spectral indices of sympathetic and parasympathetic (including BRS) function were within normal range. Our results strongly suggest to confront results provided by both methodologies before concluding to an autonomic cardiac impairment in asymptomatic diabetic patients.

  16. A Simple Spectral Observer

    Directory of Open Access Journals (Sweden)

    Lizeth Torres

    2018-05-01

    Full Text Available The principal aim of a spectral observer is twofold: the reconstruction of a signal of time via state estimation and the decomposition of such a signal into the frequencies that make it up. A spectral observer can be catalogued as an online algorithm for time-frequency analysis because is a method that can compute on the fly the Fourier transform (FT of a signal, without having the entire signal available from the start. In this regard, this paper presents a novel spectral observer with an adjustable constant gain for reconstructing a given signal by means of the recursive identification of the coefficients of a Fourier series. The reconstruction or estimation of a signal in the context of this work means to find the coefficients of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The design procedure of the spectral observer is presented along with the following applications: (1 the reconstruction of a simple periodical signal, (2 the approximation of both a square and a triangular signal, (3 the edge detection in signals by using the Fourier coefficients, (4 the fitting of the historical Bitcoin market data from 1 December 2014 to 8 January 2018 and (5 the estimation of a input force acting upon a Duffing oscillator. To round out this paper, we present a detailed discussion about the results of the applications as well as a comparative analysis of the proposed spectral observer vis-à-vis the Short Time Fourier Transform (STFT, which is a well-known method for time-frequency analysis.

  17. Confronting water in an Israeli-Palestinian peace agreement

    Science.gov (United States)

    Brooks, David; Trottier, Julie

    2010-03-01

    SummaryTrans-boundary water agreements are usually conceived as allocation agreements. In other words, water is treated as if it were a pie to be divided among the riparian states. The treatment of water as if it were as immobile as land may be useful in the short term, but it is fundamentally flawed as a means to avoid conflict as well as to ensure efficient, equitable, and sustainable management of water over the long term. This article proposes to avoid quantitative allocations within international water agreements, whether they be presented as percentage or fixed allocations or whether or not accompanied by a periodic revision clause. It proposes instead an ongoing joint management structure that allows for continuous conflict resolution concerning water demands and uses in a manner that effectively de-nationalises water uses. As well, it builds on existing, functioning institutions that are already active over a variety of scalar levels. It disaggregates what is usually perceived as a national water demand into its component institutions and re-aggregates them within an international institutional context. Though this approach for building trans-boundary water agreements can prove useful in any geographical situation, this article uses the Israeli-Palestinian conflict as a model. It proposes to respect the existing differences in the institutional management of water between the two entities and to reach four general objectives: economic efficiency, social and political equity, ecological sustainability, and the ability to implement the agreement in practice. The institutional design and proposed mechanisms follow five key principles for shared management: water allocations that are not fixed but variable over time; equality in rights and responsibilities; priority for demand management over supply management; continuous monitoring of water quality and quantity; and mediation among competing uses of fresh water. This institutional structure balances water

  18. Citizen-sensor-networks to confront government decision-makers: Two lessons from the Netherlands

    NARCIS (Netherlands)

    Carton, L.J.; Ache, P.M.

    2017-01-01

    This paper presents one emerging social-technical innovation: The evolution of citizen-sensor-networks where citizens organize themselves from the ‘bottom up’, for the sake of confronting governance officials with measured information about environmental qualities. We have observed how

  19. Sharing skills and knowledge to confront real-world problems | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Sharing skills and knowledge to confront real-world problems ... because 1.3 billion people cannot read English, and only 163 million people (a fraction ... childhood obesity in urban areas, caused by increases in junk food and lack of exercise.

  20. The future of Asian feminisms: confronting fundamentalisms, conflicts and neo-liberalism

    NARCIS (Netherlands)

    Katjasungkana, N.; Wieringa, S.E.

    2012-01-01

    This book on the future of Asian feminisms, confronting fundamentalisms, conflicts, and neo-liberalism is a critical contribution to the rising voices of Asian women’s studies scholars and activists. It is based on the ongoing research and advocacy work of the Kartini Asia Network, founded in 2003

  1. La Grippe and World War I: conflict participation and pandemic confrontation.

    Science.gov (United States)

    Steele, B J; Collins, C D

    2009-01-01

    This paper assesses whether a nation-state's participation in conflict influences its ability to confront global pandemic or disease. Two alternative hypotheses are proposed. First, increased levels of conflict participation lead to increased abilities of states to confront pandemics. A second and alternative hypothesis is that increased conflict participation decreases the ability of states to confront pandemics. The hypotheses are tested through the ultimate case of war and pandemic: the 1918 Influenza pandemic (Spanish Flu or 'La Grippe') that killed 20-100 million people worldwide. Using simple correlation and case illustrations, we test these hypotheses with special focus upon the ability of the participant countries to confront the pandemic. The findings suggest, in a limited and varied fashion, that while neutral countries enjoyed the lowest levels of pandemic deaths, of the participant countries greater levels of conflict participation correlate with lower levels of pandemic deaths. The paper concludes with some propositions regarding the relationship between the current 'war on terror' and prospective pandemics such as avian flu.

  2. Differentiating between Confrontive and Coercive Kinds of Parental Power-Assertive Disciplinary Practices

    Science.gov (United States)

    Baumrind, Diana

    2012-01-01

    In this essay, I differentiate between coercive and confrontive kinds of power assertion to elucidate the significantly different effects on children's well-being of authoritarian and authoritative styles of parental authority. Although both parenting styles (in contrast to the permissive style) are equally demanding, forceful, and…

  3. Perceiving and Confronting Sexism: The Causal Role of Gender Identity Salience

    Science.gov (United States)

    Wang, Katie; Dovidio, John F.

    2017-01-01

    Although many researchers have explored the relations among gender identification, discriminatory attributions, and intentions to challenge discrimination, few have examined the causal impact of gender identity salience on women’s actual responses to a sexist encounter. In the current study, we addressed this question by experimentally manipulating the salience of gender identity and assessing its impact on women’s decision to confront a sexist comment in a simulated online interaction. Female participants (N = 114) were randomly assigned to complete a short measure of either personal or collective self-esteem, which was designed to increase the salience of personal versus gender identity. They were then given the opportunity to confront a male interaction partner who expressed sexist views. Compared to those who were primed to focus on their personal identity, participants who were primed to focus on their gender identity perceived the interaction partner’s remarks as more sexist and were more likely to engage in confrontation. By highlighting the powerful role of subtle contextual cues in shaping women’s perceptions of, and responses to, sexism, our findings have important implications for the understanding of gender identity salience as an antecedent of prejudice confrontation. Online slides for instructors who want to use this article for teaching are available on PWQ’s website at http://journals.sagepub.com/page/pwq/suppl/index. PMID:29051685

  4. Post Stereotypes: Deconstructing Racial Assumptions and Biases through Visual Culture and Confrontational Pedagogy

    Science.gov (United States)

    Jung, Yuha

    2015-01-01

    The Post Stereotypes project embodies confrontational pedagogy and involves postcard artmaking designed to both solicit expression of and deconstruct students' racial, ethnic, and cultural stereotypes and assumptions. As part of the Cultural Diversity in American Art course, students created postcard art that visually represented their personal…

  5. Educating Women Students in the Academy to Confront Gender Discrimination and Contribute to Equity Afterward

    Science.gov (United States)

    Mentkowski, Marcia; Rogers, Glen

    2010-01-01

    We argue that (1) faculty and other academic professionals who educate undergraduate women in capabilities such as effective communication, teamwork, and leadership that are integrated with the disciplines (e.g., biology, history, fine arts) and professions (e.g., education, nursing, management) indirectly assist their students to confront gender…

  6. The challenges that head nurses confront on financial management today: A qualitative study

    Directory of Open Access Journals (Sweden)

    Yang Bai, RN, BA

    2017-04-01

    Conclusions: The confusion confronted by head nurses in Changsha include three aspects: managerial roles, managerial training, and managerial tools. Cooperative management model, evidence-based management training, and data-driven tools will contribute to improving the financial management capacity of nurse managers.

  7. Markets, Equality and Democratic Education: Confronting the Neoliberal and Libertarian Reconceptualisations of Education

    Science.gov (United States)

    Sung, Youl-Kwan

    2010-01-01

    The global emergence of market liberalism marks an effort to decouple the link between citizenship and the welfare state and to rearticulate people's identity as homo economicus, as independent citizens having the right to property and the freedom to choose in the marketplace. Confronting this phenomenon, this paper reviews neoliberal and…

  8. Understanding and Confronting Alcohol-Induced Risky Behavior among College Students

    Science.gov (United States)

    Dornier, Lucien J.; Fauquier, Katharine J.; Field, April R.; Budden, Michael C.

    2010-01-01

    Confronting alcohol abuse is a challenge for most higher education institutions. Each year, students are admitted to hospitals for issues arising from the misuse of alcohol. The deaths of some engaged in alcohol related activities is especially worrisome. Factors such as age and financial standing could impact the likelihood of abuse. So-called…

  9. Unraveling the age-productivity nexus : Confronting perceptions of employers and employees

    NARCIS (Netherlands)

    van Dalen, H.P.; Henkens, C.J.I.M.; Schippers, J.

    2009-01-01

    What determines the perceived productivity of young and older workers? In this study we present evidence for (Dutch) employers and employees. By confronting the perceptions of employers and employees some remarkable similarities and differences are revealed. It turns out that productivity

  10. Unraveling the age-productivity nexus: confronting perceptions of employers and employees

    NARCIS (Netherlands)

    van Dalen, H.P.; Henkens, C.J.I.M.; Schippers, J.

    2009-01-01

    What determines the perceived productivity of young and older workers? In this study we present evidence for (Dutch) employers and employees. By confronting the perceptions of employers and employees some remarkable similarities and differences are revealed. It turns out that productivity

  11. Perceiving and Confronting Sexism: The Causal Role of Gender Identity Salience.

    Science.gov (United States)

    Wang, Katie; Dovidio, John F

    2017-03-01

    Although many researchers have explored the relations among gender identification, discriminatory attributions, and intentions to challenge discrimination, few have examined the causal impact of gender identity salience on women's actual responses to a sexist encounter. In the current study, we addressed this question by experimentally manipulating the salience of gender identity and assessing its impact on women's decision to confront a sexist comment in a simulated online interaction. Female participants ( N = 114) were randomly assigned to complete a short measure of either personal or collective self-esteem, which was designed to increase the salience of personal versus gender identity. They were then given the opportunity to confront a male interaction partner who expressed sexist views. Compared to those who were primed to focus on their personal identity, participants who were primed to focus on their gender identity perceived the interaction partner's remarks as more sexist and were more likely to engage in confrontation. By highlighting the powerful role of subtle contextual cues in shaping women's perceptions of, and responses to, sexism, our findings have important implications for the understanding of gender identity salience as an antecedent of prejudice confrontation. Online slides for instructors who want to use this article for teaching are available on PWQ's website at http://journals.sagepub.com/page/pwq/suppl/index.

  12. SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)

    Science.gov (United States)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  13. Spectral intensity distribution of trapped fermions

    Indian Academy of Sciences (India)

    Trapped fermions; local density approximation; spectral intensity distribution function. ... Thus, cold atomic systems allow us to study interesting ... In fermions, synthetic non-Abelian gauge ... energy eigenstates of the isotropic harmonic oscillator [26–28]. ... d i=1. (ni + 1. 2. )ω0. In calculating the SIDF exactly these eigenfunc-.

  14. “Phase transition” between Confrontation and Dialogue in the Light of the Concept of the Unity Charism

    Directory of Open Access Journals (Sweden)

    Wieczorek Krzysztof

    2016-12-01

    Full Text Available In the twenties of the last century the process of building a new type of philosophical culture began, based on the sensitivity towards another person, the recognition of values and dignity of the person and the search for platforms of dialogue and compromise between people. However, it did not gain a broad social resonance. The 20th Century became the scene of the triumph of totalitarianisms, based on the idea of collectivism and marked by the contempt towards the individual, his rights and needs. In the post-war reality environments favouring the humanization of the culture of coexistence earned a voice, but they too did not manage to divert the tendency towards building a bureaucratic and technocratic order. In this kind of system, the person feels reduced to his instrumental functions, and the dialogue submerged in the world of humanistic values becomes a distant and unequalled dream. This text undertakes the problem of the conditions which must be met in order for the tendency towards dialogue and mutual respect to prevail over the hostile, confrontational approach, which characterizes many contemporary social environments. The author suggests that we refer to the analogy with the thermodynamics phenomenon, phase transition, and consider the notion of spiritual energy (the analogue of the physical term enthalpy as an agent regulating the internal disposition of the individual to “freeze” or “thaw” relations with his fellow human beings. The key thesis is that the most important source of energy indispensable to move from confrontation to dialogue lies in the resources of religious experience- the openness to the grace flowing from the transcendental reality, and the guides on the path to discovering this source are the witnesses of faith- among them the spiritual heirs of Chiara Lubich’s charism.

  15. Continuing to Confront COPD International Patient Survey : methods, COPD prevalence, and disease burden in 2012-2013

    NARCIS (Netherlands)

    Landis, Sarah H.; Muellerova, Hana; Mannino, David M.; Menezes, Ana M.; Han, MeiLan K.; van der Molen, Thys; Ichinose, Masakazu; Aisanov, Zaurbek; Oh, Yeon-Mok; Davis, Kourtney J.

    2014-01-01

    Purpose: The Continuing to Confront COPD International Patient Survey aimed to estimate the prevalence and burden of COPD globally and to update findings from the Confronting COPD International Survey conducted in 1999-2000. Materials and methods: Chronic obstructive pulmonary disease (COPD)

  16. Noncommutativity from spectral flow

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas; Ilderton, Anton [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2007-07-27

    We investigate the transition from second- to first-order systems. Quantum mechanically, this transforms configuration space into phase space and hence introduces noncommutativity in the former. This transition may be described in terms of spectral flow. Gaps in the energy or mass spectrum may become large which effectively truncates the available state space. Using both operator and path integral languages we explicitly discuss examples in quantum mechanics (light-front) quantum field theory and string theory.

  17. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Wilson, J.F.; Sherwood, D.G.

    1982-01-01

    A mechanical spectral shift reactor comprises a reactive core having fuel assemblies accommodating both water displacer elements and neutron absorbing control rods for selectively changing the volume of water-moderator in the core. The fuel assemblies with displacer and control rods are arranged in alternating fashion so that one displacer element drive mechanism may move displacer elements in more than one fuel assembly without interfering with the movement of control rods of a corresponding control rod drive mechanisms. (author)

  18. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Carrier nature of speech; modulation spectrum; spectral dynamics ... the relationships between phonetic values of sounds and their short-term spectral envelopes .... the number of free parameters that need to be estimated from training data.

  19. Resonances, resonance functions and spectral deformations

    International Nuclear Information System (INIS)

    Balslev, E.

    1984-01-01

    The present paper is aimed at an analysis of resonances and resonance states from a mathematical point of view. Resonances are characterized as singular points of the analytically continued Lippman-Schwinger equation, as complex eigenvalues of the Hamiltonian with a purely outgoing, exponentially growing eigenfunction, and as poles of the S-matrix. (orig./HSI)

  20. Spectral asymmetry for bag boundary conditions

    International Nuclear Information System (INIS)

    Beneventano, C G; Santangelo, E M; Wipf, A

    2002-01-01

    We give an expression, in terms of boundary spectral functions, for the spectral asymmetry of the Euclidean Dirac operator in two dimensions, when its domain is determined by local boundary conditions and the manifold is of product type. As an application, we explicitly evaluate the asymmetry in the case of a finite-length cylinder and check that the outcome is consistent with our general result. Finally, we study the asymmetry in a disc, which is a non-product case, and propose an interpretation

  1. Krein Spectral Triples and the Fermionic Action

    International Nuclear Information System (INIS)

    Dungen, Koen van den

    2016-01-01

    Motivated by the space of spinors on a Lorentzian manifold, we define Krein spectral triples, which generalise spectral triples from Hilbert spaces to Krein spaces. This Krein space approach allows for an improved formulation of the fermionic action for almost-commutative manifolds. We show by explicit calculation that this action functional recovers the correct Lagrangians for the cases of electrodynamics, the electro-weak theory, and the Standard Model. The description of these examples does not require a real structure, unless one includes Majorana masses, in which case the internal spaces also exhibit a Krein space structure.

  2. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    Science.gov (United States)

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  3. Stability estimates for hp spectral element methods for general ...

    Indian Academy of Sciences (India)

    We establish basic stability estimates for a non-conforming ℎ- spectral element method which allows for simultaneous mesh refinement and variable polynomial degree. The spectral element functions are non-conforming if the boundary conditions are Dirichlet. For problems with mixed boundary conditions they are ...

  4. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  5. Confronting conflicts

    DEFF Research Database (Denmark)

    Agger, Annika

    in developing community development and participatory practices (Ledwith 2011) and they have a long tradition for working closely with citizens and other local stakeholders in the development of innovative solutions to wicked problems. The everyday service delivery or lack thereof by public institutions...... and the direct contact between citizens and civil servants are of utmost importance for the citizens’ perceptions of public institutions. With inspiration from Healey (2012) we aim to analyse the contribution of governance micro-practices, drawing on experiences of “democracy-in –action” in the fine grain...

  6. Spectral zone selection methodology for pebble bed reactors

    International Nuclear Information System (INIS)

    Mphahlele, Ramatsemela; Ougouag, Abderrafi M.; Ivanov, Kostadin N.; Gougar, Hans D.

    2011-01-01

    A methodology is developed for determining boundaries of spectral zones for pebble bed reactors. A spectral zone is defined as a region made up of a number of nodes whose characteristics are collectively similar and that are assigned the same few-group diffusion constants. The spectral zones are selected in such a manner that the difference (error) between the reference transport solution and the diffusion code solution takes a minimum value. This is achieved by choosing spectral zones through optimally minimizing this error. The objective function for the optimization algorithm is the total reaction rate error, which is defined as the sum of the leakage, absorption and fission reaction rates errors in each zone. The selection of these spectral zones is such that the core calculation results based on diffusion theory are within an acceptable tolerance as compared to a proper transport reference solution. Through this work, a consistent approach for identifying spectral zones that yield more accurate diffusion results is introduced.

  7. Effect of input spectrum on the spectral switch characteristics in a white-light Michelson interferometer.

    Science.gov (United States)

    Brundavanam, Maruthi M; Viswanathan, Nirmal K; Rao, D Narayana

    2009-12-01

    We report here a detailed experimental study to demonstrate the effect of source spectral characteristics such as spectral bandwidth (Deltalambda), peak wavelength (lambda(0)), and shape of the spectrum on the spectral shifts and spectral switches measured due to temporal correlation in a white-light Michelson interferometer operated in the spectral domain. Behavior of the spectral switch characteristics such as the switch position, switch amplitude, and switch symmetry are discussed in detail as a function of optical path difference between the interfering beams. The experimental results are compared with numerical calculations carried out using interference law in the spectral domain with modified source spectral characteristics. On the basis of our results we feel that our study is of critical importance in the selection of source spectral characteristics to further improve the longitudinal resolution or the measurement sensitivity in spectral-domain optical coherence tomography and microscopy.

  8. Motivational versus confrontational interviewing: a comparison of substance abuse assessment practices at employee assistance programs.

    Science.gov (United States)

    Schneider, R J; Casey, J; Kohn, R

    2000-02-01

    The aim of this study was to conduct a quasi-experimental comparison of two employee assistance program (EAP) assessment approaches with substance abusers: confrontational interviewing (CI) and motivational interviewing (MI). A total of 176 EAP clients from 14 study sites met the study criteria, and 89 (51%) agreed to participate in the study. At three and nine months postassessment, both the MI and CI groups showed similar changes in readiness for change, completion of initial treatment plans, and subsequent treatment. Most important, both the MI and CI participants showed significant and comparable improvement on all of the substance abuse baseline measures as well as measures of family-social well-being and effects of drinking/drugging on work performance. The results open the door for EAP counselors to use an empirically supported assessment style that is at least as effective as the traditional confrontational approach.

  9. Impeccable Timing: The Political Efficiency of Prc-U.S. Surveillance Confrontations

    Science.gov (United States)

    2014-06-01

    trends highlight festering PRC-U.S. tensions leading up to the 2001 confrontations. 51 “ Semaphore : July 2006, the Western Pacific Naval Symposium...Royal Australian Navy, accessed April 28, 2014, http://www.navy.gov.au/media-room/publications/ semaphore -july-2006. 52 Redden, “Managing Sino-U.S.,” 9...Politics, February 21, 2009. http://www.realclearpolitics.com/articles/2009/02/secretary_clintons_press_confe. html. “ Semaphore : July 2006, the

  10. Assessment of Elderlies Sleep Disorders and Different Confronts Methods Among Them

    Directory of Open Access Journals (Sweden)

    Monir Nobahar

    2007-07-01

    Full Text Available Objectives: Sleep is one of the essential needs for human and every disorder in during of sleep causes psychological problem and decreased person>s ability. Although sleep disorders occur in every of ages. Elderly person usually has very problem for satisfied sleep. The aim of this study was to estimate prevalence of sleep disorders and confront methods of those in elderly persons in Semnan city. Methods & Materials: This is a descriptive analytical research. 200 elderly residents of Semnan were selected through rundomical sampling. Sleep disorders was assessment with questioner and interviewer that include of sleep disorders (Dissomnia, Parasomnia and confront methods (Behavioral, Cognitive, sleep hygiene and drug therapy. Results: Data indicated that prevalence of dissomnia was 67% and prevalence of insomnia was 61% that the most problem were in all stage of sleep (early, intermittent and end. Prevalence of Parasomnia was 29% that more of those (14% had night terror. In the part of confront methods of sleep disorders, 57% used of behavioral therapy. The most of that (25% were concentration of the limb before the sleep and 95.5% of them comprehension of cognitive methods. The most of that (26% were comprehension of effect of age on sleep. 100% of them orientation of sleep hygiene and the most of that (39% were orientation with 4 choose of sleep hygiene. 20% of them used of drug therapy. Conclusion: Finding above indicate that high prevalence of sleep disorders in elderly in Semnan, need supervised and widespread program for promoting awareness among population about sleep disorders and confront methods of those.

  11. On spectral pollution

    International Nuclear Information System (INIS)

    Llobet, X.; Appert, K.; Bondeson, A.; Vaclavik, J.

    1990-01-01

    Finite difference and finite element approximations of eigenvalue problems, under certain circumstances exhibit spectral pollution, i.e. the appearance of eigenvalues that do not converge to the correct value when the mesh density is increased. In the present paper this phenomenon is investigated in a homogeneous case by means of discrete dispersion relations: the polluting modes belong to a branch of the dispersion relation that is strongly distorted by the discretization method employed, or to a new, spurious branch. The analysis is applied to finite difference methods and to finite element methods, and some indications about how to avoiding polluting schemes are given. (author) 5 figs., 10 refs

  12. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Doshi, P.K.; George, R.A.; Dollard, W.J.

    1982-01-01

    A mechanical spectral shift arrangement for controlling a nuclear reactor includes a plurality of reactor coolant displacer members which are inserted into a reactor core at the beginning of the core life to reduce the volume of reactor coolant-moderator in the core at start-up. However, as the reactivity of the core declines with fuel depletion, selected displacer members are withdrawn from the core at selected time intervals to increase core moderation at a time when fuel reactivity is declining. (author)

  13. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  14. Spectral shift reactor

    International Nuclear Information System (INIS)

    Carlson, W.R.; Piplica, E.J.

    1982-01-01

    A spectral shift pressurized water reactor comprising apparatus for inserting and withdrawing water displacer elements having differing neutron absorbing capabilities for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The displacer elements comprise substantially hollow cylindrical low neutron absorbing rods and substantially hollow cylindrical thick walled stainless rods. Since the stainless steel displacer rods have greater neutron absorbing capability, they can effect greater reactivity change per rod. However, by arranging fewer stainless steel displacer rods in a cluster, the reactivity worth of the stainless steel displacer rod cluster can be less than a low neutron absorbing displacer rod cluster. (author)

  15. The effects of confrontation and avoidance coping in response to workplace incivility.

    Science.gov (United States)

    Hershcovis, M Sandy; Cameron, Ann-Frances; Gervais, Loie; Bozeman, Jennifer

    2018-04-01

    Workplace incivility has significant adverse consequences for targets. However, we know remarkably little about how targets of incivility cope and even less about which coping strategies are effective. Drawing on the coping process of the transactional model of stress, we examine confrontation as a form of problem-focused coping and avoidance as a form of emotion-focused coping in response to incivility. We examine the effects of these coping strategies on reoccurrence of incivility, incivility enacted by targets, psychological forgiveness, and emotional exhaustion. Focusing on the target's perspective of a series of uncivil interactions between a target and perpetrator, we conducted a 3-wave study of employees from various occupations. Employing the critical incident technique, participants reported on an incident of workplace incivility, and then answered a series of questions over 3 waves of data collection regarding their interactions with this perpetrator. Our findings suggest that confrontation and avoidance are ineffective in preventing reoccurrence of incivility. Avoidance can additionally lead to increased emotional exhaustion, target-enacted incivility, and lower psychological forgiveness. However, confrontation coping has promise with regards to eliciting positive outcomes such as psychological forgiveness that are beneficial to interpersonal workplace relationships. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. When do high and low status group members support confrontation? The role of perceived pervasiveness of prejudice.

    Science.gov (United States)

    Kahn, Kimberly Barsamian; Barreto, Manuela; Kaiser, Cheryl R; Rego, Marco Silva

    2016-03-01

    This paper examines how perceived pervasiveness of prejudice differentially affects high and low status group members' support for a low status group member who confronts. In Experiment 1 (N = 228), men and women read a text describing sexism as rare or as pervasive and subsequently indicated their support for a woman who confronted or did not confront a sexist remark. Experiment 2 (N = 324) specified the underlying process using a self-affirmation manipulation. Results show that men were more supportive of confrontation when sexism was perceived to be rare than when it was pervasive. By contrast, women tended to prefer confrontation when sexism was pervasive relative to when it was rare. Personal self-affirmation decreased men's and increased women's support for confrontation when prejudice was rare, suggesting that men's and women's support for confrontation when prejudice is rare is driven by personal impression management considerations. Implications for understanding how members of low and high status groups respond to prejudice are discussed. © 2015 The British Psychological Society.

  17. In-Orbit Spectral Response Function Correction and Its Impact on Operational Calibration for the Long-Wave Split-Window Infrared Band (12.0 μm of FY-2G Satellite

    Directory of Open Access Journals (Sweden)

    Qiang Guo

    2017-06-01

    Full Text Available During the early stage of the G satellite of the Fengyun-2 series (FY-2G, severe cold biases up to ~2.3 K occur in its measurements in the 12.0 μm (IR2 band, which demonstrate time- and scene-dependent characteristics. Similar cold biases in water vapor and carbon dioxide absorption bands of other satellites are considered to be caused by either ice contamination (physical method or spectral response function (SRF shift (empirical method. Simulations indicate that this cold bias of FY-2G indeed suffers from equivalent SRF shift as a whole towards the longer wavelength direction. To overcome it, a novel approach combining both physical and empirical methods is proposed. With the possible ice thicknesses tested before launch, the ice contamination effect is alleviated, while the shape of the SRF can be modified in a physical way. The remaining unknown factors for cold bias are removed by shifting the convolved SRF with an ice transmittance spectrum. Two parameters, i.e., the ice thickness (5 μm and the shifted value (+0.15 μm, are estimated by inter-calibration with reference instruments, and the modification coefficient is also calculated (0.9885 for the onboard blackbody calibration. Meanwhile, the updated SRF was released online on 23 March 2016. For the period between July 2015 and December 2016, the monthly biases of the FY-2G IR2 band remain oscillating around zero, the majorities (~89% of which are within ±1.0 K, while its mean monthly absolute bias is around 0.6 K. Nevertheless, the cold bias phenomenon of the IR2 band no longer exists. The combination method can be referred by other corrections for cold biases.

  18. Dipole rescattering and the nuclear structure function

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, F. [Depto de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, SP (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Navarra, F. S.; Oliveira, E. G. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil)

    2013-03-25

    In the framework of the dipole model, we study the effects of the dipole multiple scatterings in a nuclear target and compute the nuclear structure function. We compare different unitarization schemes and confront our results with the E665 data.

  19. Regularized image denoising based on spectral gradient optimization

    International Nuclear Information System (INIS)

    Lukić, Tibor; Lindblad, Joakim; Sladoje, Nataša

    2011-01-01

    Image restoration methods, such as denoising, deblurring, inpainting, etc, are often based on the minimization of an appropriately defined energy function. We consider energy functions for image denoising which combine a quadratic data-fidelity term and a regularization term, where the properties of the latter are determined by a used potential function. Many potential functions are suggested for different purposes in the literature. We compare the denoising performance achieved by ten different potential functions. Several methods for efficient minimization of regularized energy functions exist. Most are only applicable to particular choices of potential functions, however. To enable a comparison of all the observed potential functions, we propose to minimize the objective function using a spectral gradient approach; spectral gradient methods put very weak restrictions on the used potential function. We present and evaluate the performance of one spectral conjugate gradient and one cyclic spectral gradient algorithm, and conclude from experiments that both are well suited for the task. We compare the performance with three total variation-based state-of-the-art methods for image denoising. From the empirical evaluation, we conclude that denoising using the Huber potential (for images degraded by higher levels of noise; signal-to-noise ratio below 10 dB) and the Geman and McClure potential (for less noisy images), in combination with the spectral conjugate gradient minimization algorithm, shows the overall best performance

  20. Elementary principles of spectral distributions

    International Nuclear Information System (INIS)

    French, J.B.

    1980-01-01

    It is a common observation that as we add particles, one by one, to a simple system, things get steadily more and more complicated. For example if the system is describable in shell-model terms, i.e., with a model space in which m particles are distributed over N single-particle states, then as long as m << N, the dimensionality increases rapidly with particle number. On the other hand, for the usual (1 + 2)-body Hamiltonian, the (m greater than or equal to 2)-particle spectrum and wave functions are determined by operators defined in the one-particle space (for the single-particle energies) and the two-particle space (for the interactions). We may say then that the input information becomes more and more fragmented as the particle number increases, the fixed amount of information being distributed over more and more matrix elements. On the other hand there arise also new simplicities whose origin is connected with the operation of statistical laws. There is a macroscopic simplicity corresponding to the fact that the smoothed spectrum takes on a characteristic shape defined by a few parameters (low-order moments) of the spectrum. There is a microscopic simplicity corresponding to a remarkable spectral rigidity which extends over the entire spectrum and guarantees us that the fluctuations from uniformity in the spectrum are small and in many cases carry little information. The purpose of spectral-distribution theory, as applied to these problems, is to deal with the complexities by taking advantage of the simplicities

  1. Rectangular spectral collocation

    KAUST Repository

    Driscoll, Tobin A.

    2015-02-06

    Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.

  2. Spectral evolution of galaxies

    International Nuclear Information System (INIS)

    Rocca-Volmerange, B.

    1989-01-01

    A recent striking event in Observational Cosmology is the discovery of a large population of galaxies at extreme cosmological distances (extended from spectral redshifts ≅ 1 to ≥ 3) corresponding to a lookback time of 80% of the Universe's age. However when galaxies are observed at such remote epochs, their appearances are affected by at least two simultaneous effects which are respectively a cosmological effect and the intrinsic evolution of their stellar populations which appear younger than in our nearby galaxies. The fundamental problem is first to disentangle the respective contributions of these two effects to apparent magnitudes and colors of distant galaxies. Other effects which are likely to modify the appearance of galaxies are amplification by gravitational lensing and interaction with environment will also be considered. (author)

  3. Spectral Line Shapes. Proceedings

    International Nuclear Information System (INIS)

    Zoppi, M.; Ulivi, L.

    1997-01-01

    These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple-free and ultra-fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction-induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energy Science and Technology database

  4. Spectral affinity in protein networks.

    Science.gov (United States)

    Voevodski, Konstantin; Teng, Shang-Hua; Xia, Yu

    2009-11-29

    Protein-protein interaction (PPI) networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to quickly find nodes closest to a queried vertex in any protein

  5. Spectral affinity in protein networks

    Directory of Open Access Journals (Sweden)

    Teng Shang-Hua

    2009-11-01

    Full Text Available Abstract Background Protein-protein interaction (PPI networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. Results We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. Conclusion We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to

  6. ATR neutron spectral characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.W.; Anderl, R.A.

    1995-11-01

    The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix.

  7. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  8. Nonparametric Collective Spectral Density Estimation and Clustering

    KAUST Repository

    Maadooliat, Mehdi

    2017-04-12

    In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at

  9. On Spectral Triples in Quantum Gravity I

    DEFF Research Database (Denmark)

    Aastrup, Johannes; M. Grimstrup, Jesper; Nest, Ryszard

    2009-01-01

    This paper establishes a link between Noncommutative Geometry and canonical quantum gravity. A semi-finite spectral triple over a space of connections is presented. The triple involves an algebra of holonomy loops and a Dirac type operator which resembles a global functional derivation operator....... The interaction between the Dirac operator and the algebra reproduces the Poisson structure of General Relativity. Moreover, the associated Hilbert space corresponds, up to a discrete symmetry group, to the Hilbert space of diffeomorphism invariant states known from Loop Quantum Gravity. Correspondingly......, the square of the Dirac operator has, in terms of canonical quantum gravity, the form of a global area-squared operator. Furthermore, the spectral action resembles a partition function of Quantum Gravity. The construction is background independent and is based on an inductive system of triangulations...

  10. Nonparametric Collective Spectral Density Estimation and Clustering

    KAUST Repository

    Maadooliat, Mehdi; Sun, Ying; Chen, Tianbo

    2017-01-01

    In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at

  11. Book review:- Confronting Managerialism. How The Business Elite And Their Schools Threw Our Lives Out Of Balance.

    OpenAIRE

    English, Rachel A.

    2011-01-01

    This was a book review on:- Confronting Managerialism. How The Business Elite And Their Schools Threw Our Lives Out Of Balance. Author:- Robert R. Locke & J.C. Spender. Publisher:- Zed Books, London & New York.

  12. Continuing to Confront COPD International Surveys : comparison of patient and physician perceptions about COPD risk and management

    NARCIS (Netherlands)

    Menezes, Ana M.; Landis, Sarah H.; Han, MeiLan K.; Muellerova, Hana; Aisanov, Zaurbek; van der Molen, Thys; Oh, Yeon-Mok; Ichinose, Masakazu; Mannino, David M.; Davis, Kourtney J.

    2015-01-01

    Purpose: Using data from the Continuing to Confront COPD International Physician and Patient Surveys, this paper describes physicians' attitudes and beliefs regarding chronic obstructive pulmonary disease (COPD) prognosis, and compares physician and patient perceptions with respect to COPD. Methods:

  13. The potential of Sentinel-2 spectral configuration to assess rangeland quality

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2015-08-01

    Full Text Available was measured using the analytical spectral device (ASD) in concert with leaf sample collections for leaf N chemical analysis. ASD reflectance data were resampled to the spectral bands of Sentinel-2 using published spectral response functions. Random forest (RF...

  14. Spectral characterization of superficial coal groups

    International Nuclear Information System (INIS)

    Ahmad, I.; Khan, M.A.; Ishaq, M.; Shakirullah; Bahadur, A.

    2004-01-01

    Spectral characterization of superficial coal groups was performed in KBr pellets. KBr Pellets were prepared for virgin and variously pretreated coal samples. Spectra of satisfactory resolution were obtained in wave number range-4000-400 cm /sup -1/. Presence of broad absorption bands corresponds to hydroxyl, carbonyl, carboxyl and phenolic functionalities in the spectra clearly define their presence in all samples understudy. Forced oxidation proved effective for oxidation of both aliphatic and aromatic configurations, which can be revealed from the respective spectra. (author)

  15. Terahertz Josephson spectral analysis and its applications

    Science.gov (United States)

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  16. MOVEMENT OF NATURAL PARENTING AS (AS IF A CONFRONTATION WITH A CONSUMER SOCIETY

    Directory of Open Access Journals (Sweden)

    Alla Diomidova

    2014-10-01

    Full Text Available The article describes the movement of natural parenting and its confrontational ideology. The authors sought to provide a general understanding of the movement natural parenting and describe its confrontational ideology. Speaking in terms of sociology, sling parents form the imagined community and this particular ideology is the focus of the presents study. The hypothesis of the study lies in the assumption that discourse analysis of natural parenting is to discover traits of propaganda discourse. The subject of the analyzed discourse is set critically in relation to the modern practice of consumption, declares the personal position free from stereotypes and willingness to confront the dictatorial influence of consumer values on the style of parenting. The subject is prone to reflection and the generation of ideological texts. Despite the fact that natural parenting has positioned itself as anti-consumer-orientated, it creates a consumer niche of the “right” products for children. Being against some commodities, natural parenting creates demand for the other ones. Sling clothing for Moms (sling jackets, accessories and the like become the accompanying sling commodities. Natural parenting has positioned itself as focused on the child’s needs. The traditional educational discourse is marked as providing the convenience for a mother who does not love her child. Many of the arguments of the sling discourse are based on fear to fail to meet a child’s needs (or to cause harm to his\\her health, to threaten his\\her life, which relates it with the mainstream advertising discourse.

  17. From dispersion relations to spectral dimension - and back again

    International Nuclear Information System (INIS)

    Sotiriou, Thomas P.; Visser, Matt; Weinfurtner, Silke

    2011-01-01

    The so-called spectral dimension is a scale-dependent number associated with both geometries and field theories that has recently attracted much attention, driven largely, though not exclusively, by investigations of causal dynamical triangulations and Horava gravity as possible candidates for quantum gravity. We advocate the use of the spectral dimension as a probe for the kinematics of these (and other) systems in the region where spacetime curvature is small, and the manifold is flat to a good approximation. In particular, we show how to assign a spectral dimension (as a function of so-called diffusion time) to any arbitrarily specified dispersion relation. We also analyze the fundamental properties of spectral dimension using extensions of the usual Seeley-DeWitt and Feynman expansions and by using saddle point techniques. The spectral dimension turns out to be a useful, robust, and powerful probe, not only of geometry, but also of kinematics.

  18. An OFF–ON–OFF type of pH fluorescent sensor: Benzo[c,d]indole-based dimethine cyanine dye-synthesis, spectral properties and density functional theory studies

    International Nuclear Information System (INIS)

    Liu, Qi; Hong Su, Xiao; Ying Wang, Lan; Sun, Wei; Bo Lei, Yi; Yi Wen, Zhen

    2014-01-01

    We synthesized a novel OFF–ON–OFF type of pH-dependent fluorescent sensor: benzo[c,d]indole-based dimethine cyanine dye D1, with donor-π-acceptor (D-π-A) structure based on intramolecular charge transfer system (ICT), which employed dimethine cyanine dye as a fluorophore and pentavalent nitrogen NH + group as a pH modulator, respectively. The product was identified by 1 H NMR, 13 C NMR, IR, UV–vis and HRMS. The investigation of spectral properties found that dye D1 showed excellent spectroscopic properties and its absorption maxima and fluorescence quantum yield were basically larger in protic solvent than in aprotic solvent. Meanwhile, the absorption spectra of D1 were revealed to hypochromatic-shift and the absorption intensity was gradually decreased along with the increase of pH value. Interestingly, dye D1 showed remarkable fluorescence when pH value was in the range of 6.00–9.80 with the peak at 8.21, which was defined as an OFF–ON–OFF type of pH-dependent fluorescent sensors based on ICT. In addition, dye D1 exhibited a high selectivity for H + over other common ions, such as Cl − , K + , Fe 2+ etc. Theoretical calculations based on density functional theory (DFT) were employed to provide a better understanding of this particular dye sensor. These results indicated that D1 would be able to act as an efficient pH-sensor and had a potential to play an important role in biological and medical study. - Highlights: • A new benzo[c,d]indole-based pH fluorescent sensor was synthesized without adding catalyst. • The absorption spectra of dye D1 were associated with the solvents’ pK a value. • The sensor showed OFF–ON–OFF fluorescence in pH buffer, with the peak at 8.21. • The sensor had high sensitivity and selectivity

  19. History Teaches Us That Confronting Antibiotic Resistance Requires Stronger Global Collective Action.

    Science.gov (United States)

    Podolsky, Scott H; Bud, Robert; Gradmann, Christoph; Hobaek, Bård; Kirchhelle, Claas; Mitvedt, Tore; Santesmases, María Jesús; Thoms, Ulrike; Berild, Dag; Kveim Lie, Anne

    2015-01-01

    Antibiotic development and usage, and antibiotic resistance in particular, are today considered global concerns, simultaneously mandating local and global perspectives and actions. Yet such global considerations have not always been part of antibiotic policy formation, and those who attempt to formulate a globally coordinated response to antibiotic resistance will need to confront a history of heterogeneous, often uncoordinated, and at times conflicting reform efforts, whose legacies remain apparent today. Historical analysis permits us to highlight such entrenched trends and processes, helping to frame contemporary efforts to improve access, conservation and innovation. © 2015 American Society of Law, Medicine & Ethics, Inc.

  20. Cooperation or confrontation? The Middle East after the nuclear deal. Conference report

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Haerlin, Bernhard (ed.)

    2015-07-15

    In the West, views differ to which extent the agreement on the nuclear issue would open up opportunities for future cooperation between Iran and the E3+3. The US continues to play an essential role in diplomacy and security policy in the Middle East. However, it is only partly fulfilling the demands and expectations that come with this role. Even confronted with a massive deterioration in the region's security situation, Iran's and Saudi Arabia's willingness to cooperate would still be very limited.

  1. The African example. The clean development mechanism confronted to the African priorities

    International Nuclear Information System (INIS)

    Dessus, B.; Thomas, J.Ph.; Tillerson, K.

    1999-01-01

    The Kyoto protocol has given the bases of a clean development mechanism devoted to finance actions of a sparing with greenhouse gases emissions development, in the South countries, to receive in exchange credit of emission for the north countries in order to allow to reach their objective of emission reduction. The programming and the start-up of a such mechanism supposes the confrontation of development priorities of concerned countries with these ones of the fight against the greenhouse gases emissions in these same countries. (N.C.)

  2. SPECTRAL ANALYSIS OF EXCHANGE RATES

    Directory of Open Access Journals (Sweden)

    ALEŠA LOTRIČ DOLINAR

    2013-06-01

    Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates

  3. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  4. The Effect of Epidermal Structures on Leaf Spectral Signatures of Ice Plants (Aizoaceae

    Directory of Open Access Journals (Sweden)

    René Hans-Jürgen Heim

    2015-12-01

    Full Text Available Epidermal structures (ES of leaves are known to affect the functional properties and spectral responses. Spectral studies focused mostly on the effect of hairs or wax layers only. We studied a wider range of different ES and their impact on spectral properties. Additionally, we identified spectral regions that allow distinguishing different ES. We used a field spectrometer to measure ex situ leaf spectral responses from 350 nm–2500 nm. A spectral library for 25 species of the succulent family Aizoaceae was assembled. Five functional types were defined based on ES: flat epidermal cell surface, convex to papillary epidermal cell surface, bladder cells, hairs and wax cover. We tested the separability of ES using partial least squares discriminant analysis (PLS-DA based on the spectral data. Subsequently, variable importance (VIP was calculated to identify spectral regions relevant for discriminating our functional types (classes. Classification performance was high, with a kappa value of 0.9 indicating well-separable spectral classes. VIP calculations identified six spectral regions of increased importance for the classification. We confirmed and extended previous findings regarding the visible-near-infrared spectral region. Our experiments also confirmed that epidermal leaf traits can be classified due to clearly distinguishable spectral signatures across species and genera within the Aizoaceae.

  5. Spectral L2/L1 norm: A new perspective for spectral kurtosis for characterizing non-stationary signals

    Science.gov (United States)

    Wang, Dong

    2018-05-01

    Thanks to the great efforts made by Antoni (2006), spectral kurtosis has been recognized as a milestone for characterizing non-stationary signals, especially bearing fault signals. The main idea of spectral kurtosis is to use the fourth standardized moment, namely kurtosis, as a function of spectral frequency so as to indicate how repetitive transients caused by a bearing defect vary with frequency. Moreover, spectral kurtosis is defined based on an analytic bearing fault signal constructed from either a complex filter or Hilbert transform. On the other hand, another attractive work was reported by Borghesani et al. (2014) to mathematically reveal the relationship between the kurtosis of an analytical bearing fault signal and the square of the squared envelope spectrum of the analytical bearing fault signal for explaining spectral correlation for quantification of bearing fault signals. More interestingly, it was discovered that the sum of peaks at cyclic frequencies in the square of the squared envelope spectrum corresponds to the raw 4th order moment. Inspired by the aforementioned works, in this paper, we mathematically show that: (1) spectral kurtosis can be decomposed into squared envelope and squared L2/L1 norm so that spectral kurtosis can be explained as spectral squared L2/L1 norm; (2) spectral L2/L1 norm is formally defined for characterizing bearing fault signals and its two geometrical explanations are made; (3) spectral L2/L1 norm is proportional to the square root of the sum of peaks at cyclic frequencies in the square of the squared envelope spectrum; (4) some extensions of spectral L2/L1 norm for characterizing bearing fault signals are pointed out.

  6. Three Misconceptions About Radiation — And What We Teachers Can Do to Confront Them

    Science.gov (United States)

    Neumann, Susanne

    2014-09-01

    During the last few years teaching physics, I have noticed that my students are becoming more and more interested in the topic of radiation. Mobile phones, modern game consoles, and WiFi—all of these devices involving some kind of radiation are part of our students' everyday lives. Students are also frequently confronted in the media with debates relating to different types of radiation: What are the effects of nuclear contamination going to be after the Fukushima accident? Can radiation from mobile phones really cause cancer? Should the use of tanning booths be forbidden for teenagers? Although students seem to be very motivated to learn about the topic of radiation, I have encountered several misconceptions about this topic that my students bring into the physics classroom. Some of these misconceptions might be caused by biased media reports, while others can be attributed to a different usage of the word radiation in everyday language (when compared to the scientific usage of this term). In this paper, I would like to present the most common misconceptions about radiation that I have encountered in my physics courses and I would like to give some ideas how to confront these ideas in teaching. A detailed description of these misconceptions discovered through empirical research can be found in one of my research articles.1

  7. Western Audiovisual Stereotypes of Russian Image: the Ideological Confrontation Epoch (1946-1991

    Directory of Open Access Journals (Sweden)

    Alexander Fedorov

    2013-01-01

    Full Text Available This article included the analysis of the Western audiovisual stereotypes of Russian image from the period of ideological confrontation (1946-1991: ideological and social trends, classification of the contents’ models and genres. The content analysis of the western media texts of the period of the “cold war” (1946-1991 allows to present their main plot diagrams as follows: Soviet spies penetrate into the territory of the USA/Western country to commit diversion and/or to worm out military secrets; the USSR prepares a covert attack on the territory of the USA/Western world, creating secret bases with nuclear weapons; the inhuman Soviet totalitarian regime oppresses its own people or the people of any other country; Nonconformity leaves/attempts to leave the USSR where, in their opinion, democracy and individual freedom are being oppressed; common western people explain to Soviet military/civilian visitors who were mislead by propaganda that the USA/Western country is the stronghold of friendship and world-wide prosperity and peace; obstacles connected with the ideological confrontation between the USSR and the Western world appear on the way of a loving couple.

  8. Portuguese Electoral Debate: Presidentialization and Linguistic Mitigation Strategies in Situations of Political Confrontation

    Directory of Open Access Journals (Sweden)

    Maria Aldina Marques

    2017-08-01

    Full Text Available In a context of increasing presidentialization of legislative election campaigns, I aim to study mitigation as a feature of the Portuguese electoral political debate, a genre of political discourse marked by the intersection with the television media discourse. It is a discursive genre of confrontation between participants-adversaries, seeking for the adhesion of voters by the proposals that they present and also, if not mainly, by the discredit of the political opponent. However, confrontation is not absolute, as the interlocutors must guarantee basic dimensions of political communication, ensuring by the construction, negotiation and co-management of the interpersonal relationship the preservation of a positive individual image in relation to the electorate. I hypothesize that, in this process, linguistic mitigation constitutes a nuclear strategy, carried out in each moment of the debate according to different linguistic-discursive mechanisms. The electoral debate here analysed was held in May 2011 in RTP between Pedro Passos Coelho, leader of the Social Democratic Party, and future prime minister, and José Sócrates, of the Socialist Party, prime minister in office, at the time.

  9. Spectral response analysis of PVDF capacitive sensors

    Science.gov (United States)

    Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.

    2013-06-01

    We investigate the spectral response to ultrasound waves in water of low-noise capacitive sensors based on PVDF polymer piezoelectric films. First, we analyze theoretically the mechanical-to-electrical transduction as a function of the frequency of ultrasonic signals and derive an analytic expression of the sensor's transfer function. Then we present experimental results of the frequency response of a home-made PDVF in water to test signals from 1 to 20 MHz induced by a commercial hydrophone powered by a signal generator and compare with our theoretical model.

  10. Spectral analysis of bedform dynamics

    DEFF Research Database (Denmark)

    Winter, Christian; Ernstsen, Verner Brandbyge; Noormets, Riko

    Successive multibeam echo sounder surveys in tidal channels off Esbjerg (Denmark) on the North Sea coast reveal the dynamics of subaquatic compound dunes. Mainly driven by tidal currents, dune structures show complex migration patterns in all temporal and spatial scales. Common methods for the an....... The proposed method overcomes the above mentioned problems of common descriptive analysis as it is an objective and straightforward mathematical process. The spectral decomposition of superimposed dunes allows a detailed description and analysis of dune patterns and migration.......Successive multibeam echo sounder surveys in tidal channels off Esbjerg (Denmark) on the North Sea coast reveal the dynamics of subaquatic compound dunes. Mainly driven by tidal currents, dune structures show complex migration patterns in all temporal and spatial scales. Common methods...... allows the application of a procedure, which has been a standard for the analysis of water waves for long times: The bathymetric signal of a cross-section of subaquatic compound dunes is approximated by the sum of a set of harmonic functions, derived by Fourier transformation. If the wavelength...

  11. Applicability of spectral indices on thickness identification of oil slick

    Science.gov (United States)

    Niu, Yanfei; Shen, Yonglin; Chen, Qihao; Liu, Xiuguo

    2016-10-01

    Hyperspectral remote sensing technology has played a vital role in the identification and monitoring of oil spill events, and amount of spectral indices have been developed. In this paper, the applicability of six frequently-used indices is analyzed, and a combination of spectral indices in aids of support vector machine (SVM) algorithm is used to identify the oil slicks and corresponding thickness. The six spectral indices are spectral rotation (SR), spectral absorption depth (HI), band ratio of blue and green (BG), band ratio of BG and shortwave infrared index (BGN), 555nm and 645nm normalized by the blue band index (NB) and spectral slope (ND). The experimental study is conducted in the Gulf of Mexico oil spill zone, with Airborne Visible Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery captured in May 17, 2010. The results show that SR index is the best in all six indices, which can effectively distinguish the thickness of the oil slick and identify it from seawater; HI index and ND index can obviously distinguish oil slick thickness; BG, BGN and NB are more suitable to identify oil slick from seawater. With the comparison among different kernel functions of SVM, the classify accuracy show that the polynomial and RBF kernel functions have the best effect on the separation of oil slick thickness and the relatively pure seawater. The applicability of spectral indices of oil slick and the method of oil film thickness identification will in aids of oil/gas exploration and oil spill monitoring.

  12. Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots.

    Science.gov (United States)

    van Hazel, Ilke; Sabouhanian, Amir; Day, Lainy; Endler, John A; Chang, Belinda S W

    2013-11-13

    One of the most striking features of avian vision is the variation in spectral sensitivity of the short wavelength sensitive (SWS1) opsins, which can be divided into two sub-types: violet- and UV- sensitive (VS & UVS). In birds, UVS has been found in both passerines and parrots, groups that were recently shown to be sister orders. While all parrots are thought to be UVS, recent evidence suggests some passerine lineages may also be VS. The great bowerbird (Chlamydera nuchalis) is a passerine notable for its courtship behaviours in which males build and decorate elaborate bower structures. The great bowerbird SWS1 sequence possesses an unusual residue combination at known spectral tuning sites that has not been previously investigated in mutagenesis experiments. In this study, the SWS1 opsin of C. nuchalis was expressed along with a series of spectral tuning mutants and ancestral passerine SWS1 pigments, allowing us to investigate spectral tuning mechanisms and explore the evolution of UV/violet sensitivity in early passerines and parrots. The expressed C. nuchalis SWS1 opsin was found to be a VS pigment, with a λmax of 403 nm. Bowerbird SWS1 mutants C86F, S90C, and C86S/S90C all shifted λmax into the UV, whereas C86S had no effect. Experimentally recreated ancestral passerine and parrot/passerine SWS1 pigments were both found to be VS, indicating that UV sensitivity evolved independently in passerines and parrots from a VS ancestor. Our mutagenesis studies indicate that spectral tuning in C. nuchalis is mediated by mechanisms similar to those of other birds. Interestingly, our ancestral sequence reconstructions of SWS1 in landbird evolution suggest multiple transitions from VS to UVS, but no instances of the reverse. Our results not only provide a more precise prediction of where these spectral sensitivity shifts occurred, but also confirm the hypothesis that birds are an unusual exception among vertebrates where some descendants re-evolved UVS from a violet type

  13. Some threshold spectral problems of Schroedinger operators

    International Nuclear Information System (INIS)

    Jia, X.

    2009-01-01

    This Ph.D. thesis deals with some spectral problems of the Schroedinger operators. We first consider the semi-classical limit of the number of bound states of unique two-cluster N-body Schroedinger operator. Then we use Dirichlet-Neumann bracket to get semi-classical limit of Riesz means of the discrete eigenvalues of N-body Schroedinger operator. The effective potential of N-body Schroedinger operator with Coulomb potential is also considered and we find that the effective potential has critical decay at infinity. Thus, the Schroedinger operator with critical potential is studied in this thesis. We study the coupling constant threshold of Schroedinger operator with critical potential and the asymptotic expansion of resolvent of Schroedinger operator with critical potential. We use that expansion to study low-energy asymptotics of derivative of spectral shift function for perturbation with critical decay. After that, we use this result and the known result for high-energy asymptotic expansion of spectral shift function to obtain the Levinson theorem. (author)

  14. Spectral envelope sensitivity of musical instrument sounds.

    Science.gov (United States)

    Gunawan, David; Sen, D

    2008-01-01

    It is well known that the spectral envelope is a perceptually salient attribute in musical instrument timbre perception. While a number of studies have explored discrimination thresholds for changes to the spectral envelope, the question of how sensitivity varies as a function of center frequency and bandwidth for musical instruments has yet to be addressed. In this paper a two-alternative forced-choice experiment was conducted to observe perceptual sensitivity to modifications made on trumpet, clarinet and viola sounds. The experiment involved attenuating 14 frequency bands for each instrument in order to determine discrimination thresholds as a function of center frequency and bandwidth. The results indicate that perceptual sensitivity is governed by the first few harmonics and sensitivity does not improve when extending the bandwidth any higher. However, sensitivity was found to decrease if changes were made only to the higher frequencies and continued to decrease as the distorted bandwidth was widened. The results are analyzed and discussed with respect to two other spectral envelope discrimination studies in the literature as well as what is predicted from a psychoacoustic model.

  15. Spectral properties of the massless relativistic quartic oscillator

    Science.gov (United States)

    Durugo, Samuel O.; Lőrinczi, József

    2018-03-01

    An explicit solution of the spectral problem of the non-local Schrödinger operator obtained as the sum of the square root of the Laplacian and a quartic potential in one dimension is presented. The eigenvalues are obtained as zeroes of special functions related to the fourth order Airy function, and closed formulae for the Fourier transform of the eigenfunctions are derived. These representations allow to derive further spectral properties such as estimates of spectral gaps, heat trace and the asymptotic distribution of eigenvalues, as well as a detailed analysis of the eigenfunctions. A subtle spectral effect is observed which manifests in an exponentially tight approximation of the spectrum by the zeroes of the dominating term in the Fourier representation of the eigenfunctions and its derivative.

  16. A Black Hole Spectral Signature

    Science.gov (United States)

    Titarchuk, Lev; Laurent, Philippe

    2000-03-01

    An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole'', an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 - 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be

  17. Darboux invariants of integrable equations with variable spectral parameters

    International Nuclear Information System (INIS)

    Shin, H J

    2008-01-01

    The Darboux transformation for integrable equations with variable spectral parameters is introduced. Darboux invariant quantities are calculated, which are used in constructing the Lax pair of integrable equations. This approach serves as a systematic method for constructing inhomogeneous integrable equations and their soliton solutions. The structure functions of variable spectral parameters determine the integrability and nonlinear coupling terms. Three cases of integrable equations are treated as examples of this approach

  18. A flat spectral Faraday filter for sodium lidar.

    Science.gov (United States)

    Yang, Yong; Cheng, Xuewu; Li, Faquan; Hu, Xiong; Lin, Xin; Gong, Shunsheng

    2011-04-01

    We report a flat spectral Faraday anomalous dispersion optical filter (FS-FADOF) for sodium lidar. The physical and technical considerations for obtaining a FS-FADOF with a 3.5 GHz flat spectral transmission function are presented. It was found that the effective transmission of this filter was much higher (>94%) and more uniform than that of the ultranarrowband FADOF, and therefore were less sensitive to laser-frequency drift. Thus, the FS-FADOF can improve lidar efficiency and precision.

  19. Evolutionary Computing Methods for Spectral Retrieval

    Science.gov (United States)

    Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna

    2009-01-01

    A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.

  20. SOSPEX, an interactive tool to explore SOFIA spectral cubes

    Science.gov (United States)

    Fadda, Dario; Chambers, Edward T.

    2018-01-01

    We present SOSPEX (SOFIA SPectral EXplorer), an interactive tool to visualize and analyze spectral cubes obtained with the FIFI-LS and GREAT instruments onboard the SOFIA Infrared Observatory. This software package is written in Python 3 and it is available either through Github or Anaconda.Through this GUI it is possible to explore directly the spectral cubes produced by the SOFIA pipeline and archived in the SOFIA Science Archive. Spectral cubes are visualized showing their spatial and spectral dimensions in two different windows. By selecting a part of the spectrum, the flux from the corresponding slice of the cube is visualized in the spatial window. On the other hand, it is possible to define apertures on the spatial window to show the corresponding spectral energy distribution in the spectral window.Flux isocontours can be overlapped to external images in the spatial window while line names, atmospheric transmission, or external spectra can be overplotted on the spectral window. Atmospheric models with specific parameters can be retrieved, compared to the spectra and applied to the uncorrected FIFI-LS cubes in the cases where the standard values give unsatisfactory results. Subcubes can be selected and saved as FITS files by cropping or cutting the original cubes. Lines and continuum can be fitted in the spectral window saving the results in Jyson files which can be reloaded later. Finally, in the case of spatially extended observations, it is possible to compute spectral momenta as a function of the position to obtain velocity dispersion maps or velocity diagrams.

  1. [Meaning of family confrontation for nurses of intensive care units for adult people - Medellín 2013].

    Science.gov (United States)

    Montoya Tamayo, D P; Monsalve Ospina, T P; Forero Pulido, C

    2015-01-01

    To comprehend the meaning nurses give to family confrontation, from their experiences while patients are in adult intensive care units in Medellin 2013. A qualitative research study was carried out using a phenomenological approach and theoretical convenience sampling of subjects was used. Interviews with open questions were conducted with nurses that worked in different intensive care units in the city of Medellin, with more than one year of experience in these units. The information was coded and categorised to perform the analysis, and some concept maps were created for the final report. This study showed that nurses focus their care on the critical patient and not on the patient's family. They considered that there is family confrontation when its members comprehend the processes that are carried out in the intensive care unit, and can contribute to the patient's care, while if families do not have confrontations, it is because they do not understand the process, or feel desperate or are absent. The interventions that nurses consider must be done to help in the family confrontation are: information, interdisciplinary support, visits, and companionship. For the nurses, family confrontation means that family members understand, comprehend, accept, know, bear and go on with the situation; therefore, they can make good decisions regarding the patient's care in the adult intensive care units. Copyright © 2015 Elsevier España, S.L.U. y SEEIUC. All rights reserved.

  2. Substitution dynamical systems spectral analysis

    CERN Document Server

    Queffélec, Martine

    2010-01-01

    This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...

  3. Spectral characterization of natural backgrounds

    Science.gov (United States)

    Winkelmann, Max

    2017-10-01

    As the distribution and use of hyperspectral sensors is constantly increasing, the exploitation of spectral features is a threat for camouflaged objects. To improve camouflage materials at first the spectral behavior of backgrounds has to be known to adjust and optimize the spectral reflectance of camouflage materials. In an international effort, the NATO CSO working group SCI-295 "Development of Methods for Measurements and Evaluation of Natural Background EO Signatures" is developing a method how this characterization of backgrounds has to be done. It is obvious that the spectral characterization of a background will be quite an effort. To compare and exchange data internationally the measurements will have to be done in a similar way. To test and further improve this method an international field trial has been performed in Storkow, Germany. In the following we present first impressions and lessons learned from this field campaign and describe the data that has been measured.

  4. Adiabatic theorem and spectral concentration

    International Nuclear Information System (INIS)

    Nenciu, G.

    1981-01-01

    The spectral concentration of arbitrary order, for the Stark effect is proved to exist for a large class of Hamiltonians appearing in nonrelativistic and relativistic quantum mechanics. The results are consequences of an abstract theorem about the spectral concentration for self-ad oint operators. A general form of the adiabatic theorem of quantum mechanics, generalizing an earlier result of the author as well as some results of Lenard, is also proved [ru

  5. Confronting human papilloma virus/oropharyngeal cancer: a model for interprofessional collaboration.

    Science.gov (United States)

    Fried, Jacquelyn L

    2014-06-01

    A collaborative practice model related to Human Papilloma Virus (HPV) associated oropharyngeal cancer highlights the role of the dental hygienist in addressing this condition. The incidence of HPV associated head and neck cancer is rising. Multiple professionals including the dental hygienist can work collaboratively to confront this growing public health concern. A critical review applies the growth and utilization of interprofessional education (IPE) and interprofessional collaboration (IPC) to multi-disciplinary models addressing the human papilloma virus and oropharyngeal cancers. A model related to HPV associated oropharyngeal cancer addresses an oral systemic condition that supports the inclusion of a dental hygienist on collaborative teams addressing prevention, detection, treatment and cure of OPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Tobacco Industry vs. the World Health Organization: a historical confrontation between social networks of stakeholders

    Directory of Open Access Journals (Sweden)

    Sérgio Boeira

    2007-04-01

    Full Text Available The aim of this article is to present an introduction to the history of the tobacco industry and the confrontation between its social network of stakeholders and the network led by the World Health Organization (WHO, with a focus on the Brazilian context and the role of the Alliance for the Control of Tobacco Use (ACT as the coordinator of multiple stakeholders opposing the tobacco industry strategies in Brazil. The article seeks to describe the problematic relationship between tobacco production and export on the one hand and tobacco control on the other, as exemplified by the approval, in February 2005, of the first international public health treaty (WHO Framework Convention for Tobacco Control. The text is based on research leading to a PhD thesis in 2000, which has been updated through articles and ongoing research since then, with the aim of monitoring the unfolding of this issue that is central to the public health policies

  7. Alternative Forms of Resilience Confronting Hard Economic Times. A South European Perspective

    Directory of Open Access Journals (Sweden)

    Maria Kousis

    2017-05-01

    Full Text Available The aim of this special issue is to contribute to the study of alternative forms of resilience, visible in the economic and noneconomic activities of citizens confronting hard economic times and falling rights in Italy, Spain, Greece and Portugal, since the global financial crisis of 2008. It does so through a set of recent empirical studies which adopt recent theoretical approaches, such as Social Innovation or Sustainable Community Movement Organizations, and offer new evidence on solidarity oriented practices, including their links to social movement activism. The authors of this special issue contribute to the existing recent debates by highlighting key features of alternative forms of resilience, their links to social movements and theoretical orientations influenced by social movement and resilience studies in four Southern European countries and regions.

  8. CONFRONTING THREE-DIMENSIONAL TIME-DEPENDENT JET SIMULATIONS WITH HUBBLE SPACE TELESCOPE OBSERVATIONS

    International Nuclear Information System (INIS)

    Staff, Jan E.; Niebergal, Brian P.; Ouyed, Rachid; Pudritz, Ralph E.; Cai, Kai

    2010-01-01

    We perform state-of-the-art, three-dimensional, time-dependent simulations of magnetized disk winds, carried out to simulation scales of 60 AU, in order to confront optical Hubble Space Telescope observations of protostellar jets. We 'observe' the optical forbidden line emission produced by shocks within our simulated jets and compare these with actual observations. Our simulations reproduce the rich structure of time-varying jets, including jet rotation far from the source, an inner (up to 400 km s -1 ) and outer (less than 100 km s -1 ) component of the jet, and jet widths of up to 20 AU in agreement with observed jets. These simulations when compared with the data are able to constrain disk wind models. In particular, models featuring a disk magnetic field with a modest radial spatial variation across the disk are favored.

  9. The Continuous Confrontation of Caregiving as Described in Real-Time Online Group Chat.

    Science.gov (United States)

    Male, Dana A; Fergus, Karen D; Stephen, Joanne E

    2015-01-01

    To date, our understanding of the caregiver experience has been informed primarily by guided inquiry in the form of interviews and surveys, yielding information that is limited by the scope of researchers questions. The intent of this study was to explore the experience of caring for a loved one with advanced-stage cancer by means of participant-determined communication, using interactive, text-based transcripts from synchronous online support groups. Grounded theory analysis of the group transcripts yielded the core category continuous confrontation, characterized by major challenges (unrelenting assault, a new us, and the costs of caregiving) and minor triumphs (refuelling and living more intentionally). This unique method of data collection allowed for an especially candid, intersubjective group account of what it is to be a caregiver for an ill loved one without compromising the details that caregivers themselves consider important.

  10. Origin of galaxies: a review of recent theoretical developments and their confrontation with observation

    International Nuclear Information System (INIS)

    Jones, B.J.T.

    1976-01-01

    The subject of galaxy formation has advanced considerably during the past decade. On the theoretical side two theories in particular were developed to the point where confrontation with observation will be possible; these are the ''gravitational instability picture'' and the ''cosmic turbulence theory.'' These theories are discussed at some length, with particular attention to the question of the origin of cosmic angular momentum and the nature of the initial conditions. There is now a considerable body of data on galaxies; the problem is in deciding which kind of observation is most relevant to understanding the origin of galaxies. Throughout the review an attempt is made both to put the present research in its historical perspective and to stress the possibilities for future advances towards the goal of understanding the origin of cosmic structure

  11. Heidegger. The Co-Pertinence of Dasein and Being. A Confrontation with Kant

    Directory of Open Access Journals (Sweden)

    Carmen Segura Peraita

    2013-11-01

    Full Text Available In dialogue and confrontation with Kant, Heidegger discovers elements which allow him to deepen in his understanding of the co-pertinence of Dasein and being. This is a non-transcendental understanding, which arises in the midst of the unending debate with Kant’s transcendental philosophy. Heidegger considered that a transformation had come about in metaphysics of the ὑποκείμενον-οὐσία into the «apophantic subject». This should have reached its culmination with Kant, but in discussion with Kant, Heidegger changed the course, allowing a redefinition of the relationship between subject and object, identifying thinking with being, thus definitively reaffirming his thesis by which being and Dasein are co-pertinent

  12. hp Spectral element methods for three dimensional elliptic problems

    Indian Academy of Sciences (India)

    This is the first of a series of papers devoted to the study of h-p spec- .... element functions defined on mesh elements in the new system of variables with a uni- ... the spectral element functions on these elements and give construction of the stability .... By Hm( ), we denote the usual Sobolev space of integer order m ≥ 0 ...

  13. A spectral algorithm for the seriation problem

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, J.E. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Mathematics; Boman, E.G. [Stanford Univ., CA (United States). Dept. of Computer Science; Hendrickson, B. [Sandia National Labs., Albuquerque, NM (United States)

    1994-11-01

    Given a set of objects and a correlation function f reflecting the desire for two items to be near each other, find all sequences {pi} of the items so that correlation preferences are preserved; that is if {pi}(i) < {pi}(j) < {pi}(k) then f(i,j) {ge} f(i,k) and f(j,k) {ge} f(i,k). This seriation problem has numerous applications, for instance, solving it yields a solution to the consecutive ones problem. We present a spectral algorithm for this problem that has a number of interesting features. Whereas most previous applications of spectral techniques provided bounds or heuristics, our result is an algorithm for a nontrivial combinatorial problem. Our analysis introduces powerful tools from matrix theory to the theoretical computer science community. Also, spectral methods are being applied as heuristics for a variety of sequencing problems and our result helps explain and justify these applications. Although the worst case running time for our approach is not competitive with that of existing methods for well posed problem instances, unlike combinatorial approaches our algorithm remains a credible heuristic for the important cases where there are errors in the data.

  14. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    Science.gov (United States)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  15. Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter

    International Nuclear Information System (INIS)

    Hirvonen, Juha-Matti; Poikonen, Tuomas; Vaskuri, Anna; Kärhä, Petri; Ikonen, Erkki

    2013-01-01

    A spectrally adjustable radiance source based on light-emitting diodes (LEDs) has been constructed for spectral responsivity measurements of radiance and luminance meters. A 300 mm integrating sphere source with adjustable output port is illuminated using 30 thermally stabilized narrow-band LEDs covering the visible wavelength range of 380–780 nm. The functionality of the measurement setup is demonstrated by measuring the relative spectral responsivities of a luminance meter and a photometer head with cosine-corrected input optics. (paper)

  16. Physiological outperformance at the morphologically-transformed edge of the cyanobacteriosponge Terpios hoshinota (Suberitidae: Hadromerida when confronting opponent corals.

    Directory of Open Access Journals (Sweden)

    Jih-Terng Wang

    Full Text Available Terpios hoshinota, an encrusting cyanosponge, is known as a strong substrate competitor of reef-building corals that kills encountered coral by overgrowth. Terpios outbreaks cause significant declines in living coral cover in Indo-Pacific coral reefs, with the damage usually lasting for decades. Recent studies show that there are morphological transformations at a sponge's growth front when confronting corals. Whether these morphological transformations at coral contacts are involved with physiological outperformance (e.g., higher metabolic activity or nutritional status over other portions of Terpios remains equivocal. In this study, we compared the indicators of photosynthetic capability and nitrogen status of a sponge-cyanobacteria association at proximal, middle, and distal portions of opponent corals. Terpios tissues in contact with corals displayed significant increases in photosynthetic oxygen production (ca. 61%, the δ13C value (ca. 4%, free proteinogenic amino acid content (ca. 85%, and Gln/Glu ratio (ca. 115% compared to middle and distal parts of the sponge. In contrast, the maximum quantum yield (Fv/Fm, which is the indicator usually used to represent the integrity of photosystem II, of cyanobacteria photosynthesis was low (0.256~0.319 and showed an inverse trend of higher values in the distal portion of the sponge that might be due to high and variable levels of cyanobacterial phycocyanin. The inconsistent results between photosynthetic oxygen production and Fv/Fm values indicated that maximum quantum yields might not be a suitable indicator to represent the photosynthetic function of the Terpios-cyanobacteria association. Our data conclusively suggest that Terpios hoshinota competes with opponent corals not only by the morphological transformation of the sponge-cyanobacteria association but also by physiological outperformance in accumulating resources for the battle.

  17. Order and correlations in genomic DNA sequences. The spectral approach

    International Nuclear Information System (INIS)

    Lobzin, Vasilii V; Chechetkin, Vladimir R

    2000-01-01

    The structural analysis of genomic DNA sequences is discussed in the framework of the spectral approach, which is sufficiently universal due to the reciprocal correspondence and mutual complementarity of Fourier transform length scales. The spectral characteristics of random sequences of the same nucleotide composition possess the property of self-averaging for relatively short sequences of length M≥100-300. Comparison with the characteristics of random sequences determines the statistical significance of the structural features observed. Apart from traditional applications to the search for hidden periodicities, spectral methods are also efficient in studying mutual correlations in DNA sequences. By combining spectra for structure factors and correlation functions, not only integral correlations can be estimated but also their origin identified. Using the structural spectral entropy approach, the regularity of a sequence can be quantitatively assessed. A brief introduction to the problem is also presented and other major methods of DNA sequence analysis described. (reviews of topical problems)

  18. Spectral and spatial shaping of Smith-Purcell radiation

    Science.gov (United States)

    Remez, Roei; Shapira, Niv; Roques-Carmes, Charles; Tirole, Romain; Yang, Yi; Lereah, Yossi; Soljačić, Marin; Kaminer, Ido; Arie, Ady

    2017-12-01

    The Smith-Purcell effect, observed when an electron beam passes in the vicinity of a periodic structure, is a promising platform for the generation of electromagnetic radiation in previously unreachable spectral ranges. However, most of the studies of this radiation were performed on simple periodic gratings, whose radiation spectrum exhibits a single peak and its higher harmonics predicted by a well-established dispersion relation. Here, we propose a method to shape the spatial and spectral far-field distribution of the radiation using complex periodic and aperiodic gratings. We show, theoretically and experimentally, that engineering multiple peak spectra with controlled widths located at desired wavelengths is achievable using Smith-Purcell radiation. Our method opens the way to free-electron-driven sources with tailored angular and spectral responses, and gives rise to focusing functionality for spectral ranges where lenses are unavailable or inefficient.

  19. SPECTRAL FILTRATION OF IMAGES BY MEANS OF DISPERSIVE SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. M. Gulis

    2016-01-01

    Full Text Available Instruments for spectral filtration of images are an important element of the systems used in remote sensing, medical diagnostics, in-process measurements. The aim of this study is analysis of the functional features and characteristics of the proposed two image monochromator versions which are based on dispersive spectral filtering. The first is based on the use of a dispersive monochromator, where collimating and camera lenses form a telescopic system, the dispersive element of which is within the intermediate image plane. The second version is based on an imaging double monochromator with dispersion subtraction by back propagation. For the telescopic system version, the spectral and spatial resolutions are estimated, the latter being limited by aberrations and diffraction from the entrance slit. The device has been numerically simulated and prototyped. It is shown that for the spectral bandwidth 10 nm (visible spectral range, the aberration-limited spot size is from 10–20 μm at the image center to about 30 μm at the image periphery for the image size 23–27 mm. The monochromator with dispersion subtraction enables one to vary the spectral resolution (up to 1 nm and higher by changing the intermediate slit width. But the distinctive feature is a significant change in the selected central wavelength over the image field. The considered designs of dispersive image monochromators look very promising due to the particular advantages over the systems based on tunable filters as regards the spectral resolution, fast tuning, and the spectral contrast. The monochromator based on a telescopic system has a simple design and a rather large image field but it also has a limited light throughput due to small aperture size. The monochromator with dispersion subtraction has higher light throughput, can provide high spectral resolution when recording a full data cube in a series of measuring acts for different dispersive element positions. 

  20. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    NARCIS (Netherlands)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-01-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in

  1. Luminosity and Redshift dependence of quasar spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Daniel E. Vanden Berk et al.

    2004-03-09

    Using a large sample of quasar spectra from the SDSS, we examine the composite spectral trends of quasars as functions of both redshift and luminosity, independently of one another. Aside from the well known Baldwin effect (BE)--the decrease of line equivalent width with luminosity--the average spectral properties are remarkably similar. Host galaxy contamination and the BE are the primary causes for apparent changes in the average spectral slope of the quasars. The BE is detected for most emission lines, including the Balmer lines, but with several exceptions including NV1240A. Emission line shifts of several lines are associated with the BE. The BE is mainly a function of luminosity, but also partly a function of redshift in that line equivalent widths become stronger with redshift. Some of the complex iron features change with redshift, particularly near the small blue bump region.

  2. Mixed-Precision Spectral Deferred Correction: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Grout, Ray W. S.

    2015-09-02

    Convergence of spectral deferred correction (SDC), where low-order time integration methods are used to construct higher-order methods through iterative refinement, can be accelerated in terms of computational effort by using mixed-precision methods. Using ideas from multi-level SDC (in turn based on FAS multigrid ideas), some of the SDC correction sweeps can use function values computed in reduced precision without adversely impacting the accuracy of the final solution. This is particularly beneficial for the performance of combustion solvers such as S3D [6] which require double precision accuracy but are performance limited by the cost of data motion.

  3. Onboard spectral imager data processor

    Science.gov (United States)

    Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.

    1999-10-01

    Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.

  4. Spectral filtering for plant production

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.E.; McMahon, M.J.; Rajapakse, N.C.; Becoteau, D.R.

    1994-12-31

    Research to date suggests that spectral filtering can be an effective alternative to chemical growth regulators for altering plant development. If properly implemented, it can be nonchemical and environmentally friendly. The aqueous CuSO{sub 4}, and CuCl{sub 2} solutions in channelled plastic panels have been shown to be effective filters, but they can be highly toxic if the solutions contact plants. Some studies suggest that spectral filtration limited to short EOD intervals can also alter plant development. Future research should be directed toward confirmation of the influence of spectral filters and exposure times on a broader range of plant species and cultivars. Efforts should also be made to identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these chemicals permanently into plastic films and panels that can be used in greenhouse construction. It would also be informative to study the impacts of spectral filters on insect and microbal populations in plant growth facilities. The economic impacts of spectral filtering techniques should be assessed for each delivery methodology.

  5. Spectral dimension of quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2014-01-01

    The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)

  6. Spectral Imaging of Portolan Charts

    Science.gov (United States)

    France, Fenella G.; Wilson, Meghan A.; Ghez, Anita

    2018-05-01

    Spectral imaging of Portolan Charts, early nautical charts, provided extensive new information about their construction and creation. The origins of the portolan chart style have been a continual source of perplexity to numerous generations of cartographic historians. The spectral imaging system utilized incorporates a 50 megapixel mono-chrome camera with light emitting diode (LED) illumination panels that cover the range from 365 nm to 1050 nm to capture visible and non-visible information. There is little known about how portolan charts evolved, and what influenced their creation. These early nautical charts began as working navigational tools of medieval mariners, initially made in the 1300s in Italy, Portugal and Spain; however the origin and development of the portolan chart remained shrouded in mystery. Questions about these early navigational charts included whether colorants were commensurate with the time period and geographical location, and if different, did that give insight into trade routes, or possible later additions to the charts? For example; spectral data showed the red pigment on both the 1320 portolan chart and the 1565 Galapagos Islands matched vermillion, an opaque red pigment used since antiquity. The construction of these charts was also of great interest. Spectral imaging with a range of illumination modes revealed the presence of a "hidden circle" often referred to in relation to their construction. This paper will present in-depth analysis of how spectral imaging of the Portolans revealed similarities and differences, new hidden information and shed new light on construction and composition.

  7. Fluorescence and Spectral Imaging

    Directory of Open Access Journals (Sweden)

    Ralph S. DaCosta

    2007-01-01

    Full Text Available Early identification of dysplasia remains a critical goal for diagnostic endoscopy since early discovery directly improves patient survival because it allows endoscopic or surgical intervention with disease localized without lymph node involvement. Clinical studies have successfully used tissue autofluorescence with conventional white light endoscopy and biopsy for detecting adenomatous colonic polyps, differentiating benign hyperplastic from adenomas with acceptable sensitivity and specificity. In Barrett's esophagus, the detection of dysplasia remains problematic because of background inflammation, whereas in the squamous esophagus, autofluorescence imaging appears to be more dependable. Point fluorescence spectroscopy, although playing a crucial role in the pioneering mechanistic development of fluorescence endoscopic imaging, does not seem to have a current function in endoscopy because of its nontargeted sampling and suboptimal sensitivity and specificity. Other point spectroscopic modalities, such as Raman spectroscopy and elastic light scattering, continue to be evaluated in clinical studies, but still suffer the significant disadvantages of being random and nonimaging. A recent addition to the fluorescence endoscopic imaging arsenal is the use of confocal fluorescence endomicroscopy, which provides real-time optical biopsy for the first time. To improve detection of dysplasia in the gastrointestinal tract, a new and exciting development has been the use of exogenous fluorescence contrast probes that specifically target a variety of disease-related cellular biomarkers using conventional fluorescent dyes and novel potent fluorescent nanocrystals (i.e., quantum dots. This is an area of great promise, but still in its infancy, and preclinical studies are currently under way.

  8. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  9. INFORMATIONAL CONFRONTATION BETWEEN THE RUSSIAN FEDERATION AND THE USA DURING THE “TULIP REVOLUTION” IN KYRGYZSTAN

    Directory of Open Access Journals (Sweden)

    Lina Yuryevna Medovkina

    2017-10-01

    Full Text Available In the present article the author considers the problem of informational confrontation between the Russian Federation and the USA during the “Tulip Revolution” of 2005 in Kyrgyzstan. Kyrgyzstan became the first post-socialist country in Central Asia where there had been a color revolution. It is noted that in 2004 the US State Department awarded grants to non-governmental organizations of Kyrgyzstan as help for the independent media and for dissemination of propaganda information. Financial and human resources provided by the United States gave the united Kyrgyz opposition enough financial and moral support to have the opportunity to go on the offensive on Russia in the information field. The confrontation in the information field of the Russian Federation and the United States during the “Tulip Revolution” was won by the West and lost by Russia, as their technology of counteraction to information influence were weak. The purpose of the research is the study of information confrontation between the Russian Federation and the USA during the “Tulip Revolution” of 2005 in Kyrgyzstan. Method or methodology of work. Content analysis, methods of organizing and synthesizing of information are used as methodological basis. The methodological approaches are presented by the system analysis of the considered phenomenon. The results of the study can be used as an objective confirmation of application of information confrontation methods in the conflict between states. Scope of application: state information policy.

  10. Exploring Acculturation Experiences and Cultural Dialogues among Iranian Refugees in the Netherlands by Means of the Self-Confrontation Method

    NARCIS (Netherlands)

    Lindert, A. te; Korzilius, H.P.L.M.

    2008-01-01

    In this study we explored the most important topics of acculturation experiences among Iranian refugees in the Netherlands, using the Self-Confrontation Method (Hermans & Hermans-Jansen, 1995). We discussed the Dialogical Self Theory reffering to the multiple selves of people who have to deal with

  11. The Open Spectral Database: an open platform for sharing and searching spectral data.

    Science.gov (United States)

    Chalk, Stuart J

    2016-01-01

    A number of websites make available spectral data for download (typically as JCAMP-DX text files) and one (ChemSpider) that also allows users to contribute spectral files. As a result, searching and retrieving such spectral data can be time consuming, and difficult to reuse if the data is compressed in the JCAMP-DX file. What is needed is a single resource that allows submission of JCAMP-DX files, export of the raw data in multiple formats, searching based on multiple chemical identifiers, and is open in terms of license and access. To address these issues a new online resource called the Open Spectral Database (OSDB) http://osdb.info/ has been developed and is now available. Built using open source tools, using open code (hosted on GitHub), providing open data, and open to community input about design and functionality, the OSDB is available for anyone to submit spectral data, making it searchable and available to the scientific community. This paper details the concept and coding, internal architecture, export formats, Representational State Transfer (REST) Application Programming Interface and options for submission of data. The OSDB website went live in November 2015. Concurrently, the GitHub repository was made available at https://github.com/stuchalk/OSDB/, and is open for collaborators to join the project, submit issues, and contribute code. The combination of a scripting environment (PHPStorm), a PHP Framework (CakePHP), a relational database (MySQL) and a code repository (GitHub) provides all the capabilities to easily develop REST based websites for ingestion, curation and exposure of open chemical data to the community at all levels. It is hoped this software stack (or equivalent ones in other scripting languages) will be leveraged to make more chemical data available for both humans and computers.

  12. Berlin Reflectance Spectral Library (BRSL)

    Science.gov (United States)

    Henckel, D.; Arnold, G.; Kappel, D.; Moroz, L. V.; Markus, K.

    2017-09-01

    The Berlin Reflectance Spectral Library (BRSL) provides a collection of reflectance spectra between 0.3 and 17 µm. It was originally dedicated to support space missions to small solar system bodies. Meanwhile the library includes selections of biconical reflectance spectra for spectral data analysis of other planetary bodies as well. The library provides reference spectra of well-characterized terrestrial analogue materials and meteorites for interpretation of remote sensing reflectance spectra of planetary surfaces. We introduce the BRSL, summarize the data available, and access to use them for further relevant applications.

  13. Spectral ellipsometry of nanodiamond composite

    International Nuclear Information System (INIS)

    Yastrebov, S.G.; Ivanov-Omskij, V.I.; Gordeev, S.K.; Garriga, M.; Alonso, I.A.

    2006-01-01

    Methods of spectral ellipsometry were applied for analysis of optical properties of nanodiamond based composite in spectral region 1.4-5 eV. The nanocomposite was synthesized by molding of ultradispersed nanodiamond powder in the course of heterogeneous chemical reaction of decomposition of methane, forming pyrocarbon interconnecting nanodiamond grains. The energy of σ + π plasmon of pyrocarbon component of nanodiamond composite was restored which proves to be ∼ 24 eV; using this value, an estimation was done of pyrocarbon matrix density, which occurs to be 2 g/cm 3 [ru

  14. Variables separation of the spectral BRDF for better understanding color variation in special effect pigment coatings.

    Science.gov (United States)

    Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa

    2012-06-01

    A type of representation of the spectral bidirectional reflectance distribution function (BRDF) is proposed that distinctly separates the spectral variable (wavelength) from the geometrical variables (spherical coordinates of the irradiation and viewing directions). Principal components analysis (PCA) is used in order to decompose the spectral BRDF in decorrelated spectral components, and the weight that they have at every geometrical configuration of irradiation/viewing is established. This method was applied to the spectral BRDF measurement of a special effect pigment sample, and four principal components with relevant variance were identified. These four components are enough to reproduce the great diversity of spectral reflectances observed at different geometrical configurations. Since this representation is able to separate spectral and geometrical variables, it facilitates the interpretation of the color variation of special effect pigments coatings versus the geometrical configuration of irradiation/viewing.

  15. Spectral decomposition of nonlinear systems with memory

    Science.gov (United States)

    Svenkeson, Adam; Glaz, Bryan; Stanton, Samuel; West, Bruce J.

    2016-02-01

    We present an alternative approach to the analysis of nonlinear systems with long-term memory that is based on the Koopman operator and a Lévy transformation in time. Memory effects are considered to be the result of interactions between a system and its surrounding environment. The analysis leads to the decomposition of a nonlinear system with memory into modes whose temporal behavior is anomalous and lacks a characteristic scale. On average, the time evolution of a mode follows a Mittag-Leffler function, and the system can be described using the fractional calculus. The general theory is demonstrated on the fractional linear harmonic oscillator and the fractional nonlinear logistic equation. When analyzing data from an ill-defined (black-box) system, the spectral decomposition in terms of Mittag-Leffler functions that we propose may uncover inherent memory effects through identification of a small set of dynamically relevant structures that would otherwise be obscured by conventional spectral methods. Consequently, the theoretical concepts we present may be useful for developing more general methods for numerical modeling that are able to determine whether observables of a dynamical system are better represented by memoryless operators, or operators with long-term memory in time, when model details are unknown.

  16. Sparse spectral deconvolution algorithm for noncartesian MR spectroscopic imaging.

    Science.gov (United States)

    Bhave, Sampada; Eslami, Ramin; Jacob, Mathews

    2014-02-01

    To minimize line shape distortions and spectral leakage artifacts in MR spectroscopic imaging (MRSI). A spatially and spectrally regularized non-Cartesian MRSI algorithm that uses the line shape distortion priors, estimated from water reference data, to deconvolve the spectra is introduced. Sparse spectral regularization is used to minimize noise amplification associated with deconvolution. A spiral MRSI sequence that heavily oversamples the central k-space regions is used to acquire the MRSI data. The spatial regularization term uses the spatial supports of brain and extracranial fat regions to recover the metabolite spectra and nuisance signals at two different resolutions. Specifically, the nuisance signals are recovered at the maximum resolution to minimize spectral leakage, while the point spread functions of metabolites are controlled to obtain acceptable signal-to-noise ratio. The comparisons of the algorithm against Tikhonov regularized reconstructions demonstrates considerably reduced line-shape distortions and improved metabolite maps. The proposed sparsity constrained spectral deconvolution scheme is effective in minimizing the line-shape distortions. The dual resolution reconstruction scheme is capable of minimizing spectral leakage artifacts. Copyright © 2013 Wiley Periodicals, Inc.

  17. Towards spectral geometric methods for Euclidean quantum gravity

    Science.gov (United States)

    Panine, Mikhail; Kempf, Achim

    2016-04-01

    The unification of general relativity with quantum theory will also require a coming together of the two quite different mathematical languages of general relativity and quantum theory, i.e., of differential geometry and functional analysis, respectively. Of particular interest in this regard is the field of spectral geometry, which studies to which extent the shape of a Riemannian manifold is describable in terms of the spectra of differential operators defined on the manifold. Spectral geometry is hard because it is highly nonlinear, but linearized spectral geometry, i.e., the task to determine small shape changes from small spectral changes, is much more tractable and may be iterated to approximate the full problem. Here, we generalize this approach, allowing, in particular, nonequal finite numbers of shape and spectral degrees of freedom. This allows us to study how well the shape degrees of freedom are encoded in the eigenvalues. We apply this strategy numerically to a class of planar domains and find that the reconstruction of small shape changes from small spectral changes is possible if enough eigenvalues are used. While isospectral nonisometric shapes are known to exist, we find evidence that generically shaped isospectral nonisometric shapes, if existing, are exceedingly rare.

  18. Observed spectral features of dust

    International Nuclear Information System (INIS)

    Willner, S.P.

    1984-01-01

    The author concentrates on the observed properties of dust spectral features. Identifications, based on laboratory data, are given whenever plausible ones exist. There are a very large number of papers in the literature of even such a young field as infrared spectroscopy, and therefore the author refers only to the most recent paper on a topic or to another review. (Auth.)

  19. Rayleigh imaging in spectral mammography

    Science.gov (United States)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  20. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Some of the history of gradual infusion of the modulation spectrum concept into Automatic recognition of speech (ASR) comes next, pointing to the relationship of modulation spectrum processing to wellaccepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl (RASTA) filtering. Next, the frequency ...

  1. Spectral Diagonal Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Kasanický, Ivan; Mandel, Jan; Vejmelka, Martin

    2015-01-01

    Roč. 22, č. 4 (2015), s. 485-497 ISSN 1023-5809 R&D Projects: GA ČR GA13-34856S Grant - others:NSF(US) DMS-1216481 Institutional support: RVO:67985807 Keywords : data assimilation * ensemble Kalman filter * spectral representation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.321, year: 2015

  2. Biomarkers and Biological Spectral Imaging

    Science.gov (United States)

    2001-01-23

    G. Sowa, H. H. Mantsch, National Research Council Canada; S. L. Zhang, Unilever Research (USA) 85 Brain tissue charcterization using spectral imaging...image registration and of the expert staff of Hill Top Research in Winnipeg for hosting the hydration study. Financial assistance from Unilever Research

  3. Confronting diminished epistemic privilege and epistemic injustice in pregnancy by challenging a "panoptics of the womb".

    Science.gov (United States)

    Freeman, Lauren

    2015-02-01

    This paper demonstrates how the problematic kinds of epistemic power that physicians have can diminish the epistemic privilege that pregnant women have over their bodies and can put them in a state of epistemic powerlessness. This result, I argue, constitutes an epistemic injustice for many pregnant women. A reconsideration of how we understand and care for pregnant women and of the physician-patient relationship can provide us with a valuable context and starting point for helping to alleviate the knowledge/power problems that are symptomatic of the current system and structure of medicine. I suggest that we can begin to confront this kind of injustice if medicine adopts a more phenomenological understanding of bodies and if physicians and patients--in this case, pregnant women--become what I call "epistemic peers." © The Author 2014. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Pobreza, "questão social" e seu enfrentamento Poverty, "social issue" and its confrontation

    Directory of Open Access Journals (Sweden)

    Carlos Montaño

    2012-06-01

    Full Text Available Visamos aqui problematizar as diferentes concepções de pobreza e "questão social" na tradição liberal, e suas formas típicas de enfrentamento, no contexto do liberalismo clássico, no século XIX, do keynesianismo, no século XX, e do neoliberalismo, a partir da atual crise do capital. Com isto, oferecemos uma reflexão sobre aspectos para uma caracterização histórico-crítica de pobreza e "questão social". Finalmente, procuramos problematizar os caminhos para a busca de diminuição da desigualdade social, mediante políticas compensatórias no contexto atual.We aim at questioning the various concepts of poverty and "social issue" in the liberal tradition, and their typical ways of confrontation, in the context of the classical liberalism in the ­nineteenth century, of the keynesianism, in the twentieth century and of the neo-liberalism from the current crisis of the capital. Doing so, we offer a reflection concerning aspects related to a historical and critical characterization of poverty and "social issue". Finally, we question the ways of reducing social inequality, through compensatory policy in the current context.

  5. Bose-Einstein Condensate Dark Matter Halos Confronted with Galactic Rotation Curves

    Directory of Open Access Journals (Sweden)

    M. Dwornik

    2017-01-01

    Full Text Available We present a comparative confrontation of both the Bose-Einstein Condensate (BEC and the Navarro-Frenk-White (NFW dark halo models with galactic rotation curves. We employ 6 High Surface Brightness (HSB, 6 Low Surface Brightness (LSB, and 7 dwarf galaxies with rotation curves falling into two classes. In the first class rotational velocities increase with radius over the observed range. The BEC and NFW models give comparable fits for HSB and LSB galaxies of this type, while for dwarf galaxies the fit is significantly better with the BEC model. In the second class the rotational velocity of HSB and LSB galaxies exhibits long flat plateaus, resulting in better fit with the NFW model for HSB galaxies and comparable fits for LSB galaxies. We conclude that due to its central density cusp avoidance the BEC model fits better dwarf galaxy dark matter distribution. Nevertheless it suffers from sharp cutoff in larger galaxies, where the NFW model performs better. The investigated galaxy sample obeys the Tully-Fisher relation, including the particular characteristics exhibited by dwarf galaxies. In both models the fitting enforces a relation between dark matter parameters: the characteristic density and the corresponding characteristic distance scale with an inverse power.

  6. Confronting the relaxation mechanism for a large cosmological constant with observations

    International Nuclear Information System (INIS)

    Basilakos, Spyros; Bauer, Florian; Solà, Joan

    2012-01-01

    In order to deal with a large cosmological constant a relaxation mechanism based on modified gravity has been proposed recently. By virtue of this mechanism the effect of the vacuum energy density of a given quantum field/string theory (no matter how big is its initial value in the early universe) can be neutralized dynamically, i.e. without fine tuning, and hence a Big Bang-like evolution of the cosmos becomes possible. Remarkably, a large class (F n m ) of models of this kind, namely capable of dynamically adjusting the vacuum energy irrespective of its value and size, has been identified. In this paper, we carefully put them to the experimental test. By performing a joint likelihood analysis we confront these models with the most recent observational data on type Ia supernovae (SNIa), the Cosmic Microwave Background (CMB), the Baryonic Acoustic Oscillations (BAO) and the high redshift data on the expansion rate, so as to determine which ones are the most favored by observations. We compare the optimal relaxation models F n m found by this method with the standard or concordance ΛCDM model, and find that some of these models may appear as almost indistinguishable from it. Interestingly enough, this shows that it is possible to construct viable solutions to the tough cosmological fine tuning problem with models that display the same basic phenomenological features as the concordance model

  7. Social ecosystem health: confronting the complexity and emergence of infectious diseases

    Directory of Open Access Journals (Sweden)

    Cristina de Albuquerque Possas

    2001-02-01

    Full Text Available The emergence and re-emergence of infectious diseases and their rapid dissemination worldwide are challenging national health systems, particularly in developing countries affected by extreme poverty and environmental degradation. The expectations that new vaccines and drugs and global surveillance would help reverse these trends have been frustrated thus far by the complexity of the epidemiological transition, despite promising prospects for the near future in biomolecular research and genetic engineering. This impasse raises crucial issues concerning conceptual frameworks supporting priority-setting, risk anticipation, and the transfer of science and technology's results to society. This article discusses these issues and the limitations of social and economic sciences on the one hand and ecology on the other as the main theoretical references of the health sciences in confronting the complexity of these issues on their own. The tension between these historically dissociated paradigms is discussed and a transdisciplinary approach is proposed, that of social ecosystem health, incorporating these distinct perspectives into a comprehensive framework.

  8. Scintigraphy in the diagnosis of liver cancers. Study of 54 observations with anatomical confrontation

    International Nuclear Information System (INIS)

    Labro, R.D.A.

    1976-01-01

    This study attempts to judge the reliability of scintigraphy in the diagnosis of liver cancers. It concerns 54 observations with anatomical confrontation (laparoscopy, biopsy, laparotomy and/or autopsy). Technetium 99m scintigraphy gives a correct diagnosis in 81.5% of the cases, whether cirrhosis is present or not. Scintigraphy is only one stage in the investigation of neoplasic liver disease. This study shows that all too often it is practised alone since of 201 observations only 54 include another examination, and of these only 21 a laparoscopy. The simultaneous use of scintigraphy and laparoscopy eliminates false positives and reduces the percentage of false negatives from 7.5% to 4%. The two methods combined are therefore reliable to 96% (i.e. 96% of successful diagnosis in liver cancer tests. This work was performed with the techniques available in 1973. The quality of the scintigraphic image should be improved by technical progress in the form of new isotopic products, cameras with better definition and computerized data processing. With these new techniques it will certainly be possible to detect very small lacunae and to observe in more detail their diffusion in the liver parenchyma [fr

  9. Sigmund Freud and Otto Rank: debates and confrontations about anxiety and birth.

    Science.gov (United States)

    Pizarro Obaid, Francisco

    2012-06-01

    The publication of Otto Rank's The Trauma of Birth (1924) gave rise to an intense debate within the secret Committee and confronted Freud with one of his most beloved disciples. After analyzing the letters that the Professor exchanged with his closest collaborators and reviewing the works he published during this period, it is clear that anxiety was a crucial element among the topics in dispute. His reflections linked to the signal anxiety concept allowed Freud to refute Rank's thesis that defined birth trauma as the paradigmatic key to understanding neurosis, and, in turn, was a way of confirming the validity of the concepts of Oedipus complex, repression and castration in the conceptualization of anxiety. The reasons for the modifications of anxiety theory in the mid-1920s cannot be reduced, as Freud would affirm officially in his work of 1926, to the detection of internal contradictions in his theory or to the desire to establish a metapsychological version of the problem, for they gain their essential impulse from the debate with Rank. Copyright © 2012 Institute of Psychoanalysis.

  10. Confronting reality in strategic environmental assessment in Slovenia — Costs and benefits

    International Nuclear Information System (INIS)

    Kontić, Branko; Dermol, Urška

    2015-01-01

    We enlarge on the viewpoint published in the Environmental Impact Assessment Review in 2012 — A viewpoint on the approval context of strategic environmental assessments. Additional alerts concerning the procedural ineffectiveness of the strategic environmental assessment (SEA) process from the cost–benefit point of view are advanced. The major contribution to the long lasting, costly SEA processes, comes from ultraistic treatment of Natura 2000. The case study deals with a plan for constructing a traffic bypass around Škofljica, a town near Ljubljana. Based on their conclusions the authors propose that the following elements of the SEA procedure should be improved and optimised: –CBA for SEA should become a regular component when measuring its effectiveness. –Concretisation of expected SEA inputs to the plan should clarify its role at the earliest stage of the process. –SEA should contribute interactively to the optimisation of alternatives; cost–benefit analysis of the SEA process could support this process. –Nature protection interest should be confronted and balanced with wider development interests as formulated in the plan and should not be applied in absolute terms (e.g. Natura 2000). - Highlights: • SEA in Slovenia is ineffective and costly • SEA serves fundamentalism of nature protection through the Natura 2000 system • SEA does not support optimization and improvement of development projects

  11. Confronting reality in strategic environmental assessment in Slovenia — Costs and benefits

    Energy Technology Data Exchange (ETDEWEB)

    Kontić, Branko, E-mail: branko.kontic@ijs.si; Dermol, Urška, E-mail: urska.dermol@gmail.com

    2015-01-15

    We enlarge on the viewpoint published in the Environmental Impact Assessment Review in 2012 — A viewpoint on the approval context of strategic environmental assessments. Additional alerts concerning the procedural ineffectiveness of the strategic environmental assessment (SEA) process from the cost–benefit point of view are advanced. The major contribution to the long lasting, costly SEA processes, comes from ultraistic treatment of Natura 2000. The case study deals with a plan for constructing a traffic bypass around Škofljica, a town near Ljubljana. Based on their conclusions the authors propose that the following elements of the SEA procedure should be improved and optimised: –CBA for SEA should become a regular component when measuring its effectiveness. –Concretisation of expected SEA inputs to the plan should clarify its role at the earliest stage of the process. –SEA should contribute interactively to the optimisation of alternatives; cost–benefit analysis of the SEA process could support this process. –Nature protection interest should be confronted and balanced with wider development interests as formulated in the plan and should not be applied in absolute terms (e.g. Natura 2000). - Highlights: • SEA in Slovenia is ineffective and costly • SEA serves fundamentalism of nature protection through the Natura 2000 system • SEA does not support optimization and improvement of development projects.

  12. Teaching Writing to EFL Learners: An Investigation of Challenges Confronted by Indonesian Teachers

    Directory of Open Access Journals (Sweden)

    Kuni Hikmah Hidayati

    2018-06-01

    Full Text Available Teaching English writing skill which involves developing linguistic and communicative competence of learners is considered a challenging task. When teaching writing, therefore, EFL teachers in general and Indonesian teachers in particular encounter many challenges (i.e. difficulties. This study aims to find out Indonesian teachers’ challenges in teaching English writing skill and discuss possible solutions to remove, or at least, minimize, the problems. The data was collected by interviewing 10 English teachers who come from different part of East Java, Indonesia and teach English in either private or public Junior and Senior High Schools. The instrument used was structured interview. The data collected from the interview was, then, analyzed descriptively. The findings show that there are internal and external factors contribute to the challenges that the teachers confront. The internal factors include linguistic competence, native language interference, motivation and reading habits of the learners, while the external ones include the class condition, aids available for teaching writing and the availability of time. The research findings would facilitate the teachers and the concerning authorities to improve the ELT especially in teaching writing.

  13. [Confrontation of knowledge on alcohol concentration in blood and in exhaled air].

    Science.gov (United States)

    Bauer, Miroslav; Bauerová, Jiřina; Šikuta, Ján; Šidlo, Jozef

    2015-01-01

    The authors of the paper give a brief historical overview of the development of experimental alcohology in the former Czechoslovakia. Enhanced attention is paid to tests of work quality control of toxicological laboratories. Information on results of control tests of blood samples using the method of gas chromatography in Slovakia and within a world-wide study "Eurotox 1990" is presented. There are pointed out the pitfalls related to objective evaluation of the analysis results interpreting alcohol concentration in biological materials and the associated need to eliminate a negative influence of the human factor. The authors recommend performing analyses of alcohol in biological materials only at accredited workplaces and in the case of samples storage to secure a mandatory inhibition of phosphorylation process. There are analysed the reasons of numerical differences of analyses while taking evidence of alcohol in blood and in exhaled air. The authors confirm analysis accuracy using the method of gas chromatography along with breath analysers of exhaled air. They highlight the need for making the analysis results more objective also through confrontation with the results of clinical examination and with examined circumstances. The authors suggest a method of elimination of the human factor, the most frequently responsible for inaccuracy, to a tolerable level (safety factor) and the need of sample analysis by two methods independent of each other or the need of analysis of two biological materials.

  14. The threat at home: Confronting the toxic legacy of the U.S. Military

    International Nuclear Information System (INIS)

    Shulman, S.

    1992-01-01

    The environmental problems that confront the military--and the communities where military facilities are located--are as varied and diverse as the military itself. Past waste management and mismanagement practices have led to large-scale contamination of soil and groundwater with toxic or hazardous fuels, solvents, trace metals, pesticides, explosives, and propellants. Nuclear production facilities generate mixed wastes, which contain both radioactive and toxic contaminants. Test sites and proving grounds are known to contain a large number of unexploded munitions buried in the soil, and a number of arsenals and ammunition plants store chemical weapons agents, which are no longer needed, such as mustard gas and nerve agents. The book is divided into three parts--open-quotes The Threatclose quotes, open-quotes Secret Legaciesclose quotes, and open-quotes Facing the Futureclose quotes. Shulman devotes separate chapters to individual facilities and sites, describing the environmental degradation and damage that has occurred. Through interviews with private citizens, the author portrays the anger and suspicion that exist in surrounding communities. The author describes the frustration of Congressional committees as well as military and contract personnel involved in cleanup, who decry the lack of guidance from the Pentagon

  15. Confronting Theoretical Predictions With Experimental Data; Fitting Strategy For Multi-Dimensional Distributions

    Directory of Open Access Journals (Sweden)

    Tomasz Przedziński

    2015-01-01

    Full Text Available After developing a Resonance Chiral Lagrangian (RχL model to describe hadronic τ lepton decays [18], the model was confronted with experimental data. This was accomplished using a fitting framework which was developed to take into account the complexity of the model and to ensure the numerical stability for the algorithms used in the fitting. Since the model used in the fit contained 15 parameters and there were only three 1-dimensional distributions available, we could expect multiple local minima or even whole regions of equal potential to appear. Our methods had to thoroughly explore the whole parameter space and ensure, as well as possible, that the result is a global minimum. This paper is focused on the technical aspects of the fitting strategy used. The first approach was based on re-weighting algorithm published in [17] and produced results in around two weeks. Later approach, with improved theoretical model and simple parallelization algorithm based on Inter-Process Communication (IPC methods of UNIX system, reduced computation time down to 2-3 days. Additional approximations were introduced to the model decreasing time to obtain the preliminary results down to 8 hours. This allowed to better validate the results leading to a more robust analysis published in [12].

  16. Strategies of EU agro-food cooperatives to confront globalization: The case of wine cooperatives

    Directory of Open Access Journals (Sweden)

    Juan Sebastián Castillo Valero

    2013-06-01

    Full Text Available Due to globalization and market integration, the agro-food cooperative sector needs to be more competitive. This generates new challenges for cooperative enterprises in the agro-food sector. In this article the analysis of the wine producing sector is undertaken in the area of greatest world-wide wine production and commercialization, Castilla-La Mancha. EU wineries and cooperatives should propose strategic lines within an economy marked by a globalization process in world markets. The paradigmatic case is analyzed in this paper of the comparison of strategies followed by cooperatives confronting capitalist winery enterprises. Therefore, the degree of suitability is aimed to be elucidated and the success of the foundations of international commercial strategies that cooperative enterprises of the sector have followed, depending on their characteristics. Moreover, an exhaustive diagnosis is offered of the current strategic situation of cooperatives and their probability of gaining access to and/or growing in the international market. The parameters that have resulted significant are used as conclusions and recommendations so that cooperatives will reformulate their strategies and the organizations linked to the agro-food sector will know what factors to foment and support in their internationalization and global competitive positioning.

  17. CONFRONTING CHALLENGES IN IMPLEMENTING E-PORTFOLIO VIA FACEBOOK IN A PHILIPPINE UNIVERSITY

    Directory of Open Access Journals (Sweden)

    Philippe Sipacio

    2015-01-01

    Full Text Available Abstract: As an alternative assessment, e-Portfolio via Facebook (evFb has been introduced at De La Salle University (DLSU specifically at Department of English and Applied Linguistics (DEAL primarily to respond to the demands of 21st century literacy. However, it was observed that despite the positive impact of evFb on students based on pilot-testing and related studies, there were still innumerable challenges that hindered its implementation. In this paper, these problems were identified, and were addressed using the lens of participatory development framework. Data were taken from interview and feedback forms of participants namely institution (represented by the department chair and project/program committee, implementers/teachers, and students, and were subjected to content analysis.  The results showed three major issues classified as: (1 strong apprehension of students to publish their writing outputs on-line; (2 resistance of teachers towards FB as an educational tool; and, (3 concerns of institution as regards academic honesty and identity theft on-line. To confront these challenges and ensure effective implementation and sustainability of evFb at DEAL, improving participatory mechanisms was suggested and discussed. Finally, some opportunities and implications for policy relevant to evFb were also presented.

  18. Confrontation With Scorpions As an Environmental Permanent Risk in Iran: A Review

    Directory of Open Access Journals (Sweden)

    Rouhullah Dehghani

    2016-04-01

    Full Text Available Background & Aims of the Study: Among the Iranians, scorpion is considered as one of the most important natural hazards and introduced as a dangerous animal. The outcome of this confrontation is to create stories and different beliefs about them .The primary aim of this study is to investigate and deliberate on the validity and fraudulence of these beliefs in how Iranian looked upon scorpions. Materials & Methods: The study is a review of descriptive analysis. In other words, the study was conducted, considering the key terms such as: treatment of scorpion venom, motifs of humans and scorpions in internet and related websites; moreover, the study was carried on by professional journals, articles and researches as well as related published books in this filed. By considering the situation and its requirements, the references were chosen to be analyzed. Results: Owing to the fact that scorpions have poisonous, painful and sometimes mortal venoms, they have attracted more attention compared to other creatures in the history and culture of Iran. Such creatures are regarded as the symbol of power and sentry in several references as they can be found in the works and studies remained from ancients throughout Iran. Conclusions: Due to the medical importance of scorpions and Iranian’s cultural beliefs, scorpion motifs has been regarded as a significant symbol of Iran’s history. Moreover, in creating the scorpion motifs about the dangers of this creature, beliefs, the realities and the analysis of customs have been playing the great roles.

  19. Spectral density and a family of Dirac operators

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1985-01-01

    The spectral density for a class Dirac operators is investigated by relating its even and odd parts to the Riemann zeta-function and to the eta-invariant by Atiyah, Padoti and Singer. Asymptotic expansions are studied and a 'hidden' supersymmetry is revealed and used to relate the Dirac operator to a supersymmetric quantum mechanics. A general method for the computation of the odd spectral density is developed, and various applications are discussed. In particular the connection to the fermion number and a relation between the odd spectral density and some ratios of Jost functions and relative phase shifts are pointed out. Chiral symmetry breaking is investigated using methods analogous to those applied in the investigation of the fermion number, and related to supersymmetry breaking in the corresponding quantum mechanical model. (orig.)

  20. Spectral theory of infinite-area hyperbolic surfaces

    CERN Document Server

    Borthwick, David

    2016-01-01

    This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constan...

  1. Hamiltonian indices and rational spectral densities

    Science.gov (United States)

    Byrnes, C. I.; Duncan, T. E.

    1980-01-01

    Several (global) topological properties of various spaces of linear systems, particularly symmetric, lossless, and Hamiltonian systems, and multivariable spectral densities of fixed McMillan degree are announced. The study is motivated by a result asserting that on a connected but not simply connected manifold, it is not possible to find a vector field having a sink as its only critical point. In the scalar case, this is illustrated by showing that only on the space of McMillan degree = /Cauchy index/ = n, scalar transfer functions can one define a globally convergent vector field. This result holds both in discrete-time and for the nonautonomous case. With these motivations in mind, theorems of Bochner and Fogarty are used in showing that spaces of transfer functions defined by symmetry conditions are, in fact, smooth algebraic manifolds.

  2. Self-management support and eHealth for patients and informal caregivers confronted with advanced cancer : An online focus group study among nurses

    NARCIS (Netherlands)

    Slev, Vina N.; Pasman, H. Roeline W.; Eeltink, Corien M.; Van Uden-Kraan, Cornelia F.; Verdonck-De Leeuw, Irma M.; Francke, Anneke L.

    2017-01-01

    Background: Self-management by patients and informal caregivers confronted with advanced cancer is not self-evident. Therefore they might need self-management support from nurses. This article reports on nurses' perspectives on self-management support for people confronted with advanced cancer, and

  3. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    Science.gov (United States)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  4. Broadband Spectral Investigations of Magnetar Bursts

    Science.gov (United States)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin

    2017-09-01

    We present our broadband (2-250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550-5418, SGR 1900+14, and SGR 1806-20 detected with the Rossi X-ray Timing Explorer (RXTE) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  5. Broadband Spectral Investigations of Magnetar Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin, E-mail: demetk@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı Tuzla, Istanbul 34956 (Turkey)

    2017-09-01

    We present our broadband (2–250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550−5418, SGR 1900+14, and SGR 1806−20 detected with the Rossi X-ray Timing Explorer ( RXTE ) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  6. SPAM- SPECTRAL ANALYSIS MANAGER (DEC VAX/VMS VERSION)

    Science.gov (United States)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  7. Spectrally based mapping of riverbed composition

    Science.gov (United States)

    Legleiter, Carl; Stegman, Tobin K.; Overstreet, Brandon T.

    2016-01-01

    Remote sensing methods provide an efficient means of characterizing fluvial systems. This study evaluated the potential to map riverbed composition based on in situ and/or remote measurements of reflectance. Field spectra and substrate photos from the Snake River, Wyoming, USA, were used to identify different sediment facies and degrees of algal development and to quantify their optical characteristics. We hypothesized that accounting for the effects of depth and water column attenuation to isolate the reflectance of the streambed would enhance distinctions among bottom types and facilitate substrate classification. A bottom reflectance retrieval algorithm adapted from coastal research yielded realistic spectra for the 450 to 700 nm range; but bottom reflectance-based substrate classifications, generated using a random forest technique, were no more accurate than classifications derived from above-water field spectra. Additional hypothesis testing indicated that a combination of reflectance magnitude (brightness) and indices of spectral shape provided the most accurate riverbed classifications. Convolving field spectra to the response functions of a multispectral satellite and a hyperspectral imaging system did not reduce classification accuracies, implying that high spectral resolution was not essential. Supervised classifications of algal density produced from hyperspectral data and an inferred bottom reflectance image were not highly accurate, but unsupervised classification of the bottom reflectance image revealed distinct spectrally based clusters, suggesting that such an image could provide additional river information. We attribute the failure of bottom reflectance retrieval to yield more reliable substrate maps to a latent correlation between depth and bottom type. Accounting for the effects of depth might have eliminated a key distinction among substrates and thus reduced discriminatory power. Although further, more systematic study across a broader

  8. A new local GPS water vapor tomography imaging technique using spectral functions w.r.t space and time: initial tests and results for the Tahiti Island case (French Polynesia)

    Science.gov (United States)

    Sichoix, L.; Barriot, J.; Fadil, A.; Ortega, P.

    2009-12-01

    In this study, we present the initial tests and validation results performed on a newly-developed GPS water vapor tomography inversion code based on a spectral approach tailored to coarse networks of GPS stations. Our work is mainly motivated by the lack of dense GPS coverage in Tahiti Island. Firstly, we use the GAMIT software to estimate the tropospheric slant wet delays (SWD) from a single GPS ground-based receiver to each visible satellite. SWD values are our model input. Secondly, the refractivity along ray paths is written as 3D Zernike radial and spherical harmonic series as well as sinusoidal time series and then inserted into the Radon transform linking slant delays and refractivity. This approach is in contrast with usual previous approaches where the atmosphere is divided into voxels (3D pixels). These approaches may exhibit instabilities as a voxel is crossed by more than one ray. Thirdly, we overcome the ill-posedness of the Radon transform by adding a priori constraints in the form of a full covariance matrix of the atmospheric refractivity taking into account the transport and mixing processes in the atmosphere.

  9. Single-particle spectral density of the Hubbard model

    NARCIS (Netherlands)

    Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  10. SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL

    NARCIS (Netherlands)

    MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  11. A modified sliding spectral method and its application to COSMIC ...

    Indian Academy of Sciences (India)

    A modified sliding spectral method and its application to COSMIC radio occultation data 1751. The window length with 300 samples is supposed to provide a reasonable resolution. In a spherically symmetric atmosphere, the refractive index n as a function of tangent radius r0 can be computed from the bending angle α as.

  12. Spectral properties of doped bilayer cuprates at finite temperatures

    Indian Academy of Sciences (India)

    teresting results. For the overdoped samples, these results show a splitting of electronic states near ... self-consistent perturbation approach is used to calculate the electronic spectral function for differ- ent values of hole .... Council for Scientific and Industrial Research (CSIR), Government of India, for financial support via ...

  13. Differential operators admitting various rates of spectral projection growth

    Czech Academy of Sciences Publication Activity Database

    Mityagin, B.; Siegl, Petr; Viola, J.

    2017-01-01

    Roč. 272, č. 8 (2017), s. 3129-3175 ISSN 0022-1236 Institutional support: RVO:61389005 Keywords : harmonic and anharmonic oscillators * Hennite functions * spectral projections * Riesz basis Subject RIV: BE - Theoretical Physics OBOR OECD: Pure mathematics Impact factor: 1.254, year: 2016

  14. hp Spectral element methods for three dimensional elliptic problems

    Indian Academy of Sciences (India)

    elliptic boundary value problems on non-smooth domains in R3. For Dirichlet problems, ... of variable degree bounded by W. Let N denote the number of layers in the geomet- ric mesh ... We prove a stability theorem for mixed problems when the spectral element functions vanish ..... Applying Theorem 3.1,. ∫ r l. |Mu|2dx −.

  15. Prediction of spectral acceleration response ordinates based on PGA attenuation

    Science.gov (United States)

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  16. Spectral properties of superpositions of Ornstein-Uhlenbeck type processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Leonenko, N.N.

    2005-01-01

    Stationary processes with prescribed one-dimensional marginal laws and long-range dependence are constructed. The asymptotic properties of the spectral densities are studied. The possibility of Mittag-Leffler decay in the autocorrelation function of superpositions of Ornstein-Uhlenbeck type...... processes is proved....

  17. Spectral analysis of the structure of ultradispersed diamonds

    Science.gov (United States)

    Uglov, V. V.; Shimanski, V. I.; Rusalsky, D. P.; Samtsov, M. P.

    2008-07-01

    The structure of ultradispersed diamonds (UDD) is studied by spectral methods. The presence of diamond crystal phase in the UDD is found based on x-ray analysis and Raman spectra. The Raman spectra also show sp2-and sp3-hybridized carbon. Analysis of IR absorption spectra suggests that the composition of functional groups present in the particles changes during the treatment.

  18. Method for estimating effects of unknown correlations in spectral irradiance data on uncertainties of spectrally integrated colorimetric quantities

    Science.gov (United States)

    Kärhä, Petri; Vaskuri, Anna; Mäntynen, Henrik; Mikkonen, Nikke; Ikonen, Erkki

    2017-08-01

    Spectral irradiance data are often used to calculate colorimetric properties, such as color coordinates and color temperatures of light sources by integration. The spectral data may contain unknown correlations that should be accounted for in the uncertainty estimation. We propose a new method for estimating uncertainties in such cases. The method goes through all possible scenarios of deviations using Monte Carlo analysis. Varying spectral error functions are produced by combining spectral base functions, and the distorted spectra are used to calculate the colorimetric quantities. Standard deviations of the colorimetric quantities at different scenarios give uncertainties assuming no correlations, uncertainties assuming full correlation, and uncertainties for an unfavorable case of unknown correlations, which turn out to be a significant source of uncertainty. With 1% standard uncertainty in spectral irradiance, the expanded uncertainty of the correlated color temperature of a source corresponding to the CIE Standard Illuminant A may reach as high as 37.2 K in unfavorable conditions, when calculations assuming full correlation give zero uncertainty, and calculations assuming no correlations yield the expanded uncertainties of 5.6 K and 12.1 K, with wavelength steps of 1 nm and 5 nm used in spectral integrations, respectively. We also show that there is an absolute limit of 60.2 K in the error of the correlated color temperature for Standard Illuminant A when assuming 1% standard uncertainty in the spectral irradiance. A comparison of our uncorrelated uncertainties with those obtained using analytical methods by other research groups shows good agreement. We re-estimated the uncertainties for the colorimetric properties of our 1 kW photometric standard lamps using the new method. The revised uncertainty of color temperature is a factor of 2.5 higher than the uncertainty assuming no correlations.

  19. The n-level spectral correlations for chaotic systems

    International Nuclear Information System (INIS)

    Nagao, Taro; Mueller, Sebastian

    2009-01-01

    We study the n-level spectral correlation functions of classically chaotic quantum systems without time-reversal symmetry. According to Bohigas, Giannoni and Schmit's universality conjecture, it is expected that the correlation functions are in agreement with the prediction of the circular unitary ensemble (CUE) of random matrices. A semiclassical resummation formalism allows us to express the correlation functions as sums over pseudo-orbits. Using an extended version of the diagonal approximation on the pseudo-orbit sums, we derive the n-level correlation functions identical to the n x n determinantal correlation functions of the CUE.

  20. Continuing to Confront COPD International Patient Survey: Economic Impact of COPD in 12 Countries.

    Science.gov (United States)

    Foo, Jason; Landis, Sarah H; Maskell, Joe; Oh, Yeon-Mok; van der Molen, Thys; Han, MeiLan K; Mannino, David M; Ichinose, Masakazu; Punekar, Yogesh

    2016-01-01

    The Continuing to Confront COPD International Patient Survey estimated the prevalence and burden of COPD across 12 countries. Using data from this survey we evaluated the economic impact of COPD. This cross-sectional, population-based survey questioned 4,343 subjects aged 40 years and older, fulfilling a case definition of COPD based on self-reported physician diagnosis or symptomatology. Direct cost measures were based on exacerbations of COPD (treated and those requiring emergency department visits and/or hospitalisation), contacts with healthcare professionals, and COPD medications. Indirect costs were calculated from work loss values using the Work Productivity and Activity Impairment scale. Combined direct and indirect costs estimated the total societal costs per patient. The annual direct costs of COPD ranged from $504 (South Korea) to $9,981 (USA), with inpatient hospitalisations (5 countries) and home oxygen therapy (3 countries) being the key drivers of direct costs. The proportion of patients completely prevented from working due to their COPD ranged from 6% (Italy) to 52% (USA and UK) with 8 countries reporting this to be ≥20%. Total societal costs per patient varied widely from $1,721 (Russia) to $30,826 (USA) but a consistent pattern across countries showed greater costs among those with increased burden of COPD (symptoms, health status and more severe disease) and a greater number of comorbidities. The economic burden of COPD is considerable across countries, and requires targeted resources to optimise COPD management encompassing the control of symptoms, prevention of exacerbations and effective treatment of comorbidities. Strategies to allow COPD patients to remain in work are important for addressing the substantial wider societal costs.