WorldWideScience

Sample records for conformal proton reirradiation

  1. Proton Therapy for Reirradiation of Progressive or Recurrent Chordoma

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Mark W., E-mail: mmcdona2@iuhealth.org [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States); Indiana University Health Proton Therapy Center, Bloomington, Indiana (United States); Linton, Okechuckwu R. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States); Shah, Mitesh V. [Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, Indiana (United States)

    2013-12-01

    Purpose: To report the results in patients reirradiated with proton therapy for recurrent or progressive chordoma, with or without salvage surgery. Methods and Materials: A retrospective review of 16 consecutive patients treated from 2005 to 2012 was performed. All patients had received at least 1 prior course of radiation therapy to the same area, and all but 1 patient had at least 1 surgical resection for disease before receiving reirradiation. At the time of recurrence or progression, half of the patients underwent additional salvage surgery before receiving reirradiation. The median prior dose of radiation was 75.2 Gy (range, 40-79.2 Gy). Six patients had received prior proton therapy, and the remainder had received photon radiation. The median gross tumor volume at the time of reirradiation was 71 cm{sup 3} (range, 0-701 cm{sup 3}). Reirradiation occurred at a median interval of 37 months after prior radiation (range, 12-129 months), and the median dose of reirradiation was 75.6 Gy (relative biological effectiveness [RBE]) (range. 71.2-79.2 Gy [RBE]), given in standard daily fractionation (n=14) or hyperfractionation (n=2). Results: The median follow-up time was 23 months (range, 6-63 months); it was 26 months in patients alive at the last follow-up visit (range, 12-63 months). The 2-year estimate for local control was 85%, overall survival 80%, chordoma-specific survival 88%, and development of distant metastases 20%. Four patients have had local progression: 3 in-field and 1 marginal. Late toxicity included grade 3 bitemporal lobe radionecrosis in 1 patient that improved with hyperbaric oxygen, a grade 4 cerebrospinal fluid leak with meningitis in 1 patient, and a grade 4 ischemic brainstem stroke (out of radiation field) in 1 patient, with subsequent neurologic recovery. Conclusions: Full-dose proton reirradiation provided encouraging initial disease control and overall survival for patients with recurrent or progressive chordoma, although additional

  2. A Prospective Study of Proton Beam Reirradiation for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Annemarie, E-mail: Annemarie.fernandes@gmail.com [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Berman, Abigail T. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Mick, Rosemarie [Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Both, Stefan; Lelionis, Kristi; Lukens, John N.; Ben-Josef, Edgar; Metz, James M.; Plastaras, John P. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2016-05-01

    Purpose: Reirradiation to the esophagus carries a significant risk of complications. Proton therapy may offer an advantage in the reirradiation setting due to the lack of exit dose and potential sparing of previously radiated normal tissues. Methods and Materials: Between June 2010 and February 2014, 14 patients with a history of thoracic radiation and newly diagnosed or locally recurrent esophageal cancer began proton beam reirradiation on a prospective trial. Primary endpoints were feasibility and acute toxicity. Toxicity was graded according Common Toxicity Criteria version 4.0. Results: The median follow-up was 10 months (2-25 months) from the start of reirradiation. Eleven patients received concurrent chemotherapy. The median interval between radiation courses was 32 months (10-307 months). The median reirradiation prescription dose was 54.0 Gy (relative biological effectiveness [RBE]) (50.4-61.2 Gy[RBE]), and the median cumulative prescription dose was 109.8 Gy (76-129.4 Gy). Of the 10 patients who presented with symptomatic disease, 4 patients had complete resolution of symptoms, and 4 had diminished or stable symptoms. Two patients had progressive symptoms. The median time to symptom recurrence was 10 months. Maximum acute nonhematologic toxicity attributable to radiation was grade 2 (64%, N=9), 3 (29%, N=4), 4 (0%), and 5 (7%, N=1). The acute grade 5 toxicity was an esophagopleural fistula more likely related to tumor progression than radiation. Grade 3 nonhematologic acute toxicities included dysphagia, dehydration, and pneumonia. There was 1 late grade 5 esophageal ulcer more likely related to tumor progression than radiation. There were 4 late grade 3 toxicities: heart failure, esophageal stenosis requiring dilation, esophageal ulceration from tumor, and percutaneous endoscopic gastrostomy tube dependence. The median time to local failure was 10 months, and the median overall survival was 14 months. Conclusions: Our data demonstrate that

  3. The potential of proton beam radiation for palliation and reirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerk-Eriksson, Thomas [Sahlgrenska Univ. Hospital, Goeteborg (Sweden). Dept. of Oncology; Ask, Anders [Univ. Hospital, Lund (Sweden). Dept. of Oncology; Glimelius, Bengt [Karolinska Inst., Stockholm (Sweden). Dept. of Oncology and Pathology; Akademiska sjukhuset, Uppsala (Sweden). Dept. of Oncology, Radiology and Clinical Immunology

    2005-12-01

    A group of Swedish oncologists and hospital physicists have estimated the number of patients in Sweden suitable for proton beam therapy. The estimations have been based on current statistics of tumour incidence, number of patients potentially eligible for radiation treatment, scientific support from clinical trials and model dose planning studies and knowledge of the dose-response relations of different tumours and normal tissues. If an estimated 1% of the palliative treatments can be administered by protons with substantial benefits to the patient, almost 100 patients per year in Sweden would be eligible. It is further estimated that around 150 patients per year in need of reirradiation would benefit from radiation with protons compared to photons.

  4. Reirradiation of Head and Neck Cancers With Proton Therapy: Outcomes and Analyses.

    Science.gov (United States)

    Phan, Jack; Sio, Terence T; Nguyen, Theresa P; Takiar, Vinita; Gunn, G Brandon; Garden, Adam S; Rosenthal, David I; Fuller, Clifton D; Morrison, William H; Beadle, Beth; Ma, Dominic; Zafereo, Mark E; Hutcheson, Kate A; Kupferman, Michael E; William, William N; Frank, Steven J

    2016-09-01

    Reirradiation of head and neck (H&N) cancer is a clinical challenge. Proton radiation therapy (PRT) offers dosimetric advantages for normal tissue sparing and may benefit previously irradiated patients. Here, we report our initial experience with the use of PRT for H&N reirradiation, with focus on clinical outcomes and toxicity. We retrospectively reviewed the records of patients who received H&N reirradiation with PRT from April 2011 through June 2015. Patients reirradiated with palliative intent or without prior documentation of H&N radiation therapy were excluded. Radiation-related toxicities were recorded according to the Common Terminology Criteria for Adverse Events Version 4.0. The conditions of 60 patients were evaluated, with a median follow-up time of 13.6 months. Fifteen patients (25%) received passive scatter proton therapy (PSPT), and 45 (75%) received intensity modulated proton therapy (IMPT). Thirty-five patients (58%) received upfront surgery, and 44 (73%) received concurrent chemotherapy. The 1-year rates of locoregional failure-free survival, overall survival, progression-free survival, and distant metastasis-free survival were 68.4%, 83.8%, 60.1%, and 74.9%, respectively. Eighteen patients (30%) experienced acute grade 3 (G3) toxicity, and 13 (22%) required a feeding tube at the end of PRT. The 1-year rates of late G3 toxicity and feeding tube independence were 16.7% and 2.0%, respectively. Three patients may have died of reirradiation-related effects (1 acute and 2 late). Proton beam therapy can be a safe and effective curative reirradiation strategy, with acceptable rates of toxicity and durable disease control. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Reirradiation of Head and Neck Cancers With Proton Therapy: Outcomes and Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Phan, Jack [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Sio, Terence T. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona (United States); Nguyen, Theresa P. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Takiar, Vinita [Department of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio (United States); Gunn, G. Brandon; Garden, Adam S.; Rosenthal, David I.; Fuller, Clifton D.; Morrison, William H.; Beadle, Beth; Ma, Dominic [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zafereo, Mark E. [Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hutcheson, Kate A. [Department of Speech Pathology University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kupferman, Michael E. [Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); William, William N. [Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Frank, Steven J., E-mail: sjfrank@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-09-01

    Purpose: Reirradiation of head and neck (H&N) cancer is a clinical challenge. Proton radiation therapy (PRT) offers dosimetric advantages for normal tissue sparing and may benefit previously irradiated patients. Here, we report our initial experience with the use of PRT for H&N reirradiation, with focus on clinical outcomes and toxicity. Methods and Materials: We retrospectively reviewed the records of patients who received H&N reirradiation with PRT from April 2011 through June 2015. Patients reirradiated with palliative intent or without prior documentation of H&N radiation therapy were excluded. Radiation-related toxicities were recorded according to the Common Terminology Criteria for Adverse Events Version 4.0. Results: The conditions of 60 patients were evaluated, with a median follow-up time of 13.6 months. Fifteen patients (25%) received passive scatter proton therapy (PSPT), and 45 (75%) received intensity modulated proton therapy (IMPT). Thirty-five patients (58%) received upfront surgery, and 44 (73%) received concurrent chemotherapy. The 1-year rates of locoregional failure–free survival, overall survival, progression-free survival, and distant metastasis–free survival were 68.4%, 83.8%, 60.1%, and 74.9%, respectively. Eighteen patients (30%) experienced acute grade 3 (G3) toxicity, and 13 (22%) required a feeding tube at the end of PRT. The 1-year rates of late G3 toxicity and feeding tube independence were 16.7% and 2.0%, respectively. Three patients may have died of reirradiation-related effects (1 acute and 2 late). Conclusions: Proton beam therapy can be a safe and effective curative reirradiation strategy, with acceptable rates of toxicity and durable disease control.

  6. Dosimetric Factors and Toxicity in Highly Conformal Thoracic Reirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Binkley, Michael S.; Hiniker, Susan M.; Chaudhuri, Aadel [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Maxim, Peter G. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Diehn, Maximilian [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California (United States); Loo, Billy W., E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Shultz, David Benjamin, E-mail: David.Shultz@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)

    2016-03-15

    Purpose: We determined cumulative dose to critical structures, rates of toxicity, and outcomes following thoracic reirradiation. Methods and Materials: We retrospectively reviewed our institutional database for patients treated between 2008 and 2014, who received thoracic reirradiation with overlap of 25% prescribed isodose lines. Patients received courses of hyperfractionated (n=5), hypofractionated (n=5), conventionally fractionated (n=21), or stereotactic ablative radiation therapy (n=51). Doses to critical structures were converted to biologically effective dose, expressed as 2 Gy per fraction equivalent dose (EQD2; α/β = 2 for spinal cord; α/β = 3 for other critical structures). Results: We identified 82 courses (44 for retreatment) in 38 patients reirradiated at a median 16 months (range: 1-71 months) following initial RT. Median follow-up was 17 months (range: 3-57 months). Twelve- and 24-month overall survival rates were 79.6% and 57.3%, respectively. Eighteen patients received reirradiation for locoregionally recurrent non-small cell lung cancer with 12-month rates of local failure and regional recurrence and distant metastases rates of 13.5%, 8.1%, and 15.6%, respectively. Critical structures receiving ≥75 Gy EQD2 included spinal cord (1 cm{sup 3}; n=1), esophagus (1 cm{sup 3}; n=10), trachea (1 cm{sup 3}; n=11), heart (1 cm{sup 3}; n=9), aorta (1 cm{sup 3}; n=16), superior vena cava (1 cm{sup 3}; n=12), brachial plexus (0.2 cm{sup 3}; n=2), vagus nerve (0.2 cm{sup 3}; n=7), sympathetic trunk (0.2 cm{sup 3}; n=4), chest wall (30 cm{sup 3}; n=12), and proximal bronchial tree (1 cm{sup 3}; n=17). Cumulative dose-volume (D cm{sup 3}) toxicity following reirradiation data included esophagitis grade ≥2 (n=3, D1 cm{sup 3} range: 41.0-100.6 Gy), chest wall grade ≥2 (n=4; D30 cm{sup 3} range: 35.0-117.2 Gy), lung grade 2 (n=7; V20{sub combined-lung} range: 4.7%-21.7%), vocal cord paralysis (n=2; vagus nerve D0.2 cm{sup 3

  7. Reirradiation of Recurrent and Second Primary Head and Neck Cancer With Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Mark W., E-mail: mark.mcdonald@emory.edu [Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia (United States); Zolali-Meybodi, Omid; Lehnert, Stephen J. [Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana (United States); Estabrook, Neil C. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States); Liu, Yuan [Department of Biostatistics and Bioinformatics, Rollins School of Public Health of Emory University, Atlanta, Georgia (United States); Cohen-Gadol, Aaron A. [Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana (United States); Moore, Michael G. [Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana (United States)

    2016-11-15

    Purpose: To report the clinical outcomes of head and neck reirradiation with proton therapy. Methods and Materials: From 2004 to 2014, 61 patients received curative-intent proton reirradiation, primarily for disease involving skull base structures, at a median of 23 months from the most recent previous course of radiation. Most had squamous cell (52.5%) or adenoid cystic (16.4%) carcinoma. Salvage surgery before reirradiation was undertaken in 47.5%. Gross residual disease was present in 70.5%. For patients with microscopic residual disease, the median dose of reirradiation was 66 Gy (relative biological effectiveness), and for gross disease was 70.2 Gy (relative biological effectiveness). Concurrent chemotherapy was given in 27.9%. Results: The median follow-up time was 15.2 months and was 28.7 months for patients remaining alive. The 2-year overall survival estimate was 32.7%, and the median overall survival was 16.5 months. The 2-year cumulative incidence of local failure with death as a competing risk was 19.7%; regional nodal failure, 3.3%; and distant metastases, 38.3%. On multivariable analysis, Karnofsky performance status ≤70%, the presence of a gastrostomy tube before reirradiation, and an increasing number of previous courses of radiation therapy were associated with a greater hazard ratio for death. A cutaneous primary tumor, gross residual disease, increasing gross tumor volume, and a lower radiation dose were associated with a greater hazard ratio for local failure. Grade ≥3 toxicities were seen in 14.7% acutely and 24.6% in the late setting, including 3 treatment-related deaths. Conclusions: Reirradiation with proton therapy, with or without chemotherapy, provided reasonable locoregional disease control, toxicity profiles, and survival outcomes for an advanced-stage and heavily pretreated population. Additional data are needed to identify which patients are most likely to benefit from aggressive efforts to achieve local disease control and

  8. Re-irradiation using proton beam therapy combined with weekly intra-arterial chemotherapy for recurrent oral cancer.

    Science.gov (United States)

    Hayashi, Yuichiro; Nakamura, Tatsuya; Mitsudo, Kenji; Kimura, Kanako; Yamaguchi, Hisashi; Ono, Takashi; Azami, Yusuke; Takayama, Kanako; Hirose, Katsumi; Yabuuchi, Tomonori; Suzuki, Motohisa; Hatayama, Yoshiomi; Kikuchi, Yasuhiro; Wada, Hitoshi; Fuwa, Nobukazu; Hareyama, Masato; Tohnai, Iwai

    2017-10-01

    The purpose of this study was to clarify the efficacy and toxicities of re-irradiation using proton beam therapy combined with weekly intra-arterial chemotherapy for recurrent oral cancer. Between October 2009 and July 2014, 34 patients who had recurrent oral cancer were treated by proton beam therapy combined with intra-arterial infusion chemotherapy at the Southern Tohoku Proton Therapy Center, Japan. For all patients, the median follow-up was 25 months (range, 3-77 months). After treatment, 22 patients (65%) achieved a complete response, and 12 patients (35%) achieved a partial response at the primary tumor site. One-year and 2-year overall survival (OS) rates were 62% and 42%, respectively. One-year and 2-year LC rates were 77% and 60%, respectively. No treatment-related deaths were observed during the treatment and follow-up periods. Re-irradiation using proton beam therapy combined with weekly intra-arterial chemotherapy improved OS and local control rates compared with other treatment modalities and could become a new treatment modality for patients with recurrent oral cancer. © 2016 John Wiley & Sons Australia, Ltd.

  9. Proton Beam Reirradiation for Recurrent Head and Neck Cancer: Multi-institutional Report on Feasibility and Early Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Romesser, Paul B. [Memorial Sloan Kettering Cancer Center, Radiation Oncology, New York, New York (United States); Cahlon, Oren [Memorial Sloan Kettering Cancer Center, Radiation Oncology, New York, New York (United States); ProCure Proton Therapy Center, Somerset, New Jersey (United States); Scher, Eli D. [Memorial Sloan Kettering Cancer Center, Radiation Oncology, New York, New York (United States); Hug, Eugen B.; Sine, Kevin [ProCure Proton Therapy Center, Somerset, New Jersey (United States); DeSelm, Carl [Memorial Sloan Kettering Cancer Center, Radiation Oncology, New York, New York (United States); Fox, Jana L. [Montefiore Medical Center, Radiation Oncology, Bronx, New York (United States); Mah, Dennis [ProCure Proton Therapy Center, Somerset, New Jersey (United States); Garg, Madhur K. [Montefiore Medical Center, Radiation Oncology, Bronx, New York (United States); Han-Chih Chang, John [Northwestern Medicine Chicago Proton Center, Warrenville, Illinois (United States); Lee, Nancy Y., E-mail: leen2@mskcc.org [Memorial Sloan Kettering Cancer Center, Radiation Oncology, New York, New York (United States)

    2016-05-01

    Purpose: Reirradiation therapy (re-RT) is the only potentially curative treatment option for patients with locally recurrent head and neck cancer (HNC). Given the significant morbidity with head and neck re-RT, interest in proton beam radiation therapy (PBRT) has increased. We report the first multi-institutional clinical experience using curative-intent PBRT for re-RT in recurrent HNC. Methods and Materials: A retrospective analysis of ongoing prospective data registries from 2 hybrid community practice and academic proton centers was conducted. Patients with recurrent HNC who underwent at least 1 prior course of definitive-intent external beam radiation therapy (RT) were included. Acute and late toxicities were assessed with the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0 and the Radiation Therapy Oncology Group late radiation morbidity scoring system, respectively. The cumulative incidence of locoregional failure was calculated with death as a competing risk. The actuarial 12-month freedom–from–distant metastasis and overall survival rates were calculated with the Kaplan-Meier method. Results: Ninety-two consecutive patients were treated with curative-intent re-RT with PBRT between 2011 and 2014. Median follow-up among surviving patients was 13.3 months and among all patients was 10.4 months. The median time between last RT and PBRT was 34.4 months. There were 76 patients with 1 prior RT course and 16 with 2 or more courses. The median PBRT dose was 60.6 Gy (relative biological effectiveness, [RBE]). Eighty-five percent of patients underwent prior HNC RT for an oropharynx primary, and 39% underwent salvage surgery before re-RT. The cumulative incidence of locoregional failure at 12 months, with death as a competing risk, was 25.1%. The actuarial 12-month freedom–from–distant metastasis and overall survival rates were 84.0% and 65.2%, respectively. Acute toxicities of grade 3 or greater included mucositis (9

  10. Definitive Reirradiation for Locoregionally Recurrent Non-Small Cell Lung Cancer With Proton Beam Therapy or Intensity Modulated Radiation Therapy: Predictors of High-Grade Toxicity and Survival Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    McAvoy, Sarah; Ciura, Katherine; Wei, Caimiao; Rineer, Justin; Liao, Zhongxing; Chang, Joe Y.; Palmer, Matthew B.; Cox, James D.; Komaki, Ritsuko; Gomez, Daniel R., E-mail: DGomez@mdanderson.org

    2014-11-15

    Purpose: Intrathoracic recurrence of non-small cell lung cancer (NSCLC) after initial treatment remains a dominant cause of death. We report our experience using proton beam therapy and intensity modulated radiation therapy for reirradiation in such cases, focusing on patterns of failure, criteria for patient selection, and predictors of toxicity. Methods and Materials: A total of 102 patients underwent reirradiation for intrathoracic recurrent NSCLC at a single institution. All doses were recalculated to an equivalent dose in 2-Gy fractions (EQD2). All patients had received radiation therapy for NSCLC (median initial dose of 70 EQD2 Gy), with median interval to reirradiation of 17 months and median reirradiation dose of 60.48 EQD2 Gy. Median follow-up time was 6.5 months (range, 0-72 months). Results: Ninety-nine patients (97%) completed reirradiation. Median local failure-free survival, distant metastasis-free survival (DMFS), and overall survival times were 11.43 months (range, 8.6-22.66 months), 11.43 months (range, 6.83-23.84 months), and 14.71 (range, 10.34-20.56 months), respectively. Toxicity was acceptable, with rates of grade ≥3 esophageal toxicity of 7% and grade ≥3 pulmonary toxicity of 10%. Of the patients who developed local failure after reirradiation, 88% had failure in either the original or the reirradiation field. Poor local control was associated with T4 disease, squamous histology, and Eastern Cooperative Oncology Group performance status score >1. Concurrent chemotherapy improved DMFS, but T4 disease was associated with poor DMFS. Higher T status, Eastern Cooperative Oncology Group performance status ≥1, squamous histology, and larger reirradiation target volumes led to worse overall survival; receipt of concurrent chemotherapy and higher EQD2 were associated with improved OS. Conclusions: Intensity modulated radiation therapy and proton beam therapy are options for treating recurrent non-small cell lung cancer. However, rates of

  11. Isomers and conformational barriers of gas phase nicotine, nornicotine and their protonated forms

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tomoki; Farone, William A.; Xantheas, Sotiris S.

    2014-07-17

    We report extensive conformational searches of the neutral nicotine, nornicotine and their protonated analogs that are based on ab-initio second order Møller-Plesset perturbation (MP2) electronic structure calculations. Initial searches were performed with the 6-31G(d,p) and the energetics of the most important structures were further refined from geometry optimizations with the aug-cc-pVTZ basis set. Based on the calculated free energies at T=298 K for the gas phase molecules, neutral nicotine has two dominant trans conformers, whereas neutral nornicotine is a mixture of several conformers. For nicotine, the protonation on both the pyridine and the pyrrolidine sites is energetically competitive, whereas nornicotine prefers protonation on the pyridine nitrogen. The protonated form of nicotine is mainly a mixture of two pyridine-protonated trans conformers and two pyrrolidine-protonated trans conformers, whereas the protonated form of nornicotine is a mixture of four pyridine-protonated trans conformers. Nornicotine is conformationally more flexible than nicotine, however it is less protonated at the biologically important pyrrolidine nitrogen site. The lowest energy isomers for each case were found to interconvert via low (< 6 kcal/mol) rotational barriers around the pyridine-pyrrolidine bond.

  12. Conformal proton radiation therapy for pediatric low-grade astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Hug, E.B. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Radiation Medicine; Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Pediatrics and Dept. of Pathology; Darthmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States). Section of Radiation Oncology; Muenter, M.W.; Archambeau, J.O.; DeVries, A.; Loredo, L.N.; Grove, R.I.; Slater, J.D. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Radiation Medicine; Liwnicz, B. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Pathology

    2002-01-01

    Background: To evaluate the safety and efficacy of proton radiation therapy (PRT) for intracranial low-grade astrocytomas, the authors analyzed the first 27 pediatric patients treated at Loma Linda University Medical Center (LLUMC). Patients and Method: Between September 1991 and August 1997, 27 patients (13 female, 14 male) underwent fractionated proton radiation therapy for progressive or recurrent low-grade astrocytoma. Age at time of treatment ranged from 2 to 18 years (mean: 8.7 years). Tumors were located centrally (diencephatic) in 15 patients, in the cerebral and cerebellar hemispheres in seven patients, and in the brainstem in five patients. 25/27 patients (92%) were treated for progressive, unresectable, or residual disease following subtotal resection. Tissue diagnosis was available in 23/27 patients (85%). Four patients with optic pathway tumors were treated without histologic confirmation. Target doses between 50.4 and 63.0 CGE (cobalt gray equivalent, mean: 55.2 CGE) were prescribed at 1.8 CGE per fraction, five treatments per week. Results: At a mean follow-up period of 3.3 years (0.6-6.8 years), 6/27 patients experienced local failure (all located within the irradiated field), and 4/27 patients had died. By anatomic site these data translated into rates of local control and survival of 87% (13/15 patients) and 93% (14/15 patients) for central tumors, 71% (5/7 patients) and 86% (6/7 patients) for hemispheric tumors, and 60% (3/5 patients) and 60% (3/5 patients) for tumors located in the brainstem. Proton radiation therapy was generally well tolerated. All children with local control maintained their performance status. One child with associated neurofibromatosis, Type 1, developed Moyamoya disease. All six patients with optic pathway tumors and useful vision maintained or improved their visual status. Conclusions: This report on pediatric low-grade astrocytomas confirms proton radiation therapy as a safe and efficacious 3-D conformal treatment

  13. Emulating proton-induced conformational changes in the vesicular monoamine transporter VMAT2 by mutagenesis.

    Science.gov (United States)

    Yaffe, Dana; Vergara-Jaque, Ariela; Forrest, Lucy R; Schuldiner, Shimon

    2016-11-22

    Neurotransporters located in synaptic vesicles are essential for communication between nerve cells in a process mediated by neurotransmitters. Vesicular monoamine transporter (VMAT), a member of the largest superfamily of transporters, mediates transport of monoamines to synaptic vesicles and storage organelles in a process that involves exchange of two H(+) per substrate. VMAT transport is inhibited by the competitive inhibitor reserpine, a second-line agent to treat hypertension, and by the noncompetitive inhibitor tetrabenazine, presently in use for symptomatic treatment of hyperkinetic disorders. During the transport cycle, VMAT is expected to occupy at least three different conformations: cytoplasm-facing, occluded, and lumen-facing. The lumen- to cytoplasm-facing transition, facilitated by protonation of at least one of the essential membrane-embedded carboxyls, generates a binding site for reserpine. Here we have identified residues in the cytoplasmic gate and show that mutations that disrupt the interactions in this gate also shift the equilibrium toward the cytoplasm-facing conformation, emulating the effect of protonation. These experiments provide significant insight into the role of proton translocation in the conformational dynamics of a mammalian H(+)-coupled antiporter, and also identify key aspects of the mode of action and binding of two potent inhibitors of VMAT2: reserpine binds the cytoplasm-facing conformation, and tetrabenazine binds the lumen-facing conformation.

  14. A proton-coupled dynamic conformational switch in the HIV-1 dimerization initiation site kissing complex.

    Science.gov (United States)

    Mihailescu, Mihaela-Rita; Marino, John P

    2004-02-03

    In HIV type 1 (HIV-1), the dimerization initiation site (DIS) is the sequence primarily responsible for initiating the noncovalent linkage of two homologous strands of genomic RNA during viral assembly. The DIS loop contains an autocomplementary hexanucleotide sequence and forms a symmetric homodimer through a loop-loop kissing interaction. In a structural rearrangement catalyzed by the HIV-1 nucleocapsid protein (NCp7) and suggested to be associated with maturation of the budded viral particle, the DIS converts from a metastable kissing dimer to an extended duplex. Here, we demonstrate that the DIS kissing dimer displays localized conformational dynamics that result from the specific protonation of the N1 base nitrogen of the DIS loop residue A272 at near-physiological pH. The rate of NCp7-catalyzed maturation of the DIS kissing dimer is also shown to directly correlate with the observed proton-coupled conformational dynamics, where NCp7 is found to convert the dynamic A272 protonated state with a faster rate. Taken together, these results reveal a previously undescribed role for base protonation in modulating local RNA structure and demonstrate a mechanism for promoting the chaperone-mediated structural rearrangement of a kinetically trapped RNA conformational state.

  15. Redox-Dependent Conformational Changes in Cytochrome c Oxidase Suggest a Gating Mechanism for Proton Uptake

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ling; Liu, Jian; Mills, Denise A.; Proshlyakov, Denis A.; Hiser, Carrie; Ferguson-Miller, Shelagh; (MSU)

    2009-08-05

    A role for conformational change in the coupling mechanism of cytochrome c oxidase is the subject of controversy. Relatively small conformational changes have been reported in comparisons of reduced and oxidized crystal structures of bovine oxidase but none in bacterial oxidases. Comparing the X-ray crystal structures of the reduced (at 2.15 {angstrom} resolution) and oxidized forms of cytochrome c oxidase from Rhodobacter sphaeroides, we observe a displacement of heme a3 involving both the porphyrin ring and the hydroxyl farnesyl tail, accompanied by protein movements in nearby regions, including the mid part of helix VIII of subunit I which harbors key residues of the K proton uptake path, K362 and T359. The conformational changes in the reduced form are reversible upon reoxidation. They result in an opening of the top of the K pathway and more ordered waters being resolved in that region, suggesting an access path for protons into the active site. In all high-resolution structures of oxidized R. sphaeroides cytochrome c oxidase, a water molecule is observed in the hydrophobic region above the top of the D path, strategically positioned to facilitate the connection of residue E286 of subunit I to the active site or to the proton pumping exit path. In the reduced and reduced plus cyanide structures, this water molecule disappears, implying disruption of proton conduction from the D path under conditions when the K path is open, thus providing a mechanism for alternating access to the active site.

  16. N3 and O2 Protonated Conformers of the Cytosine Mononucleotides Coexist in the Gas Phase

    Science.gov (United States)

    Wu, R. R.; Hamlow, L. A.; He, C. C.; Nei, Y.-w.; Berden, G.; Oomens, J.; Rodgers, M. T.

    2017-08-01

    The gas-phase conformations of the protonated forms of the DNA and RNA cytosine mononucleotides, [pdCyd+H]+ and [pCyd+H]+, are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy over the IR fingerprint and hydrogen-stretching regions complemented by electronic structure calculations. The low-energy conformations of [pdCyd+H]+ and [pCyd+H]+ and their relative stabilities are computed at the B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) and MP2(full)/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) levels of theory. Comparisons of the measured IRMPD action spectra and B3LYP/6-311+G(d,p) linear IR spectra computed for the low-energy conformers allow the conformers present in the experiments to be determined. Similar to that found in previous IRMPD action spectroscopy studies of the protonated forms of the cytosine nucleosides, [dCyd+H]+ and [Cyd+H]+, both N3 and O2 protonated cytosine mononucleotides exhibiting an anti orientation of cytosine are found to coexist in the experimental population. The 2'-hydroxyl substituent does not significantly influence the most stable conformations of [pCyd+H]+ versus those of [pdCyd+H]+, as the IRMPD spectral profiles of [pdCyd+H]+ and [pCyd+H]+ are similar. However, the presence of the 2'-hydroxyl substituent does influence the relative intensities of the measured IRMPD bands. Comparisons to IRMPD spectroscopy studies of the deprotonated forms of the cytosine mononucleotides, [pdCyd-H]- and [pCyd-H]-, provide insight into the effects of protonation versus deprotonation on the conformational features of the nucleobase and sugar moieties. Likewise, comparisons to results of IRMPD spectroscopy studies of the protonated cytosine nucleosides provide insight into the influence of the phosphate moiety on structure. Comparison with previous ion mobility results shows the superiority of IRMPD spectroscopy for distinguishing various protonation sites.

  17. Reirradiation of recurrent breast cancer with and without concurrent chemotherapy

    Directory of Open Access Journals (Sweden)

    Kretschmer Matthias

    2008-09-01

    Full Text Available Abstract Background Treatment options for loco-regional recurrent breast cancer after previous irradiation are limited. The efficacy of chemotherapy might be hampered because of impaired tissue perfusion in preirradiated tissue. Thus, mastectomy or local excision and reconstructive surgery are the preferred treatments. However, in recent years evidence accumulates that a second breast conserving approach with reirradiation as part of the treatment might be feasible and safe and, furthermore, reirradiation might be an option for palliation. Here we report on the experience of a single community centre in reirradiation of recurrent breast cancer. Methods The report is based on 29 patients treated with reirradiation. All data were prospectively collected. The median age was 63 years (range 35 to 82 yrs. The interval between initial diagnosis and diagnosis before start of reirradiation was 11.6 months to 295.5 months. The mean total dose (initial dose and reirradiation dose was 106.2 Gy (range 80.4 to 126 Gy and the mean BED3 Gy 168,5 Gy (range 130,6 to 201,6. The mean interval between initial radiotherapy and reirradiation was 92.9 months (range 8.7 to 290.1. Inoperable or incompletely resected patients were offered concurrent chemotherapy with either 5-FU or capecitabine. All patients received 3D-conformal radiotherapy with 1.6 to 2.5 Gy/fraction five times weekly. The treatment volume comprised all visible lesions or lesions detectable on CT/MRI/FDG-PET/CT or the tumour bed or recurrent tumour. Results The local progression-free survival of all patients at one and two years was 81% and 63%. Patients who had no surgery of the recurrence (16/29 had local progression-free survival at one and two years of 72% and 25% with a median progression-free survival time of 17 months. Partial remission and good symptom relief was achieved in 56% (9/16 or complete response of symptoms and/or tumour in 44% (7/16. Patients who had no distant metastases and had at

  18. Amantadine-induced conformational and dynamical changes of the influenza M2 transmembrane proton channel

    Science.gov (United States)

    Cady, Sarah D.; Hong, Mei

    2008-01-01

    The M2 protein of influenza A virus forms a transmembrane proton channel important for viral infection and replication. Amantadine blocks this channel, thus inhibiting viral replication. Elucidating the high-resolution structure of the M2 protein and its change upon amantadine binding is crucial for designing antiviral drugs to combat the growing resistance of influenza A viruses against amantadine. We used magic-angle-spinning solid-state NMR to determine the conformation and dynamics of the transmembrane domain of the protein M2TMP in the apo- and amantadine-bound states in lipid bilayers. 13C chemical shifts and torsion angles of the protein in 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine (DLPC) bilayers indicate that M2TMP is α-helical in both states, but the average conformation differs subtly, especially at the G34–I35 linkage and V27 side chain. In the liquid-crystalline membrane, the complexed M2TMP shows dramatically narrower lines than the apo peptide. Analysis of the homogeneous and inhomogeneous line widths indicates that the apo-M2TMP undergoes significant microsecond-time scale motion, and amantadine binding alters the motional rates, causing line-narrowing. Amantadine also reduces the conformational heterogeneity of specific residues, including the G34/I35 pair and several side chains. Finally, amantadine causes the helical segment N-terminal to G34 to increase its tilt angle by 3°, and the G34–I35 torsion angles cause a kink of 5° in the amantadine-bound helix. These data indicate that amantadine affects the M2 proton channel mainly by changing the distribution and exchange rates among multiple low-energy conformations and only subtly alters the average conformation and orientation. Amantadine-resistant mutations thus may arise from binding-incompetent changes in the conformational equilibrium. PMID:18230730

  19. Protons stabilize the closed conformation of gain-of-function mutants of the TRPV1 channel.

    Science.gov (United States)

    Boukalova, Stepana; Teisinger, Jan; Vlachova, Viktorie

    2013-03-01

    The vanilloid transient receptor potential channel TRPV1 is a molecular integrator of noxious stimuli, including capsaicin, heat and protons. Despite clear similarities between the overall architecture of TRPV1 and voltage-dependent potassium (Kv) channels, the extent of conservation in the molecular logic for gating is unknown. In Kv channels, a small contact surface between S1 and the pore-helix is required for channel functioning. To explore the function of S1 in TRPV1, we used tryptophan-scanning mutagenesis and characterized the responses to capsaicin and protons. Wild-type-like currents were generated in 9 out of 17 mutants; three mutants (M445W, A452W, R455W) were non-functional. The conservative mutation R455K in the extracellular extent of S1 slowed down capsaicin-induced activation and prevented normal channel closure. This mutant was neither activated nor potentiated by protons, on the contrary, protons promoted a rapid deactivation of its currents. Similar phenotypes were found in two other gain-of-function mutants and also in the pore-helix mutant T633A, known to uncouple proton activation. We propose that the S1 domain contains a functionally important region that may be specifically involved in TRPV1 channel gating, and thus be important for the energetic coupling between S1-S4 sensor activation and gate opening. Analogous to Kv channels, the S1-pore interface might serve to stabilize conformations associated with TRPV1 channel gating. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Prospective randomized clinical studies involving reirradiation. Lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Nieder, Carsten [Nordland Hospital, Department of Oncology and Palliative Medicine, Bodoe (Norway); University of Tromsoe, Department of Clinical Medicine, Faculty of Health Sciences, Tromsoe (Norway); Langendijk, Johannes A. [University Medical Centre Groningen, Department of Radiation Oncology, Groningen (Netherlands); Guckenberger, Matthias [University Hospital Zuerich, Department of Radiation Oncology, Zuerich (Switzerland); Grosu, Anca L. [University Hospital Freiburg, Department of Radiation Oncology, Freiburg (Germany)

    2016-10-15

    Reirradiation is a potentially useful option for many patients with recurrent cancer. The purpose of this study was to review all recently published randomized trials in order to identify methodological strengths and weaknesses, comment on the results, clinical implications and open questions, and give advice for the planning of future trials. Systematic review of trials published between 2000 and 2015 (databases searched were PubMed, Scopus and Web of Science). We reviewed 9 trials, most of which addressed reirradiation of head and neck tumours. The median number of patients was 69. Trial design, primary endpoint and statistical hypotheses varied widely. The results contribute mainly to decision making for reirradiation of nasopharynx cancer and bone metastases. The trials with relatively long median follow-up confirm that serious toxicity remains a concern after high cumulative total doses. Multi-institutional collaboration is encouraged to complete sufficiently large trials. Despite a paucity of large randomized studies, reirradiation has been adopted in different clinical scenarios by many institutions. Typically, the patients have been assessed by multidisciplinary tumour boards and advanced technologies are used to create highly conformal dose distributions. (orig.) [German] Eine Rebestrahlung kann fuer viele Patienten mit rezidivierenden Malignomen eine nuetzliche Option bieten. Der Zweck dieser Studie bestand darin, alle in der juengeren Vergangenheit publizierten randomisierten Studien zu beurteilen, da deren methodische Staerken und Schwaechen, Ergebnisse und resultierende Implikationen bzw. offene Fragen die Planung kuenftiger Studien wesentlich beeinflussen koennen. Systematische Uebersicht aller zwischen 2000 und 2015 veroeffentlichten Studien (Literatursuche ueber PubMed, Scopus und Web of Science). Ausgewertet wurden 9 Studien, in die vor allem Patienten mit Kopf-Hals-Tumoren eingeschlossen waren. Im Median hatten 69 Patienten teilgenommen. Das

  1. Protonation-induced stereoisomerism in nicotine: conformational studies using classical (AMBER) and ab initio (Car-Parrinello) molecular dynamics.

    Science.gov (United States)

    Hammond, Philip S; Wu, Yudong; Harris, Rebecca; Minehardt, Todd J; Car, Roberto; Schmitt, Jeffrey D

    2005-01-01

    A variety of biologically active small molecules contain prochiral tertiary amines, which become chiral centers upon protonation. S-nicotine, the prototypical nicotinic acetylcholine receptor agonist, produces two diastereomers on protonation. Results, using both classical (AMBER) and ab initio (Car-Parrinello) molecular dynamical studies, illustrate the significant differences in conformational space explored by each diastereomer. As is expected, this phenomenon has an appreciable effect on nicotine's energy hypersurface and leads to differentiation in molecular shape and divergent sampling. Thus, protonation induced isomerism can produce dynamic effects that may influence the behavior of a molecule in its interaction with a target protein. We also examine differences in the conformational dynamics for each diastereomer as quantified by both molecular dynamics methods.

  2. Reirradiation of cancer patients; Gentagelse af straalebehandling hos cancerpatienter

    Energy Technology Data Exchange (ETDEWEB)

    Sengeloev, Lisa

    1998-08-01

    Radiotherapy of a recurrent tumour in a site previously irradiated with a full course of radiotherapy is seldom feasible due to extensive toxicity of the cumulated dose. Curative reirradiation may be possible for very selected patients with head and neck cancer and gynaecological tumour. Patients with long recurrence-free intervals and small localized tumours are most likely to benefit from the treatment. Palliative reirradiation of patients with metastatic disease offers good symptom control in the majority of patients with recurrent symptoms from bone metastases. Some patients with brain metastases, spinal cord compression and symptoms from lung tumours may benefit from reirradiation. The general condition of the patient and the effect of the first treatment influence the effect of the second treatment. The side effects of reirradiation are not well documented. It is not possible to give general guidelines for reirradiation. Every reirradiation has to be individualized with respect to diagnosis, specifications of prior treatment, symptoms and prognosis. (au) 40 refs.

  3. Benefit of particle therapy in re-irradiation of head and neck patients. Results of a multicentric in silico ROCOCO trial

    NARCIS (Netherlands)

    Eekers, D.B.; Roelofs, E.; Jelen, U.; Kirk, M.; Granzier, M.; Ammazzalorso, F.; Ahn, P.H.; Janssens, G.O.; Hoebers, F.J.; Friedmann, T.; Solberg, T.; Walsh, S.; Troost, E.G.; Kaanders, J.H.A.M.; Lambin, P.

    2016-01-01

    BACKGROUND AND PURPOSE: In this multicentric in silico trial we compared photon, proton, and carbon-ion radiotherapy plans for re-irradiation of patients with squamous cell carcinoma of the head and neck (HNSCC) regarding dose to tumour and doses to surrounding organs at risk (OARs). MATERIAL AND

  4. Conformational Dynamics and Binding Free Energies of Inhibitors of BACE-1: From the Perspective of Protonation Equilibria.

    Directory of Open Access Journals (Sweden)

    M Olivia Kim

    2015-10-01

    Full Text Available BACE-1 is the β-secretase responsible for the initial amyloidogenesis in Alzheimer's disease, catalyzing hydrolytic cleavage of substrate in a pH-sensitive manner. The catalytic mechanism of BACE-1 requires water-mediated proton transfer from aspartyl dyad to the substrate, as well as structural flexibility in the flap region. Thus, the coupling of protonation and conformational equilibria is essential to a full in silico characterization of BACE-1. In this work, we perform constant pH replica exchange molecular dynamics simulations on both apo BACE-1 and five BACE-1-inhibitor complexes to examine the effect of pH on dynamics and inhibitor binding properties of BACE-1. In our simulations, we find that solution pH controls the conformational flexibility of apo BACE-1, whereas bound inhibitors largely limit the motions of the holo enzyme at all levels of pH. The microscopic pKa values of titratable residues in BACE-1 including its aspartyl dyad are computed and compared between apo and inhibitor-bound states. Changes in protonation between the apo and holo forms suggest a thermodynamic linkage between binding of inhibitors and protons localized at the dyad. Utilizing our recently developed computational protocol applying the binding polynomial formalism to the constant pH molecular dynamics (CpHMD framework, we are able to obtain the pH-dependent binding free energy profiles for various BACE-1-inhibitor complexes. Our results highlight the importance of correctly addressing the binding-induced protonation changes in protein-ligand systems where binding accompanies a net proton transfer. This work comprises the first application of our CpHMD-based free energy computational method to protein-ligand complexes and illustrates the value of CpHMD as an all-purpose tool for obtaining pH-dependent dynamics and binding free energies of biological systems.

  5. Comparison of Three-Dimensional (3D) Conformal Proton Radiotherapy (RT), 3D Conformal Photon RT, and Intensity-Modulated RT for Retroperitoneal and Intra-Abdominal Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Erika L. [Department of Radiation Oncology, University of Florida, Gainesville, Florida (United States); Indelicato, Daniel J., E-mail: dindelicato@floridaproton.org [Department of Radiation Oncology, University of Florida, Gainesville, Florida (United States); University of Florida Proton Therapy Institute, Jacksonville, Florida (United States); Louis, Debbie; Flampouri, Stella; Li, Zuofeng [University of Florida Proton Therapy Institute, Jacksonville, Florida (United States); Morris, Christopher G.; Paryani, Nitesh [Department of Radiation Oncology, University of Florida, Gainesville, Florida (United States); Slopsema, Roelf [University of Florida Proton Therapy Institute, Jacksonville, Florida (United States)

    2012-08-01

    Purpose: To compare three-dimensional conformal proton radiotherapy (3DCPT), intensity-modulated photon radiotherapy (IMRT), and 3D conformal photon radiotherapy (3DCRT) to predict the optimal RT technique for retroperitoneal sarcomas. Methods and Materials: 3DCRT, IMRT, and 3DCPT plans were created for treating eight patients with retroperitoneal or intra-abdominal sarcomas. The clinical target volume (CTV) included the gross tumor plus a 2-cm margin, limited by bone and intact fascial planes. For photon plans, the planning target volume (PTV) included a uniform expansion of 5 mm. For the proton plans, the PTV was nonuniform and beam-specific. The prescription dose was 50.4 Gy/Cobalt gray equivalent CGE. Plans were normalized so that >95% of the CTV received 100% of the dose. Results: The CTV was covered adequately by all techniques. The median conformity index was 0.69 for 3DCPT, 0.75 for IMRT, and 0.51 for 3DCRT. The median inhomogeneity coefficient was 0.062 for 3DCPT, 0.066 for IMRT, and 0.073 for 3DCRT. The bowel median volume receiving 15 Gy (V15) was 16.4% for 3DCPT, 52.2% for IMRT, and 66.1% for 3DCRT. The bowel median V45 was 6.3% for 3DCPT, 4.7% for IMRT, and 15.6% for 3DCRT. The median ipsilateral mean kidney dose was 22.5 CGE for 3DCPT, 34.1 Gy for IMRT, and 37.8 Gy for 3DCRT. The median contralateral mean kidney dose was 0 CGE for 3DCPT, 6.4 Gy for IMRT, and 11 Gy for 3DCRT. The median contralateral kidney V5 was 0% for 3DCPT, 49.9% for IMRT, and 99.7% for 3DCRT. Regardless of technique, the median mean liver dose was <30 Gy, and the median cord V50 was 0%. The median integral dose was 126 J for 3DCPT, 400 J for IMRT, and 432 J for 3DCRT. Conclusions: IMRT and 3DCPT result in plans that are more conformal and homogenous than 3DCRT. Based on Quantitative Analysis of Normal Tissue Effects in Clinic benchmarks, the dosimetric advantage of proton therapy may be less gastrointestinal and genitourinary toxicity.

  6. Benefit of particle therapy in re-irradiation of head and neck patients. Results of a multicentric in silico ROCOCO trial.

    Science.gov (United States)

    Eekers, Daniëlle B P; Roelofs, Erik; Jelen, Urszula; Kirk, Maura; Granzier, Marlies; Ammazzalorso, Filippo; Ahn, Peter H; Janssens, Geert O R J; Hoebers, Frank J P; Friedmann, Tobias; Solberg, Timothy; Walsh, Sean; Troost, Esther G C; Kaanders, Johannes H A M; Lambin, Philippe

    2016-12-01

    In this multicentric in silico trial we compared photon, proton, and carbon-ion radiotherapy plans for re-irradiation of patients with squamous cell carcinoma of the head and neck (HNSCC) regarding dose to tumour and doses to surrounding organs at risk (OARs). Twenty-five HNSCC patients with a second new or recurrent cancer after previous irradiation (70Gy) were included. Intensity-modulated proton therapy (IMPT) and ion therapy (IMIT) re-irradiation plans to a second subsequent dose of 70Gy were compared to photon therapy delivered with volumetric modulated arc therapy (VMAT). When comparing IMIT and IMPT to VMAT, the mean dose to all investigated 22 OARs was significantly reduced for IMIT and to 15 out of 22 OARs (68%) using IMPT. The maximum dose to 2% volume (D2) of the brainstem and spinal cord were significantly reduced using IMPT and IMIT compared to VMAT. The data are available on www.cancerdata.org. In this ROCOCO in silico trial, a reduction in mean dose to OARs was achieved using particle therapy compared to photons in the re-irradiation of HNSCC. There was a dosimetric benefit favouring carbon-ions above proton therapy. These dose reductions may potentially translate into lower severe complication rates related to the re-irradiation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Transport-Relevant Protein Conformational Dynamics and Water Dynamics on Multiple Timescales in an Archetypal Proton Channel - Insights from Solid-State NMR.

    Science.gov (United States)

    Mandala, Venkata; Gelenter, Martin D; Hong, Mei

    2018-01-05

    The influenza M2 protein forms a tetrameric proton channel that conducts protons from the acidic endosome into the virion by shuttling protons between water and a transmembrane histidine. Previous NMR studies have shown that this histidine protonates and deprotonates on the microsecond timescale. However, M2's proton conduction rate is 10 - 1000 s-1, more than two orders of magnitude slower than the histidine-water proton-exchange rate. M2 is also known to be conformationally plastic. To address the disparity between the functional timescale and the timescales of protein conformational dynamics and water dynamics, we have now investigated a W41F mutant of the M2 transmembrane domain using solid-state NMR. 13C chemical shifts of the membrane-bound peptide indicate the presence of two distinct tetramer conformations, whose concentrations depend exclusively on pH and hence the charge-state distribution of the tetramers. High-temperature 2D correlation spectra indicate that these two conformations interconvert at a rate of ~400 s-1 when the +2 and +3 charge states dominate, which gives the first experimental evidence of protein conformational motion on the transport timescale. Protein 13C-detected water 1H T2 relaxation measurements show that channel water relaxes an order of magnitude faster than bulk water and membrane-associated water, indicating that channel water undergoes nanosecond motion in a pH-independent fashion. These results connect motions on three timescales to explain M2's proton-conduction mechanism: picosecond-to-nanosecond motions of water molecules facilitate proton Grotthuss hopping, microsecond motions of the histidine sidechain allow water-histidine proton transfer, while millisecond motions of the entire four-helix bundle constitute the rate-limiting step, dictating the number of protons released into the virion.

  8. Insights into conformational regulation of PfMATE transporter from Pyrococcus furiosus induced by alternating protonation state of Asp41 residue: A molecular dynamics simulation study.

    Science.gov (United States)

    Jin, Xiaojie; Shao, Yonghua; Bai, Qifeng; Xue, Weiwei; Liu, Huanxiang; Yao, Xiaojun

    2016-06-01

    Multidrug and toxic compound extrusion (MATE) family transporters induce multiple-drug resistance (MDR) of bacterial pathogens and cancer cells, thus causing critical reductions in the therapeutic efficacies of antibiotics and anti-cancer drugs. Unfortunately, to date, the details and intrinsic reason about conformational regulation mechanism of MATE transporters remain elusive. In this work, molecular dynamics (MD) simulations were conducted to explore the conformational regulation mechanism of PfMATE transporter from Pyrococcus furiosus based on different protonation state of Asp41. Two (MD) simulation systems were investigated: a system with protonation of Asp41 and a system without protonation of Asp41, which were named by D184(H)D41(H) system and D184(H) system, respectively. Firstly, MD simulation results indicate that conformational changes mainly happen in extracellular regions of PfMATE protein. Further analysis reveals that PfMATE protein experiences different motion mode and forms different conformation based on different protonation state of Asp41. In the D184(H)D41(H) system, PfMATE experiences an opening motion and forms a more outward-open conformation. As for the D184(H) system, the protein has an anticlockwise rotational motion with the channel axis of protein and the more outward-open conformation does not appear. It can be inferred that protonation of Asp41 is essential for conformational regulation of PfMATE during transporting substrates. These findings provide intrinsic information for understanding the conformational regulation mechanism of PfMATE and will be very meaningful to explore the MDR mechanism of PfMATE further. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Reirradiation of head and neck cancer in the era of intensity-modulated radiotherapy: Patient selection, practical aspects, and current evidence

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Sil [Dept. of Radiation Oncology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul(Korea, Republic of)

    2017-03-15

    Locoregional failure is the most frequent pattern of failure in locally advanced head and neck cancer patients and it leads to death in most of the patients. Second primary tumors occurring in the other head and neck region reach up to almost 40% of long-term survivors. Recommended and preferred retreatment option in operable patients is salvage surgical resection, reporting a 5-year overall survival of up to 40%. However, because of tumor location, extent, and underlying comorbidities, salvage surgery is often limited and compromised by incomplete resection. Reirradiation with or without combined chemotherapy is an appropriate option for unresectable recurrence. Reirradiation is carefully considered with a case-by-case basis. Reirradiation protocol enrollment is highly encouraged prior to committing patient to an aggressive therapy. Radiation doses greater than 60 Gy are usually recommended for successful salvage. Despite recent technical improvement in intensity-modulated radiotherapy (IMRT), the use of concurrent chemotherapy, and the emergence of molecularly targeted agents, careful patient selection remain as the most paramount factor in reirradiation. Tumors that recur or persist despite aggressive prior chemoradiation therapy imply the presence of chemoradio-resistant clonogens. Treatment protocols that combine novel targeted radiosensitizing agents with conformal high precision radiation are required to overcome the resistance while minimizing toxicity. Recent large number of data showed that IMRT may provide better locoregional control with acceptable acute or chronic morbidities. However, additional prospective studies are required before a definitive conclusion can be drawn on safety and effectiveness of IMRT.

  10. Exploration of conformational changes in lactose permease upon sugar binding and proton transfer through coarse-grained simulations.

    Science.gov (United States)

    Jewel, Yead; Dutta, Prashanta; Liu, Jin

    2017-10-01

    Escherichia coli lactose permease (LacY) actively transports lactose and other galactosides across cell membranes through lactose/H(+) symport process. Lactose/H(+) symport is a highly complex process that involves sugar translocation, H(+) transfer, and large-scale protein conformational changes. The complete picture of lactose/H(+) symport is largely unclear due to the complexity and multiscale nature of the process. In this work, we develop the force field for sugar molecules compatible with PACE, a hybrid and coarse-grained force field that couples the united-atom protein models with the coarse-grained MARTINI water/lipid. After validation, we implement the new force field to investigate the binding of a β-d-galactopyranosyl-1-thio- β-d-galactopyranoside (TDG) molecule to a wild-type LacY. Results show that the local interactions between TDG and LacY at the binding pocket are consistent with the X-ray experiment. Transitions from inward-facing to outward-facing conformations upon TDG binding and protonation of Glu269 have been achieved from ∼5.5 µs simulations. Both the opening of the periplasmic side and closure of the cytoplasmic side of LacY are consistent with double electron-electron resonance and thiol cross-linking experiments. Our analysis suggests that the conformational changes of LacY are a cumulative consequence of interdomain H-bonds breaking at the periplasmic side, interdomain salt-bridge formation at the cytoplasmic side, and the TDG orientational changes during the transition. © 2017 Wiley Periodicals, Inc.

  11. A conformational study of protonated noradrenaline by UV-UV and IR dip double resonance laser spectroscopy combined with an electrospray and a cold ion trap method.

    Science.gov (United States)

    Wako, Hiromichi; Ishiuchi, Shun-Ichi; Kato, Daichi; Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe; Fujii, Masaaki

    2017-05-03

    The conformer-selected ultraviolet (UV) and infrared (IR) spectra of protonated noradrenaline were measured using an electrospray/cryogenic ion trap technique combined with photo-dissociation spectroscopy. By comparing the UV photo dissociation (UVPD) spectra with the UV-UV hole burning (HB) spectra, it was found that five conformers coexist under ultra-cold conditions. Based on the spectral features of the IR dip spectra of each conformer, two different conformations on the amine side chain were identified. Three conformers (group I) were assigned to folded and others (group II) to extended structures by comparing the observed IR spectra with the calculated ones. Observation of the significantly less-stable extended conformers strongly suggests that the extended structures are dominant in solution and are detected in the gas phase by kinetic trapping. The conformers in each group are assignable to rotamers of OH orientations in the catechol ring. By comparing the UV-UV HB spectra and the calculated Franck-Condon spectra obtained by harmonic vibrational analysis of the S1 state, with the aid of relative stabilization energies of each conformer in the S0 state, the absolute orientations of catechol OHs of the observed five conformers were successfully determined. It was found that the 0-0 transition of one folded conformer is red-shifted by about 1000 cm(-1) from the others. The significant red-shift was explained by a large contribution of the πσ* state to S1 in the conformer in which an oxygen atom of the meta-OH group is close to the ammonium group.

  12. Tolerance of the Brachial Plexus to High-Dose Reirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Allen M., E-mail: achen5@kumc.edu; Yoshizaki, Taeko; Velez, Maria A.; Mikaeilian, Argin G.; Hsu, Sophia; Cao, Minsong

    2017-05-01

    Purpose: To study the tolerance of the brachial plexus to high doses of radiation exceeding historically accepted limits by analyzing human subjects treated with reirradiation for recurrent tumors of the head and neck. Methods and Materials: Data from 43 patients who were confirmed to have received overlapping dose to the brachial plexus after review of radiation treatment plans from the initial and reirradiation courses were used to model the tolerance of this normal tissue structure. A standardized instrument for symptoms of neuropathy believed to be related to brachial plexus injury was utilized to screen for toxicity. Cumulative dose was calculated by fusing the initial dose distributions onto the reirradiation plan, thereby creating a composite plan via deformable image registration. The median elapsed time from the initial course of radiation therapy to reirradiation was 24 months (range, 3-144 months). Results: The dominant complaints among patients with symptoms were ipsilateral pain (54%), numbness/tingling (31%), and motor weakness and/or difficulty with manual dexterity (15%). The cumulative maximum dose (Dmax) received by the brachial plexus ranged from 60.5 Gy to 150.1 Gy (median, 95.0 Gy). The cumulative mean (Dmean) dose ranged from 20.2 Gy to 111.5 Gy (median, 63.8 Gy). The 1-year freedom from brachial plexus–related neuropathy was 67% and 86% for subjects with a cumulative Dmax greater than and less than 95.0 Gy, respectively (P=.05). The 1-year complication-free rate was 66% and 87%, for those reirradiated within and after 2 years from the initial course, respectively (P=.06). Conclusion: The development of brachial plexus–related symptoms was less than expected owing to repair kinetics and to the relatively short survival of the subject population. Time-dose factors were demonstrated to be predictive of complications.

  13. Tolerance of the Brachial Plexus to High-Dose Reirradiation.

    Science.gov (United States)

    Chen, Allen M; Yoshizaki, Taeko; Velez, Maria A; Mikaeilian, Argin G; Hsu, Sophia; Cao, Minsong

    2017-05-01

    To study the tolerance of the brachial plexus to high doses of radiation exceeding historically accepted limits by analyzing human subjects treated with reirradiation for recurrent tumors of the head and neck. Data from 43 patients who were confirmed to have received overlapping dose to the brachial plexus after review of radiation treatment plans from the initial and reirradiation courses were used to model the tolerance of this normal tissue structure. A standardized instrument for symptoms of neuropathy believed to be related to brachial plexus injury was utilized to screen for toxicity. Cumulative dose was calculated by fusing the initial dose distributions onto the reirradiation plan, thereby creating a composite plan via deformable image registration. The median elapsed time from the initial course of radiation therapy to reirradiation was 24 months (range, 3-144 months). The dominant complaints among patients with symptoms were ipsilateral pain (54%), numbness/tingling (31%), and motor weakness and/or difficulty with manual dexterity (15%). The cumulative maximum dose (Dmax) received by the brachial plexus ranged from 60.5 Gy to 150.1 Gy (median, 95.0 Gy). The cumulative mean (Dmean) dose ranged from 20.2 Gy to 111.5 Gy (median, 63.8 Gy). The 1-year freedom from brachial plexus-related neuropathy was 67% and 86% for subjects with a cumulative Dmax greater than and less than 95.0 Gy, respectively (P=.05). The 1-year complication-free rate was 66% and 87%, for those reirradiated within and after 2 years from the initial course, respectively (P=.06). The development of brachial plexus-related symptoms was less than expected owing to repair kinetics and to the relatively short survival of the subject population. Time-dose factors were demonstrated to be predictive of complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Treatment outcome of hepatic re-irradiation in patients with hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Seung Won; Yu, Jeong Il; Park, Hee Chul; Lim, Do Hoon; Oh, Dong Ryul; Noh, Jae Myoung; Cho, Won Kyung; Paik, Seung Woon [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-12-15

    We evaluated the efficacy and toxicity of repeated high dose 3-dimensional conformal radiation therapy (3D-CRT) for patients with unresectable hepatocellular carcinoma. Between 1998 and 2011, 45 patients received hepatic re-irradiation with high dose 3D-CRT in Samsung Medical Center. After excluding two ineligible patients, 43 patients were retrospectively reviewed. RT was delivered with palliative or salvage intent, and equivalent dose of 2 Gy fractions for alpha/beta = 10 Gy ranged from 31.25 Gy{sub 10} to 93.75 Gy{sub 10} (median, 44 Gy{sub 10}). Tumor response and toxicity were evaluated based on the modified Response Evaluation Criteria in Solid Tumors criteria and the Common Terminology Criteria for Adverse Events (CTCAE) ver. 4.0. The median follow-up duration was 11.2 months (range, 4.1 to 58.3 months). An objective tumor response rate was 62.8%. The tumor response rates were 81.0% and 45.5% in patients receiving > or =45 Gy{sub 10} and <45 Gy{sub 10}, respectively (p = 0.016). The median overall survival (OS) of all patients was 11.2 months. The OS was significantly affected by the Child-Pugh class as 14.2 months vs. 6.1 months (Child-Pugh A vs. B, p < 0.001), and modified Union for International Cancer Control (UICC) T stage as 15.6 months vs. 8.3 months (T1-3 vs. T4, p = 0.004), respectively. Grade III toxicities were developed in two patients, both of whom received > or =50 Gy{sub 10}. Hepatic re-irradiation may be an effective and tolerable treatment for patients who are not eligible for further local treatment modalities, especially in patients with Child-Pugh A and T1-3.

  15. [Locoregional recurrences of HNSCC: place of re-irradiations].

    Science.gov (United States)

    Bourhis, Jean; Temam, Stéphane; Wibault, P; Lusinchi, A; de Crevoisier, B; Janot, R; Bobin, S

    2004-11-01

    Unresectable forms of HNSCC relapses occurring in a previously irradiated area are relatively common and may be difficult to manage from a therapeutic point of view. Full dose re-irradiation with concomitant chemotherapy constitutes an alternative to palliative chemotherapy. Indeed, the feasibility of this approach has been shown, and may be associated with a curative potential in a relatively low proportion of these relapses.

  16. Proton transfer and protein conformation dynamics in photosensitive proteins by time-resolved step-scan Fourier-transform infrared spectroscopy.

    Science.gov (United States)

    Lórenz-Fonfría, Víctor A; Heberle, Joachim

    2014-06-27

    Monitoring the dynamics of protonation and protein backbone conformation changes during the function of a protein is an essential step towards understanding its mechanism. Protonation and conformational changes affect the vibration pattern of amino acid side chains and of the peptide bond, respectively, both of which can be probed by infrared (IR) difference spectroscopy. For proteins whose function can be repetitively and reproducibly triggered by light, it is possible to obtain infrared difference spectra with (sub)microsecond resolution over a broad spectral range using the step-scan Fourier transform infrared technique. With -10(2)-10(3) repetitions of the photoreaction, the minimum number to complete a scan at reasonable spectral resolution and bandwidth, the noise level in the absorption difference spectra can be as low as -10(-) (4), sufficient to follow the kinetics of protonation changes from a single amino acid. Lower noise levels can be accomplished by more data averaging and/or mathematical processing. The amount of protein required for optimal results is between 5-100 µg, depending on the sampling technique used. Regarding additional requirements, the protein needs to be first concentrated in a low ionic strength buffer and then dried to form a film. The protein film is hydrated prior to the experiment, either with little droplets of water or under controlled atmospheric humidity. The attained hydration level (g of water / g of protein) is gauged from an IR absorption spectrum. To showcase the technique, we studied the photocycle of the light-driven proton-pump bacteriorhodopsin in its native purple membrane environment, and of the light-gated ion channel channelrhodopsin-2 solubilized in detergent.

  17. Continuous-Course Reirradiation With Concurrent Carboplatin and Paclitaxel for Locally Recurrent, Nonmetastatic Squamous Cell Carcinoma of the Head-and-Neck

    Energy Technology Data Exchange (ETDEWEB)

    Kharofa, Jordan [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Choong, Nicholas [Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Wang, Dian; Firat, Selim; Schultz, Christopher [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Sadasiwan, Chitra [Medical College of Wisconsin, Milwaukee, WI (United States); Wong, Stuart, E-mail: Swong@mcw.edu [Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI (United States)

    2012-06-01

    Purpose: To examine the efficacy and toxicity of continuous-course, conformal reirradiation with weekly paclitaxel and carboplatin for the treatment of locally recurrent, nonmetastatic squamous cell carcinoma of the head and neck (SCCHN) in a previously irradiated field. Methods and Materials: Patients treated with continuous course-reirradiation with concurrent carboplatin and paclitaxel at the Medical College of Wisconsin and the Clement J. Zablocki VA from 2001 through 2009 were retrospectively reviewed. Patients included in the analysis had prior radiation at the site of recurrence of at least 45 Gy. The analysis included patients who received either intensity-modulated radiotherapy (RT) or three-dimensional conformal RT techniques. All patients received weekly concurrent carboplatin (AUC2) and paclitaxel (30-50 mg/m{sup 2}). Results: Thirty-eight patients with nonmetastatic SCCHN met the entry criteria for analysis. The primary sites at initial diagnosis were oropharyngeal or laryngeal in most patients (66%). Median reirradiation dose was 60 Gy (range, 54-70 Gy). Acute toxicity included Grade 2 neutropenia (5%), Grade 3 neutropenia (15%), and Grade 1/2 thrombocytopenia (8%). No deaths occurred from hematologic toxicity. Chemotherapy doses held (50%) was more prevalent than radiation treatment break (8%). Sixty-eight percent of patients required a gastrostomy tube in follow-up. Significant late toxicity was experienced in 6 patients (16%): 1 tracheoesophageal fistula, 1 pharyngocutaneous fistula, 3 with osteoradionecrosis, and 1 patient with a lingual artery bleed. Patients treated with three-dimensional conformal RT had more frequent significant late toxicites than patients treated with intensity-modulated RT (44% and 7% respectively, p < 0.05). The median time to progression was 7 months and progression-free rates at 1, 2, and 5 years was 44%, 34%, and 29% respectively. The median overall survival was 16 months. Overall survival at 1, 3, and 5 years was 54

  18. Pelvic re-irradiation using stereotactic ablative radiotherapy (SABR): A systematic review.

    Science.gov (United States)

    Murray, Louise Janet; Lilley, John; Hawkins, Maria A; Henry, Ann M; Dickinson, Peter; Sebag-Montefiore, David

    2017-11-01

    To perform a systematic review regarding the use of stereotactic ablative radiotherapy (SABR) for the re-irradiation of recurrent malignant disease within the pelvis, to guide the clinical implementation of this technique. A systematic search strategy was adopted using the MEDLINE, EMBASE and Cochrane Library databases. 195 articles were identified, of which 17 were appropriate for inclusion. Studies were small and data largely retrospective. In total, 205 patients are reported to have received pelvic SABR re-irradiation. Dose and fractionation schedules and re-irradiated volumes are highly variable. Little information is provided regarding organ at risk constraints adopted in the re-irradiation setting. Treatment appears well-tolerated overall, with nine grade 3 and six grade 4 toxicities amongst thirteen re-irradiated patients. Local control at one year ranged from 51% to 100%. Symptomatic improvements were also noted. For previously irradiated patients with recurrent pelvic disease, SABR re-irradiation could be a feasible intervention for those who otherwise have limited options. Evidence to support this technique is limited but shows initial promise. Based on the available literature, suggestions for a more formal SABR re-irradiation pathway are proposed. Prospective studies and a multidisciplinary approach are required to optimise future treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effectiveness of Reirradiation for Painful Bone Metastases: A Systematic Review and Meta-Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huisman, Merel, E-mail: m.huisman-7@umcutrecht.nl [Department of Radiology, University Medical Center Utrecht, Utrecht (Netherlands); Bosch, Maurice A.A.J. van den; Wijlemans, Joost W. [Department of Radiology, University Medical Center Utrecht, Utrecht (Netherlands); Vulpen, Marco van [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Linden, Yvette M. van der [Department of Clinical Oncology, Leiden University Medical Center, Leiden (Netherlands); Verkooijen, Helena M. [Department of Radiology, University Medical Center Utrecht, Utrecht (Netherlands)

    2012-09-01

    Purpose: Reirradiation of painful bone metastases in nonresponders or patients with recurrent pain after initial response is performed in up to 42% of patients initially treated with radiotherapy. Literature on the effect of reirradiation for pain control in those patients is scarce. In this systematic review and meta-analysis, we quantify the effectiveness of reirradiation for achieving pain control in patients with painful bone metastases. Methods and Materials: A free text search was performed to identify eligible studies using the MEDLINE, EMBASE, and the Cochrane Collaboration library electronic databases. After study selection and quality assessment, a pooled estimate was calculated for overall pain response for reirradiation of metastatic bone pain. Results: Our literature search identified 707 titles, of which 10 articles were selected for systematic review and seven entered the meta-analysis. Overall study quality was mediocre. Of the 2,694 patients initially treated for metastatic bone pain, 527 (20%) patients underwent reirradiation. Overall, a pain response after reirradiation was achieved in 58% of patients (pooled overall response rate 0.58, 95% confidence interval = 0.49-0.67). There was a substantial between-study heterogeneity (I{sup 2} = 63.3%, p = 0.01) because of clinical and methodological differences between studies. Conclusions: Reirradiation of painful bone metastases is effective in terms of pain relief for a small majority of patients; approximately 40% of patients do not benefit from reirradiation. Although the validity of results is limited, this meta-analysis provides a comprehensive overview and the most quantitative estimate of reirradiation effectiveness to date.

  20. Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Ted C.; Slater, Jerry M.; Nookala, Prashanth; Mifflin, Rachel; Grove, Roger; Ly, Anh M.; Patyal, Baldev; Slater, Jerry D.; Yang, Gary Y., E-mail: gyang@llu.edu [Department of Radiation Medicine, Loma Linda University Medical Center, 11234 Anderson Street, A875, Loma Linda, CA 92354 (United States)

    2014-12-05

    Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR) being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients.

  1. Analysis of Intensity-Modulated Radiation Therapy (IMRT, Proton and 3D Conformal Radiotherapy (3D-CRT for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients

    Directory of Open Access Journals (Sweden)

    Ted C. Ling

    2014-12-01

    Full Text Available Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT, proton and 3D conformal radiotherapy (3D-CRT with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients.

  2. Advanced PET and MR imaging in re-irradiation of high grade glioma

    DEFF Research Database (Denmark)

    Møller, Søren

    2014-01-01

    . The goal of this Ph.D. project was to evaluate the side-effects and efficacy of re-irradiation of highgrade glioma and to determine the value of positron emission tomography (PET) using an amino acid tracer for re-irradiation. Moreover, to identify imaging biomarkers capable of predicting the clinical....... The patients in the re-irradiation study underwent cognitive testing as a means of assessing side effects. The studies showed that the side effects of re-irradiation were acceptable but not negligible. Tumor size evaluated by PET was prognostic for survival following radiotherapy and it PET likely contributed...... inevitable and the goal of all treatment is to prolong life while maintaining quality of life. Radiotherapy is a cornerstone of treatment. In many hospitals repeated irradiation is attempted at recurrence but neither side-effects nor efficacy have been systematically evaluated using modern technology...

  3. CONFORMATION OF A PENTACOSAPEPTIDE REPRESENTING THE RNA-BINDING N-TERMINUS OF COWPEA CHLOROTIC MOTTLE VIRUS COAT PROTEIN IN THE PRESENCE OF OLIGOPHOSPHATES - A 2-DIMENSIONAL PROTON NUCLEAR-MAGNETIC-RESONANCE AND DISTANCE GEOMETRY STUDY

    NARCIS (Netherlands)

    VANDERGRAAF, M; SCHEEK, RM; VANDERLINDEN, CC; HEMMINGA, MA

    1992-01-01

    Conformational studies were performed on a synthetic pentacosapeptide representing the RNA-binding N-terminal region of the coat protein of cowpea chlorotic mottle virus. Two-dimensional proton NMR experiments were performed on the highly positively charged peptide containing six arginines and three

  4. Conformational changes in a hyperthermostable glycoside hydrolase: enzymatic activity is a consequence of the loop dynamics and protonation balance.

    Directory of Open Access Journals (Sweden)

    Leandro C de Oliveira

    Full Text Available Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5 was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105. In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features.

  5. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Guerra, Jose L. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Hospitales Universitarios Virgen del Rocio, Seville (Spain); Department of Medicine, Universitat Autonoma de Barcelona, Barcelona (Spain); Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhuang Yan; Levy, Lawrence B. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Eapen, George [Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-07-15

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received {>=}60 Gy radio(chemo)therapy for primary NSCLC in 1998-2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient's preradiation value at the following time intervals: 0-4 (T1), 5-8 (T2), and 9-12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy or

  6. Long-term Cosmetic Outcomes and Toxicities of Proton Beam Therapy Compared With Photon-Based 3-Dimensional Conformal Accelerated Partial-Breast Irradiation: A Phase 1 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Galland-Girodet, Sigolène; Pashtan, Itai; MacDonald, Shannon M.; Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Hirsch, Ariel E.; Kachnic, Lisa A. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts (United States); Specht, Michelle; Gadd, Michele; Smith, Barbara L. [Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Powell, Simon N. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (United States); Taghian, Alphonse G., E-mail: ataghian@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-11-01

    Purpose: To present long-term outcomes of a prospective feasibility trial using either protons or 3-dimensional conformal photon-based (accelerated partial-breast irradiation [APBI]) techniques. Methods and Materials: From October 2003 to April 2006, 98 evaluable patients with stage I breast cancer were treated with APBI (32 Gy in 8 fractions given twice daily) on a prospective clinical trial: 19 with proton beam therapy (PBT) and 79 with photons or mixed photons/electrons. Median follow-up was 82.5 months (range, 2-104 months). Toxicity and patient satisfaction evaluations were performed at each visit. Results: At 7 years, the physician rating of overall cosmesis was good or excellent for 62% of PBT patients, compared with 94% for photon patients (P=.03). Skin toxicities were more common for the PBT group: telangiectasia, 69% and 16% (P=.0013); pigmentation changes, 54% and 22% (P=.02); and other late skin toxicities, 62% and 18% (P=.029) for PBT and photons, respectively. There were no significant differences between the groups in the incidences of breast pain, edema, fibrosis, fat necrosis, skin desquamation, and rib pain or fracture. Patient-reported cosmetic outcomes at 7 years were good or excellent for 92% and 96% of PBT and photon patients, respectively (P=.95). Overall patient satisfaction was 93% for the entire cohort. The 7-year local failure rate for all patients was 6%, with 3 local recurrences in the PBT group (7-year rate, 11%) and 2 in photon-treated patients (4%) (P=.22). Conclusions: Local failure rates of 3-dimensional APBI and PBT were similar in this study. However, PBT, as delivered in this study, led to higher rates of long-term telangiectasia, skin color changes, and skin toxicities. We recommend the use of multiple fields and treatment of all fields per treatment session or the use of scanning techniques to minimize skin toxicity.

  7. Excited-state intramolecular proton transfer and conformational relaxation in 4'-N,N-dimethylamino-3-hydroxyflavone doped in acetonitrile crystals.

    Science.gov (United States)

    Furukawa, Kazuki; Yamamoto, Norifumi; Hino, Kazuyuki; Sekiya, Hiroshi

    2016-10-19

    The effect of intermolecular interactions on excited-state intramolecular proton transfer (ESIPT) in 4'-N,N-dimethylamino-3-hydroxyflavone (DMHF) doped in acetonitrile crystals was investigated by measuring its temperature dependence of steady-state fluorescence excitation and fluorescence spectra and picosecond time-resolved spectra. The relative intensity of emission from the excited state of the normal form (N*) to that from the excited state of the tautomer form (T*) and spectral features changed markedly with temperature. Unusual changes in the spectral shift and spectral features were observed in the fluorescence spectra measured between 200 and 218 K, indicating that a solid-solid phase transition of DMHF-doped acetonitrile crystals occurred. Time-resolved fluorescence spectra suggested conformational relaxation of the N* state competed with ESIPT after photoexcitation and the ESIPT rate increased with temperature in the low-temperature phase of acetonitrile. However, the intermolecular interaction of N* with acetonitrile in the high-temperature phase markedly stabilized the potential minimum of the fluorescent N* state and slowed the ESIPT. This stabilization can be explained by reorganization of acetonitrile originating from the strong electric dipole-dipole interaction between DMHF and acetonitrile molecules.

  8. Generation and validation of a prognostic score to predict outcome after re-irradiation of recurrent glioma

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Welzel, Thomas; Debus, Juergen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], E-mail: Stephanie.combs@med.uni-heidelberg.de; Edler, Lutz; Rausch, Renate [German Cancer Research Center (dkfz), Dept. of Biostatistics, Heidelberg (Germany); Wick, Wolfgang [Univ. Hospital of Heidelberg, Dept. of Neurooncology, Heidelberg (Germany)

    2013-01-15

    Re-irradiation using high-precision radiation techniques has been established within the clinical routine for patients with recurrent gliomas. In the present work, we developed a practical prognostic score to predict survival outcome after re-irradiation. Patients and methods. Fractionated stereotactic radiotherapy (FSRT) was applied in 233 patients. Primary histology included glioblastoma (n = 89; 38%), WHO Grade III gliomas (n = 52; 22%) and low-grade glioma (n = 92; 40%). FSRT was applied with a median dose of 36 Gy in 2 Gy single fractions. We evaluated survival after re-irradiation as well as progression-free survival after re-irradiation; prognostic factors analyzed included age, tumor volume at re-irradiation, histology, time between initial radiotherapy and re-irradiation, age and Karnofsky Performance Score. Results. Median survival after FSRT was 8 months for glioblastoma, 20 months for anaplastic gliomas, and 24 months for recurrent low-grade patients. The strongest prognostic factors significantly impacting survival after re-irradiation were histology (p <0.0001) and age (<50 vs. ={>=}50, p < 0.0001) at diagnosis and the time between initial radiotherapy and re-irradiation {<=}12 vs. >12 months (p < 0.0001). We generated a four-class prognostic score to distinguish patients with excellent (0 points), good (1 point), moderate (2 points) and poor (3-4 points) survival after re-irradiation. The difference in outcome was highly significant (p < 0.0001). Conclusion. We generated a practical prognostic score index based on three clinically relevant factors to predict the benefit of patients from re-irradiation. This score index can be helpful in patient counseling, and for the design of further clinical trials. However, individual treatment decisions may include other patient-related factors not directly influencing outcome.

  9. Survival Benefit for Pediatric Patients With Recurrent Ependymoma Treated With Reirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bouffet, Eric, E-mail: eric.bouffet@sickkids.ca [Department of Hematology/Oncology, Hospital for Sick Children, and University of Toronto, Toronto, Ontario (Canada); Hawkins, Cynthia E. [Department of Pathology, Hospital for Sick Children, and University of Toronto, Toronto, Ontario (Canada); Ballourah, Walid [Department of Hematology/Oncology, Hospital for Sick Children, and University of Toronto, Toronto, Ontario (Canada); Taylor, Michael D. [Division of Neurosurgery, Hospital for Sick Children, and University of Toronto, Toronto, Ontario (Canada); Bartels, Ute K. [Department of Hematology/Oncology, Hospital for Sick Children, and University of Toronto, Toronto, Ontario (Canada); Schoenhoff, Nicholas [Department of Psychology, Hospital for Sick Children, and University of Toronto, Toronto, Ontario (Canada); Tsangaris, Elena; Huang, Annie [Department of Hematology/Oncology, Hospital for Sick Children, and University of Toronto, Toronto, Ontario (Canada); Kulkarni, Abhaya [Division of Neurosurgery, Hospital for Sick Children, and University of Toronto, Toronto, Ontario (Canada); Mabbot, Donald J. [Department of Psychology, Hospital for Sick Children, and University of Toronto, Toronto, Ontario (Canada); Laperriere, Normand [Department of Radiation Oncology, Princess Margaret Hospital, Toronto, Ontario (Canada); Tabori, Uri [Department of Hematology/Oncology, Hospital for Sick Children, and University of Toronto, Toronto, Ontario (Canada)

    2012-08-01

    Purpose: The outcome of recurrent ependymoma in children is dismal. Reirradiation has been proposed as an effective modality for ependymoma at relapse. However, the toxicity and outcome benefits of this approach have not been well established. Methods and Materials: We conducted a retrospective population-based study of all patients with recurrent ependymoma treated between 1986 and 2010 in our institution. Demographic, treatment, and outcome data were analyzed for the entire cohort. Results: Of 113 patients with intracranial ependymoma, 47 patients relapsed. At the time of relapse, 29 patients were treated with surgical resection and/or chemotherapy, and 18 patients received full-dose ({>=}54 Gy focal and/or craniospinal) reirradiation with or without surgery at recurrence. Reirradiation was tolerated well with no severe acute complications noticed. Three-year overall survival was 7% {+-} 6% and 81% {+-} 12% for nonreirradiated and reirradiated patients, respectively (p < 0.0001). Time to second progression after reirradiation was significantly longer than time to first progression. This surprising phenomenon was associated with improved progression-free survival for tumors with evidence of DNA damage (n = 15; p = 0.002). At a mean follow-up of 3.73 years, only 2/18 patients had endocrine dysfunction, and 1 patient required special education support. However, a decline in intellectual function from pre- to postreirradiation assessment was observed. Conclusions: Reirradiation is an effective treatment that may change the natural history of recurrent ependymoma in children. However, this change may be associated with increased neurocognitive toxicity. Additional follow-up is needed to determine the risk of late recurrence, secondary radiation-induced tumors, and long-term functional outcome of these patients.

  10. Spinal cord stimulation as adjuvant during chemotherapy and reirradiation treatment of recurrent high-grade gliomas.

    Science.gov (United States)

    Clavo, Bernardino; Robaina, Francisco; Jorge, Ignacio J; Cabrera, Raquel; Ruiz-Egea, Eugenio; Szolna, Adam; Otermin, Emilio; Llontop, Pedro; Carames, Miguel A; Santana-Rodríguez, Norberto; Sminia, Peter

    2014-11-01

    Relapsed high-grade gliomas (HGGs) have poor prognoses and there is no standard treatment. HGGs have ischemia/hypoxia associated and, as such, drugs and oxygen have low access, with increased resistance to chemotherapy and radiotherapy. Tumor hypoxia modification can improve outcomes and overall survival in some patients with these tumors. In previous works, we have described that cervical spinal cord stimulation can modify tumor microenvironment in HGG by increasing tumor blood flow, oxygenation, and metabolism. The aim of this current, preliminary, nonrandomized, study was to assess the clinical effect of spinal cord stimulation during brain reirradiation and chemotherapy deployed for the treatment of recurrent HGG; the hypothesis being that an improvement in oxygenated blood supply would facilitate enhanced delivery of the scheduled therapy. Seven patients had spinal cord stimulation applied during the scheduled reirradiation and chemotherapy for the treatment of recurrent HGG (6 anaplastic gliomas and 1 glioblastoma). Median dose of previous irradiation was 60 Gy (range = 56-72 Gy) and median dose of reirradiation was 46 Gy (range = 40-46 Gy). Primary end point of the study was overall survival (OS) following confirmation of HGG relapse. From the time of diagnosis of last tumor relapse before reirradiation, median OS was 39 months (95% CI = 0-93) for the overall study group: 39 months (95% CI = 9-69) for those with anaplastic gliomas and 16 months for the patient with glioblastoma. Posttreatment, doses of corticosteroids was significantly decreased (P = .026) and performance status significantly improved (P = .046). Spinal cord stimulation during reirradiation and chemotherapy is feasible and well tolerated. In our study, spinal cord stimulation was associated with clinical improvement and longer survival than previously reported in recurrent anaplastic gliomas. Spinal cord stimulation as adjuvant during chemotherapy and reirradiation in relapsed HGGs merits

  11. Preserving the legacy of reirradiation : A narrative review of historical publications

    NARCIS (Netherlands)

    Nieder, Carsten; Langendijk, Johannes A; Guckenberger, Matthias; Grosu, Anca L

    2017-01-01

    PURPOSE: The purpose of this study is to illustrate the historical development of reirradiation during several decades of the 20th century, in particular between 1920 and 1960. METHODS AND MATERIALS: We chose the format of a narrative review because the historical articles are heterogeneous. No

  12. Magnetic resonance imaging guided reirradiation of recurrent and second primary head and neck cancer

    Directory of Open Access Journals (Sweden)

    Allen M. Chen, MD

    2017-04-01

    Conclusions: Our preliminary findings show that reirradiation with MRI guided radiation therapy results in effective disease control with relatively low morbidity for patients with recurrent and second primary cancers of the head and neck. The superior soft tissue resolution of the MRI scans that were used for planning and delivery has the potential to improve the therapeutic ratio.

  13. High-dose re-irradiation following radical radiotherapy for non-small-cell lung cancer.

    Science.gov (United States)

    De Ruysscher, Dirk; Faivre-Finn, Corinne; Le Pechoux, Cecile; Peeters, Stéphanie; Belderbos, José

    2014-12-01

    As the prognosis of lung cancer patients improves, more patients are at risk of developing local recurrence or a new primary tumour in previously irradiated areas. Technological advances in radiotherapy and imaging have made treatment of patients with high-dose re-irradiation possible, with the aim of long-term disease-free survival and even cure. However, high-dose re-irradiation with overlapping volumes of previously irradiated tissues is not without risks. Late, irreversible, and potentially serious normal tissue damage may occur because of injury to surrounding thoracic structures and organs at risk. In this Review, we aimed to report the efficacy and toxic effects of high-dose re-irradiation for locoregional recurrent non-small-cell lung cancer. Our findings indicate that high-dose re-irradiation might be beneficial in selected patients; however, patients and physicians should be aware of the scarcity of high-quality data when considering this treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Definitive fractionated re-irradiation for local recurrence following stereotactic body radiotherapy for primary lung cancer.

    Science.gov (United States)

    Yoshitake, Tadamasa; Shioyama, Yoshiyuki; Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Shinoto, Makoto; Terashima, Kotaro; Asai, Kaori; Matsumoto, Keiji; Hirata, Hideki; Honda, Hiroshi

    2013-12-01

    To retrospectively evaluate the efficacy and safety of definitive fractionated re-irradiation for local recurrence following stereotactic body radiotherapy (SBRT) for primary lung cancer. Between April 2003 and December 2011, 398 patients with primary lung tumor underwent SBRT at the Kyushu University Hospital, and 46 out of these developed local recurrence after SBRT. Definitive fractionated re-irradiation was performed for 17 out of the 46 patients. The median dose of re-irradiation was 60 Gy/ 30 fractions. Concurrent chemotherapy was given to four patients. The median follow-up duration was 12.6 months. At one year post-re-irradiation, local progression-free survival was 33.8%; progression-free survival, 30.9%; cause-specific survival, 79.3%; and overall survival, 74.7%. No severe adverse events were observed during the follow-up. Definitive fractionated re-irradiation is thought to be a safe alternative therapy for local recurrence following SBRT, although its efficacy may be not entirely satisfactory.

  15. Hyperthermia combined with re-irradiation for neck node metastasis from head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ohizumi, Yukio; Tamai, Yoshifumi; Imamiya, Satoshi; Akiba, Takeshi [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine

    2000-06-01

    The effects of hyperthermia combined with re-irradiation were compared with those of re-irradiation alone using retrospectively matched-pair analysis. Between 1984 and 1997, 12 patients were treated with hyperthermia combined with re-irradiation for neck node metastasis from squamous cell carcinoma of the head and neck. During the same period, 12 patients treated with re-irradiation alone were selected retrospectively using the same anatomical diagnosis, nodal site, and nodal size. Recurrent nodes were heated by a 2450 MHz microwave or 13 MHz radio frequency 4 times on average for 30 to 50 min immediately before radiotherapy. The maximum temperatures were >41 deg C in 83% and >42 deg C in 58% of patients. The median survival and median recurrence periods were 12 months and 6 months, respectively in both groups. The response rate was 83% in both groups. Nodal size and radiation dose, but not heating temperature, were prognostic factors. Five patients in the hyperthermia group experienced skin ulcers or burns as acute complications. Late complications were observed in one patient in the hyperthermia group and 3 patients in the re-irradiation-alone group. Heating induced acute complications and had no significant effect on the tumors. Further advanced in hyperthermic technique are required. (author)

  16. Reirradiation on recurrent cervical cancer case: Treatment response and side effects

    Science.gov (United States)

    Siregar, M. F.; Supriana, N.; Nuranna, L.; Prihartono, J.

    2017-08-01

    Management of recurrent cervical cancer by reirradiation after radiation treatment remains controversial. In Indonesia, there is currently no data about reirradiation tumor response and side effects. This study aims to assess the tumor response to and side effects of reirradiation, the effect of time interval between first radiation treatment and cancer recurrence on the tumor response and side effects, and the effect of tumor size on tumor response. A cohort retrospective study with no comparison was done with the Radiotherapy Department at Cipto Mangunkusumo General Hospital, Jakarta. Participants were recurrent cervical cancer patients undergoing reirradiation. Data was collected from patients’ medical records and follow-up phone calls. Twenty-two patients participated in this study. Nine patients (40.9%) had complete responses, 10 patients (45.5%) had partial responses, 1 patient (4.5%) had a stable response, and 2 patients (9.1%) had tumor progressions. In general, 15 patients (68.2%) had no to light side effects (grade 0-2 RTOG) and 7 patients (31.8%) had severe side effects (grade 3-4 RTOG). Four patients (18.1%) had severe gastrointestinal acute side effects, 6 patients (27.3%) had severe gastrointestinal late side effects, 2 patients (9.1%) had severe urogenital side effects, and there were no patients had severe urogenital late side effects. There was no significant difference in tumor response between patients with time interval between first radiation treatment and recurrence of 4 cm. Reirradiation can be considered as a modality in recurrent cervical cancer management since good tumor response was achieved and the majority of patients had no to light side effects (grade 0-2 RTOG). This study found no correlation between tumor response, side effects, and time gap between first radiation treatment and recurrence of 4 cm.

  17. Exploratory Study of Irradiation, Annealing, and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chernobaeva, A.A., Kryukov, A.M., Nikolaev, Y.A., Korolev, Y.N. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)], Sokolov, M.A., Nanstad, R.K. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVS) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. even though a postirradiation anneal may be deemed successful, a critical aspect of continued RPV operation is the rate of embrittlement upon reirradiation. There are insufficient data available to allow for verification models of reirradiation embrittlement or for the development of a reliable predictive methodology. This is especially true in the case of fracture toughness data. Under the U.S.-Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS), Working Group 3 on Radiation Embrittlement, Structural Integrity, and Life Extension of Reactor Vessels and Supports agreed to conduct a comparative study of annealing and reirradiation effects on RPV steels. The working group agreed that each side would irradiate, anneal, reirradiate (if feasible), and test two materials of the other; so far, only charpy impact and tensile specimens have been included. Oak Ridge National Laboratory (ornl) conducted such a program (irradiation and annealing) with two weld metals representative of VVER-440 AND VVER-1000 RPVS, while the Russian Research Center-Kurchatov Institute (RRC-KI) conducted a program (irradiation,annealing, reirradiation, and reannealing) with Heavy-Section Steel Technology (HSST) program plate 02 and Heavy-Section Steel Irradiation (HSSI) program weld 73w. The results for each material from each laboratory are compared with those from the other laboratory. the ORNL experiments with the VVER welds included irradiation to about 1 x 10 (exp 19) N/SQ CM ({gt}1 MeV), while the RRC-KI experiments with the U.S. materials included irradiations from about 2 to 18 X 10 (exp 19) N/SQ CM ({gt}1 MeV).

  18. IMRT reirradiation with concurrent cetuximab immunotherapy in recurrent head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zwicker, Felix; Roeder, Falk; Thieke, Christian; Timke, Carmen; Huber, Peter E. [Heidelberg Univ. (Germany). Dept. of Radiation Oncology; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Div. of Radiation Oncology; Muenter, Marc W.; Debus, Juergen [Heidelberg Univ. (Germany). Dept. of Radiation Oncology

    2011-01-15

    Purpose: In this retrospective investigation, the outcome and toxicity after reirradiation with concurrent cetuximab immunotherapy of recurrent head and neck cancer (HNC) in patients who had contraindications to platinum-based chemotherapy were analyzed. Materials and Methods: Ten patients with locally advanced recurrent HNC were retrospectively evaluated. In 9 cases, histology was squamous cell carcinoma, in one case adenoid cystic carcinoma. External beam radiotherapy was part of the initial treatment in all cases. Reirradiation was carried out using step-and-shoot intensity-modulated radiotherapy (IMRT) with a median dose of 50.4 Gy. Cetuximab was applied as loading dose (400 mg/m{sup 2}) 1 week prior to reirradiation and then weekly concurrently with radiotherapy (250 mg/m{sup 2}). Results: The median overall survival time after initiation of reirradiation was 7 months; the 1-year overall survival (OS) rate was 40%. Local failure was found in 3 patients, resulting in a 1-year local control (LC) rate of 61%. The 1-year locoregional control (LRC) rate was 44%, while the 1-year distant metastasis-free survival (DMFS) was 75%. Acute hematological toxicity was not observed in the group. Severe acute toxicity included one fatal infield arterial bleeding and one flap necrosis. Severe late toxicities were noted in 2 patients: fibrosis of the temporomandibular joint in 1 patient and stenosis of the cervical esophagus in another. Conclusions: IMRT reirradiation with concurrent cetuximab immunotherapy in recurrent HNC is feasible with acceptable acute toxicity. Further investigations are necessary to determine the clinical role of this therapy concept. (orig.)

  19. Intensity-modulated proton therapy, volumetric-modulated arc therapy, and 3D conformal radiotherapy in anaplastic astrocytoma and glioblastoma. A dosimetric comparison

    Energy Technology Data Exchange (ETDEWEB)

    Adeberg, S.; Debus, J. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, Heidelberg (Germany); Harrabi, S.B.; Bougatf, N.; Rieber, J.; Koerber, S.A.; Herfarth, K.; Rieken, S. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Bernhardt, D.; Syed, M.; Sprave, T.; Mohr, A. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Abdollahi, A. [University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Haberer, T. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Combs, S.E. [Technische Universitaet Muenchen, Department of Radiation Oncology, Muenchen (Germany); Helmholtz Zentrum Muenchen, Institut fuer Innovative Radiotherapie (iRT), Department of Radiation Sciences (DRS), Neuherberg (Germany)

    2016-11-15

    The prognosis for high-grade glioma (HGG) patients is poor; thus, treatment-related side effects need to be minimized to conserve quality of life and functionality. Advanced techniques such as proton radiation therapy (PRT) and volumetric-modulated arc therapy (VMAT) may potentially further reduce the frequency and severity of radiogenic impairment. We retrospectively assessed 12 HGG patients who had undergone postoperative intensity-modulated proton therapy (IMPT). VMAT and 3D conformal radiotherapy (3D-CRT) plans were generated and optimized for comparison after contouring crucial neuronal structures important for neurogenesis and neurocognitive function. Integral dose (ID), homogeneity index (HI), and inhomogeneity coefficient (IC) were calculated from dose statistics. Toxicity data were evaluated. Target volume coverage was comparable for all three modalities. Compared to 3D-CRT and VMAT, PRT showed statistically significant reductions (p < 0.05) in mean dose to whole brain (-20.2 %, -22.7 %); supratentorial (-14.2 %, -20,8 %) and infratentorial (-91.0 %, -77.0 %) regions; brainstem (-67.6 %, -28.1 %); pituitary gland (-52.9 %, -52.5 %); contralateral hippocampus (-98.9 %, -98.7 %); and contralateral subventricular zone (-62.7 %, -66.7 %, respectively). Fatigue (91.7 %), radiation dermatitis (75.0 %), focal alopecia (100.0 %), nausea (41.7 %), cephalgia (58.3 %), and transient cerebral edema (16.7 %) were the most common acute toxicities. Essential dose reduction while maintaining equal target volume coverage was observed using PRT, particularly in contralaterally located critical neuronal structures, areas of neurogenesis, and structures of neurocognitive functions. These findings were supported by preliminary clinical results confirming the safety and feasibility of PRT in HGG. (orig.) [German] Die Prognose bei ''High-grade''-Gliomen (HGG) ist infaust. Gerade bei diesen Patienten sollten therapieassoziierte Nebenwirkungen minimiert werden

  20. Efficacy and toxicity of rectal cancer reirradiation using IMRT for patients who have received prior pelvic radiation therapy

    Directory of Open Access Journals (Sweden)

    Fady F. Youssef, MS

    2016-04-01

    Conclusions: Rectal cancer reirradiation using IMRT is well-tolerated in the setting of prior pelvic radiation therapy. Given significant risk of local progression, further dose escalation may be warranted for patients with life expectancy exceeding 1 year.

  1. Irradiation, Annealing, and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chernobaeva, A.A.; Korolev, Y.N.; Nanstad, R.K.; Nikolaev, Y.A.; Sokolov, M.A.

    1998-06-16

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. Even though a postirradiation anneal may be deemed successful, a critical aspect of continued RPV operation is the rate of embrittlement upon reirradiation. There are insufficient data available to allow for verification of available models of reirradiation embrittlement or for the development of a reliable predictive methodology. This is especially true in the case of fracture toughness data. Under the U.S.-Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS), Working Group 3 on Radiation Embrittlement, Structural Integrity, and Life Extension of Reactor Vessels and Supports agreed to conduct a comparative study of annealing and reirradiation effects on RPV steels. The Working Group agreed that each side would irradiate, anneal, reirradiate (if feasible ), and test two materials of the other. Charpy V-notch (CVN) and tensile specimens were included. Oak Ridge National Laboratory (ORNL) conducted such a program (irradiation and annealing, including static fracture toughness) with two weld metals representative of VVER-440 and VVER-1000 RPVs, while the Russian Research Center-Kurchatov Institute (RRC-KI) conducted a program (irradiation, annealing, reirradiation, and reannealing) with Heavy-Section Steel Technology (HSST) Program Plate 02 and Heavy-Section Steel Irradiation (HSSI) Program Weld 73W. The results for each material from each laboratory are compared with those from the other laboratory. The ORNL experiments with the VVER welds included irradiation to about 1 x 10{sup 19} n/cm{sup 2} (>1 MeV), while the RRC-KI experiments with the U.S. materials included irradiations from about 2 to 18 x 10{sup 19} n/cm{sup 2} (>l MeV). In both cases, irradiations were conducted at {approximately}290 C and annealing treatments were conducted

  2. Hyperfractionated stereotactic reirradiation for recurrent head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cvek, Jakub; Knybel, Lukas; Skacelikova, Eva; Otahal, Bretislav; Molenda, Lukas; Feltl, David [University Hospital Ostrava, Department of Oncology, Ostrava (Czech Republic); Stransky, Jiri; Res, Oldrich [University Hospital Ostrava, Department of Maxilofacial Surgery, Ostrava (Czech Republic); Matousek, Petr; Zelenik, Karol [University Hospital Ostrava, Department of Otolaryngology, Ostrava (Czech Republic)

    2016-01-15

    The goal of this work was to evaluate the efficacy and toxicity of hyperfractionated stereotactic reirradiation (re-RT) as a treatment for inoperable, recurrent, or second primary head and neck squamous cell cancer (HNSCC) that is not suitable for systemic treatment. Forty patients with recurrent or second primary HNSCC were included in this study. The patients had a median gross tumor volume of 76 ml (range 14-193 ml) and a previous radiotherapy dose greater than 60 Gy. Treatment was designed to cover 95 % of the planning target volume (PTV, defined as gross tumor volume [GTV] + 3 mm to account for microscopic spreading, with no additional set-up margin) with the prescribed dose (48 Gy in 16 fractions b.i.d.). Treatment was administered twice daily with a minimum 6 h gap. Uninvolved lymph nodes were not irradiated. Treatment was completed as planned for all patients (with median duration of 11 days, range 9-14 days). Acute toxicity was evaluated using the RTOG/EORTC scale. A 37 % incidence of grade 3 mucositis was observed, with recovery time of ≤ 4 weeks for all of these patients. Acute skin toxicity was never observed to be higher than grade 2. Late toxicity was also evaluated according to the RTOG/EORTC scale. Mandible radionecrosis was seen in 4 cases (10 %); however, neither carotid blowout syndrome nor other grade 4 late toxicity occurred. One-year overall survival (OS) and local progression-free survival (L-PFS) were found to be 33 and 44 %, respectively. Performance status and GTV proved to be significant prognostic factors regarding local control and survival. Hyperfractionated stereotactic re-RT is a reasonable treatment option for patients with recurrent/second primary HNSCC who were previously exposed to high-dose irradiation and who are not candidates for systemic treatment or hypofractionation. (orig.) [German] Ziel der Studie war es, die Effektivitaet und Toxizitaet der hyperfraktionierten akzelerierten stereotaktischen Wiederbestrahlung (re

  3. Reirradiation of Head and Neck Cancers With Intensity Modulated Radiation Therapy: Outcomes and Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Takiar, Vinita [Department of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio (United States); Garden, Adam S.; Ma, Dominic; Morrison, William H.; Edson, Mark [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zafereo, Mark E. [Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gunn, Gary B.; Fuller, Clifton D.; Beadle, Beth; Frank, Steven J. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); William, William N.; Kies, Merrill [Department of Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); El-Naggar, Adel K. [Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Weber, Randal [Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rosenthal, David I. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Phan, Jack, E-mail: jphan@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-07-15

    Purpose: To review our 15-year institutional experience using intensity modulated radiation therapy (IMRT) to reirradiate patients with head and neck squamous cell carcinomas (HNSCC) and identify predictors of outcomes and toxicity. Methods and Materials: We retrospectively reviewed the records of 227 patients who received head and neck reirradiation using IMRT from 1999 to 2014. Patients treated with noncurative intent were excluded. Radiation-related acute and late toxicities were recorded. Prognostic variables included performance status, disease site, disease-free interval, chemotherapy, and RT dose and volume. Correlative analyses were performed separately for surgery and nonsurgery patients. Results: Two hundred six patients (91%) were retreated with curative intent, and 173 had HNSCC histology; 104 (50%) underwent salvage resection, and 135 (66%) received chemotherapy. Median follow-up after reirradiation was 24.7 months. Clinical outcomes were worse for HNSCC patients, with 5-year locoregional control, progression-free survival, and overall survival rates of 53%, 22%, and 32%, respectively, compared with 74%, 59%, and 79%, respectively, for non-HNSCC patients. On multivariate analysis, concurrent chemotherapy and retreatment site were associated with tumor control, whereas performance status was associated with survival. Favorable prognostic factors specific to surgery patients were neck retreatment and lack of extracapsular extension, whereas for nonsurgery patients, these were a nasopharynx subsite and complete response to induction chemotherapy. Actuarial rates of grade ≥3 toxicity were 32% at 2 years and 48% at 5 years, with dysphagia or odynophagia being most common. Increased grade ≥3 toxicity was associated with retreatment volume >50 cm{sup 3} and concurrent chemotherapy. Conclusions: Reirradiation with IMRT either definitively or after salvage surgery can produce promising local control and survival in selected patients with head and neck

  4. Thermodynamic functions of molecular conformations of (2-fluoro-2-phenyl-1-ethyl)ammonium ion and (2-hydroxy-2-phenyl-1-ethyl)ammonium ion as models for protonated noradrenaline and adrenaline: first-principles computational study of conformations and thermodynamic functions for the noradrenaline and adrenaline models.

    Science.gov (United States)

    Lee, DongJin R; Galant, Natalie J; Wang, Hui; Mucsi, Zoltan; Setiadi, David H; Viskolcz, Bela; Csizmadia, Imre G

    2009-03-19

    This paper reports the structural and thermodynamic consequences of substitution of the OH group by the isoelectronic F-atom in the case of the adrenaline family of molecules. The conformational landscapes were explored for the two enantiomeric forms of N-protonated-beta-fluoro-beta-phenyl-ethylamine, also called (2-fluoro-2-phenyl-1-ethyl)-ammonium ion (Model 1) and that of N-protonated-beta-hydroxy-beta-phenyl-ethylamine, also referred to as (2-hydroxy-2-phenyl-1-ethyl)-ammonium (Model 2) models of noradrenaline and adrenaline molecules. These full conformational studies were carried out by first principles of quantum mechanical computations at the B3LYP/6-31G(d,p) and G3MP2B3 levels of theory, using the Gaussian03 program. Also, frequency calculations of the stable structures were performed at the B3LYP/6-31G(d,p), and G3MP2B3 levels of theory. The thermodynamic functions (U, H, S, and G) of the various stable conformations of the title compounds were calculated at these levels of theory for the R and S stereoisomers. Relative values of the thermodynamic functions have been calculated with respect of the chosen reference conformers in which all relevant dihedral angles assumed anti orientation for the Model 1 and Model 2. Through the combination of both point and axis chirality, the enantiomeric and diastereomeric relationships of the six structures for each molecule investigated were established. Intramolecular hydrogen bonding interactions have been studied by the atoms in molecules (AIM) analysis of the electron density. The aromaticity of phenyl group has been determined by a selective hydrogenation protocol. The pattern of the extent of aromacity, due intramolecular interactions, varies very little between the two models studied.

  5. Re-irradiation for painful heel spur syndrome. Retrospective analysis of 101 heels

    Energy Technology Data Exchange (ETDEWEB)

    Hautmann, M.G.; Koelbl, O. [University of Regensburg, Department of Radiotherapy, Regensburg (Germany); Neumaier, U. [MVZ Neumaier and Kollegen, Private Clinic for Radiotherapy, Regensburg (Germany)

    2014-03-15

    Painful heel spur syndrome is a common disease with a lifetime prevalence of approximately 10 %. One of the most effective treatment options is radiotherapy. Many authors recommend a second or third series of radiation for recurrent pain and partial or no response to the initial treatment. As the results of re-irradiation have not been systematically analyzed the aim of this study was to document the results of repeated radiation treatment and to identify patients who could benefit from this treatment. The analysis was performed on patients from 2 German radiotherapy institutions and included 101 re-irradiated heels. Pain was documented with the numeric rating scale (NRS) and carried out before and directly after each radiation therapy as well as for the follow-up period of 24 months. The median age of the patients was 56 years with 30.1 % male and 69.9 % female patients. Pain was caused by plantar fasciitis in 72.3 %, Haglund's exostosis in 15.8 % and Achilles tendinitis in 11.9 %. Repeated radiation was indicated because the initial radiotherapy resulted in no response in 35.6 % of patients, partial response in 39.6 % and recurrent pain in 24.8 %. A significant response to re-irradiation could be found. For the whole sample the median NRS pain score was 6 before re-irradiation, 2 after 6 weeks and 0 after 12 and 24 months. Of the patients 73.6 % were free of pain 24 months after re-irradiation. All subgroups, notably those with no response, partial response and recurrent pain had a significant reduction of pain. Re-irradiation of painful heel spur syndrome is an effective and safe treatment. All subgroups showed a good response to re-irradiation for at least 24 months. (orig.) [German] Der schmerzhafte Fersensporn ist eine der haeufigsten Erkrankungen unter den Fusssyndromen. Die Lebenszeitpraevalenz liegt bei etwa 10 %. Eine der wirkungsvollsten Therapieoptionen stellt die Strahlentherapie dar. Dabei beschreiben viele Autoren die Durchfuehrung einer

  6. Proton therapy physics

    CERN Document Server

    2012-01-01

    Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also exami...

  7. Available evidence on re-irradiation with stereotactic ablative radiotherapy following high-dose previous thoracic radiotherapy for lung malignancies.

    Science.gov (United States)

    De Bari, Berardino; Filippi, Andrea Riccardo; Mazzola, Rosario; Bonomo, Pierluigi; Trovò, Marco; Livi, Lorenzo; Alongi, Filippo

    2015-06-01

    Patients affected with intra-thoracic recurrences of primary or secondary lung malignancies after a first course of definitive radiotherapy have limited therapeutic options, and they are often treated with a palliative intent. Re-irradiation with stereotactic ablative radiotherapy (SABR) represents an appealing approach, due to the optimized dose distribution that allows for high-dose delivery with better sparing of organs at risk. This strategy has the goal of long-term control and even cure. Aim of this review is to report and discuss published data on re-irradiation with SABR in terms of efficacy and toxicity. Results indicate that thoracic re-irradiation may offer satisfactory disease control, however the data on outcome and toxicity are derived from low quality retrospective studies, and results should be cautiously interpreted. As SABR may be associated with serious toxicity, attention should be paid for an accurate patients' selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Results of nimotuzumab and vinorelbine, radiation and re-irradiation for diffuse pontine glioma in childhood.

    Science.gov (United States)

    Massimino, Maura; Biassoni, Veronica; Miceli, Rosalba; Schiavello, Elisabetta; Warmuth-Metz, Monika; Modena, Piergiorgio; Casanova, Michela; Pecori, Emilia; Giangaspero, Felice; Antonelli, Manila; Buttarelli, Francesca Romana; Potepan, Paolo; Pollo, Bianca; Nunziata, Raffaele; Spreafico, Filippo; Podda, Marta; Anichini, Andrea; Clerici, Carlo Alfredo; Sardi, Iacopo; De Cecco, Loris; Bode, Udo; Bach, Ferdinand; Gandola, Lorenza

    2014-06-01

    Radiotherapy is the only treatment definitely indicated for diffuse pontine gliomas (DIPG). Findings on the role of EGFR signaling in the onset of childhood DIPG prompted the use of nimotuzumab, an anti-EGFR monoclonal antibody. Assuming a potential synergy with both radiotherapy and vinorelbine, a pilot phase 2 protocol was launched that combined nimotuzumab with concomitant radiation and vinorelbine. An amendment in July 2011 introduced re-irradiation at relapse. The primary endpoint for first-line treatment was objective response rate (CR + PR + SD) according to the RECIST. This report concerns the outcome of this strategy as a whole. Vinorelbine 20 mg/m(2) was administered weekly, with nimotuzumab 150 mg/m(2) in the first 12 weeks of treatment; radiotherapy was delivered from weeks 3 to 9, for a total dose of 54 Gy. Vinorelbine 25 mg/m(2) and nimotuzumab were given every other week thereafter until the tumor progressed or for up to 2 years. Re-irradiation consisted of 19.8 Gy, fractionated over 11 days. Baseline and latest MRIs were assessed blindly by an outside neuroradiologist. Twenty five children (mean age 7.4 years) were enrolled as of August 2009 (median follow-up 29 months). A response was observed in 24/25 patients (96 %). The nimotuzumab/vinorelbine combination was very well tolerated, with no acute side-effects. Eleven of 16 locally-relapsing patients were re-irradiated. One-year PFS and OS rates were 30 ± 10 % and 76 ± 9 %, respectively; 2-year OS was 27 ± 9 %; the median PFS and OS were 8.5 and 15 months, respectively. This strategy generated interesting results and warrants further investigation.

  9. SU-E-T-623: Delivery of 3D Conformal Proton-Therapy Fields at Extended Source- To-Axis Distances

    Energy Technology Data Exchange (ETDEWEB)

    Kryck, E; Slopsema, R [University of Florida Proton Therapy Institute, Jacksonville, Florida (United States)

    2014-06-15

    Purpose: To evaluate the dosimetric properties of proton dose distributions delivered at extended source-to-skin distances (SSD). Methods: Radiation was delivered with a gantry-mounted proton double scattering system (Proteus 230, IBA). This system has a maximum field diameter of 24 cm at isocenter and a nominal source-to-axis distance of 230 cm. Dose was measured at nominal SSD as well as at -10, +10, +25, +50, +75, and +100 cm for several range and modulation width combinations. Depth dose distributions were measured with a multi-layer ionization chamber (MLIC), and lateral dose distributions with a 2D ionization chamber array as well as with a diode in a water phantom. Results: The maximum field diameter was found to increase from 24.0 cm at nominal SSD to 29.1 cm and 33.3 cm at +50 cm and +100 cm respectively. Field flatness remained below 3% for all SSD. Tilt in the spread-out Bragg peak depth dose distribution increased with SSD up to 0.4 %-per-g/cm2 at +100 cm. The measured range decreased with 1.1x10-3 g/cm2 per centimeter shift in SSD due to proton energy loss in air, very close to the theoretically calculated value of 1.06x10-3 g/cm3. The output and dose rate decrease with the inverse of the SSD squared as expected. Conclusion: Extending the SSD up to 100 cm increases the maximum field diameter from 24.0 cm to 33.3 cm while the dose uniformity remains acceptable.

  10. Proton therapy

    Science.gov (United States)

    Proton beam therapy; Cancer - proton therapy; Radiation therapy - proton therapy; Prostate cancer - proton therapy ... that use x-rays to destroy cancer cells, proton therapy uses a beam of special particles called ...

  11. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  12. A Review of the Role of Re-Irradiation in Recurrent High-Grade Glioma (HGG)

    Energy Technology Data Exchange (ETDEWEB)

    Amichetti, Maurizio, E-mail: amichett@atrep.it; Amelio, Dante, E-mail: amichett@atrep.it [ATreP, Agenzia Provinciale per la Protonterapia, via Perini 181, 38122 Trento (Italy)

    2011-10-28

    Despite the use of more effective multimodal treatments in high-grade glioma (HGG), the outcome of patients affected by this disease is still dismal and recurrence is a very common event. Many therapeutic approaches, alone or combined (surgery, drugs, targeted agents, immunotherapy, radiotherapy, supportive therapy), are available in the clinical armamentarium so far. The attitude of physicians is increasingly interventionist, but recurrent HGG still remains a very difficult scenario to be treated. Radiotherapy with different re-irradiation techniques is increasingly proposed as a therapeutic option with interesting results, even though the resulting duration of response is usually quite short. Most lesions re-recur locally, with inadequate identification and targeting of viable tumor being the most important cause of failure. Prognosis is affected by many patient-, tumor-, and treatment-associated prognostic factors. Radiotherapy is delivered with many advanced modalities: 3D-CRT, intensity-modulated radiation therapy, stereotactic fractionated radiotherapy, radiosurgery, and brachitherapy with or without chemotherapy administration. In order to evaluate the feasibility and efficacy of re-irradiation in this setting, we reviewed the PubMed and MEDLINE databases restricting the search to original reports published from January 1990 to June 2011. The search resulted in a total of 155 reports: 78 of them covering 2,688 patients treated with different irradiation modalities overall fulfilled the entry criteria. Radiation therapy demonstrated to be an acceptable option in recurrent HGG with good response rates and acceptable toxicity.

  13. A Review of the Role of Re-Irradiation in Recurrent High-Grade Glioma (HGG

    Directory of Open Access Journals (Sweden)

    Maurizio Amichetti

    2011-10-01

    Full Text Available Despite the use of more effective multimodal treatments in high-grade glioma (HGG, the outcome of patients affected by this disease is still dismal and recurrence is a very common event. Many therapeutic approaches, alone or combined (surgery, drugs, targeted agents, immunotherapy, radiotherapy, supportive therapy, are available in the clinical armamentarium so far. The attitude of physicians is increasingly interventionist, but recurrent HGG still remains a very difficult scenario to be treated. Radiotherapy with different re-irradiation techniques is increasingly proposed as a therapeutic option with interesting results, even though the resulting duration of response is usually quite short. Most lesions re-recur locally, with inadequate identification and targeting of viable tumor being the most important cause of failure. Prognosis is affected by many patient-, tumor-, and treatment-associated prognostic factors. Radiotherapy is delivered with many advanced modalities: 3D-CRT, intensity-modulated radiation therapy, stereotactic fractionated radiotherapy, radiosurgery, and brachitherapy with or without chemotherapy administration. In order to evaluate the feasibility and efficacy of re-irradiation in this setting, we reviewed the PubMed and MEDLINE databases restricting the search to original reports published from January 1990 to June 2011. The search resulted in a total of 155 reports: 78 of them covering 2,688 patients treated with different irradiation modalities overall fulfilled the entry criteria. Radiation therapy demonstrated to be an acceptable option in recurrent HGG with good response rates and acceptable toxicity.

  14. Effects of thermal annealing and reirradiation on toughness of reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Nanstad, R.K.; Iskander, S.K.; Sokolov, M.A. [Oak Ridge National Lab., TN (United States)] [and others

    1997-02-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or {open_quotes}recovery,{close_quotes} of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices of Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed.

  15. Re-irradiation for oligo-recurrence from esophageal cancer with radiotherapy history: a multi-institutional study.

    Science.gov (United States)

    Jingu, Keiichi; Niibe, Yuzuru; Yamashita, Hideomi; Katsui, Kuniaki; Matsumoto, Toshihiko; Nishina, Tomohiro; Terahara, Atsuro

    2017-09-05

    Neoadjuvant chemoradiotherapy following surgery has recently become a standard therapy. The purpose of the present study was to determine the effectiveness and toxicity of re-irradiation for oligo-recurrence in lymph nodes from esophageal cancer treated by definitive radiotherapy or by surgery with additional radiotherapy. We reviewed retrospectively 248 patients treated with (chemo)radiotherapy for oligo-recurrence in lymph nodes from esophageal cancer in five Japanese high-volume centers between 2000 and 2015. Thirty-three patients in whom re-irradiation was performed were enrolled in this study, and the results for patients in whom re-irradiation was performed were compared with the results for other patients. Median maximum lymph node diameter was 22 mm. Median total radiation dose was 60 Gy. The median calculated biological effective dose using the LQ model with α/β = 10 Gy (BED10) in patients in whom re-irradiation was performed was significantly lower than the median BED10 in others. There was no different factor except for BED10, histology and irradiation field between patients with a past irradiation history and patients without a past irradiation history. The median observation period in surviving patients in whom re-irradiation was performed was 21.7 months. The 3-year overall survival rate in the 33 patients with a past irradiation history was 17.9%, with a median survival period of 16.0 months. Overall survival rate and local control rate in patients with a past irradiation history were significantly worse than those in patients without a past irradiation history (log-rank test, p = 0.016 and p = 0.0007, respectively). One patient in whom re-irradiation was performed died from treatment-related gastric hemorrhage. Results in the present study suggested that re-irradiation for oligo-recurrence in lymph nodes from esophageal cancer treated by definitive radiotherapy or by surgery with additional radiotherapy might be acceptable but

  16. Active raster scanning with carbon ions. Reirradiation in patients with recurrent skull base chordomas and chondrosarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, Matthias; Welzel, Thomas; Oelmann, Jan; Habl, Gregor; Hauswald, Henrik; Jensen, Alexandra; Debus, Juergen; Herfarth, Klaus [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Ellerbrock, Malte [Heidelberg Ion Therapy Center (HIT), Heidelberg (Germany)

    2014-07-15

    To evaluate the safety and efficacy of reirradiation with carbon ions in patients with relapse of skull base chordoma and chondrosarcoma. Reirradiation with carbon ions was performed on 25 patients with locally recurrent skull base chordoma (n = 20) or chondrosarcoma (n = 5). The median time between the last radiation exposure and the reirradiation with carbon ions was 7 years. In the past, 23 patients had been irradiated once, two patients twice. Reirradiation was delivered using the active raster scanning method. The total median dose was 51.0 GyE carbon ions in a weekly regimen of five to six fractions of 3 GyE. Local progression-free survival (LPFS) was evaluated using the Kaplan-Meier method; toxicity was evaluated using the NCI Common Terminology Criteria for Adverse Events (CTCAE v.4.03). The treatment could be finished in all patients without interruption. In 80 % of patients, symptom control was achieved after therapy. The 2-year-LPFS probability was 79.3 %. A PTV volume of < 100 ml or a total dose of > 51 GyE was associated with a superior local control rate. The therapy was associated with low acute toxicity. One patient developed grade 2 mucositis during therapy. Furthermore, 12 % of patients had tympanic effusion with mild hypacusis (grade 2), while 20 % developed an asymptomatic temporal lobe reaction after treatment (grade 1). Only one patient showed a grade 3 osteoradionecrosis. Reirradiation with carbon ions is a safe and effective method in patients with relapsed chordoma and chondrosarcoma of the skull base. (orig.) [German] Evaluierung der Sicherheit und Wirksamkeit einer Re-Bestrahlung mittels Kohlenstoffionen bei Patienten mit Lokalrezidiv eines Chordoms und Chondrosarkoms der Schaedelbasis. Bei 25 Patienten mit einem Lokalrezidiv eines Chordoms (n = 20) oder Chondrosarkoms (n = 5) der Schaedelbasis erfolgte eine Re-Bestrahlung mittels Kohlenstoffionen. Die mediane Zeit zwischen letzter Bestrahlung und Re-Bestrahlung mit Kohlenstoffionen

  17. Conformal house

    DEFF Research Database (Denmark)

    Ryttov, Thomas Aaby; Sannino, Francesco

    2010-01-01

    fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions...... at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms...

  18. Proton therapy in clinical practice

    Science.gov (United States)

    Liu, Hui; Chang, Joe Y.

    2011-01-01

    Radiation dose escalation and acceleration improves local control but also increases toxicity. Proton radiation is an emerging therapy for localized cancers that is being sought with increasing frequency by patients. Compared with photon therapy, proton therapy spares more critical structures due to its unique physics. The physical properties of a proton beam make it ideal for clinical applications. By modulating the Bragg peak of protons in energy and time, a conformal radiation dose with or without intensity modulation can be delivered to the target while sparing the surrounding normal tissues. Thus, proton therapy is ideal when organ preservation is a priority. However, protons are more sensitive to organ motion and anatomy changes compared with photons. In this article, we review practical issues of proton therapy, describe its image-guided treatment planning and delivery, discuss clinical outcome for cancer patients, and suggest challenges and the future development of proton therapy. PMID:21527064

  19. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen, E-mail: stephen.avery@uphs.upenn.edu

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  20. Proton Beam Therapy Versus Conformal Photon Radiation Therapy for Childhood Craniopharyngioma: Multi-institutional Analysis of Outcomes, Cyst Dynamics, and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Andrew J. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Greenfield, Brad [Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas (United States); Mahajan, Anita [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Paulino, Arnold C. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas (United States); Okcu, M. Fatih [Department of Pediatrics, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); Allen, Pamela K. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Chintagumpala, Murali [Department of Pediatrics, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); Kahalley, Lisa S. [Section of Psychology, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); McAleer, Mary F.; McGovern, Susan L. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Whitehead, William E. [Department of Neurosurgery, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); Grosshans, David R., E-mail: dgrossha@mdanderson.org [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States)

    2014-10-01

    Purpose: We compared proton beam therapy (PBT) with intensity modulated radiation therapy (IMRT) for pediatric craniopharyngioma in terms of disease control, cyst dynamics, and toxicity. Methods and Materials: We reviewed records from 52 children treated with PBT (n=21) or IMRT (n=31) at 2 institutions from 1996-2012. Endpoints were overall survival (OS), disease control, cyst dynamics, and toxicity. Results: At 59.6 months' median follow-up (PBT 33 mo vs IMRT 106 mo; P<.001), the 3-year outcomes were 96% for OS, 95% for nodular failure-free survival and 76% for cystic failure-free survival. Neither OS nor disease control differed between treatment groups (OS P=.742; nodular failure-free survival P=.546; cystic failure-free survival P=.994). During therapy, 40% of patients had cyst growth (20% requiring intervention); immediately after therapy, 17 patients (33%) had cyst growth (transient in 14), more commonly in the IMRT group (42% vs 19% PBT; P=.082); and 27% experienced late cyst growth (32% IMRT, 19% PBT; P=.353), with intervention required in 40%. Toxicity did not differ between groups. On multivariate analysis, cyst growth was related to visual and hypothalamic toxicity (P=.009 and .04, respectively). Patients given radiation as salvage therapy (for recurrence) rather than adjuvant therapy had higher rates of visual and endocrine (P=.017 and .024, respectively) dysfunction. Conclusions: Survival and disease-control outcomes were equivalent for PBT and IMRT. Cyst growth is common, unpredictable, and should be followed during and after therapy, because it contributes to late toxicity. Delaying radiation therapy until recurrence may result in worse visual and endocrine function.

  1. Transportation Conformity

    Science.gov (United States)

    This section provides information on: current laws, regulations and guidance, policy and technical guidance, project-level conformity, general information, contacts and training, adequacy review of SIP submissions

  2. Anisotropic swelling observed during stress-free reirradiation of AISI 304 tubes previously irradiated under stress

    Energy Technology Data Exchange (ETDEWEB)

    Gamer, F. [Pacific Northwest National Laboratory, P.O. Box 999, Richland WA, AK 99352 (United States); Flinn, J.E. [Argonne National Laboratory, EBR-II Project, Idaho Falls Ill, AK (United States); Hall, M.M. [Bechtel Bettis Company, West Mifflin, PA, AK (United States)

    2007-07-01

    Full text of publication follows: Structural steels anticipated for fusion applications will experience time-dependent changes in the radiation environment, i.e. stress level, stress state, irradiation temperature and dpa rate. There are insufficient data available to allow confident prediction of the effects of such environmental changes on subsequent behavior of swelling and irradiation creep. Data on the effect of changes in stress state or irradiation temperature are especially lacking. In this paper are presented the results of a reirradiation experiment conducted in EBR-II. Cladding tubes constructed from 304L stainless steel were removed from irradiated metal-driver fuel elements. These tubes were stressed during irradiation by fission gas buildup and fuel clad mechanical interaction. After cutting and cleaning, the density and diameter changes of each section were measured to determine swelling and irradiation creep. The tubes sections were re-irradiated in the absence of stress to 10 dpa, followed by measurement of their density and changes in both diameter and length. Also irradiated beside the previously stressed specimens were adjacent tube sections of 304L that encapsulated the fuel pins during the original irradiation. The cladding-capsule pairs experienced the same flux-spectral exposures, but the capsules were stress-free and operating at {approx}50 deg. C lower temperatures. Tube pairs were irradiated at either the original irradiation temperature or at significantly different temperatures. The first major conclusion is that once significant swelling was reached in the initial irradiation, the swelling continued thereafter without changing in response to temperature or stress changes, approaching or reaching {approx}1%/dpa. The second major conclusion is that the previously-stressed material retained a memory of its earlier stress state, swelling in absence of stress with an anisotropic distribution of strains. The swelling of the previously

  3. Workers’ Conformism

    Directory of Open Access Journals (Sweden)

    Nikolay Ivantchev

    2013-10-01

    Full Text Available Conformism was studied among 46 workers with different kinds of occupations by means of two modified scales measuring conformity by Santor, Messervey, and Kusumakar (2000 – scale for perceived peer pressure and scale for conformism in antisocial situations. The hypothesis of the study that workers’ conformism is expressed in a medium degree was confirmed partly. More than a half of the workers conform in a medium degree for taking risk, and for the use of alcohol and drugs, and for sexual relationships. More than a half of the respondents conform in a small degree for anti-social activities (like a theft. The workers were more inclined to conform for risk taking (10.9%, then – for the use of alcohol, drugs and for sexual relationships (8.7%, and in the lowest degree – for anti-social activities (6.5%. The workers who were inclined for the use of alcohol and drugs tended also to conform for anti-social activities.

  4. Outcome in patients with small cell lung cancer re-irradiated for brain metastases after prior prophylactic cranial irradiation.

    Science.gov (United States)

    Bernhardt, Denise; Bozorgmehr, Farastuk; Adeberg, Sebastian; Opfermann, Nils; von Eiff, Damian; Rieber, Juliane; Kappes, Jutta; Foerster, Robert; König, Laila; Thomas, Michael; Debus, Jürgen; Steins, Martin; Rieken, Stefan

    2016-11-01

    Patients with brain metastases from small-cell lung cancer (SCLC) who underwent prior prophylactic cranial irradiation (PCI) are often treated with a second course of whole brain radiation therapy (Re-WBRT) or stereotactic radiosurgery (SRS) for purposes of palliation in symptomatic patients, hope for increased life expectancy or even as an alternative to untolerated steroids. Up to date there is only limited data available regarding the effect of this treatment. This study examines outcomes in patients in a single institution who underwent cerebral re-irradiation after prior PCI. We examined the medical records of 76 patients with brain metastases who had initially received PCI between 2008 and 2015 and were subsequently irradiated with a second course of cerebral radiotherapy. Patients underwent re-irradiation using either Re-WBRT (88%) or SRS (17%). The outcomes, including symptom palliation, radiation toxicity, and overall survival (OS) following re-irradiation were analyzed. Survival and correlations were calculated using log-rank, univariate, and multivariate Cox proportional hazards-ratio analyses. Treatment-related toxicity was classified according to CTCAE v4.0. Median OS of all patients was 3 months (range 0-12 months). Median OS after Re-WBRT was 3 months (range 0-12 months). Median OS after SRS was 5 months (range 0-12 months). Karnofsky performance status scale (KPS ≥50%) was significantly associated with improved OS in both univariate (HR 2772; p=0,009) and multivariate analyses (HR 2613; p=0,024) for patients receiving Re-WBRT. No unexpected toxicity was observed and the observed toxicity remained consistently low. Symptom palliation was achieved in 40% of symptomatic patients. In conclusion, cerebral re-irradiation after prior PCI is beneficial for symptom palliation and is associated with minimal side effects in patients with SCLC. Our survival data suggests that it is primarily useful in patients with adequate performance status. Copyright

  5. Clinical Impact of Re-irradiation with Carbon-ion Radiotherapy for Lymph Node Recurrence of Gynecological Cancers.

    Science.gov (United States)

    Shiba, Shintaro; Okonogi, Noriyuki; Kato, Shingo; Wakatsuki, Masaru; Kobayashi, Daijiro; Kiyohara, Hiroki; Ohno, Tatsuya; Karasawa, Kumiko; Nakano, Takashi; Kamada, Tadashi

    2017-10-01

    To evaluate the safety and efficacy of re-irradiation with carbon-ion radiotherapy (C-ion RT) for lymph node recurrence of gynecological cancers after definitive radiotherapy. Data regarding patients with unresectable and isolated recurrent lymph node from gynecological cancer after definitive radiotherapy were analyzed. Total dose of C-ion RT was 48-57.6 Gy (RBE) in 12 or 16 fractions. Sixteen patients received re-irradiation by C-ion RT were analyzed. Median follow-up was 37 months. Median tumor size was 27 mm. None developed Grade 1 or higher acute toxicities and Grade 3 or higher late toxicities. The 3-year overall survival, local control and disease-free survival rates after C-ion RT were 74%, 94% and 55%, respectively. Re-irradiation with C-ion RT for lymph node recurrence of gynecological cancers after definitive radiotherapy can be safe and effective. This result suggested that C-ion RT could be a curative treatment option for conventionally difficult-to-cure patients. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Predictors of High-grade Esophagitis After Definitive Three-dimensional Conformal Therapy, Intensity-modulated Radiation Therapy, or Proton Beam Therapy for Non-small cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tucker, Susan L. [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Martel, Mary K.; Mohan, Radhe; Balter, Peter A. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lopez Guerra, Jose Luis [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Hospitales Universitarios Virgen del Rocio, Seville (Spain); Liu Hongmei; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-11-15

    Introduction: We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Methods and Materials: Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade {>=}3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Results: Overall, 652 patients were included: 405 patients were treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade {>=}3 RE were 8%, 28%, and 6%, respectively, with a median time to onset of 42 days (range, 11-93 days). A fit of the fractional DVH LKB model demonstrated that the fractional effective dose was significantly different (P=.046) than 1 (fractional mean dose) indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (P=.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (P=.105). Conclusions: Fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE, estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT.

  7. Outcomes of patients with loco-regionally recurrent or new primary squamous cell carcinomas of the head and neck treated with curative intent reirradiation at Mayo Clinic.

    Science.gov (United States)

    Curtis, Kelly K; Ross, Helen J; Garrett, Ashley L; Jizba, Theresa A; Patel, Ajay B; Patel, Samir H; Wong, William W; Halyard, Michele Y; Ko, Stephen J; Kosiorek, Heidi E; Foote, Robert L

    2016-04-09

    We reviewed outcomes of patients with loco-regionally recurrent (LRR) or new primary (NP) squamous cell carcinoma of the head and neck (SCCHN) treated at our institution with reirradiation (RRT). Patients received definitive RRT (DRRT) or post-operative RRT following salvage surgery (PRRT) from 2003 to 2011. Measured survival outcomes included loco-regional relapse free survival (LRFS) and overall survival (OS). Among 81 patients (PRRT, 42; DRRT, 39), median PRRT and DRRT doses were 60 Gy (12-70 Gy) and 69.6 Gy (48-76.8 Gy). The majority of patients received IMRT-based RRT (n = 77, 95 %). With median follow-up of 78.1 months (95 % CI, 56-96.8 months), 2-year OS was 53 % with PRRT and 48 % with DRRT (p = 0.12); 23 % of patients were alive at last follow-up. LRFS at 2 years was 60 %, and did not differ significantly between PRRT and DRRT groups. A trend toward inferior LRFS was noted among patients receiving chemotherapy with RRT versus RRT alone (p = 0.06). Late serious toxicities were uncommon, including osteoradionecrosis (2 patients) and carotid artery bleeding (1 patient, non-fatal). OS of PRRT- and DRRT-treated patients in this series appears superior to the published literature. We used IMRT for the majority of patients, in contrast to several series and trials previously reported, which may account in part for this difference. Future studies should seek to improve outcomes among patients with LRR/NP SCCHN via alternative therapeutic modalities such as proton radiotherapy and by incorporating novel systemic agents.

  8. General Conformity

    Science.gov (United States)

    The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.

  9. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2000-08-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, ``conformal infinity'' is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  10. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2004-01-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  11. Thermal Skin Damage During Reirradiation and Hyperthermia Is Time-Temperature Dependent

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, Akke, E-mail: akke.bakker@amc.uva.nl [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands); Kolff, M. Willemijn [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands); Holman, Rebecca [Clinical Research Unit, Academic Medical Center (AMC), Amsterdam (Netherlands); Leeuwen, Caspar M. van; Korshuize-van Straten, Linda; Kroon-Oldenhof, Rianne de; Rasch, Coen R.N.; Tienhoven, Geertjan van; Crezee, Hans [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands)

    2017-06-01

    Purpose: To investigate the relationship of thermal skin damage (TSD) to time–temperature isoeffect levels for patients with breast cancer recurrence treated with reirradiation plus hyperthermia (reRT + HT), and to investigate whether the treatment history of previous treatments (scar tissue) is a risk factor for TSD. Methods and Materials: In this observational study, temperature characteristics of hyperthermia sessions were analyzed in 262 patients with recurrent breast cancer treated in the AMC between 2010 and 2014 with reirradiation and weekly hyperthermia for 1 hour. Skin temperature was measured using a median of 42 (range, 29-82) measurement points per hyperthermia session. Results: Sixty-eight patients (26%) developed 79 sites of TSD, after the first (n=26), second (n=17), third (n=27), and fourth (n=9) hyperthermia session. Seventy percent of TSD occurred on or near scar tissue. Scar tissue reached higher temperatures than other skin tissue (0.4°C, P<.001). A total of 102 measurement points corresponded to actual TSD sites in 35 of 79 sessions in which TSD developed. Thermal skin damage sites had much higher maximum temperatures than non-TSD sites (2.8°C, P<.001). Generalized linear mixed models showed that the probability of TSD is related to temperature and thermal dose values (P<.001) and that scar tissue is more at risk (odds ratio 0.4, P<.001). Limiting the maximum temperature of a measurement point to 43.7°C would mean that the probability of observing TSD was at most 5%. Conclusion: Thermal skin damage during reRT + HT for recurrent breast cancer was related to higher local temperatures and time–temperature isoeffect levels. Scar tissue reached higher temperatures than other skin tissue, and TSD occurred at lower temperatures and thermal dose values in scar tissue compared with other skin tissue. Indeed, TSD developed often on and around scar tissue from previous surgical procedures.

  12. Re-Irradiation of Locoregional NSCLC Recurrence Using Robotic Stereotactic Body Radiotherapy.

    Science.gov (United States)

    Ceylan, Cemile; Hamacı, Andaç; Ayata, Hande; Berberoglu, Kezban; Kılıç, Ayhan; Güden, Metin; Engin, Kayıhan

    2017-01-01

    We evaluated the efficacy, toxicity, and dose responses of re-irradiation with stereotactic body radiotherapy (SBRT) in patients with recurrent non- small cell lung cancer (NSCLC) after previous irradiation. 28 patients were included. Previous median radiation doses were 54 and 66 Gy. The median interval time between previous radiotherapy and SBRT was 14 months. The median follow-up time after SBRT was 9 months (range 3-93 months). To evaluate the effectiveness of SBRT, local control, overall survival, and treatment-related toxicity were reported. SBRT doses and fractionation ranged from 60 to 30 Gy and from 3 to 8, respectively, according to previous doses, location of the recurrence, and interval time. 65% of tumor recurrences overlapped with previous treatment, while 35% of tumors recurred outside of the previous treatment. 4 patients had local progression after SBRT at their first follow-up. The Kaplan-Meier estimates of the 1- and 2-year actuarial overall survival were 71 and 42%, respectively. The mean survival following SBRT was 32.8 months, and the median survival was 21 months. No grade 3 or higher toxicities were observed. Robotic SBRT is a tolerable treatment option with manageable toxicity which can be used with radical or palliative intent in carefully selected patients with locally recurrent tumors after previous irradiation. © 2017 S. Karger GmbH, Freiburg.

  13. Re-irradiation of recurrent esophageal cancer after primary definitive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Lee, Chang Geol; Kim, Kyung Hwan; Kim, Tae Hyung [Dept. of Radiation Oncology, Yonsei University Health System, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-12-15

    For recurrent esophageal cancer after primary definitive radiotherapy, no general treatment guidelines are available. We evaluated the toxicities and clinical outcomes of re-irradiation (re-RT) for recurrent esophageal cancer. We analyzed 10 patients with recurrent esophageal cancer treated with re-RT after primary definitive radiotherapy. The median time interval between primary radiotherapy and re-RT was 15.6 months (range, 4.8 to 36.4 months). The total dose of primary radiotherapy was a median of 50.4 Gy (range, 50.4 to 63.0 Gy). The total dose of re-RT was a median of 46.5 Gy (range, 44.0 to 50.4 Gy). The median follow-up period was 4.9 months (range, 2.6 to 11.4 months). The tumor response at 3 months after the end of re-RT was complete response (n = 2), partial response (n = 1), stable disease (n = 2), and progressive disease (n = 5). Grade 5 tracheoesophageal fistula developed in three patients. The time interval between primary radiotherapy and re-RT was less than 12 months in two of these three patients. Late toxicities included grade 1 dysphagia (n = 1). Re-RT of recurrent esophageal cancer after primary radiotherapy can cause severe toxicity.

  14. Fission gas release during power change. Re-irradiation test of LWR fuel rod at JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Jinichi; Furuta, Teruo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Endo, Yasuichi; Ishii, Tadahiko; Shimizu, Michio

    1995-11-01

    A full length rod irradiated at Tsuruga unit 1 was refablicated to short length rods, and rod inner pressure gauges were re-instrumented to the rods. Re-irradiation tests to study the fission gas release during power change were carried out by means of BOCA/OSF-1 facility at JMTR. In the tests, steady state operation at 40kW/m, power cycling and daily load follow operations between 20 and 40kW/m were conducted for the same high power holding time, and the rod inner pressure change during the tests was measured. The rod inner pressure increase was observed during power change, especially during power reduction. The rod inner pressure increase during a power cycling depended on the length of the high power operation just before the power cycling. The width of the rod inner pressure increase during a power cycling decreased gradually as the power cycling was repeated continuously. When steady state operation and power cycling were repeated at the power levels of 30, 35 and 40kW/m, the power cycling accelerated the fission gas release compared with the steady state operation. The fission gas release during power reduction is estimated to be the release from FP gas bubbles on the grain boundary caused by the thermal stress in the pellet during power reduction. (author).

  15. Re-irradiation after salvage mastectomy for local recurrence after a conservative treatment: a retrospective analysis of twenty patients (Nancy: 1988-2001); Re-irradiation parietale apres mastectomie de rattrapage pour recidive d'un cancer du sein apres traitement conservateur: etude retrospective sur 20 patientes (Nancy: 1988-2001)

    Energy Technology Data Exchange (ETDEWEB)

    Racadot, S.; Marchal, C.; Charra-Brunaud, C.; Peiffert, D.; Bey, P. [Centre Alexis-Vautrin, Service de Radiotherapie, 54 - Vandoeuvre-les-Nancy (France); Verhaeghe, J.L. [Centre Alexis-Vautrin, Service de Chirurgie, 54 - Vandoeuvre-les-Nancy (France)

    2003-12-01

    Purpose. - To retrospectively assess the efficacy of post-mastectomy re-irradiation for local relapse of breast cancer. Patients and methods. - Twenty patients, initially treated by conservative surgery and radiotherapy (50 Gy in 25 fractions over 5 weeks) were treated from 1998 to 2001 for a local relapse by salvage mastectomy and re-irradiation (either electron or photon beams). Mean age was 53 years (31-71). Reasons for re-irradiation were that the local relapses were inflammatory (4 pts), multifocal (5 pts), cutaneous (5 pts), involved the nipple (3 pts) or because the surgical margins (either muscle or skin) were involved (3 pts). The median dose of re-irradiation was 45 Gy (33-65) in 15 fractions over 33 days. Mean follow-up was 48 months (5-97). Results. - Fifteen patients remained free of a second local recurrence and 10 were still alive, without metastasis. Neither the dose of re-irradiation nor the irradiated surfaces were prognostic factors of local control (P = 0.877 and P = 0.424). Five patients developed radiation-induced pneumonitis without functional respiratory impairment. The incidence of pneumonitis seemed to be related to the biological dose of re-irradiation (P = 0.037). Other late complications occurred such as pigmentation changes (12 pts), telangiectasia (8 pts), chondritis (2 pts), parietal fibrosis (7 pts), rib fractures (4 pts), severe pain (11 pts) and lymphedema (2 pts). The increase in biological equivalent dose was highly statistically linked with the occurrence of disabling pain (P = 0.0123). Conclusion. - Parietal re-irradiation achieves good and lasting local control with an acceptable rate of acute complications but with a risk of disabling late sequelae such as severe pain. (author)

  16. Rib fractures after reirradiation plus hyperthermia for recurrent breast cancer. Predictive factors

    Energy Technology Data Exchange (ETDEWEB)

    Oldenborg, Sabine; Valk, Christel; Os, Rob van; Voerde Sive Voerding, Paul zum; Crezee, Hans; Tienhoven, Geertjan van; Rasch, Coen [University of Amsterdam, Department of Radiation Oncology, Z1-215, Academic Medical Center, Amsterdam (Netherlands); Oei, Bing; Venselaar, Jack [Institute Verbeeten (BVI), Tilburg (Netherlands); Randen, Adrienne van [University of Amsterdam (AMC), Department of Radiology Academic Medical Center, Amsterdam (Netherlands)

    2016-04-15

    Combining reirradiation (reRT) and hyperthermia (HT) has shown high therapeutic value for patients with locoregional recurrent breast cancer (LR). However, additional toxicity of reirradiation (e.g., rib fractures) may occur. The aim of this study is to determine the impact of potential risk factors on the occurrence of rib fractures. From 1982-2005, 234 patients were treated with adjuvant reRT + HT after surgery for LR. ReRT consisted typically of 8 fractions of 4 Gy twice a week, or 12 fractions of 3 Gy four times a week. A total of 118 patients were irradiated with abutted photon and electron fields. In all, 60 patients were irradiated using either one or alternating combinations of abutted AP electron fields. Hyperthermia was given once or twice a week. The 5-year infield local control (LC) rate was 70 %. Rib fractures were detected in 16 of 234 patients (actuarial risk: 7 % at 5 years). All rib fractures occurred in patients treated with a combination of photon and abutted electron fields (p = 0.000); in 15 of 16 patients fractures were located in the abutment regions. The other significant predictive factors for rib fractures were a higher fraction dose (p = 0.040), large RT fields, and treatment before the year 2000. ReRT + HT results in long-term LC. The majority of rib fractures were located in the photon/electron abutment area, emphasizing the disadvantage of field overlap. Large abutted photon/electron fields combined with 4 Gy fractions increase the number of rib fractures in this study group. However, as these factors were highly correlated no relative importance of the individual factors could be estimated. Increasing the number of HT sessions a week does not increase the risk of rib fractures. (orig.) [German] Der kombinierte Einsatz von Rebestrahlung (reRT) und Hyperthermie (HT) zeigt eine hohe Wirksamkeit bei Patienten mit lokoregional rezidiviertem Brustkrebs (LR). Jedoch koennen zusaetzliche toxische Effekte von reRT (z. B. Rippenfrakturen

  17. Proton therapy in the clinic.

    Science.gov (United States)

    DeLaney, Thomas F

    2011-01-01

    The clinical advantage for proton radiotherapy over photon approaches is the marked reduction in integral dose to the patient, due to the absence of exit dose beyond the proton Bragg peak. The integral dose with protons is approximately 60% lower than that with any external beam photon technique. Pediatric patients, because of their developing normal tissues and anticipated length of remaining life, are likely to have the maximum clinical gain with the use of protons. Proton therapy may also allow treatment of some adult tumors to much more effective doses, because of normal tissue sparing distal to the tumor. Currently, the most commonly available proton treatment technology uses 3D conformal approaches based on (a) distal range modulation, (b) passive scattering of the proton beam in its x- and y-axes, and (c) lateral beam-shaping. It is anticipated that magnetic pencil beam scanning will become the dominant mode of proton delivery in the future, which will lower neutron scatter associated with passively scattered beam lines, reduce the need for expensive beam-shaping devices, and allow intensity-modulated proton radiotherapy. Proton treatment plans are more sensitive to variations in tumor size and normal tissue changes over the course of treatment than photon plans, and it is expected that adaptive radiation therapy will be increasingly important for proton therapy as well. While impressive treatment results have been reported with protons, their cost is higher than for photon IMRT. Hence, protons should ideally be employed for anatomic sites and tumors not well treated with photons. While protons appear cost-effective for pediatric tumors, their cost-effectiveness for treatment of some adult tumors, such as prostate cancer, is uncertain. Comparative studies have been proposed or are in progress to more rigorously assess their value for a variety of sites. The utility of proton therapy will be enhanced by technological developments that reduce its cost

  18. SU-C-BRB-01: Automated Dose Deformation for Re-Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S; Kainz, K; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2016-06-15

    Purpose: An objective of retreatment planning is to minimize dose to previously irradiated tissues. Conventional retreatment planning is based largely on best-guess superposition of the previous treatment’s isodose lines. In this study, we report a rigorous, automated retreatment planning process to minimize dose to previously irradiated organs at risk (OAR). Methods: Data for representative patients previously treated using helical tomotherapy and later retreated in the vicinity of the original disease site were retrospectively analyzed in an automated fashion using a prototype treatment planning system equipped with a retreatment planning module (Accuray, Inc.). The initial plan’s CT, structures, and planned dose were input along with the retreatment CT and structure set. Using a deformable registration algorithm implemented in the module, the initially planned dose and structures were warped onto the retreatment CT. An integrated third-party sourced software (MIM, Inc.) was used to evaluate registration quality and to contour overlapping regions between isodose lines and OARs, providing additional constraints during retreatment planning. The resulting plan and the conventionally generated retreatment plan were compared. Results: Jacobian maps showed good quality registration between the initial plan and retreatment CTs. For a right orbit case, the dose deformation facilitated delineating the regions of the eyes and optic chiasm originally receiving 13 to 42 Gy. Using these regions as dose constraints, the new retreatment plan resulted in V50 reduction of 28% for the right eye and 8% for the optic chiasm, relative to the conventional plan. Meanwhile, differences in the PTV dose coverage were clinically insignificant. Conclusion: Automated retreatment planning with dose deformation and definition of previously-irradiated regions allowed for additional planning constraints to be defined to minimize re-irradiation of OARs. For serial organs that do not recover

  19. Robotic image-guided reirradiation of lateral pelvic recurrences: preliminary results

    Directory of Open Access Journals (Sweden)

    Castelain Bernard

    2011-06-01

    Full Text Available Abstract Background The first-line treatment of a pelvic recurrence in a previously irradiated area is surgery. Unfortunately, few patients are deemed operable, often due to the location of the recurrence, usually too close to the iliac vessels, or the associated surgical morbidity. The objective of this study is to test the viability of robotic image-guided radiotherapy as an alternative treatment in inoperable cases. Methods Sixteen patients previously treated with radiotherapy were reirradiated with CyberKnife® for lateral pelvic lesions. Recurrences of primary rectal cancer (4 patients, anal canal (6, uterine cervix cancer (4, endometrial cancer (1, and bladder carcinoma (1 were treated. The median dose of the previous treatment was 45 Gy (EqD2 range: 20 to 96 Gy. A total dose of 36 Gy in six fractions was delivered with the CyberKnife over three weeks. The responses were evaluated according to RECIST criteria. Results Median follow-up was 10.6 months (1.9 to 20.5 months. The actuarial local control rate was 51.4% at one year. Median disease-free survival was 8.3 months after CyberKnife treatment. The actuarial one-year survival rate was 46%. Acute tolerance was limited to digestive grade 1 and 2 toxicities. Conclusions Robotic stereotactic radiotherapy can offer a short and well-tolerated treatment for lateral pelvic recurrences in previously irradiated areas in patients otherwise not treatable. Efficacy and toxicity need to be evaluated over the long term, but initial results are encouraging.

  20. Reirradiation for recurrent head and neck cancers using charged particle or photon radiotherapy.

    Science.gov (United States)

    Yamazaki, Hideya; Demizu, Yusuke; Okimoto, Tomoaki; Ogita, Mikio; Himei, Kengo; Nakamura, Satoaki; Suzuki, Gen; Yoshida, Ken; Kotsuma, Tadayuki; Yoshioka, Yasuo; Oh, Ryoongjin

    2017-07-01

    To examine the outcomes of reirradiation for recurrent head and neck cancers using different modalities. This retrospective study included 26 patients who received charged particle radiotherapy (CP) and 150 who received photon radiotherapy (117 CyberKnife radiotherapy [CK] and 36 intensity-modulated radiotherapy [IMRT]). Inverse probability of treatment weighting (IPTW) involving propensity scores was used to reduce background selection bias. Higher prescribed doses were used in CP than photon radiotherapy. The 1‑year overall survival (OS) rates were 67.9% for CP and 54.1% for photon radiotherapy (p = 0.15; 55% for CK and 51% for IMRT). In multivariate Cox regression, the significant prognostic factors for better survival were nasopharyngeal cancer, higher prescribed dose, and lower tumor volume. IPTW showed a statistically significant difference between CP and photon radiotherapy (p = 0.04). The local control rates for patients treated with CP and photon radiotherapy at 1 year were 66.9% (range 46.3-87.5%) and 67.1% (range 58.3-75.9%), respectively. A total of 48 patients (27%) experienced toxicity grade ≥3 (24% in the photon radiotherapy group and 46% in the CP group), including 17 patients with grade 5 toxicity. Multivariate analysis revealed that younger age and a larger planning target volume (PTV) were significant risk factors for grade 3 or worse toxicity. CP provided superior survival outcome compared to photon radiotherapy. Tumor volume, primary site (nasopharyngeal), and prescribed dose were identified as survival factors. Younger patients with a larger PTV experienced toxicity grade ≥3.

  1. Improving Outcomes for Esophageal Cancer using Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chuong, Michael D. [Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (United States); Hallemeier, Christopher L. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Jabbour, Salma K. [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey (United States); Yu, Jen; Badiyan, Shahed [Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (United States); Merrell, Kenneth W. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Mishra, Mark V. [Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (United States); Li, Heng [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Verma, Vivek [Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska (United States); Lin, Steven H., E-mail: shlin@mdanderson.org [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States)

    2016-05-01

    Radiation therapy (RT) plays an essential role in the management of esophageal cancer. Because the esophagus is a centrally located thoracic structure there is a need to balance the delivery of appropriately high dose to the target while minimizing dose to nearby critical structures. Radiation dose received by these critical structures, especially the heart and lungs, may lead to clinically significant toxicities, including pneumonitis, pericarditis, and myocardial infarction. Although technological advancements in photon RT delivery like intensity modulated RT have decreased the risk of such toxicities, a growing body of evidence indicates that further risk reductions are achieved with proton beam therapy (PBT). Herein we review the published dosimetric and clinical PBT literature for esophageal cancer, including motion management considerations, the potential for reirradiation, radiation dose escalation, and ongoing esophageal PBT clinical trials. We also consider the potential cost-effectiveness of PBT relative to photon RT.

  2. Long-term survival following two recurrences and re-irradiation courses for a nasopharyngeal carcinoma: a case report

    Directory of Open Access Journals (Sweden)

    Haddad P

    2010-10-01

    Full Text Available "nBackground: Local recurrence in Nasopharyngeal Carcinoma (NPC presents is a major challenge. Patients experience substantial morbidity as well as poor survival if no further treatment is offered. Residual or recurrent nasopharyngeal carcinoma is usually managed by chemotherapy, stereotactic radiosurgery, external beam radiation therapy (EBRT, interstitial, and intracavitary brachytherapy or salvage surgery. This case presents the treatment of two consecutive localized recurrences of NPC."n "nCase presentation: The patient was a 59-year-old man who underwent a course of radical external-beam radiotherapy for a primary NPC in 1999, then another course of external radiation in 2004 for his first recurrence, and finally a course of brachytherapy for the second recurrence in 2005. The patient is well now in 2010, with no signs of disease five years after the third radiotherapy."n "nConclusion: Our experience of re-irradiation for this twice recurrent nasopharyngeal carcinoma has been promising with encouraging tumor control and acceptable treatment-related toxicity profile. This case indicates the efficacy of definitive re-irradiation for regional recurrence and the necessity for long-term observation for the salvageable early-stage local failure.

  3. [Proton imaging applications for proton therapy: state of the art].

    Science.gov (United States)

    Amblard, R; Floquet, V; Angellier, G; Hannoun-Lévi, J M; Hérault, J

    2015-04-01

    Proton therapy allows a highly precise tumour volume irradiation with a low dose delivered to the healthy tissues. The steep dose gradients observed and the high treatment conformity require a precise knowledge of the proton range in matter and the target volume position relative to the beam. Thus, proton imaging allows an improvement of the treatment accuracy, and thereby, in treatment quality. Initially suggested in 1963, radiographic imaging with proton is still not used in clinical routine. The principal difficulty is the lack of spatial resolution, induced by the multiple Coulomb scattering of protons with nuclei. Moreover, its realization for all clinical locations requires relatively high energies that are previously not considered for clinical routine. Abandoned for some time in favor of X-ray technologies, research into new imaging methods using protons is back in the news because of the increase of proton radiation therapy centers in the world. This article exhibits a non-exhaustive state of the art in proton imaging. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  4. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Directory of Open Access Journals (Sweden)

    Abigail T. Berman

    2015-07-01

    Full Text Available Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT, through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC, as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  5. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Abigail T., E-mail: abigail.berman@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 (United States); James, Sara St.; Rengan, Ramesh [Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA 98195 (United States)

    2015-07-02

    Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  6. Proton Radiotherapy for Pediatric Sarcoma

    Directory of Open Access Journals (Sweden)

    Matthew M. Ladra

    2014-01-01

    Full Text Available Pediatric sarcomas represent a distinct group of pathologies, with approximately 900 new cases per year in the United States alone. Radiotherapy plays an integral role in the local control of these tumors, which often arise adjacent to critical structures and growing organs. The physical properties of proton beam radiotherapy provide a distinct advantage over standard photon radiation by eliminating excess dose deposited beyond the target volume, thereby reducing both the dose of radiation delivered to non-target structures as well as the total radiation dose delivered to a patient. Dosimetric studies comparing proton plans to IMRT and 3D conformal radiation have demonstrated the superiority of protons in numerous pediatric malignancies and data on long-term clinical outcomes and toxicity is emerging. In this article, we review the existing clinical and dosimetric data regarding the use of proton beam radiation in malignant bone and soft tissue sarcomas.

  7. Re-irradiation after gross total resection of recurrent glioblastoma : Spatial pattern of recurrence and a review of the literature as a basis for target volume definition.

    Science.gov (United States)

    Straube, Christoph; Elpula, Greeshma; Gempt, Jens; Gerhardt, Julia; Bette, Stefanie; Zimmer, Claus; Schmidt-Graf, Friederike; Meyer, Bernhard; Combs, Stephanie E

    2017-06-14

    Currently, patients with gross total resection (GTR) of recurrent glioblastoma (rGBM) undergo adjuvant chemotherapy or are followed up until progression. Re-irradiation, as one of the most effective treatments in macroscopic rGBM, is withheld in this situation, as uncertainties about the pattern of re-recurrence, the target volume, and also the efficacy of early re-irradiation after GTR exist. Imaging and clinical data from 26 consecutive patients with GTR of rGBM were analyzed. The spatial pattern of recurrences was analyzed according to the RANO-HGG criteria ("response assessment in neuro-oncology criteria for high-grade gliomas"). Progression-free (PFS) and overall survival (OS) were analyzed by the Kaplan-Meier method. Furthermore, a systematic review was performed in PubMed. All but 4 patients underwent adjuvant chemotherapy after GTR. Progression was diagnosed in 20 of 26 patients and 70% of recurrent tumors occurred adjacent to the resection cavity. The median extension beyond the edge of the resection cavity was 20 mm. Median PFS was 6 months; OS was 12.8 months. We propose a target volume containing the resection cavity and every contrast enhancing lesion as the gross tumor volume (GTV), a spherical margin of 5-10 mm to generate the clinical target volume (CTV), and a margin of 1-3 mm to generate the planning target volume (PTV). Re-irradiation of this volume is deemed to be safe and likely to prolong PFS. Re-irradiation is worth considering also after GTR, as the volumes that need to be treated are limited and re-irradiation has already proven to be a safe treatment option in general. The strategy of early re-irradiation is currently being tested within the GlioCave/NOA 17/Aro 2016/03 trial.

  8. Non-conformable, partial and conformable transposition

    DEFF Research Database (Denmark)

    König, Thomas; Mäder, Lars Kai

    2013-01-01

    Although member states are obliged to transpose directives into domestic law in a conformable manner and receive considerable time for their transposition activities, we identify three levels of transposition outcomes for EU directives: conformable, partially conformable and non-conformable...... and the Commission regarding a directive’s outcome, play a much more strategic role than has to date acknowledged in the transposition literature. Whereas disagreement of a member state delays conformable transposition, it speeds up non-conformable transposition. Disagreement of the Commission only prolongs...

  9. Protonated nitrosamide

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.; Øgaard Madsen, J.

    1994-01-01

    The protonated nitrosamide, NH3NO+, has been generated by chemical ionization mass spectrometry. Although a direct search for this species in ammonia flames has proved negative, fast proton transfer to major flame constituents is supported experimentally as well as by MO calculations....

  10. Proton Therapy

    Science.gov (United States)

    ... therapy is one of the most precise and advanced forms of radiation treatment available. How Proton Therapy is Delivered The patient is positioned on a table with a head frame or face mask covering the head. As the cyclotron smashes atoms, the protons released are directed toward ...

  11. FET-PET-based reirradiation and chloroquine in patients with recurrent glioblastoma. First tolerability and feasibility results

    Energy Technology Data Exchange (ETDEWEB)

    Bilger, Angelika; Bittner, Martin-Immanuel; Grosu, Anca L.; Wiedenmann, Nicole; Firat, Elke; Niedermann, Gabriele; Milanovic, Dusan [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg (Germany); Meyer, Philipp T. [University Medical Center Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Weber, Wolfgang A. [University Medical Center Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, York Avenue, NY (United States)

    2014-10-15

    Treatment of recurrent glioblastoma (rGBM) remains an unsolved clinical problem. Reirradiation (re-RT) can be used to treat some patients with rGBM, but as a monotherapy it has only limited efficacy. Chloroquine (CQ) is an anti-malaria and immunomodulatory drug that may inhibit autophagy and increase the radiosensitivity of GBM. Between January 2012 and August 2013, we treated five patients with histologically confirmed rGBM with re-RT and 250 mg CQ daily. Treatment was very well tolerated; no CQ-related toxicity was observed. At the first follow-up 2 months after finishing re-RT, two patients achieved partial response (PR), one patient stable disease (SD), and one patient progressive disease (PD). One patient with reirradiated surgical cavity did not show any sign of PD. In this case series, we observed encouraging responses to CQ and re-RT. We plan to conduct a CQ dose escalation study combined with re-RT. (orig.) [German] Die Behandlung rezidivierter Glioblastome (rGBM) ist problematisch. Manche Patienten koennen erneut bestrahlt (re-RT) werden, jedoch nur mit begrenzter Wirksamkeit. Das Antimalariamittel Chloroquin (CQ) wirkt immunmodulatorisch, hemmt die Autophagie und kann die Radiosensibilitaet erhoehen. Zwischen Januar 2012 und August 2013 wurden 5 Patienten mit einem histologisch gesicherten rGBM mit re-RT und zusaetzlich taeglich 250 mg CQ behandelt. Diese Behandlung wurde sehr gut, ohne CQ-assoziierte Nebenwirkungen toleriert. Zum ersten Follow-up, 2 Monate nach der re-RT, fanden sich zwei partielle Remissionen (PR), ein stabiler Verlauf (SD) und ein Progress (PD). Ein zuvor operierter Patient war in anhaltender Remission. Diese Fallstudie zeigt ein ermutigendes Ansprechen von Patienten mit rGBM auf eine Behandlung mit CQ und re-RT. Eine Dosiseskalationsstudie CQ/re-RT ist geplant. (orig.)

  12. Conformational structures in dry ionomers

    Science.gov (United States)

    Allahyarov, Elshad; Taylor, Philip

    2007-03-01

    The molecular architecture of polymer electrolyte membranes (PEM), which consist of hydrophobic and hydrophilic segments, leads to its own self-assembled structure through a partial phase segregation. Controlling these structures is necessary for improving the performance of fuel cells. We have used computer simulation to analyze the relationship between the hydrophilic cluster structure and the parameters describing the pendant side chains in dry Nafion-like materials. We investigate the morphology of a dry PEM system within different coarse-grained models: a free-proton model, a dipolar model for side chains, and a branched-chain model. We conclude that the free-proton model, where the proton-proton correlations are decoupled from the sulfonate-sulfonate correlations, has the potential to explain the experimentally observed conformational structures of PEM. We find that the geometry of domains with a high concentration of sulfonate groups depends only weakly on the form of the distance-dependent dielectric permittivity, but strongly depends on the partial charge and monomeric unit sequence distribution along the ionomer chain. We predict a nanophase separation with a lamellar-like morphology in ionomers carrying a divalent salt.

  13. Reirradiation for recurrent head and neck cancers using charged particle or photon radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Hideya [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kamigyo-ku, Kyoto (Japan); Soseikai General Hospital, CyberKnife Center, Shimotoba Fushimi-ku, Kyoto (Japan); Demizu, Yusuke; Okimoto, Tomoaki [Hyogo Ion Beam Medical Center, Department of Radiology, Tatsuno, Hyogo (Japan); Ogita, Mikio [Fujimoto Hayasuzu Hospital, Radiotherapy Department, Miyakonojo, Miyazaki (Japan); Himei, Kengo [Japanese Red Cross Okayama Hospital, Department of Radiology, Okayama, Okayama (Japan); Nakamura, Satoaki; Suzuki, Gen [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kamigyo-ku, Kyoto (Japan); Yoshida, Ken; Kotsuma, Tadayuki [National Hospital Organization Osaka National Hospital, Department of Radiation Oncology, Osaka, Osaka (Japan); Yoshioka, Yasuo [Osaka University Graduate School of Medicine, Department of Radiation Oncology, Suita, Osaka (Japan); Oh, Ryoongjin [Miyakojima IGRT Clinic, Osaka (Japan)

    2017-07-15

    To examine the outcomes of reirradiation for recurrent head and neck cancers using different modalities. This retrospective study included 26 patients who received charged particle radiotherapy (CP) and 150 who received photon radiotherapy (117 CyberKnife radiotherapy [CK] and 36 intensity-modulated radiotherapy [IMRT]). Inverse probability of treatment weighting (IPTW) involving propensity scores was used to reduce background selection bias. Higher prescribed doses were used in CP than photon radiotherapy. The 1-year overall survival (OS) rates were 67.9% for CP and 54.1% for photon radiotherapy (p = 0.15; 55% for CK and 51% for IMRT). In multivariate Cox regression, the significant prognostic factors for better survival were nasopharyngeal cancer, higher prescribed dose, and lower tumor volume. IPTW showed a statistically significant difference between CP and photon radiotherapy (p = 0.04). The local control rates for patients treated with CP and photon radiotherapy at 1 year were 66.9% (range 46.3-87.5%) and 67.1% (range 58.3-75.9%), respectively. A total of 48 patients (27%) experienced toxicity grade ≥3 (24% in the photon radiotherapy group and 46% in the CP group), including 17 patients with grade 5 toxicity. Multivariate analysis revealed that younger age and a larger planning target volume (PTV) were significant risk factors for grade 3 or worse toxicity. CP provided superior survival outcome compared to photon radiotherapy. Tumor volume, primary site (nasopharyngeal), and prescribed dose were identified as survival factors. Younger patients with a larger PTV experienced toxicity grade ≥3. (orig.) [German] Bestimmung der Ergebnisse einer Rebestrahlung von wiederkehrenden Kopf-Hals-Tumoren mittels verschiedener Modalitaeten. Die retrospektive Studie umfasst 26 Patienten, die mit der Ionenstrahlentherapie (CP), und 150 Patienten, die mit der Photonenstrahlentherapie (117 Stereotaxien [CK] und 36 intensitaetsmodulierte Strahlentherapien [IMRT]) behandelt

  14. Toxicity and efficacy of re-irradiation of high-grade glioma in a phase I dose- and volume escalation trial

    DEFF Research Database (Denmark)

    Møller, Søren; Munck Af Rosenschöld, Per; Costa, Junia

    2017-01-01

    INTRODUCTION: The purpose of this study was to evaluate the safety and efficacy of PET and MRI guided re-irradiation of recurrent high-grade glioma (HGG) and to assess the impact of radiotherapy dose, fractionation and irradiated volume. MATERIAL AND METHODS: Patients with localized, recurrent HGG...... (grades III-IV) and no other treatment options were eligible for a prospective phase I trial. Gross tumor volumes for radiotherapy were defined using T1-contrast enhanced MRI and (18)F-fluoro-ethyl tyrosine PET. Radiotherapy was delivered using volumetric modulated arc therapy with a 2-mm margin. The dose...... and irreversible white matter changes. CONCLUSION: Re-irradiation showed limited efficacy and 43% of patients achieving disease control suffered late toxicity that was manageable but not negligible....

  15. What is the role of postoperative re-irradiation in recurrent and second primary squamous cell cancer of head and neck? A literature review according to PICO criteria.

    Science.gov (United States)

    Merlotti, Anna; Mazzola, Rosario; Alterio, Daniela; Alongi, Filippo; Bacigalupo, Almalina; Bonomo, Pierluigi; Maddalo, Marta; Russi, Elvio Grazioso; Orlandi, Ester

    2017-03-01

    Re-irradiation has been increasingly offered as a potential effective treatment for head and neck squamous cell carcinoma (HNSCC) loco-regional recurrence as well as second primary tumor in previously irradiated area. This review focused on the role of postoperative re-irradiation (POreRT) in terms of feasibility, toxicity and long-term outcomes in HNSCC patients. The key issue for the research was formulated in two questions according to the PICO (population, intervention, control, and outcomes) criteria. A total of 16 publications met the inclusion criteria for a total of 919 patients; in 522 patients POreRT was performed. POreRT in recurrent and second primary HNSCC seems to be feasible in highly selected patients with the intent to guarantee an acceptable LC compared to surgery alone. The optimal RT schedule remains unclear due to the heterogeneity of literature data. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Characterization of mu s-ms dynamics of proteins using a combined analysis of N-15 NMR relaxation and chemical shift: Conformational exchange in plastocyanin induced by histidine protonations

    DEFF Research Database (Denmark)

    Hass, M. A. S.; Thuesen, Marianne Hallberg; Christensen, Hans Erik Mølager

    2004-01-01

    of the exchanging species can be determined independently of the relaxation rates. The applicability of the approach is demonstrated by a detailed analysis of the conformational exchange processes previously observed in the reduced form of the blue copper protein, plastocyanin from the cyanobacteria Anabaena...... shifts were obtained from a series of HSQC spectra recorded in the pH range from 4 to 8. From the R-1 and R-2 relaxation rates, the contribution, R-ex, to the transverse relaxation caused by the exchanges between the different allo-states of the protein were determined. Specifically, it is demonstrated......An approach is presented that allows a detailed, quantitative characterization of conformational exchange processes in proteins on the mus-ms time scale. The approach relies on a combined analysis of NMR relaxation rates and chemical shift changes and requires that the chemical shift...

  17. Proton interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Christopher L [Los Alamos National Laboratory

    2008-01-01

    Energetic proton beams may provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because: they have large fission cross sections, long mean free paths and high penetration, and proton beams can be manipulated with magnetic optics. We have measured time-dependent cross sections for delayed neutrons and gamma-rays using the 800 MeV proton beam from the Los Alamos Neutron Science Center for a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Results will be presented.

  18. Survival benefit for patients with diffuse intrinsic pontine glioma (DIPG) undergoing re-irradiation at first progression: A matched-cohort analysis on behalf of the SIOP-E-HGG/DIPG working group.

    Science.gov (United States)

    Janssens, Geert O; Gandola, Lorenza; Bolle, Stephanie; Mandeville, Henry; Ramos-Albiac, Monica; van Beek, Karen; Benghiat, Helen; Hoeben, Bianca; Morales La Madrid, Andres; Kortmann, Rolf-Dieter; Hargrave, Darren; Menten, Johan; Pecori, Emilia; Biassoni, Veronica; von Bueren, Andre O; van Vuurden, Dannis G; Massimino, Maura; Sturm, Dominik; Peters, Max; Kramm, Christof M

    2017-03-01

    Overall survival (OS) of patients with diffuse intrinsic pontine glioma (DIPG) is poor. The purpose of this study is to analyse benefit and toxicity of re-irradiation at first progression. At first progression, 31 children with DIPG, aged 2-16 years, underwent re-irradiation (dose 19.8-30.0 Gy) alone (n = 16) or combined with systemic therapy (n = 15). At initial presentation, all patients had typical symptoms and characteristic MRI features of DIPG, or biopsy-proven high-grade glioma. An interval of ≥3 months after upfront radiotherapy was required before re-irradiation. Thirty-nine patients fulfilling the same criteria receiving radiotherapy at diagnosis, followed by best supportive care (n = 20) or systemic therapy (n = 19) at progression but no re-irradiation, were eligible for a matched-cohort analysis. Median OS for patients undergoing re-irradiation was 13.7 months. For a similar median progression-free survival after upfront radiotherapy (8.2 versus 7.7 months; P = .58), a significant benefit in median OS (13.7 versus 10.3 months; P = .04) was observed in favour of patients undergoing re-irradiation. Survival benefit of re-irradiation increased with a longer interval between end-of-radiotherapy and first progression (3-6 months: 4.0 versus 2.7; P irradiation was observed in 24/31 (77%) patients. No grade 4-5 toxicity was recorded. On multivariable analysis, interval to progression (corrected hazard ratio = .27-.54; P irradiation (corrected hazard ratio = .18-.22; P irradiation with acceptable tolerability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Temporal lobe injury after re-irradiation of locally recurrent nasopharyngeal carcinoma using intensity modulated radiotherapy: clinical characteristics and prognostic factors.

    Science.gov (United States)

    Liu, Shuai; Lu, Taixiang; Zhao, Chong; Shen, Jingxian; Tian, Yunming; Guan, Ying; Zeng, Lei; Xiao, Weiwei; Huang, Shaomin; Han, Fei

    2014-09-01

    Temporal lobe injury (TLI) is a debilitating complication after radiotherapy for nasopharyngeal carcinoma (NPC), especially in patients who suffer treatment relapses and receive re-irradiation. We explored the clinical characteristics and prognostic factors of TLI in locally recurrent NPC (rNPC) patients after re-irradiation using intensity modulated radiotherapy (IMRT). A total of 454 temporal lobes (TLs) from 227 locally rNPC patients were reviewed. The clinical characteristics of TLI were analyzed. In the two radiotherapy courses, the equivalent dose in 2 Gy per fraction (EQD2) for the TLs was recalculated to facilitate comparison of the individual data. The median follow-up time was 31 (range, 3-127) months. After re-irradiation using IMRT, 31.3 % (71/227) of patients developed TLI. The median latency of TLI was 15 (range, 4-100) months. Univariate and multivariate analysis showed that the interval time (IT) between the two courses of radiotherapy and the summation of the maximum doses of the two radiotherapy courses (EQD2 - ∑max) were independent factors influencing TLI. The 5-year incidence of TLI for an IT ≤26 or >26 months was 35.9 and 53.7 % respectively (p = 0.024). The median maximum doses delivered to the injured TLs were significantly higher than was the case for the uninjured TLs after two courses of radiotherapy (135.3 and 129.8 Gy, respectively: p 2-year interval was found to be relatively safe.

  20. On conformally related -waves

    Indian Academy of Sciences (India)

    Conformal transformations; conformal Killing vectors; -waves. Abstract. Brinkmann [1] has shown that conformally related distinct Ricci flat solutions are -waves. Brinkmann's result has been generalized to include the conformally invariant source terms. It has been shown that [4] if g i k and g ¯ i k ( = − 2 g i k , : a ...

  1. Salvage prostate re-irradiation using high-dose-rate brachytherapy or focal stereotactic body radiotherapy for local recurrence after definitive radiation therapy.

    Science.gov (United States)

    Mbeutcha, Aurélie; Chauveinc, Laurent; Bondiau, Pierre-Yves; Chand, Marie-Eve; Durand, Matthieu; Chevallier, Daniel; Amiel, Jean; Kee, Daniel Lam Cham; Hannoun-Lévi, Jean-Michel

    2017-03-09

    Optimal management of locally recurrent prostate cancer after definitive radiation therapy is still challenging. With the development of highly accurate radiotherapy devices, prostate salvage re-irradiation might generate lower toxicity rates than classical salvage therapies. We retrospectively evaluated the toxicity and the feasibility of a prostate re-irradiation after definitive radiation therapy failure. Two modalities were investigated: high-dose-rate brachytherapy (HDRB) on whole prostate gland and focal stereotactic radiotherapy (SBRT) using CyberKnife® linac. Between 2011 and 2015, 28 patients with imaged and/or biopsy-proven intra-prostatic recurrence of cancer after definitive radiation therapy underwent a salvage re-irradiation using HDRB (n = 10) or focal SBRT (n = 18). The schedule of re-irradiation was 35 Gy in 5 fractions. Biological response (defined as post-salvage radiation PSA variation) and biochemical no-evidence of disease (bNED) were evaluated in the whole cohort. For patients who had a positive biological response after salvage radiation, biochemical recurrence (BCR) and survival after salvage radiotherapy were evaluated. Post-salvage toxicities were assessed according to the Common Terminology Criteria for Adverse Events (CTCAE) v4.03 and were compared to baseline status. Within a median follow-up of 22.5 months (IQR = 8-42), 9 (90%) patients experienced a positive biological response after salvage HDRB and 5 (50%) remained bNED at the end of the follow-up. Among patients who initially responded to salvage HDRB, the BCR rate was 44.4% after a median interval of 19.5 months (IQR = 11.5-26). Only one patient experienced a transient grade 3 urinary complication. In the SBRT group, the median follow-up was 14.5 months (IQR = 7-23) and 10 (55.6%) out of the 18 patients remained bNED. Among the 15 patients who initially responded to salvage SBRT, 5 (33.3%) experienced a BCR. One patient experienced a transient grade 4

  2. Problems with Mannheim's conformal gravity program

    Science.gov (United States)

    Yoon, Youngsub

    2013-07-01

    We show that Mannheim’s conformal gravity program, whose potential has a term proportional to 1/r and another term proportional to r, does not reduce to Newtonian gravity at short distances, unless one assumes undesirable singularities of the mass density of the proton. Therefore, despite the claim that it successfully explains galaxy rotation curves, unless one assumes the singularities, it seems to be falsified by numerous Cavendish-type experiments performed at laboratories on Earth whose work have not found any deviations from Newton’s theory. Moreover, it can be shown that as long as the total mass of the proton is positive, Mannheim’s conformal gravity program leads to negative linear potential, which is problematic from the point of view of fitting galaxy rotation curves, which necessarily requires positive linear potential.

  3. Reduction of the proton radius discrepancy by 3σ

    Directory of Open Access Journals (Sweden)

    I.T. Lorenz

    2014-10-01

    Full Text Available We show that in previous analyses of electron–proton scattering, the uncertainties in the statistical procedure to extract the proton charge radius are underestimated. Using a fit function based on a conformal mapping, we can describe the scattering data with high precision and extract a radius value in agreement with the one obtained from muonic hydrogen.

  4. A nomogram to predict loco-regional control after re-irradiation for head and neck cancer.

    Science.gov (United States)

    Riaz, Nadeem; Hong, Julian C; Sherman, Eric J; Morris, Luc; Fury, Matthew; Ganly, Ian; Wang, Tony J C; Shi, Weji; Wolden, Suzanne L; Jackson, Andrew; Wong, Richard J; Zhang, Zhigang; Rao, Shyam D; Lee, Nancy Y

    2014-06-01

    Loco-regionally recurrent head and neck cancer (HNC) in the setting of prior radiotherapy carries significant morbidity and mortality. The role of re-irradiation (re-RT) remains unclear due to toxicity. We determined prognostic factors for loco-regional control (LRC) and formulated a nomogram to help clinicians select re-RT candidates. From July 1996 to April 2011, 257 patients with recurrent HNC underwent fractionated re-RT. Median prior dose was 65 Gy and median time between RT was 32.4 months. One hundred fifteen patients (44%) had salvage surgery and 172 (67%) received concurrent chemotherapy. Median re-RT dose was 59.4 Gy and 201 (78%) patients received IMRT. Multivariate Cox proportional hazards were used to identify independent predictors of LRC and a nomogram for 2-year LRC was constructed. Median follow-up was 32.6 months. Two-year LRC and overall survival (OS) were 47% and 43%, respectively. Recurrent stage (P=0.005), non-oral cavity subsite (P50 Gy (P=0.006) were independently associated with improved LRC. We generated a nomogram with concordance index of 0.68. Re-RT can be curative, and our nomogram can help determine a priori which patients may benefit. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Viscous conformal gauge theories

    DEFF Research Database (Denmark)

    Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.

    2017-01-01

    We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....

  6. Dosimetric evaluation of proton stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Jun; Shin, Dong Ho; Yoo, Seung Hoon; Jeong, Hojin; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, Goyang (Korea, Republic of)

    2011-11-15

    Surgical excision, conventional external radiotherapy, and chemotherapy could prolong survival in patients with small intracranial tumors. However, surgical excision for meningiomas located in the region of the base of skull or re-resection is often difficult. Moreover, treatment is needed for patients with recurrent tumors or postoperative residual tumors. Conventional external radiotherapy is popular and has significantly increased for treating brain tumors. Stereotactic radiosurgery is an effective alternative treatment technique to microsurgical resection such as benign brain tumor or vestibular Schwannomas. In general, the dose to OAR of 3D conformal plan is lower than that of conformal arc and dynamic conformal arc plans. However, any of OARs was not reached to tolerance dose. Although mean dose of the healthy brain tissue for 3D conformal plan was slightly higher than that of arc plans, the doses of the healthy brain tissue at V10 and V20 were significantly low for dynamic conformal arc plan. The dosimetric differences were the greatest at lower doses. In contrast, 3D conformal plan was better spare at higher doses. In this study, a dosimetric evaluation of proton stereotactic radiosurgery for brain lesion tumors was using fixed and arc beams. A brass block fitted to the PTV structure was modeled for dynamic conformal collimator. Although all treatment plans offer a very good coverage of the PTV, we found that proton arc plans had significantly better conformity to the PTV than static 3D conformal plan. The V20 dose of normal brain for dynamic conformal arc therapy is dramatically reduced compare to those for other therapy techniques.

  7. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  8. Combined cetuximab and reirradiation for locoregional recurrent and inoperable squamous cell carcinoma of the head and neck

    Energy Technology Data Exchange (ETDEWEB)

    Balermpas, Panagiotis; Roedel, Claus; Weiss, Christian [Dept. of Radiation Therapy and Oncology, Goethe Univ., Frankfurt/Main (Germany); Hambek, Markus [Dept. of Otorhinolaryngology, Goethe Univ., Frankfurt/Main (Germany); Seitz, Oliver [Dept. of Oral Maxillofacial and Plastic Facial Surgery, Goethe Univ., Frankfurt/Main (Germany)

    2009-12-15

    Purpose: to investigate the feasibility, toxicity, and efficacy of external-beam reirradiation (Re-RT) combined with cetuximab for patients with inoperable and recurrent squamous cell carcinoma of the head and neck (SCCHN). Patients and methods: seven patients with inoperable recurrence of SCCHN after adjuvant or definitive radiotherapy (RT) and simultaneous or sequential cisplatin-based chemotherapy for primary SCCHN were treated between August and December 2008 with Re-RT (1.8 Gy/fraction to 50.4 Gy) and cetuximab (400 mg/m{sup 2} initial dose in the 1st week, and then 250 mg/m{sup 2} once weekly). Recurrence had to be located at least {>=} 50% in the preirradiated field. Long term toxicity from previous treatment was recorded before Re-RT as a baseline value. Acute and late toxicity derived from the experimental regimen were recorded every week during RT, and then every 3 months. Efficacy was assessed with repeated imaging using response evaluation criteria in solid tumors (RECIST) and clinical examinations 8-12 weeks after end of the treatment and every 3 months thereafter (Tables 1 and 2). Results: only mild localized mucositis occurred in all patients. Two patients developed a grade 3 acneiform rash related to cetuximab. After treatment one patient developed a grade 2 trismus, another showed grade 3 abacterial salivary gland inflammation with severe pain requiring opioid medication. Two patients achieved a complete response after 7 months, one remained stable, three progressed, and one died from pneumonia without having restaging magnetic resonance imaging. Conclusion: A second course of RT combined with cetuximab in patients with inoperable, recurrent HNSCC proved to be feasible with mild or moderate toxicity and encouraging response to treatment. (orig.)

  9. Proton scaling

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, Gregory H [Los Alamos National Laboratory

    2009-01-01

    This note presents analytic estimates of the performance of proton beams in remote surveillance for nuclear materials. The analysis partitions the analysis into the eight steps used by a companion note: (1) Air scattering, (2) Neutron production in the ship and cargo, (3) Target detection probability, (4) Signal produced by target, (5) Attenuation of signal by ship and cargo, (6) Attenuation of signal by air, (7) Geometric dilution, and (8) Detector Efficiency. The above analyses indicate that the dominant air scattering and loss mechanisms for particle remote sensing are calculable with reliable and accepted tools. They make it clear that the conversion of proton beams into neutron sources rapidly goes to completion in all but thinnest targets, which means that proton interrogation is for all purposes executed by neutrons. Diffusion models and limiting approximations to them are simple and credible - apart from uncertainty over the cross sections to be used in them - and uncertainty over the structure of the vessels investigated. Multiplication is essentially unknown, in part because it depends on the details of the target and its shielding, which are unlikely to be known in advance. Attenuation of neutron fluxes on the way out are more complicated due to geometry, the spectrum of fission neutrons, and the details of their slowing down during egress. The attenuation by air is large but less uncertain. Detectors and technology are better known. The overall convolution of these effects lead to large but arguably tolerable levels of attenuation of input beams and output signals. That is particularly the case for small, mobile sensors, which can more than compensate for size with proximity to operate reliably while remaining below flux limits. Overall, the estimates used here appear to be of adequate accuracy for decisions. That assessment is strengthened by their agreement with companion calculations.

  10. Radionuclides release from re-irradiated fuel under high temperature and pressure conditions. Gamma-ray measurements of VEGA-5 test

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Akihide; Kudo, Tamotsu; Nakamura, Takehiko; Kanazawa, Toru; Kiuchi, Toshio; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The VEGA (Verification Experiments of radionuclides Gas/Aerosol release) program is being performed at JAERI to clarify mechanisms of radionuclides release from irradiated fuel during severe accidents and to improve source term predictability. The fifth VEGA-5 test was conducted in January 2002 to confirm the reproducibility of decrease in cesium release under elevated pressure that was observed in the VEGA-2 test and to investigate the release behavior of short-life radionuclides. The PWR fuel of 47 GWd/tU after about 8.2 years of cooling was re-irradiated at Nuclear Safety Research Reactor (NSRR) for 8 hours before the heat-up test. After that, the two pellets of 10.9 g without cladding were heated up to about 2,900 K at 1.0 MPa under the inert He condition. The experiment reconfirmed the decrease in cesium release rate under the elevated pressure. The release data on short-life radionuclides such as Ru-103, Ba-140 and Xe-133 that have never been observed in the previous VEGA tests without re-irradiation was obtained using the {gamma} ray measurement. (author)

  11. Annealing for plant life management: hardness, tensile and Charpy toughness properties of irradiated, annealed and re-irradiated mock-up low alloy nuclear pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, Philip; Cripps, Robin (Paul Scherrer Inst. (PSI), Villigen (Switzerland))

    1994-01-01

    Hardness, tensile and Charpy properties of an irradiated (I) and irradiated-annealed-reirradiated (IAR) mock-up pressure vessel steel are presented. Spectrum tailored pressurized light water reactor (PWR) irradiation at 290[sup o]C by fast neutrons up to nominal fluences of 5 x 10[sup 19]/cm[sup 2] (E [>=] 1 MeV) in a swimming pool type reactor caused the hardness, tensile yield stress and tensile strength to increase. Embrittlement also occurred as indicated by Charpy toughness tests. The optimum annealing heat treatment for the main program was determined using isochronal and isothermal runs on the material and measuring the Vickers microhardness. The response to an intermediate annealing treatment (460[sup o]C for 18 h), when 50% of the target fluence has been reached and then irradiating to the required end fluence (IAR condition) was then monitored further by Charpy and tensile mechanical properties. Annealing was beneficial in mitigating overall hardening or embrittlement effects. The rate of re-embrittlement after annealing and re-irradiating was no faster than when no annealing had been performed. Annealing temperatures below 440[sup o]C were indicated as requiring relatively long times, i.e. [>=] 168 h to achieve some reduction in radiation induced hardness for example. (Author).

  12. Conformal Carroll groups

    OpenAIRE

    Duval, C.; Gibbons, G W; Horvathy, P. A.

    2014-01-01

    Conformal extensions of Levy-Leblond's Carroll group, based on geometric properties analogous to those of Newton-Cartan space-time are proposed. The extensions are labelled by an integer $k$. This framework includes and extends our recent study of the Bondi-Metzner-Sachs (BMS) and Newman-Unti (NU) groups. The relation to Conformal Galilei groups is clarified. Conformal Carroll symmetry is illustrated by "Carrollian photons". Motion both in the Newton-Cartan and Carroll spaces may be related t...

  13. Conformational stability of calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, Charlotte S; Trandum, Christa; Larsen, Nanna Brink

    2005-01-01

    The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (Tm) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal alpha-helix was of major importance to the conformational stability of calreticulin....

  14. Conformational stability of calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, C.S.; Trandum, C.; Larsen, N.

    2005-01-01

    The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (T-m) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal a-helix was of major importance to the conformational stability of calreticulin....

  15. An evaluation of a prototype proton CT scanner

    Science.gov (United States)

    Plautz, Tia Elizabeth

    Since the 1990s, the number of clinical proton therapy facilities around the world has been growing exponentially. Because of this, and the lack of imaging support for proton therapy in the treatment room, a renewed interest in proton radiography and computed tomography (CT) has emerged. This imaging modality was largely abandoned in the 1970s and '80s in favor of the already successful x-ray CT, for reasons including long acquisition times and inadequate spatial resolution. Protons are particularly useful for radiotherapy because of their well-defined range in matter and their favorable energy profile which facilitates greater conformality than other radiotherapies; however, in order to realize the full potential of proton radiotherapy, the range of protons in the patient must be precisely known. Presently, proton therapy treatment planning is accomplished by taking x-ray CTs of the patient and converting each voxel into proton relative stopping power with respect to water (RSP) via a stoichiometrically-acquired calibration curve. However, since there is no unique relationship between Hounsfield values and RSP, this procedure has inherent uncertainties of a few percent in the proton range, requiring additional distal uncertainty margins in proton treatment plans. In contrast to x-ray CT, proton CT measures the RSP of an object directly, eliminating the need for Hounsfield-value-to-RSP conversion. In the prototype proton CT scanner that we have developed, a low-intensity beam of 200 MeV protons traverses a patient, entirely, and stops in a downstream energy/range detector. The entry and exit vectors of each proton are measured in order to determine a most-likely path of the proton through the object, and the response of the energy/range detector is converted to the water-equivalent path length of each proton in the object. These measurements are made at many angles between 0 and 360 degrees in order to reconstruct a three-dimensional map of proton RSP in the object

  16. Proton movies

    CERN Multimedia

    2009-01-01

    A humorous short film made by three secondary school students received an award at a Geneva film festival. Even without millions of dollars or Hollywood stars at your disposal, it is still possible to make a good science fiction film about CERN. That is what three students from the Collège Madame de Staël in Carouge, near Geneva, demonstrated. For their amateur short film on the LHC, they were commended by the jury of the video and multimedia festival for schools organised by the "Media in education" service of the Canton of Geneva’s Public Education Department. The film is a spoof of a television news report on the LHC start-up. In sequences full of humour and imagination, the reporter conducts interviews with a very serious "Professor Sairne", some protons preparing for their voyage and even the neutrons that were rejected by the LHC. "We got the idea of making a film about CERN at the end of the summer," explains Lucinda Päsche, one of the three students. "We did o...

  17. Performance specifications for proton medical facility

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W.T.; Staples, J.W.; Ludewigt, B.A.; Renner, T.R.; Singh, R.P.; Nyman, M.A.; Collier, J.M.; Daftari, I.K.; Petti, P.L.; Alonso, J.R. [Lawrence Berkeley Lab., CA (United States); Kubo, H.; Verhey, L.J. [University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine; Castro, J.R. [Lawrence Berkeley Lab., CA (United States)]|[University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine

    1993-03-01

    Performance specifications of technical components of a modern proton radiotherapy facility are presented. The technical items specified include: the accelerator; the beam transport system including rotating gantry; the treatment beamline systems including beam scattering, beam scanning, and dosimetric instrumentation; and an integrated treatment and accelerator control system. Also included are treatment ancillary facilities such as diagnostic tools, patient positioning and alignment devices, and treatment planning systems. The facility specified will accommodate beam scanning enabling the three-dimensional conformal therapy deliver .

  18. Conformal expansions and renormalons

    CERN Document Server

    Brodsky, S J; Grunberg, G; Rathsman, J; Brodsky, Stanley J.; Gardi, Einan; Grunberg, Georges; Rathsman, Johan

    2001-01-01

    The coefficients in perturbative expansions in gauge theories are factoriallyincreasing, predominantly due to renormalons. This type of factorial increaseis not expected in conformal theories. In QCD conformal relations betweenobservables can be defined in the presence of a perturbative infraredfixed-point. Using the Banks-Zaks expansion we study the effect of thelarge-order behavior of the perturbative series on the conformal coefficients.We find that in general these coefficients become factorially increasing.However, when the factorial behavior genuinely originates in a renormalonintegral, as implied by a postulated skeleton expansion, it does not affect theconformal coefficients. As a consequence, the conformal coefficients willindeed be free of renormalon divergence, in accordance with previousobservations concerning the smallness of these coefficients for specificobservables. We further show that the correspondence of the BLM method with theskeleton expansion implies a unique scale-setting procedure. Th...

  19. Conformal expansions and renormalons

    CERN Document Server

    Gardi, E; Gardi, Einan; Grunberg, Georges

    2001-01-01

    The large-order behaviour of QCD is dominated by renormalons. On the other hand renormalons do not occur in conformal theories, such as the one describing the infrared fixed-point of QCD at small beta_0 (the Banks--Zaks limit). Since the fixed-point has a perturbative realization, all-order perturbative relations exist between the conformal coefficients, which are renormalon-free, and the standard perturbative coefficients, which contain renormalons. Therefore, an explicit cancellation of renormalons should occur in these relations. The absence of renormalons in the conformal limit can thus be seen as a constraint on the structure of the QCD perturbative expansion. We show that the conformal constraint is non-trivial: a generic model for the large-order behaviour violates it. We also analyse a specific example, based on a renormalon-type integral over the two-loop running-coupling, where the required cancellation does occur.

  20. Importance of contouring the cervical spine levels in initial intensity-modulated radiation therapy radiation for head and neck cancers: Implications for re-irradiation

    Directory of Open Access Journals (Sweden)

    Parashar Bhupesh

    2009-01-01

    Full Text Available Aim: To evaluate the maximum differential cervical spinal (C-spine cord dose in intensity-modulated radiation therapy (IMRT plans of patients undergoing radiotherapy for treatment of head and neck cancer. Materials and Methods: The C-spine of ten head and neck cancer patients that were planned using IMRT and each cervical vertebral body and the right and left sides was contoured by splitting the cord in the center. Dose-volume histograms (DVH and maximum point doses were obtained for each contour and compared. Results: The dose to the cord varied with the location of the primary tumor but such variation was not consistently seen. This report provides information that is critical for planning reirradiation treatments. We recommend that contouring of the C-spine cord with IMRT should include outlining of each cervical cord level and identification of the right and the left sides of the cord on each plan.

  1. Group Size and Conformity

    OpenAIRE

    Bond, Rod

    2005-01-01

    Abstract This paper reviews theory and research on the relationship between group size and conformity and presents a meta-analysis of 125 Asch-type conformity studies. It questions the assumption of a single function made in formal models of social influence and proposes instead that the function will vary depending on which social influence process predominates. It is argued that normative influence is lik...

  2. Conformable variational iteration method

    Directory of Open Access Journals (Sweden)

    Omer Acan

    2017-02-01

    Full Text Available In this study, we introduce the conformable variational iteration method based on new defined fractional derivative called conformable fractional derivative. This new method is applied two fractional order ordinary differential equations. To see how the solutions of this method, linear homogeneous and non-linear non-homogeneous fractional ordinary differential equations are selected. Obtained results are compared the exact solutions and their graphics are plotted to demonstrate efficiency and accuracy of the method.

  3. Quantum massive conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Faria, F.F. [Universidade Estadual do Piaui, Centro de Ciencias da Natureza, Teresina, PI (Brazil)

    2016-04-15

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed. (orig.)

  4. Delineating the conformal window

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael

    2011-01-01

    We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....

  5. Proton minibeam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Girst, Stefanie

    2016-03-08

    The risk of developing adverse side effects in the normal tissue after radiotherapy is often limiting for the dose that can be applied to the tumor. Proton minibeam radiotherapy, a spatially fractionated radiotherapy method using sub-millimeter proton beams, similar to grid therapy or microbeam radiation radiotherapy (MRT) using X-rays, has recently been invented at the ion microprobe SNAKE in Munich. The aim of this new concept is to minimize normal tissue injuries in the entrance channel and especially in the skin by irradiating only a small percentage of the cells in the total irradiation field, while maintaining tumor control via a homogeneous dose in the tumor, just like in conventional broad beam radiotherapy. This can be achieved by optimizing minibeam sizes and distances according to the prevailing tumor size and depth such that after widening of the minibeams due to proton interactions in the tissue, the overlapping minibeams produce a homogeneous dose distribution throughout the tumor. The aim of this work was to elucidate the prospects of minibeam radiation therapy compared to conventional homogeneous broad beam radiotherapy in theory and in experimental studies at the ion microprobe SNAKE. Treatment plans for model tumors of different sizes and depths were created using the planning software LAPCERR, to elaborate suitable minibeam sizes and distances for the individual tumors. Radiotherapy-relevant inter-beam distances required to obtain a homogeneous dose in the target volume were found to be in the millimeter range. First experiments using proton minibeams of only 10 μm and 50 μm size (termed microchannels in the corresponding publication Zlobinskaya et al. 2013) and therapy-conform larger dimensions of 100 μm and 180 μm were performed in the artificial human in-vitro skin model EpiDermFT trademark (MatTek). The corresponding inter-beam distances were 500 μm, 1mm and 1.8 mm, respectively, leading to irradiation of only a few percent of the cells

  6. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  7. Spinal cord response to altered fractionation and re-irradiation: Radiobiological considerations and role of bioeffect models

    Directory of Open Access Journals (Sweden)

    Supe Sanjay

    2006-01-01

    decision in treating in such a condition is even more complex than the original condition and requires knowledge of the kinetics of decay of occult injury of the previous treatment. To test the validity of ERD, clinically reported data of altered fractionation to the spinal cord for 7 patients reported by Wong et al , Saunders et al and Bogaert et al , were analysed, ERD values were calculated and compared with compiled clinical literature data of 3233 patients for the incidence of spinal cord myelitis reported by Cohen and Creditor, Wara et al , Abbatucci et al and Jeremic et al for conventional fractionation. ERD values were estimated with α/β of 2.5 Gy for the conventional and altered fractionation data. To test the validity of TE concept for clinical data of re-irradiation tolerance of the spinal cord, the data of the 22 patients compiled by Nieder et al were used. Clinical data compiled from the literature of Cohen and Creditor, Wara et al , Abbatucci et al and Jeremic et al , were used for comparison.

  8. Re-irradiation of the chest wall for local breast cancer recurrence. Results of salvage brachytherapy with hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Auoragh, A. [University Hospital Erlangen, Department of Radiation Oncology, Erlangen (Germany); Hospital Fuerth, Department of Radiation Oncology, Fuerth (Germany); Strnad, V.; Ott, O.J.; Fietkau, R. [University Hospital Erlangen, Department of Radiation Oncology, Erlangen (Germany); Beckmann, M.W. [University Hospital Erlangen, Department of Gynecology and Obstetrics, Erlangen (Germany)

    2016-09-15

    Following mastectomy and adjuvant external beam radiation therapy in patients with breast cancer, the incidence of local or locoregional recurrence is approximately 9 % (2-20 %). Alongside the often limited possibilities of surgical treatment, radiation therapy combined with superficial hyperthermia is the most effective local therapy. In the present work, a retrospective analysis of salvage brachytherapy combined with superficial hyperthermia for chest wall recurrences is presented. Between 2004 and 2011, 18 patients with a total of 23 target volumes resulting from chest wall recurrences after previously mastectomy and external beam radiation therapy (median 56 Gy, range 50-68 Gy) were treated with superficial brachytherapy as salvage treatment: 8 patients (44 %) had macroscopic tumor, 3 (17 %) had microscopic tumor (R1), and 7 (39 %) had undergone R0 resection and were treated due to risk factors. A dose of 50 Gy was given (high-dose rate [HDR] and pulsed-dose rate [PDR] procedures). In all, 5 of 23 patients (22 %) received additional concurrent chemotherapy, and in 20 of 23 (87 %) target volumes additional superficial hyperthermia was carried out twice weekly. The 5-year local recurrence-free survival was 56 %, the disease-free survival was 28 %, and a 5-year overall survival was 22 %. Late side effects Common Toxicity Criteria (CTC) grade 3 were reported in 17 % of the patients: 2 of 18 (11 %) had CTC grade 3 fibrosis, and 1 of 18 (6 %) had a chronic wound healing disorder. Re-irradiation as salvage brachytherapy with superficial hyperthermia for chest wall recurrences is a feasible and safe treatment with good local control results and acceptable late side effects. (orig.) [German] Nach einer Mastektomie und adjuvanter Strahlentherapie bei Patientinnen mit Mammakarzinom kommt es bei 9 % (2-20 %) zum lokalen bzw. lokoregionaeren Rezidiv. Neben den oft limitierten operativen Behandlungsmoeglichkeiten ist die Strahlentherapie mit Oberflaechenhyperthermie die

  9. Reirradiation for recurrent head and neck cancer with salvage interstitial pulsed-dose-rate brachytherapy. Long-term results

    Energy Technology Data Exchange (ETDEWEB)

    Strnad, Vratislav; Lotter, Michael; Kreppner, Stephan; Fietkau, Rainer [University Hospital Erlangen, Dept. of Radiation Oncology, Erlangen (Germany)

    2015-01-10

    To assess the long-term results of protocol-based interstitial pulsed-dose-rate (PDR) brachytherapy as reirradiation combined with simultaneous chemotherapy and interstitial hyperthermia in selected patients with recurrent head and neck tumors. A total of 104 patients with biopsy-proven recurrent head and neck cancer were treated with interstitial PDR brachytherapy. Salvage surgery had also been undergone by 53/104 (51 %) patients (R1 or R2 resection in > 80 % of patients). Salvage brachytherapy alone was administered in 81 patients (78 %), with a median total dose of 56.7 Gy. Salvage brachytherapy in combination with external beam radiotherapy (EBRT) was performed in 23/104 patients (32 %), using a median total dose of D{sub REF} = 24 Gy. Simultaneously to PDR brachytherapy, concomitant chemotherapy was administered in 58/104 (55.8 %) patients. A single session of interstitial hyperthermia was also used to treat 33/104 (31.7 %) patients. The analysis was performed after a median follow-up of 60 months. Calculated according to Kaplan-Meier, local tumor control rates after 2, 5, and 10 years were 92.5, 82.4, and 58.9 %, respectively. Comparing results of salvage PDR brachytherapy with or without simultaneous chemotherapy, the 10-year local control rates were 76 vs. 39 % (p= 0014), respectively. No other patient- or treatment-related parameters had a significant influence on treatment results. Soft tissue necrosis or bone necrosis developed in 18/104 (17.3 %) and 11/104 (9.6 %) patients, respectively, but only 3 % of patients required surgical treatment. PDR interstitial brachytherapy with simultaneous chemotherapy is a very effective and, in experienced hands, also a safe treatment modality in selected patients with head and neck cancer in previously irradiated areas. (orig.) [German] Es erfolgte die Analyse der Langzeitergebnisse einer protokollbasierten interstitiellen Brachytherapie (Re-Bestrahlung) mit simultaner Chemotherapie und interstitieller Hyperthermie

  10. Treatment planning optimisation in proton therapy

    Science.gov (United States)

    McGowan, S E; Burnet, N G; Lomax, A J

    2013-01-01

    ABSTRACT. The goal of radiotherapy is to achieve uniform target coverage while sparing normal tissue. In proton therapy, the same sources of geometric uncertainty are present as in conventional radiotherapy. However, an important and fundamental difference in proton therapy is that protons have a finite range, highly dependent on the electron density of the material they are traversing, resulting in a steep dose gradient at the distal edge of the Bragg peak. Therefore, an accurate knowledge of the sources and magnitudes of the uncertainties affecting the proton range is essential for producing plans which are robust to these uncertainties. This review describes the current knowledge of the geometric uncertainties and discusses their impact on proton dose plans. The need for patient-specific validation is essential and in cases of complex intensity-modulated proton therapy plans the use of a planning target volume (PTV) may fail to ensure coverage of the target. In cases where a PTV cannot be used, other methods of quantifying plan quality have been investigated. A promising option is to incorporate uncertainties directly into the optimisation algorithm. A further development is the inclusion of robustness into a multicriteria optimisation framework, allowing a multi-objective Pareto optimisation function to balance robustness and conformity. The question remains as to whether adaptive therapy can become an integral part of a proton therapy, to allow re-optimisation during the course of a patient's treatment. The challenge of ensuring that plans are robust to range uncertainties in proton therapy remains, although these methods can provide practical solutions. PMID:23255545

  11. Conformal invariance of curvature perturbation

    CERN Document Server

    Gong, Jinn-Ouk; Park, Wan Il; Sasaki, Misao; Song, Yong-Seon

    2011-01-01

    We show that in the single component situation all perturbation variables in the comoving gauge are conformally invariant to all perturbation orders. Generally we identify a special time slicing, the uniform-conformal transformation slicing, where all perturbations are again conformally invariant to all perturbation orders. We apply this result to the delta N formalism, and show its conformal invariance.

  12. Conformal invariance of curvature perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk [Theory Division, CERN, CH-1211 Genève 23 (Switzerland); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Park, Wan Il; Sasaki, Misao; Song, Yong-Seon, E-mail: jinn-ouk.gong@cern.ch, E-mail: jchan@knu.ac.kr, E-mail: wipark@kias.re.kr, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: ysong@kias.re.kr [Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of)

    2011-09-01

    We show that in the single component situation all perturbation variables in the comoving gauge are conformally invariant to all perturbation orders. Generally we identify a special time slicing, the uniform-conformal transformation slicing, where all perturbations are again conformally invariant to all perturbation orders. We apply this result to the δN formalism, and show its conformal invariance.

  13. Hot Conformal Gauge Theories

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2010-01-01

    in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...... show that the reduced free energy changes sign, at the second, fifth and sixth order in the coupling, when decreasing the number of flavors from the upper end of the conformal window. If the change in sign is interpreted as signal of an instability of the system then we infer a critical number...... of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i...

  14. Proton pump inhibitors

    Science.gov (United States)

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by glands in ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a ...

  15. Proton: The Particle

    Energy Technology Data Exchange (ETDEWEB)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  16. Proton: the particle.

    Science.gov (United States)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. Copyright © 2013 Elsevier Inc. All

  17. Effect of electrostatic interactions on the formation of proton transfer ...

    Indian Academy of Sciences (India)

    We report here a theoretical study on the effect of electrostatic interactions on the formation of dynamical, proton-conducting hydrogen-bonded networks in the protein HCA II. The conformational fluctuations of His-64 is found to contribute crucially to the mechanism of such path formation irrespective of the way electrostatic ...

  18. Galilean conformal and superconformal symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Lukierski, J., E-mail: lukier@ift.uni.wroc.pl [University of Wroclaw, Institute for Theoretical Physics (Poland)

    2012-10-15

    Firstly we discuss briefly three different algebras named as nonrelativistic (NR) conformal: Schroedinger, Galilean conformal, and infinite algebra of local NR conformal isometries. Further we shall consider in some detail Galilean conformal algebra (GCA) obtained in the limit c{yields}{infinity} from relativistic conformal algebraO(d+1, 2) (d-number of space dimensions). Two different contraction limits providing GCA and some recently considered realizations will be briefly discussed. Finally by considering NR contraction of D = 4 superconformal algebra the Galilei conformal superalgebra (GCSA) is obtained, in the formulation using complexWeyl supercharges.

  19. Effects of membrane curvature and pH on proton pumping activity of single cytochrome bo3 enzymes

    DEFF Research Database (Denmark)

    Li, Mengqiu; Khan, Sanobar; Rong, Honglin

    2017-01-01

    that the pH optimum is related to proton release from the proton exit site. Our previous single-enzyme experiments identified rare, long-lived conformation states of cytochrome bo3 where protons leak back under turn-over conditions. Here, we analyzed and found that ~ 23% of cytochrome bo3 proteoliposomes...

  20. Re-irradiation with cetuximab or cisplatin-based chemotherapy for recurrent squamous cell carcinoma of the head and neck

    Energy Technology Data Exchange (ETDEWEB)

    Dornoff, Nicolas; Weiss, Christian; Roedel, Franz [J. W. Goethe University, Department of Radiotherapy and Oncology, Frankfurt a. M. (Germany); Wagenblast, Jens [J. W. Goethe University, Department of Otorhinolaryngology, Frankfurt a. M. (Germany); Ghanaati, Shahram [J. W. Goethe University, Department of Maxillofacial Surgery, Frankfurt a. M. (Germany); Atefeh, Nateghian; Roedel, Claus; Balermpas, Panagiotis [J. W. Goethe University, Department of Radiotherapy and Oncology, Frankfurt a. M. (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany); German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt a. M. (Germany)

    2015-08-15

    Locoregional recurrence remains the main pattern of failure after primary combined modality treatment of squamous cell carcinoma of the head and neck (SCCHN). We compared the efficacy and toxicity of either cisplatin or cetuximab in combination with re-irradiation (ReRT) for recurrent unresectable SCCHN. Various clinicopathological factors were investigated to establish a prognostic score. Between 2007 and 2014, 66 patients with recurrent SCCHN originating in a previously irradiated area received cetuximab (n = 33) or cisplatin-based chemotherapy (n = 33) concomitant with ReRT. Toxicity was evaluated weekly and at every follow-up visit. Physical examination, endoscopy, CT or MRI scans were used to evaluate response and disease control. With a mean follow-up of 18.3 months, the 1-year overall survival (OS) rates for Re-RT with cetuximab and cisplatin-based chemotherapy were 44.4 and 45.5 % (p = 0.352), respectively. At 1 year, local control rates (LCR) were 46.4 and 54.2 % (p = 0.625), freedom from metastases (FFM) rates 73.6 and 81 % (p = 0.842), respectively. Haematological toxicity ≥ grade 3 occurred more often in the cisplatin group (p < 0.001), pain ≥ grade 3 was increased in the cetuximab group (p = 0.034). A physiological haemoglobin level and a longer interval between primary RT and ReRT, proved to be significant prognostic factors for OS (multivariate: p = 0.003, p = 0.002, respectively). Site of the recurrence and gross target volume (GTV) did not show a significant impact on OS in multivariate analysis (p = 0.160, p = 0.167, respectively). A prognostic-score (1-4 points) based on these four variables identified significantly different subgroups: 1-year OS for 0/1/2/3/4 prognostic points: 10, 38, 76, 80 and 100 %, respectively (p < 0.001). Both cetuximab- and cisplatin-based ReRT of SCCHN recurrences are feasible and effective treatment options with comparable results in terms of tumour control and survival. Acute adverse events may differ slightly

  1. A Prospective Phase 2 Trial of Reirradiation With Stereotactic Body Radiation Therapy Plus Cetuximab in Patients With Previously Irradiated Recurrent Squamous Cell Carcinoma of the Head and Neck

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, John A. [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Ferris, Robert L. [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Department of Otolaryngology, Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Ohr, James [Division Medical Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Clump, David A. [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Davis, Kara S.; Duvvuri, Umamaheswar; Kim, Seungwon; Johnson, Jonas T. [Department of Otolaryngology, Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Bauman, Julie E.; Gibson, Michael K. [Division Medical Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Branstetter, Barton F. [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Heron, Dwight E., E-mail: herond2@umpc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Department of Otolaryngology, Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States)

    2015-03-01

    Purpose: Salvage options for unresectable locally recurrent, previously irradiated squamous cell carcinoma of the head and neck (rSCCHN) are limited. Although the addition of reirradiation may improve outcomes compared to chemotherapy alone, significant toxicities limit salvage reirradiation strategies, leading to suboptimal outcomes. We therefore designed a phase 2 protocol to evaluate the efficacy of stereotactic body radiation therapy (SBRT) plus cetuximab for rSCCHN. Methods and Materials: From July 2007 to March 2013, 50 patients >18 years of age with inoperable locoregionally confined rSCCHN within a previously irradiated field receiving ≥60 Gy, with a Zubrod performance status of 0 to 2, and normal hepatic and renal function were enrolled. Patients received concurrent cetuximab (400 mg/m{sup 2} on day −7 and then 250 mg/m{sup 2} on days 0 and +8) plus SBRT (40-44 Gy in 5 fractions on alternating days over 1-2 weeks). Primary endpoints were 1-year locoregional progression-free survival and National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0 graded toxicity. Results: Median follow-up for surviving patients was 18 months (range: 10-70). The 1-year local PFS rate was 60% (95% confidence interval [CI]: 44%-75%), locoregional PFS was 37% (95% CI: 23%-53%), distant PFS was 71% (95% CI: 54%-85%), and PFS was 33% (95% CI: 20%-49%). The median overall survival was 10 months (95% CI: 7-16), with a 1-year overall survival of 40% (95% CI: 26%-54%). At last follow-up, 69% died of disease, 4% died with disease, 15% died without progression, 10% were alive without progression, and 2% were alive with progression. Acute and late grade 3 toxicity was observed in 6% of patients respectively. Conclusions: SBRT with concurrent cetuximab appears to be a safe salvage treatment for rSCCHN of short overall treatment time.

  2. Salt-bridge Swapping in the EXXERFXYY Motif of Proton Coupled Oligopeptide Transporters

    DEFF Research Database (Denmark)

    Aduri, Nanda G; Prabhala, Bala K; Ernst, Heidi A

    2015-01-01

    Proton-coupled oligopeptide transporters (POTs) couple the inwards transport of di- or tripeptides with an inwards-directed transport of protons. Evidence from several studies of different POTs have pointed towards involvement of a highly conserved sequence motif, E1XXE2RFXYY (from here on referred......-motif salt bridge, i.e. R-E2 to R-E1, which is consistent with previous structural studies. Molecular dynamics simulations of the motif variants E1XXE2R and E1XXQ2R support this mechanism. The simulations showed that upon changing conformation, arginine pushes Helix V, through interactions with the highly...... conserved FYING motif, further away from the central cavity, in what could be a stabilization of an inward-facing conformation. As E2 has been suggested to be the primary site for protonation, these novel findings show how protonation may drive conformational changes through interactions of two highly...

  3. Transportation Conformity Training and Presentations

    Science.gov (United States)

    EPA's OTAQ has provided multiple conformity training sessions in the past to assist state and local governments in implementing conformity requirements. As training information is prepared for other venues, it will be posted on this page.

  4. Dynamical spacetimes in conformal gravity

    National Research Council Canada - National Science Library

    Hongsheng Zhang; Yi Zhang; Xin-Zhou Li

    2017-01-01

    The conformal gravity remarkably boosts our prehension of gravity theories. We find a series of dynamical solutions in the W2-conformal gravity, including generalized Schwarzschild–Friedmann–Robertson–Walker (GSFRW...

  5. Multiscale conformal pattern transfer

    Science.gov (United States)

    Lodewijks, Kristof; Miljkovic, Vladimir; Massiot, Inès; Mekonnen, Addis; Verre, Ruggero; Olsson, Eva; Dmitriev, Alexandre

    2016-06-01

    We demonstrate a method for seamless transfer from a parent flat substrate of basically any lithographic top-down or bottom-up pattern onto essentially any kind of surface. The nano- or microscale patterns, spanning macroscopic surface areas, can be transferred with high conformity onto a large variety of surfaces when such patterns are produced on a thin carbon film, grown on top of a sacrificial layer. The latter allows lifting the patterns from the flat parent substrate onto a water-air interface to be picked up by the host surface of choice. We illustrate the power of this technique by functionalizing broad range of materials including glass, plastics, metals, rough semiconductors and polymers, highlighting the potential applications in in situ colorimetry of the chemistry of materials, anti-counterfeit technologies, biomolecular and biomedical studies, light-matter interactions at the nanoscale, conformal photovoltaics and flexible electronics.

  6. Multiscale conformal pattern transfer.

    Science.gov (United States)

    Lodewijks, Kristof; Miljkovic, Vladimir; Massiot, Inès; Mekonnen, Addis; Verre, Ruggero; Olsson, Eva; Dmitriev, Alexandre

    2016-06-22

    We demonstrate a method for seamless transfer from a parent flat substrate of basically any lithographic top-down or bottom-up pattern onto essentially any kind of surface. The nano- or microscale patterns, spanning macroscopic surface areas, can be transferred with high conformity onto a large variety of surfaces when such patterns are produced on a thin carbon film, grown on top of a sacrificial layer. The latter allows lifting the patterns from the flat parent substrate onto a water-air interface to be picked up by the host surface of choice. We illustrate the power of this technique by functionalizing broad range of materials including glass, plastics, metals, rough semiconductors and polymers, highlighting the potential applications in in situ colorimetry of the chemistry of materials, anti-counterfeit technologies, biomolecular and biomedical studies, light-matter interactions at the nanoscale, conformal photovoltaics and flexible electronics.

  7. Conformal boundaries of warped products

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2006-01-01

    In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....

  8. Conformal block study and bounding OPE in conformal field theories

    CERN Document Server

    Yvernay, Pierre

    2015-01-01

    During the past few years, the re-emergence of conformal bootstrap as a numerical tool to solve conformal field theory allowed more precise estimation of several presumed conformal field theory among which we could cite the 3D Ising model. This work intends to provide insight on conformal blocks which are elementary objects in the conformal bootstrap approach. These are considered in Euclidian space where we study fields of all equal dimension. This study allows us to improve bounds derived in \\cite{OPEconv}.

  9. Polymer Conformation under Confinement

    Directory of Open Access Journals (Sweden)

    Stavros Bollas

    2017-02-01

    Full Text Available The conformation of polymer chains under confinement is investigated in intercalated polymer/layered silicate nanocomposites. Hydrophilic poly(ethylene oxide/sodium montmorillonite, PEO/Na+-MMT, hybrids were prepared utilizing melt intercalation with compositions where the polymer chains are mostly within the ~1 nm galleries of the inorganic material. The polymer chains are completely amorphous in all compositions even at temperatures where the bulk polymer is highly crystalline. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR is utilized to investigate the conformation of the polymer chains over a broad range of temperatures from below to much higher than the bulk polymer melting temperature. A systematic increase of the gauche conformation relatively to the trans is found with decreasing polymer content both for the C–C and the C–O bonds that exist along the PEO backbone indicating that the severe confinement and the proximity to the inorganic surfaces results in a more disordered state of the polymer.

  10. Rotation around the glycosidic bond as driving force of proton transfer in protonated 2‧-deoxyriboadenosine monophosphate (dAMP)

    Science.gov (United States)

    Shishkin, Oleg V.; Dopieralski, Przemyslaw; Palamarchuk, Gennady V.; Latajka, Zdzislaw

    2010-04-01

    Theoretical investigation of the conformation of 2'-deoxyriboadenosine monophosphate protonated at the N7 atom and stabilized by a very strong C8-H⋯O-P hydrogen bond indicates that this hydrogen bond may be disrupted by rotation of the adenine moiety around the glycosidic bond. A B3LYP/aug-cc-pVDZ scan of the relaxed potential energy surface demonstrates that this rotation is a multi-stage process, accompanying proton transfer from the N7 atom of adenine to the oxygen atom of the phosphate group with a change of conformation of the nucleotide from south/anti to north/syn conformation. Car-Parrinello molecular dynamics simulation indicates that rotation around the glycosidic bond is the preferred way for relaxation of the molecular geometry of this conformer. Both processes, i.e. conformational transition and proton transfer, are strongly coupled. However, the conformer containing a strong C-H⋯O hydrogen bond also corresponds to a local minimum on the Gibbs free energy surface. A specific property of this hydrogen bond is the large variation of the H⋯O distance (ranging from 1.3 to 2.2 Å), which is not caused by proton movement between the carbon and oxygen atoms, but rather by relative motions of the adenine and phosphate moieties.

  11. Proton-Proton and Proton-Antiproton Colliders

    CERN Document Server

    Scandale, Walter

    2014-01-01

    In the last five decades, proton–proton and proton–antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion–ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  12. Protons in Jupiter's Magnetosphere

    Science.gov (United States)

    Bodisch, K. M.; Bagenal, F.; Dougherty, L.

    2016-12-01

    The solar wind, the icy moons and Jupiter's ionosphere are all potential sources of protons found in the Jovian magnetosphere. In an attempt to quantify the relative importance of these different sources we explore the spatial distribution of density and temperature of the protons in Jupiter's magnetosphere. Through re-analysis of Voyager 1 and 2 Plasma Science (PLS) data obtained between 4 and 40 RJ we produce temperature and density profiles of protons in those regions. By combining profiles of protons and heavy ions (under the assumption of anisotropic Maxwellian distributions) we extrapolate the ion densities along the magnetic field to create global maps of proton density and temperature. Using these models of plasma distributions in the Jovian magnetosphere we predict the proton conditions likely encountered by the Juno spacecraft along its trajectory.

  13. The proton radius puzzle

    Science.gov (United States)

    Paz, Gil

    2017-09-01

    In 2010 the proton charge radius was extracted for the first time from muonic hydrogen, a bound state of a muon and a proton. The value obtained was five standard deviations away from the regular hydrogen extraction. Taken at face value, this might be an indication of a new force in nature coupling to muons, but not to electrons. It also forces to reexamine our understanding of the structure of the proton. In this talk I will describe an ongoing theoretical research effort that seeks to address and resolve this ''proton radius puzzle''. In particular, I will present a reevaluation of the proton structure effects, correcting 40 years of such calculations, and the development of new effective field theoretical tools that would allow to directly connect muonic hydrogen and muon-proton scattering.

  14. Exploring the conformational energy landscape of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Nienhaus, G.U. [Univ. of Illinois, Urbana, IL (United States)]|[Universitaet Ulm (Germany); Mueller, J.D.; McMahon, B.H. [Univ. of Illinois, Urbana, IL (United States)] [and others

    1997-04-01

    Proteins possess a complex energy landscape with a large number of local minima called conformational substates that are arranged in a hierarchical fashion. Here we discuss experiments aimed at the elucidation of the energy landscape in carbonmonoxy myoglobin (MbCO). In the highest tier of the hierarchy, a few taxonomic substates exist. Because of their small number, these substates are accessible to detailed structural investigations. Spectroscopic experiments are discussed that elucidate the role of protonations of amino acid side chains in creating the substates. The lower tiers of the hierarchy contain a large number of statistical substates. Substate interconversions are observed in the entire temperature range from below 1 K up to the denaturation temperature, indicating a wide spectrum of energy barriers that separate the substates.

  15. Conformal Janus on Euclidean sphere

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Dongsu [Physics Department, University of Seoul,Seoul 02504 (Korea, Republic of); B.W. Lee Center for Fields, Gravity & Strings, Institute for Basic Sciences,Daejeon 34047 (Korea, Republic of); Gustavsson, Andreas [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Rey, Soo-Jong [School of Physics & Astronomy and Center for Theoretical Physics,Seoul National University,Seoul 08826 (Korea, Republic of); Center for Theoretical Physics, College of Physical Sciences, Sichuan University,Chengdu 610064 P.R. (China); B.W. Lee Center for Fields, Gravity & Strings, Institute for Basic Sciences,Daejeon 34047 (Korea, Republic of)

    2016-12-07

    We interpret Janus as an interface in a conformal field theory and study its properties. The Janus is created by an exactly marginal operator and we study its effect on the interface conformal field theory on the Janus. We do this by utilizing the AdS/CFT correspondence. We compute the interface free energy both from leading correction to the Euclidean action in the dual gravity description and from conformal perturbation theory in the conformal field theory. We find that the two results agree each other and that the interface free energy scales precisely as expected from the conformal invariance of the Janus interface.

  16. Molecular mechanisms controlling proton pumping by bacteriorhodopsin. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crouch, Rosalie K.; Ebrey, Thomas G.

    2000-02-10

    Bacteriorhodopsin (bR) is the simplest biological system for the transduction of light energy. Light energy is directly converted to transmembrane proton gradient by a single, small membrane protein. The extraordinary stability of bR makes it an outstanding subject for bioenergetic studies. This project has focused on the role of interactions between key residues of the pigment involved in light-induced proton transfer. Methods to estimate the strength of these interactions and their correlation with the rate and efficiency of proton transfer have been developed. The concept of the coupling of the protonation states of key groups has been applied to individual steps of the proton transfer with the ultimate goal of understanding on the molecular level the driving forces for proton transport and the pathway of the transported proton in bT. The mechanism of light-induced proton release, uptake and the mechanism of recovery of initial state of bT has been examined. The experiments were performed with genetically engineered, site-specific mutants of bR. This has enabled us to characterize the role of individual amino acid residues in bR. Time resolved and low temperature absorption spectroscopy and light-induced photocurrent measurements were used in order to study the photochemical cycle and proton transfer in mutant pigments. Chemical modification and crosslinking of both the specific amino acids to the chromophore or to other amino acids were used to elucidate the role of light-induced conformational changes in the photocycle and the structure of the protein in the ground state. The results of this project provided new knowledge on the architecture of the proton transfer pathways inside the protein, on the mechanism of proton release in bR, and on the role of specific amino acid residues in the structure and function of bR.

  17. Cosmological Perturbations in Conformal Gravity

    CERN Document Server

    Mannheim, Philip D

    2011-01-01

    We present the first steps needed for an analysis of the perturbations that occur in the cosmology associated with the conformal gravity theory. We discuss the implications of conformal invariance for perturbative coordinate gauge choices, and show that in the conformal theory the trace of the metric fluctuation kinematically decouples from the first-order gravitational fluctuation equations. We determine the equations that describe first-order metric fluctuations around the illustrative conformally flat de Sitter background. Via a conformal transformation we show that such fluctuations can be constructed from fluctuations around a flat background, even though the fluctuations themselves are associated with a perturbative geometry that is not itself conformal to flat. We extend the analysis to fluctuations around other cosmologically relevant backgrounds, such as the conformally-flat Robertson-Walker background, and find tensor fluctuations that grow far more rapidly than those that occur in the analogous sta...

  18. WIZARD: AI in conformational analysis

    Science.gov (United States)

    Dolata, Daniel P.; Leach, Andrew R.; Prout, Keith

    1987-04-01

    A program which utilizes the techniques of Artificial Intelligence and Expert Systems to solve problems in the area of Conformational Analysis is described. The program searches conformational space in a systematic fashion, based on the technique known as heuristic state-space search. The program proceeds by recognizing conformational units, assigning one or more conformational templates to each unit, and joining them to form conformational suggestions. These suggestions are criticized to discover logical inconsistencies, and any resulting stresses are resolved. The resulting conformational suggestions are sometimes accurate enough for immediate use, or may be further refined by a numerical program. The latter combination is shown to be quite efficient compared to purely numerical conformational search techniques.

  19. Protonation-dependent base flipping in the catalytic triad of a small RNA

    Science.gov (United States)

    Sun, Zhaoxi; Wang, Xiaohui; Zhang, John Z. H.

    2017-09-01

    Protonation dependent base flipping in RNA has never been studied theoretically. In this work we studied protonation-dependent behavior of the base flipping in the catalytic triad of a single-stranded RNA which was previously characterized by NMR experiment. Molecular dynamics simulation reveals that the GA mismatch in this region accounts for this behavior. Free energy profiles show that the stable point for flipping dihedral shifts about 35° and the free energy barrier along the flipping pathway is elevated upon protonation. The orientation of Guanine from syn to anti conformation is coupled with protonation-dependent base flipping and G-HA+ base pair is formed under acidic condition.

  20. Conformance and Deviance

    DEFF Research Database (Denmark)

    Gjerdrum Pedersen, Esben Rahbek; Neergaard, Peter; Thusgaard Pedersen, Janni

    2013-01-01

    This paper analyses how large Danish companies are responding to new governmental regulation which requires them to report on corporate social responsibility (CSR). The paper is based on an analysis of 142 company annual reports required by the new Danish regulation regarding CSR reporting, plus ...... in CSR reporting practices. Finally, it is argued that non-conformance with the new regulatory requirements is not solely about conscious resistance but may also be caused by, for example, lack of awareness, resource limitations, misinterpretations, and practical difficulties....

  1. Supergravitational conformal Galileons

    Science.gov (United States)

    Deen, Rehan; Ovrut, Burt

    2017-08-01

    The worldvolume actions of 3+1 dimensional bosonic branes embedded in a five-dimensional bulk space can lead to important effective field theories, such as the DBI conformal Galileons, and may, when the Null Energy Condition is violated, play an essential role in cosmological theories of the early universe. These include Galileon Genesis and "bouncing" cosmology, where a pre-Big Bang contracting phase bounces smoothly to the presently observed expanding universe. Perhaps the most natural arena for such branes to arise is within the context of superstring and M -theory vacua. Here, not only are branes required for the consistency of the theory, but, in many cases, the exact spectrum of particle physics occurs at low energy. However, such theories have the additional constraint that they must be N = 1 supersymmetric. This motivates us to compute the worldvolume actions of N = 1 supersymmetric three-branes, first in flat superspace and then to generalize them to N = 1 supergravitation. In this paper, for simplicity, we begin the process, not within the context of a superstring vacuum but, rather, for the conformal Galileons arising on a co-dimension one brane embedded in a maximally symmetric AdS 5 bulk space. We proceed to N = 1 supersymmetrize the associated worldvolume theory and then generalize the results to N = 1 supergravity, opening the door to possible new cosmological scenarios

  2. Giving Protons a Boost

    CERN Multimedia

    2004-01-01

    The first of LHC's superconducting radio-frequency cavity modules has passed its final test at full power in the test area of building SM18. These modules carry an oscillating electric field that will accelerate protons around the LHC ring and help maintain the stability of the proton beams.

  3. Conformal Methods in General Relativity

    Science.gov (United States)

    Valiente Kroon, Juan A.

    2016-07-01

    List of symbols; Preface; 1. Introduction; Part I. Geometric Tools: 2. Differential Geometry; 3. Spacetime spinors; 4. Space spinors; 5. Conformal Geometry; Part II. General Relativity and Conformal Geometry: 6. Conformal extensions of exact solutions; 7. Asymptotic simplicity; 8. The conformal Einstein field equations; 9. Matter models; 10. Asymptotics; Part III. Methods of PDE Theory: 11. The conformal constraint equations; 12. Methods of the theory of hyperbolic differential equations; 13. Hyperbolic reductions; 14. Causality and the Cauchy problem in General Relativity; Part IV. Applications: 15. De Sitter-like spacetimes; 16. Minkowski-like spacetimes; 17. Anti-de Sitter-like spacetimes; 18. Characteristic problems for the conformal field equations; 19. Static solutions; 20. Spatial infinity; 21. Perspectives; References; Index.

  4. Tracing conformational changes in proteins

    OpenAIRE

    Haspel, Nurit; Moll, Mark; Baker, Matthew L; Chiu, Wah; Kavraki, Lydia E.

    2010-01-01

    Background Many proteins undergo extensive conformational changes as part of their functionality. Tracing these changes is important for understanding the way these proteins function. Traditional biophysics-based conformational search methods require a large number of calculations and are hard to apply to large-scale conformational motions. Results In this work we investigate the application of a robotics-inspired method, using backbone and limited side chain representation and a coarse grain...

  5. Proton-Proton Physics with ALICE

    CERN Document Server

    Grosse-Oetringhaus, J F

    2008-01-01

    The goal of the ALICE experiment at LHC is to study strongly interacting matter at high energy densities as well as the signatures and properties of the quark-gluon plasma. This goal manifests itself in a rich physics program. Although ALICE will mainly study heavy-ion collisions, a dedicated program will concentrate on proton-proton physics. The first part will introduce the ALICE experiment from a pp measurement's point of view. Two unique properties are its low pT cut-off and the excellent PID capabilities. The various topics of the proton-proton physics program, which will allow a close scrutiny of existing theoretical models, will be described. Furthermore, the interpretation of measurements of heavy-ion collisions necessitates the comparison to measurements of pp collisions. The second part will concentrate on the day-1 physics program of ALICE. At startup, neither the LHC luminosity nor its energy will have their nominal values. Furthermore, the ALICE detector is in the process of being aligned and cal...

  6. Conformal Fermi Coordinates

    CERN Document Server

    Dai, Liang; Schmidt, Fabian

    2015-01-01

    Fermi Normal Coordinates (FNC) are a useful frame for isolating the locally observable, physical effects of a long-wavelength spacetime perturbation. Their cosmological application, however, is hampered by the fact that they are only valid on scales much smaller than the horizon. We introduce a generalization that we call Conformal Fermi Coordinates (CFC). CFC preserve all the advantages of FNC, but in addition are valid outside the horizon. They allow us to calculate the coupling of long- and short-wavelength modes on all scales larger than the sound horizon of the cosmological fluid, starting from the epoch of inflation until today, by removing the complications of the second order Einstein equations to a large extent, and eliminating all gauge ambiguities. As an application, we present a calculation of the effect of long-wavelength tensor modes on small scale density fluctuations. We recover previous results, but clarify the physical content of the individual contributions in terms of locally measurable ef...

  7. Reflections on conformal spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungrok; Kravchuk, Petr [Walter Burke Institute for Theoretical Physics, Caltech,Pasadena, California 91125 (United States); School of Natural Sciences, Institute for Advanced Study,Princeton, New Jersey 08540 (United States); Ooguri, Hirosi [Walter Burke Institute for Theoretical Physics, Caltech,Pasadena, California 91125 (United States); School of Natural Sciences, Institute for Advanced Study,Princeton, New Jersey 08540 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),University of Tokyo,Kashiwa 277-8583 (Japan)

    2016-04-29

    We use modular invariance and crossing symmetry of conformal field theory to reveal approximate reflection symmetries in the spectral decompositions of the partition function in two dimensions in the limit of large central charge and of the four-point function in any dimension in the limit of large scaling dimensions Δ{sub 0} of external operators. We use these symmetries to motivate universal upper bounds on the spectrum and the operator product expansion coefficients, which we then derive by independent techniques. Some of the bounds for four-point functions are valid for finite Δ{sub 0} as well as for large Δ{sub 0}. We discuss a similar symmetry in a large spacetime dimension limit. Finally, we comment on the analogue of the Cardy formula and sparse light spectrum condition for the four-point function.

  8. Conformal (In)Equality

    Science.gov (United States)

    Hyun, Young-Hwan; Kim, Yoonbai; Lee, Seokcheon

    2018-01-01

    The current accelerating expansion of the Universe is explained either by dark energy or by modified gravity theories. Both of them can explain exactly the same background evolution of the Universe, however this degeneracy may be broken when the observation of large scale structure formation is taken into account. Two observables are parameterized by the so-called dark energy equation of state, ω and the growth index parameter, γ. From these observed parameters, one may reconstruct the model parameters of the so-called scalar-tensor gravity theory, one of the modified gravity theories. Especially, the scalar-tensor gravity theory is described both in Jordan frame and in Einstein frame. If cosmological observations are interpreted in one frame, then all of the observables should also be interpreted in that frame. This explicitly shows conformal inequality of cosmological observables.

  9. Conformal (InEquality

    Directory of Open Access Journals (Sweden)

    Hyun Young-Hwan

    2018-01-01

    Full Text Available The current accelerating expansion of the Universe is explained either by dark energy or by modified gravity theories. Both of them can explain exactly the same background evolution of the Universe, however this degeneracy may be broken when the observation of large scale structure formation is taken into account. Two observables are parameterized by the so-called dark energy equation of state, ω and the growth index parameter, γ. From these observed parameters, one may reconstruct the model parameters of the so-called scalar-tensor gravity theory, one of the modified gravity theories. Especially, the scalar-tensor gravity theory is described both in Jordan frame and in Einstein frame. If cosmological observations are interpreted in one frame, then all of the observables should also be interpreted in that frame. This explicitly shows conformal inequality of cosmological observables.

  10. Reflections on Conformal Spectra

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    We use modular invariance and crossing symmetry of conformal field theory to reveal approximate reflection symmetries in the spectral decompositions of the partition function in two dimensions in the limit of large central charge and of the four-point function in any dimension in the limit of large scaling dimensions Δ0 of external operators. We use these symmetries to motivate universal upper bounds on the spectrum and the operator product expansion coefficients, which we then derive by independent techniques. Some of the bounds for four-point functions are valid for finite Δ0 as well as for large Δ0. We discuss a similar symmetry in a large spacetime dimension limit. Finally, we comment on the analogue of the Cardy formula and sparse light spectrum condition for the four-point function. (based on 1510.08772 with Kim & Ooguri). This seminar will be given via videolink

  11. Minimal clinically important differences in the EORTC QLQ-C30 and brief pain inventory in patients undergoing re-irradiation for painful bone metastases.

    Science.gov (United States)

    Raman, Srinivas; Ding, Keyue; Chow, Edward; Meyer, Ralph M; van der Linden, Yvette M; Roos, Daniel; Hartsell, William F; Hoskin, Peter; Wu, Jackson S Y; Nabid, Abdenour; Haas, Rick; Wiggenraad, Ruud; Babington, Scott; Demas, William F; Wilson, Carolyn F; Wong, Rebecca K S; Zhu, Liting; Brundage, Michael

    2017-11-29

    The EORTC QLQ-C30 and the Brief Pain Inventory (BPI) are validated tools for measuring quality of life (QOL) and the impact of pain in patients with advanced cancer. Interpretation of these instrument scores can be challenging and it is difficult to know what numerical changes translate to clinically significant impact in patients' lives. To address this issue, our study sought to establish the minimal clinically important differences (MCID) for these two instruments in a prospective cohort of patients with advanced cancer and painful bone metastases. Both anchor-based and distribution-based methods were used to estimate the MCID scores from patients enrolled in a randomized phase III trial evaluating two different re-irradiation treatment schedules. For the anchor-based method, the global QOL item from the QLQ-C30 was chosen as the anchor. Spearman correlation coefficients were calculated for all items and only those items with moderate or better correlation (|r| ≥ 0.30) with the anchor were used for subsequent analysis. A 10-point difference in the global QOL score was used to classify improvement and deterioration, and the MCID scores were calculated for each of these categories. These results were compared with scores obtained by the distribution-method, which estimates the MCID purely from the statistical characteristics of the sample population. A total of 375 patients were included in this study with documented pain responses and completed QOL questionnaires at 2 months. 9/14 items in the QLQ-C30 and 6/10 items in the BPI were found to have moderate or better correlation with the anchor. For deterioration, statistically significant MCID scores were found in all items of the QLQ-C30 and BPI. For improvement, statistically significant MCID scores were found in 7/9 items of the QLQ-C30 and 2/6 items of the BPI. The MCID scores for deterioration were uniformly higher than the MCIDs for improvement. Using the distribution-based method, there was good

  12. Reirradiation With Cetuximab in Locoregional Recurrent and Inoperable Squamous Cell Carcinoma of the Head and Neck: Feasibility and First Efficacy Results

    Energy Technology Data Exchange (ETDEWEB)

    Balermpas, Panagiotis; Keller, Christian [Department of Radiation Therapy and Oncology, Goethe University, Frankfurt am Main (Germany); Hambek, Markus; Wagenblast, Jens [Department of Otorhinolaryngology, Goethe University, Frankfurt am Main (Germany); Seitz, Oliver [Department of Oral Maxillofacial and Plastic Facial Surgery, Goethe University, Frankfurt am Main (Germany); Roedel, Claus [Department of Radiation Therapy and Oncology, Goethe University, Frankfurt am Main (Germany); Weiss, Christian, E-mail: christian.weiss@kgu.de [Department of Radiation Therapy and Oncology, Goethe University, Frankfurt am Main (Germany)

    2012-07-01

    Purpose: To report our experience with a prospective protocol of external beam reirradiation (Re-RT) combined with cetuximab for patients with inoperable, recurrent squamous cell carcinoma of the head and neck (SCCHN). Patients and Methods: Between August 2008 and June 2010, 18 patients with inoperable recurrence of SCCHN after adjuvant or definitive radiotherapy (RT) and simultaneous or sequential cisplatin-based chemotherapy for primary SCCHN were enrolled. Acute and late toxicity from the experimental regimen were recorded every week during RT and every 3 months thereafter. Efficacy was assessed with repeated imaging using response evaluation criteria in solid tumors and clinical examinations 8-12 weeks after completion of the treatment and every 3 months thereafter. Results: Median follow-up time for all patients was 9.4 (range: 3.85-31.7) months and for patients alive 30.4 (range: 15.7-31.7) months. Acute toxicity was generally mild or moderate. Five patients developed a grade 3 acneiform rash related to cetuximab. Late toxicity occurred as grade 3 trismus in five and as grade 3 abacterial salivary gland inflammation in one patient, respectively. Overall response rate was 47%. Median overall and progression-free survival for all patients was 8.38 months and 7.33 months, respectively. The overall survival rate was 44% at 1 year, with a 1 year local control rate of 33%. Conclusion: Notwithstanding the limitations of our preliminary data Re-RT combined with cetuximab for recurrent and inoperable SCCHN is feasible and the integration of newer targeted agents seems to be less toxic compared to conventional chemotherapy with encouraging response rates at least for a subset of patients.

  13. Effect of a combined surgery, re-irradiation and hyperthermia therapy on local control rate in radio-induced angiosarcoma of the chest wall

    Energy Technology Data Exchange (ETDEWEB)

    Linthorst, M.; Rhoon, G.C. van; Zee, J. van der [Erasmus MC-Daniel den Hoed Cancer Center, Rotterdam (Netherlands). Dept. of Radiation Oncology; Geel, A.N. van [Erasmus MC-Daniel den Hoed Cancer Center, Rotterdam (Netherlands). Dept. of Surgical Oncology; Baartman, E.A. [Erasmus MC-Daniel den Hoed Cancer Center, Rotterdam (Netherlands). Dept. of Radiation Oncology; Oei, S.B. [Bernard Verbeeten Institute, Tilburg (Netherlands). Dept. of Radiation Oncology; Ghidey, W. [Erasmus MC-Daniel den Hoed Cancer Center, Rotterdam (Netherlands). Dept. of Trial and Medical Statistics

    2013-05-15

    Purpose: Radiation-induced angiosarcoma (RAS) of the chest wall/breast has a poor prognosis due to the high percentage of local failures. The efficacy and side effects of re-irradiation plus hyperthermia (reRT + HT) treatment alone or in combination with surgery were assessed in RAS patients. Patients and methods: RAS was diagnosed in 23 breast cancer patients and 1 patient with melanoma. These patients had previously undergone breast conserving therapy (BCT, n = 18), mastectomy with irradiation (n=5) or axillary lymph node dissection with irradiation (n = 1). Treatment consisted of surgery followed by reRT + HT (n = 8), reRT + HT followed by surgery (n = 3) or reRT + HT alone (n = 13). Patients received a mean radiation dose of 35 Gy (32-54 Gy) and 3-6 hyperthermia treatments (mean 4). Hyperthermia was given once or twice a week following radiotherapy (RT). Results: The median latency interval between previous radiation and diagnosis of RAS was 106 months (range 45-212 months). Following reRT + HT, the complete response (CR) rate was 56 %. In the subgroup of patients receiving surgery, the 3-month, 1- and 3-year actuarial local control (LC) rates were 91, 46 and 46 %, respectively. In the subgroup of patients without surgery, the rates were 54, 32 and 22 %, respectively. Late grade 4 RT toxicity was seen in 2 patients. Conclusion: The present study shows that reRT + HT treatment - either alone or combined with surgery - improves LC rates in patients with RAS. (orig.)

  14. Re-irradiation of unresectable recurrent head and neck cancer: using Helical Tomotherapy as image-guided intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Songmi; Yoo, Eun Jung; Kim, Ji Yoon; Han, Chi Wha; Kim, Ki Jun; Kay, Chul Seung [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2013-12-15

    Re-irradiation (re-RT) is considered a treatment option for inoperable locoregionally recurrent head and neck cancer (HNC) after prior radiotherapy. We evaluated the efficacy and safety of re-RT using Helical Tomotherapy as image-guided intensity-modulated radiotherapy in recurrent HNC. Patients diagnosed with recurrent HNC and received re-RT were retrospectively reviewed. Primary endpoint was overall survival (OS) and secondary endpoints were locoregional control and toxicities. The median follow-up period of total 9 patients was 18.7 months (range, 4.1 to 76 months) and that of 3 alive patients was 49 months (range, 47 to 76 months). Median dose of first radiotherapy and re-RT was 64.8 and 47.5 Gy10. Median cumulative dose of the two courses of radiotherapy was 116.3 Gy10 (range, 91.8 to 128.9 Gy10) while the median interval between the two courses of radiation was 25 months (range, 4 to 137 months). The response rate after re-RT of the evaluated 8 patients was 75% (complete response, 4; partial response, 2). Median locoregional relapse-free survival after re-RT was 11.9 months (range, 3.4 to 75.1 months) and 5 patients eventually presented with treatment failure (in-field failure, 2; in- and out-field failure, 2; out-field failure, 1). Median OS of the 8 patients was 20.3 months (range, 4.1 to 75.1 months). One- and two-year OS rates were 62.5% and 50%, respectively. Grade 3 leucopenia developed in one patient as acute toxicity, and grade 2 osteonecrosis and trismus as chronic toxicity in another patient. Re-RT using Helical Tomotherapy for previously irradiated patients with unresectable locoregionally recurrent HNC may be a feasible treatment option with long-term survival and acceptable toxicities.

  15. Replacement between conformity and counter-conformity in consumption decisions.

    Science.gov (United States)

    Chou, Ting-Jui; Chang, En-Chung; Dai, Qi; Wong, Veronica

    2013-02-01

    This study assessed, in a Chinese context, how self-esteem interacts with perceived similarity and uniqueness to yield cognitive dissonance, and whether the dissonance leads to self-reported conformity or counter-conformity behavior. Participants were 408 respondents from 4 major Chinese cities (M age = 33.0 yr., SD = 4.3; 48% men). Self-perceptions of uniqueness, similarity, cognitive dissonance, self-esteem and need to behave in conformity or counter-conformity were measured. A theoretical model was assessed in four situations, relating the ratings of self-esteem and perceived similarity/uniqueness to the way other people at a wedding were dressed, and the resultant cognitive dissonance and conformity/ counter-conformity behavior. Regardless of high or low self-esteem, all participants reported cognitive dissonance when they were told that they were dressed extremely similarly to or extremely differently from the other people attending the wedding. However, the conforming/counter-conforming strategies used by participants to resolve the cognitive dissonance differed. When encountering dissonance induced by the perceived extreme uniqueness of dress, participants with low self-esteem tended to say they would dress next time so as to conform with the way others were dressed, while those with high self-esteem indicated they would continue their counter-conformity in attire. When encountering dissonance induced by the perceived extreme similarity to others, both those with high and low self-esteem tended to say they would dress in an unorthodox manner to surprise other people in the future.

  16. Recent advancements in conformal gravity

    Science.gov (United States)

    O'Brien, James G.; Chaykov, Spasen S.; Dentico, Jeremy; Stulge, Modestas; Stefanski, Brian; Moss, Robert J.

    2017-05-01

    In recent years, due to the lack of direct observed evidence of cold dark matter, coupled with the shrinking parameter space to search for new dark matter particles, there has been increased interest in Alternative Gravitational theories. This paper, addresses three recent advances in conformal gravity, a fourth order renormalizable metric theory of gravitation originally formulated by Weyl, and later advanced by Mannheim and Kazanas. The first section of the paper applies conformal gravity to the rotation curves of the LITTLE THINGS survey, extending the total number of rotation curves successfully fit by conformal gravity to well over 200 individual data sets without the need for additional dark matter. Further, in this rotation curve study, we show how MOND and conformal gravity compare for each galaxy in the sample. Second, we look at the original Zwicky problem of applying the virial theorem to the Coma cluster in order to get an estimate for the cluster mass. However, instead of using the standard Newtonian potential, here we use the weak field approximation of conformal gravity. We show that in the conformal case we can get a much smaller mass estimate and thus there is no apparent need to include dark matter. We then show that this calculation is in agreement with the observational data from other well studied clusters. Last, we explore the calculation of the deflection of starlight through conformal gravity, as a first step towards applying conformal gravity to gravitaitonal lensing.

  17. Solvent Induced Conformational Kinetics (SICK)

    NARCIS (Netherlands)

    Jonkman, Leffert; Kommandeur, Jan

    1970-01-01

    Specific conformations of molecules may be induced by the solvent when a large free volume is associated with the oonformational change. The conformational energy barrier is then a property of the solvent, rather than of the molecule. Such effects are reported for several substituted

  18. Counselor Identity: Conformity or Distinction?

    Science.gov (United States)

    McLaughlin, Jerry E.; Boettcher, Kathryn

    2009-01-01

    The authors explore 3 debates in other disciplines similar to counseling's identity debate in order to learn about common themes and outcomes. Conformity, distinction, and cohesion emerged as common themes. They conclude that counselors should retain their distinctive, humanistic approach rather than conforming to the dominant, medical approach.

  19. Lorentz contracted proton

    Energy Technology Data Exchange (ETDEWEB)

    Fierro, D. Bedoya; Kelkar, N.G.; Nowakowski, M. [Dept. de Fisica, Universidad de los Andes, Cra. 1E No. 18A-10, Santafe de Bogota (Colombia)

    2015-09-30

    The proton charge and magnetization density distributions can be related to the well known Sachs electromagnetic form factors G{sub E,M}(/emph {q}{sup 2}) through Fourier transforms, only in the Breit frame. The Breit frame however moves with relativistic velocities in the Lab and a Lorentz boost must be applied before extracting the static properties of the proton from the corresponding densities. Apart from this, the Fourier transform relating the densities and form factors is inherently a non-relativistic expression. We show that the relativistic corrections to it can be obtained by extending the standard Breit equation to higher orders in its 1/c{sup 2} expansion. We find that the inclusion of the above corrections reduces the size of the proton as determined from electron proton scattering data by about 4%.

  20. Inauguration of Proton Synchrotron

    CERN Multimedia

    1960-01-01

    On 5 February 1960, the Proton Synchrotron (PS) was formally inaugurated. The great Danish physicist, Niels Bohr, releases a bottle of champagne against a shielding block to launch the PS on its voyage in physics.

  1. Proton computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, K.M.

    1978-01-01

    The use of protons or other heavy charged particles instead of x rays in computed tomography (CT) is explored. The results of an experimental implementation of proton CT are presented. High quality CT reconstructions are obtained at an average dose reduction factor compared with an EMI 5005 x-ray scanner of 10:1 for a 30-cm-diameter phantom and 3.5:1 for a 20-cm diameter. The spatial resolution is limited by multiple Coulomb scattering to about 3.7 mm FWHM. Further studies are planned in which proton and x-ray images of fresh human specimens will be compared. Design considerations indicate that a clinically useful proton CT scanner is eminently feasible.

  2. Plant proton pumps

    DEFF Research Database (Denmark)

    Gaxiola, Roberto A.; Palmgren, Michael Gjedde; Schumacher, Karin

    2007-01-01

    Chemiosmotic circuits of plant cells are driven by proton (H+) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react...

  3. Jovian proton aurora

    Science.gov (United States)

    Heaps, M. G.; Edgar, B. C.; Green, A. E. S.

    1975-01-01

    Auroral and polar cap emissions in a model Jovian atmosphere are determined for proton precipitation. The incident protons, which are characterized by representative spectra, are degraded in energy by applying the continuous slowing down approximation. All secondary and higher generation electrons are assumed to be absorbed locally and their contributions to the total emissions are included. Volume emission rates are calculated from the total direct excitation rates with corrections for cascading applied. Results show that most molecular hydrogen and helium emissions for polar cap precipitation are below the ambient dayglow values. Charge capture by precipitating protons is an important source of Lyman alpha and Balmer alpha emissions and offers a key to the detection of large fluxes of low energy protons.

  4. Proton conduction in phosphatidylethanolamine.

    Science.gov (United States)

    Murase, N; Gonda, K; Kagami, I; Koga, S

    1977-08-01

    The dc conductivity of polycrystalline phosphatidylethanolamine (PE) was measured in the temperature range 60-120 degrees C. Since no conclusive evidence had so far been obtained for the presence of proteon conduction in this phospholipid, hydrogen gas was shown in the present experiment to evolve during the electrolysis in its premelted state between 91 and 124 degrees C. In this temperature range molecules assume rotation around the molecular axes and proton conduction of the Grotthus type takes place possibly along two chains of intermolecular hydrogen bonds running in parallel. Zwitter-ions behave cooperatively as proton donors and acceptors in transferring proton from molecule and molecule via the hydrogen bond networks. This efficient push-pull way of proton transferring seems to account for the fact that no polarization was observed in the dc conduction experiments. The amount of devolved gas appears to be not exactly in accordance with Faraday's law and discussions are made on possible causes for this slight deviation.

  5. The Proton Radius Puzzle

    Directory of Open Access Journals (Sweden)

    Downie E. J.

    2016-01-01

    Full Text Available The proton radius puzzle is the difference between the proton radius as measured with electron scattering and in the excitation spectrum of atomic hydrogen, and that measured with muonic hydrogen spectroscopy. Since the inception of the proton radius puzzle in 2010 by the measurement of Pohl et al.[1], many possible resolutions to the puzzle have been postulated, but, to date, none has been generally accepted. New data are therefore necessary to resolve the issue. We briefly review the puzzle, the proposed solutions, and the new electron scattering and spectroscopy experiments planned and underway. We then introduce the MUSE experiment, which seeks to resolve the puzzle by simultaneously measuring elastic electron and muon scattering on the proton, in both charge states, thereby providing new information to the puzzle. MUSE addresses issues of two-photon effects, lepton universality and, possibly, new physics, while providing simultaneous form factor, and therefore radius, measurements with both muons and electrons.

  6. Recursion Relations for Conformal Blocks

    CERN Document Server

    Penedones, João; Yamazaki, Masahito

    2016-09-12

    In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension $\\Delta$ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in 1307.6856 for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.

  7. Radiation therapy planning with photons and protons for early and advanced breast cancer: an overview

    Directory of Open Access Journals (Sweden)

    Lomax Antony J

    2006-07-01

    Full Text Available Abstract Postoperative radiation therapy substantially decreases local relapse and moderately reduces breast cancer mortality, but can be associated with increased late mortality due to cardiovascular morbidity and secondary malignancies. Sophistication of breast irradiation techniques, including conformal radiotherapy and intensity modulated radiation therapy, has been shown to markedly reduce cardiac and lung irradiation. The delivery of more conformal treatment can also be achieved with particle beam therapy using protons. Protons have superior dose distributional qualities compared to photons, as dose deposition occurs in a modulated narrow zone, called the Bragg peak. As a result, further dose optimization in breast cancer treatment can be reasonably expected with protons. In this review, we outline the potential indications and benefits of breast cancer radiotherapy with protons. Comparative planning studies and preliminary clinical data are detailed and future developments are considered.

  8. AN INVESTIGATION OF THE PROTONATION STATES OF HUMAN LACTOFERRIN IRON-BINDING PROTEIN

    Directory of Open Access Journals (Sweden)

    Lilia Anghel

    2015-06-01

    Full Text Available In this study, the protonation states of ionizable groups of human lactoferrin in various conformations were investigated theoretically, at physiological pH (7.365. These calculations show that the transition of the protein from a conformation to another one is accompanied by changes in the protonation state of specific amino acid residues. Analysis of the pKa calculatons underlined the importance of participation of two arginines and one lysine in the opening / closing of the protein. In addition, it was found that the mechanism of iron release depends on the protonation state of TYR-192. Protonated state of this residue in the closed form of lactoferrin will trigger the opening of protein and release of iron ions.

  9. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  10. Imaging of conformational changes

    Energy Technology Data Exchange (ETDEWEB)

    Michl, Josef [Univ. of Colorado, Boulder, CO (United States)

    2016-03-13

    Control of intramolecular conformational change in a small number of molecules or even a single one by an application of an outside electric field defined by potentials on nearby metal or dielectric surfaces has potential applications in both 3-D and 2-D nanotechnology. Specifically, the synthesis, characterization, and understanding of designed solids with controlled built-in internal rotational motion of a dipole promises a new class of materials with intrinsic dielectric, ferroelectric, optical and optoelectronic properties not found in nature. Controlled rotational motion is of great interest due to its expected utility in phenomena as diverse as transport, current flow in molecular junctions, diffusion in microfluidic channels, and rotary motion in molecular machines. A direct time-resolved observation of the dynamics of motion on ps or ns time scale in a single molecule would be highly interesting but is also very difficult and has yet to be accomplished. Much can be learned from an easier but still challenging comparison of directly observed initial and final orientational states of a single molecule, which is the basis of this project. The project also impacts the understanding of surface-enhanced Raman spectroscopy (SERS) and single-molecule spectroscopic detection, as well as the synthesis of solid-state materials with tailored properties from designed precursors.

  11. Conformal solids and holography

    Science.gov (United States)

    Esposito, A.; Garcia-Saenz, S.; Nicolis, A.; Penco, R.

    2017-12-01

    We argue that a SO( d) magnetic monopole in an asymptotically AdS space-time is dual to a d-dimensional strongly coupled system in a solid state. In light of this, it would be remiss of us not to dub such a field configuration solidon. In the presence of mixed boundary conditions, a solidon spontaneously breaks translations (among many other symmetries) and gives rise to Goldstone excitations on the boundary — the phonons of the solid. We derive the quadratic action for the boundary phonons in the probe limit and show that, when the mixed boundary conditions preserve conformal symmetry, the longitudinal and transverse sound speeds are related to each other as expected from effective field theory arguments. We then include backreaction and calculate the free energy of the solidon for a particular choice of mixed boundary conditions, corresponding to a relevant multi-trace deformation of the boundary theory. We find such free energy to be lower than that of thermal AdS. This suggests that our solidon undergoes a solid-to-liquid first order phase transition by melting into a Schwarzschild-AdS black hole as the temperature is raised.

  12. The physics of proton therapy

    OpenAIRE

    Newhauser, Wayne D; ZHANG, Rui

    2015-01-01

    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes a...

  13. Interplay of charge distribution and conformation in peptides: comparison of theory and experiment.

    Science.gov (United States)

    Makowska, Joanna; Bagińska, Katarzyna; Kasprzykowski, F; Vila, Jorge A; Jagielska, Anna; Liwo, Adam; Chmurzyński, Lech; Scheraga, Harold A

    2005-01-01

    We assessed the correlation between charge distribution and conformation of flexible peptides by comparing the theoretically calculated potentiometric-titration curves of two model peptides, Ac-Lys5-NHMe (a model of poly-L-lysine) and Ac-Lys-Ala11-Lys-Gly2-Tyr-NH2 (P1) in water and methanol, with the experimental curves. The calculation procedure consisted of three steps: (i) global conformational search of the peptide under study using the electrostatically driven Monte Carlo (EDMC) method with the empirical conformational energy program for peptides (ECEPP)/3 force field plus the surface-hydration (SRFOPT) or the generalized Born surface area (GBSA) solvation model as well as a molecular dynamics method with the assisted model building and energy refinement (AMBER)99/GBSA force field; (ii) reevaluation of the energy in the pH range considered by using the modified Poisson-Boltzmann approach and taking into account all possible protonation microstates of each conformation, and (iii) calculation of the average degree of protonation of the peptide at a given pH value by Boltzmann averaging over conformations. For Ac-Lys5-NHMe, the computed titration curve agrees qualitatively with the experimental curve of poly-L-lysine in 95% methanol. The experimental titration curves of peptide P1 in water and methanol indicate a remarkable downshift of the first pK(a) value compared to the values for reference compounds (n-butylamine and phenol, respectively), suggesting the presence of a hydrogen bond between the tyrosine hydroxyl oxygen and the H(epsilon) proton of a protonated lysine side chain. The theoretical titration curves agree well with the experimental curves, if conformations with such hydrogen bonds constitute a significant part of the ensemble; otherwise, the theory predicts too small a downward pH shift. Copyright 2005 Wiley Periodicals, Inc

  14. Conformational Switching in the Fungal Light Sensor Vivid

    Energy Technology Data Exchange (ETDEWEB)

    Zoltowski,B.; Schwerdtgeger, C.; Widom, J.; Loros, J.; Bilwes, A.; Dunlap, J.; Crane, B.

    2007-01-01

    The Neurospora crassa photoreceptor Vivid tunes blue-light responses and modulates gating of the circadian clock. Crystal structures of dark-state and light-state Vivid reveal a light, oxygen, or voltage Per-Arnt-Sim domain with an unusual N-terminal cap region and a loop insertion that accommodates the flavin cofactor. Photoinduced formation of a cystein-flavin adduct drives flavin protonation to induce an N-terminal conformational change. A cysteine-to-serine substitution remote from the flavin adenine dinucleotide binding site decouples conformational switching from the flavin photocycle and prevents Vivid from sending signals in Neurospora. Key elements of this activation mechanism are conserved by other photosensors such as White Collar-1, ZEITLUPE, ENVOY, and flavin-binding, kelch repeat, F-BOX 1 (FKF1).

  15. Locally conformal symplectic manifolds

    Directory of Open Access Journals (Sweden)

    Izu Vaisman

    1985-01-01

    Full Text Available A locally conformal symplectic (l. c. s. manifold is a pair (M2n,Ω where M2n(n>1 is a connected differentiable manifold, and Ω a nondegenerate 2-form on M such that M=⋃αUα (Uα- open subsets. Ω/Uα=eσαΩα, σα:Uα→ℝ, dΩα=0. Equivalently, dΩ=ω∧Ω for some closed 1-form ω. L. c. s. manifolds can be seen as generalized phase spaces of Hamiltonian dynamical systems since the form of the Hamilton equations is, in fact, preserved by homothetic canonical transformations. The paper discusses first Hamiltonian vector fields, and infinitesimal automorphisms (i. a. on l. c. s. manifolds. If (M,Ω has an i. a. X such that ω(X≠0, we say that M is of the first kind and Ω assumes the particular form Ω=dθ−ω∧θ. Such an M is a 2-contact manifold with the structure forms (ω,θ, and it has a vertical 2-dimensional foliation V. If V is regular, we can give a fibration theorem which shows that M is a T2-principal bundle over a symplectic manifold. Particularly, V is regular for some homogeneous l. c. s, manifolds, and this leads to a general construction of compact homogeneous l. c. s, manifolds. Various related geometric results, including reductivity theorems for Lie algebras of i. a. are also given. Most of the proofs are adaptations of corresponding proofs in symplectic and contact geometry. The paper ends with an Appendix which states an analogous fibration theorem in Riemannian geometry.

  16. Proton and carbon ion radiotherapy for primary brain tumors delivered with active raster scanning at the Heidelberg Ion Therapy Center (HIT: early treatment results and study concepts

    Directory of Open Access Journals (Sweden)

    Rieken Stefan

    2012-03-01

    Full Text Available Abstract Background Particle irradiation was established at the University of Heidelberg 2 years ago. To date, more than 400 patients have been treated including patients with primary brain tumors. In malignant glioma (WHO IV patients, two clinical trials have been set up-one investigating the benefit of a carbon ion (18 GyE vs. a proton boost (10 GyE in addition to photon radiotherapy (50 Gy, the other one investigating reirradiation with escalating total dose schedules starting at 30 GyE. In atypical meningioma patients (WHO °II, a carbon ion boost of 18 GyE is applied to macroscopic tumor residues following previous photon irradiation with 50 Gy. This study was set up in order to investigate toxicity and response after proton and carbon ion therapy for gliomas and meningiomas. Methods 33 patients with gliomas (n = 26 and meningiomas (n = 7 were treated with carbon ion (n = 26 and proton (n = 7 radiotherapy. In 22 patients, particle irradiation was combined with photon therapy. Temozolomide-based chemotherapy was combined with particle therapy in 17 patients with gliomas. Particle therapy as reirradiation was conducted in 7 patients. Target volume definition was based upon CT, MRI and PET imaging. Response was assessed by MRI examinations, and progression was diagnosed according to the Macdonald criteria. Toxicity was classified according to CTCAE v4.0. Results Treatment was completed and tolerated well in all patients. Toxicity was moderate and included fatigue (24.2%, intermittent cranial nerve symptoms (6% and single episodes of seizures (6%. At first and second follow-up examinations, mean maximum tumor diameters had slightly decreased from 29.7 mm to 27.1 mm and 24.9 mm respectively. Nine glioma patients suffered from tumor relapse, among these 5 with infield relapses, causing death in 8 patients. There was no progression in any meningioma patient. Conclusions Particle radiotherapy is safe and feasible in patients with primary brain

  17. Journal of Proton Therapy

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2015-01-01

    Full Text Available Journal of Proton Therapy (JPT is an international open access, peer-reviewed journal, which publishes original research, technical reports, reviews, case reports, editorials, and other materials on proton therapy with focus on radiation oncology, medical physics, medical dosimetry, and radiation therapy.No article processing/submission feeNo publication feePeer-review completion within 3-6 weeksImmediate publication after the completion of final author proofreadDOI assignment for each published articleFree access to published articles for all readers without any access barriers or subscriptionThe views and opinions expressed in articles are those of the author/s and do not necessarily reflect the policies of the Journal of Proton Therapy.Authors are encouraged to submit articles for publication in the inaugural issue of the Journal of Proton Therapy by online or email to editor@protonjournal.comOfficial Website of Journal of Proton Therapy: http://www.protonjournal.org/

  18. Protons and how they are transported by proton pumps.

    Science.gov (United States)

    Buch-Pedersen, M J; Pedersen, B P; Veierskov, B; Nissen, P; Palmgren, M G

    2009-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK(a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires.

  19. Proton relativistic model; Modelo relativistico do proton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wilson Roberto Barbosa de

    1995-12-31

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author) 42 refs., 22 figs., 1 tab.

  20. Logarithmic conformal field theory

    Science.gov (United States)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  1. Some Progress in Conformal Geometry

    Directory of Open Access Journals (Sweden)

    Sun-Yung A. Chang

    2007-12-01

    Full Text Available This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $sigma_2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.

  2. Steady states in conformal theories

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    A novel conjecture regarding the steady state behavior of conformal field theories placed between two heat baths will be presented. Some verification of the conjecture will be provided in the context of fluid dynamics and holography.

  3. Conformity Adequacy Review: Region 5

    Science.gov (United States)

    Resources are for air quality and transportation government and community leaders. Information on the conformity SIP adequacy/inadequacy of state implementation plans (SIPs) in EPA Region 5 (IL, IN, MI, OH, WI) is provided here.

  4. Fan beam intensity modulated proton therapy

    Science.gov (United States)

    Hill, Patrick M.

    A fan beam proton therapy is developed which delivers intensity modulated proton therapy using distal edge tracking. The system may be retrofit onto existing proton therapy gantries without alterations to infrastructure in order to improve treatments through intensity modulation. A novel range and intensity modulation system is designed using acrylic leaves that are inserted or retracted from subsections of the fan beam. Leaf thicknesses are chosen in a base-2 system and motivated in a binary manner. Dose spots from individual beam channels range between 1 and 5 cm. Integrated collimators attempting to limit crosstalk among beam channels are investigated, but found to be inferior to uncollimated beam channel modulators. A treatment planning system performing data manipulation in MATLAB and dose calculation in MCNPX is developed. Beamlet dose is calculated on patient CT data and a fan beam source is manually defined to produce accurate results. An energy deposition tally follows the CT grid, allowing straightforward registration of dose and image data. Simulations of beam channels assume that a beam channel either delivers dose to a distal edge spot or is intensity modulated. A final calculation is performed separately to determine the deliverable dose accounting for all sources of scatter. Treatment plans investigate the effects that varying system parameters have on dose distributions. Beam channel apertures may be as large as 20 mm because the sharp distal falloff characteristic of proton dose provides sufficient intensity modulation to meet dose objectives, even in the presence of coarse lateral resolution. Dose conformity suffers only when treatments are delivered from less than 10 angles. Jaw widths of 1--2 cm produce comparable dose distributions, but a jaw width of 4 cm produces unacceptable target coverage when maintaining critical structure avoidance. Treatment time for a prostate delivery is estimated to be on the order of 10 minutes. Neutron production

  5. NMR studies of the conformation and motion of tetrahydrofuran in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, Daniel Franz [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    The behavior of tetrahydrofuran (THF) molecules intercalated in graphite layers in compounds Cs(THF){sub 1.3}C{sub 24} and K(THF){sub 2.5}C{sub 24} was studied by proton NMR. The graphite layers in these compounds impose a uniform ordering on the THF molecules, giving rise to sharp NMR spectra. Experimental and simulated proton NMR spectra were used to investigate geometry, orientation and conformation of intercalated THF, and to determine whether pseudorotation, a large amplitude low-frequency vibration observed in gaseous THF, can also occur in the constrained environment provided by the graphite intercalation compounds. Deuterium and multiple quantum proton NMR spectra were also simulated in order to determine if these techniques could further refine the proton NMR results.

  6. NMR experiments for the measurement of proton-proton and carbon-carbon residual dipolar couplings in uniformly labelled oligosaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Pastor, Manuel [Universidad de Santiago de Compostela, Laboratorio Integral de Estructura de Biomoleculas Jose. R. Carracido, Unidade de Resonancia Magnetica, RIAIDT (Spain)], E-mail: mmartin@usc.es; Canales-Mayordomo, Angeles; Jimenez-Barbero, Jesus [Departamento de Estructura y funcion de proteinas, Centro de Investigaciones Biologicas, CSIC (Spain)], E-mail: jjbarbero@cib.csic.es

    2003-08-15

    A 2D-HSQC-carbon selective/proton selective-constant time COSY, 2D-HSQC-(sel C, sel H)-CT COSY experiment, which is applicable to uniformly {sup 13}C isotopically enriched samples (U-{sup 13}C) of oligosaccharides or oligonucleotides is proposed for the measurement of proton-proton RDC in crowded regions of 2D-spectra. In addition, a heteronuclear constant time-COSY experiment, {sup 13}C-{sup 13}C CT-COSY, is proposed for the measurement of one bond carbon-carbon RDC in these molecules. These two methods provide an extension, to U-{sup 13}C molecules, of the original homonuclear constant time-COSY experiment proposed by Tian et al. (1999) for saccharides. The combination of a number of these RDC with NOE data may provide the method of choice to study oligosaccharide conformation in the free and receptor-bound state.

  7. The physics of proton therapy.

    Science.gov (United States)

    Newhauser, Wayne D; Zhang, Rui

    2015-04-21

    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy.

  8. The physics of proton therapy

    Science.gov (United States)

    Newhauser, Wayne D.; Zhang, Rui

    2015-04-01

    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy.

  9. Falsification of Mannheim's conformal gravity

    CERN Document Server

    Yoon, Youngsub

    2013-01-01

    We show that Mannheim's conformal gravity, whose potential has a term proportional to $1/r$ and another term proportional to $r$, doesn't reduce to Newtonian gravity at short distances. Therefore, despite the claim that it successfully explains galaxy rotation curves, it seems falsified by numerous Cavendish-type experiments performed at laboratories on Earth whose work haven't found any deviations from Newton's theory. Moreover, when Mannheim used his potential to fit the galaxy rotation curve, he used the Newtonian formula to calculate the effects of the term proportional to $1/r$, not the conformal gravity one. So, he lacked consistency. After all, he would not have been able to use the conformal gravity one either since it deviates so much from the Newtonian one, which the conformal gravity one should reduce to. We also give a couple of other similar reasons why Mannheim's conformal gravity is wrong. For example, the gravitational potential of conformal gravity doesn't reduce to the Newtonian one even in ...

  10. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Nissen, Poul

    2008-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic...... molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...

  11. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  12. Perspectives on electrostatics and conformational motions in enzyme catalysis.

    Science.gov (United States)

    Hanoian, Philip; Liu, C Tony; Hammes-Schiffer, Sharon; Benkovic, Stephen

    2015-02-17

    CONSPECTUS: Enzymes are essential for all living organisms, and their effectiveness as chemical catalysts has driven more than a half century of research seeking to understand the enormous rate enhancements they provide. Nevertheless, a complete understanding of the factors that govern the rate enhancements and selectivities of enzymes remains elusive, due to the extraordinary complexity and cooperativity that are the hallmarks of these biomolecules. We have used a combination of site-directed mutagenesis, pre-steady-state kinetics, X-ray crystallography, nuclear magnetic resonance (NMR), vibrational and fluorescence spectroscopies, resonance energy transfer, and computer simulations to study the implications of conformational motions and electrostatic interactions on enzyme catalysis in the enzyme dihydrofolate reductase (DHFR). We have demonstrated that modest equilibrium conformational changes are functionally related to the hydride transfer reaction. Results obtained for mutant DHFRs illustrated that reductions in hydride transfer rates are correlated with altered conformational motions, and analysis of the evolutionary history of DHFR indicated that mutations appear to have occurred to preserve both the hydride transfer rate and the associated conformational changes. More recent results suggested that differences in local electrostatic environments contribute to finely tuning the substrate pKa in the initial protonation step. Using a combination of primary and solvent kinetic isotope effects, we demonstrated that the reaction mechanism is consistent across a broad pH range, and computer simulations suggested that deprotonation of the active site Tyr100 may play a crucial role in substrate protonation at high pH. Site-specific incorporation of vibrational thiocyanate probes into the ecDHFR active site provided an experimental tool for interrogating these microenvironments and for investigating changes in electrostatics along the DHFR catalytic cycle

  13. CONFORMANCE IMPROVEMENT USING GELS

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the

  14. CONFORMANCE IMPROVEMENT USING GELS

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Seright

    2004-09-30

    This report describes work performed during the third and final year of the project, ''Conformance Improvement Using Gels.'' Corefloods revealed throughput dependencies of permeability reduction by polymers and gels that were much more prolonged during oil flow than water flow. This behavior was explained using simple mobility ratio arguments. A model was developed that quantitatively fits the results and predicts ''clean up'' times for oil productivity when production wells are returned to service after application of a polymer or gel treatment. X-ray computed microtomography studies of gels in strongly water-wet Berea sandstone and strongly oil-wet porous polyethylene suggested that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than gel-ripping or gel-displacement mechanisms. In contrast, analysis of data from the University of Kansas suggests that the gel-ripping or displacement mechanisms are more important in more permeable, strongly water-wet sandpacks. These findings help to explain why aqueous gels can reduce permeability to water more than to oil under different conditions. Since cement is the most commonly used material for water shutoff, we considered when gels are preferred over cements. Our analysis and experimental results indicated that cement cannot be expected to completely fill (top to bottom) a vertical fracture of any width, except near the wellbore. For vertical fractures with apertures less than 4 mm, the cement slurry will simply not penetrate very far into the fracture. For vertical fractures with apertures greater than 4 mm, the slurry may penetrate a substantial distance into the bottom part of the fracture. However, except near the wellbore, the upper part of the fracture will remain open due to gravity segregation. We compared various approaches to plugging fractures using gels, including (1) varying polymer content, (2) varying placement (extrusion) rate

  15. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    Energy Technology Data Exchange (ETDEWEB)

    Araujo-Andrade, C. [Unidad Académica de Física de la Universidad Autónoma de Zacatecas, Zacatecas (Mexico); Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Reva, I., E-mail: reva@qui.uc.pt; Fausto, R. [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)

    2014-02-14

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol{sup −1} energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol{sup −1}) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol{sup −1}). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm{sup −1}, where the first OH stretching overtone

  16. Quantitative dissection of hydrogen bond-mediated proton transfer in the ketosteroid isomerase active site

    Science.gov (United States)

    Sigala, Paul A.; Fafarman, Aaron T.; Schwans, Jason P.; Fried, Stephen D.; Fenn, Timothy D.; Caaveiro, Jose M. M.; Pybus, Brandon; Ringe, Dagmar; Petsko, Gregory A.; Boxer, Steven G.; Herschlag, Daniel

    2013-01-01

    Hydrogen bond networks are key elements of protein structure and function but have been challenging to study within the complex protein environment. We have carried out in-depth interrogations of the proton transfer equilibrium within a hydrogen bond network formed to bound phenols in the active site of ketosteroid isomerase. We systematically varied the proton affinity of the phenol using differing electron-withdrawing substituents and incorporated site-specific NMR and IR probes to quantitatively map the proton and charge rearrangements within the network that accompany incremental increases in phenol proton affinity. The observed ionization changes were accurately described by a simple equilibrium proton transfer model that strongly suggests the intrinsic proton affinity of one of the Tyr residues in the network, Tyr16, does not remain constant but rather systematically increases due to weakening of the phenol–Tyr16 anion hydrogen bond with increasing phenol proton affinity. Using vibrational Stark spectroscopy, we quantified the electrostatic field changes within the surrounding active site that accompany these rearrangements within the network. We were able to model these changes accurately using continuum electrostatic calculations, suggesting a high degree of conformational restriction within the protein matrix. Our study affords direct insight into the physical and energetic properties of a hydrogen bond network within a protein interior and provides an example of a highly controlled system with minimal conformational rearrangements in which the observed physical changes can be accurately modeled by theoretical calculations. PMID:23798390

  17. Proton Radiography (pRad)

    Data.gov (United States)

    Federal Laboratory Consortium — The proton radiography project has used 800 MeV protons provided by the LANSCE accelerator facility at LANL, to diagnose more than 300 dynamic experiments in support...

  18. Empowering Intensity Modulated Proton Therapy Through Physics and Technology: An Overview.

    Science.gov (United States)

    Mohan, Radhe; Das, Indra J; Ling, Clifton C

    2017-10-01

    Considering the clinical potential of protons attributable to their physical characteristics, interest in proton therapy has increased greatly in this century, as has the number of proton therapy installations. Until recently, passively scattered proton therapy was used almost entirely. Notably, the overall clinical results to date have not shown a convincing benefit of protons over photons. A rapid transition is now occurring with the implementation of the most advanced form of proton therapy, intensity modulated proton therapy (IMPT). IMPT is superior to passively scattered proton therapy and intensity modulated radiation therapy (IMRT) dosimetrically. However, numerous limitations exist in the present IMPT methods. In particular, compared with IMRT, IMPT is highly vulnerable to various uncertainties. In this overview we identify three major areas of current limitations of IMPT: treatment planning, treatment delivery, and motion management, and discuss current and future efforts for improvement. For treatment planning, we need to reduce uncertainties in proton range and in computed dose distributions, improve robust planning and optimization, enhance adaptive treatment planning and delivery, and consider how to exploit the variability in the relative biological effectiveness of protons for clinical benefit. The quality of proton therapy also depends on the characteristics of the IMPT delivery systems and image guidance. Efforts are needed to optimize the beamlet spot size for both improved dose conformality and faster delivery. For the latter, faster energy switching time and increased dose rate are also needed. Real-time in-room volumetric imaging for guiding IMPT is in its early stages with cone beam computed tomography (CT) and CT-on-rails, and continued improvements are anticipated. In addition, imaging of the proton beams themselves, using, for instance, prompt γ emissions, is being developed to determine the proton range and to reduce range uncertainty

  19. To conform or not to conform: spontaneous conformity diminishes the sensitivity to monetary outcomes.

    Science.gov (United States)

    Yu, Rongjun; Sun, Sai

    2013-01-01

    When people have different opinions in a group, they often adjust their own attitudes and behaviors to match the group opinion, known as social conformity. The affiliation account of normative conformity states that people conform to norms in order to 'fit in', whereas the accuracy account of informative conformity posits that the motive to learn from others produces herding. Here, we test another possibility that following the crowd reduces the experienced negative emotion when the group decision turns out to be a bad one. Using event related potential (ERP) combined with a novel group gambling task, we found that participants were more likely to choose the option that was predominately chosen by other players in previous trials, although there was little explicit normative pressure at the decision stage and group choices were not informative. When individuals' choices were different from others, the feedback related negativity (FRN), an ERP component sensitive to losses and errors, was enhanced, suggesting that being independent is aversive. At the outcome stage, the losses minus wins FRN effect was significantly reduced following conformity choices than following independent choices. Analyses of the P300 revealed similar patterns both in the response and outcome period. Our study suggests that social conformity serves as an emotional buffer that protects individuals from experiencing strong negative emotion when the outcomes are bad.

  20. To conform or not to conform: spontaneous conformity diminishes the sensitivity to monetary outcomes.

    Directory of Open Access Journals (Sweden)

    Rongjun Yu

    Full Text Available When people have different opinions in a group, they often adjust their own attitudes and behaviors to match the group opinion, known as social conformity. The affiliation account of normative conformity states that people conform to norms in order to 'fit in', whereas the accuracy account of informative conformity posits that the motive to learn from others produces herding. Here, we test another possibility that following the crowd reduces the experienced negative emotion when the group decision turns out to be a bad one. Using event related potential (ERP combined with a novel group gambling task, we found that participants were more likely to choose the option that was predominately chosen by other players in previous trials, although there was little explicit normative pressure at the decision stage and group choices were not informative. When individuals' choices were different from others, the feedback related negativity (FRN, an ERP component sensitive to losses and errors, was enhanced, suggesting that being independent is aversive. At the outcome stage, the losses minus wins FRN effect was significantly reduced following conformity choices than following independent choices. Analyses of the P300 revealed similar patterns both in the response and outcome period. Our study suggests that social conformity serves as an emotional buffer that protects individuals from experiencing strong negative emotion when the outcomes are bad.

  1. Stereotactic body radiation therapy (SBRT) for adrenal metastases : a feasibility study of advanced techniques with modulated photons and protons.

    Science.gov (United States)

    Scorsetti, Marta; Mancosu, Pietro; Navarria, Piera; Tozzi, Angelo; Castiglioni, Simona; Clerici, Elena; Reggiori, Giacomo; Lobefalo, Francesca; Fogliata, Antonella; Cozzi, Luca

    2011-04-01

    To compare advanced treatment techniques with photons and protons as a stereotactic body radiation therapy (SBRT) for adrenal glands metastases. Planning computer tomographic (CT) scans of 10 patients were selected. A total dose of 45 Gy in 7.5 Gy fractions was prescribed. Organs at risk (OAR) were liver and kidneys. Dose-volume metrics were defined to quantify quality of plans assessing target coverage and sparing of organs at risk. Plans for RapidArc, intensity-modulated radiotherapy (IMRT), dynamic conformal arcs, 3D conformal static fields, and intensity modulated protons were compared. The main planning objective for the clinical target volume (CTV) was to cover 100% of the volume with 95% (V(95%) = 100%) and to keep the maximum dose below 107% of the prescribed dose (V(107%) = 0%). Planning objective for planning target volume (PTV) was V(95%) > 80%. For kidneys, the general planning objective was V(15Gy) protons) to 1.6 Gy (conformal static fields) on CTV. Maximal organ at risk sparing was achieved by protons. RapidArc presented the second lowest dose bath (V(10Gy) and integral dose) after protons and the best conformality together with IMRT. Stereotactic body radiation therapy (SBRT) to adrenal glands metastases is achievable with several advanced techniques with either photons or protons. The intensity modulated approaches using either static fields, dynamic arcs or protons are superior to the other conformal solutions. For their simplicity, IMRT or RapidArc should be considered as the first option radiation treatment for those patients not eligible for proton treatment.

  2. Conformal Window and Correlation Functions in Lattice Conformal QCD

    CERN Document Server

    Iwasaki, Y

    2012-01-01

    We discuss various aspects of Conformal Field Theories on the Lattice. We investigate the SU(3) gauge theory with Nf fermions in the fundamental representation. First we make a brief review of our previous works on the phase structure of lattice gauge theories in terms of the gauge coupling constant and the quark mass. We thereby clarify the reason why we conjecture that the conformal window is 7 = 1 exhibit the characteristics of the conformal function with IR cutoff, an exponential damping with power correction. Investigating our numerical data by a new method, the "micro-analysis" of propagators, we observe that our data are consistent with the picture that the Nf=7 case and the Nf=2 at T ~ 2Tc case are close to the meson unparticle model. On the other hand, the Nf=16 case and the Nf=2 at T= 10^2 ~10^5 Tc cases are close to the fermion unparticle model.

  3. Protons Trigger Mitochondrial Flashes.

    Science.gov (United States)

    Wang, Xianhua; Zhang, Xing; Huang, Zhanglong; Wu, Di; Liu, Beibei; Zhang, Rufeng; Yin, Rongkang; Hou, Tingting; Jian, Chongshu; Xu, Jiejia; Zhao, Yan; Wang, Yanru; Gao, Feng; Cheng, Heping

    2016-07-26

    Emerging evidence indicates that mitochondrial flashes (mitoflashes) are highly conserved elemental mitochondrial signaling events. However, which signal controls their ignition and how they are integrated with other mitochondrial signals and functions remain elusive. In this study, we aimed to further delineate the signal components of the mitoflash and determine the mitoflash trigger mechanism. Using multiple biosensors and chemical probes as well as label-free autofluorescence, we found that the mitoflash reflects chemical and electrical excitation at the single-organelle level, comprising bursting superoxide production, oxidative redox shift, and matrix alkalinization as well as transient membrane depolarization. Both electroneutral H(+)/K(+) or H(+)/Na(+) antiport and matrix proton uncaging elicited immediate and robust mitoflash responses over a broad dynamic range in cardiomyocytes and HeLa cells. However, charge-uncompensated proton transport, which depolarizes mitochondria, caused the opposite effect, and steady matrix acidification mildly inhibited mitoflashes. Based on a numerical simulation, we estimated a mean proton lifetime of 1.42 ns and diffusion distance of 2.06 nm in the matrix. We conclude that nanodomain protons act as a novel, to our knowledge, trigger of mitoflashes in energized mitochondria. This finding suggests that mitoflash genesis is functionally and mechanistically integrated with mitochondrial energy metabolism. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Proton-pump inhibitors

    African Journals Online (AJOL)

    Proton-pump inhibitors (PPIs) work by binding irreversibly to the. H+/K+-ATPase pump of the parietal cell, leading to inhibition of acid production in approximately 70% of active pumps.1The result is a dramatic increase in gastric pH mitigating the deleterious effects of acid in gastro-oesophageal reflux disease (GORD) and.

  5. 40 CFR 93.154 - Conformity analysis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Conformity analysis. 93.154 Section 93...) DETERMINING CONFORMITY OF FEDERAL ACTIONS TO STATE OR FEDERAL IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 93.154 Conformity analysis. Any Federal...

  6. Proton transfer events in GFP

    NARCIS (Netherlands)

    Di Donato, M.; van Wilderen, L.J.; van Stokkum, I.H.M.; Stuart, T. C.; Kennis, J.T.M.; Hellingwerf, K.J.; van Grondelle, R.; Groot, M.L.

    2011-01-01

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton

  7. Proton radiography for clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Talamonti, C., E-mail: cinzia.talamonti@unifi.i [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Reggioli, V. [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); Bruzzi, M. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Dipartimento di Energetica, Universita degli Studi di Firenze, via S. Marta 3, I-50139 Firenze (Italy); Bucciolini, M. [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Civinini, C. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Marrazzo, L. [Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Menichelli, D. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Finland) (Italy); Dipartimento di Energetica, Universita degli Studi di Firenze, via S. Marta 3, I-50139 Firenze (Italy); Pallotta, S. [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Randazzo, N. [INFN, sezione di Catania, via S. Sofia 64, I-95123 Catania (Italy); Sipala, V. [INFN, sezione di Catania, via S. Sofia 64, I-95123 Catania (Italy); Dipartimento di Fisica, Universita degli Studi di Catania, via S. Sofia 64, I-95123 Catania (Italy)

    2010-01-11

    Proton imaging is not yet applied as a clinical routine, although its advantages have been demonstrated. In the context of quality assurance in proton therapy, proton images can be used to verify the correct positioning of the patient and to control the range of protons. Proton computed tomography (pCT) is a 3D imaging method appropriate for planning and verification of proton radiation treatments, because it allows evaluating the distributions of proton stopping power within the tissues and can be directly utilized when the patient is in the actual treatment position. The aim of the PRoton IMAging experiment, supported by INFN, and the PRIN 2006 project, supported by MIUR, is to realize a proton computed radiography (pCR) prototype for reconstruction of proton images from a single projection in order to validate the technique with pre-clinical studies and, eventually, to conceive the configuration of a complete pCT system. A preliminary experiment performed at the 250 MeV proton synchrotron of Loma Linda University Medical Center (LLUMC) allowed acquisition of experimental data before the completion of PRIMA project's prototype. In this paper, the results of the LLUMC experiment are reported and the reconstruction of proton images of two phantoms is discussed.

  8. CED: a conformational epitope database

    Directory of Open Access Journals (Sweden)

    Huang Jian

    2006-04-01

    Full Text Available Abstract Background Antigen epitopes provide valuable information useful for disease prevention, diagnosis, and treatment. Recently, more and more databases focusing on different types of epitopes have become available. Conformational epitopes are an important form of epitope formed by residues that are sequentially discontinuous but close together in three-dimensional space. These epitopes have implicit structural information, making them attractive for both theoretical and applied biomedical research. However, most existing databases focus on linear rather than conformational epitopes. Description We describe CED, a special database of well defined conformational epitopes. CED provides a collection of conformational epitopes and related information including the residue make up and location of the epitope, the immunological property of the epitope, the source antigen and corresponding antibody of the epitope. All entries in this database are manually curated from articles published in peer review journals. The database can be browsed or searched through a user-friendly web interface. Most epitopes in CED can also be viewed interactively in the context of their 3D structures. In addition, the entries are also hyperlinked to various databases such as Swiss-Prot, PDB, KEGG and PubMed, providing wide background information. Conclusion A conformational epitope database called CED has been developed as an information resource for investigators involved in both theoretical and applied immunology research. It complements other existing specialised epitope databases. The database is freely available at http://web.kuicr.kyoto-u.ac.jp/~ced

  9. Proton radiography and tomography with application to proton therapy

    Science.gov (United States)

    Allinson, N M; Evans, P M

    2015-01-01

    Proton radiography and tomography have long promised benefit for proton therapy. Their first suggestion was in the early 1960s and the first published proton radiographs and CT images appeared in the late 1960s and 1970s, respectively. More than just providing anatomical images, proton transmission imaging provides the potential for the more accurate estimation of stopping-power ratio inside a patient and hence improved treatment planning and verification. With the recent explosion in growth of clinical proton therapy facilities, the time is perhaps ripe for the imaging modality to come to the fore. Yet many technical challenges remain to be solved before proton CT scanners become commonplace in the clinic. Research and development in this field is currently more active than at any time with several prototype designs emerging. This review introduces the principles of proton radiography and tomography, their historical developments, the raft of modern prototype systems and the primary design issues. PMID:26043157

  10. Relativistic hydrodynamic attractors with broken symmetries: non-conformal and non-homogeneous

    Science.gov (United States)

    Romatschke, Paul

    2017-12-01

    Standard textbooks will state that hydrodynamics requires near-equilibrium to be applicable. Recently, however, out-of-equilibrium attractor solutions for hydrodynamics have been found in kinetic theory and holography in systems with a high degree of symmetry, suggesting the possibility of a genuine out-of-equilibrium formulation of hydrodynamics. This work demonstrates that attractor solutions also occur in non-conformal kinetic theory and spatially non-homogeneous systems, potentially having important implications for the interpretation of experimental data in heavy-ion and proton-proton collisions and relativistic fluid dynamics as a whole.

  11. The solution conformation of sialyl-alpha (2----6)-lactose studied by modern NMR techniques and Monte Carlo simulations.

    Science.gov (United States)

    Poppe, L; Stuike-Prill, R; Meyer, B; van Halbeek, H

    1992-03-01

    We present a comprehensive strategy for detailed characterization of the solution conformations of oligosaccharides by NMR spectroscopy and force-field calculations. Our experimental strategy generates a number of interglycosidic spatial constraints that is sufficiently large to allow us to determine glycosidic linkage conformations with a precision heretofore unachievable. In addition to the commonly used [1H,1H] NOE contacts between aliphatic protons, our constraints are: (a) homonuclear NOEs of hydroxyl protons in H2O to other protons in the oligosaccharide, (b) heteronuclear [1H,13C] NOEs, (c) isotope effects of O1H/O2H hydroxyl groups on 13C chemical shifts, and (d) long-range heteronuclear scalar couplings across glycosidic bonds. We have used this approach to study the trisaccharide sialyl-alpha (2----6)-lactose in aqueous solution. The experimentally determined geometrical constraints were compared to results obtained from force-field calculations based on Metropolis Monte Carlo simulations. The molecule was found to exist in 2 families of conformers. The preferred conformations of the alpha (2----6)-linkage of the trisaccharide are best described by an equilibrium of 2 conformers with phi angles at -60 degrees or 180 degrees and of the 3 staggered rotamers of the omega angle with a predominant gt conformer. Three intramolecular hydrogen bonds, involving the hydroxyl protons on C8 and C7 of the sialic acid residue and on C3 of the reducing-end glucose residue, contribute significantly to the conformational stability of the trisaccharide in aqueous solution.

  12. Conformal geometry and quasiregular mappings

    CERN Document Server

    Vuorinen, Matti

    1988-01-01

    This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. Teichmüller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook an...

  13. Logarithmic exotic conformal Galilean algebras

    Energy Technology Data Exchange (ETDEWEB)

    Henkel, Malte, E-mail: Malte.henkel@univ-lorraine.fr [Groupe de Physique Statistique, Institut Jean Lamour (CNRS UMR 7198), Université de Lorraine Nancy, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy Cedex (France); Hosseiny, Ali, E-mail: al_hosseiny@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G.C. Evin, Tehran 19839 (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Rouhani, Shahin, E-mail: rouhani@ipm.ir [Department of Physics, Sharif University of Technology, P.O. Box 11165-9161, Tehran (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2014-02-15

    Logarithmic representations of the conformal Galilean algebra (CGA) and the Exotic Conformal Galilean algebra (ECGA) are constructed. This can be achieved by non-decomposable representations of the scaling dimensions or the rapidity indices, specific to conformal Galilean algebras. Logarithmic representations of the non-exotic CGA lead to the expected constraints on scaling dimensions and rapidities and also on the logarithmic contributions in the co-variant two-point functions. On the other hand, the ECGA admits several distinct situations which are distinguished by different sets of constraints and distinct scaling forms of the two-point functions. Two distinct realisations for the spatial rotations are identified as well. This is the first concrete example of a reducible, but non-decomposable representation, without logarithmic terms. Such cases had been anticipated before.

  14. Extracting Conformational Ensembles of Small Molecules from Molecular Dynamics Simulations: Ampicillin as a Test Case

    Directory of Open Access Journals (Sweden)

    Giuliano Malloci

    2016-01-01

    Full Text Available The accurate and exhaustive description of the conformational ensemble sampled by small molecules in solution, possibly at different physiological conditions, is of primary interest in many fields of medicinal chemistry and computational biology. Recently, we have built an on-line database of compounds with antimicrobial properties, where we provide all-atom force-field parameters and a set of molecular properties, including representative structures extracted from cluster analysis over μs-long molecular dynamics (MD trajectories. In the present work, we used a medium-sized antibiotic from our sample, namely ampicillin, to assess the quality of the conformational ensemble. To this aim, we compared the conformational landscape extracted from previous unbiased MD simulations to those obtained by means of Replica Exchange MD (REMD and those originating from three freely-available conformer generation tools widely adopted in computer-aided drug-design. In addition, for different charge/protonation states of ampicillin, we made available force-field parameters and static/dynamic properties derived from both Density Functional Theory and MD calculations. For the specific system investigated here, we found that: (i the conformational statistics extracted from plain MD simulations is consistent with that obtained from REMD simulations; (ii overall, our MD-based approach performs slightly better than any of the conformer generator tools if one takes into account both the diversity of the generated conformational set and the ability to reproduce experimentally-determined structures.

  15. Antideuteron production in proton-proton and proton-nucleus collisions

    OpenAIRE

    Duperray, R. P.; K. V. Protasov; Voronin, A. Yu.(P.N. Lebedev Physical Institute, 53 Leninsky Prospekt, 117924 Moscow, Russia)

    2002-01-01

    The experimental data of the antideuteron production in proton-proton and proton-nucleus collisions are analyzed within a simple model based on the diagrammatic approach to the coalescence model. This model is shown to be able to reproduce most of existing data without any additional parameter.

  16. Social influence: compliance and conformity.

    Science.gov (United States)

    Cialdini, Robert B; Goldstein, Noah J

    2004-01-01

    This review covers recent developments in the social influence literature, focusing primarily on compliance and conformity research published between 1997 and 2002. The principles and processes underlying a target's susceptibility to outside influences are considered in light of three goals fundamental to rewarding human functioning. Specifically, targets are motivated to form accurate perceptions of reality and react accordingly, to develop and preserve meaningful social relationships, and to maintain a favorable self-concept. Consistent with the current movement in compliance and conformity research, this review emphasizes the ways in which these goals interact with external forces to engender social influence processes that are subtle, indirect, and outside of awareness.

  17. Epigenetic dominance of prion conformers.

    Directory of Open Access Journals (Sweden)

    Eri Saijo

    2013-10-01

    Full Text Available Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological systems, including other protein misfolding disorders such as those causing Alzheimer's and Parkinson's diseases. To address the poorly understood mechanism by which host prion protein (PrP primary structures interact with distinct prion conformations to influence pathogenesis, we produced transgenic (Tg mice expressing different sheep scrapie susceptibility alleles, varying only at a single amino acid at PrP residue 136. Tg mice expressing ovine PrP with alanine (A at (OvPrP-A136 infected with SSBP/1 scrapie prions propagated a relatively stable (S prion conformation, which accumulated as punctate aggregates in the brain, and produced prolonged incubation times. In contrast, Tg mice expressing OvPrP with valine (V at 136 (OvPrP-V136 infected with the same prions developed disease rapidly, and the converted prion was comprised of an unstable (U, diffusely distributed conformer. Infected Tg mice co-expressing both alleles manifested properties consistent with the U conformer, suggesting a dominant effect resulting from exclusive conversion of OvPrP-V136 but not OvPrP-A136. Surprisingly, however, studies with monoclonal antibody (mAb PRC5, which discriminates OvPrP-A136 from OvPrP-V136, revealed substantial conversion of OvPrP-A136. Moreover, the resulting OvPrP-A136 prion acquired the characteristics of the U conformer. These results, substantiated by in vitro analyses, indicated that co-expression of OvPrP-V136 altered the conversion potential of OvPrP-A136 from the S to

  18. Estimated risk of cardiovascular disease and secondary cancers with modern highly conformal radiotherapy for early-stage mediastinal Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Maraldo, M.V.; Brodin, Nils Patrik; Aznar, Marianne Camille

    2013-01-01

    Hodgkin lymphoma (HL) survivors have an increased morbidity and mortality from secondary cancers and cardiovascular disease (CD). We evaluate doses with involved node radiotherapy (INRT) delivered as 3D conformal radiotherapy (3D CRT), volumetric modulated arc therapy (VMAT), or proton therapy (PT...

  19. Stabilization of the peptide conformation on the micellar surface.

    Science.gov (United States)

    Shapiro YuE; Gorbatyuk VYa; Mazurov, A A; Andronati, S A

    1994-04-01

    The conformational mobility of peptide molecules plays a significant role in peptide-receptor interactions and quantitative structure-activity relationships. As a receptor mimetic system, bis(2-ethylhexyl) sodium succinate (AOT) reversed micelles containing an aqueous solution of one of the melanotrophine inhibiting factor analogues prolyltyrosyl-glycinamide hydrochloride in the inner cavity have been used. Two-dimensional nuclear magnetic resonance spectroscopy (NOESY) and 13C spin-lattice relaxation time measurements have been used to establish that the peptide molecule assumes the biologically active beta II turn conformation when it is adsorbed at the surfactant-water border. This conformation is stabilized by intramolecular H-bonding between the proline carbonyl oxygen atom and amide protons. Moreover, it has been shown that the phenyl ring of tyrosine was inserted into the AOT intermolecular cavity, which is located between the polar AOT groups and the branches of iso-octane fragments. By and large, the phenyl ring acts as a hydrophobic anchor. Reversed micelles can be regarded as providing a realistic model of the receptor.

  20. Reirradiation of recurrent node-positive non-small cell lung cancer after previous stereotactic radiotherapy for stage I disease. A multi-institutional treatment recommendation

    Energy Technology Data Exchange (ETDEWEB)

    Nieder, Carsten [Nordland Hospital, Department of Oncology and Palliative Medicine, Bodoe (Norway); University of Tromsoe, Institute of Clinical Medicine, Faculty of Health Sciences, Tromsoe (Norway); Ruysscher, Dirk de [MAASTRO Clinic, Department of Radiation Oncology, Maastricht (Netherlands); Gaspar, Laurie E. [University of Colorado School of Medicine, Department of Radiation Oncology, Aurora, CO (United States); Guckenberger, Matthias [University Hospital Zurich, Department of Radiation Oncology, Zurich (Switzerland); Mehta, Minesh P. [Miami Cancer Institute, Department of Radiation Oncology, Miami, FL (United States); Cheung, Patrick; Sahgal, Arjun [Sunnybrook Health Sciences Centre and University of Toronto, Department of Radiation Oncology, Toronto (Canada)

    2017-07-15

    Practice guidelines have been developed for early-stage and locally advanced non-small cell lung cancer (NSCLC). However, many common clinical scenarios still require individualized decision making. This is true for locoregional relapse after initial stereotactic radiotherapy (stereotactic body radiation therapy or stereotactic ablative radiotherapy; SBRT or SABR), an increasingly utilized curative treatment option for stage I NSCLC. A consortium of expert radiation oncologists was established with the aim of providing treatment recommendations. In this scenario, a case was distributed to six radiation oncologists who provided their institutions' treatment recommendations. In this case, a patient developed local and mediastinal relapse after SABR (45 Gy, 3 fractions), comparable to the tumor burden in de novo stage IIIA NSCLC. Treatment recommendations were tabulated and a consensus conclusion was developed. Three institutions recommended evaluation for surgery. If the patient was not a surgical candidate, and/or refused surgery, definitive chemoradiation was recommended, including retreating the primary to full dose. European participants were more in favor of a non-surgical approach. None of the participants were reluctant to prescribe reirradiation, but two institutions prescribed doses lower than 60 Gy. Platinum-based doublets together with intensity-modulated radiotherapy were preferred. The institutional recommendations reflect the questions and uncertainties discussed in current stage III guidelines. All institutions agreed that previous SABR is not a contraindication for salvage chemoradiation. In the absence of high-quality prospective trials for recurrent NSCLC, all treatment options recommended in current guidelines for stage III disease can be considered in clinical scenarios such as this. (orig.) [German] Fuer fruehe und lokal fortgeschrittene Stadien des nicht-kleinzelligen Bronchialkarzinoms (NSCLC) wurden Behandlungsleitlinien publiziert

  1. Fast proton decay

    Science.gov (United States)

    Li, Tianjun; Nanopoulos, Dimitri V.; Walker, Joel W.

    2010-10-01

    We consider proton decay in the testable flipped SU(5)×U(1)X models with TeV-scale vector-like particles which can be realized in free fermionic string constructions and F-theory model building. We significantly improve upon the determination of light threshold effects from prior studies, and perform a fresh calculation of the second loop for the process p→eπ from the heavy gauge boson exchange. The cumulative result is comparatively fast proton decay, with a majority of the most plausible parameter space within reach of the future Hyper-Kamiokande and DUSEL experiments. Because the TeV-scale vector-like particles can be produced at the LHC, we predict a strong correlation between the most exciting particle physics experiments of the coming decade.

  2. The proton radius puzzle

    Science.gov (United States)

    Antognini, A.; Amaro, F. D.; Biraben, F.; Cardoso, J. M. R.; Covita, D. S.; Dax, A.; Dhawan, S.; Fernandes, L. M. P.; Giesen, A.; Graf, T.; Hänsch, T. W.; Indelicato, P.; Julien, L.; Kao, C.-Y.; Knowles, P.; Kottmann, F.; Le Bigot, E.-O.; Liu, Y.-W.; Lopes, J. A. M.; Ludhova, L.; Monteiro, C. M. B.; Mulhauser, F.; Nebel, T.; Nez, F.; Rabinowitz, P.; dos Santos, J. M. F.; Schaller, L. A.; Schuhmann, K.; Schwob, C.; Taqqu, D.; Veloso, J. F. C. A.; Pohl, R.

    2011-09-01

    By means of pulsed laser spectroscopy applied to muonic hydrogen (μ- p) we have measured the 2SF = 11/2 - 2PF = 23/2 transition frequency to be 49881.88(76) GHz [1]. By comparing this measurement with its theoretical prediction [2, 3, 4, 5, 6, 7] based on bound-state QED we have determined a proton radius value of rp = 0.84184(67) fm. This new value differs by 5.0 standard deviations from the COD ATA value of 0.8768(69) fm [8], and 3 standard deviation from the e-p scattering results of 0.897(18) fm [9]. The observed discrepancy may arise from a computational mistake of the energy levels in μp or H, or a fundamental problem in bound-state QED, an unknown effect related to the proton or the muon, or an experimental error.

  3. Pion, Kaon, Proton and Antiproton Production in Proton-Proton Collisions

    Science.gov (United States)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Inclusive pion, kaon, proton, and antiproton production from proton-proton collisions is studied at a variety of proton energies. Various available parameterizations of Lorentz-invariant differential cross sections as a function of transverse momentum and rapidity are compared with experimental data. The Badhwar and Alper parameterizations are moderately satisfactory for charged pion production. The Badhwar parameterization provides the best fit for charged kaon production. For proton production, the Alper parameterization is best, and for antiproton production the Carey parameterization works best. However, no parameterization is able to fully account for all the data.

  4. Conformational Changes Represent the Rate-Limiting Step in the Transport Cycle of Maize SUCROSE TRANSPORTER1[C][W

    Science.gov (United States)

    Derrer, Carmen; Wittek, Anke; Bamberg, Ernst; Carpaneto, Armando; Dreyer, Ingo; Geiger, Dietmar

    2013-01-01

    Proton-driven Suc transporters allow phloem cells of higher plants to accumulate Suc to more than 1 M, which is up to ∼1000-fold higher than in the surrounding extracellular space. The carrier protein can accomplish this task only because proton and Suc transport are tightly coupled. This study provides insights into this coupling by resolving the first step in the transport cycle of the Suc transporter SUT1 from maize (Zea mays). Voltage clamp fluorometry measurements combining electrophysiological techniques with fluorescence-based methods enable the visualization of conformational changes of SUT1 expressed in Xenopus laevis oocytes. Using the Suc derivate sucralose, binding of which hinders conformational changes of SUT1, the association of protons to the carrier could be dissected from transport-associated movements of the protein. These combined approaches enabled us to resolve the binding of protons to the carrier and its interrelationship with the alternating movement of the protein. The data indicate that the rate-limiting step of the reaction cycle is determined by the accessibility of the proton binding site. This, in turn, is determined by the conformational change of the SUT1 protein, alternately exposing the binding pockets to the inward and to the outward face of the membrane. PMID:23964025

  5. Proton conducting cerate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, G.W.; Pederson, L.R.; Armstrong, T.R.; Bates, J.L.; Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01

    Cerate perovskites of the general formula AM{sub x}Ce{sub 1-x}O{sub 3-{delta}}, where A = Sr or Ba and where M = Gd, Nd, Y, Yb or other rare earth dopant, are known to conduct a protonic current. Such materials may be useful as the electrolyte in a solid oxide fuel cell operating at intermediate temperatures, as an electrochemical hydrogen separation membrane, or as a hydrogen sensor. Conduction mechanisms in these materials were evaluated using dc cyclic voltammetry and mass spectrometry, allowing currents and activation energies for proton, electron, and oxygen ion contributions to the total current to be determined. For SrYb{sub 0.05}Ce{sub 0.95}O{sub 3-{delta}}, one of the best and most environmentally stable compositions, proton conduction followed two different mechanisms: a low temperature process, characterized by an activation energy of 0.42{+-}0.04 eV, and a high temperature process, characterized by an activation energy of 1.38{+-}0.13 eV. It is believed that the low temperature process is dominated by grain boundary conduction while bulk conduction is responsible for the high temperature process. The activation energy for oxygen ion conduction (0.97{+-}0.10 eV) agrees well with other oxygen conductors, while that for electronic conduction, 0.90{+-}0.09 eV, is affected by a temperature-dependent electron carrier concentration. Evaluated by direct measurement of mass flux through a dense ceramic with an applied dc field, oxygen ions were determined to be the majority charge carrier except at the lowest temperatures, followed by electrons and then protons.

  6. Youth Conformity Regarding Institutions and Media

    Directory of Open Access Journals (Sweden)

    Nikolay Ivantchev

    2012-10-01

    Full Text Available An experiment on conformity was carried out. The participants were 95 youths. The scale “Conformity – Autonomy” from I. Karagiozov’s questionnaire for locus of control (1998 was also used. The results indicated the prevalence of youth conformity regarding institutions and media. The different types of conformity were related to each other. The subjects’ gender and the experimentators’ gender mediated the connections between the both types of conformity. The female youths conformed more with institutions than the male youths, but there were not any significant gender differences in their conform behavior regarding media (magazines. More male youths conformed for the magazines when the experimentator was a woman. More female youths conformed for the magazines when the experimentator was a man.

  7. Defects in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Billò, Marco [Dipartimento di Fisica, Università di Torino, and Istituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Gonçalves, Vasco [Centro de Física do Porto,Departamento de Física e Astronomia Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); ICTP South American Institute for Fundamental Research Instituto de Física Teórica,UNESP - University Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Lauria, Edoardo [Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Meineri, Marco [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Scuola Normale Superiore, and Istituto Nazionale di Fisica Nucleare - sezione di Pisa,Piazza dei Cavalieri 7 I-56126 Pisa (Italy)

    2016-04-15

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  8. Conformation analysis of oligomeric flavanoids

    Science.gov (United States)

    Jan P. Steynberg; E. Vincent Brandt; Daneel Ferreira; Carin A. Helfer; Wayne L. Mattice; Dominika Gornik; Richard W. Hemingway

    1995-01-01

    The profisetinidins are the most important polyflavanoids of commerce, making up the major constituents of wattle and quebracho tannins. Within the dimeric profisetinidins, substantial complexity exists because of stereo-, regio, rotational and conformational isomers. Definition of the stereochemistry of the upper and lower flavan units, the location of the...

  9. Conformal symmetry and holographic cosmology

    NARCIS (Netherlands)

    Bzowski, A.W.

    2013-01-01

    This thesis presents a novel approach to cosmology using gauge/gravity duality. Analysis of the implications of conformal invariance in field theories leads to quantitative cosmological predictions which are in agreement with current data. Furthermore, holographic cosmology extends the theory of

  10. Free fructose is conformationally locked.

    Science.gov (United States)

    Cocinero, Emilio J; Lesarri, Alberto; Écija, Patricia; Cimas, Álvaro; Davis, Benjamin G; Basterretxea, Francisco J; Fernández, José A; Castaño, Fernando

    2013-02-20

    Fructose has been examined under isolation conditions using a combination of UV ultrafast laser vaporization and Fourier-transform microwave (FT-MW) spectroscopy. The rotational spectra for the parent, all (six) monosubstituted (13)C species, and two single D species reveal unambiguously that the free hexoketose is conformationally locked in a single dominant β-pyranose structure. This six-membered-chair skeleton adopts a (2)C(5) configuration (equivalent to (1)C(4) in aldoses). The free-molecule structure sharply contrasts with the furanose form observed in biochemically relevant polysaccharides, like sucrose. The structure of free fructose has been determined experimentally using substitution and effective structures. The enhanced stability of the observed conformation is primarily attributed to a cooperative network of five intramolecular O-H···O hydrogen bonds and stabilization of both endo and exo anomeric effects. Breaking a single intramolecular hydrogen bond destabilizes the free molecule by more than 10 kJ mol(-1). The structural results are compared to ribose, recently examined with rotational resolution, where six different conformations coexist with similar conformational energies. In addition, several DFT and ab initio methods and basis sets are benchmarked with the experimental data.

  11. Exceptional and Spinorial Conformal Windows

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Ryttov, Thomas

    2012-01-01

    We study the conformal window of gauge theories containing fermionic matter fields, where the gauge group is any of the exceptional groups with the fermions transforming according to the fundamental and adjoint representations and the orthogonal groups where the fermions transform according...

  12. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...

  13. Heavy quarks in proton

    CERN Document Server

    AUTHOR|(SzGeCERN)655637

    The measurement of prompt photon associated with a b jet in proton-proton interactions can provide us insight into the inner structure of proton. This is because precision of determination of parton distribution functions of b quark and gluon can be increased by such a measurement. The measurement of cross-section of prompt photon associated with a b jet (process $pp\\longrightarrow \\gamma + b + X$) at $\\sqrt{s}$= 8 TeV with the ATLAS detector is presented. Full 8 TeV dataset collected by ATLAS during the year 2012 was used in this analysis. Corresponding integrated luminosity is 20.3 $fb^{-1}$. Fiducial differential cross-section as a function of photon transverse momentum at particle level was extracted from data and compared with the prediction of leading order event generator Pythia 8. Cross-section extracted from data is normalised independently on the Monte Carlo prediction. Values of data distribution lie above Monte Carlo values. The difference can be explained by presence of higher order effects not ...

  14. Triaspartate: a model system for conformationally flexible DDD motifs in proteins.

    Science.gov (United States)

    Duitch, Laura; Toal, Siobhan; Measey, Thomas J; Schweitzer-Stenner, Reinhard

    2012-05-03

    Understanding the interactions that govern turn formation in the unfolded state of proteins is necessary for a complete picture of the role that these turns play in both normal protein folding and functionally relevant yet disordered linear motifs. It is still unclear, however, whether short peptides can adopt stable turn structures in aqueous environments in the absence of any nonlocal interactions. To explore the effect that nearest-neighbor interactions and the local peptide environment have on the turn-forming capability of individual amino acid residues in short peptides, we combined vibrational (IR, Raman, and VCD), UV-CD, and (1)H NMR spectroscopies in order to probe the conformational ensemble of the central aspartic acid residue of the triaspartate peptide (DDD). The study was motivated by the recently discovered turn propensities of aspartic acid in GDG (Hagarman; et al. Chem.-Eur. J. 2011, 17, 6789). We investigated the DDD peptide under both acidic and neutral conditions in order to elucidate the effect that side-chain protonation has on the conformational propensity of the central aspartic acid residue. Amide I' profiles were analyzed in terms of two-dimensional Gaussian distributions representing conformational subdistributions in Ramachandran space. Interestingly, our results show that while the protonated form of the DDD peptide samples various turn-like conformations similar to GDG, deprotonation of the peptide eliminates this propensity for turns, causing the fully ionized peptide to exclusively sample pPII and β-strand-like structures. To further explore the factors stabilizing these more extended conformations in fully ionized DDD, we analyzed the temperature dependence of both the UV-CD spectrum and the (3)J(H(N),H(α)) coupling constants of the two amide protons (N- and C-terminal) in terms of a simple two-state (pPII-β) thermodynamic model. Thus, we were able to obtain the enthalpic and entropic differences between the pPII and

  15. SU-E-T-460: Comparison of Proton and IMRT Planning for Head and Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fontenla, S; Zhou, Y; Kowalski, A [Memorial Sloan Kettering Cancer Center, NY, NY (United States); Mah, D [Procure Treatment Center, Somerset, NJ (United States); Leven, T [Procure Proton Therapy Cneter, Somerset, New Jersey (United States); Cahlon, O [ProCure Proton Therapy, Somerset, New Jersey (United States); Lee, N [Memorial Sloan Kettering cancer center, NY, NY (United States); Hunt, M [Mem Sloan-Kettering Cancer Ctr, NY, NY (United States); Mechalakos, J [Memorial Sloan-Kettering Cancer Center, NY, NY (United States)

    2014-06-01

    Purpose: A retrospective study comparing proton and intensity-modulated radiation therapy (IMRT) for head and neck cancer Methods: This study consists of six H and N cancer patients that underwent proton as well as IMRT planning. Patients analyzed had unilateral target volumes, one had prior RT. 3D-conformal proton therapy (3D-CPT) plans with multiple field uniform scanning were generated for delivery on the inclined beam line. IMRT was planned using fixed field sliding window. Final plan evaluations were performed by a radiation oncologist and a physicist. Metrics for comparison included tumor coverage, organ sparing with respect to spinal cord, brainstem, parotids, submandibulars, oral cavity, larynx, brachial plexus, cochleas, normal brain tissue, and skin using relevant indices for these structures. Dose volume histograms were generated as well as a qualitative comparison of isodose distributions between the two modalities. Planning and treatment delivery times were compared. Results: Results showed that IMRT plans offered better conformality in the high dose region as demonstrated by the conformality index for each plan. Ipsilateral cochlea, submandibular gland, and skin doses were lower with IMRT than proton therapy. There was significant sparing of larynx, oral cavity, and brainstem with proton therapy compared to IMRT. This translated into direct patient benefit with no evidence of hoarseness, mucositis, or nausea. Contralateral parotid and submandibular glands were equally spared. IMRT had shorter planning/parts fabrication and treatment times which needs to be taken into account when deciding modality. Conclusion: Sparing of clinically significant normal tissue structures such as oral cavity and larynx for unilateral H and N cancers was seen with 3D-CPT versus IMRT. However, this is at the expense of less conformality at the high dose region and higher skin dose. Future studies are needed with full gantry systems and pencil beam scanning as these

  16. [Why proton therapy? And how?

    Science.gov (United States)

    Thariat, Juliette; Habrand, Jean Louis; Lesueur, Paul; Chaikh, Abdulhamid; Kammerer, Emmanuel; Lecomte, Delphine; Batalla, Alain; Balosso, Jacques; Tessonnier, Thomas

    2018-02-05

    Proton therapy is a radiotherapy, based on the use of protons, charged subatomic particles that stop at a given depth depending on their initial energy (pristine Bragg peak), avoiding any output beam, unlike the photons used in most of the other modalities of radiotherapy. Proton therapy has been used for 60 years, but has only become ubiquitous in the last decade because of recent major advances in particle accelerator technology. This article reviews the history of clinical implementation of protons, the nature of the technological advances that now allows its expansion at a lower cost. It also addresses the technical and physical specificities of proton therapy and the clinical situations for which proton therapy may be relevant but requires evidence. Different proton therapy techniques are possible. These are explained in terms of their clinical potential by explaining the current terminology (such as cyclotrons, synchrotrons or synchrocyclotrons, using superconducting magnets, fixed line or arm rotary with passive diffusion delivery or active by scanning) in basic words. The requirements associated with proton therapy are increased due to the precision of the depth dose deposit. The learning curve of proton therapy requires that clinical indications be prioritized according to their associated uncertainties (such as range uncertainties and movement in lung tumors). Many clinical indications potentially fall under proton therapy ultimately. Clinical strategies are explained in a paralleled manuscript. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  17. Proton transfer and complex formation of angiotensin I ions with gaseous molecules at various temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nonose, Shinji, E-mail: nonose@yokohama-cu.ac.jp; Yamashita, Kazuki; Sudo, Ayako; Kawashima, Minami

    2013-09-23

    Highlights: • Proton transfer from angiotensin I ions (z = 2, 3) to gaseous molecules was studied. • Temperature dependence of absolute reaction rate constants was measured. • Remarkable changes were obtained for distribution of product ions and reaction rate constants. • Proton transfer reaction was enhanced and reduced by complex formation. • Conformation changes are induced by complex formation and or by thermal collision with He. - Abstract: Proton transfer reactions of angiotensin I ions for +2 charge state, [M + 2H]{sup 2+}, to primary, secondary and aromatic amines were examined in the gas phase. Absolute reaction rate constants for proton transfer were determined from intensities of parent and product ions in the mass spectra. Temperature dependence of the reaction rate constants was measured. Remarkable change was observed for distribution of product ions and reaction rate constants. Proton transfer reaction was enhanced or reduced by complex formation of [M + 2H]{sup 2+} with gaseous molecules. The results relate to conformation changes of [M + 2H]{sup 2+} with change of temperature, which are induced by complex formation and or by thermal collision with He. Proton transfer reactions of angiotensin I ions for +3 charge state, [M + 3H]{sup 3+}, were also studied. The reaction rates did not depend on temperature so definitely.

  18. Proton Radiography Imager:Generates Synthetic Proton Radiographs

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-12

    ProRad is a computer program that is used to generate synthetic images of proton (or other charged particles) radiographs. The proton radiographs arc images that arc obtained by sending energetic protons (or electrons or positrons, for example) through 11 plasma where electric and/or magnetic fields alter the particles trajectory, Dnd the variations me imaged on RC film, image plate, or equivalent

  19. Differential Cross Sections for Proton-Proton Elastic Scattering

    Science.gov (United States)

    Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.

    2009-01-01

    Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.

  20. Tidal surge in the M2 proton channel, sensed by 2D IR spectroscopy.

    Science.gov (United States)

    Ghosh, Ayanjeet; Qiu, Jade; DeGrado, William F; Hochstrasser, Robin M

    2011-04-12

    The M2 proton channel from influenza A virus transmits protons across membranes via a narrow aqueous pore lined by water and a proton sensor, His37. Near the center of the membrane, a water cluster is stabilized by the carbonyl of Gly34 and His37, the properties of which are modulated by protonation of His37. At low pH (5-6), where M2 conducts protons, this region undergoes exchange processes on the microsecond to second timescale. Here, we use 2D IR to examine the instantaneous conformational distribution and hydration of G34, and the evolution of the ensemble on the femtosecond to picosecond timescale. The channel water is strongly pH dependent as gauged by 2D IR which allows recording of the vibrational frequency autocorrelation function of a (13)C = (18)O Gly34 probe. At pH 8, where entry and exit of protons within the channel are very slow, the carbonyl groups appear to adopt a single conformation/environment. The high-pH conformer does not exhibit spectral dynamics near the Gly34, and water in the channel must form a relatively rigid ice-like structure. By contrast, two vibrational forms of G34 are seen at pH 6.2, neither of which is identical to the high-pH form. In at least one of these low-pH forms, the probe is immersed in a very mobile, bulk-like aqueous environment having a correlation time ca. 1.3 ps at pH 6.2. Thus, protonation of His37 at low pH causes liquid-like water molecules to flow into the neighborhood of the Gly34.

  1. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  2. Physics controversies in proton therapy.

    Science.gov (United States)

    Engelsman, Martijn; Schwarz, Marco; Dong, Lei

    2013-04-01

    The physical characteristics of proton beams are appealing for cancer therapy. The rapid increase in operational and planned proton therapy facilities may suggest that this technology is a "plug-and-play" valuable addition to the arsenal of the radiation oncologist and medical physicist. In reality, the technology is still evolving, so planning and delivery of proton therapy in patients face many practical challenges. This review article discusses the current status of proton therapy treatment planning and delivery techniques, indicates current limitations in dealing with range uncertainties, and proposes possible developments for proton therapy and supplementary technology to try to realize the actual potential of proton therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  4. Proton Upset Monte Carlo Simulation

    Science.gov (United States)

    O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.

    2009-01-01

    The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.

  5. Conformal Bootstrap in Mellin Space

    Science.gov (United States)

    Gopakumar, Rajesh; Kaviraj, Apratim; Sen, Kallol; Sinha, Aninda

    2017-02-01

    We propose a new approach towards analytically solving for the dynamical content of conformal field theories (CFTs) using the bootstrap philosophy. This combines the original bootstrap idea of Polyakov with the modern technology of the Mellin representation of CFT amplitudes. We employ exchange Witten diagrams with built-in crossing symmetry as our basic building blocks rather than the conventional conformal blocks in a particular channel. Demanding consistency with the operator product expansion (OPE) implies an infinite set of constraints on operator dimensions and OPE coefficients. We illustrate the power of this method in the ɛ expansion of the Wilson-Fisher fixed point by reproducing anomalous dimensions and, strikingly, obtaining OPE coefficients to higher orders in ɛ than currently available using other analytic techniques (including Feynman diagram calculations). Our results enable us to get a somewhat better agreement between certain observables in the 3D Ising model and the precise numerical values that have been recently obtained.

  6. Conformal FDTD modeling wake fields

    Energy Technology Data Exchange (ETDEWEB)

    Jurgens, T.; Harfoush, F.

    1991-05-01

    Many computer codes have been written to model wake fields. Here we describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non- cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements of the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall motions. 4 refs., 5 figs.

  7. Conformal gravity and "gravitational bubbles"

    CERN Document Server

    Berezin, V A; Eroshenko, Yu N

    2015-01-01

    We describe the general structure of the spherically symmetric solutions in the Weyl conformal gravity. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions, consisting of two classes, is found. The first one contains the solutions with constant two-dimensional curvature scalar, and the representatives are the famous Robertson--Walker metrics. We called one of them the "gravitational bubbles", which is compact and with zero Weyl tensor. These "gravitational bubbles" are the pure vacuum curved space-times (without any material sources, including the cosmological constant), which are absolutely impossible in General Relativity. This phenomenon makes it easier to create the universe from "nothing". The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family, which can be conformally covered by the thee-para...

  8. Gel dosimetry for conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G. [Department of Physics of the University and INFN, Milan (Italy)]. e-mail: grazia.gambarini@mi.infn.it

    2005-07-01

    With the continuum development of conformal radio therapies, aimed at delivering high dose to tumor tissue and low dose to the healthy tissue around, the necessities has appeared of suitable improvement of dosimetry techniques giving the possibility of obtaining dose images to be compared with diagnostic images. Also if wide software has been developed for calculating dose distributions in the fields of various radiotherapy units, experimental verifications are necessary, in particular in the case of complex geometries in conformal radiotherapy. Gel dosimetry is a promising method for imaging the absorbed dose in tissue-equivalent phantoms, with the possibility of 3D reconstruction of the spatial dose distribution, with milli metric resolution. Optical imaging of gel dosimeters, based on visible light absorbance analysis, has shown to be a reliable technique for achieving dose distributions. (Author)

  9. Conformal methods in general relativity

    CERN Document Server

    Valiente Kroon, Juan A

    2016-01-01

    This book offers a systematic exposition of conformal methods and how they can be used to study the global properties of solutions to the equations of Einstein's theory of gravity. It shows that combining these ideas with differential geometry can elucidate the existence and stability of the basic solutions of the theory. Introducing the differential geometric, spinorial and PDE background required to gain a deep understanding of conformal methods, this text provides an accessible account of key results in mathematical relativity over the last thirty years, including the stability of de Sitter and Minkowski spacetimes. For graduate students and researchers, this self-contained account includes useful visual models to help the reader grasp abstract concepts and a list of further reading, making this the perfect reference companion on the topic.

  10. Gluon Amplitudes as 2d Conformal Correlators

    OpenAIRE

    Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew

    2017-01-01

    Recently, spin-one wavefunctions in four dimensions that are conformal primaries of the Lorentz group SL(2,C) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wavefunctions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2d CFT. The BCFW recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.

  11. Integrability of conformal fishnet theory

    Science.gov (United States)

    Gromov, Nikolay; Kazakov, Vladimir; Korchemsky, Gregory; Negro, Stefano; Sizov, Grigory

    2018-01-01

    We study integrability of fishnet-type Feynman graphs arising in planar four-dimensional bi-scalar chiral theory recently proposed in arXiv:1512.06704 as a special double scaling limit of gamma-deformed N = 4 SYM theory. We show that the transfer matrix "building" the fishnet graphs emerges from the R-matrix of non-compact conformal SU(2 , 2) Heisenberg spin chain with spins belonging to principal series representations of the four-dimensional conformal group. We demonstrate explicitly a relationship between this integrable spin chain and the Quantum Spectral Curve (QSC) of N = 4 SYM. Using QSC and spin chain methods, we construct Baxter equation for Q-functions of the conformal spin chain needed for computation of the anomalous dimensions of operators of the type tr( ϕ 1 J ) where ϕ 1 is one of the two scalars of the theory. For J = 3 we derive from QSC a quantization condition that fixes the relevant solution of Baxter equation. The scaling dimensions of the operators only receive contributions from wheel-like graphs. We develop integrability techniques to compute the divergent part of these graphs and use it to present the weak coupling expansion of dimensions to very high orders. Then we apply our exact equations to calculate the anomalous dimensions with J = 3 to practically unlimited precision at any coupling. These equations also describe an infinite tower of local conformal operators all carrying the same charge J = 3. The method should be applicable for any J and, in principle, to any local operators of bi-scalar theory. We show that at strong coupling the scaling dimensions can be derived from semiclassical quantization of finite gap solutions describing an integrable system of noncompact SU(2 , 2) spins. This bears similarities with the classical strings arising in the strongly coupled limit of N = 4 SYM.

  12. Objective interpretation as conforming interpretation

    Directory of Open Access Journals (Sweden)

    Lidka Rodak

    2011-12-01

    Full Text Available The practical discourse willingly uses the formula of “objective interpretation”, with no regards to its controversial nature that has been discussed in literature.The main aim of the article is to investigate what “objective interpretation” could mean and how it could be understood in the practical discourse, focusing on the understanding offered by judicature.The thesis of the article is that objective interpretation, as identified with textualists’ position, is not possible to uphold, and should be rather linked with conforming interpretation. And what this actually implies is that it is not the virtue of certainty and predictability – which are usually associated with objectivity- but coherence that makes the foundation of applicability of objectivity in law.What could be observed from the analyses, is that both the phenomenon of conforming interpretation and objective interpretation play the role of arguments in the interpretive discourse, arguments that provide justification that interpretation is not arbitrary or subjective. With regards to the important part of the ideology of legal application which is the conviction that decisions should be taken on the basis of law in order to exclude arbitrariness, objective interpretation could be read as a question “what kind of authority “supports” certain interpretation”? that is almost never free of judicial creativity and judicial activism.One can say that, objective and conforming interpretation are just another arguments used in legal discourse.

  13. Electrophysiological precursors of social conformity.

    Science.gov (United States)

    Shestakova, Anna; Rieskamp, Jörg; Tugin, Sergey; Ossadtchi, Alexey; Krutitskaya, Janina; Klucharev, Vasily

    2013-10-01

    Humans often change their beliefs or behavior due to the behavior or opinions of others. This study explored, with the use of human event-related potentials (ERPs), whether social conformity is based on a general performance-monitoring mechanism. We tested the hypothesis that conflicts with a normative group opinion evoke a feedback-related negativity (FRN) often associated with performance monitoring and subsequent adjustment of behavior. The experimental results show that individual judgments of facial attractiveness were adjusted in line with a normative group opinion. A mismatch between individual and group opinions triggered a frontocentral negative deflection with the maximum at 200 ms, similar to FRN. Overall, a conflict with a normative group opinion triggered a cascade of neuronal responses: from an earlier FRN response reflecting a conflict with the normative opinion to a later ERP component (peaking at 380 ms) reflecting a conforming behavioral adjustment. These results add to the growing literature on neuronal mechanisms of social influence by disentangling the conflict-monitoring signal in response to the perceived violation of social norms and the neural signal of a conforming behavioral adjustment.

  14. Electrophysiological precursors of social conformity

    Science.gov (United States)

    Rieskamp, Jörg; Tugin, Sergey; Ossadtchi, Alexey; Krutitskaya, Janina; Klucharev, Vasily

    2013-01-01

    Humans often change their beliefs or behavior due to the behavior or opinions of others. This study explored, with the use of human event-related potentials (ERPs), whether social conformity is based on a general performance-monitoring mechanism. We tested the hypothesis that conflicts with a normative group opinion evoke a feedback-related negativity (FRN) often associated with performance monitoring and subsequent adjustment of behavior. The experimental results show that individual judgments of facial attractiveness were adjusted in line with a normative group opinion. A mismatch between individual and group opinions triggered a frontocentral negative deflection with the maximum at 200 ms, similar to FRN. Overall, a conflict with a normative group opinion triggered a cascade of neuronal responses: from an earlier FRN response reflecting a conflict with the normative opinion to a later ERP component (peaking at 380 ms) reflecting a conforming behavioral adjustment. These results add to the growing literature on neuronal mechanisms of social influence by disentangling the conflict-monitoring signal in response to the perceived violation of social norms and the neural signal of a conforming behavioral adjustment. PMID:22683703

  15. Conformational Study of Dibenzyl Ether

    Science.gov (United States)

    Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Hewett, Daniel M.; Zwier, Timothy S.

    2017-06-01

    Understanding the initial stages of polycyclic aromatic hydrocarbon (PAH) aggregation, the onset of soot formation, is an important goal on the pathway to cleaner combustion processes. PAHs with short alkyl chains, present in fuel-rich combustion environments, can undergo reactions that will chemically link aromatic rings together. One such example of a linked diaryl compound is dibenzyl ether, C_{6}H_{5}-CH_{2}-O-CH_{2}-C_{6}H_{5}. The -CH_{2}-O-CH_{2}- linkage has a length and flexibility well-suited to forming a π-stacked conformation between the two phenyl rings. In this talk, we will explore the single-conformation spectroscopy of dibenzyl ether under jet-cooled conditions in the gas phase. Laser-induced fluorescence, chirped pulse Fourier transform microwave (8-18 GHz region), and single-conformation infrared spectroscopy in the alkyl CH stretch region were all carried out on the molecule, thereby interrogating its full array of electronic, vibrational and rotational degrees of freedom. This work is the first step in a broader study to determine the extent of π-stacking in linked aryl compounds as a function of linkage and PAH size.

  16. Reinforcement learning signal predicts social conformity.

    NARCIS (Netherlands)

    Klucharev, V.; Hytonen, K.A.; Rijpkema, M.J.P.; Smidts, A.; Fernandez, G.S.E.

    2009-01-01

    We often change our decisions and judgments to conform with normative group behavior. However, the neural mechanisms of social conformity remain unclear. Here we show, using functional magnetic resonance imaging, that conformity is based on mechanisms that comply with principles of reinforcement

  17. Herding, Social Preferences and (Non-) Conformity

    OpenAIRE

    Luca Corazzini; Ben Greiner

    2005-01-01

    We study the role of social preferences and conformity in explaining herding behavior in anonymous risky environments. In an experiment similar to information cascade settings, but with no private information, we find no evidence for conformity. On the contrary, we observe a significant amount of non-conforming behavior, which cannot be attributed to errors.

  18. 40 CFR 52.2133 - General conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false General conformity. 52.2133 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Carolina § 52.2133 General conformity. The General Conformity regulations adopted into the South Carolina State Implementation Plan which...

  19. Conformity in Christ | Waaijman | Acta Theologica

    African Journals Online (AJOL)

    This essay investigates the notion of conformity in Christ as it is part of a comprehensive, multilayered process of transformation. In the first part it focuses on the process of transformation in creation, re-creation, conformity, love and glory. In the second part it discusses transformation in Christ by looking at conformation and ...

  20. 40 CFR 52.938 - General conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false General conformity. 52.938 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Kentucky § 52.938 General conformity. The General Conformity regulations were submitted on November 10, 1995, and adopted into the Kentucky State...

  1. CONFORMITY IN CHRIST 1. THE TRANSFORMATION PROCESS

    African Journals Online (AJOL)

    This essay investigates the notion of conformity in Christ as it is part of a compre- hensive, multilayered process of transformation. In the first part it focuses on the process of transformation in creation, re-creation, conformity, love and glory. In the second part it discusses transformation in Christ by looking at conformation and ...

  2. 40 CFR 51.854 - Conformity analysis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Conformity analysis. 51.854 Section 51... FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 51.854 Conformity analysis. Link to an...

  3. Combining size-exclusion chromatography with differential hydrogen-deuterium exchange to study protein conformational changes.

    Science.gov (United States)

    Makarov, Alexey A; Helmy, Roy

    2016-01-29

    Methods for protein characterization are being actively developed based on the growing importance of protein therapies and applications. The goal of this study was to demonstrate the use of size-exclusion chromatography (SEC) in combination with differential hydrogen-deuterium exchange (HDX) to compare protein global conformational changes at different solution conditions. Using chaotropic mobile phase additive, differential HDX was used to detect a number of solvent accessible labile protons of protein on-column at pH and temperature conditions which provided unrestricted intrinsic H/D exchange (all-or-nothing approach). Varying SEC on-column conditions allowed for protein conformational changes to be observed. Temperature and pressure were independently studied with regards to their effect on the proteins' (insulin, cytochrome C, ubiquitin, and myoglobin) conformational changes in the solution. The obtained ΔHDX profiles revealed protein conformational changes in solution under varied conditions manifested as the difference in the number of protons exchanged to deuterons, or vice-versa. The approach described in this manuscript could prove useful for protein batch-to-batch comparisons, for optimization of chemical reactions with enzyme as catalyst or for protein chemical modification reactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Proton-Ion Medical Machine Study (PIMMS), 2

    CERN Document Server

    Bryant, P J; Benedikt, Michael; Crescenti, M; Holy, P; Maier, A T; Pullia, M; Reimoser, S; Rossi, S; Borri, G; Knaus, P; Gramatica, F; Pavlovic, M; Weisser, L

    2000-01-01

    The Proton-Ion Medical Machine Study (PIMMS) group was formed following an agreement between the Med-AUSTRON (Austria) and the TERA Foundation (Italy) to combine their efforts in the design of a cancer therapy synchrotron capable of accelerating either light ions or protons. CERN agreed to support and host this study in its PS Division. A close collaboration was also set up with GSI (Germany). The study group was later joined by Onkologie-2000 (Czech Republic). Effort was first focused on the theoretical understanding of slow extraction and the techniques required to produce a smooth beam spill for the conformal treatment of complex-shaped tumours with a sub-millimetre accuracy by active scanning with proton and carbon ion beams. Considerations for passive beam spreading were also included for protons. The study has been written in two parts. The more general and theoretical aspects are recorded in Part I and the specific technical design considerations are presented in the present volume, Part II. An accompa...

  5. Considering Protonation as a Post-translational Modification Regulating Protein Structure and Function

    Science.gov (United States)

    Schönichen, André; Webb, Bradley A.; Jacobson, Matthew P.; Barber, Diane L.

    2014-01-01

    Post-translational modification of proteins is an evolutionarily conserved mechanism for regulating activity, binding affinities and stability. Compared with established post-translational modifications such as phosphorylation or uniquitination, post-translational modification by protons within physiological pH ranges is a less recognized mechanism for regulating protein function. By changing the charge of amino acid side chains, post-translational modification by protons can drive dynamical changes in protein conformation and function. Addition and removal of a proton is rapid and reversible and in contrast to most other post-translational modifications does not require an enzyme. Signaling specificity is achieved by only a minority of sites in proteins titrating within the physiological pH range. Here, we examine the structural mechanisms and functional consequences of proton post-translational modification of pH-sensing proteins regulating different cellular processes. PMID:23451893

  6. Enhanced electrochemical performance of Lithium-ion batteries by conformal coating of polymer electrolyte.

    Science.gov (United States)

    Plylahan, Nareerat; Maria, Sébastien; Phan, Trang Nt; Letiche, Manon; Martinez, Hervé; Courrèges, Cécile; Knauth, Philippe; Djenizian, Thierry

    2014-01-01

    This work reports the conformal coating of poly(poly(ethylene glycol) methyl ether methacrylate) (P(MePEGMA)) polymer electrolyte on highly organized titania nanotubes (TiO2nts) fabricated by electrochemical anodization of Ti foil. The conformal coating was achieved by electropolymerization using cyclic voltammetry technique. The characterization of the polymer electrolyte by proton nuclear magnetic resonance ((1)H NMR) and size-exclusion chromatography (SEC) shows the formation of short polymer chains, mainly trimers. X-ray photoelectron spectroscopy (XPS) results confirm the presence of the polymer and LiTFSI salt. The galvanostatic tests at 1C show that the performance of the half cell against metallic Li foil is improved by 33% when TiO2nts are conformally coated with the polymer electrolyte.

  7. Vibrational spectroscopy on protons and deuterons in proton conducting perovskites

    DEFF Research Database (Denmark)

    Glerup, M.; Poulsen, F.W.; Berg, R.W.

    2002-01-01

    A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR-microscopy exper...

  8. Effects of relativity in proton-proton bremsstrahlung

    NARCIS (Netherlands)

    Martinus, G.H.; Scholten, O.; Tjon, J.A.

    1997-01-01

    We investigate the influence of negative-energy states in proton-proton bremsstrahlung in a fully relativistic framework using the T matrix of Fleischer and Tjon. The contribution from negative-energy states in the single-scattering diagrams is shown to be large, indicating that relativistic effects

  9. Proton-proton virtual bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, GH; Scholten, O; Tjon, J

    1999-01-01

    Lepton-pair production (virtual bremsstrahlung) in proton-proton scattering is investigated using a relativistic covariant model. The effects of negative-energy slates and two-body currents are studied. These are shown to have large effects in some particular structure functions, even at the

  10. Electromagnetic off-shell effects in proton-proton bremsstrahlung

    NARCIS (Netherlands)

    Kondratyuk, S.A.; Martinus, G.H.; Scholten, O.

    1998-01-01

    We study the influence of the off-shell structure of the nucleon electromagnetic vertex on proton-proton bermsstrahlung observables. Realistic choices for the off-shell behavior are found to have considerable influences on observables such as cross sections and analyzing powers. The rescattering

  11. Slope analysis for elastic proton-proton and proton-antiproton scattering

    OpenAIRE

    Okorokov, V. A.

    2008-01-01

    The diffraction slope parameter is investigated for elastic proton-proton and proton-antiproton scattering based on the all available experimental data at intermediate square of momentum transfer in the main. Energy dependence of the elastic diffraction slope is approximated by various analytic functions in a model-independent fashion. The expanded standard logarithmic approximations allow to describe experimental slopes in all available energy range at qualitative level reasonably. Various f...

  12. Transverse spin effects in proton-proton scattering and $Q \\bar Q$ production

    OpenAIRE

    Goloskokov, S. V.

    2002-01-01

    We discuss transverse spin effects caused by the spin-flip part of the Pomeron coupling with the proton. The predicted spin asymmetries in proton-proton scattering and QQ production in proton-proton and lepton-proton reactions are not small and can be studied in future polarized experiments.

  13. The solutions of time and space conformable fractional heat equations with conformable Fourier transform

    Directory of Open Access Journals (Sweden)

    Çenesiz Yücel

    2015-12-01

    Full Text Available In this paper our aim is to find the solutions of time and space fractional heat differential equations by using new definition of fractional derivative called conformable fractional derivative. Also based on conformable fractional derivative definition conformable Fourier Transform is defined. Fourier sine and Fourier cosine transform definitions are given and space fractional heat equation is solved by conformable Fourier transform.

  14. Proton therapy - Present and future.

    Science.gov (United States)

    Mohan, Radhe; Grosshans, David

    2017-01-15

    In principle, proton therapy offers a substantial clinical advantage over conventional photon therapy. This is because of the unique depth-dose characteristics of protons, which can be exploited to achieve significant reductions in normal tissue doses proximal and distal to the target volume. These may, in turn, allow escalation of tumor doses and greater sparing of normal tissues, thus potentially improving local control and survival while at the same time reducing toxicity and improving quality of life. Protons, accelerated to therapeutic energies ranging from 70 to 250MeV, typically with a cyclotron or a synchrotron, are transported to the treatment room where they enter the treatment head mounted on a rotating gantry. The initial thin beams of protons are spread laterally and longitudinally and shaped appropriately to deliver treatments. Spreading and shaping can be achieved by electro-mechanical means to treat the patients with "passively-scattered proton therapy" (PSPT) or using magnetic scanning of thin "beamlets" of protons of a sequence of initial energies. The latter technique can be used to treat patients with optimized intensity modulated proton therapy (IMPT), the most powerful proton modality. Despite the high potential of proton therapy, the clinical evidence supporting the broad use of protons is mixed. It is generally acknowledged that proton therapy is safe, effective and recommended for many types of pediatric cancers, ocular melanomas, chordomas and chondrosarcomas. Although promising results have been and continue to be reported for many other types of cancers, they are based on small studies. Considering the high cost of establishing and operating proton therapy centers, questions have been raised about their cost effectiveness. General consensus is that there is a need to conduct randomized trials and/or collect outcomes data in multi-institutional registries to unequivocally demonstrate the advantage of protons. Treatment planning and plan

  15. Conformal symmetry inheritance in null fluid spacetimes

    CERN Document Server

    Tupper, B O J; Hall, G S; Coley, Alan A; Carot, J

    2003-01-01

    We define inheriting conformal Killing vectors for null fluid spacetimes and find the maximum dimension of the associated inheriting Lie algebra. We show that for non-conformally flat null fluid spacetimes, the maximum dimension of the inheriting algebra is seven and for conformally flat null fluid spacetimes the maximum dimension is eight. In addition, it is shown that there are two distinct classes of non-conformally flat generalized plane wave spacetimes which possess the maximum dimension, and one class in the conformally flat case.

  16. Families and degenerations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Roggenkamp, D.

    2004-09-01

    In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)

  17. Polarized proton collider at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W. E-mail: mackay@bnl.govhttp://www.rhichome.bnl.gov/People/waldowaldo@bnl.gov; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N

    2003-03-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to {radical}s=500 GeV.

  18. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  19. Dosimetric comparison of intensity modulated radiation, Proton beam therapy and proton arc therapy for para-aortic lymph node tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon [Dept. of Radiation Oncology, Konyang University Hospital. Daejeon (Korea, Republic of)

    2014-12-15

    To test feasibility of proton arc therapy (PAT) in the treatment of para-aortic lymph node tumor and compare its dosimetric properties with advanced radiotherapy techniques such as intensity modulated radiation therapy (IMRT) and conventional 3D conformal proton beam therapy (PBT). The treatment plans for para-aortic lymph node tumor were planned for 9 patients treated at our institution using IMRT, PBT, and PAT. Feasibility test and dosimetric evaluation were based on comparisons of dose volume histograms (DVHs) which reveal mean dose, D{sub 30%}, D{sub 60%}, D{sub 90%}, V{sub 30%}, V{sub 60%}, V{sub 90}%, organ equivalent doses (OEDs), normal tissue complication probability (NTCP), homogeneity index (HI) and conformity index (CI). The average doses delivered by PAT to the liver, kidney, small bowel, duodenum, stomach were 7.6%, 3%, 17.3%, 26.7%, and 14.4%, of the prescription dose (PD), respectively, which is higher than the doses delivered by IMRT (0.4%, 7.2%, 14.2%, 15.9%, and 12.8%, respectively) and PBT (4.9%, 0.5%, 14.12%, 16.1% 9.9%, respectively). The average homogeneity index and conformity index of tumor using PAT were 12.1 and 1.21, respectively which were much better than IMRT (21.5 and 1.47, respectively) and comparable to PBT (13.1 and 1.23, respectively). The result shows that both NTCP and OED of PAT are generally lower than IMRT and PBT. This study demonstrates that PAT is better in target conformity and homogeneity than IMRT and PBT but worse than IMRT and PBT for most of dosimetric factor which indicate that PAT is not recommended for the treatment of para-aortic lymph node tumor.

  20. Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Rowan M; Caplan, David; Pomes, Regis [Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Fadda, Elisa, E-mail: pomes@sickkids.ca [Department of Chemistry, University of Galway (Ireland)

    2011-06-15

    Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay

  1. The Biological Bases of Conformity

    Science.gov (United States)

    Morgan, T. J. H.; Laland, K. N.

    2012-01-01

    Humans are characterized by an extreme dependence on culturally transmitted information and recent formal theory predicts that natural selection should favor adaptive learning strategies that facilitate effective copying and decision making. One strategy that has attracted particular attention is conformist transmission, defined as the disproportionately likely adoption of the most common variant. Conformity has historically been emphasized as significant in the social psychology literature, and recently there have also been reports of conformist behavior in non-human animals. However, mathematical analyses differ in how important and widespread they expect conformity to be, and relevant experimental work is scarce, and generates findings that are both mutually contradictory and inconsistent with the predictions of the models. We review the relevant literature considering the causation, function, history, and ontogeny of conformity, and describe a computer-based experiment on human subjects that we carried out in order to resolve ambiguities. We found that only when many demonstrators were available and subjects were uncertain was subject behavior conformist. A further analysis found that the underlying response to social information alone was generally conformist. Thus, our data are consistent with a conformist use of social information, but as subjects’ behavior is the result of both social and asocial influences, the resultant behavior may not be conformist. We end by relating these findings to an embryonic cognitive neuroscience literature that has recently begun to explore the neural bases of social learning. Here conformist transmission may be a particularly useful case study, not only because there are well-defined and tractable opportunities to characterize the biological underpinnings of this form of social learning, but also because early findings imply that humans may possess specific cognitive adaptations for effective social learning. PMID:22712006

  2. Gauge choice in conformal gravity

    Science.gov (United States)

    Sultana, Joseph; Kazanas, Demosthenes

    2017-04-01

    In a recent paper, K. Horne examined the effect of a conformally coupled scalar field (referred to as Higgs field) on the Mannheim-Kazanas metric gμν, i.e. the static spherically symmetric metric within the context of conformal gravity, and studied its effect on the rotation curves of galaxies. He showed that for a Higgs field of the form S(r) = S0a/(r + a), where a is a radial length-scale, the equivalent Higgs-frame Mannheim-Kazanas metric \\tilde{g}_{μ ν } = Ω ^2 g_{μ ν }, with Ω = S(r)/S0, lacks the linear γr term, which has been employed in the fitting of the galactic rotation curves without the need to invoke dark matter. In this brief note, we point out that the representation of the Mannheim-Kazanas metric in a gauge, where it lacks the linear term, has already been presented by others, including Mannheim and Kazanas themselves, without the need to introduce a conformally coupled Higgs field. Furthermore, Horne argues that the absence of the linear term resolves the issue of light bending in the wrong direction, i.e. away from the gravitating mass, if γr > 0 in the Mannheim-Kazanas metric, a condition necessary to resolve the galactic dynamics in the absence of dark matter. In this case, we also point out that the elimination of the linear term is not even required because the sign of the γr term in the metric can be easily reversed by a simple gauge transformation, and also that the effects of this term are indeed too small to be observed.

  3. The Biological Bases of Conformity

    Directory of Open Access Journals (Sweden)

    Thomas Joshau Henry Morgan

    2012-06-01

    Full Text Available Humans are characterized by an extreme dependence on culturally transmitted information and recent formal theory predicts that natural selection should favour adaptive learning strategies that facilitate effective use of social information in decision making. One strategy that has attracted particular attention is conformist transmission, defined as the disproportionately likely adoption of the most common variant. Conformity has historically been emphasized as significant in the social psychology literature, and recently there have also been reports of conformist behaviour in nonhuman animals. However, mathematical analyses differ in how important and widespread they expect conformity to be, and relevant experimental work is scarce, and generates findings that are both mutually contradictory and inconsistent with the predictions of the models. We review the relevant literature considering the causation, function, history and ontogeny of conformity and describe a computer-based experiment on human subjects that we carried out in order to resolve ambiguities. We found that only when many demonstrators were available and subjects were uncertain was subject behaviour conformist. A further analysis found that the underlying response to social information alone was generally conformist. Thus, our data are consistent with a conformist use of social information, but as subject’s behaviour is the result of both social and asocial influences, the resultant behaviour may not be conformist. We end by relating these findings to an embryonic cognitive neuroscience literature that has recently begun to explore the neural bases of social learning. Here conformist transmission may be a particularly useful case study, not only because there are well-defined and tractable opportunities to characterize the biological underpinnings of this form of social learning, but also because early findings imply that humans may possess specific cognitive adaptations for

  4. The biological bases of conformity.

    Science.gov (United States)

    Morgan, T J H; Laland, K N

    2012-01-01

    Humans are characterized by an extreme dependence on culturally transmitted information and recent formal theory predicts that natural selection should favor adaptive learning strategies that facilitate effective copying and decision making. One strategy that has attracted particular attention is conformist transmission, defined as the disproportionately likely adoption of the most common variant. Conformity has historically been emphasized as significant in the social psychology literature, and recently there have also been reports of conformist behavior in non-human animals. However, mathematical analyses differ in how important and widespread they expect conformity to be, and relevant experimental work is scarce, and generates findings that are both mutually contradictory and inconsistent with the predictions of the models. We review the relevant literature considering the causation, function, history, and ontogeny of conformity, and describe a computer-based experiment on human subjects that we carried out in order to resolve ambiguities. We found that only when many demonstrators were available and subjects were uncertain was subject behavior conformist. A further analysis found that the underlying response to social information alone was generally conformist. Thus, our data are consistent with a conformist use of social information, but as subjects' behavior is the result of both social and asocial influences, the resultant behavior may not be conformist. We end by relating these findings to an embryonic cognitive neuroscience literature that has recently begun to explore the neural bases of social learning. Here conformist transmission may be a particularly useful case study, not only because there are well-defined and tractable opportunities to characterize the biological underpinnings of this form of social learning, but also because early findings imply that humans may possess specific cognitive adaptations for effective social learning.

  5. Evaluation of the strength of electron-proton scattering data for determining the proton charge radius

    CERN Document Server

    Horbatsch, M

    2015-01-01

    Precisely measured electron-proton elastic scattering cross sections [Phys. Rev. Lett. {\\bf 105}, 242002 (2010)] are reanalyzed to evaluate their strength for determining the rms charge radius ($R_{\\rm E}$) of the proton. More than half of the cross sections at lowest $Q^2$ are fit using two single-parameter form-factor models, with the first based on a dipole parametrization, and the second on a linear fit to a conformal-mapping variable. These low-$Q^2$ fits extrapolate the slope of the form factor to $Q^2$=0 and determine $R_{\\rm E}$ values of approximately 0.84 and 0.89~fm, respectively. Fits spanning all $Q^2$, in which the single constants are replaced with cubic splines at larger $Q^2$, lead to similar results for $R_{\\rm E}$. We conclude that the scattering data is consistent with $R_{\\rm E}$ ranging from at least 0.84 to 0.89~fm, and therefore cannot resolve the discrepancy between determinations of $R_{\\rm E}$ made using muonic and electronic hydrogen-atom spectroscopy.

  6. Conformal ghosts on the sphere

    Energy Technology Data Exchange (ETDEWEB)

    Vogeler, Kirsten

    2010-07-16

    This thesis is about the relation of geometry and logarithmic conformal field theories. I consider two different geometric settings: in part I the topological A-model with embedding x:R x S{sup 1}{yields}CP{sup 1}, and in part II conformal, fermionic ghosts on the torus. The A-model can be transformed such that the path integral yields a {delta} distribution on the moduli space of instantons. Integrating out the dependency on S{sup 1}, one obtains Morse theory on the universal cover LCP{sup 1} of loop space. Its low-energy state space can be derived perturbatively in cells of this manifold, and can be modelled by the representations of the chiral de Rham complex. Assuming that the representation theory of the A-model and the chiral de Rham complex are identical, I consider the chiral de Rham complex in the following. The state spaces are local, induced representations of the symmetry generated by the gradient vector field of the Morse function. According to a conjecture of E. Frenkel, A. Losev and N. Nekrasov, a generalization of these local representations as distributions on LCP{sup 1} leads to nonperturbative states of the theory. On these states, the Hamiltonian must be corrected by additional terms. I discuss the representation theory of the nonperturbative states and determine the terms which deform the Hamiltonian. They have a geometric significance as cohomology operators in a complex of globally extended local representation spaces. Eventually, I prove that a logarithmic extension of the chiral de Rham complex corresponds the additional terms in the Hamiltonian. The conformal, fermionic ghosts of part II transform in irreducible representations of the monodromy group Z{sub 2}. I show that the conformal field theory of these fields has to be logarithmically extended as soon as the representations of the monodromy group are allowed to move freely on the parameter space CP{sup 1} backslash {l_brace}0,1,{infinity}{r_brace} of the torus. The triplet model

  7. Coupling Protein Dynamics with Proton Transport in Human Carbonic Anhydrase II.

    Science.gov (United States)

    Taraphder, Srabani; Maupin, C Mark; Swanson, Jessica M J; Voth, Gregory A

    2016-08-25

    The role of protein dynamics in enzyme catalysis is one of the most highly debated topics in enzymology. The main controversy centers around what may be defined as functionally significant conformational fluctuations and how, if at all, these fluctuations couple to enzyme catalyzed events. To shed light on this debate, the conformational dynamics along the transition path surmounting the highest free energy barrier have been herein investigated for the rate limiting proton transport event in human carbonic anhydrase (HCA) II. Special attention has been placed on whether the motion of an excess proton is correlated with fluctuations in the surrounding protein and solvent matrix, which may be rare on the picosecond and subpicosecond time scales of molecular motions. It is found that several active site residues, which do not directly participate in the proton transport event, have a significant impact on the dynamics of the excess proton. These secondary participants are shown to strongly influence the active site environment, resulting in the creation of water clusters that are conducive to fast, moderately slow, or slow proton transport events. The identification and characterization of these secondary participants illuminates the role of protein dynamics in the catalytic efficiency of HCA II.

  8. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps

    Science.gov (United States)

    Vedovato, Natascia

    2014-01-01

    A single Na+/K+-ATPase pumps three Na+ outwards and two K+ inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na+ than K+ generates outward current across the cell membrane. Less well understood is the ability of Na+/K+ pumps to generate an inward current of protons. Originally noted in pumps deprived of external K+ and Na+ ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K+ and Na+ concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na+ release from phosphorylated Na+/K+ pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na+/K+ pumps that enables proton import is not required for completion of the 3 Na+/2 K+ transport cycle. However, the back-step occurs readily during Na+/K+ transport when external K+ ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na+-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na+ and K+ ions that passes through binding site II. The inferred occurrence of Na+/K+ exchange and H+ import during the same conformational cycle of a single molecule identifies the Na+/K+ pump as a hybrid transporter. Whether Na+/K+ pump–mediated proton inflow may have any physiological or pathophysiological significance remains to be clarified. PMID

  9. Focused conformational sampling in proteins

    Science.gov (United States)

    Bacci, Marco; Langini, Cassiano; Vymětal, Jiří; Caflisch, Amedeo; Vitalis, Andreas

    2017-11-01

    A detailed understanding of the conformational dynamics of biological molecules is difficult to obtain by experimental techniques due to resolution limitations in both time and space. Computer simulations avoid these in theory but are often too short to sample rare events reliably. Here we show that the progress index-guided sampling (PIGS) protocol can be used to enhance the sampling of rare events in selected parts of biomolecules without perturbing the remainder of the system. The method is very easy to use as it only requires as essential input a set of several features representing the parts of interest sufficiently. In this feature space, new states are discovered by spontaneous fluctuations alone and in unsupervised fashion. Because there are no energetic biases acting on phase space variables or projections thereof, the trajectories PIGS generates can be analyzed directly in the framework of transition networks. We demonstrate the possibility and usefulness of such focused explorations of biomolecules with two loops that are part of the binding sites of bromodomains, a family of epigenetic "reader" modules. This real-life application uncovers states that are structurally and kinetically far away from the initial crystallographic structures and are also metastable. Representative conformations are intended to be used in future high-throughput virtual screening campaigns.

  10. Conformal Gauge Transformations in Thermodynamics

    Directory of Open Access Journals (Sweden)

    Alessandro Bravetti

    2015-09-01

    Full Text Available In this work, we show that the thermodynamic phase space is naturally endowed with a non-integrable connection, defined by all of those processes that annihilate the Gibbs one-form, i.e., reversible processes. We argue that such a connection is invariant under re-scalings of the connection one-form, whilst, as a consequence of the non-integrability of the connection, its curvature is not and, therefore, neither is the associated pseudo-Riemannian geometry. We claim that this is not surprising, since these two objects are associated with irreversible processes. Moreover, we provide the explicit form in which all of the elements of the geometric structure of the thermodynamic phase space change under a re-scaling of the connection one-form. We call this transformation of the geometric structure a conformal gauge transformation. As an example, we revisit the change of the thermodynamic representation and consider the resulting change between the two metrics on the thermodynamic phase space, which induce Weinhold’s energy metric and Ruppeiner’s entropy metric. As a by-product, we obtain a proof of the well-known conformal relation between Weinhold’s and Ruppeiner’s metrics along the equilibrium directions. Finally, we find interesting properties of the almost para-contact structure and of its eigenvectors, which may be of physical interest.

  11. A quantitative measure for protein conformational heterogeneity.

    Science.gov (United States)

    Lyle, Nicholas; Das, Rahul K; Pappu, Rohit V

    2013-09-28

    Conformational heterogeneity is a defining characteristic of proteins. Intrinsically disordered proteins (IDPs) and denatured state ensembles are extreme manifestations of this heterogeneity. Inferences regarding globule versus coil formation can be drawn from analysis of polymeric properties such as average size, shape, and density fluctuations. Here we introduce a new parameter to quantify the degree of conformational heterogeneity within an ensemble to complement polymeric descriptors. The design of this parameter is guided by the need to distinguish between systems that couple their unfolding-folding transitions with coil-to-globule transitions and those systems that undergo coil-to-globule transitions with no evidence of acquiring a homogeneous ensemble of conformations upon collapse. The approach is as follows: Each conformation in an ensemble is converted into a conformational vector where the elements are inter-residue distances. Similarity between pairs of conformations is quantified using the projection between the corresponding conformational vectors. An ensemble of conformations yields a distribution of pairwise projections, which is converted into a distribution of pairwise conformational dissimilarities. The first moment of this dissimilarity distribution is normalized against the first moment of the distribution obtained by comparing conformations from the ensemble of interest to conformations drawn from a Flory random coil model. The latter sets an upper bound on conformational heterogeneity thus ensuring that the proposed measure for intra-ensemble heterogeneity is properly calibrated and can be used to compare ensembles for different sequences and across different temperatures. The new measure of conformational heterogeneity will be useful in quantitative studies of coupled folding and binding of IDPs and in de novo sequence design efforts that are geared toward controlling the degree of heterogeneity in unbound forms of IDPs.

  12. The underlying event in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, F.

    2009-05-15

    In this thesis, studies of the underlying event in proton-proton collisions at a center-of-mass energy of {radical}(s) = 10 TeV are presented. Crucial ingredient to underlying event models are multiple parton-parton scatters in single proton-proton collisions. The feasibility of measuring the underlying event was investigated with the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) using charged particles and charged-particle jets. Systematic uncertainties of the underlying event measurement due to detector misalignment and imperfect track reconstruction are found to be negligible after {integral}Ldt=1 pb{sup -1} of data are available. Different model predictions are compared with each other using fully simulated Monte Carlo samples. It is found, that distinct models differ strongly enough to tell them apart with early data. (orig.)

  13. The proton-proton scattering without Coulomb force renormalization

    Directory of Open Access Journals (Sweden)

    Glöckle W.

    2010-04-01

    Full Text Available We demonstrate numerically that proton-proton (pp scattering observables can be determined directly by standard short range methods using a screened pp Coulomb force without renormalization. We numerically investigate solutions of the 3-dimensional Lippmann-Schwinger (LS equation for an exponentially screened Coulomb potential. For the limit of large screening radii we confirm analytically predicted properties for off-shell, half-shell and on-shell elements of the Coulomb t-matrix.

  14. Conformal basis for flat space amplitudes

    Science.gov (United States)

    Pasterski, Sabrina; Shao, Shu-Heng

    2017-09-01

    We study solutions of the Klein-Gordon, Maxwell, and linearized Einstein equations in R1 ,d +1 that transform as d -dimensional conformal primaries under the Lorentz group S O (1 ,d +1 ). Such solutions, called conformal primary wavefunctions, are labeled by a conformal dimension Δ and a point in Rd, rather than an on-shell (d +2 )-dimensional momentum. We show that the continuum of scalar conformal primary wavefunctions on the principal continuous series Δ ∈d/2 +i R of S O (1 ,d +1 ) spans a complete set of normalizable solutions to the wave equation. In the massless case, with or without spin, the transition from momentum space to conformal primary wavefunctions is implemented by a Mellin transform. As a consequence of this construction, scattering amplitudes in this basis transform covariantly under S O (1 ,d +1 ) as d -dimensional conformal correlators.

  15. Reinforcement learning signal predicts social conformity.

    Science.gov (United States)

    Klucharev, Vasily; Hytönen, Kaisa; Rijpkema, Mark; Smidts, Ale; Fernández, Guillén

    2009-01-15

    We often change our decisions and judgments to conform with normative group behavior. However, the neural mechanisms of social conformity remain unclear. Here we show, using functional magnetic resonance imaging, that conformity is based on mechanisms that comply with principles of reinforcement learning. We found that individual judgments of facial attractiveness are adjusted in line with group opinion. Conflict with group opinion triggered a neuronal response in the rostral cingulate zone and the ventral striatum similar to the "prediction error" signal suggested by neuroscientific models of reinforcement learning. The amplitude of the conflict-related signal predicted subsequent conforming behavioral adjustments. Furthermore, the individual amplitude of the conflict-related signal in the ventral striatum correlated with differences in conforming behavior across subjects. These findings provide evidence that social group norms evoke conformity via learning mechanisms reflected in the activity of the rostral cingulate zone and ventral striatum.

  16. Proton radiography to improve proton radiotherapy: Simulation study at different proton beam energies

    CERN Document Server

    Biegun, A K; van Goethem, M-J; van der Graaf, E R; van Beuzekom, M; Visser, J; Brandenburg, S

    2016-01-01

    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a patient of typically 3-4\\% and even up to 10\\% in region containing bone~\\cite{USchneider1995,USchneider1996,WSchneider2000,GCirrone2007,HPaganetti2012,TPlautz2014,GLandry2013,JSchuemann2014}. As a consequence, part of a tumor may receive no dose, or a very high dose can be delivered in healthy ti\\-ssues and organs at risks~(e.g. brain stem)~\\cite{ACKnopf2013}. A transmission radiograph of high-energy protons measuring proton stopping powers directly will allow to reduce these uncertainties, and thus improve the quality of treatment. The best way to obtain a sufficiently accurate radiograph is by tracking individual protons traversing the phantom (patient)~\\cite{GCirrone2007,TPlautz2014,VSipala2013}. In our simulations ...

  17. Conformational changes in glycine tri- and hexapeptide

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2006-01-01

    conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of the characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods...... also investigated the influence of the secondary structure of polypeptide chains on the formation of the potential energy landscape. This analysis has been performed for the sheet and the helix conformations of chains of six amino acids....

  18. Challenges of Agro-Food Standards Conformity

    DEFF Research Database (Denmark)

    Bolwig, Simon; Riisgaard, Lone; Gibbon, Peter

    2013-01-01

    a variety of programmes and projects aimed at supporting standards development and conformity. This article contributes to the critical literature discussing the challenges and potentials of standards conformity and supplies policy recommendations for future interventions. It reports the results...... of a research programme on standards conformity in East Africa. These demonstrate that most interventions underestimate the nature of the challenges faced and that significant impacts are achieved only under rather restricted conditions. The solutions lay not only in more selective support to standard...

  19. Novel conformation of an RNA structural switch.

    Science.gov (United States)

    Kennedy, Scott D; Kierzek, Ryszard; Turner, Douglas H

    2012-11-20

    The RNA duplex, (5'GACGAGUGUCA)(2), has two conformations in equilibrium. The nuclear magnetic resonance solution structure reveals that the major conformation of the loop, 5'GAGU/3'UGAG, is novel and contains two unusual Watson-Crick/Hoogsteen GG pairs with G residues in the syn conformation, two A residues stacked on each other in the center of the helix with inverted sugars, and two bulged-out U residues. The structure provides a benchmark for testing approaches for predicting local RNA structure and a sequence that allows the design of a unique arrangement of functional groups and/or a conformational switch into nucleic acids.

  20. Rotational Spectroscopy Unveils Eleven Conformers of Adrenaline

    Science.gov (United States)

    Cabezas, C.; Cortijo, V.; Mata, S.; Lopez, J. C.; Alonso, J. L.

    2013-06-01

    Recent improvements in our LA-MB-FTMW instrumentation have allowed the characterization of eleven and eight conformers for the neurotransmitters adrenaline and noradrenaline respectively. The observation of this rich conformational behavior is in accordance with the recent observation of seven conformers for dopamine and in sharp contrast with the conformational reduction proposed for catecholamines. C. Cabezas, I. Peña, J. C. López, J. L. Alonso J. Phys. Chem. Lett. 2013, 4, 486. H. Mitsuda, M. Miyazaki, I. B. Nielsen, P. Carcabal,C. Dedonder, C. Jouvet, S. Ishiuchi, M. Fujii J. Phys. Chem. Lett. 2010, 1, 1130.

  1. A Framework for Online Conformance Checking

    DEFF Research Database (Denmark)

    Burattin, Andrea; Carmona, Josep

    2017-01-01

    Conformance checking – a branch of process mining – focuses on establishing to what extent actual executions of a process are in line with the expected behavior of a reference model. Current conformancechecking techniques only allow for a-posteriori analysis: the amount of (non-)conformant behavior...... is quantified after the completion of the process instance. In this paper we propose a framework for online conformance checking: not only do we quantify (non-)conformant behavior as the execution is running, we also restrict the computation to constant time complexity per event analyzed, thus enabling...

  2. Conformable eddy current array delivery

    Science.gov (United States)

    Summan, Rahul; Pierce, Gareth; Macleod, Charles; Mineo, Carmelo; Riise, Jonathan; Morozov, Maxim; Dobie, Gordon; Bolton, Gary; Raude, Angélique; Dalpé, Colombe; Braumann, Johannes

    2016-02-01

    The external surface of stainless steel containers used for the interim storage of nuclear material may be subject to Atmospherically Induced Stress Corrosion Cracking (AISCC). The inspection of such containers poses a significant challenge due to the large quantities involved; therefore, automating the inspection process is of considerable interest. This paper reports upon a proof-of-concept project concerning the automated NDT of a set of test containers containing artificially generated AISCCs. An Eddy current array probe with a conformable padded surface from Eddyfi was used as the NDT sensor and end effector on a KUKA KR5 arc HW robot. A kinematically valid cylindrical raster scan path was designed using the KUKA|PRC path planning software. Custom software was then written to interface measurement acquisition from the Eddyfi hardware with the motion control of the robot. Preliminary results and analysis are presented from scanning two canisters.

  3. Technidilaton at the conformal edge

    Science.gov (United States)

    Hashimoto, Michio; Yamawaki, Koichi

    2011-01-01

    Technidilaton (TD) was proposed long ago in the technicolor near criticality/conformality. To reveal the critical behavior of TD, we explicitly compute the nonperturbative contributions to the scale anomaly ⟨θμμ⟩ and to the technigluon condensate ⟨αGμν2⟩, which are generated by the dynamical mass m of the technifermions. Our computation is based on the (improved) ladder Schwinger-Dyson equation, with the gauge coupling α replaced by the two-loop running coupling α(μ) having the Caswell-Banks-Zaks infrared fixed point α*: α(μ)≃α=α* for the infrared region mHaba-Matsuzaki-Yamawaki. The decoupled TD can be a candidate of dark matter.

  4. Approaching Conformality with Ten Flavors

    Energy Technology Data Exchange (ETDEWEB)

    Appelquist, Thomas; Brower, Richard C.; Buchoff, Michael I.; Cheng, Michael; Cohen, Saul D.; Fleming, George T.; Kiskis, Joe; Lin, Meifeng; Na, Heechang; Neil, Ethan T.; Osborn, James C.

    2012-04-01

    We present first results for lattice simulations, on a single volume, of the low-lying spectrum of an SU(3) Yang-Mills gauge theory with N{sub f} = 10 light fermions in the fundamental representation. Fits to the fermion mass dependence of various observables are found to be globally consistent with the hypothesis that this theory is within or just outside the strongly-coupled edge of the conformal window, with mass anomalous dimension {gamma}* {approx} 1 over the range of scales simulated. We stress that we cannot rule out the possibility of spontaneous chiral-symmetry breaking at scales well below our infrared cutoff. We discuss important systematic effects, including finite-volume corrections, and consider directions for future improvement.

  5. Gravitomagnetic effects in conformal gravity

    CERN Document Server

    Said, Jackson Levi; Adami, Kristian Zarb

    2014-01-01

    Gravitomagnetic effects are characterized by two phenomena: first, the geodetic effect which describes the precession of the spin of a gyroscope in a free orbit around a massive object, second, the Lense-Thirring effect which describes the precession of the orbital plane about a rotating source mass. We calculate both these effects in the fourth-order theory of conformal Weyl gravity for the test case of circular orbits. We show that for the geodetic effect a linear term arises which may be interesting for high radial orbits, whereas for the Lense-Thirring effect the additional term has a diminishing effect for most orbits. Circular orbits are also considered in general leading up to a generalization of Kepler's third law.

  6. Protonation Equilibrium of Linear Homopolyacids

    Directory of Open Access Journals (Sweden)

    Požar J.

    2015-07-01

    Full Text Available The paper presents a short summary of investigations dealing with protonation equilibrium of linear homopolyacids, in particularly those of high charge density. Apart from the review of experimental results which can be found in the literature, a brief description of theoretical models used in processing the dependence of protonation constants on monomer dissociation degree and ionic strength is given (cylindrical model based on Poisson-Boltzmann equation, cylindrical Stern model, the models according to Ising, Högfeldt, Mandel and Katchalsky. The applicability of these models regarding the polyion charge density, electrolyte concentration and counterion type is discussed. The results of Monte Carlo simulations of protonation equilibrium are also briefly mentioned. In addition, frequently encountered errors connected with calibration of of glass electrode and the related unreliability of determined protonation constants are pointed out.

  7. Proton Football European Championship 2016

    CERN Multimedia

    2016-01-01

    Check out the European championship of proton football 2016 at CERN. Produced by: CERN Audiovisual Productions Service Director: Jacques Fichet Editor: Jacques Fichet Music : Burnt of Jingle Punks You can follow us on:

  8. Estimated radiation pneumonitis risk after photon versus proton therapy alone or combined with chemotherapy for lung cancer

    DEFF Research Database (Denmark)

    Vogelius, Ivan R.; Westerly, David C; Aznar, Marianne Camille

    2011-01-01

    Background. Traditionally, radiation therapy plans are optimized without consideration of chemotherapy. Here, we model the risk of radiation pneumonitis (RP) in the presence of a possible interaction between chemotherapy and radiation dose distribution. Material and methods. Three alternative...... highly conformal photon techniques may become relevant for lung toxicity when radiation is combined with cytotoxic chemotherapy as shown here. Proton therapy allows highly conformal delivery while minimizing the low dose bath potentially interacting with chemotherapy. Thus, intensive drug-radiation...... treatment plans are compared in 18 non-small cell lung cancer patients previously treated with helical tomotherapy; the tomotherapy plan, an intensity modulated proton therapy plan (IMPT) and a three dimensional conformal radiotherapy (3D-CRT) plan. All plans are optimized without consideration...

  9. Kaon photoproduction off proton

    Directory of Open Access Journals (Sweden)

    Skoupil Dalibor

    2016-01-01

    Full Text Available We have recently constructed our version of the Regge-plus-resonance (RPR model and two variants of an isobar model for photoproduction of kaons on the proton, utilizing new experimental data from CLAS, LEPS, and GRAAL collaborations for adjusting free parameters of the models. Higher-spin nucleon (3/2 and 5/2 and hyperon (3/2 resonances were included using the consistent formalism by Pascalutsa and found to play an important role in data description. The set of chosen nucleon resonances in our new isobar models agrees well with the set of the most probable contributing states determined in the Bayesian analysis with the RPR model whilst only 6 out of 10 N*’s selected in the RPR fit of ours overlap with the nucleon resonant states in the Bayesian analysis. Results of two versions of the isobar model are compared to the new version of the RPR model and experimental data in the third-resonance region and their properties are discussed. We place an emphasis on the choice of resonances, the predictions in the forward- and backward-angle region as well as the choice of the hadron form factor.

  10. Replacement of a conserved proline and the alkaline conformational change in iso-2-cytochrome c.

    Science.gov (United States)

    Nall, B T; Zuniga, E H; White, T B; Wood, L C; Ramdas, L

    1989-12-12

    Although point mutations usually lead to minor localized changes in protein structure, replacement of conserved Pro-76 with Gly in iso-2-cytochrome c induces a major conformational change. The change in structure results from mutation-induced depression of the pK for transition to an alkaline conformation with altered heme ligation. To assess the importance of position 76 in stabilizing the native versus the alkaline structure, the equilibrium and kinetic properties of the pH-induced conformational change have been compared for normal and mutant iso-2-cytochrome c. The pKapp for the conformational change is reduced from 8.45 (normal iso-2) to 6.71 in the mutant protein (Gly-76 iso-2), suggesting that conservation of Pro-76 may be required to stabilize the native conformation at physiological pH. The kinetics of the conformational change for both the normal and mutant proteins are well-described by a single kinetic phase throughout most of the pH-induced transition zone. Over this pH range, a minimal mechanism proposed for horse cytochrome c [Davis, L. A., Schejter, A., & Hess, G. P. (1974) J. Biol. Chem. 249, 2624-2632] is consistent with the data for normal and mutant yeast iso-2-cytochromes c: NH KH----N + H+ kcf in equilibrium kcb A NH and N are native forms of cytochrome c with a 695-nm absorbance band, A is an alkaline form that lacks the 695-nm band, KH is a proton dissociation constant, and kcf and kcb are microscopic rate constants for the conformational change. The Gly-76 mutation increases kcf by almost 70-fold, but kcb and KH are unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Parametric Model for Astrophysical Proton-Proton Interactions and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Niklas [KTH Royal Institute of Technology, Stockholm (Sweden)

    2007-01-01

    Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e±, ve, $\\bar{v}$e, vμ and $\\bar{μ}$e--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the Δ(1232) and the other multiple resonances with masses around 1600 MeV/c2. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a

  12. Proton Structure and PHENIX Experiment

    OpenAIRE

    Qiu, Jian-Wei

    2015-01-01

    We briefly summarize the important and critical roles that PHENIX Experiment has played in determining the proton's internal structure in terms of quarks and gluons, and their dynamics. Some pioneering measurements by PHENIX Experiment on the motion and polarization of quarks and gluons, as well as their correlations inside a fast moving proton are presented. Some future opportunities and potentials of PHENIX Experiment are also discussed.

  13. Voltage-gated Proton Channels

    Science.gov (United States)

    DeCoursey, Thomas E.

    2014-01-01

    Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance ~103 smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn2+ (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H+ for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens. PMID:23798303

  14. SU-F-T-198: Dosimetric Comparison of Carbon and Proton Radiotherapy for Recurrent Nasopharynx Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Y; Zhao, J; Wang, W; Lin, L; Liu, X; Shahnazi, K [Shanghai Proton and Heavy Ion Center, Shanghai (China)

    2016-06-15

    Purpose: Various radiotherapy planning methods for locally recurrent nasopharynx carcinoma (R-NPC) have been proposed. The purpose of this study was to compare carbon and proton therapy for the treatment of R-NPC in terms of dose coverage for target volume and sparing for organs at risk (OARs). Methods: Six patients who were suffering from R-NPC and treated using carbon therapy were selected for this study. Treatment plans with a total dose of 57.5Gy (RBE) in 23 fractions were made using SIEMENS Syngo V11. An intensity-modulated radiotherapy optimization method was chosen for carbon plans (IMCT) while for proton plans both intensity-modulated radiotherapy (IMPT) and single beam optimization (proton-SBO) methods were chosen. Dose distributions, dose volume parameters, and selected dosimetric indices for target volumes and OARs were compared for all treatment plans. Results: All plans provided comparable PTV coverage. The volume covered by 95% of the prescribed dose was comparable for all three plans. The average values were 96.11%, 96.24% and 96.11% for IMCT, IMPT, and proton-SBO respectively. A significant reduction of the 80% and 50% dose volumes were observed for the IMCT plans compared to the IMPT and proton-SBO plans. Critical organs lateral to the target such as brain stem and spinal cord were better spared by IMPT than by proton-SBO, while IMCT spared those organs best. For organs in the beam path, such as parotid glands, the mean dose results were similar for all three plans. Conclusion: Carbon plans yielded better dose conformity than proton plans. They provided similar or better target coverage while significantly lowering the dose for normal tissues. Dose sparing for critical organs in IMPT plans was better than proton-SBO, however, IMPT is known to be more sensitive to range uncertainties. For proton plans it is essential to find a balance between the two optimization methods.

  15. Generation of proton aurora by magnetosonic waves.

    Science.gov (United States)

    Xiao, Fuliang; Zong, Qiugang; Wang, Yongfu; He, Zhaoguo; Su, Zhenpeng; Yang, Chang; Zhou, Qinghua

    2014-06-05

    Earth's proton aurora occurs over a broad MLT region and is produced by the precipitation of low-energy (2-10 keV) plasmasheet protons. Proton precipitation can alter chemical compositions of the atmosphere, linking solar activity with global climate variability. Previous studies proposed that electromagnetic ion cyclotron waves can resonate with protons, producing proton scattering precipitation. A long-outstanding question still remains whether there is another mechanism responsible for the proton aurora. Here, by performing satellite data analysis and diffusion equation calculations, we show that fast magnetosonic waves can produce trapped proton scattering that yields proton aurora. This provides a new insight into the mechanism of proton aurora. Furthermore, a ray-tracing study demonstrates that magnetosonic wave propagates over a broad MLT region, consistent with the global distribution of proton aurora.

  16. An NMR and ab initio quantum chemical study of acid-base equilibria for conformationally constrained acidic alpha-amino acids in aqueous solution

    DEFF Research Database (Denmark)

    Nielsen, Peter Aadal; Jaroszewski, Jerzy W.; Norrby, Per-Ola

    2001-01-01

    The protonation states of a series of piperidinedicarboxylic acids (PDAs), which are conformationally constrained acidic alpha -amino acids, have been studied by C-13 NMR titration in water. The resulting data have been correlated with theoretical results obtained by HF/6-31+G* calculations using...

  17. When the proton becomes larger

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The TOTEM experiment at the LHC has just confirmed that, at high energy, protons behave as if they were becoming larger. In more technical terms, their total cross-section – a parameter linked to the proton-proton interaction probability – increases with energy. This phenomenon, expected from previous measurements performed at much lower energy, has now been confirmed for the first time at the LHC’s unprecedented energy.   One arm of a TOTEM T2 detector during its installation at interaction point 5. A composite particle like the proton is a complex system that in no way resembles a static Lego construction: sub-components move inside and interactions keep the whole thing together, but in a very dynamic way. This partly explains why even the very common proton can still be hiding secrets about its nature, decades after its discovery. One way of studying the inner properties of protons is to observe how they interact with each other, which, in technical terms, i...

  18. Conformations and Conformational Processes of Hexahydrobenzazocines by NMR and DFT Studies.

    Science.gov (United States)

    Musielak, Bogdan; Holak, Tad A; Rys, Barbara

    2015-09-18

    Conformational processes that occur in hexahydrobenzazocines have been studied with the (1)H and (13)C dynamic nuclear magnetic resonance (DNMR) spectroscopy. The coalescence effects are assigned to two different conformational processes: the ring-inversion of the ground-state conformations and the interconversion between two different conformers. The barriers for these processes are in the range of 42-52 and 42-43 kJ mol(-1), respectively. Molecular modeling on the density functional theory (DFT) level and the gauge invariant atomic orbitals (GIAO)-DFT calculations of isotropic shieldings and coupling constants for the set of low-energy conformations were compared with the experimental NMR data. The ground-state of all compounds in solution is the boat-chair (BC) conformation. The BC form adopts two different conformations because the nitrogen atom can be in the boat or chair parts of the BC structure. These two conformers are engaged in the interconversion process.

  19. Spontaneous breaking of conformal invariance in theories of conformally coupled matter and Weyl gravity

    OpenAIRE

    Edery, A.; Fabbri, Luca; Paranjape, M. B.

    2006-01-01

    We study the theory of Weyl conformal gravity with matter degrees of freedom in a conformally invariant interaction. Specifically, we consider a triplet of scalar fields and SO(3) non-abelian gauge fields, i.e. the Georgi-Glashow model conformally coupled to Weyl gravity. We show that the equations of motion admit solutions spontaneously breaking the conformal symmetry and the gauge symmetry, providing a mechanism for supplying a scale in the theory. The vacuum solution corresponds to anti-de...

  20. Potential of mean force of water-proton bath and molecular dynamic simulation of proteins at constant pH.

    Science.gov (United States)

    Vorobjev, Yury N

    2012-03-30

    An advanced implicit solvent model of water-proton bath for protein simulations at constant pH is presented. The implicit water-proton bath model approximates the potential of mean force of a protein in water solvent in a presence of hydrogen ions. Accurate and fast computational implementation of the implicit water-proton bath model is developed using the continuum electrostatic Poisson equation model for calculation of ionization equilibrium and the corrected MSR6 generalized Born model for calculation of the electrostatic atom-atom interactions and forces. Molecular dynamics (MD) method for protein simulation in the potential of mean force of water-proton bath is developed and tested on three proteins. The model allows to run MD simulations of proteins at constant pH, to calculate pH-dependent properties and free energies of protein conformations. The obtained results indicate that the developed implicit model of water-proton bath provides an efficient way to study thermodynamics of biomolecular systems as a function of pH, pH-dependent ionization-conformation coupling, and proton transfer events. Copyright © 2012 Wiley Periodicals, Inc.

  1. Proton transport in carbonic anhydrase: Insights from molecular simulation.

    Science.gov (United States)

    Maupin, C Mark; Voth, Gregory A

    2010-02-01

    This article reviews the insights gained from molecular simulations of human carbonic anhydrase II (HCA II) utilizing non-reactive and reactive force fields. The simulations with a reactive force field explore protein transfer and transport via Grotthuss shuttling, while the non-reactive simulations probe the larger conformational dynamics that underpin the various contributions to the rate-limiting proton transfer event. Specific attention is given to the orientational stability of the His64 group and the characteristics of the active site water cluster, in an effort to determine both of their impact on the maximal catalytic rate. The explicit proton transfer and transport events are described by the multistate empirical valence bond (MS-EVB) method, as are alternative pathways for the excess proton charge defect to enter/leave the active site. The simulation results are interpreted in light of experimental results on the wild-type enzyme and various site-specific mutations of HCA II in order to better elucidate the key factors that contribute to its exceptional efficiency. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Aromatic interactions in model peptide β-hairpins: ring current effects on proton chemical shifts.

    Science.gov (United States)

    Rajagopal, Appavu; Aravinda, Subrayashastry; Raghothama, Srinivasarao; Shamala, Narayanaswamy; Balaram, Padmanabhan

    2012-01-01

    Crystal structures of eight peptide β-hairpins in the sequence Boc-Leu-Phe-Val-Xxx-Yyy-Leu-Phe-Val-OMe revealed that the Phe(2) and Phe(7) aromatic rings are in close spacial proximity, with the centroid-centroid distance (R(cen)) of 4.4-5.4 Å between the two phenyl rings. Proton NMR spectra in chloroform and methanol solution reveal a significant upfield shift of the Phe(7) C(δ,δ') H(2) protons (6.65-7.04 ppm). Specific assignments of the aromatic protons have been carried out in the peptide Boc-Leu-Phe-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (6). The anticipated ring current shifts have been estimated from the aromatic ring geometrics observed in crystals for all eight peptides. Only one of the C(δ,δ') H proton lies in the shielding zone with rapid ring flipping, resulting in averaging between the two extreme chemical shifts. An approximate estimate of the population of conformations, which resemble crystal state orientation, may be obtained. Key nuclear Overhauser effects (NOEs) between facing Phe side chains provide support for close similarity between the solid state and solution conformation. Temperature dependence of aromatic ring proton chemical shift and line widths for peptide 6 (Boc-Leu-Phe-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe) and the control peptide Boc-Leu-Val-Val-(D)Pro-Gly-Leu-Phe-Val-OMe establish an enhanced barrier to ring flipping when the two Phe rings are in proximity. Modeling studies suggest that small, conformational adjustment about C(α)-C(β) (χ(1) ) and C(β)-C(γ) (χ(2) ) bonds of both the Phe residues may be required in order to permit unhindered, uncorrelated flipping of both the Phe rings. The maintenance of the specific aromatic ring orientation in organic solvents provides evidence for significant stabilizing interaction. Copyright © 2012 Wiley Periodicals, Inc.

  3. Proton transfer reactions and hydrogen-bond networks in protein environments.

    Science.gov (United States)

    Ishikita, Hiroshi; Saito, Keisuke

    2014-02-06

    In protein environments, proton transfer reactions occur along polar or charged residues and isolated water molecules. These species consist of H-bond networks that serve as proton transfer pathways; therefore, thorough understanding of H-bond energetics is essential when investigating proton transfer reactions in protein environments. When the pKa values (or proton affinity) of the H-bond donor and acceptor moieties are equal, significantly short, symmetric H-bonds can be formed between the two, and proton transfer reactions can occur in an efficient manner. However, such short, symmetric H-bonds are not necessarily stable when they are situated near the protein bulk surface, because the condition of matching pKa values is opposite to that required for the formation of strong salt bridges, which play a key role in protein-protein interactions. To satisfy the pKa matching condition and allow for proton transfer reactions, proteins often adjust the pKa via electron transfer reactions or H-bond pattern changes. In particular, when a symmetric H-bond is formed near the protein bulk surface as a result of one of these phenomena, its instability often results in breakage, leading to large changes in protein conformation.

  4. Early Clinical Outcomes Using Proton Radiation for Children With Central Nervous System Atypical Teratoid Rhabdoid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    De Amorim Bernstein, Karen; Sethi, Roshan; Trofimov, Alexei; Zeng, Chuan [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Fullerton, Barbara [Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts (United States); Yeap, Beow Y. [Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Ebb, David [Department of Pediatric Hematology-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Tarbell, Nancy J.; Yock, Torunn I. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); MacDonald, Shannon M., E-mail: smacdonald@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States)

    2013-05-01

    Purpose: Atypical teratoid/rhabdoid tumor (AT/RT) is an uncommon and aggressive tumor that often affects infants. Irradiation improves survival but has traditionally been avoided in patients under the age of 3 due to the increasing risk of neurocognitive side effects. We report the first cohort of AT/RT patients treated with proton therapy. Methods and Materials: All patients with AT/RT treated at Massachusetts General Hospital (MGH) Frances H. Burr Proton Beam Therapy Benter between July 2004 and November 2011 were included in this study. All patients were treated with 3-dimensional conformal proton therapy (3D-CPT). Results: Ten consecutive patients of a median 2.3 years of age and with a median follow-up of 27.3 months (range, 11.3-99.4 months) were identified. Two patients suffered distant relapse; 1 patient was successfully treated with involved field irradiation and chemotherapy, while the second patient died of disease. At last follow-up, 9 patients were alive without evidence of disease. Proton radiation demonstrated increasing sparing of the cerebrum, temporal lobe, cochlea, and hypothalamus. Conclusions: Initial clinical outcomes with proton therapy are favorable. The advantages of proton therapy are particularly suited to the treatment of AT/RT, a tumor that often requires irradiation treatment at an age when avoiding irradiation to healthy tissues is most desirable.

  5. Size effect of water cluster on the excited-state proton transfer in aqueous solvent

    Science.gov (United States)

    Liu, Yu-Hui; Chu, Tian-Shu

    2011-03-01

    Time-dependent density functional theory (TDDFT) was used to investigate the excited-state proton transfer (ESPT) dynamics of 6-hydroxyquinolinium (6HQc) in aqueous solvent, resulting in the excited zwitterionic form (6HQz). The optimized excited-state energy profiles of 6HQc:(H 2O) n complexes have been calculated along the phenolic O sbnd H bond to simulate the minimum energy pathway (MEP) in the excited state. The results suggested that the threshold of the size of the water cluster is 3 for the excited-state proton transfer of 6HQc in aqueous solvent, since the conformation of the stable hydrated proton requires proton transferring to the second or deeper shell of water solvent. Moreover, the stability of the hydrated proton can be improved significantly by adding one more H 2O molecule to form an Eigen cation in the excited-state 6HQz:H 9O 4+. The effect of the size of water cluster on the proton transfer is investigated theoretically in the excited state for the first time.

  6. Sparse-view proton computed tomography using modulated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiseoc; Kim, Changhwan; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejon 305-701 (Korea, Republic of); Min, Byungjun [Department of Radiation Oncology, Kangbuk Samsung Hospital, 110–746 (Korea, Republic of); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, 138–736 (Korea, Republic of); Park, Seyjoon; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, 410–769 (Korea, Republic of); Park, Sungyong [Proton Therapy Center, McLaren Cancer Institute, Flint, Michigan 48532 (United States)

    2015-02-15

    Purpose: Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Methods: Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method–projection onto convex sets (SM-POCS), superiorization method–expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Results: Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed

  7. The butane condensed matter conformational problem

    NARCIS (Netherlands)

    Weber, A.C.J.; de Lange, C.A.; Meerts, W.L.; Burnell, E.E.

    2010-01-01

    From the dipolar couplings of orientationally ordered n-butane obtained by NMR spectroscopy we have calculated conformer probabilities using the modified Chord (Cd) and Size-and-Shape (CI) models to estimate the conformational dependence of the order matrix. All calculation methods make use of

  8. Conformity to Peer Pressure in Preschool Children

    Science.gov (United States)

    Haun, Daniel B. M.; Tomasello, Michael

    2011-01-01

    Both adults and adolescents often conform their behavior and opinions to peer groups, even when they themselves know better. The current study investigated this phenomenon in 24 groups of 4 children between 4;2 and 4;9 years of age. Children often made their judgments conform to those of 3 peers, who had made obviously erroneous but unanimous…

  9. Group Cohesiveness, Deviation, Stress, and Conformity

    Science.gov (United States)

    1993-08-11

    productivity. ~ Relations, I. 599-519 . Blake , R. R., & Mouton , J. 5, (1961) . Conformity. resistance, and conversion. In I. A. Berg , & B. M. Bass...conversion ( Blake & HoutQn. 1961). Conformity without a true change in private acceptance has been termed compliance (Kiesler, 1969 ; Kiesler

  10. Chaotropes trigger conformational rearrangements differently in ...

    Indian Academy of Sciences (India)

    SHREYASI ASTHANA

    Abstract. Concanavalin A (ConA) is a plant lectin having industrial and biological applications. Concanavalin. A changes conformation upon exposure to different stress conditions, like exposure to sodium dodecyl sulphate, guanidine hydrochloride, varying hydronium ion potential, etc. The conformational changes were ...

  11. Asymptotic symmetry algebra of conformal gravity

    Science.gov (United States)

    Irakleidou, Maria; Lovrekovic, Iva

    2017-11-01

    We compute asymptotic symmetry algebras of conformal gravity. Due to more general boundary conditions allowed in conformal gravity in comparison to those in Einstein gravity, we can classify the corresponding algebras. The highest algebra for nontrivial boundary conditions is five dimensional and it leads to global geon solution with nonvanishing charges.

  12. Conformity to the Surviving Sepsis Campaign International ...

    African Journals Online (AJOL)

    They had moderate conformity rates for blood cultures prior to administering antibiotics (57%) and administration of antibiotics within first hour of recognition of septic shock (54%). There was high conformity rate to the glucose control policy (81%), use of protective lung strategy in acute lung injury/Acute respiratory distress ...

  13. Conformation of hindered piperidines: Spectroscopic evidence for ...

    Indian Academy of Sciences (India)

    Administrator

    C NMR; conformational analysis; boat forms. 1. Introduction. Many piperidine derivatives are found to possess pharmacological activity and form an essential part of the molecular structure of important drugs. 1. Most of the piperidine precursors are known to exist in chair conformation. Electron withdrawing groups. (–NO ...

  14. Wormholes in conformal gravity arXiv

    CERN Document Server

    Hohmann, Manuel; Raidal, Martti; Veermäe, Hardi

    We present a new class of solutions for static spherically symmetric wormhole spacetimes in conformal gravity and outline a detailed method for their construction. As an explicit example, we construct a class of traversable and non-traversable wormholes that are locally conformal to Schwarzschild-(anti) de Sitter spacetimes. These wormhole spacetimes are exact vacuum solutions in, but not being limited to, Weyl gravity and conformal scalar-tensor theories. Importantly, the method implies that every conformal gravity theory with local field equations will trivially contain wormholes without the need for exotic matter. Applying those results on gravitational theories that possess conformal symmetry in the ultraviolet regime, the central singularities of black holes can be replaced with wormhole throats. We speculate on possible phenomenological consequences.

  15. Dataset showing the impact of the protonation states on molecular dynamics of HIV protease

    Directory of Open Access Journals (Sweden)

    Rosemberg O. Soares

    2016-09-01

    Full Text Available The data described here supports the research article “Unraveling HIV Protease Flaps Dynamics by Constant pH Molecular Dynamics Simulations” (Soares et al., 2016 [1]. The data involves both standard Molecular Dynamics (MD and Constant pH Molecular Dynamics (CpHMD to elucidate the effect of protonation states of catalytic dyad on the HIV-PR conformation. The data obtained from MD simulation demonstrate that the protonation state of the two aspartic acids (Asp25/Asp25′ has a strong influence on the dynamics of the HIV-PR. Regarding the CpHMD simulation, we performed pka calculations for HIV-PR and the data indicate that only one catalytic aspartate should be protonated.

  16. A high-resolution anthropomorphic voxel-based tomographic phantom for proton therapy of the eye

    Energy Technology Data Exchange (ETDEWEB)

    Alghamdi, A A [Department of Physics, University of Surrey Guildford, Surrey GU2 7XH (United Kingdom); Ma, A [Department of Physics, University of Surrey Guildford, Surrey GU2 7XH (United Kingdom); Marouli, M [Department of Physics, University of Surrey Guildford, Surrey GU2 7XH (United Kingdom); Albarakati, Y [Department of Physics, University of Surrey Guildford, Surrey GU2 7XH (United Kingdom); Kacperek, A [Douglas Cyclotron, Clatterbridge Centre for Oncology Bebington, Wirral CH63 4JY (United Kingdom); Spyrou, N M [Department of Physics, University of Surrey Guildford, Surrey GU2 7XH (United Kingdom)

    2007-01-21

    Proton therapy is increasingly used in medical treatments for cancer patients due to the sharp dose conformity offered by the characteristic Bragg peak. Proton beam interactions with the eye will be simulated using the MCNPX Monte Carlo code and available nuclear cross-section data to calculate the dose distribution in the eye gel and surrounding organs. A high-resolution eye model will be employed using a 3D geometrical voxel-based anthropomorphic head phantom obtained from the Visible Human Project (female data). Manual segmentation of the eye, carried out by the Medical Physics group at University of Surrey resulted in 15 identified structures. This work emphasizes the use of a realistic phantom for accurately predicting dose deposition by protons. (note)

  17. A high-resolution anthropomorphic voxel-based tomographic phantom for proton therapy of the eye.

    Science.gov (United States)

    Alghamdi, A A; Ma, A; Marouli, M; Albarakati, Y; Kacperek, A; Spyrou, N M

    2007-01-21

    Proton therapy is increasingly used in medical treatments for cancer patients due to the sharp dose conformity offered by the characteristic Bragg peak. Proton beam interactions with the eye will be simulated using the MCNPX Monte Carlo code and available nuclear cross-section data to calculate the dose distribution in the eye gel and surrounding organs. A high-resolution eye model will be employed using a 3D geometrical voxel-based anthropomorphic head phantom obtained from the Visible Human Project (female data). Manual segmentation of the eye, carried out by the Medical Physics group at the University of Surrey resulted in 15 identified structures. This work emphasizes the use of a realistic phantom for accurately predicting dose deposition by protons.

  18. Proton-proton Scattering Above 3 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    A. Sibirtsev, J. Haidenbauer, H.-W. Hammer S. Krewald ,Ulf-G. Meissner

    2010-01-01

    A large set of data on proton-proton differential cross sections, analyzing powers and the double-polarization parameter A{sub NN} is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the {rho}, {omega}, f{sub 2}, and a{sub 2} trajectories and single-Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model.

  19. A simple solution of the proton crisis

    CERN Document Server

    Pankovic, Vladan

    2014-01-01

    In this work we suggest a simple theoretical model of the proton able to effectively solve proton spin crisis. Within domain of applicability of this simple model proton consists only of two u quarks and one d quarks (two of which have spin opposite to proton and one identical to proton) and one neutral vector phi meson (with spin two times larger than proton spin and directed identically to proton spin). This model is in full agreement not only with existing DIS experiments, but also with spin and electric charge conservation as well as in a satisfactory agreement with rest mass-energy conservation (since phi meson mass is close to proton rest mass). Our model opens an interesting possibility of the solution of the quarks and leptons families problem (proton is not an absolutely non-strange particle, but only a particle with almost totally effectively hidden strange).

  20. A proton therapy model using discrete difference equations with an example of treating hepatocellular carcinoma.

    Science.gov (United States)

    Bodine, Erin N; Monia, K Lars

    2017-08-01

    Proton therapy is a type of radiation therapy used to treat cancer. It provides more localized particle exposure than other types of radiotherapy (e.g., x-ray and electron) thus reducing damage to tissue surrounding a tumor and reducing unwanted side effects. We have developed a novel discrete difference equation model of the spatial and temporal dynamics of cancer and healthy cells before, during, and after the application of a proton therapy treatment course. Specifically, the model simulates the growth and diffusion of the cancer and healthy cells in and surrounding a tumor over one spatial dimension (tissue depth) and the treatment of the tumor with discrete bursts of proton radiation. We demonstrate how to use data from in vitro and clinical studies to parameterize the model. Specifically, we use data from studies of Hepatocellular carcinoma, a common form of liver cancer. Using the parameterized model we compare the ability of different clinically used treatment courses to control the tumor. Our results show that treatment courses which use conformal proton therapy (targeting the tumor from multiple angles) provides better control of the tumor while using lower treatment doses than a non-conformal treatment course, and thus should be recommend for use when feasible.

  1. 47 CFR 2.1072 - Limitation on Declaration of Conformity.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Limitation on Declaration of Conformity. 2.1072... Conformity § 2.1072 Limitation on Declaration of Conformity. (a) The Declaration of Conformity signifies that...'s rules. (b) A Declaration of Conformity by the responsible party is effective until a termination...

  2. PubChem3D: Similar conformers

    Directory of Open Access Journals (Sweden)

    Bolton Evan E

    2011-05-01

    Full Text Available Abstract Background PubChem is a free and open public resource for the biological activities of small molecules. With many tens of millions of both chemical structures and biological test results, PubChem is a sizeable system with an uneven degree of available information. Some chemical structures in PubChem include a great deal of biological annotation, while others have little to none. To help users, PubChem pre-computes "neighboring" relationships to relate similar chemical structures, which may have similar biological function. In this work, we introduce a "Similar Conformers" neighboring relationship to identify compounds with similar 3-D shape and similar 3-D orientation of functional groups typically used to define pharmacophore features. Results The first two diverse 3-D conformers of 26.1 million PubChem Compound records were compared to each other, using a shape Tanimoto (ST of 0.8 or greater and a color Tanimoto (CT of 0.5 or greater, yielding 8.16 billion conformer neighbor pairs and 6.62 billion compound neighbor pairs, with an average of 253 "Similar Conformers" compound neighbors per compound. Comparing the 3-D neighboring relationship to the corresponding 2-D neighboring relationship ("Similar Compounds" for molecules such as caffeine, aspirin, and morphine, one finds unique sets of related chemical structures, providing additional significant biological annotation. The PubChem 3-D neighboring relationship is also shown to be able to group a set of non-steroidal anti-inflammatory drugs (NSAIDs, despite limited PubChem 2-D similarity. In a study of 4,218 chemical structures of biomedical interest, consisting of many known drugs, using more diverse conformers per compound results in more 3-D compound neighbors per compound; however, the overlap of the compound neighbor lists per conformer also increasingly resemble each other, being 38% identical at three conformers and 68% at ten conformers. Perhaps surprising is that the average

  3. Gas-Phase Conformations and Energetics of Sodium Cationized 2^'-DEOXYGUANOSINE and Guanosine: Irmpd Action Spectroscopy and Theoretical Studies

    Science.gov (United States)

    Zhu, Yanlong; Hamlow, Lucas; He, Chenchen; Bao, Xun; Rodgers, M. T.; Gao, Juehan; Oomens, J.

    2015-06-01

    In living systems, the local structures of DNA and RNA are influenced by protonation, deprotonation and noncovalent binding interactions with cations. In order to determine the effects of Na+ cationization on the gas-phase structures of 2^'-deoxyguanosine, [dGuo+Na]+, and guanosine, [Guo+Na]+, infrared multiple photon dissociation (IRMPD) action spectra of these two sodium cationized DNA and RNA mononucleosides are measured over the range extending from ~500 to ~1850 cm-1 using the FELIX free electron laser. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes. Geometry optimizations and frequency analyses of these species are performed at the B3LYP/6-31G* level of theory, whereas single-point energies are calculated at the B3LYP/6-311+G(2d,2p) level of theory to determine the relative stabilities of these conformations. Comparison of the measure IRMPD action spectra and computed linear IR spectra enable the conformations accessed in the experiments to be elucidated. In both cases, preferential binding of the Na+ cation to O6 and N7 positions of the nucleobase is observed. Present results for the sodium cationized nucleosides are compared to results for the analogous protonated forms of these nucleosides to elucidate the effects of multiple chelating interactions with the sodium cation to hydrogen bonding interactions in the protonated systems on the structures and stabilities of these nucleosides.

  4. LHC Report: Ions cross protons

    CERN Multimedia

    Reyes Alemany Fernandez for the LHC team

    2013-01-01

    The LHC starts the New Year facing a new challenge: proton-lead collisions in the last month before the shutdown in mid-February.    The first stable beams were achieved on 20 January with 13 individual bunches per beam. In the next fill, the first bunch-trains were injected and stable beams were achieved with 96 proton on 120 ion bunches.  This fill was very important because we were able to study the so-called moving long-range beam-beam encounters. Long-range encounters, which are also seen in proton-proton runs, occur when the bunches in the two beams “see” each other as they travel in the same vacuum chamber at either side of the experiments.  The situation becomes more complicated with proton-lead ions because the two species have different revolution times (until the frequencies are locked at top energy- see “Cogging exercises”) and thus these encounters move. We found that this effect does not cause significant beam losses...

  5. Towards a proton imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Civinini, C., E-mail: Carlo.Civinini@fi.infn.i [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Brianzi, M. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Bruzzi, M. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Dipartimento di Energetica, Universita degli Studi di Firenze, via S. Marta 3, I-50139 Firenze (Italy); Bucciolini, M. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); Candiano, G. [INFN, Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Capineri, L. [Dipartimento di Elettronica e Telecomunicazioni, Universita degli Studi di Firenze, via S. Marta 3, I-50139 Firenze (Italy); Cirrone, G.A.P.; Cuttone, G. [INFN, Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Lo Presti, D. [Dipartimento di Fisica, Universita degli Studi di Catania, via S. Sofia 64, I-95123 Catania (Italy); INFN, sezione di Catania, via S. Sofia 64, I-95123 Catania (Italy); Marrazzo, L. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); Mazzaglia, E. [INFN, Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Menichelli, D.; Pieri, S. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Finland) (Italy); Dipartimento di Energetica, Universita degli Studi di Firenze, via S. Marta 3, I-50139 Firenze (Italy); Randazzo, N. [INFN, sezione di Catania, via S. Sofia 64, I-95123 Catania (Italy); Sipala, V. [Dipartimento di Fisica, Universita degli Studi di Catania, via S. Sofia 64, I-95123 Catania (Italy); INFN, sezione di Catania, via S. Sofia 64, I-95123 Catania (Italy)

    2010-11-01

    Hadron therapy for tumor treatment is nowadays used in several medical centres. The main advantage in using protons or light ions beams is the possibility of tightly shaping the radiation dose to the target volume. Presently the spatial accuracy of the therapy is limited by the uncertainty in stopping power distribution, which is derived, for each treatment, from the photon attenuation coefficients measured by X-ray tomography. A direct measurement of the stopping powers will help in reducing this uncertainty. This can be achieved by using a proton beam and a detection system able to reconstruct a tomography image of the patient. As a first step towards such a system an apparatus able to perform a proton transmission radiography (pCR) has been designed. It consists of a silicon microstrip tracker, measuring proton trajectories, and a YAG:Ce calorimeter to determine the particle residual energy. Proton beam and laboratory tests have been performed on the system components prototypes: the main results will be shown and discussed.

  6. The Structure of the Proton

    Science.gov (United States)

    Chambers, E. E.; Hofstadter, R.

    1956-04-01

    The structure and size of the proton have been studied by means of the methods of high-energy electron scattering. The elastic scattering of electrons from protons in polyethylene has been investigated at the following energies in the laboratory system: 200, 300, 400, 500, 550 Mev. The range of laboratory angles examined has been 30 degrees to 135 degrees. At the largest angles and the highest energy, the cross section for scattering shows a deviation below that expected from a point proton by a factor of about nine. The magnitude and variation with angle of the deviations determine a structure factor for the proton, and thereby determine the size and shape of the charge and magnetic-moment distributions within the proton. An interpretation, consistent at all energies and angles and agreeing with earlier results from this laboratory, fixes the rms radius at 0.77 {plus or minus} 0.10 x 10{sup -13} cm for each of the charge and moment distributions. The shape of the density function is not far from a Gaussian with rms radius 0.70 x 10{sup -13} cm or an exponential with rms radius 0.80 x 10 {sup -13} cm. An equivalent interpretation of the experiments would ascribe the apparent size to a breakdown of the Coulomb law and the conventional theory of electromagnetism.

  7. C-metric solution for conformal gravity with a conformally coupled scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Kun, E-mail: mengkun@tjpu.edu.cn [School of Science, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Liu, E-mail: lzhao@nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)

    2017-02-15

    The C-metric solution of conformal gravity with a conformally coupled scalar field is presented. The solution belongs to the class of Petrov type D spacetimes and is conformal to the standard AdS C-metric appeared in vacuum Einstein gravity. For all parameter ranges, we identify some of the physically interesting static regions and the corresponding coordinate ranges. The solution may contain a black hole event horizon, an acceleration horizon, either of which may be cut by the conformal infinity or be hidden behind the conformal infinity. Since the model is conformally invariant, we also discussed the possible effects of the conformal gauge choices on the structure of the spacetime.

  8. ATLAS proton-proton event containing four muons

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    An event with four identified muons from a proton-proton collision in ATLAS. This event is consistent with coming from two Z particles decaying: both Z particles decay to two muons each. Such events are produced by Standard Model processes without Higgs particles. They are also a possible signature for Higgs particle production, but many events must be analysed together in order to tell if there is a Higgs signal. This view is a zoom into the central part of the detector. The four muons are picked out as red tracks. Other tracks and deposits of energy in the calorimeters are shown in yellow.

  9. Concept for a Future Super Proton-Proton Collider

    CERN Document Server

    Tang, Jingyu; Chai, Weiping; Chen, Fusan; Chen, Nian; Chou, Weiren; Dong, Haiyi; Gao, Jie; Han, Tao; Leng, Yongbin; Li, Guangrui; Gupta, Ramesh; Li, Peng; Li, Zhihui; Liu, Baiqi; Liu, Yudong; Lou, Xinchou; Luo, Qing; Malamud, Ernie; Mao, Lijun; Palmer, Robert B.; Peng, Quanling; Peng, Yuemei; Ruan, Manqi; Sabbi, GianLuca; Su, Feng; Su, Shufang; Stratakis, Diktys; Sun, Baogeng; Wang, Meifen; Wang, Jie; Wang, Liantao; Wang, Xiangqi; Wang, Yifang; Wang, Yong; Xiao, Ming; Xing, Qingzhi; Xu, Qingjin; Xu, Hongliang; Xu, Wei; Witte, Holger; Yan, Yingbing; Yang, Yongliang; Yang, Jiancheng; Yuan, Youjin; Zhang, Bo; Zhang, Yuhong; Zheng, Shuxin; Zhu, Kun; Zhu, Zian; Zou, Ye

    2015-01-01

    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

  10. Concept for a Future Super Proton-Proton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jingyu; et al.

    2015-07-12

    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

  11. ATLAS proton-proton event containing two high energy photons

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    An event where two energetic photons ("gammas") are produced in a proton-proton collision in ATLAS. Many events of this type are produced by well-understood Standard Model processes ("backgrounds") which do not involve Higgs particles. A small excess of events of this type with similar masses could indicate evidence for Higgs particle production, but any specific event is most likely to be from the background. The photons are indicated, in the different projections and views, by the clusters of energy shown in yellow.

  12. Safety and Palliative Efficacy of Single-Dose 8-Gy Reirradiation for Painful Local Failure in Patients With Stage IV Non-Small Cell Lung Cancer Previously Treated With Radical Chemoradiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Topkan, Erkan, E-mail: docdretopkan@gmail.com [Baskent Department of Radiation Oncology, University Adana Medical Faculty, Adana (Turkey); Yildirim, Berna Akkus; Guler, Ozan Cem; Parlak, Cem [Baskent Department of Radiation Oncology, University Adana Medical Faculty, Adana (Turkey); Pehlivan, Berrin [Koc University, School of Medicine, Department of Radiation Oncology, Istanbul, and American Hospital, University of Texas MD Anderson Radiation Treatment Center, Istanbul (Turkey); Selek, Ugur [Medstar Hospital, Department of Radiation Oncology, Antalya (Turkey)

    2015-03-15

    Purpose: To investigate the safety and efficacy of single-dose 8-Gy palliative chest reirradiation (CRI) in metastatic non-small cell lung cancer (M-NSCLC) patients with painful thoracic failures (TF) within the previous radiation portal. Patients and Methods: We retrospectively analyzed the clinical data of 78 M-NSCLC patients who received single-dose 8-Gy CRI for painful TF after concurrent chemoradiation therapy to a total radiation dose of 52 to 66 Gy between 2007 and 2012. Primary endpoints included significant pain relief (SPR) defined as a ≥2 point decrement in the Visual Analogue Scale for Pain inventory (VAS-P), time to pain relief, and duration of pain control. Secondary objectives were survival and prognostic factors. Results: Treatment was well tolerated, with only 5.1% grade 3 pneumonitis and 1.3% grade 2 esophagitis. Pre-CRI median and post-CRI minimum VAS-P were 7 and 3 (P<.001), respectively. SPR was noted in 67 (85.9%) patients, and only 3 (3.9%) scored progressive pain. Median time to lowest VAS-P and duration of pain control were 27 days and 6.1 months, respectively. Median overall survival (OS) was 7.7 months, and the 1-year OS rate was 26.5%. On multivariate analyses, lower Eastern Cooperative Oncology group score (1-2; P<.001), absence of anemia (P=.001), and fewer metastatic sites (1-2; P<.001) were found to be associated with longer OS. Conclusions: Single-dose 8-Gy CRI provides safe, effective, and durable pain palliation for TF in radically irradiated M-NSCLC patients. Because of its convenience, lower cost, and higher comfort, the present protocol can be considered an appropriate option for patients with limited life spans.

  13. Conformational Properties of β-PrP*

    Science.gov (United States)

    Hosszu, Laszlo L. P.; Trevitt, Clare R.; Jones, Samantha; Batchelor, Mark; Scott, David J.; Jackson, Graham S.; Collinge, John; Waltho, Jonathan P.; Clarke, Anthony R.

    2009-01-01

    Prion propagation involves a conformational transition of the cellular form of prion protein (PrPC) to a disease-specific isomer (PrPSc), shifting from a predominantly α-helical conformation to one dominated by β-sheet structure. This conformational transition is of critical importance in understanding the molecular basis for prion disease. Here, we elucidate the conformational properties of a disulfide-reduced fragment of human PrP spanning residues 91–231 under acidic conditions, using a combination of heteronuclear NMR, analytical ultracentrifugation, and circular dichroism. We find that this form of the protein, which similarly to PrPSc, is a potent inhibitor of the 26 S proteasome, assembles into soluble oligomers that have significant β-sheet content. The monomeric precursor to these oligomers exhibits many of the characteristics of a molten globule intermediate with some helical character in regions that form helices I and III in the PrPC conformation, whereas helix II exhibits little evidence for adopting a helical conformation, suggesting that this region is a likely source of interaction within the initial phases of the transformation to a β-rich conformation. This precursor state is almost as compact as the folded PrPC structure and, as it assembles, only residues 126–227 are immobilized within the oligomeric structure, leaving the remainder in a mobile, random-coil state. PMID:19369250

  14. Conformational properties of beta-PrP.

    Science.gov (United States)

    Hosszu, Laszlo L P; Trevitt, Clare R; Jones, Samantha; Batchelor, Mark; Scott, David J; Jackson, Graham S; Collinge, John; Waltho, Jonathan P; Clarke, Anthony R

    2009-08-14

    Prion propagation involves a conformational transition of the cellular form of prion protein (PrPC) to a disease-specific isomer (PrPSc), shifting from a predominantly alpha-helical conformation to one dominated by beta-sheet structure. This conformational transition is of critical importance in understanding the molecular basis for prion disease. Here, we elucidate the conformational properties of a disulfide-reduced fragment of human PrP spanning residues 91-231 under acidic conditions, using a combination of heteronuclear NMR, analytical ultracentrifugation, and circular dichroism. We find that this form of the protein, which similarly to PrPSc, is a potent inhibitor of the 26 S proteasome, assembles into soluble oligomers that have significant beta-sheet content. The monomeric precursor to these oligomers exhibits many of the characteristics of a molten globule intermediate with some helical character in regions that form helices I and III in the PrPC conformation, whereas helix II exhibits little evidence for adopting a helical conformation, suggesting that this region is a likely source of interaction within the initial phases of the transformation to a beta-rich conformation. This precursor state is almost as compact as the folded PrPC structure and, as it assembles, only residues 126-227 are immobilized within the oligomeric structure, leaving the remainder in a mobile, random-coil state.

  15. Conformational effects in photoelectron circular dichroism

    Science.gov (United States)

    Turchini, S.

    2017-12-01

    Photoelectron circular dichroism (PECD) is a novel type of spectroscopy, which presents surprising sensitivity to conformational effects in chiral systems. While classical photoelectron spectroscopy mainly responds to conformational effects in terms of energy level shifts, PECD provides a rich and detailed response to tiny changes in electronic and structural properties by means of the intensity dispersion of the circular dichroism as a function of photoelectron kinetic energy. In this work, the basics of PECD will be outlined, emphasizing the role of interference from the l,l+/- 1 outgoing partial wave of the photoelectron in the PECD transition matrix element, which is responsible for the extreme sensitivity to conformational effects. Examples using molecular systems and interfaces will shed light on the powerful application of PECD to classical conformational effects such as group substitution, isomerism, conformer population and clustering. Moreover, the PECD results will be reported in challenging new fields where conformations play a key role, such as vibrational effects, transient chirality and time- resolved experiments. To date, PECD has mostly been based on synchrotron radiation facilities, but it also has a future as a table-top lab experiment by means of multiphoton ionization. An important application of PECD as an analytical tool will be reported. The aim of this review is to illustrate that in PECD, the presence of conformational effects is essential for understanding a wide range of effects from a new perspective, making it different from classical spectroscopy.

  16. On functional representations of the conformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Rosten, Oliver J.

    2017-07-15

    Starting with conformally covariant correlation functions, a sequence of functional representations of the conformal algebra is constructed. A key step is the introduction of representations which involve an auxiliary functional. It is observed that these functionals are not arbitrary but rather must satisfy a pair of consistency equations corresponding to dilatation and special conformal invariance. In a particular representation, the former corresponds to the canonical form of the exact renormalization group equation specialized to a fixed point whereas the latter is new. This provides a concrete understanding of how conformal invariance is realized as a property of the Wilsonian effective action and the relationship to action-free formulations of conformal field theory. Subsequently, it is argued that the conformal Ward Identities serve to define a particular representation of the energy-momentum tensor. Consistency of this construction implies Polchinski's conditions for improving the energy-momentum tensor of a conformal field theory such that it is traceless. In the Wilsonian approach, the exactly marginal, redundant field which generates lines of physically equivalent fixed points is identified as the trace of the energy-momentum tensor. (orig.)

  17. Lupin alkaloids Part IV. The influence of some structural factors on the conformational equilibrium in bis-quinolizidine systems

    Science.gov (United States)

    Wysocka, Waleria; Brukwicki, Tadeusz

    1992-01-01

    13C NMR and IR spectra of minor alkaloids of Lupinus albus such as multiflorine ( I), 13α-hydroxymultiflorine ( IV) and their monoperchlorates, 13α-hydroxy-5-dehydromultiflorine ( V) and 5-dehydromultiflorine ( VI) were taken. I and IV in CDCl 3, their monoperchlorates in CD 3CN and V in CD 3OD solution occur in conformational equilibrium. The share of the conformation with a boat ring C in I is about 74%, in IV 67%, in I · HClO 4 20%, in IV·HClO 43% and in V 3%. The change in conformational preference results mainly from a decreasing destabilization of the conformation with a chair ring C caused by an increase in the distance between the interacting hydrogen atom pairs 5α-17α, 8β-12β, 12β-17β and 14β-17β, due to protonation induced lengthening of the N (16)-C α bonds. VI and most of the molecules of V remain in solution in conformation with a chair ring C. This conformation in V and VI is less destabilized than in I and IV because of a lower steric hindrance for the chair ring C, as a consequence of the planarity of ring A and a part of fragment B and because of the absence of the 5α-17α interaction.

  18. Protein conformational changes in the bacteriorhodopsin photocycle: comparison of findings from electron and X-ray crystallographic analyses.

    Directory of Open Access Journals (Sweden)

    Teruhisa Hirai

    Full Text Available Light-driven conformational changes in the membrane protein bacteriorhodopsin have been studied extensively using X-ray and electron crystallography, resulting in the deposition of >30 sets of coordinates describing structural changes at various stages of proton transport. Using projection difference Fourier maps, we show that coordinates reported by different groups for the same photocycle intermediates vary considerably in the extent and nature of conformational changes. The different structures reported for the same intermediate cannot be reconciled in terms of differing extents of change on a single conformational trajectory. New measurements of image phases obtained by cryo-electron microscopy of the D96G/F171C/F219L triple mutant provide independent validation for the description of the large protein conformational change derived at 3.2 A resolution by electron crystallography of 2D crystals, but do not support atomic models for light-driven conformational changes derived using X-ray crystallography of 3D crystals. Our findings suggest that independent determination of phase information from 2D crystals can be an important tool for testing the accuracy of atomic models for membrane protein conformational changes.

  19. Spectra of conformal sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Tlapak, Vaclav

    2015-04-15

    In this thesis the spectra of conformal sigma models defined on (generalized) symmetric spaces are analysed. The spaces where sigma models are conformal without the addition of a Wess-Zumino term are supermanifolds, in other words spaces that include fermionic directions. After a brief review of the general construction of vertex operators and the background field expansion, we compute the diagonal terms of the one-loop anomalous dimensions of sigma models on semi-symmetric spaces. We find that the results are formally identical to the symmetric case. However, unlike for sigma models on symmetric spaces, off diagonal terms that lead to operator mixing are also present. These are not computed here. We then present a detailed analysis of the one-loop spectrum of the supersphere S{sup 3} {sup vertical} {sup stroke} {sup 2} sigma model as one of the simplest examples. The analysis illustrates the power and simplicity of the construction. We use this data to revisit a duality with the OSP(4 vertical stroke 2) Gross-Neveu model that was proposed by Candu and Saleur. With the help of a recent all-loop result for the anomalous dimension of (1)/(2)BPS operators of Gross-Neveu models, we are able to recover the entire zero-mode spectrum of the supersphere model. We also argue that the sigma model constraints and its equations of motion are implemented correctly in the Gross-Neveu model, including the one-loop data. The duality is further supported by a new all-loop result for the anomalous dimension of the ground states of the sigma model. However, higher-gradient operators cannot be completely recovered. It is possible that this discrepancy is related to a known instability of the sigma model. The instability of sigma models is due to symmetry preserving high-gradient operators that become relevant at arbitrarily small values of the coupling. This feature has been observed long ago in one-loop calculations of the O(N)-vector model and soon been realized to be a generic

  20. Conformational study of (8alpha,8'beta)-bis(substituted phenyl)-lignano-9,9'-lactones by means of combined computational, database mining, NMR, and chemometric approaches.

    Science.gov (United States)

    Kiralj, Rudolf; Ferreira, Marcia M C; Donate, Paulo M; da Silva, Rosangela; Albuquerque, Sergio

    2007-07-19

    Beta-(3,4-Methylenedioxybenzyl)-gamma-butyrolactone (MDBL) and (-)-hinokinin (HK) were obtained by partial synthesis and characterized by 1H NMR and computational methods (conformational analysis, molecular modeling, structural data mining and chemometrics). Three conformers were detected for MDBL and nine were found for HK. The energy differences are around 1 and 2 kcal mol(-1) and rotation barriers are less than 3 and 5 kcal mol(-1) for MDBL and HK conformers, respectively. The geometries of these conformers, obtained from semiempirical PM3 and density functional theory (DFT) B3LYP 6-31G** calculations agree satisfactorily with 1H NMR data (vicinal proton-proton coupling constants) and structures retrieved from the Cambridge Structural Database (torsion angles). DFT combined with some variants of the Haasnoot-de Leeuuw-Altona equations gives the best predictions for the coupling constants. The molecular conformation of MDBL, of HK, and of related systems depends not only on intramolecular interactions but also on crystal packing forces and solvent-solute interactions, in particular hydrogen bonds and polar interactions. Hydration favors more stable HK conformers, which can be important for their behavior in chemical and biological systems.

  1. Multiresolution Computation of Conformal Structures of Surfaces

    Directory of Open Access Journals (Sweden)

    Xianfeng Gu

    2003-10-01

    Full Text Available An efficient multiresolution method to compute global conformal structures of nonzero genus triangle meshes is introduced. The homology, cohomology groups of meshes are computed explicitly, then a basis of harmonic one forms and a basis of holomorphic one forms are constructed. A progressive mesh is generated to represent the original surface at different resolutions. The conformal structure is computed for the coarse level first, then used as the estimation for that of the finer level, by using conjugate gradient method it can be refined to the conformal structure of the finer level.

  2. Conformal field theory with gauge symmetry

    CERN Document Server

    Ueno, Kenji

    2008-01-01

    This book presents a systematic approach to conformal field theory with gauge symmetry from the point of view of complex algebraic geometry. After presenting the basic facts of the theory of compact Riemann surfaces and the representation theory of affine Lie algebras in Chapters 1 and 2, conformal blocks for pointed Riemann surfaces with coordinates are constructed in Chapter 3. In Chapter 4 the sheaf of conformal blocks associated to a family of pointed Riemann surfaces with coordinates is constructed, and in Chapter 5 it is shown that this sheaf supports a projective flat connection-one of

  3. Conformable Fractional Nikiforov—Uvarov Method

    Science.gov (United States)

    Karayer, H.; Demirhan, D.; Büyükkılıç, F.

    2016-07-01

    We introduce conformable fractional Nikiforov—Uvarov (NU) method by means of conformable fractional derivative which is the most natural definition in non-integer calculus. Since, NU method gives exact eigenstate solutions of Schrödinger equation (SE) for certain potentials in quantum mechanics, this method is carried into the domain of fractional calculus to obtain the solutions of fractional SE. In order to demonstrate the applicability of the conformable fractional NU method, we solve fractional SE for harmonic oscillator potential, Woods—Saxon potential, and Hulthen potential.

  4. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  5. The decomposition of global conformal invariants

    CERN Document Server

    Alexakis, Spyros

    2012-01-01

    This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Dese

  6. Conformal invariance in quantum field theory

    CERN Document Server

    Todorov, Ivan T; Petkova, Valentina B

    1978-01-01

    The present volume is an extended and up-to-date version of two sets of lectures by the first author and it reviews more recent work. The notes aim to present a self-contained exposition of a constructive approach to conformal invariant quantum field theory. Other parts in application of the conformal group to quantum physics are only briefly mentioned. The relevant mathematical material (harmonic analysis on Euclidean conformal groups) is briefly summarized. A new exposition of physical applications is given, which includes an explicit construction of the vacuum operator product expansion for the free zero mass fields.

  7. Static validation of licence conformance policies

    DEFF Research Database (Denmark)

    Hansen, Rene Rydhof; Nielson, Flemming; Nielson, Hanne Riis

    2008-01-01

    Policy conformance is a security property gaining importance due to commercial interest like Digital Rights Management. It is well known that static analysis can be used to validate a number of more classical security policies, such as discretionary and mandatory access control policies, as well...... as communication protocols using symmetric and asymmetric cryptography. In this work we show how to develop a Flow Logic for validating the conformance of client software with respect to a licence conformance policy. Our approach is sufficiently flexible that it extends to fully open systems that can admit new...

  8. Scalar scattering via conformal higher spin exchange

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Euihun [School of Physics and Astronomy,Seoul National University, Seoul 151-747 (Korea, Republic of); Gauge, Gravity & Strings, Center for Theoretical Physics of the Universe,Institute for Basic Sciences, Daejeon 34047 (Korea, Republic of); Nakach, Simon; Tseytlin, Arkady A. [Theoretical physics group, Blackett Laboratory,Imperial College London, SW7 2AZ (United Kingdom)

    2016-02-18

    Theories containing infinite number of higher spin fields require a particular definition of summation over spins consistent with their underlying symmetries. We consider a model of massless scalars interacting (via bilinear conserved currents) with conformal higher spin fields in flat space. We compute the tree-level four-scalar scattering amplitude using a natural prescription for summation over an infinite set of conformal higher spin exchanges and find that it vanishes. Independently, we show that the vanishing of the scalar scattering amplitude is, in fact, implied by the global conformal higher spin symmetry of this model. We also discuss one-loop corrections to the four-scalar scattering amplitude.

  9. Protons in near earth orbit

    CERN Document Server

    Alcaraz, J; Alpat, B; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Béné, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Cavalletti, R; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Chiarini, A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Cotta-Ramusino, A; Crespo, P; Cristinziani, M; Da Cunha, J P; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; D'Antone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, Pierre; Favier, Jean; Feng, C C; Fiandrini, E; Finelli, F; Fisher, P H; Flaminio, R; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu Hong Tao; Lolli, M; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Massera, F; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mezzanotte, F; Mezzenga, R; Mihul, A; Molinari, G; Mourão, A M; Mujunen, A; Palmonari, F; Pancaldi, G; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pilastrini, R; Pimenta, M; Plyaskin, V; Pozhidaev, V; Postema, H; Postolache, V; Prati, E; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Recupero, S; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Santos, D; Sartorelli, G; Schultz von Dratzig, A; Schwering, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torromeo, G; Torsti, J; Trümper, J E; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Van den Hirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Von Gunten, H P; Waldmeier-Wicki, S; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan Lu Guang; Yang, C G; Yang, M; Ye Shu Wei; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A

    2000-01-01

    The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measuredby the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 atan altitude of 380 km. Above the geomagnetic cutoff the observed spectrum isparameterized by a power law. Below the geomagnetic cutoff a substantial secondspectrum was observed concentrated at equatorial latitudes with a flux ~ 70m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicatedtrajectory and originate from a restricted geographic region.

  10. Proton aurora and substorm intensifications

    Energy Technology Data Exchange (ETDEWEB)

    Samson, J.C.; Xu, B.; Lyons, L.R.; Newell, P.T.; Creutzberg, F.

    1993-10-01

    Ground based measurements from the CANOPUS array of meridian scanning photometers and precipitating ion and electron data from the DMSP F9 satellite show that the electron arc which brightens to initiate substorm intensifications is formed within a region of intense proton precipitation that is well equatorward (approximately four to six degrees) of the nightside open-closed field line boundary. The precipitating protons are from a population that is energized via earthward convection from the magnetotail into the dipolar region of the magnetosphere and may play an important role in the formation of the electron arcs leading to substorm intensifications on dipole-like field lines.

  11. Proton aurora and substorm intensifications

    Energy Technology Data Exchange (ETDEWEB)

    Samson, J.C.; Lyons, L.R.; Newell, P.T.; Creutzberg, F.; Xu, B. (Alberta Univ., Edmonton (Canada) Aerospace Corp., Space and Environmental Technology Center, Los Angeles, CA (United States) Johns Hopkins Univ., Laurel, MD (United States) National Research Council of Canada, Herzberg Inst. of Astrophysics, Ottawa (Canada) Canadian Network for Space Research, Edmonton (Canada))

    1992-11-01

    Ground based measurements from the CANOPUS array of meridian scanning photometers and precipitating ion and electron data from the DMSP F9 satellite show that the electron arc which brightens to initiate substorms intensifications is formed within a region of intense proton precipitation that is well equatorward (about 4-6 deg) of the nightside open-closed field line boundary. The precipitating protons are from a population that is energized via Earthward convection from the magnetotail into the dipolar region of the magnetosphere and may play an important role in the formation of the electron arcs leading to substorm intensifications on dipolelike field lines. 12 refs.

  12. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  13. Proton-antiproton collider physics

    CERN Document Server

    Altarelli, Guido

    1989-01-01

    This volume reviews the physics studied at the CERN proton-antiproton collider during its first phase of operation, from the first physics run in 1981 to the last one at the end of 1985. The volume consists of a series of review articles written by physicists who are actively involved with the collider research program. The first article describes the proton-antiproton collider facility itself, including the antiproton source and its principle of operation based on stochastic cooling. The subsequent six articles deal with the various physics subjects studied at the collider. Each article descr

  14. BcL-xL conformational changes upon fragment binding revealed by NMR.

    Directory of Open Access Journals (Sweden)

    Clémentine Aguirre

    Full Text Available Protein-protein interactions represent difficult but increasingly important targets for the design of therapeutic compounds able to interfere with biological processes. Recently, fragment-based strategies have been proposed as attractive approaches for the elaboration of protein-protein surface inhibitors from fragment-like molecules. One major challenge in targeting protein-protein interactions is related to the structural adaptation of the protein surface upon molecular recognition. Methods capable of identifying subtle conformational changes of proteins upon fragment binding are therefore required at the early steps of the drug design process. In this report we present a fast NMR method able to probe subtle conformational changes upon fragment binding. The approach relies on the comparison of experimental fragment-induced Chemical Shift Perturbation (CSP of amine protons to CSP simulated for a set of docked fragment poses, considering the ring-current effect from fragment binding. We illustrate the method by the retrospective analysis of the complex between the anti-apoptotic Bcl-xL protein and the fragment 4'-fluoro-[1,1'-biphenyl]-4-carboxylic acid that was previously shown to bind one of the Bcl-xL hot spots. The CSP-based approach shows that the protein undergoes a subtle conformational rearrangement upon interaction, for residues located in helices [Formula: see text]2, [Formula: see text]3 and the very beginning of [Formula: see text]5. Our observations are corroborated by residual dipolar coupling measurements performed on the free and fragment-bound forms of the Bcl-xL protein. These NMR-based results are in total agreement with previous molecular dynamic calculations that evidenced a high flexibility of Bcl-xL around the binding site. Here we show that CSP of protein amine protons are useful and reliable structural probes. Therefore, we propose to use CSP simulation to assess protein conformational changes upon ligand binding in the

  15. Search for Sphalerons in Proton-Proton Collisions

    CERN Document Server

    Ellis, John

    2016-04-14

    In a recent paper, Tye and Wong (TW) have argued that sphaleron-induced transitions in high-energy proton-proton collisions should be enhanced compared to previous calculations, based on a construction of a Bloch wave function in the periodic sphaleron potential and the corresponding pass band structure. Here we convolute the calculations of TW with parton distribution functions and simulations of final states to explore the signatures of sphaleron transitions at the LHC and possible future colliders. We calculate the increase of sphaleron transition rates in proton-proton collisions at centre-of-mass energies of 13/14/33/100 TeV for different sphaleron barrier heights, while recognising that the rates have large overall uncertainties. We use a simulation to show that LHC searches for microscopic black holes should have good efficiency for detecting sphaleron-induced final states, and discuss their experimental signatures and observability in Run 2 of the LHC and beyond. We recast the early ATLAS Run-2 search...

  16. Proton beam therapy how protons are revolutionizing cancer treatment

    CERN Document Server

    Yajnik, Santosh

    2013-01-01

    Proton beam therapy is an emerging technology with promise of revolutionizing the treatment of cancer. While nearly half of all patients diagnosed with cancer in the US receive radiation therapy, the majority is delivered via electron accelerators, where photons are used to irradiate cancerous tissue. Because of the physical properties of photon beams, photons may deposit energy along their entire path length through the body. On the other hand, a proton beam directed at a tumor travels in a straight trajectory towards its target, gives off most of its energy at a defined depth called the Bragg peak, and then stops. While photons often deposit more energy within the healthy tissues of the body than within the cancer itself, protons can deposit most of their cancer-killing energy within the area of the tumor. As a result, in the properly selected patients, proton beam therapy has the ability to improve cure rates by increasing the dose delivered to the tumor and simultaneously reduce side-effects by decreasing...

  17. Quarkonium production in high energy proton-proton and proton-nucleus collisions

    CERN Document Server

    Conesa del Valle, Z; Fleuret, F; Ferreiro, E G; Kartvelishvili, V; Kopeliovich, B Z; Lansberg, J P; Lourenço, C; Martinez, G; Papadimitriou, V; Satz, H; Scomparin, E; Ullrich, T; Teryaev, O; Vogt, R; Wang, J X

    2011-01-01

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarisation studies. Thereafter, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in a broader perspective, we emphasize the need for new observables to investigate quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  18. Quarkonium production in high energy proton-proton and proton-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Conesa del Valle, Z. [Institut Pluridisciplinaire Hubert Curien (IPHC), Universite de Strasbourg, CNRS-IN2P3, Strasbourg (France); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Corcella, G. [INFN, Laboratori Nazionali di Frascati, Via E.Fermi 40, I-00044, Frascati (Italy); Fleuret, F. [LLR, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Ferreiro, E.G. [Departamento de Fisica de Particulas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Kartvelishvili, V. [Lancaster University, Lancaster LA1 4YB,United Kingdom (United Kingdom); Kopeliovich, B. [Departamento de Fisica Universidad Tecnica Federico Santa Maria, Instituto de Estudios Avanzados en Ciencias e Ingenieria and Centro, Cientifico-Tecnologico de Valparaiso, Casilla 110-V, Valparaiso (Chile); Lansberg, J.P. [IPNO, Universite Paris-Sud 11, CNRS/IN2P3, F-91406 Orsay (France); Lourenco, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Martinez, G. [SUBATECH, Ecole des Mines de Nantes, Universite de Nantes, CNRS-IN2P3, Nantes (France); Papadimitriou, V. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois, 60510, U.S.A (United States); Satz, H. [Fakultaet fuer Physik, Universitaet Bielefeld (Germany); Scomparin, E. [INFN Torino, Via P. Giuria 1, Torino, I-10125 (Italy); Ullrich, T. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Teryaev, O. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna 141980 (Russian Federation); Vogt, R. [Physics Divsion, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Physics Department, University of California at Davis, Davis, CA 95616 (United States); Wang, J.X. [Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918(4), Beijing, 100049 (China)

    2011-05-15

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarisation studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  19. ASACUSA Anti-protonic Helium_Final

    CERN Multimedia

    CERN Audiovisual Production Service; CERN AD; Paola Catapano; Julien Ordan, Arzur Catel; Paola Catapano; ASACUSA COLLABORATION

    2016-01-01

    Latest precision measurement of the mass of the proton and the anti proton though the production of antiprotonic helium by the ASACUSA experiment at CERN's antimatter factory, with a beam from the Antiproton Decelerator

  20. Determining the mechanism of cusp proton aurora.

    Science.gov (United States)

    Xiao, Fuliang; Zong, Qiugang; Su, Zhenpeng; Yang, Chang; He, Zhaoguo; Wang, Yongfu; Gao, Zhonglei

    2013-01-01

    Earth's cusp proton aurora occurs near the prenoon and is primarily produced by the precipitation of solar energetic (2-10 keV) protons. Cusp auroral precipitation provides a direct source of energy for the high-latitude dayside upper atmosphere, contributing to chemical composition change and global climate variability. Previous studies have indicated that magnetic reconnection allows solar energetic protons to cross the magnetopause and enter the cusp region, producing cusp auroral precipitation. However, energetic protons are easily trapped in the cusp region due to a minimum magnetic field existing there. Hence, the mechanism of cusp proton aurora has remained a significant challenge for tens of years. Based on the satellite data and calculations of diffusion equation, we demonstrate that EMIC waves can yield the trapped proton scattering that causes cusp proton aurora. This moves forward a step toward identifying the generation mechanism of cusp proton aurora.

  1. Polarized protons and parity violating asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Trueman, T.L.

    1984-01-01

    The potential for utilizing parity violating effects, associated with polarized protons, to study the standard model, proton structure, and new physics at the SPS Collider is summarized. 24 references.

  2. Crystal structure of acetanilide at 15 and 295 K by neutron diffraction. Lack of evidence for proton transfer along the N-H...O hydrogen bond

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S.W.; Eckert, J. [Los Alamos National Lab., NM (United States); Barthes, M. [Universite Montpellier II (France); McMullan, R.K. [Brookhaven National Lab., Upton, NY (United States); Muller, M. [Universite Lille I, Villeneuve d`Ascq (France)

    1995-11-02

    The crystal structure of acetanilide C{sub 8}H{sub 9}NO, M{sub r} = 135.17, orthorhombic, space group Pbca, Z=8, has been determined from neutron diffraction data at 15 and 295 K. The crystal data obtained are presented. This new investigation of the structure of acetanilide has been undertaken in order to assess a recent suggestion that confirmational substates in the amide proton position may be responsible for the vibrational anomalies. We found no evidence for multiple conformations or transfer along the N-H...O hydrogen bond of the amide proton at either temperature. However the intramolecular O...H6 distance from O to the nearest phenyl ring proton is unusually short and the amide proton has relatively close contacts with one of the phenyl and one of the methyl protons, which may well affect the vibrational parameters of the respective molecular groups. 44 refs., 6 figs., 5 tabs.

  3. Effective pumping proton collection facilitated by a copper site (CuB) of bovine heart cytochrome c oxidase, revealed by a newly developed time-resolved infrared system.

    Science.gov (United States)

    Kubo, Minoru; Nakashima, Satoru; Yamaguchi, Satoru; Ogura, Takashi; Mochizuki, Masao; Kang, Jiyoung; Tateno, Masaru; Shinzawa-Itoh, Kyoko; Kato, Koji; Yoshikawa, Shinya

    2013-10-18

    X-ray structural and mutational analyses have shown that bovine heart cytochrome c oxidase (CcO) pumps protons electrostatically through a hydrogen bond network using net positive charges created upon oxidation of a heme iron (located near the hydrogen bond network) for O2 reduction. Pumping protons are transferred by mobile water molecules from the negative side of the mitochondrial inner membrane through a water channel into the hydrogen bond network. For blockage of spontaneous proton back-leak, the water channel is closed upon O2 binding to the second heme (heme a3) after complete collection of the pumping protons in the hydrogen bond network. For elucidation of the structural bases for the mechanism of the proton collection and timely closure of the water channel, conformational dynamics after photolysis of CO (an O2 analog)-bound CcO was examined using a newly developed time-resolved infrared system feasible for accurate detection of a single C=O stretch band of α-helices of CcO in H2O medium. The present results indicate that migration of CO from heme a3 to CuB in the O2 reduction site induces an intermediate state in which a bulge conformation at Ser-382 in a transmembrane helix is eliminated to open the water channel. The structural changes suggest that, using a conformational relay system, including CuB, O2, heme a3, and two helix turns extending to Ser-382, CuB induces the conformational changes of the water channel that stimulate the proton collection, and senses complete proton loading into the hydrogen bond network to trigger the timely channel closure by O2 transfer from CuB to heme a3.

  4. Effective Pumping Proton Collection Facilitated by a Copper Site (CuB) of Bovine Heart Cytochrome c Oxidase, Revealed by a Newly Developed Time-resolved Infrared System*

    Science.gov (United States)

    Kubo, Minoru; Nakashima, Satoru; Yamaguchi, Satoru; Ogura, Takashi; Mochizuki, Masao; Kang, Jiyoung; Tateno, Masaru; Shinzawa-Itoh, Kyoko; Kato, Koji; Yoshikawa, Shinya

    2013-01-01

    X-ray structural and mutational analyses have shown that bovine heart cytochrome c oxidase (CcO) pumps protons electrostatically through a hydrogen bond network using net positive charges created upon oxidation of a heme iron (located near the hydrogen bond network) for O2 reduction. Pumping protons are transferred by mobile water molecules from the negative side of the mitochondrial inner membrane through a water channel into the hydrogen bond network. For blockage of spontaneous proton back-leak, the water channel is closed upon O2 binding to the second heme (heme a3) after complete collection of the pumping protons in the hydrogen bond network. For elucidation of the structural bases for the mechanism of the proton collection and timely closure of the water channel, conformational dynamics after photolysis of CO (an O2 analog)-bound CcO was examined using a newly developed time-resolved infrared system feasible for accurate detection of a single C=O stretch band of α-helices of CcO in H2O medium. The present results indicate that migration of CO from heme a3 to CuB in the O2 reduction site induces an intermediate state in which a bulge conformation at Ser-382 in a transmembrane helix is eliminated to open the water channel. The structural changes suggest that, using a conformational relay system, including CuB, O2, heme a3, and two helix turns extending to Ser-382, CuB induces the conformational changes of the water channel that stimulate the proton collection, and senses complete proton loading into the hydrogen bond network to trigger the timely channel closure by O2 transfer from CuB to heme a3. PMID:23996000

  5. Aluminized fiberglass insulation conforms to curved surfaces

    Science.gov (United States)

    1966-01-01

    Layers of fiber glass with outer reflective films of vacuum-deposited aluminum or other reflective metal, provide thermal insulation which conforms to curved surfaces. This insulation has good potential for cryogenic systems.

  6. Timed Safety Automata and Logic Conformance

    National Research Council Canada - National Science Library

    Young, Frank

    1999-01-01

    Timed Logic Conformance (TLC) is used to verify the behavioral and timing properties of detailed digital circuits against abstract circuit specifications when both are modeled as Timed Safety Automata (TSA...

  7. Conformal Carroll groups and BMS symmetry

    OpenAIRE

    Duval, C.; Gibbons, G W; Horvathy, P. A.

    2014-01-01

    The Bondi-Metzner-Sachs (BMS) group is shown to be the conformal extension of Levy-Leblond's "Carroll" group. Further extension to the Newman-Unti (NU) group is also discussed in the Carroll framework.

  8. General Information for Transportation and Conformity

    Science.gov (United States)

    Transportation conformity is required by the Clean Air Act section 176(c) (42 U.S.C. 7506(c)) to ensure that federal funding and approval are given to highway and transit projects that are consistent with SIP.

  9. A probabilistic model of RNA conformational space

    DEFF Research Database (Denmark)

    Frellsen, Jes; Moltke, Ida; Thiim, Martin

    2009-01-01

    The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA 3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an accurate energy function and a conformational sampling...... procedure. Both are only partly solved problems. Here, we focus on the problem of conformational sampling. The current state of the art solution is based on fragment assembly methods, which construct plausible conformations by stringing together short fragments obtained from experimental structures. However...... efficient sampling of RNA conformations in continuous space, and with associated probabilities. We show that the model captures several key features of RNA structure, such as its rotameric nature and the distribution of the helix lengths. Furthermore, the model readily generates native-like 3-D...

  10. Social conformity despite individual preferences for distinctiveness.

    Science.gov (United States)

    Smaldino, Paul E; Epstein, Joshua M

    2015-03-01

    We demonstrate that individual behaviours directed at the attainment of distinctiveness can in fact produce complete social conformity. We thus offer an unexpected generative mechanism for this central social phenomenon. Specifically, we establish that agents who have fixed needs to be distinct and adapt their positions to achieve distinctiveness goals, can nevertheless self-organize to a limiting state of absolute conformity. This seemingly paradoxical result is deduced formally from a small number of natural assumptions and is then explored at length computationally. Interesting departures from this conformity equilibrium are also possible, including divergence in positions. The effect of extremist minorities on these dynamics is discussed. A simple extension is then introduced, which allows the model to generate and maintain social diversity, including multimodal distinctiveness distributions. The paper contributes formal definitions, analytical deductions and counterintuitive findings to the literature on individual distinctiveness and social conformity.

  11. Reciprocity Outperforms Conformity to Promote Cooperation.

    Science.gov (United States)

    Romano, Angelo; Balliet, Daniel

    2017-10-01

    Evolutionary psychologists have proposed two processes that could give rise to the pervasiveness of human cooperation observed among individuals who are not genetically related: reciprocity and conformity. We tested whether reciprocity outperformed conformity in promoting cooperation, especially when these psychological processes would promote a different cooperative or noncooperative response. To do so, across three studies, we observed participants' cooperation with a partner after learning (a) that their partner had behaved cooperatively (or not) on several previous trials and (b) that their group members had behaved cooperatively (or not) on several previous trials with that same partner. Although we found that people both reciprocate and conform, reciprocity has a stronger influence on cooperation. Moreover, we found that conformity can be partly explained by a concern about one's reputation-a finding that supports a reciprocity framework.

  12. Film dosimetry in conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Danciu, C.; Proimos, B.S. [Patras Univ. (Greece). Dept. of Medical Physics

    1995-12-01

    Dosimetry, through a film sandwiched in a transverse cross-section of a solid phantom, is a method of choice in Conformal Radiotherapy because: (a) the blackness (density) of the film at each point offers a measure of the total dose received at that point, and (b) the film is easily calibrated by exposing a film strip in the same cross-section, through a stationary field. The film must therefore have the following properties: (a) it must be slow, in order not to be overexposed, even at a therapeutic dose of 200 cGy, and (b) the response of the film (density versus dose curve) must be independent of the photon energy spectrum. A few slow films were compared. It was found that the Kodak X-Omat V for therapy verification was the best choice. To investigate whether the film response was independent of the photon energy, response curves for six depths, starting from the depth of maximum dose to the depth of 25 cm, in solid phantom were derived. The vertical beam was perpendicular to the anterior surface of the phantom, which was at the distance of 100 cm from the source and the field was 15x15 cm at that distance. This procedure was repeated for photon beams emitted by a Cobalt-60 unit, two 6 MV and 15 MV Linear Accelerators, as well as a 45 MV Betatron. For each of those four different beams the film response was the same for all six depths. The results, as shown in the diagrams, are very satisfactory. The response curve under a geometry similar to that actually applied, when the film is irradiated in a transverse cross-section of the phantom, was derived. The horizontal beam was almost parallel (angle of 85) to the plane of the film. The same was repeated with the central ray parallel to the film (angle 90) and at a distance of 1.5 cm from the horizontal film. The field size was again 15x15 at the lateral entrance surface of the beam. The response curves remained the same, as when the beam was perpendicular to the films.

  13. Low-Energy Proton Testing Methodology

    Science.gov (United States)

    Pellish, Jonathan A.; Marshall, Paul W.; Heidel, David F.; Schwank, James R.; Shaneyfelt, Marty R.; Xapsos, M.A.; Ladbury, Raymond L.; LaBel, Kenneth A.; Berg, Melanie; Kim, Hak S.; hide

    2009-01-01

    Use of low-energy protons and high-energy light ions is becoming necessary to investigate current-generation SEU thresholds. Systematic errors can dominate measurements made with low-energy protons. Range and energy straggling contribute to systematic error. Low-energy proton testing is not a step-and-repeat process. Low-energy protons and high-energy light ions can be used to measure SEU cross section of single sensitive features; important for simulation.

  14. Spectroscopic properties of neuroleptics: IR and Raman spectra of Risperidone (Risperdal) and of its mono- and di-protonated forms

    Science.gov (United States)

    Alparone, Andrea

    2011-10-01

    Structures and IR and Raman spectra of Risperidone in its neutral, mono- and di-protonated forms were calculated in gas phase by DFT-B3LYP/6-31G* level. Mono-protonation occurs at the nitrogen atom of the piperidine ring, while nitrogen atom of the pyrimidine ring is the preferred site for the second protonation. The lowest-energy structure of the mono-protonated Risperidone is characterized by formation of a strong seven-membered O(pyrimidine ring)⋯ +H-N(piperidine ring) intramolecular hydrogen-bonded cycle. In the high-energy spectral region (3500-2500 cm -1), the bands of the N-H + stretches and the changes in wavenumbers and IR intensities of the C-H stretches near to the piperidine nitrogen atom (Bohlmann effect) are potentially useful to discriminate conformations and protonation states. Di-protonated structures can be identified by the presence of an isolated absorption peak located in the low-energy IR region (660-690 cm -1), attributed to the out-of-plane N-H +(pyrimidine ring) bending deformation. The most intense Raman band of neutral Risperidone placed at ca. 1500 cm -1, assigned to C dbnd C(pyrimidine ring) stretch + C dbnd N(pyrimidine ring) stretch, can be a useful vibrational marker to distinguish the neutral from the protonated forms.

  15. Dilepton and double-photon production in proton-proton scattering at 190 MeV

    NARCIS (Netherlands)

    Caplar, R.; Bacelar, J.C.S; Castelijns, R.J.J.; Ermisch, K.; Gasparic, I.; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Kis, M.; Löhner, H.; Mahjour Shafiei, M.

    2004-01-01

    The first high-statistics measurement of dilepton and double-photon yields in proton-proton scattering below the pion threshold has been performed. The data obtained allow a detailed study of off-shell effects in the proton-proton interaction.

  16. TOTEM: The experiment to measure the total proton-proton cross section at LHC

    OpenAIRE

    Lami, Stefano

    2006-01-01

    The current large uncertainty on the extrapolation of the proton-proton total cross section at the LHC energy will be resolved by the precise measurement by the TOTEM experiment. Its accurate studies on the basic properties of proton-proton collisions at the maximum accelerator energy could provide a significant contribution to the understanding of cosmic ray physics.

  17. A novel conformational switch for electron transfer

    Indian Academy of Sciences (India)

    Administrator

    The soluble fraction of the sub-unit II cloned and over-expressed in E. coli has been studied as a model of the electron entry site (CuA) of cytochrome oxidase. The CuA site in the sub-unit II was found to exist in a pH induced conformational equilibrium with a high pH conformer being preferred at elevated temperatures.

  18. Does gender diversity promote non-conformity?

    OpenAIRE

    Amini, Makan; Ekström, Mathias; Ellingsen, Tore; Johannesson, Magnus; Strömsten, Fredrik

    2015-01-01

    Failure to express minority views may distort the behavior of company boards, committees, juries, and other decision-making bodies. Devising a new experimental procedure to measure such conformity in a judgment task, we compare the degree of conformity in groups with varying gender composition. Overall, our experiments offer little evidence that gender composition affects expression of minority views. A robust finding is that a subject's lack of ability predicts both a true propensity to acce...

  19. The research of conformal optical design

    Science.gov (United States)

    Li, Lin; Li, Yan; Huang, Yi-fan; Du, Bao-lin

    2009-07-01

    Conformal optical domes are characterized as having external more elongated optical surfaces that are optimized to minimize drag, increased missile velocity and extended operational range. The outer surface of the conformal domes typically deviate greatly from spherical surface descriptions, so the inherent asymmetry of conformal surfaces leads to variations in the aberration content presented to the optical sensor as it is gimbaled across the field of regard, which degrades the sensor's ability to properly image targets of interest and then undermine the overall system performance. Consequently, the aerodynamic advantages of conformal domes cannot be realized in practical systems unless the dynamic aberration correction techniques are developed to restore adequate optical imaging capabilities. Up to now, many optical correction solutions have been researched in conformal optical design, including static aberrations corrections and dynamic aberrations corrections. There are three parts in this paper. Firstly, the combination of static and dynamic aberration correction is introduced. A system for correcting optical aberration created by a conformal dome has an outer surface and an inner surface. The optimization of the inner surface is regard as the static aberration correction; moreover, a deformable mirror is placed at the position of the secondary mirror in the two-mirror all reflective imaging system, which is the dynamic aberration correction. Secondly, the using of appropriate surface types is very important in conformal dome design. Better performing optical systems can result from surface types with adequate degrees of freedom to describe the proper corrector shape. Two surface types and the methods of using them are described, including Zernike polynomial surfaces used in correct elements and user-defined surfaces used in deformable mirror (DM). Finally, the Adaptive optics (AO) correction is presented. In order to correct the dynamical residual aberration

  20. Effective Conformal Descriptions of Black Hole Entropy

    Directory of Open Access Journals (Sweden)

    Steven Carlip

    2011-07-01

    Full Text Available It is no longer considered surprising that black holes have temperatures and entropies. What remains surprising, though, is the universality of these thermodynamic properties: their exceptionally simple and general form, and the fact that they can be derived from many very different descriptions of the underlying microscopic degrees of freedom. I review the proposal that this universality arises from an approximate conformal symmetry, which permits an effective “conformal dual” description that is largely independent of the microscopic details.

  1. Divergence-type theory of conformal fields

    OpenAIRE

    Peralta-Ramos, J.; Calzetta, E.

    2009-01-01

    We present a nonlinear hydrodynamical description of a conformal plasma within the framework of divergence-type theories (DTTs), which are not based on a gradient expansion. We compare the equations of the DTT and the second-order theory (based on conformal invariants), for the case of Bjorken ow. The approach to ideal hydrodynamics is faster in the DTT, indicating that our results can be useful in the study of early-time dynamics in relativistic heavy-ion collisions.

  2. Assignments of /sup 1/H nuclear magnetic resonances of the cystyl, asparaginyl, and aromatic residues of arginine vasopressin in D/sub 2/O. A comparison with lysine vasopressin and oxytocin in terms of solution conformation

    Energy Technology Data Exchange (ETDEWEB)

    Wyssbrod, H.R.; Fischman, A.J.; Live, D.H.; Hruby, V.J.; Agarwal, N.S.; Upson, D.A.

    1979-07-18

    The resonances of the C/sup ..cap alpha../ and C/sup ..beta../ protons of the cystyl, asparaginyl, and aromatic residues of (8-arginine)vasopressin (AVP) in D/sub 2/O at pD 3.8 and 20/sup 0/C were assigned in a rigorous manner by the use of isotopic isomers of AVP that contain specific replacements of protons by deuterons and by comparison of /sup 1/H NMR characteristics of AVP to those of (8-lysine)vasopressin (LVP) and oxytocin (OT). Although there is extensive overlap of resonances of C/sup ..beta../ protons even at 360 MHz, all of the chemical shifts of these protons and most of the couplings between them and their vicinal C/sup ..cap alpha../ protons could be determined, at least to a first approximation. It was concluded that the cyclic moieties (residues 1-6) of AVP, LVP, and OT possess essentially the same overall backbone conformation, and that the side-chain conformation - or rotamer populations - about the C/sup ..cap alpha../-C/sup ..beta../ bonds of the cystyl residue (positions 1 and 6), the tyrosyl residue (position 2), and the asparaginyl residue (position 5) are similar. This study indicates that selective replacements of C/sup ..beta../ protons by deuterons are necessary to improve the accuracy of coupling constants extracted from 360-MHz spectra of a AVP for use in conformational analysis.

  3. Playing with Protons CREATIONS Demonstrator

    CERN Multimedia

    Alexopoulos, Angelos

    2017-01-01

    This document describes Playing with Protons, a CMS education initiative that seeks to enhance teachers’ pedagogical practice with creative, hands-on methodologies through which 10-12 year old students can, in turn, get engaged effectively with science, technology and innovation.

  4. Proton irradiation for hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Yasushi; Chiba, Shunya [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Tanaka, Naomi

    1999-02-01

    A curative effect of high dose proton irradiation for hepatoma was investigated. In cases of single nodular type HCC, radiation field was limited to tumor, and in cases of multi nodular type HCC, irradiation was also fractionated. An average dose of radiation was 4 Gy/time, average times were 16, and an average total dose was 72 Gy. Tumor size reduction rate at 6 months after proton irradiation (123 cases) was CR (17.9%), PR (52.0%), NC (29.3%) and PD (0.8%). And the reduction rate of tumor size in monotherapy cases was 100% (after 3 weeks), 96% (after 1 year) and 88% (after 2 years). The local control rate was 99.1% (after 1 year) and 91.4% (after 3-5 years). AFP value significantly decreased from 571.0{+-}1266.6 ng/ml before radiation to 145.4{+-}346.3 ng/ml after radiation (p<0.0005). The recurrence after radiation occurred more at outside of radiation field, significantly. Indication basis of proton irradiation was showed in this article. Because selective radiation is possible, the proton irradiation should be optimum therapy in specific carcinomas of deep organ. (K.H.)

  5. Emerging technologies in proton therapy

    NARCIS (Netherlands)

    Schippers, Jacobus M.; Lomax, Antony J.

    An increasing number of proton therapy facilities are being planned and built at hospital based centers. Most facilities are employing traditional dose delivery methods. A second generation of dose application techniques, based on pencil beam scanning, is slowly being introduced into the

  6. Proton pump inhibitors and gastroenteritis

    NARCIS (Netherlands)

    R.J. Hassing (Robert); A. Verbon (Annelies); H. de Visser (Herman); A. Hofman (Albert); B.H.Ch. Stricker (Bruno)

    2016-01-01

    textabstractAn association between proton pump inhibitor (PPI) therapy and bacterial gastroenteritis has been suggested as well as contradicted. The aim of this study was to examine the association between the use of PPIs and occurrence of bacterial gastroenteritis in the prospective Rotterdam

  7. High current polarized proton sources

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.G.

    1988-01-01

    Polarized proton sources are now being used more frequently on linacs. In pulsed operation up to 10 mA of /rvec H//sup +/ and 0.4 mA of /rvec H//sup /minus// have been produced. The present status of these sources, and developments to reach even higher intensities, are reviewed. 39 refs., 1 tab.

  8. Proton radiation therapy in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Grein, E.; Duzenli, C.; Pickles, T.; Ma, R.; Paton, K.; Kwa, W.; Harrison, R.; Blackmore, E. [BC Cancer Agency, Vancouver, British Columbia (Canada); TRIUMF, Vancouver, British Columbia (Canada)

    2002-04-01

    The development, commissioning, and implementation of the first Canadian Proton Radiation Therapy facility at TRIUMF in British Columbia is described. This was a collaborative project by the cyclotron physicists and staff at TRIUMF, the medical physicists and radiation oncologists of the Cancer Agency and the ocular oncology physicians of the Eye Care Center at Vancouver Hospital. (author)

  9. Conformational Variability of Organophosphorus Hydrolase upon Soman and Paraoxon Binding

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diego Eb; Lins, Roberto D.; Pascutti, Pedro G.; Lei, Chenghong; Soares, Thereza A.

    2011-12-31

    The bacterial enzyme organophosphorus hydrolase (OPH) exhibits both catalytic and substrate promiscuity. It hydrolyzes bonds in a variety of phosphotriester (P-O), phosphonothioate (P-S), phosphofluoridate (P-F) and phosphonocyanate (F-CN) compounds. However, its catalytic efficiency varies markedly for different substrates, limiting the broad-range application of OPH as catalyst in the bioremediation of pesticides and chemical war agents. In the present study, pK{sub a} calculations and multiple explicit-solvent molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of OPH bound to two substrates hydrolyzed with very distinct catalytic efficiencies: the nerve agent soman (O-pinacolyl-methyl-phosphonofluoridate) and the pesticide paraoxon (diethyl p-nitrophenyl phosphate). pK{sub a} calculations for the substrate-bound and unbound enzyme showed a significant pK{sub a} shift from standard values ({Delta}pK{sub a} = {+-} 3 units) for residues 254His and 275Arg. MD simulations of the doubly protonated 254His revealed a dynamic hydrogen bond network connecting the catalytic residue 301Asp via 254His to 232Asp, 233Asp, 275Arg and 235Asp, and is consistent with a previously postulated proton relay mechanism to ferry protons away from the active site with substrates that do not require activation of the leaving group. Hydrogen bonds between 301Asp and 254His were persistent in the OPH-paraoxon complex but not in the OPH-soman one, suggesting a potential role for such interaction in the more efficient hydrolysis of paraoxon over soman by OPH. These results are in line with previous mutational studies of residue 254His, which led to an increase of the catalytic efficiency of OPH over soman yet decreased its efficiency for paraoxon. In addition, comparative analysis of the molecular trajectories for OPH bound to soman and paraoxon suggests that binding of the latter facilitates the conformational transition of OPH from the

  10. On being loud and proud: non-conformity and counter-conformity to group norms.

    Science.gov (United States)

    Hornsey, Matthew J; Majkut, Louise; Terry, Deborah J; McKimmie, Blake M

    2003-09-01

    Most experiments on conformity have been conducted in relation to judgments of physical reality; surprisingly few papers have experimentally examined the influence of group norms on social issues with a moral component. In response to this, participants were told that they were either in a minority or in a majority relative to their university group in terms of their attitudes toward recognition of gay couples in law (Expt 1: N = 205) and a government apology to Aborigines (Expt 2: N = 110). In both experiments, it was found that participants who had a weak moral basis for their attitude conformed to the group norm on private behaviours. In contrast, those who had a strong moral basis for their attitude showed non-conformity on private behaviours and counter-conformity on public behaviours. Incidences of non-conformity and counter-conformity are discussed with reference to theory and research on normative influence.

  11. Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition.

    Directory of Open Access Journals (Sweden)

    Yonatan Savir

    Full Text Available To perform recognition, molecules must locate and specifically bind their targets within a noisy biochemical environment with many look-alikes. Molecular recognition processes, especially the induced-fit mechanism, are known to involve conformational changes. This raises a basic question: Does molecular recognition gain any advantage by such conformational changes? By introducing a simple statistical-mechanics approach, we study the effect of conformation and flexibility on the quality of recognition processes. Our model relates specificity to the conformation of the participant molecules and thus suggests a possible answer: Optimal specificity is achieved when the ligand is slightly off target; that is, a conformational mismatch between the ligand and its main target improves the selectivity of the process. This indicates that deformations upon binding serve as a conformational proofreading mechanism, which may be selected for via evolution.

  12. Conformal field theories and tensor categories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics

    2014-08-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  13. The ABC of protein kinase conformations.

    Science.gov (United States)

    Möbitz, Henrik

    2015-10-01

    Due to their involvement in human diseases, protein kinases are an important therapeutic target class. Conformation is a key concept for understanding how functional activity, inhibition and sequence are linked. We assemble and annotate the mammalian structural kinome from the Protein Data Bank on the basis of a universal residue nomenclature. We identify a torsion angle around the Gly of the DFG-motif whose sharp distribution profile corresponds to three eclipsed conformations. This allows the definition a small set of clusters whose distribution shows a bias for the active conformation. A common rationale links the active and inactive state: stabilization of the active conformation, as well as inactivation by displacement of helix-αC or the DFG-motif is governed by the interaction between helix-αC and the DFG motif. In particular, the conformation of the DFG-motif is tightly correlated with the propensity of helix-αC displacement. Our analysis reveals detailed mechanisms for the displacement of helix-αC and the DFG and improves our understanding of the role of individual residues. By pooling conformations from the whole structural kinome, the energetic contributions of sequence and extrinsic factors can be estimated in free energy analyses. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Analytical halo model of galactic conformity

    Science.gov (United States)

    Pahwa, Isha; Paranjape, Aseem

    2017-09-01

    We present a fully analytical halo model of colour-dependent clustering that incorporates the effects of galactic conformity in a halo occupation distribution framework. The model, based on our previous numerical work, describes conformity through a correlation between the colour of a galaxy and the concentration of its parent halo, leading to a correlation between central and satellite galaxy colours at fixed halo mass. The strength of the correlation is set by a tunable 'group quenching efficiency', and the model can separately describe group-level correlations between galaxy colour (1-halo conformity) and large-scale correlations induced by assembly bias (2-halo conformity). We validate our analytical results using clustering measurements in mock galaxy catalogues, finding that the model is accurate at the 10-20 per cent level for a wide range of luminosities and length-scales. We apply the formalism to interpret the colour-dependent clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We find good overall agreement between the data and a model that has 1-halo conformity at a level consistent with previous results based on an SDSS group catalogue, although the clustering data require satellites to be redder than suggested by the group catalogue. Within our modelling uncertainties, however, we do not find strong evidence of 2-halo conformity driven by assembly bias in SDSS clustering.

  15. Controlling complex networks with conformity behavior

    Science.gov (United States)

    Wang, Xu-Wen; Nie, Sen; Wang, Wen-Xu; Wang, Bing-Hong

    2015-09-01

    Controlling complex networks accompanied by common conformity behavior is a fundamental problem in social and physical science. Conformity behavior that individuals tend to follow the majority in their neighborhood is common in human society and animal communities. Despite recent progress in understanding controllability of complex networks, the existent controllability theories cannot be directly applied to networks associated with conformity. Here we propose a simple model to incorporate conformity-based decision making into the evolution of a network system, which allows us to employ the exact controllability theory to explore the controllability of such systems. We offer rigorous theoretical results of controllability for representative regular networks. We also explore real networks in different fields and some typical model networks, finding some interesting results that are different from the predictions of structural and exact controllability theory in the absence of conformity. We finally present an example of steering a real social network to some target states to further validate our controllability theory and tools. Our work offers a more realistic understanding of network controllability with conformity behavior and can have potential applications in networked evolutionary games, opinion dynamics and many other complex networked systems.

  16. Proton Testing: Opportunities, Pitfalls and Puzzles

    Science.gov (United States)

    Ladbury, Raymond

    2017-01-01

    Although proton SEE testing can place constraints on some heavy-ion SEE susceptibilities, it is important to quantify residual risk that protons may not reveal all SEE susceptibilities in a system. We examine the relative strengths and limitations of proton and heavy-ion SEE testing and how these may be affected by technology scaling and high-Z materials in the device.

  17. Shrink-wrapping water to conduct protons

    Science.gov (United States)

    Shimizu, George K. H.

    2017-11-01

    For proton-conducting metal-organic frameworks (MOFs) to find application as the electrolyte in proton-exchange membrane fuel cells, materials with better stability and conductivity are required. Now, a structurally flexible MOF that is also highly stable is demonstrated to possess high proton conductivity over a range of humidities.

  18. Thermodynamic Study on the Protonation Reactions of Glyphosate in Aqueous Solution: Potentiometry, Calorimetry and NMR spectroscopy.

    Science.gov (United States)

    Liu, Bijun; Dong, Lan; Yu, Qianhong; Li, Xingliang; Wu, Fengchang; Tan, Zhaoyi; Luo, Shunzhong

    2016-03-10

    Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information concerning the structures and conformations involved in the protonation process of glyphosate. Protonation may influence the chemical and physical properties of glyphosate, modifying its structure and the chemical processes in which it is involved. To better understand the species in solution associated with changes in pH, thermodynamic study (potentiometry, calorimetry and NMR spectroscopy) about the protonation pathway of glyphosate is performed. Experimental results confirmed that the order of successive protonation sites of totally deprotonated glyphosate is phosphonate oxygen, amino nitrogen, and finally carboxylate oxygen. This trend is in agreement with the most recent theoretical work in the literature on the subject (J. Phys. Chem. A 2015, 119, 5241-5249). The result is important because it confirms that the protonated site of glyphosate in pH range 7-8, is not on the amino but on the phosphonate group instead. This corrected information can improve the understanding of the glyphosate chemical and biochemical action.

  19. Voltage-gated proton (H(v)1) channels, a singular voltage sensing domain.

    Science.gov (United States)

    Castillo, Karen; Pupo, Amaury; Baez-Nieto, David; Contreras, Gustavo F; Morera, Francisco J; Neely, Alan; Latorre, Ramon; Gonzalez, Carlos

    2015-11-14

    The main role of voltage-gated proton channels (Hv1) is to extrude protons from the intracellular milieu when, mediated by different cellular processes, the H(+) concentration increases. Hv1 are exquisitely selective for protons and their structure is homologous to the voltage sensing domain (VSD) of other voltage-gated ion channels like sodium, potassium, and calcium channels. In clear contrast to the classical voltage-dependent channels, Hv1 lacks a pore domain and thus permeation necessarily occurs through the voltage sensing domain. Hv1 channels are activated by depolarizing voltages, and increases in internal proton concentration. It has been proposed that local conformational changes of the transmembrane segment S4, driven by depolarization, trigger the molecular rearrangements that open Hv1. However, it is still unclear how the electromechanical coupling is achieved between the VSD and the potential pore, allowing the proton flux from the intracellular to the extracellular side. Here we provide a revised view of voltage activation in Hv1 channels, offering a comparative scenario with other voltage sensing channels domains. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. S-Adenosylmethionine conformations in solution and in protein complexes: Conformational influences of the sulfonium group

    DEFF Research Database (Denmark)

    Markham, George D.; Norrby, Per-Ola; Bock, Charles W.

    2002-01-01

    calculations. Nuclear Overhauser effect measurements and computational results for AdoMet indicate a predominantly anti conformation about the glycosidic bond with a variety of conformations about the methionyl C-alpha-C-beta and C-beta-C-gamma bonds. An AdoMet conformation in which the positively charged....... In 20 reported structures of AdoMet-protein complexes, both anti and syn glycosidic torsional angles are found. The methionyl group typically adopts an extended conformation in complexes with enzymes that transfer the methyl group from the sulfonium center, but is more folded in complexes with proteins...

  1. Spot-scanning beam proton therapy vs intensity-modulated radiation therapy for ipsilateral head and neck malignancies: A treatment planning comparison

    Energy Technology Data Exchange (ETDEWEB)

    Kandula, Shravan [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Zhu, Xiaorong [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Garden, Adam S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Gillin, Michael [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Rosenthal, David I.; Ang, Kie-Kian [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Mohan, Radhe [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Amin, Mayankkumar V.; Garcia, John A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Wu, Richard; Sahoo, Narayan [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Frank, Steven J., E-mail: sjfrank@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2013-01-01

    Radiation therapy for head and neck malignancies can have side effects that impede quality of life. Theoretically, proton therapy can reduce treatment-related morbidity by minimizing the dose to critical normal tissues. We evaluated the feasibility of spot-scanning proton therapy for head and neck malignancies and compared dosimetry between those plans and intensity-modulated radiation therapy (IMRT) plans. Plans from 5 patients who had undergone IMRT for primary tumors of the head and neck were used for planning proton therapy. Both sets of plans were prepared using computed tomography (CT) scans with the goals of achieving 100% of the prescribed dose to the clinical target volume (CTV) and 95% to the planning TV (PTV) while maximizing conformity to the PTV. Dose-volume histograms were generated and compared, as were conformity indexes (CIs) to the PTVs and mean doses to the organs at risk (OARs). Both modalities in all cases achieved 100% of the dose to the CTV and 95% to the PTV. Mean PTV CIs were comparable (0.371 IMRT, 0.374 protons, p = 0.953). Mean doses were significantly lower in the proton plans to the contralateral submandibular (638.7 cGy IMRT, 4.3 cGy protons, p = 0.002) and parotid (533.3 cGy IMRT, 48.5 cGy protons, p = 0.003) glands; oral cavity (1760.4 cGy IMRT, 458.9 cGy protons, p = 0.003); spinal cord (2112.4 cGy IMRT, 249.2 cGy protons, p = 0.002); and brainstem (1553.52 cGy IMRT, 166.2 cGy protons, p = 0.005). Proton plans also produced lower maximum doses to the spinal cord (3692.1 cGy IMRT, 2014.8 cGy protons, p = 0.034) and brainstem (3412.1 cGy IMRT, 1387.6 cGy protons, p = 0.005). Normal tissue V{sub 10}, V{sub 30}, and V{sub 50} values were also significantly lower in the proton plans. We conclude that spot-scanning proton therapy can significantly reduce the integral dose to head and neck critical structures. Prospective studies are underway to determine if this reduced dose translates to improved quality of life.

  2. Pair angular correlations for pions, kaons and protons in proton-proton collisions in ALICE

    CERN Document Server

    Zaborowska, Anna

    2014-01-01

    This thesis presents the correlation functions in $\\Delta\\eta\\, \\Delta\\phi$ space for pairs of pions, kaons and protons. The studies were carried out on the set of proton-proton collisions at the centre-of-mass energy $\\sqrt{s}$ = 7 TeV, obtained in ALICE, A Large Ion Collider Experiment at CERN, the European Organization for Nuclear Research. The analysis was performed for two charge combinations (like-sign pairs and unlike-sign pairs) as well as for three multiplicity ranges. Angular correlations are a rich source of information about the elementary particles behaviour. They result in from the interplay of numerous effects, including resonances’ decays, Coulomb interactions and energy and momentum conservation. In case of identical particles quantum statistics needs to be taken into account. Moreover, particles differ in terms of quark content. Kaons, carrying the strange quark obey the strangeness conservation law. In the production of protons baryon number must be conserved. These features are reflected...

  3. Dielectron production in proton-proton collisions with ALICE

    CERN Document Server

    Koehler, Markus K

    Ultrarelativistic hadron collisions, such as delivered since a couple of years at the Large Hadron Collider (LHC), provide new insights into the properties of strongly interacting matter at high temperatures and densities, which is expected to have existed a few of a millionth seconds after the big bang. Electromagnetic probes, such as leptons and photons, are emitted during the entire collision. Since they do not undergo strong interactions, they reflect the entire evolution of the collision.\\\\ Pairs of leptons, so called dileptons, have the advantage compared to real photons, that they do not only carry momentum, but also have a non-zero invariant mass. The invariant mass spectrum of dileptons is a superposition of several components and allows to address different characteristics of the medium.\\\\ To understand dielectron production in heavy-ion collisions, reference measurements in proton-proton (pp) collisions are necessary. pp collisions reflect the vacuum contribution of the particles produced in heavy-...

  4. Proton-Proton Elastic Scattering Excitation Functions at Intermediate Energies

    Science.gov (United States)

    Albers, D.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Cloth, P.; Daniel, R.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Gasthuber, M.; Gebel, R.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Heider, S.; Heine, A.; Hinterberger, F.; Igelbrink, M.; Jahn, R.; Jeske, M.; Lahr, U.; Langkau, R.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Mosel, F.; Müller, M.; Münstermann, M.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; Roß, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Schwarz, V.; Scobel, W.; Sterzenbach, G.; Trelle, H. J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.

    1997-03-01

    Excitation functions of proton-proton elastic scattering cross sections have been measured in narrow steps for projectile momenta pp (energies Tp) from 1100 to 3300 MeV/c (500 to 2500 MeV) in the angular range 35°<=Θc.m.<=90° with a detector providing ΔΘc.m.~1.4° resolution. Measurements have been performed continuously during projectile acceleration in the cooler synchrotron COSY with an internal CH2 fiber target, taking particular care to monitor luminosity as a function of Tp. The advantages of this experimental technique are demonstrated, and the excitation functions obtained are compared to existing cross section data. No evidence for narrow structures was found.

  5. Proton-Proton Elastic Scattering Excitation Functions at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Bisplinghoff, J.; Daniel, R.; Diehl, O.; Engelhardt, H.; Ernst, J.; Eversheim, P.; Gro-Hardt, R.; Heider, S.; Heine, A.; Hinterberger, F.; Jahn, R.; Jeske, M.; Lahr, U.; Maschuw, R.; Mayer-Kuckuk, T.; Mosel, F.; Rohdje, H.; Rosendaal, D.; Ro, U.; Scheid, H.; Schulz-Rojahn, M.; Schwandt, F.; Schwarz, V.; Trelle, H.; Wiedmann, W.; Ziegler, R. [Inst.fuer Strahlen- und Kernphysik, Universitaet Bonn, D-53115 Bonn (Germany); Albers, D.; Bollmann, R.; Bueer, K.; Dohrmann, F.; Gasthuber, M.; Greiff, J.; Gro, A.; Igelbrink, M.; Langkau, R.; Lindlein, J.; Mueller, M.; Muenstermann, M.; Schirm, N.; Scobel, W.; Wellinghausen, A.; Woller, K. [I. Inst.fuer Experimentalphysik, Universitaet Hamburg, D-22761 Hamburg (Germany); Cloth, P.; Gebel, R.; Maier, R.; Prasuhn, D.; von Rossen, P.; Sterzenbach, G. [Inst.fuer Kernphysik, KFA Juelich, Juelich (Germany)

    1997-03-01

    Excitation functions of proton-proton elastic scattering cross sections have been measured in narrow steps for projectile momenta p{sub p} (energies T{sub p}) from 1100 to 3300MeV/c (500 to 2500MeV) in the angular range 35{degree}{le}{Theta}{sub c.m.}{le}90{degree} with a detector providing {Delta}{Theta}{sub c.m.}{approx}1.4{degree} resolution. Measurements have been performed continuously during projectile acceleration in the cooler synchrotron COSY with an internal CH{sub 2} fiber target, taking particular care to monitor luminosity as a function of T{sub p}. The advantages of this experimental technique are demonstrated, and the excitation functions obtained are compared to existing cross section data. No evidence for narrow structures was found. {copyright} {ital 1997} {ital The American Physical Society}

  6. Search for Sphalerons in Proton-Proton Collisions

    CERN Document Server

    Satco, Daria

    2017-01-01

    In view of new possibilities becoming more realistic with FCC design and of recent promising results regarding $(B+L)$-violating processes detection we concentrated our research on generation and analysis of sphaleron transitions. The existence of instanton and sphaleron solutions which are associated with transitions between different vacuum states is well known since 1980s. However first calculations of instanton rate killed any hope to detect them even at very high energies while the calculation of sphaleron transitions rate is a tricky problem which continue being widely discussed. In our research we used HERBVI package to generate baryon- and lepton-number violating processes in proton-proton collisions at typical energies 14, 33, 40 and 100 TeV in order to estimate the upper limit on the sphaleron cross-section. We considered the background processes and determined the zero background regions.

  7. Proton radiation damage in optical filter glass

    Science.gov (United States)

    Grillot, Patrick N.; Rosenberg, William J.

    1989-01-01

    Samples of Schott BG-39 and Hoya CM-500 blue-green filter glass were subjected to proton radiation to determine their acceptability for spaceflight. Initial testing done with 2.7 MeV protons showed negligible change in optical transmittance with doses as high as 5.2 x 10 to the 14th protons per sq cm. Irradiation with protons of energy up to 63 MeV caused a significant reduction in transmittance in the Schott samples at doses of 5.3 x 10 to the 12th protons per sq cm, while negligible change occurred in the Hoya samples.

  8. Proton conduction in biopolymer exopolysaccharide succinoglycan

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Jin Jung [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Lee, Kyu Won; Kim, Hyojung; Lee, Cheol Eui, E-mail: rscel@korea.ac.kr [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); Jung, Seunho [Department of Bioscience and Biotechnology and UBITA, Konkuk University, Seoul 143-701 (Korea, Republic of); Kwon, Chanho [Naraebio Research Laboratories, 177 Dangha-ri, Bongdam-eup, Hawseong-si 445-892 (Korea, Republic of)

    2014-07-07

    Protonic currents play a vital role in electrical signalling in living systems. It has been suggested that succinoglycan plays a specific role in alfalfa root nodule development, presumably acting as the signaling molecules. In this regard, charge transport and proton dynamics in the biopolymer exopolysaccharide succinoglycan have been studied by means of electrical measurements and nuclear magnetic resonance (NMR) spectroscopy. In particular, a dielectric dispersion in the system has revealed that the electrical conduction is protonic rather electronic. Besides, our laboratory- and rotating-frame {sup 1}H NMR measurements have elucidated the nature of the protonic conduction, activation of the protonic motion being associated with a glass transition.

  9. Microscopic dynamics of a base protonation

    Science.gov (United States)

    Knudsgaard, Bjørn; Petersen, Christian; Thøgersen, Jan; Keiding, Søren Rud; Jensen, Svend J. Knak

    2008-10-01

    The protonation of the base peroxynitrite in aqueous solution is investigated by way of the Car-Parrinello molecular dynamics technique. It is found that the protonation proceeds through an increase in the vibration amplitude of the hydrogen bond between the base and the hydronium ion. When the amplitude gets sufficiently large a proton may oscillate a few times between the base and the hydronium ion before it remains as part of peroxynitrous acid. The start of the protonation requires a certain orientation of the hydrogen bond. The estimated protonation time agrees well with the one obtained from femtosecond UV experiments.

  10. Loss of protons in thin absorbers

    CERN Document Server

    Renberg, P U; Measday, D F; Pepin, M; Serre, Claude; Schwaller, P

    1972-01-01

    Proton losses due to nuclear inelastic interactions have been measured in Al and Cu absorbers of thicknesses less than half the proton range, for incident proton energies of 250 and 560 MeV. It is shown that the data can be used to obtain absorption corrections in proton counter telescopes for other energies in this energy interval. The absorption correction would be found from the loss calculated from the proton reaction cross-sections by multiplying by an experimentally determined ratio which is given by the present measurement. (5 refs).

  11. Elucidation of the proton transport mechanism in human carbonic anhydrase II.

    Science.gov (United States)

    Maupin, C Mark; McKenna, Robert; Silverman, David N; Voth, Gregory A

    2009-06-10

    Human carbonic anhydrase II (HCA II) is one of the fastest known enzymes, which utilizes a rate-limiting proton transport (PT) step in its enzymatic reaction. To evaluate the PT event at an atomistic level, the multistate empirical valence bond (MS-EVB) method has been utilized in this work. It is observed that the PT event in HCA II exploits a transient active site water cluster to transport the excess proton between the catalytic zinc-bound water/hydroxide and the proton shuttling residue, His64. This PT event is found to be dependent on the enzyme's ability to form and stabilize the active site water cluster in addition to its ability to orient His64 in a favorable conformation. Evaluation of the PT free energy barrier for different orientations of His64 reveals this residue's vital role as a proton transporter and elucidates its direct effect on the barrier to PT through the active site water. It is suggested that the rate-limiting step oscillates between the active site water PT event to His64 and the de/protonation of His64 depending on the exogenous buffer concentration and the orientation of His64. In the absence of a PT acceptor/donor at position 64, it is found that the excess proton will utilize one of three distinct paths to enter/leave the active site. This latter result not only allows for an increased understanding of how enzymes capitalize on the protein/solvent interface to guide excess protons to/from areas of interest, it also provides valuable insight into the chemical rescue experiments on HCA II mutants.

  12. Protonation states and catalysis: Molecular dynamics studies of intermediates in tryptophan synthase.

    Science.gov (United States)

    Huang, Yu-Ming M; You, Wanli; Caulkins, Bethany G; Dunn, Michael F; Mueller, Leonard J; Chang, Chia-En A

    2016-01-01

    The importance of protonation states and proton transfer in pyridoxal 5'-phosphate (PLP)-chemistry can hardly be overstated. Although experimental approaches to investigate pKa values can provide general guidance for assigning proton locations, only static pictures of the chemical species are available. To obtain the overall protein dynamics for the interpretation of detailed enzyme catalysis in this study, guided by information from solid-state NMR, we performed molecular dynamics (MD) simulations for the PLP-dependent enzyme tryptophan synthase (TRPS), whose catalytic mechanism features multiple quasi-stable intermediates. The primary objective of this work is to elucidate how the position of a single proton on the reacting substrate affects local and global protein dynamics during the catalytic cycle. In general, proteins create a chemical environment and an ensemble of conformational motions to recognize different substrates with different protonations. The study of these interactions in TRPS shows that functional groups on the reacting substrate, such as the phosphoryl group, pyridine nitrogen, phenolic oxygen and carboxyl group, of each PLP-bound intermediate play a crucial role in constructing an appropriate molecular interface with TRPS. In particular, the protonation states of the ionizable groups on the PLP cofactor may enhance or weaken the attractions between the enzyme and substrate. In addition, remodulation of the charge distribution for the intermediates may help generate a suitable environment for chemical reactions. The results of our study enhance knowledge of protonation states for several PLP intermediates and help to elucidate their effects on protein dynamics in the function of TRPS and other PLP-dependent enzymes. © 2015 The Protein Society.

  13. Proton Radiotherapy for Prostate Cancer Is Not Associated With Post-Treatment Testosterone Suppression

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R. Charles, E-mail: rnichols@floridaproton.org [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Morris, Christopher G.; Hoppe, Bradford S.; Henderson, Randal H.; Marcus, Robert B.; Mendenhall, William M.; Li Zuofeng [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Williams, Christopher R.; Costa, Joseph A. [Division of Urology, University of Florida Shands Hospital, Jacksonville, FL (United States); Mendenhall, Nancy P. [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); University of Florida Proton Therapy Institute, Jacksonville, FL (United States)

    2012-03-01

    Purpose: Three independent studies of photon (x-ray) radiotherapy (RT) for prostate cancer have demonstrated evidence of testosterone suppression after treatment. The present study was undertaken to determine whether this would also be the case with conformal protons. Methods and Materials: Between August 2006 and October 2007, 171 patients with low- and intermediate-risk prostate cancer were enrolled and underwent treatment according to University of Florida Proton Therapy Institute institutional review board-approved PR01 and PR02 protocols. Of the 171 patients, 18 were excluded because they had received androgen deprivation therapy either before (n = 17) or after (n = 1) RT. The pretreatment serum testosterone level was available for 150 of the remaining 153 patients. These 150 patients were included in the present study. The post-treatment levels were compared with the pretreatment levels. Results: The median baseline pretreatment serum testosterone level was 357.9 ng/dL. The median post-treatment testosterone value was 375.5 ng/dL at treatment completion (p = .1935) and 369.9 ng/dL (p = .1336), 348.7 ng/dL (p = .7317), 353.4 ng/dL (p = .6996), and 340.9 ng/dL (p = .1669) at 6, 12, 18, and 24 months after proton therapy, respectively. Conclusions: Conformal proton therapy to the prostate, as delivered using University of Florida Proton Therapy Institute PR01 and PR02 protocols, did not appear to significantly affect the serum testosterone levels within 24 months after RT.

  14. Two-dimensional NMR investigations of the dynamic conformations of phospholipids and liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Univ. of California, Berkeley, CA (United States). Applied Science and Technology

    1996-05-01

    Two-dimensional 13C, 1H, and 31P nuclear magnetic resonance (NMR) techniques are developed and used to study molecular structure and dynamics in liquid-crystalline systems, primarily phospholipids and nematic liquid crystals. NMR spectroscopy characterizes molecular conformation in terms of orientations and distances of molecular segments. In anisotropically mobile systems, this is achieved by measuring motionally-averaged nuclear dipolar couplings and chemical shift anisotropies. The short-range couplings yield useful bond order parameters, while the long-range interactions constrain the overall conformation. In this work, techniques for probing proton dipolar local fields are further developed to obtain highlyresolved dipolar couplings between protons and rare spins. By exploiting variable-angle sample spinning techniques, orientation-sensitive NMR spectra are resolved according to sitespecific isotropic chemical shifts. Moreover, the signs and magnitudes of various short-range dipolar couplings are obtained. They are used in novel theoretical analyses that provide information about segmental orientations and their distributions. Such information is obtained in a model-independent fashion or with physically reasonable assumptions. The structural investigation of phospholipids is focused on the dynam

  15. Coarse-grained Simulations of Sugar Transport and Conformational Changes of Lactose Permease

    Science.gov (United States)

    Liu, Jin; Jewel, S. M. Yead; Dutta, Prashanta

    2016-11-01

    Escherichia coli lactose permease (LacY) actively transports lactose and other galactosides across cell membranes through lactose/H+ symport process. Lactose/H+ symport is a highly complex process that involves sugar translocation, H+ transfer, as well as large-scale protein conformational changes. The complete picture of lactose/H+ symport is largely unclear due to the complexity and multiscale nature of the process. In this work, we develop the force field for sugar molecules compatible with PACE, a hybrid and coarse-grained force field that couples the united-atom protein models with the coarse-grained MARTINI water/lipid. After validation, we implement the new force field to investigate the transport of a β-D-galactopyranosyl-1-thio- β-D-galactopyranoside (TDG) molecule across a wild-type LacY during lactose/H+ symport process. Results show that the local interactions between TDG and LacY at the binding pocket are consistent with the X-ray experiment. Protonation of Glu325 stabilizes the TDG and inward-facing conformation of LacY. Protonation of Glu269 induces a dramatic protein structural reorganization and causes the expulsion of TDG from LacY to both sides of the membrane. The structural changes occur primarily in the N-terminal domain of LacY. This work is supported by NSF Grants: CBET-1250107 and CBET -1604211.

  16. Proton Radiotherapy for High-Risk Pediatric Neuroblastoma: Early Outcomes and Dose Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Hattangadi, Jona A. [Harvard Radiation Oncology Program, Boston, MA (United States); Rombi, Barbara [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Provincial Agency for Proton Therapy, Trento (Italy); Yock, Torunn I.; Broussard, George [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Friedmann, Alison M.; Huang, Mary [Department of Pediatric Hematology-Oncology, Massachusetts General Hospital, Boston, MA (United States); Chen, Yen-Lin E.; Lu, Hsiao-Ming; Kooy, Hanne [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); MacDonald, Shannon M., E-mail: smacdonald@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States)

    2012-07-01

    Purpose: To report the early outcomes for children with high-risk neuroblastoma treated with proton radiotherapy (RT) and to compare the dose distributions for intensity-modulated photon RT (IMRT), three-dimensional conformal proton RT (3D-CPT), and intensity-modulated proton RT to the postoperative tumor bed. Methods and Materials: All patients with high-risk (International Neuroblastoma Staging System Stage III or IV) neuroblastoma treated between 2005 and 2010 at our institution were included. All patients received induction chemotherapy, surgical resection of residual disease, high-dose chemotherapy with stem cell rescue, and adjuvant 3D-CPT to the primary tumor sites. The patients were followed with clinical examinations, imaging, and laboratory testing every 6 months to monitor disease control and side effects. IMRT, 3D-CPT, and intensity-modulated proton RT plans were generated and compared for a representative case of adjuvant RT to the primary tumor bed followed by a boost. Results: Nine patients were treated with 3D-CPT. The median age at diagnosis was 2 years (range 10 months to 4 years), and all patients had Stage IV disease. All patients had unfavorable histologic characteristics (poorly differentiated histologic features in 8, N-Myc amplification in 6, and 1p/11q chromosomal abnormalities in 4). The median tumor size at diagnosis was 11.4 cm (range 7-16) in maximal dimension. At a median follow-up of 38 months (range 11-70), there were no local failures. Four patients developed distant failure, and, of these, two died of disease. Acute side effects included Grade 1 skin erythema in 5 patients and Grade 2 anorexia in 2 patients. Although comparable target coverage was achieved with all three modalities, proton therapy achieved substantial normal tissue sparing compared with IMRT. Intensity-modulated proton RT allowed additional sparing of the kidneys, lungs, and heart. Conclusions: Preliminary outcomes reveal excellent local control with proton therapy

  17. Principles and practice of proton beam therapy

    CERN Document Server

    Das, Indra J

    2015-01-01

    Commissioned by The American Association of Physicists in Medicine (AAPM) for their June 2015 Summer School, this is the first AAPM monograph printed in full color. Proton therapy has been used in radiation therapy for over 70 years, but within the last decade its use in clinics has grown exponentially. This book fills in the proton therapy gap by focusing on the physics of proton therapy, including beam production, proton interactions, biology, dosimetry, treatment planning, quality assurance, commissioning, motion management, and uncertainties. Chapters are written by the world's leading medical physicists who work at the pioneering proton treatment centers around the globe. They share their understandings after years of experience treating thousands of patients. Case studies involving specific cancer treatments show that there is some art to proton therapy as well as state-of-the-art science. Even though the focus lies on proton therapy, the content provided is also valuable to heavy charged particle th...

  18. Very energetic protons in Saturn's radiation belt

    Science.gov (United States)

    Fillius, W.; Mcilwain, C.

    1980-01-01

    Very energetic protons are trapped in the inner Saturnian radiation belt. The University of California at San Diego instrument on Pioneer 11 has definitely identified protons of energy greater than 80 MeV on channel M3 and has tentatively detected protons of energy greater than 600 MeV on channel C3. The spatial distribution of the protons is distinct from that of the trapped electrons, the main difference being that the protons are strongly absorbed by the innermost moons and that the electrons are not. The source strength for injecting protons by the decay of cosmic ray albedo neutrons generated in the rings of Saturn has been estimated. The required proton lifetime is approximately 20 years.

  19. Structure and Mechanism of Proton Transport Through the Transmembrane Tetrameric M2 Protein Bundle of the Influenza A Virus

    Energy Technology Data Exchange (ETDEWEB)

    R Acharya; V Carnevale; G Fiorin; B Levine; A Polishchuk; V Balannick; I Samish; R Lamb; L Pinto; et al.

    2011-12-31

    The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2{sup +} and 3{sup +} with a pK{sub a} near 6. A 1.65 {angstrom} resolution X-ray structure of the transmembrane protein (residues 25-46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.

  20. Probing the proton channels in subunit N of Complex I from Escherichia coli through intra-subunit cross-linking.

    Science.gov (United States)

    Tursun, Ablat; Zhu, Shaotong; Vik, Steven B

    2016-12-01

    Respiratory Complex I appears to have 4 sites for proton translocation, which are coupled to the oxidation of NADH and reduction of coenzyme Q. The proton pathways are thought to be made of offset half-channels that connect to the membrane surfaces, and are connected by a horizontal path through the center of the membrane. In this study of the enzyme from Escherichia coli, subunit N, containing one of the sites, was targeted. Pairs of cysteine residues were introduced into neighboring α-helices along the proposed proton pathways. In an effort to constrain conformational changes that might occur during proton translocation, we attempted to form disulfide bonds or methanethiosulfonate bridges between two engineered cysteine residues. Cysteine modification was inferred by the inability of PEG-maleimide to shift the electrophoretic mobility of subunit N, which will occur upon reaction with free sulfhydryl groups. After the cross-linking treatment, NADH oxidase and NADH-driven proton translocation were measured. Ten different pairs of cysteine residues showed evidence of cross-linking. The most significant loss of enzyme activity was seen for residues near the essential Lys 395. This residue is positioned between the proposed proton half-channel to the periplasm and the horizontal connection through subunit N, and is also near the essential Glu 144 of subunit M. The results suggest important conformational changes in this region for the delivery of protons to the periplasm, or for coupling the actions of subunit N to subunit M. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Structures of W(2.2 Lie conformal algebra

    Directory of Open Access Journals (Sweden)

    Yuan Lamei

    2016-01-01

    . In this paper, we study conformal derivations, central extensions and conformal modules for this Lie conformal algebra. Also, we compute the cohomology of this Lie conformal algebra with coefficients in its modules. In particular, we determine its cohomology with trivial coefficients both for the basic and reduced complexes.

  2. Application of Conformational Space Search in Drug Action | Adikwu ...

    African Journals Online (AJOL)

    The role of conformational space in drug action is presented. Two examples of molecules in different therapeutic groups are presented. Conformational space search will lead to isolating the exact conformation with the desired medicinal properties. Many conformations of a plant isolate may exist which are active, weakly ...

  3. A note on fashion cycles, novelty and conformity

    OpenAIRE

    Alberti, Federica

    2013-01-01

    We develop a model in which novelty and conformity motivate fashion behavior. Fashion cycles occur if conformity is not too high. The duration of fashion cycles depends on individual-specific conformity, novelty, and the number of available styles. The use of individual-specific novelty and conformity allows us to also identify fashion leaders.

  4. 40 CFR 91.106 - Certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Certificate of conformity. 91.106... Provisions § 91.106 Certificate of conformity. (a) Every manufacturer of a new marine SI engine produced... obtain a certificate of conformity covering each engine family. The certificate of conformity must be...

  5. 47 CFR 68.320 - Supplier's Declaration of Conformity.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Supplier's Declaration of Conformity. 68.320... Approval § 68.320 Supplier's Declaration of Conformity. (a) Supplier's Declaration of Conformity is a... Supplier's Declaration of Conformity attaches to all items subsequently marketed by the responsible party...

  6. 47 CFR 2.906 - Declaration of Conformity.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Declaration of Conformity. 2.906 Section 2.906... Conformity. (a) A Declaration of Conformity is a procedure where the responsible party, as defined in § 2.909... of Conformity attaches to all items subsequently marketed by the responsible party which are...

  7. 21 CFR 26.70 - Conformity assessment bodies.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Conformity assessment bodies. 26.70 Section 26.70...Frameworkâ Provisions § 26.70 Conformity assessment bodies. Each party recognizes that the conformity... conformity in relation to its requirements as specified in subpart B of this part. The parties shall specify...

  8. Proton-Ion Medical Machine Study (PIMMS), 1

    CERN Document Server

    Badano, L; Benedikt, Michael; Bryant, P J; Crescenti, M; Holy, P; Maier, A T; Pullia, M; Rossi, S; Knaus, P

    2000-01-01

    The Proton-Ion Medical Machine Study (PIMMS) group was formed following an agreement between the Med-AUSTRON (Austria) and the TERA Foundation (Italy) to combine their efforts in the design of a cancer therapy synchrotron. CERN agreed to host this study in its PS Division and a close collaboration was set up with GSI (Germany). The study group was later joined by Onkologie-2000 (Czech Republic). Effort was first focused on the theoretical understanding of slow extraction and the techniques required to produce a smooth beam spill for the conformal treatment of complex-shaped tumours with a sub-millimetre accuracy by active scanning with proton and carbon ion beams. Considerations for passive scanning were also included. The more general and theoretical aspects of the study are recorded in Part I and the more specific technical design considerations are presented in a second volume Part II. The PIMMS team started their work in January 1996 in the PS Division and continued for a period of three years.

  9. A Biomechanical Model for Lung Fibrosis in Proton Beam Therapy

    Science.gov (United States)

    King, David J. S.

    The physics of protons makes them well-suited to conformal radiotherapy due to the well-known Bragg peak effect. From a proton's inherent stopping power, uncertainty effects can cause a small amount of dose to overflow to an organ at risk (OAR). Previous models for calculating normal tissue complication probabilities (NTCPs) relied on the equivalent uniform dose model (EUD), in which the organ was split into 1/3, 2/3 or whole organ irradiation. However, the problem of dealing with volumes clinic (QUANTEC) data. Additional side projects are also investigated, introduced and explained at various points. A typical radiotherapy course for the patient of 30x2Gy per fraction is simulated. A range of geometry of the target volume and irradiation types is investigated. Investigations with X-rays found the majority of the data point ratios (ratio of EUD values found from calculation based and data based methods) at 20% within unity showing a relatively close agreement. The ratios have not systematically preferred one particular type of predictive method. No Vx metric was found to consistently outperform another. In certain cases there is a good agreement and not in other cases which can be found predicted in the literature. The overall results leads to conclusion that there is no reason to discount the use of the data based predictive method particularly, as a low volume replacement predictive method.

  10. Conformal blocks and generalized Selberg integrals

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, A., E-mail: mironov@lpi.r [Lebedev Physics Institute (Russian Federation); ITEP, Moscow (Russian Federation); Morozov, Al., E-mail: morozov@itep.r [ITEP, Moscow (Russian Federation); Morozov, And., E-mail: andrey.morozov@itep.r [ITEP, Moscow (Russian Federation); Physics Department, Moscow State University, Moscow (Russian Federation)

    2011-02-11

    Operator product expansion (OPE) of two operators in two-dimensional conformal field theory includes a sum over Virasoro descendants of other operator with universal coefficients, dictated exclusively by properties of the Virasoro algebra and independent of choice of the particular conformal model. In the free field model, these coefficients arise only with a special 'conservation' relation imposed on the three dimensions of the operators involved in OPE. We demonstrate that the coefficients for the three unconstrained dimensions arise in the free field formalism when additional Dotsenko-Fateev integrals are inserted between the positions of the two original operators in the product. If such coefficients are combined to form an n-point conformal block on Riemann sphere, one reproduces the earlier conjectured {beta}-ensemble representation of conformal blocks. The statement can also be regarded as a relation between the 3j-symbols of the Virasoro algebra and the slightly generalized Selberg integrals I{sub Y}, associated with arbitrary Young diagrams. The conformal blocks are multilinear combinations of such integrals and the AGT conjecture relates them to the Nekrasov functions which have exactly the same structure.

  11. Evolution of Conformity in Social Dilemmas.

    Directory of Open Access Journals (Sweden)

    Yali Dong

    Full Text Available People often deviate from their individual Nash equilibrium strategy in game experiments based on the prisoner's dilemma (PD game and the public goods game (PGG, whereas conditional cooperation, or conformity, is supported by the data from these experiments. In a complicated environment with no obvious "dominant" strategy, conformists who choose the average strategy of the other players in their group could be able to avoid risk by guaranteeing their income will be close to the group average. In this paper, we study the repeated PD game and the repeated m-person PGG, where individuals' strategies are restricted to the set of conforming strategies. We define a conforming strategy by two parameters, initial action in the game and the influence of the other players' choices in the previous round. We are particularly interested in the tit-for-tat (TFT strategy, which is the well-known conforming strategy in theoretical and empirical studies. In both the PD game and the PGG, TFT can prevent the invasion of non-cooperative strategy if the expected number of rounds exceeds a critical value. The stability analysis of adaptive dynamics shows that conformity in general promotes the evolution of cooperation, and that a regime of cooperation can be established in an AllD population through TFT-like strategies. These results provide insight into the emergence of cooperation in social dilemma games.

  12. Conformal blocks and generalized Selberg integrals

    Science.gov (United States)

    Mironov, A.; Morozov, Al.; Morozov, And.

    2011-02-01

    Operator product expansion (OPE) of two operators in two-dimensional conformal field theory includes a sum over Virasoro descendants of other operator with universal coefficients, dictated exclusively by properties of the Virasoro algebra and independent of choice of the particular conformal model. In the free field model, these coefficients arise only with a special “conservation” relation imposed on the three dimensions of the operators involved in OPE. We demonstrate that the coefficients for the three unconstrained dimensions arise in the free field formalism when additional Dotsenko-Fateev integrals are inserted between the positions of the two original operators in the product. If such coefficients are combined to form an n-point conformal block on Riemann sphere, one reproduces the earlier conjectured β-ensemble representation of conformal blocks. The statement can also be regarded as a relation between the 3j-symbols of the Virasoro algebra and the slightly generalized Selberg integrals I, associated with arbitrary Young diagrams. The conformal blocks are multilinear combinations of such integrals and the AGT conjecture relates them to the Nekrasov functions which have exactly the same structure.

  13. Arcjet Testing of Advanced Conformal Ablative TPS

    Science.gov (United States)

    Gasch, Matthew; Beck, Robin; Agrawal, Parul

    2014-01-01

    A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL. The compliant (high strain to failure) nature of the conformable ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. In May of 2013 the CA250 project executed an arcjet test series in the Ames IHF facility to evaluate a phenolic-based conformal system (named Conformal-PICA) over a range of test conditions from 40-400Wcm2. The test series consisted of four runs in the 13-inch diameter nozzle. Test models were based on SPRITE configuration (a 55-deg sphere cone), as it was able to provide a combination of required heat flux, pressure and shear within a single entry. The preliminary in-depth TC data acquired during that test series allowed a mid-fidelity thermal response model for conformal-PICA to be created while testing of seam models began to address TPS attachment and joining of multiple segments for future fabrication of large-scale aeroshells. Discussed in this paper are the results.

  14. Evolution of Conformity in Social Dilemmas.

    Science.gov (United States)

    Dong, Yali; Li, Cong; Tao, Yi; Zhang, Boyu

    2015-01-01

    People often deviate from their individual Nash equilibrium strategy in game experiments based on the prisoner's dilemma (PD) game and the public goods game (PGG), whereas conditional cooperation, or conformity, is supported by the data from these experiments. In a complicated environment with no obvious "dominant" strategy, conformists who choose the average strategy of the other players in their group could be able to avoid risk by guaranteeing their income will be close to the group average. In this paper, we study the repeated PD game and the repeated m-person PGG, where individuals' strategies are restricted to the set of conforming strategies. We define a conforming strategy by two parameters, initial action in the game and the influence of the other players' choices in the previous round. We are particularly interested in the tit-for-tat (TFT) strategy, which is the well-known conforming strategy in theoretical and empirical studies. In both the PD game and the PGG, TFT can prevent the invasion of non-cooperative strategy if the expected number of rounds exceeds a critical value. The stability analysis of adaptive dynamics shows that conformity in general promotes the evolution of cooperation, and that a regime of cooperation can be established in an AllD population through TFT-like strategies. These results provide insight into the emergence of cooperation in social dilemma games.

  15. Is non-conformity WEIRD? Cultural variation in adults' beliefs about children's competency and conformity.

    Science.gov (United States)

    Clegg, Jennifer M; Wen, Nicole J; Legare, Cristine H

    2017-03-01

    Cross-cultural comparisons provide critical insight into variation in reasoning about intelligence. In two studies, the authors used a novel methodology based on multivocal ethnography to assess the role of conformity in U.S. and Ni-Vanuatu adults' judgments of children's intelligence and, as a comparison trait, good behavior. In Study 1, there were cultural differences in the impact of conformity on U.S. and Ni-Vanuatu adults' judgments of children's intelligence and good behavior. When evaluating U.S. children only, U.S. adults were less likely to endorse high conformity children as intelligent, often citing creativity as a justification for their judgments. In contrast, Ni-Vanuatu adults were more likely to endorse Ni-Vanuatu high conformity children as intelligent. Ni-Vanuatu adults were also more likely to endorse high conformity children as well-behaved than U.S. adults. In Study 2, there were no effects of socioeconomic status on U.S. adults' evaluations of conformity. U.S. adults were less likely to endorse high conformity children as intelligent than Ni-Vanuatu adults. Taken together, the data demonstrate that beliefs about the relations between intelligence, conformity, and creativity vary within and across cultures. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. ConformRank: A conformity-based rank for finding top-k influential users

    Science.gov (United States)

    Wang, Qiyao; Jin, Yuehui; Cheng, Shiduan; Yang, Tan

    2017-05-01

    Finding influential users is a hot topic in social networks. For example, advertisers identify influential users to make a successful campaign. Retweeters forward messages from original users, who originally publish messages. This action is referred to as retweeting. Retweeting behaviors generate influence. Original users have influence on retweeters. Whether retweeters keep the same sentiment as original users is taken into consideration in this study. Influence is calculated based on conformity from emotional perspective after retweeting. A conformity-based algorithm, called ConformRank, is proposed to find top-k influential users, who make the most users keep the same sentiment after retweeting messages. Emotional conformity is introduced to denote how users conform to original users from the emotional perspective. Conforming weights are introduced to denote how two users keep the same sentiment after retweeting messages. Emotional conformity is applied for users and conforming weights are used for relations. Experiments were conducted on Sina Weibo. Experimental results show that users have larger influence when they publish positive messages.

  17. Proton Radiography at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-28

    The proton radiography (pRad) facility at Los Alamos National Lab uses high energy protons to acquire multiple frame flash radiographic sequences at megahertz speeds: that is, it can make movies of the inside of explosions as they happen. The facility is primarily used to study the damage to and failure of metals subjected to the shock forces of high explosives as well as to study the detonation of the explosives themselves. Applications include improving our understanding of the underlying physical processes that drive the performance of the nuclear weapons in the United States stockpile and developing novel armor technologies in collaboration with the Army Research Lab. The principle and techniques of pRad will be described, and examples of some recent results will be shown.

  18. Proton affinities of hydrated molecules

    Science.gov (United States)

    Valadbeigi, Younes

    2016-09-01

    Proton affinities (PA) of non-hydrated, M, and hydrated forms, M(H2O)1,2,3, of 20 organic molecules including alcohols, ethers, aldehydes, ketones and amines were calculated by the B3LYP/6-311++G(d,p) method. For homogeneous families, linear correlations were observed between PAs of the M(H2O)1,2,3 and the PAs of the non-hydrated molecules. Also, the absolute values of the hydration enthalpies of the protonated molecules decreased linearly with the PAs. The correlation functions predicted that for an amine with PA amine with PA > 1100 kJ/mol the PA(M(H2O)) is smaller than the PA.

  19. Proton Resonance Spectroscopy -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, Jr., J. F. [Tennessee Technological Univ., Cookeville, TN (United States)

    2009-07-27

    This report summarizes work supported by the DOE Grant DE-FG02-96ER40990 during its duration from June 1996 to May 2009. Topics studied include (1) statistical descriptions of nuclear levels and measurements of proton resonances relevant to such descriptions, including measurements toward a complete level scheme for 30P, (2) the development of methods to estimate the missing fraction of levels in a given measurement, and (3) measurements at HRIBF relevant to nuclear astrophysics.

  20. Proton Therapy for Thoracoabdominal Tumors

    Science.gov (United States)

    Sakurai, Hideyuki; Okumura, Toshiyuki; Sugahara, Shinji; Nakayama, Hidetsugu; Tokuuye, Koichi

    In advanced-stage disease of certain thoracoabdominal tumors, proton therapy (PT) with concurrent chemotherapy may be an option to reduce side effects. Several technological developments, including a respiratory gating system and implantation of fiducial markers for image guided radiation therapy (IGRT), are necessary for the treatment in thoracoabdominal tumors. In this chapter, the role of PT for tumors of the lung, the esophagus, and liver are discussed.