WorldWideScience

Sample records for conductive oxides electrodes

  1. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  2. Fabrication of Hybrid Diamond and Transparent Conducting Metal Oxide Electrode for Spectroelectrochemistry

    Directory of Open Access Journals (Sweden)

    Jingping Hu

    2011-01-01

    Full Text Available A novel diamond transparent electrode is constructed by integrating conductive diamond film and transparent conducting metal oxide to combine the superior electrochemical properties of diamond and the electrical conductivity of transparent metal oxide (TCO. Direct growth of diamond on indium tin oxide (ITO and aluminium doped zinc oxide (AZO was explored, but X-ray photoelectron spectroscopy measurement reveals that both substrates cannot survive from the aggressive environment of diamond growth even if the latter is regarded as one of the most stable TCO. As a second route, a diamond membrane in silicon frame was prepared by selective chemical etching, and a diamond optically transparent electrode (OTE was constructed by assembling the diamond membrane on the top of an ITO-coated substrate. The resulting device exhibits a high optical transparency and quasireversible electrochemical kinetics, which are competitive to other diamond OTEs reported previously. Its application in UV-Vis spectroelectrochemical studies on the oxidisation of 4-aminophenol was demonstrated.

  3. Graphene oxide with improved electrical conductivity for supercapacitor electrodes

    Science.gov (United States)

    Li, Z. J.; Yang, B. C.; Zhang, S. R.; Zhao, C. M.

    2012-02-01

    Predominant few-layer graphene (FLG) sheets of high electrical conductivity have been synthesized by a multi-step intercalation and reduction method. The electrical conductivity of the as-synthesized FLG is measured to be ∼3.2 × 104 S m-1, comparable to that of pristine graphite. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman analysis reveal that the as-synthesized FLG sheets have large areas with single and double layers. The specific capacitance of 180 F g-1 is obtained for the FLG in a 1 M Na2SO4 aqueous electrolyte by integrating the cyclic voltammogram. The good capacitive behavior of the FLG is very promising for the application for next-generation high-performance electrochemical supercapacitors.

  4. Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode.

    Science.gov (United States)

    Sun, Kuan; Li, Pengcheng; Xia, Yijie; Chang, Jingjing; Ouyang, Jianyong

    2015-07-22

    Perovskite solar cells (PSCs) have been attracting considerable attention because of their low fabrication cost and impressive energy conversion efficiency. Most PSCs are built on transparent conductive oxides (TCOs) such as fluorine-doped tin oxide (FTO) or indium tin oxide (ITO), which are costly and rigid. Therefore, it is significant to explore alternative materials as the transparent electrode of PSCs. In this study, highly conductive and highly transparent poly(3,4-ethylenedioxythiophene):polystyrenesulfonate ( PSS) films were investigated as the transparent electrode of both rigid and flexible PSCs. The conductivity of PSS films on rigid glass or flexible poly(ethylene terephthalate) (PET) substrate is significantly enhanced through a treatment with methanesulfonic acid (MSA). The optimal power conversion efficiency (PCE) is close to 11% for the rigid PSCs with an MSA-treated PSS film as the transparent electrode on glass, and it is more than 8% for the flexible PSCs with a MSA-treated PSS film as the transparent electrode on PET. The flexible PSCs exhibit excellent mechanical flexibility in the bending test.

  5. Hybrid transparent conductive electrodes with copper nanowires embedded in a zinc oxide matrix and protected by reduced graphene oxide platelets

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-02-01

    Transparent conductive electrodes (TCE) were fabricated by combining three emerging nano-materials: copper nanowires (CuNWs), zinc oxide (ZnO) nano-particulate thin films, and reduced graphene oxide (rGO) platelets. Whereas CuNWs are responsible for essentially all of the electrical conductivity of our thin-film TCEs, the ZnO matrix embeds and strengthens the CuNW network in its adhesion to the substrate, while the rGO platelets provide a protective overcoat for the composite electrode, thereby improving its stability in hot and humid environments. Our CuNW/ZnO/rGO hybrid electrodes deposited on glass substrates have low sheet resistance (Rs ˜ 20 Ω/sq) and fairly high optical transmittance (T550 ˜ 79%). In addition, our hybrid TCEs are mechanically strong and able to withstand multiple scotch-tape peel tests. Finally, these TCEs can be fabricated on rigid glass as well as flexible plastic substrates.

  6. Method of forming macro-structured high surface area transparent conductive oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Forman, Arnold J.; Chen, Zhebo; Jaramillo, Thomas F.

    2016-01-05

    A method of forming a high surface area transparent conducting electrode is provided that includes depositing a transparent conducting thin film on a conductive substrate, where the transparent conducting thin film includes transparent conductive particles and a solution-based transparent conducting adhesive layer which serves to coat and bind together the transparent conducting particles, and heat treating the transparent conducting adhesion layer on the conductive substrate, where an increased surface area transparent conducting electrode is formed.

  7. Enhanced Photocurrent Generation from Bacteriorhodopsin Photocells Using Grating-Structured Transparent Conductive Oxide Electrodes.

    Science.gov (United States)

    Kaji, Takahiro; Kasai, Katsuyuki; Haruyama, Yoshihiro; Yamada, Toshiki; Inoue, Shin-Ichiro; Tominari, Yukihiro; Ueda, Rieko; Terui, Toshifumi; Tanaka, Shukichi; Otomo, Akira

    2016-04-01

    We fabricated a grating-structured electrode made of indium-doped zinc oxide (IZO) with a high refractive index (approximately 2) for a bacteriorhodopsin (bR) photocell. We investigated the photocurrent characteristics of the bR photocell and demonstrated that the photocurrent values from the bR/IZO electrode with the grating structure with a grating period of 340 nm were more than 3.5-4 times larger than those without the grating structure. The photocurrent enhancement was attributed to the resonance effect due to light coupling to the grating structure as well as the scattering effect based on the experimental results and analysis using the photonic band structure determined using finite-difference time-domain (FDTD) simulations. The refractive index of the bR film in electrolyte solution (1.40) used in the FDTD simulations was estimated by analyzing the extinction peak wavelength of 20-nm gold colloids in the bR film. Our results indicate that the grating- or photonic-crystal-structured transparent conductive oxide (TCO) electrodes can increase the light use efficiency of various bR devices such as artificial photosynthetic devices, solar cells, and light-sensing devices.

  8. A solid oxide photoelectrochemical cell with UV light-driven oxygen storage in mixed conducting electrodes

    Science.gov (United States)

    Walch, Gregor; Rotter, Bernhard; Brunauer, Georg Christoph; Esmaeili, Esmaeil; Opitz, Alexander Karl; Kubicek, Markus; Summhammer, Johann; Ponweiser, Karl

    2017-01-01

    A single crystalline SrTiO3 working electrode in a zirconia-based solid oxide electrochemical cell is illuminated by UV light at temperatures of 360–460 °C. In addition to photovoltaic effects, this leads to the build-up of a battery-type voltage up to more than 300 mV. After switching off UV light, this voltage only slowly decays. It is caused by UV-induced oxygen incorporation into the mixed conducting working electrode and thus by changes of the oxygen stoichiometry δ in SrTiO3–δ under UV illumination. These changes of the oxygen content could be followed in time-dependent voltage measurements and also manifest themselves in time-dependent resistance changes during and after UV illumination. Discharge currents measured after UV illumination reveal that a large fraction of the existing oxygen vacancies in SrTiO3 become filled under UV light. Additional measurements on cells with TiO2 thin film electrodes show the broader applicability of this novel approach for transforming light into chemical energy and thus the feasibility of solid oxide photoelectrochemical cells (SOPECs) in general and of a “light-charged oxygen battery” in particular. PMID:28261480

  9. Printable and Flexible Copper-Silver Alloy Electrodes with High Conductivity and Ultrahigh Oxidation Resistance.

    Science.gov (United States)

    Li, Wanli; Hu, Dawei; Li, Lingying; Li, Cai-Fu; Jiu, Jinting; Chen, Chuantong; Ishina, Toshiyuki; Sugahara, Tohru; Suganuma, Katsuaki

    2017-07-26

    Printable and flexible Cu-Ag alloy electrodes with high conductivity and ultrahigh oxidation resistance have been successfully fabricated by using a newly developed Cu-Ag hybrid ink and a simple fabrication process consisting of low-temperature precuring followed by rapid photonic sintering (LTRS). A special Ag nanoparticle shell on a Cu core structure is first created in situ by low-temperature precuring. An instantaneous photonic sintering can induce rapid mutual dissolution between the Cu core and the Ag nanoparticle shell so that core-shell structures consisting of a Cu-rich phase in the core and a Ag-rich phase in the shell (Cu-Ag alloy) can be obtained on flexible substrates. The resulting Cu-Ag alloy electrode has high conductivity (3.4 μΩ·cm) and ultrahigh oxidation resistance even up to 180 °C in an air atmosphere; this approach shows huge potential and is a tempting prospect for the fabrication of highly reliable and cost-effective printed electronic devices.

  10. High-performance Bi-stage process in reduction of graphene oxide for transparent conductive electrodes

    Science.gov (United States)

    Alahbakhshi, Masoud; Fallahi, Afsoon; Mohajerani, Ezeddin; Fathollahi, Mohammad-Reza; Taromi, Faramarz Afshar; Shahinpoor, Mohsen

    2017-02-01

    A novel and innovative approach to develop reduction of graphene oxide (GO) solution for fabrication of highly and truly transparent conductive electrode (TCE) has been presented. Thanks to outstanding mechanical and electronic properties of graphene which offer practical applications in synthesizing composites as well as fabricating various optoelectronic devices, in this study, conductive reduced graphene oxide (r-GO) thin films were prepared through sequential chemical and thermal reduction process of homogeneously dispersed GO solutions. The conductivity and transparency of r-GO thin film is regulated using hydroiodic acid (HI) as reducing agent following by vacuum thermal annealing. The prepared r-GO is characterized by XRD, AFM, UV-vis and Raman spectroscopy. the AFM topographic images reveal surface roughness almost ∼11 nm which became less than 2 nm for the 4 mg/mL solution. Moreover, XRD analysis and Raman spectra substantiate the interlayer spacing between rGO layers has been reduced dramatically and also electronic conjugation has been ameliorated after using HI chemical agent and 700 °C thermal annealing sequentially. Subsequently providing r-GO transparent electrode with decent and satisfactory transparency, acceptable conductivity and suitable work function, it has been exploited as the anode in organic light emitting diode (OLED). The maximum luminance efficiency and maximum power efficiency reached 4.2 cd/A and 0.83 lm/W, respectively. We believe that by optimizing the hole density, sheet resistance, transparency and surface morphology of the r-GO anodes, the device efficiencies can be remarkably increased further.

  11. Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules.

    Science.gov (United States)

    Liang, Yanyu; Frisch, Johannes; Zhi, Linjie; Norouzi-Arasi, Hassan; Feng, Xinliang; Rabe, Jürgen P; Koch, Norbert; Müllen, Klaus

    2009-10-28

    Transparent and highly conductive graphene electrodes have been fabricated through acetylene-assisted thermolysis of graphite oxide (GO) sheets. This novel procedure uses acetylene as a supplemental carbon source to repair substantial defects within GO sheets, leading to the enhancement of graphitization of synthesized graphene electrodes. The as-prepared graphene on quartz substrates exhibits an electrical conductivity of 1425 S cm(-1) with an optical transmittance of more than 70% at a wavelength of 500 nm. Such an acetylene-assisted thermal treatment approach is also adopted to fabricate graphene electrodes from synthetic nanographene molecules, with an almost five times increase in conductivity compared to samples prepared by the common thermal reduction.

  12. Nanostructure Pt Electrode Obtained via Self-assembly of Nanoparticles on Conductive Oxide-coated Glass Substrate

    Institute of Scientific and Technical Information of China (English)

    WANG, Wei-Bo(王维波); LUO, Zhen(罗臻); XIAO, Xu-Rui(肖绪瑞); LIN, Yuan(林原)

    2004-01-01

    Self-assembly of platinum nanoparticles were applied to fabrication of counter electrode for dye-sensitized solar cells on conductive oxide-coated glass substrate. The present Pt electrode exhibits high exchange current density of 220 mA/cm2, which is comparable to those prepared by electrodeposition, magnetron sputtering or thermal decomposition of platinum chloride. After analysis by transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), it was found that the catalyst was structurally characterized as nanosized platinum metal clusters and was continuously arranged on electrode surface. The present nanostructure electrode had high electrocatalytic activity for the reduction of iodine in organic solution.

  13. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.

    Science.gov (United States)

    Sethuraman, V; Muthuraja, P; Anandha Raj, J; Manisankar, P

    2016-10-15

    The fabrication, characterization and analytical performances were investigated for a catechol biosensor, based on the PEDOT-rGO-Fe2O3-PPO composite modified glassy carbon (GC) electrode. The graphene oxide (GO) doped conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) was prepared through electrochemical polymerization by potential cycling. Reduction of PEDOT-GO was carried out by amperometric method. Fe2O3 nanoparticles were synthesized in ethanol by hydrothermal method. The mixture of Fe2O3, PPO and glutaraldehyde was casted on the PEDOT-rGO electrode. The surface morphology of the modified electrodes was studied by FE-SEM and AFM. Cyclic voltammetric studies of catechol on the enzyme modified electrode revealed higher reduction peak current. Determination of catechol was carried out successfully by Differential Pulse Voltammetry (DPV) technique. The fabricated biosensor investigated shows a maximum current response at pH 6.5. The catechol biosensor exhibited wide sensing linear range from 4×10(-8) to 6.20×10(-5)M, lower detection limit of 7×10(-9)M, current maxima (Imax) of 92.55µA and Michaelis-Menten (Km) constant of 30.48µM. The activation energy (Ea) of enzyme electrode is 35.93KJmol(-1) at 50°C. There is no interference from d-glucose and l-glutamic acid, ascorbic acid and o-nitrophenol. The PEDOT-rGO-Fe2O3-PPO biosensor was stable for at least 75 days when stored in a buffer at about 4°C.

  14. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  15. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing

    Energy Technology Data Exchange (ETDEWEB)

    Panky, Sreedevi; Thandavan, Kavitha [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Sivalingam, Durgajanani [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Sethuraman, Swaminathan; Krishnan, Uma Maheswari [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Jeyaprakash, Beri Gopalakrishnan [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Rayappan, John Bosco Balaguru, E-mail: rjbosco@ece.sastra.edu [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India)

    2013-01-15

    Nanostructured cerium oxide (CeO{sub 2}) thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique with cerium nitrate salt, Ce(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O as precursor. Fluorine doped cadmium oxide (CdO:F) thin film prepared using spray pyrolysis technique acts as the TCO film and hence the bare electrode. The structural, morphological and elemental characterizations of the films were carried out using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The diffraction peak positions in XRD confirmed the formation of highly crystalline ceria with cubic structure and FE-SEM images showed uniform adherent films with granular morphology. The band gaps of CeO{sub 2} and TCO were found to be 3.2 eV and 2.6 eV respectively. Lipase enzyme was physisorbed on the surface of CeO{sub 2}/TCO film to form the lipase/nano-CeO{sub 2}/TCO bioelectrode. Sensing studies were carried out using cyclic voltammetry and amperometry, with lipase/nano-CeO{sub 2}/TCO as working electrode and tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33-1.98 mM) with a lowest detection limit of 2 {mu}M with sharp response time of 5 s and a shelf life of about 6 weeks. -- Graphical abstract: Nanostructured cerium oxide thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique. Fluorine doped cadmium oxide (CdO:F) thin film acts as the TCO film and hence the working electrode. Lipase enzyme was physisorbed on the surface of CeO{sub 2}/TCO film and hence the lipase/nano-CeO{sub 2}/TCO bioelectrode has been fabricated. Sensing studies were carried out using cyclic voltammetry and amperometry with tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33-1.98 mM) with a lowest detection limit of 2 {mu}M with sharp

  16. Phase field modeling of microstructure evolution and concomitant effective conductivity change in solid oxide fuel cell electrodes

    Science.gov (United States)

    Lei, Yinkai; Cheng, Tian-Le; Wen, You-Hai

    2017-03-01

    Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration of the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. The effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.

  17. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Taer, E.; Awitdrus,; Farma, R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Mathematics and Natural Sciences, University of Riau, 28293 Pekanbaru, Riau (Indonesia); Deraman, M., E-mail: madra@ukm.my; Talib, I. A.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Kanwal, S. [ICCBS, H.E.J. Research Institute of Chemistry, University of Karachi, 75270 Karachi (Pakistan)

    2015-04-16

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  18. Graphene oxide functionalized with silver nanoparticles as conducting electrodes for solar cells and electrochemical energy storage devices

    Science.gov (United States)

    Reddy, Kakarla Raghava; Alonso-Marroquin, Fernando

    2017-06-01

    We present the development of novel electrochemical supercapacitor and sensor based on silver (Ag) nanoparticles coated graphene oxide (GO). 10-20 nm diameter of Ag nanoparticles were well dispersed on the surface of graphene oxide through the chemical reduction method. Ag-coated GO nanohybrids were characterized by transmission electron microscopy (TEM), X-ray diffraction, Raman spectroscopy, electrical and an electrochemical analysis for the energy storage (supercapacitors), energy conversion (solar cells) and sensor applications. It is found that nanohybrid electrodes showed good specific capacitance and electrochemical sensing performance in comparison to pristine GO. The improvement in the electrochemical characteristics can be attributed to the sensitizing effect between Ag nanparticles and GO. These GO/Ag hybrid transparent conducting films also show low resistance and good transmittance, suggesting they are good electrodes for the opto-electronic devices (e.g. solar cells).

  19. Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide multilayer electrodes based on silver oxide.

    Science.gov (United States)

    Yun, Jungheum; Wang, Wei; Bae, Tae Sung; Park, Yeon Hyun; Kang, Yong-Cheol; Kim, Dong-Ho; Lee, Sunghun; Lee, Gun-Hwan; Song, Myungkwan; Kang, Jae-Wook

    2013-10-23

    We report that significantly more transparent yet comparably conductive AgOx films, when compared to Ag films, are synthesized by the inclusion of a remarkably small amount of oxygen (i.e., 2 or 3 atom %) in thin Ag films. An 8 nm thick AgOx (O/Ag=2.4 atom %) film embedded between 30 nm thick ITO films (ITO/AgOx/ITO) achieves a transmittance improvement of 30% when compared to a conventional ITO/Ag/ITO electrode with the same configuration by retaining the sheet resistance in the range of 10-20 Ω sq(-1). The high transmittance provides an excellent opportunity to improve the power-conversion efficiency of organic solar cells (OSCs) by successfully matching the transmittance spectral range of the electrode to the optimal absorption region of low band gap photoactive polymers, which is highly limited in OSCs utilizing conventional ITO/Ag/ITO electrodes. An improvement of the power-conversion efficiency from 4.72 to 5.88% is achieved from highly flexible organic solar cells (OSCs) fabricated on poly(ethylene terephthalate) polymer substrates by replacing the conventional ITO/Ag/ITO electrode with the ITO/AgOx/ITO electrode. This novel transparent electrode can facilitate a cost-effective, high-throughput, room-temperature fabrication solution for producing large-area flexible OSCs on heat-sensitive polymer substrates with excellent power-conversion efficiencies.

  20. Conducting Polymer Coated Graphene Oxide Electrode for Rechargeable Lithium-Sulfur Batteries.

    Science.gov (United States)

    Lee, Hee-Yoon; Jung, Yongju; Kim, Seok

    2016-03-01

    Poly(diallyldimethylammonium chloride) (PDDA)/graphene oxide-sulfur composites were prepared by a chemical oxidation method. For the PDDA-GO composites, conducting polymers (PDDA) were coated on the surface of GO sheets. PDDA-GO composites could be expected to increase electrical conductivity and protect restacking of graphene sheets. And then, sulfur particles were dispersed into the PDDA-GO composites by mixing in the CS2 solvent. It is expected the PDDA-GO/S composites show the limited release of polysulfides due to the fact that it can provide high surface area, because conducting polymer can be used as spacer between graphene sheets. Electrochemical performances of prepared composites were characterized by cyclic voltammetry (CV). The PDDA-GO/S composites showed a high discharge capacity of 1102 mAh g(-1) at the first cycle and a good cycle retention of 60% after 100 cycles.

  1. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  2. Enhancement of the electrical properties of silver nanowire transparent conductive electrodes by atomic layer deposition coating with zinc oxide

    Science.gov (United States)

    Pham, Anh-Tuan; Nguyen, Xuan-Quang; Tran, Duc-Huy; Phan, Vu Ngoc; Duong, Thanh-Tung; Nguyen, Duy-Cuong

    2016-08-01

    Transparent conductive electrodes for applications in optoelectronic devices such as solar cells and light-emitting diodes are important components and require low sheet resistance and high transmittance. Herein, we report an enhancement of the electrical properties of silver (Ag) nanowire networks by coating with zinc oxide using the atomic layer deposition technique. A strong decrease in the sheet resistance of Ag nanowires, namely from 20-40 Ω/□ to 7-15 Ω/□, was observed after coating with ZnO. Ag nanowire electrodes coated with 200-cycle ZnO by atomic layer deposition show the best quality, with a sheet resistance of 11 Ω/□ and transmittance of 75%.

  3. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Science.gov (United States)

    Singh, Hemant Kr.; Avasthi, D. K.; Aggarwal, Shruti

    2015-06-01

    Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO2:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In2O3:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag+9 ions at fluences ranging from 3.0 × 1011 ions/cm2 to 3.0 × 1013 ions/cm2. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  4. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hemant Kr. [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India); Avasthi, D.K. [Inter University Accelerator Center, Post Box 10502, New Delhi (India); Aggarwal, Shruti, E-mail: shruti.al@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India)

    2015-06-15

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO{sub 2}:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In{sub 2}O{sub 3}:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag{sup +9} ions at fluences ranging from 3.0 × 10{sup 11} ions/cm{sup 2} to 3.0 × 10{sup 13} ions/cm{sup 2}. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  5. Copper:molybdenum sub-oxide blend as transparent conductive electrode (TCE) indium free

    Science.gov (United States)

    Hssein, Mehdi; Cattin, Linda; Morsli, Mustapha; Addou, Mohammed; Bernède, Jean-Christian

    2016-05-01

    Oxide/metal/oxide structures have been shown to be promising alternatives to ITO. In such structures, in order to decrease the high light reflection of the metal film it is embedded between two metal oxides dielectric. MoO3-x is often used as oxide due to its capacity to be a performing anode buffer layer in organic solar cells, while silver is the metal the most often used [1]. Some attempts to use cheaper metal such as copper have been done. However it was shown that Cu diffuses strongly into MoO3-x [2]. Here we used this property to grow simple new transparent conductive oxide (TCE), i.e., Cu: MoO3-x blend. After the deposition of a thin Cu layer, a film of MoO3-x is deposited by sublimation. An XPS study shows more than 50% of Cu is present at the surface of the structure. In order to limit the Cu diffusion an ultra-thin Al layer is deposited onto MoO3-x. Then, in order to obtain a good hole collecting contact with the electron donor of the organic solar cells, a second MoO3-x layer is deposited. After optimization of the thickness of the different layers, the optimum structure is as follow: Cu (12 nm) : MoO3-x (20 nm)/Al (0.5 nm)/ MoO3-x (10 nm). The sheet resistance of this structure is Rsq = 5.2 Ω/sq. and its transmittance is Tmax = 65%. The factor of merit ϕM = T10/Rsq. = 2.41 × 10-3 Ω-1, which made this new TCE promising as anode in organic solar cells. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  6. Improved Long-Term Stability of Transparent Conducting Electrodes Based on Double-Laminated Electrosprayed Antimony Tin Oxides and Ag Nanowires

    Directory of Open Access Journals (Sweden)

    Koo B.-R.

    2017-06-01

    Full Text Available We fabricated double-laminated antimony tin oxide/Ag nanowire electrodes by spin-coating and electrospraying. Compared to pure Ag nanowire electrodes and single-laminated antimony tin oxide/Ag nanowire electrodes, the double-laminated antimony tin oxide/Ag nanowire electrodes had superior transparent conducting electrode performances with sheet resistance ~19.8 Ω/□ and optical transmittance ~81.9%; this was due to uniform distribution of the connected Ag nanowires because of double lamination of the metallic Ag nanowires without Ag aggregation despite subsequent microwave heating at 250°C. They also exhibited excellent and superior long-term chemical and thermal stabilities and adhesion to substrate because double-laminated antimony tin oxide thin films act as the protective layers between Ag nanowires, blocking Ag atoms penetration.

  7. Study on Ag mesh/conductive oxide hybrid transparent electrode for film heaters

    Science.gov (United States)

    Kwon, Namyong; Kim, Kyohyeok; Heo, Jinhee; Yi, Insook; Chung, Ilsub

    2014-07-01

    Ag mesh-indium tin oxide (ITO) hybrid transparent conductive films were fabricated and evaluated for use in film heaters. PS monolayer templates were prepared using highly mono-dispersed PS spheres (11.2 μm) obtained by a filtering process with micro-sieves. At first, three Ag meshes with different sheet resistances (20, 100, and 300 Ω sq-1) and transmittances (70, 73, and 76%) were evaluated for film heaters in terms of voltage and long-term stability. Subsequently, in an effort to obtain better transmittance, Ag mesh-ITO hybrid heaters were fabricated utilizing finite ITO depositions. At the optimised ITO thickness (15 nm), the sheet resistance and the transmittance were 300 Ω sq-1 and 88%, respectively, which indicates that this material is a good potential candidate for an efficient defroster in vehicles.

  8. Atomic and Molecular Layer Deposition for Enhanced Lithium Ion Battery Electrodes and Development of Conductive Metal Oxide/Carbon Composites

    Science.gov (United States)

    Travis, Jonathan

    The performance and safety of lithium-ion batteries (LIBs) are dependent on interfacial processes at the positive and negative electrodes. For example, the surface layers that form on cathodes and anodes are known to affect the kinetics and capacity of LIBs. Interfacial reactions between the electrolyte and the electrodes are also known to initiate electrolyte combustion during thermal runaway events that compromise battery safety. Atomic layer deposition (ALD) and molecular layer deposition (MLD) are thin film deposition techniques based on sequential, self-limiting surface reactions. ALD and MLD can deposit ultrathin and conformal films on high aspect ratio and porous substrates such as composite particulate electrodes in lithium-ion batteries. The effects of electrode surface modification via ALD and MLD are studied using a variety of techniques. It was found that sub-nm thick coatings of Al2O 3 deposited via ALD have beneficial effects on the stability of LIB anodes and cathodes. These same Al2O3 ALD films were found to improve the safety of graphite based anodes through prevention of exothermic solid electrolyte interface (SEI) degradation at elevated temperatures. Ultrathin and conformal metal alkoxide polymer films known as "metalcones" were grown utilizing MLD techniques with trimethylaluminum (TMA) or titanium tetrachloride (TiCl4) and organic diols or triols, such as ethylene glycol (EG), glycerol (GL) or hydroquinone (HQ), as the reactants. Pyrolysis of these metalcone films under inert gas conditions led to the development of conductive metal oxide/carbon composites. The composites were found to contain sp2 carbon using micro-Raman spectroscopy in the pyrolyzed films with pyrolysis temperatures ≥ 600°C. Four point probe measurements demonstrated that the graphitic sp2 carbon domains in the metalcone films grown using GL and HQ led to significant conductivity. The pyrolysis of conformal MLD films to obtain conductive metal oxide/carbon composite films

  9. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite.

    Science.gov (United States)

    Sun, Yiqing; Chemelewski, William D; Berglund, Sean P; Li, Chun; He, Huichao; Shi, Gaoquan; Mullins, C Buddie

    2014-04-23

    We report the growth of well-defined antimony-doped tin oxide (ATO) nanorods as a conductive scaffold to improve hematite's photoelectrochemical water oxidation performance. The hematite grown on ATO exhibits greatly improved performance for photoelectrochemical water oxidation compared to hematite grown on flat fluorine-doped tin oxide (FTO). The optimized photocurrent density of hematite on ATO is 0.67 mA/cm(2) (0.6 V vs Ag/AgCl), which is much larger than the photocurrent density of hematite on flat FTO (0.03 mA/cm(2)). Using H2O2 as a hole scavenger, it is shown that the ATO nanorods indeed act as a useful scaffold and enhanced the bulk charge separation efficiency of hematite from 2.5% to 18% at 0.4 V vs Ag/AgCl.

  10. Sol-gel deposited aluminum-doped and gallium-doped zinc oxide thin-film transparent conductive electrodes with a protective coating of reduced graphene oxide

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-04-01

    Using a traditional sol-gel deposition technique, we successfully fabricated aluminum-doped zinc oxide (AZO) and gallium-doped zinc oxide (GZO) thin films on glass substrates. Employing a plasma treatment method as the postannealing process, we produced thin-film transparent conductive electrodes exhibiting excellent optical and electrical properties, with transmittance greater than 90% across the entire visible spectrum and the near-infrared range, as well as good sheet resistance under 200 Ω/sq. More importantly, to improve the resilience of our fabricated thin-film samples at elevated temperatures and in humid environments, we deposited a layer of reduced graphene oxide (rGO) as protective overcoating. The stability of our composite AZO/rGO and GZO/rGO samples improved substantially compared to that of their counterparts with no rGO coating.

  11. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells

    Science.gov (United States)

    Lan, Rong; Cowin, Peter I.; Sengodan, Sivaprakash; Tao, Shanwen

    2016-08-01

    Electrode materials which exhibit high conductivities in both oxidising and reducing atmospheres are in high demand for solid oxide fuel cells (SOFCs) and solid oxide electrolytic cells (SOECs). In this paper, we investigated Cu-doped SrFe0.9Nb0.1O3‑δ finding that the primitive perovskite oxide SrFe0.8Cu0.1Nb0.1O3‑δ (SFCN) exhibits a conductivity of 63 Scm‑1and 60 Scm‑1 at 415 °C in air and 5%H2/Ar respectively. It is believed that the high conductivity in 5%H2/Ar is related to the exsolved Fe (or FeCu alloy) on exposure to a reducing atmosphere. To the best of our knowledge, the conductivity of SrFe0.8Cu0.1Nb0.1O3‑δ in a reducing atmosphere is the highest of all reported oxides which also exhibit a high conductivity in air. Fuel cell performance using SrFe0.8Cu0.1Nb0.1O3‑δ as the anode, (Y2O3)0.08(ZrO2)0.92 as the electrolyte and La0.8Sr0.2FeO3‑δ as the cathode achieved a power density of 423 mWcm‑2 at 700 °C indicating that SFCN is a promising anode for SOFCs.

  12. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells.

    Science.gov (United States)

    Lan, Rong; Cowin, Peter I; Sengodan, Sivaprakash; Tao, Shanwen

    2016-08-22

    Electrode materials which exhibit high conductivities in both oxidising and reducing atmospheres are in high demand for solid oxide fuel cells (SOFCs) and solid oxide electrolytic cells (SOECs). In this paper, we investigated Cu-doped SrFe0.9Nb0.1O3-δ finding that the primitive perovskite oxide SrFe0.8Cu0.1Nb0.1O3-δ (SFCN) exhibits a conductivity of 63 Scm(-1)and 60 Scm(-1) at 415 °C in air and 5%H2/Ar respectively. It is believed that the high conductivity in 5%H2/Ar is related to the exsolved Fe (or FeCu alloy) on exposure to a reducing atmosphere. To the best of our knowledge, the conductivity of SrFe0.8Cu0.1Nb0.1O3-δ in a reducing atmosphere is the highest of all reported oxides which also exhibit a high conductivity in air. Fuel cell performance using SrFe0.8Cu0.1Nb0.1O3-δ as the anode, (Y2O3)0.08(ZrO2)0.92 as the electrolyte and La0.8Sr0.2FeO3-δ as the cathode achieved a power density of 423 mWcm(-2) at 700 °C indicating that SFCN is a promising anode for SOFCs.

  13. Enhancing Optical Out-Coupling of Organic Light-Emitting Devices with Nanostructured Composite Electrodes Consisting of Indium Tin Oxide Nanomesh and Conducting Polymer.

    Science.gov (United States)

    Chen, Chien-Yu; Lee, Wei-Kai; Chen, Yi-Jiun; Lu, Chun-Yang; Lin, Hoang Yan; Wu, Chung-Chih

    2015-09-02

    A nanostructured composite electrode consisting of a high-index indium-tin-oxide nanomesh and low-index high-conductivity conducting polymer effectively enhances coupling of internal radiation of organic light-emitting devices into their substrates. When combining this internal extraction structure and the external extraction scheme, a very high external quantum efficiency of nearly 62% is achieved with a green phosphorescent device.

  14. Large Scale Laser Crystallization of Solution-based Alumina-doped Zinc Oxide (AZO) Nanoinks for Highly Transparent Conductive Electrode

    Science.gov (United States)

    Nian, Qiong; Callahan, Michael; Saei, Mojib; Look, David; Efstathiadis, Harry; Bailey, John; Cheng, Gary J.

    2015-10-01

    A new method combining aqueous solution printing with UV Laser crystallization (UVLC) and post annealing is developed to deposit highly transparent and conductive Aluminum doped Zinc Oxide (AZO) films. This technique is able to rapidly produce large area AZO films with better structural and optoelectronic properties than most high vacuum deposition, suggesting a potential large-scale manufacturing technique. The optoelectronic performance improvement attributes to UVLC and forming gas annealing (FMG) induced grain boundary density decrease and electron traps passivation at grain boundaries. The physical model and computational simulation developed in this work could be applied to thermal treatment of many other metal oxide films.

  15. Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymer Electrolytes with High Ionic Conductivity and a Large Voltage Window for Flexible Solid-State Supercapacitors.

    Science.gov (United States)

    Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho

    2017-10-04

    We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10(-3) S cm(-1)) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g(-1) at 0.1 A g(-1)), better rate capability (64% capacity retention until 20 A g(-1)), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg(-1) at 1 A g(-1)) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.

  16. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Nian, Qiong; Cheng, Gary J. [Birck Nanotechnology Center and School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Callahan, Michael; Bailey, John [Greentech Solutions, Inc., Hanson, Massachusetts 02341 (United States); Look, David [Semiconductor Research Center, Wright State University, Dayton, Ohio 45435 (United States); Efstathiadis, Harry [College of Nanoscale Science and Engineering (CNSE), University of Albany, Albany, New York 12203 (United States)

    2015-06-01

    Commercial production of transparent conducting oxide (TCO) polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC) of solution deposited aluminium-doped zinc oxide (AZO) nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm{sup 2} V{sup −1} s{sup −1} with corresponding electrical resistivity and sheet resistances as low as 1 × 10{sup −3} Ω cm and 75 Ω/sq, respectively. The high mobility also enabled a high transmittance (T) of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods.

  17. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Qiong Nian

    2015-06-01

    Full Text Available Commercial production of transparent conducting oxide (TCO polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC of solution deposited aluminium-doped zinc oxide (AZO nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm2 V−1 s−1 with corresponding electrical resistivity and sheet resistances as low as 1 × 10−3 Ω cm and 75 Ω/sq, respectively. The high mobility also enabled a high transmittance (T of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods.

  18. Ultrahigh Aspect Ratio Copper-Nanowire-Based Hybrid Transparent Conductive Electrodes with PEDOT:PSS and Reduced Graphene Oxide Exhibiting Reduced Surface Roughness and Improved Stability.

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A; Mansuripur, Masud; Falco, Charles M

    2015-08-05

    Copper nanowires (CuNWs) with ultrahigh aspect ratio are synthesized with a solution process and spray-coated onto select substrates to fabricate transparent conductive electrodes (TCEs). Different annealing methods are investigated and compared for effectiveness and convenience. The CuNWs are subsequently combined with the conductive polymer poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) ( PSS) or with reduced graphene oxide (rGO) platelets in order to reduce the surface roughness and improve the durability of the fabricated TCEs. Our best-performing PSS/CuNW films have optical transmittance T550 = 84.2% (at λ = 550 nm) and sheet resistance Rs = 25 Ω/sq, while our best CuNW/rGO films have T550 = 84% and Rs = 21.7 Ω/sq.

  19. Effects of 12-Crown-4 ether on the ionic conductivity and electrode kinetics of electrolytes in polyethylene oxide

    Science.gov (United States)

    Nagasubramanian, G.; di Stefano, S.

    Results are described of investigations of the electrical and electrochemical properties of thin films of polyethylene oxide (PEO) electrolytes with and without 12-Crown-4 ether (12Cr4) as a function of temperature and in the frequency regime 100 kHz-0.1 Hz. These measurements were made for LiCF3SO3, LiBF4, and LiClO4 salts. At a given temperature, the bulk conductivity, sigma, (S/cm), for a particular salt, depends on the 12Cr4 concentration with sigma reaching a maximum at about 3 mM 12Cr4. Of the three salts studied, the sigma is the highest for PEO/LiBF4 with 3 mM 12Cr4. The ac and dc measurements yield a lower charge transfer resistance for 12Cr4-incorporated samples than for samples without. Plating/stripping of Li occurs at a potential closer to Li(+)/Li for 12Cr4 samples than those without. The conductivities of a thin (about 100 microns) and a thick (400 microns) films are similar.

  20. 2D Graphene Oxide Nanosheets as an Adhesive Over-Coating Layer for Flexible Transparent Conductive Electrodes

    Science.gov (United States)

    Moon, In Kyu; Kim, Jae Il; Lee, Hanleem; Hur, Kangheon; Kim, Woon Chun; Lee, Hyoyoung

    2013-01-01

    In recent, highly transparent and flexible, two-dimensional (2D) graphene oxide (GO) nanosheet has been paid attention for various applications. Due to an existence of a large amount of oxygen functional groups, the single 2D GO nanosheet has an insulating, transparent, highly dispersible in the eco-friendly water, and hydrophilic property that has strong adhesion to the hydrophilic surface, which will be the best candidate for the use of an over-coating layer (OCL) and protecting layer for a conductive nanowire based indium-free transparent conductive film (TCF). The ultrathin 2D adhesive GO OCL nanosheet is expected to tightly hold silver nanowires (AgNWs), reduce sheet resistance and produce uniform TCF, providing complete solution that simultaneously solves a high haze, low transparency with a conventional OCL and mechanical instability in cases without a thick OCL. Our novel 2D insulating and hydrophilic GO OCL successfully provided a large-area, flexible, and highly transparent AgNW TCF.

  1. Highly conductive and transparent silver grid/metal oxide hybrid electrodes for low-temperature planar perovskite solar cells

    Science.gov (United States)

    Zhang, Weihai; Xiong, Juan; Wang, Sheng; Liu, Wei-er; Li, Jun; Wang, Duofa; Gu, Haoshuang; Wang, Xianbao; Li, Jinhua

    2017-01-01

    Recently, organometal halide perovskite solar cells have attracted great attention in photovoltaic research. However, the devices require high-temperature processing of up to 450 °C that hinders the applications in the low cost and large-area product of devices. Here, we reported the ITO/Ag grid/AZO hybrid electrodes for planar perovskite solar cells fabricated under the temperature of 150 °C. The planar perovskite solar cells do not require a mesoporous scaffold that need high-temperature annealing processing. The optimized ITO/Ag grid/AZO electrode which was fabricated as the sequence of ITO, Ag grid, AZO by magnetron sputtering exhibited an extreme low sheet resistance about 3.8 Ω/sq and a relative high transparency of 89.6% at the wavelength of 550 nm. The hybrid electrode could combine the electrical property of ITO and optical property of AZO. On the other hand, AZO has better energy level match with electron transport layer of ZnO than ITO. The power conversion efficiency (PCE) of 13.8% was obtained under the processing temperature of 150 °C by using ITO/Ag grid/AZO electrode. The high performances of the solar cells were attributed to the superior performances of ITO/Ag grid/AZO electrode and the good band energy match between ZnO and AZO.

  2. Nanocomposite of p-type conductive polymer/functionalized graphene oxide nanosheets as novel and hybrid electrodes for highly capacitive pseudocapacitors.

    Science.gov (United States)

    Ehsani, A; Mohammad Shiri, H; Kowsari, E; Safari, R; Torabian, J; Kazemi, S

    2016-09-15

    An effective approach for increasing the life cycle of poly ortho aminophenol (POAP) as a p-type conductive polymers is combining conventional conductive polymers and nanomaterials to fabricate hybrid electrodes. In this paper, functionalized graphene oxide (FGO) has first been synthesized using a chemical approach. Hybrid POAP/FGO films have then been fabricated by POAP electropolymerization in the presence of FGO nanoparticles as active electrodes for electrochemical supercapacitors. Based on the atomic scale study results, it seems that H3PO4(-) oxygen atoms and terminal pyridine ring nitrogen atoms play a crucial role in the intramolecular charge and energy transfer in the FGO molecular systems. Theoretical studies, surface and electrochemical analyses have been used for characterization of POAP/FGO composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. This work introduces new nanocomposite materials for electrochemical redox capacitors with such advantages as the ease of synthesis, high active surface area and stability in an aqueous electrolyte.

  3. Nanostructured Solid Oxide Fuel Cell Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal Zvi [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  4. Transparent conducting oxide-free nitrogen-doped graphene/reduced hydroxylated carbon nanotube composite paper as flexible counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Zhang, Jindan; Yu, Mei; Li, Songmei; Meng, Yanbing; Wu, Xueke; Liu, Jianhua

    2016-12-01

    Three-dimensional nitrogen-doped graphene/reduced hydroxylated carbon nanotube composite aerogel (NG/CNT-OH) with unique hierarchical porosity and mechanical stability is developed through a two-step hydrothermal reaction. With plenty of exposed active sites and efficient multidimensional transport pathways of electrons and ions, NG/CNT-OH exhibits great electrocatalytic performances for I-/I3- redox couple. The subsequent compressed NG/CNT-OH papers possess high electrical conductivity and good flexibility, thus generating high-performance flexible counter electrodes (CEs) with transparent conducting oxide free (TCO-free) for dye-sensitized solar cells (DSSCs). The flexible NG/CNT-OH electrodes show good stability and the DSSCs with the optimized NG/CNT-OH CE had higher short-circuit current density (13.62 mA cm-2) and cell efficiency (6.36%) than DSSCs using Pt CE, whereas those of the DSSCs using Pt CE were only 12.81 mA cm-2 and 5.74%, respectively. Increasing the ratio of hydroxylated carbon nanotubes (CNT-OH) to the graphene oxide (GO) in the reactant would lead to less content of doped N, but better diffusion of electrolyte in the CEs because of more complete GO etching reaction. The design strategy presents a facile and cost effective way to synthesis three-dimensional graphene/CNT composite aerogel with excellent performance, and it can be potentially used as flexible TCO-free CE in other power conversion or energy storage devices.

  5. Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays

    Science.gov (United States)

    Li, Mary; Sultana, Mahmooda; Hess, Larry

    2012-01-01

    Graphene is a single atomic layer of graphite. It is optically transparent and has high electron mobility, and thus has great potential to make transparent conductive electrodes. This invention contributes towards the development of graphene transparent conductive electrodes for next-generation microshutter arrays. The original design for the electrodes of the next generation of microshutters uses indium-tin-oxide (ITO) as the electrode material. ITO is widely used in NASA flight missions. The optical transparency of ITO is limited, and the material is brittle. Also, ITO has been getting more expensive in recent years. The objective of the invention is to develop a graphene transparent conductive electrode that will replace ITO. An exfoliation procedure was developed to make graphene out of graphite crystals. In addition, large areas of single-layer graphene were produced using low-pressure chemical vapor deposition (LPCVD) with high optical transparency. A special graphene transport procedure was developed for transferring graphene from copper substrates to arbitrary substrates. The concept is to grow large-size graphene sheets using the LPCVD system through chemical reaction, transfer the graphene film to a substrate, dope graphene to reduce the sheet resistance, and pattern the film to the dimension of the electrodes in the microshutter array. Graphene transparent conductive electrodes are expected to have a transparency of 97.7%. This covers the electromagnetic spectrum from UV to IR. In comparison, ITO electrodes currently used in microshutter arrays have 85% transparency in mid-IR, and suffer from dramatic transparency drop at a wavelength of near-IR or shorter. Thus, graphene also has potential application as transparent conductive electrodes for Schottky photodiodes in the UV region.

  6. Fabrication of conducting-filament-embedded indium tin oxide electrodes: application to lateral-type gallium nitride light-emitting diodes.

    Science.gov (United States)

    Kim, Hee-Dong; Kim, Kyeong Heon; Kim, Su Jin; Kim, Tae Geun

    2015-11-02

    A novel conducting filament (CF)-embedded indium tin oxide (ITO) film is fabricated using an electrical breakdown method. To assess the performance of this layer as an ohmic contact, it is applied to GaN (gallium nitride) light-emitting diodes (LEDs) as a p-type electrode for comparison with typical GaN LEDs using metallic ITO. The operating voltage and output power of the LED with the CF embedded ITO are 3.93 V and 8.49 mW, respectively, at an injection current of 100 mA. This is comparable to the operating voltage and output power of the conventionally fabricated LEDs using metallic ITO (3.93 V and 8.43 mW). Moreover, the CF-ITO LED displays uniform and bright light emission indicating excellent current injection and spreading. These results suggest that the proposed method of forming ohmic contacts is at least as effective as the conventional method.

  7. Low thermal conductivity oxides

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei; Phillpot, Simon R.; Wan, Chunlei; Chernatynskiy, Aleksandr; Qu, Zhixue

    2012-10-09

    Oxides hold great promise as new and improved materials for thermal-barrier coating applications. The rich variety of structures and compositions of the materials in this class, and the ease with which they can be doped, allow the exploration of various mechanisms for lowering thermal conductivity. In this article, we review recent progress in identifying specific oxides with low thermal conductivity from both theoretical and experimental perspectives. We explore the mechanisms of lowering thermal conductivity, such as introducing structural/chemical disorder, increasing material density, increasing the number of atoms in the primitive cell, and exploiting the structural anisotropy. We conclude that further systematic exploration of oxide crystal structures and chemistries are likely to result in even further improved thermal-barrier coatings.

  8. Oxidatively stable polyaniline:polyacid electrodes for electrochemical energy storage.

    Science.gov (United States)

    Jeon, Ju-Won; Ma, Yuguang; Mike, Jared F; Shao, Lin; Balbuena, Perla B; Lutkenhaus, Jodie L

    2013-06-28

    Conjugated polymers, such as polyaniline, have been widely explored as sensors, electrodes, and conductive fillers. As an electrode material in electrochemical energy storage systems, polyaniline can be subject to irreversible oxidation that reduces cycle life and electrode capacity, thus, limiting its widespread application. Here we present a simple route to produce and prepare polyaniline-based electrodes that are oxidatively stable up to 4.5 V vs. Li/Li(+). The route uses a polyacid to stabilize the fully oxidized pernigraniline salt form of polyaniline, which is normally highly unstable as a homopolymer. The result is an organic electrode of exceptionally high capacity, energy density, power density, and cycle life. We demonstrate that the polyaniline:polyacid electrode stores 230 mA h g(-1) of polyaniline for over 800 cycles, far surpassing homopolymer polyaniline under equivalent conditions. This approach provides a highly stable, electrochemically reversible replacement for conventional polyaniline.

  9. Kinetic and geometric aspects of solid oxide fuel cell electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Skaarup, Steen

    1996-01-01

    The paper gives an overview of the main factors controlling the performance of the solid oxide fuel cell (SOFC) electrodes, emphasizing the most widely chosen anodes and cathodes, Ni-YSZ and LSM-YSZ. They are often applied as composites (mixtures) of the electron conducting electrode material...

  10. Carbon and Redox Tolerant Infiltrated Oxide Fuel-Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Sudireddy, Bhaskar Reddy; Blennow, P.

    2016-01-01

    To solve issues of coking and redox instability related to the presence of nickel in typical fuel electrodes in solid oxide cells,Gd-doped CeO2 (CGO) electrodes were studied using symmetriccells. These electrodes showed high electro-catalytic activity, butlow electronic conductivity. When...

  11. Carbon and Redox Tolerant Infiltrated Oxide Fuel-Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Sudireddy, Bhaskar Reddy; Blennow, P.

    2016-01-01

    To solve issues of coking and redox instability related to the presence of nickel in typical fuel electrodes in solid oxide cells,Gd-doped CeO2 (CGO) electrodes were studied using symmetriccells. These electrodes showed high electro-catalytic activity, butlow electronic conductivity. When...

  12. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  13. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-01-01

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm-3 at an energy density of 9 mW h cm-3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds. © The Royal Society of Chemistry 2015.

  14. Emerging Transparent Conducting Electrodes for Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tze-Bin Song

    2014-03-01

    Full Text Available Organic light emitting diodes (OLEDs have attracted much attention in recent years as next generation lighting and displays, due to their many advantages, including superb performance, mechanical flexibility, ease of fabrication, chemical versatility, etc. In order to fully realize the highly flexible features, reduce the cost and further improve the performance of OLED devices, replacing the conventional indium tin oxide with better alternative transparent conducting electrodes (TCEs is a crucial step. In this review, we focus on the emerging alternative TCE materials for OLED applications, including carbon nanotubes (CNTs, metallic nanowires, conductive polymers and graphene. These materials are selected, because they have been applied as transparent electrodes for OLED devices and achieved reasonably good performance or even higher device performance than that of indium tin oxide (ITO glass. Various electrode modification techniques and their effects on the device performance are presented. The effects of new TCEs on light extraction, device performance and reliability are discussed. Highly flexible, stretchable and efficient OLED devices are achieved based on these alternative TCEs. These results are summarized for each material. The advantages and current challenges of these TCE materials are also identified.

  15. Studies on conducting polymer and conducting polymerinorganic composite electrodes prepared via a new cathodic polymerization method

    Science.gov (United States)

    Singh, Nikhilendra

    A novel approach for the electrodeposition of conducting polymers and conducting polymer-inorganic composite materials is presented. The approach shows that conducting polymers, such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) can be electrodeposited by the application of a cathodic bias that generates an oxidizing agent, NO+, via the in-situ reduction of nitrate anions. This new cathodic polymerization method allows for the deposition of PPy and PEDOT as three dimensional, porous films composed of spherical polymer particles. The method is also suitable for the co-deposition of inorganic species producing conducting polymer-inorganic composite electrodes. Such composites are used as high surface area electrodes in Li-ion batteries, electrochemical hydrogen evolution and in the development of various other conducting polymer-inorganic composite electrodes. New Sn-PPy and Sb-PPy composite electrodes where Sn and Sb nanoparticles are well dispersed among the PPy framework are reported. These structures allow for decreased stress during expansion and contraction of the active material (Sn, Sb) during the alloying and de-alloying processes of a Li-ion battery anode, significantly alleviating the loss of active material due to pulverization processes. The new electrochemical synthesis mechanism allows for the fabrication of Sn-PPy and Sb-PPy composite electrodes directly from a conducting substrate and eliminates the use of binding materials and conducting carbon used in modern battery anodes, which significantly simplifies their fabrication procedures. Platinum (Pt) has long been identified as the most efficient catalyst for electrochemical water splitting, while nickel (Ni) is a cheaper, though less efficient alternative to Pt. A new morphology of PPy attained via the aforementioned cathodic deposition method allows for the use of minimal quantities of Pt and Ni dispersed over a very high surface area PPy substrate. These composite electrodes

  16. Lithium metal oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.xbatteries containing the electrodes.

  17. High Performance Nano-Ceria Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Martinez Aguilera, Lev; Sudireddy, Bhaskar Reddy

    2016-01-01

    In solid oxide electrochemical cells, the conventional Ni-based fuel-electrodes provide high electrocatalytic activity but they are often a major source of long-term performance degradation due to carbon deposition, poisoning of reaction sites, Ni mobility, etc. Doped-ceria is a promising mixed...... ionic-electronic conducting oxide that could solve these issues if it can be integrated into an appropriate electrode structure. Two new approaches to obtain high-performance nanostructured doped-ceria electrodes are highlighted. The first is an infiltration-based architecture with Ce0.8Pr0.2O2-δ...... an unprecedented electrode polarization resistance of ~0.01 Ω cm2 at 650 °C in H2/H2O. These results demonstrate that nano-ceria has the ability to achieve higher performance than Ni-based electrodes and show that the main challenge is obtaining sufficient electronic current collection without adding too much...

  18. Surface protected lithium-metal-oxide electrodes

    Science.gov (United States)

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  19. One-step solvothermal tailoring the compositions and phases of nickel cobalt sulfides on conducting oxide substrates as counter electrodes for efficient dye-sensitized solar cells

    Science.gov (United States)

    Huang, Niu; Li, Guowang; Huang, Hua; Sun, Panpan; Xiong, Tianli; Xia, Zhifen; Zheng, Fang; Xu, Jixing; Sun, Xiaohua

    2016-12-01

    Several nickel cobalt sulfide (Ni-Co-S) counter electrodes (CEs) are prepared, and the Ni-Co-S nanoparticles are in-situ grown on SnO2: F (FTO) transparent conductive glasses via a facile solvothermal process, in which thiourea is used as the sulfurizing reagent. The X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometer are employed to measure the microstructure and composition of the Ni-Co-S CEs. When a proper amount of thiourea is adopted, fine crystalline NiCo2S4 CE is obtained. When the amount of thiourea is small or large, (Ni,Co)4S3 or (Ni,Co)3S4 CE is acquired, respectively. Cyclic voltammetry, electrochemical impedance spectroscopy, Tafel polarization and open-circuit voltage decay (OCVD) measurements all demonstrate that the electrocatalytic activities and electrical conductivities of these Ni-Co-S CEs all approach or exceed those of Pt-pyrolysis CE. Their superior electrochemical performances are further confirmed by fabricating DSSCs with the Ni-Co-S CEs, they display similar or better photo-electric conversion efficiencies to/than the Pt-pyrolysis counterpart.

  20. Rolling silver nanowire electrodes: simultaneously addressing adhesion, roughness, and conductivity.

    Science.gov (United States)

    Hauger, Tate C; Al-Rafia, S M Ibrahim; Buriak, Jillian M

    2013-12-11

    Silver nanowire mesh electrodes represent a possible mass-manufacturable route toward transparent and flexible electrodes for plastic-based electronics such as organic photovoltaics (OPVs), organic light emitting diodes (OLEDs), and others. Here we describe a route that is based upon spray-coated silver nanowire meshes on polyethylene terephthalate (PET) sheets that are treated with a straightforward combination of heat and pressure to generate electrodes that have low sheet resistance, good optical transmission, that are topologically flat, and adhere well to the PET substrate. The silver nanowire meshes were prepared by spray-coating a solution of silver nanowires onto PET, in air at slightly elevated temperatures. The as-prepared silver nanowire electrodes are highly resistive due to the poor contact between the individual silver nanowires. Light pressure applied with a stainless steel rod, rolled over the as-sprayed silver nanowire meshes on PET with a speed of 10 cm s(-1) and a pressure of 50 psi, results in silver nanowire mesh arrays with sheet resistances of less than 20 Ω/□. Bending of these rolled nanowire meshes on PET with different radii of curvature, from 50 to 0.625 mm, showed no degradation of the conductivity of the electrodes, as shown by the constant sheet resistance before and after bending. Repeated bending (100 times) around a rod with a radius of curvature of 1 mm also showed no increase in the sheet resistance, demonstrating good adherence and no signs of delamination of the nanowire mesh array. The diffuse and direct transmittance of the silver nanowires (both rolled and as-sprayed) was measured for wavelengths from 350 to 1200 nm, and the diffuse transmission was similar to that of the PET substrate; the direct transmission decreases by about 7-8%. The silver nanowires were then incorporated into OPV devices with the following architecture: transparent electrode/PEDOT:PSS/P3HT:PC61BM/LiF/Al. While slightly lower in efficiency than the

  1. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  2. Conducting polymer electrodes for gel electrophoresis.

    Science.gov (United States)

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  3. Conducting polymer electrodes for gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Katarina Bengtsson

    Full Text Available In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene (PEDOT can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  4. Ni-Based Solid Oxide Cell Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Holtappels, Peter

    2013-01-01

    This paper is a critical review of the literature on nickel-based electrodes for application in solid oxide cells at temperature from 500 to 1000 _C. The applications may be fuel cells or electrolyser cells. The reviewed literature is that of experimental results on both model electrodes...... and practical composite cermet electrodes. A substantially longer three-phase boundary (TPB) can be obtained per unit area of cell in such a composite of nickel and electrolyte material, provided that two interwoven solid networks of the two solid and one gaseous phases are obtained to provide a three...... - dimensional TPB throughout the electrode volume. Variables that are used for controlling the properties of Ni-cermet electrodes are: (1) Ni/YSZ volume ratio, and (2) porosity and particle size distribution, which mainly affected by raw materials morphology, application methods and production parameters...

  5. A cold plasma plume with a highly conductive liquid electrode

    Institute of Scientific and Technical Information of China (English)

    Chen Guang-Liang; Chen Shi-gua; Chen Wen-Xing; Yang Si-Ze

    2008-01-01

    A cold dielectric barrier discharge (DBD) plasma plume with one highly conductive liquid electrode has been developed to treat thermally sensitive materials, and its preliminary discharging characteristics have been studied. The averaged electron temperature and density is estimated to be 0.6eV and 1011/cm3, respectively. The length of plasma plume can reach 5cm with helium gas (He), and the conductivity of the outer electrode affects the plume length obviously. This plasma plume could be touched by bare hand without causing any burning or painful sensation,which may provide potential application for safe aseptic skin care. Moreover, the oxidative particles (e.g., OH, O*03) in the downstream oxygen (02) gas of the plume have been applied to treat the landfill leachate. The results show that the activated 02 gas can degrade the landfill leachate effectively, and the chemical oxygen demand (COD),conductivity, biochemical oxygen demand (BOD), and suspended solid (SS) can be decreased by 52%, 57%, 76% and 92%, respectively.

  6. A micromechanical model for effective conductivity in granular electrode structures

    Science.gov (United States)

    Ott, Julia; Völker, Benjamin; Gan, Yixiang; McMeeking, Robert M.; Kamlah, Marc

    2013-10-01

    Optimization of composition and microstructure is important to enhance performance of solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB). For this, the porous electrode structures of both SOFC and LIB are modeled as a binary mixture of electronic and ionic conducting particles to estimate effective transport properties. Particle packings of 10 000 spherical, binary sized and randomly positioned particles are created numerically and densified considering the different manufacturing processes in SOFC and LIB: the sintering of SOFC electrodes is approximated geometrically, whereas the calendering process and volume change due to intercalation in LIB are modeled physically by a discrete element approach. A combination of a tracking algorithm and a resistor network approach is developed to predict the connectivity and effective conductivity for the various densified structures. For SOFC, a systematic study of the influence of morphology on connectivity and conductivity is performed on a large number of assemblies with different compositions and particle size ratios between 1 and 10. In comparison to percolation theory, an enlarged percolation area is found, especially for large size ratios. It is shown that in contrast to former studies the percolation threshold correlates to varying coordination numbers. The effective conductivity shows not only an increase with volume fraction as expected but also with size ratio. For LIB, a general increase of conductivity during the intercalation process was observed in correlation with increasing contact forces. The positive influence of calendering on the percolation threshold and the effective conductivity of carbon black is shown. The anisotropy caused by the calendering process does not influence the carbon black phase.

  7. Nanostructured transparent conducting oxide electrochromic device

    Energy Technology Data Exchange (ETDEWEB)

    Milliron, Delia; Tangirala, Ravisubhash; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2016-05-17

    The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.

  8. Evaluating conducting network based transparent electrodes from geometrical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ankush [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560064 Bangalore (India); Kulkarni, G. U., E-mail: guk@cens.res.in [Centre for Nano and Soft Matter Sciences, 560013 Bangalore (India)

    2016-01-07

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in

  9. Conductive diamond electrodes for water purification

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2007-12-01

    Full Text Available Nowadays, synthetic diamond has been studied for its application in wastewater treatment, electroanalysis, organic synthesis and sensor areas; however, its use in the water disinfection/purification is its most relevant application. The new electrochemistry applications of diamond electrodes open new perspectives for an easy, effective, and chemical free water treatment. This article highlights and summarizes the results of a selection of papers dealing with electrochemical disinfection using synthetic diamond films.

  10. Incorporation of indium tin oxide nanoparticles in PEMFC electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wolz, Andre [Renewable Energies Group, Institute for Materials Science, Technische Universitaet Darmstadt (Germany); CRP Henri Tudor, Department of Advanced Materials and Structures, Esch-sur-Alzette (Luxembourg); Zils, Susanne; Ruch, David; Michel, Marc [CRP Henri Tudor, Department of Advanced Materials and Structures, Esch-sur-Alzette (Luxembourg); Kotov, Nicholas [University of Michigan, Department of Chemical Engineering, Ann Arbor, MI (United States); Roth, Christina [Renewable Energies Group, Institute for Materials Science, Technische Universitaet Darmstadt (Germany); Institute for Applied Materials (IAM)-Energy Storage Systems (ESS), Eggenstein-Leopoldshafen (Germany)

    2012-05-15

    Carbon materials suffer from corrosion at the cathode of polymer electrolyte membrane fuel cells (PEMFCs). In the presence of water, carbon support materials are oxidized to carbon dioxide even at low potentials. Hence, nowadays it is very fashionable to look for alternative support materials, like oxides or conductive polymers. To gain the maximum performance for a new material one should also consider an appropriate electrode structure. This study shows the results for the incorporation of nanosized alternative support materials into advanced electrode architectures. Commercially available indium tin oxide (ITO) nanoparticles (<50 nm) are used as support for Pt nanoparticles in combination with Nafion-coated multi-walled carbon nanotubes (MWCNTs) on the cathode side of a PEMFC. The MWCNTs promote a high electronic conductivity and help to form a porous network, which could accommodate the Pt/ITO nanoparticles. The microscopic investigations show a homogeneous electrode structure composed of Pt/ITO and MWCNT/Nafion multilayer. Single cell measurements show a maximum power density of 73 mW cm{sup -2} and a Pt utilization of 1468 mW mg{sub Pt}{sup -1} for the cathode. The performance data and the Pt utilization are comparable to a standard Pt/carbon black electrode possessing the same Pt loading in the electrode. Beside this, it is shown for the first time that ITO serves as support material under real fuel cell conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  12. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  13. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  14. Sol-gel deposition and plasma treatment of intrinsic, aluminum-doped, and gallium-doped zinc oxide thin films as transparent conductive electrodes

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2015-09-01

    Zinc oxide and aluminum/gallium-doped zinc oxide thin films were deposited via sol-gel spin-coating technique. Employing plasma treatment as alternative to post thermal annealing, we found that the morphologies of these thin films have changed and the sheet resistances have been significantly enhanced. These plasma-treated thin films also show very good optical properties, with transmittance above 90% averaged over the visible wavelength range. Our best aluminum/gallium-doped zinc oxide thin films exhibit sheet resistances (Rs) of ~ 200 Ω/sq and ~ 150 Ω/sq, respectively.

  15. Transparent conducting electrodes based on thin, ultra-long copper nanowires and graphene nano-composites

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent S.; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2014-10-01

    High aspect-ratio ultra-long (> 70 μm) and thin (< 50 nm) copper nanowires (Cu-NW) were synthesized in large quantities using a solution-based approach. The nanowires, along with reduced graphene-oxide sheets, were coated onto glass as well as plastic substrates, thus producing transparent conducting electrodes. Our fabricated transparent electrodes achieved high optical transmittance and low sheet resistance, comparable to those of existing Indium Tin Oxide (ITO) electrodes. Furthermore, our electrodes show no notable loss of performance under high temperature and high humidity conditions. Adaptations of such nano-materials into smooth and ultrathin films lead to potential alternatives for the conventional tin-doped indium oxide, with applications in a wide range of solar cells, flexible displays, and other opto-electronic devices.

  16. Lithium metal oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  17. Manganese oxide composite electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Johnson, Christopher S.; Li, Naichao

    2007-12-04

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0electrode is activated by removing lithia, or lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  18. Conducting polymer-hydrogels for medical electrode applications

    Directory of Open Access Journals (Sweden)

    Rylie A Green, Sungchul Baek, Laura A Poole-Warren and Penny J Martens

    2010-01-01

    Full Text Available Conducting polymers hold significant promise as electrode coatings; however, they are characterized by inherently poor mechanical properties. Blending or producing layered conducting polymers with other polymer forms, such as hydrogels, has been proposed as an approach to improving these properties. There are many challenges to producing hybrid polymers incorporating conducting polymers and hydrogels, including the fabrication of structures based on two such dissimilar materials and evaluation of the properties of the resulting structures. Although both fabrication and evaluation of structure–property relationships remain challenges, materials comprised of conducting polymers and hydrogels are promising for the next generation of bioactive electrode coatings.

  19. Zinc oxide interdigitated electrode for biosensor application

    Science.gov (United States)

    Sin L., L.; Arshad, M. K. Md.; Fathil, M. F. M.; Adzhri, R.; M. Nuzaihan M., N.; Ruslinda, A. R.; Gopinath, Subash C. B.; Hashim, U.

    2016-07-01

    In biosensors, zinc oxide (ZnO) thin film plays a crucial role in term of stability, sensitivity, biocompatibility and low cost. Interdigitated electrode (IDE) design is one of the device architecture in biosensor for label free, stability and sensitivity. In this paper, we discuss the fabrication of zinc oxide deposited on the IDE as a transducer for sensing of biomolecule. The formation of APTES had increase the performance of the surface functionalization..Furthermore we extend the discuss on the surface functionalization process which is utilized for probe attachment onto the surface of biosensor through surface immobilization process, thus enables the sensing of biomolecules for biosensor application.

  20. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  1. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  2. Silver Nanowire-IZO-Conducting Polymer Hybrids for Flexible and Transparent Conductive Electrodes for Organic Light-Emitting Diodes

    Science.gov (United States)

    Yun, Ho Jun; Kim, Se Jung; Hwang, Ju Hyun; Shim, Yong Sub; Jung, Sun-Gyu; Park, Young Wook; Ju, Byeong-Kwon

    2016-01-01

    Solution-processed silver nanowire (AgNW) has been considered as a promising material for next-generation flexible transparent conductive electrodes. However, despite the advantages of AgNWs, some of their intrinsic drawbacks, such as large surface roughness and poor interconnection between wires, limit their practical application in organic light-emitting diodes (OLEDs). Herein, we report a high-performance AgNW-based hybrid electrode composed of indium-doped zinc oxide (IZO) and poly (3,4-ethylenediowythiophene):poly(styrenesulfonate) [PEDOT:PSS]. The IZO layer protects the underlying AgNWs from oxidation and corrosion and tightly fuses the wires together and to the substrate. The PEDOT:PSS effectively reduces surface roughness and increases the hybrid films’ transmittance. The fabricated electrodes exhibited a low sheet resistance of 5.9 Ωsq−1 with high transmittance of 86% at 550 nm. The optical, electrical, and mechanical properties of the AgNW-based hybrid films were investigated in detail to determine the structure-property relations, and whether optical or electrical properties could be controlled with variation in each layer’s thickness to satisfy different requirements for different applications. Flexible OLEDs (f-OLEDs) were successfully fabricated on the hybrid electrodes to prove their applicability; their performance was even better than those on commercial indium doped tin oxide (ITO) electrodes. PMID:27703182

  3. Conductance maps by electrochemical tunneling spectroscopy to fingerprint the electrode electronic structure.

    Science.gov (United States)

    Díez-Pérez, Ismael; Güell, Aleix G; Sanz, Fausto; Gorostiza, Pau

    2006-10-15

    We describe a methodology to perform reliable tunneling spectroscopy in electrochemical media. Sequential in situ tunneling spectra are recorded while the electrochemical potential of the electrode is scanned. Spectroscopic data are presented as conductance maps or conductograms that show the in situ electronic structure of an electrode surface while it undergoes an electrochemical reaction. The conductance map or conductogram represents the redox fingerprint of an electrode/liquid interface in a specific medium and can serve to predict its electrochemical behavior in a quantitative energy scale. The methodology is validated studying the reversible oxidation and passivity of an iron electrode in borate buffer, and we describe the main quantitative information that can be extracted concerning the semiconducting properties of the Fe passive film. This methodology is useful to study heterogeneous catalysis, electrochemical sensing and bioelectronic systems.

  4. Oxidatively stable polyaniline derivatives for electrodes in energy storage

    Science.gov (United States)

    Lutkenhaus, Jodie; Jeon, Ju-Won; Lutkenhaus Laboratory Team

    2013-03-01

    Conjugated polymers have been explored as electrodes in batteries and pseudocapacitors for over 30 years. Yet, their widespread implementation has been hindered for several reasons such as oxidative stability, low capacity, and rate limitations associated with ionic mobility relative to current state-of-the-art. On the other hand, conjugated polymers have much to offer because of their good electronic conductivity, high Coulombic efficiency, and theoretical capacities comparable to those of metal oxides. Our lab's current goal is to overcome the aforementioned challenges, so that conjugated polymeric electrodes can be suitable used in energy storage for applications such as mechanically flexible energy storage and structural power system. This talk will present one of several experimental approaches towards synthesis and processing of polyaniline that achieve oxidatively stable, high capacity, ionically mobile electrodes. This derivative is a water-processable colloid of intimately mingled polyaniline and polyacid, where the polyacid acts as the dopant. The origin of the oxidative stability is investigated using computation modeling. This work is supported in part by the Welch Foundation.

  5. The dependence of the electronic conductivity of carbon molecular sieve electrodes on their charging states.

    Science.gov (United States)

    Pollak, Elad; Genish, Isaschar; Salitra, Gregory; Soffer, Abraham; Klein, Lior; Aurbach, Doron

    2006-04-13

    The dependence of the electronic conductivity of activated carbon electrodes on their potential in electrolyte solutions was examined. Kapton polymer films underwent carbonization (1000 degrees C), followed by a mild oxidation process (CO(2) at 900 degrees C) for various periods of time, to obtain carbons of different pore structures. A specially designed cell was assembled in order to measure the conductivity of carbon electrodes at different potentials in solutions. When the carbon electrodes possessed molecular sieving properties, a remarkable dependence of their conductivity on their charging state was observed. Aqueous electrolyte solutions containing ions of different sizes were used in order to demonstrate this phenomenon. As the average pore size of the activated carbons was larger, their molecular sieving ability was lower, and the dependence of their conductivity on their charging state regained its classical form. This behavior is discussed herein.

  6. Patterning cells on optically transparent indium tin oxide electrodes.

    Science.gov (United States)

    Shah, Sunny; Revzin, Alexander

    2007-01-01

    The ability to exercise precise spatial and temporal control over cell-surface interactions is an important prerequisite to the assembly of multi-cellular constructs serving as in vitro mimics of native tissues. In this study, photolithography and wet etching techniques were used to fabricate individually addressable indium tin oxide (ITO) electrodes on glass substrates. The glass substrates containing ITO microelectrodes were modified with poly(ethylene glycol) (PEG) silane to make them protein and cell resistive. Presence of insulating PEG molecules on the electrode surface was verified by cyclic voltammetry employing potassium ferricyanide as a redox reporter molecule. Importantly, the application of reductive potential caused desorption of the PEG layer, resulting in regeneration of the conductive electrode surface and appearance of typical ferricyanide redox peaks. Application of reductive potential also corresponded to switching of ITO electrode properties from cell non-adhesive to cell-adhesive. Electrochemical stripping of PEG-silane layer from ITO microelectrodes allowed for cell adhesion to take place in a spatially defined fashion, with cellular patterns corresponding closely to electrode patterns. Micropatterning of several cell types was demonstrated on these substrates. In the future, the control of the biointerfacial properties afforded by this method will allow to engineer cellular microenvironments through the assembly of three or more cell types into a precise geometric configuration on an optically transparent substrate.

  7. Li4Ti5O12 and LiMn2O4 thin-film electrodes on transparent conducting oxides for all-solid-state and electrochromic applications

    Science.gov (United States)

    Roeder, Manuel; Beleke, Alexis B.; Guntow, Uwe; Buensow, Johanna; Guerfi, Abdelbast; Posset, Uwe; Lorrmann, Henning; Zaghib, Karim; Sextl, Gerhard

    2016-01-01

    Transparent Li4Ti5O12 and LiMn2O4 thin films were prepared on transparent conducting oxide substrates via sol-gel dip coating technique. The resulting films were highly uniform and transparent after annealing at 600 °C and 400 °C for Li4Ti5O12 and LiMn2O4, respectively. Different film thicknesses ranging from 50 nm to about 800 nm were attained and the films were characterized by scanning electron microscopy (SEM) for surface morphology and X-ray diffraction (XRD) for evaluating the crystallization of the active materials. Ellipsometric porosimetry was used to measure the porosity of the anode material. Furthermore, electrochemical techniques such as cyclovoltametry and galvanostatic charging/discharging confirm the successful synthesis of electrochemically active LiMn2O4 and Li4Ti5O12 films. Single-layer electrodes show stable capacities at discharge rates up to 100C indicating the high rate capability and therefore and therefore are classified as materials for power. Furthermore, the electrochromic effects were observed for both thin-film systems and evaluated in preliminary tests.

  8. Reduced graphite oxide in supercapacitor electrodes.

    Science.gov (United States)

    Lobato, Belén; Vretenár, Viliam; Kotrusz, Peter; Hulman, Martin; Centeno, Teresa A

    2015-05-15

    The current energy needs have put the focus on highly efficient energy storage systems such as supercapacitors. At present, much attention focuses on graphene-like materials as promising supercapacitor electrodes. Here we show that reduced graphite oxide offers a very interesting potential. Materials obtained by oxidation of natural graphite and subsequent sonication and reduction by hydrazine achieve specific capacitances as high as 170 F/g in H2SO4 and 84F/g in (C2H5)4NBF4/acetonitrile. Although the particle size of the raw graphite has no significant effect on the physico-chemical characteristics of the reduced materials, that exfoliated from smaller particles (<75 μm) result more advantageous for the release of the stored electrical energy. This effect is particularly evident in the aqueous electrolyte. Graphene-like materials may suffer from a drop in their specific surface area upon fabrication of electrodes with features of the existing commercial devices. This should be taken into account for a reliable interpretation of their performance in supercapacitors.

  9. Carbon nanotube yarns as strong flexible conductive capacitive electrodes

    NARCIS (Netherlands)

    Liu, F.; Wagterveld, R.M.; Gebben, B.; Otto, M.J.; Biesheuvel, P.M.; Hamelers, H.V.M.

    2015-01-01

    Carbon nanotube (CNT) yarn, consisting of 23 µm diameter CNT filaments, can be used as capacitive electrodes that are long, flexible, conductive and strong, for applications in energy and electrochemical water treatment. We measure the charge storage capacity as function of salt concentration, and u

  10. Wearable Keyboard Using Conducting Polymer Electrodes on Textiles.

    Science.gov (United States)

    Takamatsu, Seiichi; Lonjaret, Thomas; Ismailova, Esma; Masuda, Atsuji; Itoh, Toshihiro; Malliaras, George G

    2016-06-01

    A wearable keyboard is demonstrated in which conducting polymer electrodes on a knitted textile sense tactile input as changes in capacitance. The use of a knitted textile as a substrate endows stretchability and compatibility to large-area formats, paving the way for a new type of wearable human-machine interface.

  11. Highly efficient and bendable organic solar cells using a three-dimensional transparent conducting electrode

    Science.gov (United States)

    Wang, Wei; Bae, Tae-Sung; Park, Yeon Hyun; Kim, Dong Ho; Lee, Sunghun; Min, Guanghui; Lee, Gun-Hwan; Song, Myungkwan; Yun, Jungheum

    2014-05-01

    A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area and low effective series resistance for hole transport, OSCs based on this 3D electrode exhibit a power conversion efficiency that is 11-22% higher than that achievable in OSCs by means of conventional planar ITO film-type electrodes. A record high efficiency of 6.74% can be achieved in a bendable OSC fabricated on a poly(ethylene terephthalate) substrate.A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area

  12. A study of oxygen transport in mixed conducting oxides using isotopic exchange and conductivity relaxation

    NARCIS (Netherlands)

    Otter, den Matthijs Willem

    2000-01-01

    Mixed conducting oxygen ion conductors can be applied as membranes for the separation of oxygen from air, as electrodes for both oxygen pumps and solid oxide fuel cells. In these applications, oxygen molecules dissociate on the surface of the material. The atomic oxygen species pick up two electrons

  13. Conductive MOF electrodes for stable supercapacitors with high areal capacitance

    Science.gov (United States)

    Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2016-10-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  14. Conductive MOF electrodes for stable supercapacitors with high areal capacitance

    Science.gov (United States)

    Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2017-02-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  15. Selective detection and recovery of gold at tannin-immobilized non-conducting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Banu, Khaleda, E-mail: kbanu@ucla.edu [Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 (United States); Venture Business Laboratory, Center for Advanced Science and Innovation, Osaka University, Suita, Osaka 565-0871 (Japan); Shimura, Takayoshi [Venture Business Laboratory, Center for Advanced Science and Innovation, Osaka University, Suita, Osaka 565-0871 (Japan); Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University (Japan); Sadeghi, Saman, E-mail: samsadeghi@mednet.ucla.edu [Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 (United States)

    2015-01-01

    Highlights: • Selective detection of gold at non-conducting (NC) polymer modified electrode. • Mimosa tannin oxidized on glassy carbon electrode surface as NC polymeric film. • Permselective diffusion and mediated electron transfer at NC electrode surface. • Chemical recovery of gold is due to the reducing ability of the NC polymeric film. • Adsorption capacity of Au(III) on carbon fiber was 29 ± 1.45 mg g{sup −1} at 60 °C. - Abstract: A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl{sub 4}, and the electrochemical reduction of HAuCl{sub 4} to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl{sub 4} along with FeCl{sub 3} and/or CuCl{sub 2}, the NCPF remained selective toward the electrochemical reduction of HAuCl{sub 4} into the metallic state. The chemical reduction of HAuCl{sub 4} into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29 ± 1.45 mg g{sup −1} at 60 °C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes.

  16. Kinetic characteristics of mixed conductive electrodes for lithium ion batteries

    Science.gov (United States)

    Ma, Jianxin; Wang, Chunsheng; Wroblewski, Shannon

    The rate performances of four mixed conductive electrodes (Li 4/3Ti 5/3O 4, LiFePO 4, LiCoO 2 and LiCo 1/3Ni 1/3Mn 1/3O 2) were investigated using galvanostatic charge/discharge, electrochemical impedance Spectroscopy (EIS) and galvanostatic intermittent titration (GITT). These four electrode materials can be roughly divided into two groups according to the structure change during Li intercalation/extraction, i.e. the phase transition materials (Li 4/3Ti 5/3O 4 and LiFePO 4) and mixed phase transformation and solid solution materials (LiNi 1/3Mn 1/3Co 1/3O 2 and LiCoO 2). Both the ionic conductivity and phase transition kinetics have a strong impact on the rate capability of the electrode material in addition to the generally accepted factors such as particle size and electronic conductivity. The rate capabilities of Li 4/3Ti 5/3O 4 and LiFePO 4, which have an extended flat region in the charge/discharge curves, mainly depended on their phase transition kinetics. The rate performance of the solid solution materials were controlled by the ionic conductivity, with some influence from the electronic conductivity.

  17. Symmetrical, bi-electrode supported solid oxide fuel cell

    Science.gov (United States)

    Cable, Thomas L. (Inventor); Sofie, Stephen W. (Inventor)

    2009-01-01

    The present invention is a symmetrical bi-electrode supported solid oxide fuel cell comprising a sintered monolithic framework having graded pore electrode scaffolds that, upon treatment with metal solutions and heat subsequent to sintering, acquire respective anodic and cathodic catalytic activity. The invention is also a method for making such a solid oxide fuel cell. The graded pore structure of the graded pore electrode scaffolds in achieved by a novel freeze casting for YSZ tape.

  18. Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride for uric acid measurements

    Directory of Open Access Journals (Sweden)

    Vanessa F Cardoso, Pedro Martins, Gabriela Botelho, Luis Rebouta, Senentxu Lanceros-Méndez and Graca Minas

    2010-01-01

    Full Text Available Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride (β-PVDF. If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

  19. Prospects of Organic Conducting Polymer Modified Electrodes: Enzymosensors

    Directory of Open Access Journals (Sweden)

    Ravindra P. Singh

    2012-01-01

    Full Text Available Organic conducting polymer modified electrodes (OCPMEs have emerged as potential candidates for electrochemical biosensors due to their easy preparation methods along with unique properties, like stability in air and being compatible with biological molecules in a neutral aqueous solution. OCPMEs are playing an important role in the improvement of public health and environment for the detection of desired analytes with high sensitivity and specificity. In this paper, we highlight the prospects of OCMEs-based electrochemical enzymosensors.

  20. Nickel Oxide as an Electrode Material for Supercapacitors

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The preparation of Ni oxide films and their capacitive mechanism are discussed in this paper. Nickel oxide film electrodes perform pseudocapacitance in aqueous KOH and NaOH but perform double layer capacitance in LiCIO4/PC (propylence carbonate). The effect of increasing the specific capacitance was observed when Ni oxide film electrodes are doped with Co. A specific capacitance of around 70 F/g was achieved when using Ni oxide films doped with Co as electrodes and 1 mol/L aqueous KOH or NaOH as an electrolyte.

  1. Applications of Silver Nanowires on Transparent Conducting Film and Electrode of Electrochemical Capacitor

    Directory of Open Access Journals (Sweden)

    Yuan-Jun Song

    2014-01-01

    Full Text Available Silver nanowire has potential applications on transparent conducting film and electrode of electrochemical capacitor due to its excellent conductivity. Transparent conducting film (G-film was prepared by coating silver nanowires on glass substrate using Meyer rod method, which exhibited better performance than carbon nanotube and graphene. The conductivity of G-film can be improved by increasing sintering temperature. Electrode of electrochemical capacitor (I-film was fabricated through the same method with G-film on indium tin oxide (ITO. CV curves of I-film under different scanning rates had obvious redox peaks, which indicated that I-film exhibited excellent electrochemical pseudocapacitance performance and good reversibility during charge/discharge process. In addition, the specific capacitance of I-film was measured by galvanostatic charge/discharge experiments, indicating that I-film exhibits high special capacitance and excellent electrochemical stability.

  2. Enhancing the Supercapacitor Performance of Graphene/MnO 2 Nanostructured Electrodes by Conductive Wrapping

    KAUST Repository

    Yu, Guihua

    2011-10-12

    MnO2 is considered one of the most promising pseudocapactive materials for high-performance supercapacitors given its high theoretical specific capacitance, low-cost, environmental benignity, and natural abundance. However, MnO2 electrodes often suffer from poor electronic and ionic conductivities, resulting in their limited performance in power density and cycling. Here we developed a "conductive wrapping" method to greatly improve the supercapacitor performance of graphene/MnO2-based nanostructured electrodes. By three-dimensional (3D) conductive wrapping of graphene/MnO2 nanostructures with carbon nanotubes or conducting polymer, specific capacitance of the electrodes (considering total mass of active materials) has substantially increased by ∼20% and ∼45%, respectively, with values as high as ∼380 F/g achieved. Moreover, these ternary composite electrodes have also exhibited excellent cycling performance with >95% capacitance retention over 3000 cycles. This 3D conductive wrapping approach represents an exciting direction for enhancing the device performance of metal oxide-based electrochemical supercapacitors and can be generalized for designing next-generation high-performance energy storage devices. © 2011 American Chemical Society.

  3. Rechargeable aluminum batteries with conducting polymers as positive electrodes.

    Energy Technology Data Exchange (ETDEWEB)

    Hudak, Nicholas S.

    2013-12-01

    This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

  4. High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-01-01

    Metal oxide nanoparticles were chemically anchored onto graphene nanosheets (GNs) and the resultant composites - SnO2/GNs, MnO2/GNs and RuO2/GNs (58% of GNs loading) - coated over conductive carbon fabric substrates were successfully used as supercapacitor electrodes. The results showed that the incorporation of metal oxide nanoparticles improved the capacitive performance of GNs due to a combination of the effect of spacers and redox reactions. The specific capacitance values (with respect to the composite mass) obtained for SnO2/GNs (195 F g-1) and RuO 2/GNs (365 F g-1) composites at a scan rate of 20 mV s-1 in the present study are the best ones reported to date for a two electrode configuration. The resultant supercapacitors also exhibited high values for maximum energy (27.6, 33.1 and 50.6 W h kg-1) and power densities (15.9, 20.4 and 31.2 kW kg-1) for SnO2/GNs, MnO2/GNs and RuO2/GNs respectively. These findings demonstrate the importance and great potential of metal oxide/GNs based composite coated carbon fabric in the development of high-performance energy-storage systems. © 2011 The Royal Society of Chemistry.

  5. Low-bias negative differential conductance controlled by electrode separation

    Science.gov (United States)

    Yi, Xiao-Hua; Liu, Ran; Bi, Jun-Jie; Jiao, Yang; Wang, Chuan-Kui; Li, Zong-Liang

    2016-12-01

    The electronic transport properties of a single thiolated arylethynylene molecule with 9,10-dihydroanthracene core, denoted as TADHA, is studied by using non-equilibrium Green’s function formalism combined with ab initio calculations. The numerical results show that the TADHA molecule exhibits excellent negative differential conductance (NDC) behavior at lower bias regime as probed experimentally. The NDC behavior of TADHA molecule originates from the Stark effect of the applied bias voltage, by which the highest occupied molecular orbital (HOMO) and the HOMO-1 are pulled apart and become localized. The NDC behavior of TADHA molecular system is tunable by changing the electrode distance. Shortening the electrode separation can enhance the NDC effect which is attributed to the possible increase of coupling between the two branches of TADHA molecule. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374195 and 11405098) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013FM006).

  6. Graphene Oxide/ Ruthenium Oxide Composites for Supercapacitors Electrodes

    Science.gov (United States)

    Amir, Fatima

    Supercapacitors are electrical energy storage devices with high power density, high rate capability, low maintenance cost, and long life cycle. They complement or replace batteries in harvesting applications when high power delivery is needed. An important improvement in performance of supercapacitors has been achieved through recent advances in the development of new nanostructured materials. Here we will discuss the fabrication of graphene oxide/ ruthenium oxide supercacitors electrodes including electrophoretic deposition. The morphology and structure of the fabricated electrodes were investigated and will be discussed. The electrochemical properties were determined using cyclic voltammetry and galvanostatic charge/discharge techniques and the experiments that demonstrate the excellent capacitive properties of the obtained supercapacitors will also be discussed. The fabrication and characterization of the samples were performed at the Center of Functional Nanomaterials at Brookhaven National Lab. The developed approaches in our study represent an exciting direction for designing the next generation of energy storage devices. This work was supported in part by the U.S. Department of Energy through the Visiting Faculty Program and the research used resources of the Center for Functional Nanomaterials at Brookhaven National Laboratory.

  7. Effect of ionic conductivity of zirconia electrolytes on polarization properties of various electrodes in SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masahiro; Uchida, Hiroyuki; Yoshida, Manabu [Yamanashi Univ., Kofu (Japan)

    1996-12-31

    Solid oxide fuel cells (SOFCs) have been intensively investigated because, in principle, their energy conversion efficiency is fairly high. Lowering the operating temperature of SOFCs from 1000{degrees}C to around 800{degrees}C is desirable for reducing serious problems such as physical and chemical degradation of the constructing materials. The object of a series of the studies is to find a clue for achieving higher electrode performances at a low operating temperature than those of the present level. Although the polarization loss at electrodes can be reduced by using mixed-conducting ceria electrolytes, or introducing the mixed-conducting (reduced zirconia or ceria) laver on the conventional zirconia electrolyte surface, no reports are available on the effect of such an ionic conductivity of electrolytes on electrode polarizations. High ionic conductivity of the electrolyte, of course, reduces the ohmic loss. However, we have found that the IR-free polarization of a platinum anode attached to zirconia electrolytes is greatly influenced by the ionic conductivity, {sigma}{sub ion}, of the electrolytes used. The higher the {sigma}{sub ion}, the higher the exchange current density, j{sub 0}, for the Pt anode in H{sub 2} at 800 {approximately} 1000{degrees}C. It was indicated that the H{sub 2} oxidation reaction rate was controlled by the supply rate of oxide ions through the Pt/zirconia interface which is proportional to the {sigma}{sub ion}. Recently, we have proposed a new concept of the catalyzed-reaction layers which realizes both high-performances of anodes and cathodes for medium-temperature operating SOFCs. We present the interesting dependence of the polarization properties of various electrodes (the SDC anodes with and without Ru microcatalysts, Pt cathode, La(Sr)MnO{sub 3} cathodes with and without Pt microcatalysts) on the {sigma}{sub ion} of various zirconia electrolytes at 800 {approximately} 1000{degrees}C.

  8. Molybdate Based Ceramic Negative-Electrode Materials for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Reddy Sudireddy, Bhaskar; Mogensen, Mogens Bjerg

    2010-01-01

    Novel molybdate materials with varying Mo valence were synthesized as possible negative-electrode materials for solid oxide cells. The phase, stability, microstructure and electrical conductivity were characterized. The electrochemical activity for H2O and CO2 reduction and H2 and CO oxidation wa...

  9. Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides

    KAUST Repository

    Bi, Lei

    2015-07-01

    Proton-conducting oxides offer a promising way of lowering the working temperature of solid oxide cells to the intermediate temperate range (500 to 700. °C) due to their better ionic conductivity. In addition, the application of proton-conducting oxides in both solid oxide fuel cells (SOFCs) and sold oxide electrolysis cells (SOECs) provides unique advantages compared with the use of conventional oxygen-ion conducting conductors, including the formation of water at the air electrode site. Since the discovery of proton conduction in some oxides about 30. years ago, the development of proton-conducting oxides in SOFCs and SOECs (the reverse mode of SOFCs) has gained increased attention. This paper briefly summarizes the development in the recent years of R-SOFCs with proton-conducting electrolytes, focusing on discussing the importance of adopting chemically stable materials in both fuel cell and electrolysis modes. The development of electrode materials for proton-conducting R-SOFCs is also discussed. © 2015 Elsevier B.V.

  10. Silver nanowire-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells

    Science.gov (United States)

    Ye, Neng; Yan, Jielin; Xie, Shuang; Kong, Yuhan; Liang, Tao; Chen, Hongzheng; Xu, Mingsheng

    2017-07-01

    Silver nanowires (AgNWs) and graphene are both promising candidates as a transparent conductive electrode (TCE) to replace expensive and fragile indium tin oxide (ITO) TCE. A synergistically optimized performance is expected when the advantages of AgNWs and graphene are combined. In this paper, the AgNW-graphene hybrid electrode is constructed by depositing a graphene layer on top of the network of AgNWs. Compared with the pristine AgNWs electrode, the AgNW-graphene TCE exhibits reduced sheet resistance, lower surface roughness, excellent long-term stability, and corrosion resistance in corrosive liquids. The graphene layer covering the AgNWs provides additional conduction pathways for electron transport and collection by the electrode. Benefiting from these advantages of the hybrid electrodes, we achieve a power conversion efficiency of 8.12% of inverted organic solar cells using PTB7:PC71BM as the active layer, which is compared to that of the solar cells based on standard ITO TCE but about 10% higher than that based on AgNWs TCE.

  11. Synthesis of an organic conductive porous material using starch aerogels as template for chronic invasive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Starbird, Ricardo, E-mail: ricardo.starbird@tu-harburg.de [Institute of Optical and Electronic Materials, Hamburg University of Technology, Hamburg, 21073 (Germany); García-González, Carlos A.; Smirnova, Irina [Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, 21073 (Germany); Krautschneider, Wolfgang H. [Institute of Nanoelectronics, Hamburg University of Technology, Hamburg (Germany); Bauhofer, Wolfgang [Institute of Optical and Electronic Materials, Hamburg University of Technology, Hamburg, 21073 (Germany)

    2014-04-01

    We report the development of an organic conducting mesoporous material, as coat for invasive electrodes, by a novel methodology based on the use of starch aerogel as template. The poly(3,4-ethylenedioxythiophene) (PEDOT) aerogel was synthesized by polymerization of 3,4-ethylenedioxythiophene within a saturated starch aerogel with iron (III) p-toluenesulfonate (oxidizing agent) and subsequent removal of the polysaccharide template, followed by supercritical CO{sub 2} drying. The chemical structure and oxidation state of the resulting material were studied by Raman spectroscopy. The morphology and surface properties of the obtained nanoporous material were investigated by scanning electron microscopy (SEM), micro computed tomography (μCT) and nitrogen adsorption–desorption techniques. The composition and thermal behaviour were evaluated by energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA) respectively. A preliminary biocompatibility test verified the non-cytotoxic effects of the PEDOT aerogel. The large surface area and wide pore size distribution of the PEDOT conductive aerogel, along with its electrical properties, enable it to be used as extracellular matrix scaffold for biomedical applications. - Highlights: • Conductive porous material (PEDOT) was obtained using starch aerogel as template • The large mesoporous surface allows its use as extracellular matrix scaffold • The conductive organic aerogel is a suitable coat for chronic invasive electrodes • Gold electrodes coated with PEDOT aerogel showed a significant reduction of the impedance.

  12. Conducting-polymer-based supercapacitor devices and electrodes

    Science.gov (United States)

    Snook, Graeme A.; Kao, Pon; Best, Adam S.

    Supercapacitor electrodes and devices that utilise conducting polymers are envisaged to bridge the gap between existing carbon-based supercapacitors and batteries to form units of intermediate specific energy. This review looks at the major conducting polymer materials, namely, polyaniline, polypyrrole, polythiophene and derivatives of polythiophene, as well as composites of these materials with carbon nanotubes and inorganic battery materials. Various treatments of the conducting polymer materials to improve their properties are considered and comparisons are made with other supercapacitor materials such as carbon and with inorganic battery materials. Conducting polymers are pseudo-capacitive materials, which means that the bulk of the material undergoes a fast redox reaction to provide the capacitive response and they exhibit superior specific energies to the carbon-based supercapacitors (double-layer capacitors). In general conducting polymers are more conductive than the inorganic battery materials and consequently have greater power capability. On the downside, conducting polymers swell and contract substantially on charge and discharge, respectively. Consequently, cycle-life is poor compared with carbon-based supercapacitors which generally only charge via adsorption and desorption of ions (giving typically a few thousand cycles for conducting polymers compared with >500 000 cycles for carbon-based devices).

  13. Solid oxide cell oxygen electrode with enhanced durability

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention provides various methods of producing a solid oxide cell with an enhanced durability. Dopants are provided at the interface of the electrode comprising LSM and electrolyte and prevent especially the diffusion of Mn from the electrode layer into the electrolyte, stabilizing...

  14. Multifunctional Indium Tin Oxide Electrode Generated by Unusual Surface Modification

    Science.gov (United States)

    Bouden, Sarra; Dahi, Antoine; Hauquier, Fanny; Randriamahazaka, Hyacinthe; Ghilane, Jalal

    2016-11-01

    The indium tin oxide (ITO) material has been widely used in various scientific fields and has been successfully implemented in several devices. Herein, the electrochemical reduction of ITO electrode in an organic electrolytic solution containing alkali metal, NaI, or redox molecule, N-(ferrocenylmethyl) imidazolium iodide, was investigated. The reduced ITO surfaces were investigated by X-ray photoelectron spectroscopy and grazing incident XRD demonstrating the presence of the electrolyte cation inside the material. Reversibility of this process after re-oxidation was evidenced by XPS. Using a redox molecule based ionic liquid as supporting electrolyte leads to fellow electrochemically the intercalation process. As a result, modified ITO containing ferrocenyl imidazolium was easily generated. This reduction process occurs at mild reducing potential around -1.8 V and causes for higher reducing potential a drastic morphological change accompanied with a decrease of the electrode conductivity at the macroscopic scale. Finally, the self-reducing power of the reduced ITO phase was used to initiate the spontaneous reduction of silver ions leading to the growth of Ag nanoparticles. As a result, transparent and multifunctional active ITO surfaces were generated bearing redox active molecules inside the material and Ag nanoparticles onto the surface.

  15. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    Science.gov (United States)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  16. A New Conducting Polymer Electrode for Organic Electroluminescence Devices

    Institute of Scientific and Technical Information of China (English)

    QU Shu; PENG Jing-Cui

    2008-01-01

    @@ Conducting polymer polydimethylsiloxane (PDMS) is studied for the high performance electrode of organic electroluminescence devices. A method to prepare the electrode consisting of a SiC thin film and PDMS is investigated. By using ultra thin SiC films with different thicknesses, the organic electroluminescenee devices are obtained in an ultra vacuum system with the model device PDMS/SiC/PPV/Alq3, where PPV is poly para-phenylene vinylene and Alq3 is tris(8-hydroxyquinoline) aluminium. The capacitance-voltage (C-V), capacitance-frequency (C-F), current-voltage (I- V), radiation intensity-voltage (R- V) and luminance efficiency-voltage (E-V) measurements are systematically studied to investigate the conductivity, Fermi align-ment and devices properties in organic semiconductors. Scanning Kelvin probe measurement shows that the work function of PDMS/SiC anode with a 2.5-nm SiC over layer can be increased by as much as 0.28eV, compared to the conventional ITO anode. The result is attributed to the charge transfer effect and ohmic contacts at the interface.

  17. Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-01-01

    Herein, we report for the first time, conducting polymer (polyaniline (PANI) and polypyrrole (PPY)) coated carbon nanocoils (CNCs) as efficient binder-free electrode materials for supercapacitors. CNCs act as a perfect backbone for the uniform distribution of the conducting polymers in the composites. In two electrode configuration, the samples exhibited high specific capacitance with the values reaching up to 360 and 202 F g -1 for PANI/CNCs and PPY/CNCs respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be comparable to one of the best reported values for polymer coated multi-walled carbon nanotubes. In addition, the fabricated PANI/CNC based supercapacitors exhibited a high value of 44.61 Wh kg -1 for maximum storage energy per unit mass. Although the devices exhibit an initial capacitance loss due to the instability of the polymer, the specific capacitance stabilizes at a fixed value after 500 charge-discharge cycles. © 2012 The Royal Society of Chemistry.

  18. Fabrication of Crystalline Indium Tin Oxide Nanobasket Electrodes using Aluminum Anodic Oxide Template

    Science.gov (United States)

    Wang, Gou-Jen; Chen, He-Tsing; Yang, Hsihang

    2008-07-01

    Fabrication of crystalline indium tin oxide (ITO) nanobasket electrodes shaped by an anodic aluminum oxide (AAO) template for better electron conductivity is presented. ITO films were deposited on porous AAO templates by RF magnetron sputtering. The sputter-coated ITO films were characterized by field-emission scanning electron microscopy (FESEM) to illustrate the nanobasket morphologies. The compositions of the ITO films were characterized by energy-dispersive X-ray (EDS) analysis. X-ray diffraction (XRD) analysis was conducted to evaluate the crystallinity. The crystallinity can be enhanced by annealing at 300 °C. Although the conductivity of the ITO nanobasket film is larger than that of the conventional ITO thin film, the harvest efficiency can be markedly increased due to the nanobasket structure which enables most of the photoexcited electrons to reach their nearest electrode before losing their momentum. The presented ITO nanobasket films can be further used as a more effective electrode material for photovoltaics such as dye-sensitized solar cells (DSSCs).

  19. Effect of electrode fabrication methods on the electrode performance for ethanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuan-Hang; Li, Hui-Cheng; Yang, Hou-Hua; Zhang, Xin-Sheng; Zhou, Xing-Gui; Yuan, Wei-Kang [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237 (China); Niu, Li [State Key Laboratory of Electroanalytical Chemistry, Chang Chun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2011-01-01

    Two palladium/carbon nanofibers modified glassy carbon electrodes, Pd/CNFs/GC-C and Pd/CNFs/GC-E, are fabricated by the conventional powder type method and by the electrophoretic deposition in conjunction with pulse electrodeposition method, respectively. Field emission scanning electron microscopy and high resolution transmission electron microscopy reveal that Pd particles are uniformly dispersed on the two electrodes and X-ray diffraction shows the average Pd particle size of the Pd/CNFs/GC-E electrode is slightly larger than that of the Pd/CNFs/GC-C electrode. Cyclic voltammetric analysis shows that the electrocatalytic activity of Pd/CNFs/GC-E electrode is better than that of Pd/CNFs/GC-C electrode for ethanol oxidation in alkaline media, although the latter has higher Pd loading than the former. This is believed to be due to the higher utilization of Pd catalyst on Pd/CNFs/GC-E electrode than on Pd/CNFs/GC-C electrode, which is confirmed by the electrochemically active surface area measurements. In addition, chronopotentiometric analysis shows the long-term operation stability of Pd/CNFs/GC-E electrode is better than that of Pd/CNFs/GC-C electrode. (author)

  20. ITO/ATO bilayer transparent electrodes with enhanced light scattering, thermal stability and electrical conductance

    Science.gov (United States)

    Guillén, C.; Montero, J.; Herrero, J.

    2016-10-01

    Transparent electrodes based on In2O3:Sn (ITO) and SnO2:Sb (ATO) thin films have been deposited by sputtering at room temperature on soda lime glass (SLG) substrates. The preparation conditions were adjusted to obtain 250 nm-thick ITO layers with high conductivity and textured ATO coatings with various thicknesses from 80 to 200 nm. These ITO and ATO films have been combined to enhance the optical scattering and the electrical conductivity of the bilayer electrodes. Besides, a suitable ATO coating can prevent the oxidation of the ITO underlayer, thus increasing the stability of the overall electrical performance. With this purpose the structure, morphology, optical and electrical properties have been analysed comparatively for SLG/ITO, SLG/ATO and SLG/ITO/ATO samples after heating in air at 500 °C, studying the influence of the ATO layer thickness on the light scattering and thermal stability of the electrodes. In this way, a minimum sheet resistance of 8 Ω/sq has been achieved with a 120 nm-thick ATO film deposited on the 250 nm-thick ITO layer; such stacked electrode has visible transmittance near 80% and average haze HT = 10%, showing superior stability, light scattering and electrical performance than the isolated ITO and ATO films.

  1. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    Science.gov (United States)

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-03

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  2. Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection.

    Science.gov (United States)

    Li, Bing; Pan, Genhua; Avent, Neil D; Lowry, Roy B; Madgett, Tracey E; Waines, Paul L

    2015-10-15

    A novel printed graphene electrode modified with electrochemically reduced graphene oxide was developed for the detection of a specific oligonucleotide sequence. The graphene oxide was immobilized onto the surface of a graphene electrode via π-π bonds and electrochemical reduction of graphene oxide was achieved by cyclic voltammetry. A much higher redox current was observed from the reduced graphene oxide-graphene double-layer electrode, a 42% and 36.7% increase, respectively, in comparison with that of a bare printed graphene or reduced graphene oxide electrode. The good electron transfer activity is attributed to a combination of the large number of electroactive sites in reduced graphene oxide and the high conductivity nature of graphene. The probe ssDNA was further immobilized onto the surface of the reduced graphene oxide-graphene double-layer electrode via π-π bonds and then hybridized with its target cDNA. The change of peak current due to the hybridized dsDNA could be used for quantitative sensing of DNA concentration. It has been demonstrated that a linear range from 10(-7)M to 10(-12)M is achievable for the detection of human immunodeficiency virus 1 gene with a detection limit of 1.58 × 10(-13)M as determined by three times standard deviation of zero DNA concentration.

  3. Cation Defects and Conductivity in Transparent Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Exarhos, Gregory J.; Windisch, Charles F.; Ferris, Kim F.; Owings, Robert R.

    2007-10-24

    High quality doped zinc oxide and mixed transition metal spinel oxide films have been deposited by means of sputter deposition from metal and metal oxide targets, and by spin casting from aqueous or alcoholic precursor solutions. Deposition conditions and post-deposition processing are found to alter cation oxidation states and their distributions in both oxide materials resulting in marked changes to both optical transmission and electrical response. For ZnO, partial reduction of the neat or doped material by hydrogen treatment of the heated film or by electrochemical processing renders the oxide n-type conducting. Continued reduction was found to diminish conductivity. In contrast, oxidation of the infrared transparent p-type spinel conductors typified by NiCo2O4 was found to increase conductivity. The disparate behavior of these two materials is caused in part by the sign of the charge carrier and by the existence of two different charge transport mechanisms that are identified as free carrier conduction and polaron hopping. While much work has been reported concerning structure/property relationships in the free carrier conducting oxides, there is a significantly smaller body of information on transparent polaron conductors. In this paper, we identify key parameters that promote conductivity in mixed metal spinel oxides and compare their behavior with that of the free carrier TCO’s.

  4. Solution-processed silver nanowires as a transparent conducting electrode for air-stable inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myungkwan; Kim, Jong-Kuk [Surface Technology Division, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Yang, Shi-Young, E-mail: yangsy@jbnu.ac.kr [The Graduate School of Flexible and Printable Electronics, Polymer BIN Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kang, Jae-Wook, E-mail: jwkang@jbnu.ac.kr [The Graduate School of Flexible and Printable Electronics, Polymer BIN Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-12-31

    Highly efficient and air-stable inverted organic solar cells (IOSCs) were fabricated using solution-processed silver nanowire electrodes. The electrodes showed a low sheet resistance of ∼ 16 Ω sq{sup −1} and a high transmittance of ∼ 95% at a wavelength of 550 nm. A solution-processed ZnO buffer layer is typically used for electron transport and effective passivation of the surface of Ag NW electrodes. The device performance of the IOSCs that used these Ag NW electrodes, which were fabricated on a glass or plastic substrate, was > 94% of that of devices containing indium tin oxide (ITO) electrodes. This indicates that solution-processed Ag NW electrode can replace commercialized ITO and can be utilized in roll-to-roll and large-area fabrication processes. - Highlights: • Solution-processed silver nanowires (Ag NWs) as a transparent conducting electrode • Ag NW-based high-performance inverted organic solar cell (IOSCs) • IOSC performance > 94% of that of devices with indium tin oxide electrodes.

  5. One-Pot Solvothermal in Situ Growth of 1D Single-Crystalline NiSe on Ni Foil as Efficient and Stable Transparent Conductive Oxide Free Counter Electrodes for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Bao, Chao; Li, Faxin; Wang, Jiali; Sun, Panpan; Huang, Niu; Sun, Yihua; Fang, Liang; Wang, Lei; Sun, Xiaohua

    2016-12-07

    One-dimensional single-crystal nanostructural nickel selenides were successfully in situ grown on metal nickel foils by two simple one-step solvothermal methods, which formed NiSe/Ni counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The nickel foil acted as the nickel source in the reaction process, a supporting substrate, and an electron transport "speedway". Electrochemical testing indicated that the top 1D single-crystal NiSe exhibited prominent electrocatalytic activity for I3(-) reduction. Due to the metallic conductivity of Ni substrate and the outstanding electrocatalytic activity of single-crystal NiSe, the DSSC based on a NiSe/Ni CE exhibited higher fill factor (FF) and larger short-circuit current density (Jsc) than the DSSC based on Pt/FTO CE. The corresponding power conversion efficiency (6.75%) outperformed that of the latter (6.18%). Moreover, the NiSe/Ni CEs also showed excellent electrochemical stability in the I(-)/I3(-) redox electrolyte. These findings indicated that single-crystal NiSe in situ grown on Ni substrate was a potential candidate to replace Pt/TCO as a cheap and highly efficient counter electrode of DSSC.

  6. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide.

    Science.gov (United States)

    Ahn, Yumi; Jeong, Youngjun; Lee, Youngu

    2012-12-01

    Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells.

  7. Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation

    Science.gov (United States)

    Liu, Danni; Lu, Wenbo; Wang, Kunyang; Du, Gu; Asiri, Abdullah M.; Lu, Qun; Sun, Xuping

    2016-11-01

    In this letter, we report on the use of a cobalt phosphide nanowall array on conductive carbon cloth (CoP NA/CC) as an efficient catalyst electrode for methanol electro-oxidation under alkaline conditions. This CoP NA/CC achieves a current density of 96 mA cm-2 toward 0.5 M methanol at 0.5 V (versus a saturated calomel electrode (SCE)) in 1 M KOH. Moreover, this electrode exhibits superior stability and 93% of the initial anodic current density can be retained after 1000 cyclic voltammetry cycles when re-measured in new electrolyte.

  8. Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices.

    Science.gov (United States)

    Lee, Donghwa; Lee, Hyungjin; Ahn, Yumi; Jeong, Youngjun; Lee, Dae-Young; Lee, Youngu

    2013-09-07

    A new AgNW-graphene hybrid transparent conducting electrode (TCE) was prepared by dry-transferring a chemical vapor deposition (CVD)-grown monolayer graphene onto a pristine AgNW TCE. The AgNW-graphene hybrid TCE exhibited excellent optical and electrical properties as well as mechanical flexibility. The AgNW-graphene hybrid TCE showed highly enhanced thermal oxidation and chemical stabilities because of the superior gas-barrier property of the graphene protection layer. Furthermore, the organic solar cells with the AgNW-graphene hybrid TCE showed excellent photovoltaic performance as well as superior long-term stability under ambient conditions.

  9. Sputtered iridium oxide films (SIROFs) for neural stimulation electrodes

    OpenAIRE

    Cogan, Stuart F.; Ehrlich, Julia; Plante, Timothy D.; Smirnov, Anton; Shire, Douglas B.; Gingerich, Marcus; Rizzo, Joseph F

    2004-01-01

    Sputtered iridium oxide films (SIROFs) deposited by DC reactive sputtering from an iridium metal target have been characterized in vitro for their potential as neural recording and stimulation electrodes. SIROFs were deposited over gold metallization on flexible multielectrode arrays fabricated on thin (15 µm) polyimide substrates. SIROF thickness and electrode areas of 200–1300 nm and 1960–125600 µm2, respectively, were investigated. The charge-injection capacities of the SIROFs were evaluat...

  10. Electromechanical properties of indium–tin–oxide/poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) hybrid electrodes for flexible transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sunghoon; Lim, Kyounga [Functional Coatings Research Group, Korea Institute of Materials Science (KIMS), 797, Changwon daero, Changwon, Gyeongnam 641-831 (Korea, Republic of); Kang, Jae-Wook [Department of Flexible and Printable Electronics, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 561-756 (Korea, Republic of); Kim, Jong-Kuk [Functional Coatings Research Group, Korea Institute of Materials Science (KIMS), 797, Changwon daero, Changwon, Gyeongnam 641-831 (Korea, Republic of); Oh, Se-In; Eun, Kyoungtae [Graduate School of NID Fusion Technology, Seoul National University of Science and Technology, Gongneun-Dong, Nowon-Gu, Seoul 139-743 (Korea, Republic of); Kim, Do-Geun [Functional Coatings Research Group, Korea Institute of Materials Science (KIMS), 797, Changwon daero, Changwon, Gyeongnam 641-831 (Korea, Republic of); Choa, Sung-Hoon, E-mail: shchoa@seoultech.ac.kr [Graduate School of NID Fusion Technology, Seoul National University of Science and Technology, Gongneun-Dong, Nowon-Gu, Seoul 139-743 (Korea, Republic of)

    2014-01-01

    We investigated an indium–tin–oxide (ITO)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid electrode as a potential flexible and transparent electrode. In particular, the mechanical integrity of an ITO/PEDOT:PSS hybrid electrode deposited onto a polyethylene terephthalate (PET) substrate was investigated via outer/inner bending, twisting, stretching, and adhesion tests. A PEDOT:PSS layer was inserted between ITO and PET substrate as a buffer layer to improve the flexibility and electrical properties. When a PEDOT:PSS layer was inserted, the sheet resistance of the 20 nm-thick ITO film decreased from 270 Ω/square to 57 Ω/square. Notably, the ITO/PEDOT:PSS hybrid electrode had a constant resistance change (ΔR/R{sub 0}) within an outer and inner bending radius of 3 mm. The bending fatigue test showed that the ITO/PEDOT:PSS hybrid electrode can withstand 10,000 bending cycles. Furthermore, the stretched ITO/PEDOT:PSS hybrid electrode showed a fairly constant resistance change up to 4%, which is more stable than the resistance change of the ITO electrode. The ITO/PEDOT:PSS electrode also shows good adhesion strength. The superior flexibility of the ITO/PEDOT:PSS hybrid electrode is attributed to the existence of a flexible PEDOT:PSS layer. This indicates that the hybridization of an ITO and PEDOT:PSS layer is a promising electrode scheme for next-generation flexible transparent electrodes. - Highlights: • We propose a hybrid electrode for flexible electronics. • Electrode made from In{sub 2}O{sub 3}:SnO{sub 2}/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) • PEDOT:PSS as a buffer layer increases flexibility and electrical conductivity. • Hybrid electrode has a superior flexibility. • Hybrid electrode can be a promising flexible transparent electrode scheme.

  11. Universal electrode interface for electrocatalytic oxidation of liquid fuels.

    Science.gov (United States)

    Liao, Hualing; Qiu, Zhipeng; Wan, Qijin; Wang, Zhijie; Liu, Yi; Yang, Nianjun

    2014-10-22

    Electrocatalytic oxidations of liquid fuels from alcohols, carboxylic acids, and aldehydes were realized on a universal electrode interface. Such an interface was fabricated using carbon nanotubes (CNTs) as the catalyst support and palladium nanoparticles (Pd NPs) as the electrocatalysts. The Pd NPs/CNTs nanocomposite was synthesized using the ethylene glycol reduction method. It was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, voltammetry, and impedance. On the Pd NPs/CNTs nanocomposite coated electrode, the oxidations of those liquid fuels occur similarly in two steps: the oxidations of freshly chemisorbed species in the forward (positive-potential) scan and then, in the reverse scan (negative-potential), the oxidations of the incompletely oxidized carbonaceous species formed during the forward scan. The oxidation charges were adopted to study their oxidation mechanisms and oxidation efficiencies. The oxidation efficiency follows the order of aldehyde (formaldehyde) > carboxylic acid (formic acid) > alcohols (ethanol > methanol > glycol > propanol). Such a Pd NPs/CNTs nanocomposite coated electrode is thus promising to be applied as the anode for the facilitation of direct fuel cells.

  12. Ultraflexible polymer solar cells using amorphous zinc-indium-tin oxide transparent electrodes.

    Science.gov (United States)

    Zhou, Nanjia; Buchholz, Donald B; Zhu, Guang; Yu, Xinge; Lin, Hui; Facchetti, Antonio; Marks, Tobin J; Chang, Robert P H

    2014-02-01

    Polymer solar cells are fabricated on highly conductive, transparent amorphous zinc indium tin oxide (a-ZITO) electrodes. For two representative active layer donor polymers, P3HT and PTB7, the power conversion efficiencies (PCEs) are comparable to reference devices using polycrystalline indium tin oxide (ITO) electrodes. Benefitting from the amorphous character of a-ZITO, the new devices are highly flexible and can be repeatedly bent to a radius of 5 mm without significant PCE reduction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Versatile and Tunable Transparent Conducting Electrodes Based on Doped Graphene

    KAUST Repository

    Mansour, Ahmed E.

    2016-11-25

    The continued growth of the optoelectronics industry and the emergence of wearable and flexible electronics will continue to place an ever increasing pressure on replacing ITO, the most widely used transparent conducting electrode (TCE). Among the various candidates, graphene shows the highest optical transmittance in addition to promising electrical transport properties. The currently available large-scale synthesis routes of graphene result in polycrystalline samples rife with grain boundaries and other defects which limit its transport properties. Chemical doping of graphene is a viable route towards increasing its conductivity and tuning its work function. However, dopants are typically present at the surface of the graphene sheet, making them highly susceptible to degradation in environmental conditions. Few-layers graphene (FLG) is a more resilient form of graphene exhibiting higher conductivity and performance stability under stretching and bending as contrasted to single-layer graphene. In addition FLG presents the advantage of being amenable bulk doping by intercalation. Herein, we explore non-covalent doping routes of CVD FLG, such as surface doping, intercalation and combination thereof, through in-depth and systematic characterization of the electrical transport properties and energy levels shifts. The intercalation of FLG with Br2 and FeCl3 is demonstrated, showing the highest improvements of the figure of merit of TCEs of any doping scheme, which results from up to a five-fold increase in conductivity while maintaining the transmittance within 3% of that for the pristine value. Importantly the intercalation yields TCEs that are air-stable, due to encapsulation of the intercalant in the bulk of FLG. Surface doping with novel solution-processed metal-organic molecular species (n- and p-type) is demonstrated with an unprecedented range of work function modulation, resulting from electron transfer and the formation of molecular surface dipoles. However

  14. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications

    KAUST Repository

    Xia, Chuan

    2015-01-14

    Conducting polymers such as polyaniline (PAni) show a great potential as pseudocapacitor materials for electrochemical energy storage applications. Yet, the cycling instability of PAni resulting from structural alteration is a major hurdle to its commercial application. Here, the development of nanostructured PAni-RuO2 core-shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO2 grown by atomic layer deposition (ALD) on PAni nanofibers plays a crucial role in stabilizing the PAni pseudocapacitors and improving their energy density. The pseudocapacitors, which are based on optimized PAni-RuO2 core-shell nanostructured electrodes, exhibit very high specific capacitance (710 F g-1 at 5 mV s-1) and power density (42.2 kW kg-1) at an energy density of 10 Wh kg-1. Furthermore, they exhibit remarkable capacitance retention of ≈88% after 10 000 cycles at very high current density of 20 A g-1, superior to that of pristine PAni-based pseudocapacitors. This prominently enhanced electrochemical stability successfully demonstrates the buffering effect of ALD coating on PAni, which provides a new approach for the preparation of metal-oxide/conducting polymer hybrid electrodes with excellent electrochemical performance.

  15. High-performance Ti/BDD electrodes for pollutant oxidation.

    Science.gov (United States)

    Chen, Xueming; Chen, Guohua; Gao, Furong; Yue, Po Lock

    2003-11-01

    Deposition of stable boron-doped diamond (BDD) films on Ti substrates is believed to be very difficult. In the present study, the stability of Ti/BDD electrodes has been significantly improved by using an organic additive, CH2(OCH3)2. The improved electrodes had service lives of 175-264 h under accelerated life test conditions, which are 2.3-3.0 times longer than the service lives of electrodes prepared with the conventional H2 + CH4 mixture. Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) examinations demonstrated thatthe films had well-defined diamond features. The current efficiency (CE) obtained on Ti/BDD was 46.9-78.5% in oxidizing acetic acid, maleic acid, phenol, and dyes, which is 1.6-4.3-fold higher than that obtained on the typical Ti/ Sb2O5-SnO2 electrode. We used a Ti/BDD electrode prepared with H2 + CH4 + CH2(OCH3)2 for over 300 h; its activity remained superior. The successful development of stable and active Ti/BDD electrodes significantly increases the feasibility of industrial applications of anodic oxidation in wastewater treatment.

  16. Water-Induced Decoupling of Tracer and Electrochemical Oxygen Exchange Kinetics on Mixed Conducting Electrodes

    Science.gov (United States)

    2016-01-01

    Isotope exchange depth profiling and electrochemical impedance spectroscopy are usually regarded as complementary tools for measuring the surface oxygen exchange activity of mixed conducting oxides, for example used in solid oxide fuel cell (SOFC) electrodes. Only very few studies compared electrical (kq) and tracer (k*) exchange coefficients of solid–gas interfaces measured under identical conditions. The 1:1 correlation between kq and k* often made is thus more an assumption than experimentally verified. In this study it is shown that the measured rates of electrical and tracer exchange of oxygen may strongly differ. Simultaneous acquisition of kq and k* on La0.6Sr0.4FeO3-δ and SrTi0.3Fe0.7O3-δ thin film electrodes revealed that k* > 100 kq in humid oxidizing (16O2 + H218O) and humid reducing (H2 + H218O) atmospheres. These results are explained by fast water adsorption and dissociation on surface oxygen vacancies, forming two surface hydroxyl groups. Hence, interpreting experimentally determined k* values in terms of electrochemically relevant oxygen exchange is not straightforward. PMID:27389420

  17. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung, E-mail: hkkim@ynu.ac.kr

    2015-08-31

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □{sup −1} and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □{sup −1} after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐{sup −1}) and high transmittance (87.6%)

  18. Reduced chemically modified graphene oxide for supercapacitor electrode.

    Science.gov (United States)

    Rajagopalan, Balasubramaniyan; Chung, Jin Suk

    2014-01-01

    An efficient active material for supercapacitor electrodes is prepared by reacting potassium hydroxide (KOH) with graphene oxide followed by chemical reduction with hydrazine. The electrochemical performance of KOH treated graphene oxide reduced for 24 h (reduced chemically modified graphene oxide, RCMGO-24) exhibits a specific capacitance of 253 F g(-1) at 0.2 A g(-1) in 2 M H2SO4 compared to a value of 141 F g(-1) for graphene oxide reduced for 24 h (RGO-24), and good cyclic stability up to 3,000 cycles. Interestingly, RCMGO-24 demonstrated a higher specific capacitance and excellent cycle stability due to its residual oxygen functional groups that accelerate the faradaic reactions and aid in faster wetting. This non-annealed strategy offers the potential for simple and cost-effective preparation of an active material for a supercapacitor electrode.

  19. Facile synthesis of oxidation-resistant copper nanowires toward solution-processable, flexible, foldable, and free-standing electrodes.

    Science.gov (United States)

    Yin, Zhenxing; Lee, Chaedong; Cho, Sanghun; Yoo, Jeeyoung; Piao, Yuanzhe; Kim, Youn Sang

    2014-12-29

    Oxidation-resistant copper nanowires (Cu NWs) are synthesized by a polyol reduction method. These Cu NWs show excellent oxidation resistance, good dispersibility, and have a low sintering temperature. A Cu NW-based flexible, foldable, and free-standing electrode is fabricated by filtration and a sintering process. The electrode also exhibits high electrical conductivity even bending, folding, and free-standing. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Performance of GaN-on-Si-based vertical light-emitting diodes using silicon nitride electrodes with conducting filaments: correlation between filament density and device reliability.

    Science.gov (United States)

    Kim, Kyeong Heon; Kim, Su Jin; Lee, Tae Ho; Lee, Byeong Ryong; Kim, Tae Geun

    2016-08-08

    Transparent conductive electrodes with good conductivity and optical transmittance are an essential element for highly efficient light-emitting diodes. However, conventional indium tin oxide and its alternative transparent conductive electrodes have some trouble with a trade-off between electrical conductivity and optical transmittance, thus limiting their practical applications. Here, we present silicon nitride transparent conductive electrodes with conducting filaments embedded using the electrical breakdown process and investigate the dependence of the conducting filament density formed in the transparent conductive electrode on the device performance of gallium nitride-based vertical light-emitting diodes. Three gallium nitride-on-silicon-based vertical light-emitting diodes using silicon nitride transparent conductive electrodes with high, medium, and low conducting filament densities were prepared with a reference vertical light-emitting diode using metal electrodes. This was carried to determine the optimal density of the conducting filaments in the proposed silicon nitride transparent conductive electrodes. In comparison, the vertical light-emitting diodes with a medium conducting filament density exhibited the lowest optical loss, direct ohmic behavior, and the best current injection and distribution over the entire n-type gallium nitride surface, leading to highly reliable light-emitting diode performance.

  1. Highly Conductive Transparent Organic Electrodes with Multilayer Structures for Rigid and Flexible Optoelectronics

    OpenAIRE

    Guo, Xiaoyang; Liu, Xingyuan; Lin, Fengyuan; Li, Hailing; Fan, Yi; Zhang, Nan

    2015-01-01

    Transparent electrodes are essential components for optoelectronic devices, such as touch panels, organic light-emitting diodes, and solar cells. Indium tin oxide (ITO) is widely used as transparent electrode in optoelectronic devices. ITO has high transparency and low resistance but contains expensive rare elements, and ITO-based devices have poor mechanical flexibility. Therefore, alternative transparent electrodes with excellent opto-electrical performance and mechanical flexibility will b...

  2. Electrochemically active thickness of solid oxide fuel cell electrodes: Effectiveness model prediction

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jin Hyun [School of Mechanical Engineering, Daegu University, Gyungsan (Korea, Republic of)

    2017-04-15

    The three-phase boundaries (TPBs) in the electrodes of solid oxide fuel cells (SOFCs) have different activity because of the distributed nature of the electrochemical reactions. The electrochemically active thickness (EAT) is a good measure to evaluate the extension of the active reaction zone into the electrode and the effective utilization of TPBs. In this study, an electrochemical reaction/charge conduction problem is formulated based on the Butler–Volmer reaction kinetics and then numerically solved to determine the EATs for the active electrode layers of SOFCs with various microstructural, dimensional, and property parameters. Thus, the EAT data and correlations presented in this study are expected to provide useful information for designing efficient electrodes of SOFCs.

  3. Electrochemical Oxidation of Cyanide Using Platinized Ti Electrodes

    Directory of Open Access Journals (Sweden)

    Aušra VALIŪNIENĖ

    2013-12-01

    Full Text Available The cyanide-containing effluents are dangerous ecological hazards and must be treated before discharging into the environment. Anodic oxidation is one of the best ways to degrade cyanides. Pt anodes as the most efficient material for the cyanide electrochemical degradation are widely used. However, these electrodes are too expensive for industrial purposes. In this work Ti electrodes covered with nano-sized Pt particle layer were prepared and used for the anodic oxidation of cyanide ions. Surface images of Ti electrodes and Ti electrodes covered with different thickness layer of Pt were compared and characterized by the atomic force microscopy (AFM. The products formed in the solution during the CN- ions electrooxidation were examined by the Raman spectroscopy. An electrochemical Fast Fourier transformation (FFT impedance spectroscopy was used to estimate the parameters that reflect real surface roughness of Pt-modified Ti electrodes.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2514

  4. Conductive polymer foam surface improves the performance of a capacitive EEG electrode.

    Science.gov (United States)

    Baek, Hyun Jae; Lee, Hong Ji; Lim, Yong Gyu; Park, Kwang Suk

    2012-12-01

    In this paper, a new conductive polymer foam-surfaced electrode was proposed for use as a capacitive EEG electrode for nonintrusive EEG measurements in out-of-hospital environments. The current capacitive electrode has a rigid surface that produces an undefined contact area due to its stiffness, which renders it unable to conform to head curvature and locally isolates hairs between the electrode surface and scalp skin, making EEG measurement through hair difficult. In order to overcome this issue, a conductive polymer foam was applied to the capacitive electrode surface to provide a cushioning effect. This enabled EEG measurement through hair without any conductive contact with bare scalp skin. Experimental results showed that the new electrode provided lower electrode-skin impedance and higher voltage gains, signal-to-noise ratios, signal-to-error ratios, and correlation coefficients between EEGs measured by capacitive and conventional resistive methods compared to a conventional capacitive electrode. In addition, the new electrode could measure EEG signals, while the conventional capacitive electrode could not. We expect that the new electrode presented here can be easily installed in a hat or helmet to create a nonintrusive wearable EEG apparatus that does not make users look strange for real-world EEG applications.

  5. Comparative study of oxidation ability between boron-doped diamond (BDD) and lead oxide (PbO2) electrodes

    Science.gov (United States)

    Wei, Jun-Jun; Zhu, Xiu-Ping; Lü, Fan-Xiu; Ni, Jin-Ren

    2011-10-01

    The electrochemical oxidation capabilities of two high-performance electrodes, the boron-doped diamond film on Ti (Ti/BDD) and the lead oxide film on Ti (Ti/PbO2), were discussed. Hydroxyl radicals (·HO) generated on the electrode surface were detected by using p-nitrosodimethylaniline (RNO) as the trapping reagent. Electrochemical oxidation measurements, including the chemical oxygen demand (COD) removal and the current efficiency (CE), were carried out via the degradation of p-nitrophenol (PNP) under the galvanostatic condition. The results indicate that an indirect reaction, which is attributed to free hydroxyl radicals with high activation, conducts on the Ti/BDD electrode, while the absorbed hydroxyl radicals generated at the Ti/PbO2 surface results in low degradation efficiency. Due to quick mineralization which combusts PNP to CO2 and H2O absolutely by the active hydroxyl radical directly, the CE obtained on the Ti/BDD electrode is much higher than that on the Ti/PbO2 electrode, notwithstanding the number of hydroxyl radicals produced on PbO2 is higher than that on the BDD surface.

  6. Intrinsic and interfacial effect of electrode metals on the resistive switching behaviors of zinc oxide films.

    Science.gov (United States)

    Xue, W H; Xiao, W; Shang, J; Chen, X X; Zhu, X J; Pan, L; Tan, H W; Zhang, W B; Ji, Z H; Liu, G; Xu, X-H; Ding, J; Li, R-W

    2014-10-24

    Exploring the role of electrode metals on the resistive switching properties of metal electrode/oxide/metal electrode sandwiched structures provides not only essential information to understand the underlying switching mechanism of the devices, but also useful guidelines for the optimization of the switching performance. A systematic study has been performed to investigate the influence of electrodes on the resistive switching characteristics of zinc oxide (ZnO) films in this contribution, in terms of both the intrinsic and interfacial effects. It has been found that the low-resistance state resistances (Ω(LRS)) of all the investigated devices are below 50 Ω, which can be attributed to the formation of highly conductive channels throughout the ZnO films. On the other hand, the high-resistance state resistances (Ω(HRS)) depend on the electronegativity and ionic size of the employed electrode metals. Devices with electrode metals of high electronegativity and large ionic size possess high Ω(HRS) values, while those with electrode metals of low electronegativity and small ionic size carry low Ω(HRS) values. A similar trend of the set voltages has also been observed, while the reset voltages are all distributed in a narrow range close to ±0.5 V. Moreover, the forming voltages of the switching devices strongly depend on the roughness of the metal/ZnO and/or ZnO/metal interface. The present work provides essential information for better understanding the switching mechanism of zinc oxide based devices, and benefits the rational selection of proper electrode metals for the device performance optimization.

  7. Computer Simulations of Composite Electrodes in Solid-Oxide Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Svein

    1999-07-01

    Fuel cells are devices for converting the combined chemical (free) energy of fuels and oxygen (air) directly to electrical energy without relying on the dynamic action of steam heated by reacting fuel-oxygen mixtures, like in steam turbines, or of the reacting gas mixtures themselves, like in gas turbines. The basic rationale for fuel cells is their high efficiencies as compared to indirect-conversion methods. Fuel cells are currently being considered for a number of applications, among them de-centralised power supply. Fuel cells come in five basic types and are usually classified according to the type of electrolyte used, which in turn to a significant degree limits the options for anode and cathode materials. The solid-oxide fuel-cell (SOFC) , with which this thesis is concerned, is thus named after its oxide electrolyte, typically the oxide-ion conducting material yttria-stabilised zirconia (YSZ). While the cathode of an SOFC is often uniform in chemical composition (or at least intended to be), various problems of delamination, cracking etc. associated with the use of metallic anode electrocatalysts led to the development of composite SOFC anodes. Porous anodes consisting of Ni and YSZ particles in roughly 50/50 wt-% mixtures are now almost standard with any SOFC-development programme. The designer of composite SOFC electrodes is faced with at least three, interrelated questions: (1) What will be the optimum microstructure and composition of the composite electrode? (2) If the structure changes during operation, as is often observed, what will be the consequences for the internal losses in the cell? (3) How do we interpret electrochemical and conductivity measurements with regard to structure and composition? It is the primary purpose of this thesis to provide a framework for modelling the electrochemical and transport properties of composite electrodes for SOFC, and to arrive at some new insights that cannot be offered by experiment alone. Emphasis is put on

  8. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior

    Directory of Open Access Journals (Sweden)

    Ling Cui

    2015-09-01

    Full Text Available The influence of electrode configuration on the impedancemetric response of nitric oxide (NO gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ/Au]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%–18% O2 at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity.

  9. Electrodeposited iridium oxide for neural stimulation and recording electrodes.

    Science.gov (United States)

    Meyer, R D; Cogan, S F; Nguyen, T H; Rauh, R D

    2001-03-01

    Iridium oxide films formed by electrodeposition onto noniridium metal substrates are compared with activated iridium oxide films (AIROFs) as a low impedance, high charge capacity coating for neural stimulation and recording electrodes. The electrodeposited iridium oxide films (EIROFs) were deposited on Au, Pt, PtIr, and 316 LVM stainless steel substrates from a solution of IrCl4, oxalic acid, and K2CO3. A deposition protocol involving 50 potential sweeps at 50 mV/s between limits of 0.0 V and 0.55 V (versus Ag AgCl) followed by potential pulsing between the same limits produced adherent films with a charge storage capacity of >25 mC/cm2. Characterization by cyclic voltammetry and impedance spectroscopy revealed no differences in the electrochemical behavior of EIROF on non-Ir substrates and AIROF. The mechanical stability of the oxides was evaluated by ultrasonication in distilled water followed by dehydration and rehydration. Stability under charge injection was evaluated using 200 micros, 5.9 A/cm2 (1.2 mC/cm2) cathodal pulses. Loss of iridium oxide charge capacity was comparable for AIROFs and the EIROFs, ranging from 1% to 8% of the capacity immediately after activation or deposition. The EIROFs were deposited and evaluated on silicon microprobe electrodes and on metallized polyimide electrodes being developed for neural recording and stimulation applications.

  10. A novel layered perovskite as symmetric electrode for direct hydrocarbon solid oxide fuel cells

    Science.gov (United States)

    Zhao, Ling; Chen, Kongfa; Liu, Yuanxu; He, Beibei

    2017-02-01

    Layered perovskite oxides are well known to possess significant electronic, magnetic and electrochemical properties. Herein, we highlight a novel layered perovskite PrBaMn1.5Fe0.5O5+δ (PBMFO) as electrodes of symmetrical solid oxide fuel cells (SSOFCs). The layered PBMFO shows high electrical conductivity of 112.5 and 7.4 S cm-1 at 800 °C in air and 5% H2/Ar, respectively. The single cell with PBMFO symmetric electrodes achieves peak power density of 0.54 W cm-2 at 800 °C using humidified hydrogen as fuel. Moreover, PBMFO electrodes demonstrate good redox stability and high coking tolerance against hydrocarbon fuel.

  11. Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-09-01

    We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (>80%) and excellent sheet resistance (Rs zinc oxide (AZO) thin-film coatings, or platinum thin film coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (Voc = 720 mV) and short-circuit current-density (Jsc = 0.96 mA/cm2), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (Voc = 782 mV) and a decent short-circuit current (Jsc = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.

  12. Highly conductive, capacitive, flexible and soft electrodes based on a 3D graphene-nanotube-palladium hybrid and conducting polymer.

    Science.gov (United States)

    Kim, Hyun-Jun; Randriamahazaka, Hyacinthe; Oh, Il-Kwon

    2014-12-29

    Highly conductive, capacitive and flexible electrodes are fabricated by employing 3D graphene-nanotube-palladium nanostructures and a PEDOT:PSS conducting polymer. The fabricated flexible electrodes, without any additional metallic current collectors, exhibit increased charge mobility and good mechanical properties; they also allow greater access to the electrolyte ions and hence are suitable for flexible energy storage applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Three-dimensional random resistor-network model for solid oxide fuel cell composite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspour, Ali [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6 (Canada); Luo Jingli, E-mail: jingli.luo@ualberta.c [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6 (Canada); Nandakumar, K. [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA (United States)

    2010-04-30

    A three-dimensional reconstruction of solid oxide fuel cell (SOFC) composite electrodes was developed to evaluate the performance and further investigate the effect of microstructure on the performance of SOFC electrodes. Porosity of the electrode is controlled by adding pore former particles (spheres) to the electrode and ignoring them in analysis step. To enhance connectivity between particles and increase the length of triple-phase boundary (TPB), sintering process is mimicked by enlarging particles to certain degree after settling them inside the packing. Geometrical characteristics such as length of TBP and active contact area as well as porosity can easily be calculated using the current model. Electrochemical process is simulated using resistor-network model and complete Butler-Volmer equation is used to deal with charge transfer process on TBP. The model shows that TPBs are not uniformly distributed across the electrode and location of TPBs as well as amount of electrochemical reaction is not uniform. Effects of electrode thickness, particle size ratio, electron and ion conductor conductivities and rate of electrochemical reaction on overall electrochemical performance of electrode are investigated.

  14. Novel Conductive Carbon Black and Polydimethlysiloxane ECG Electrode: A Comparison with Commercial Electrodes in Fresh, Chlorinated, and Salt Water.

    Science.gov (United States)

    Noh, Yeonsik; Bales, Justin R; Reyes, Bersain A; Molignano, Jennifer; Clement, Amanda L; Pins, George D; Florian, John P; Chon, Ki H

    2016-08-01

    In this study, we evaluated the performance of two novel conductive carbon black (CB) and polydimethlysiloxane (PDMS) bio-potential electrodes, with and without an integrated flexible copper mesh, against commercially available electrodes (Polar(®) textile, Silver-coated textile, and carbon rubber). The electrodes were tested in three types of water (fresh/unfiltered, chlorinated, and salt water). Our testing revealed that our CB/PDMS electrode with integrated copper mesh provided a high-fidelity ECG signal morphologies without any amplitude degradation in all of the types of water tested (N = 10). The non-meshed CB/PDMS electrodes were also subjected to a long-term durability test by the US Navy SCUBA divers during which the electrodes maintained ECG signal quality for a 6 h period of continuous use. The results of a material degradation analysis revealed the CB/PDMS composite material does not exhibit significant changes in physical integrity after prolonged exposure to the test conditions. The newly developed meshed CB/PDMS electrodes have the potential to be used in a wide variety of both dry and wet environments including the challenge of obtaining ECG signals in salt water environments.

  15. Transparent conducting oxide induced by liquid electrolyte gating

    Science.gov (United States)

    ViolBarbosa, Carlos; Karel, Julie; Kiss, Janos; Gordan, Ovidiu-dorin; Altendorf, Simone G.; Utsumi, Yuki; Samant, Mahesh G.; Wu, Yu-Han; Tsuei, Ku-Ding; Felser, Claudia; Parkin, Stuart S. P.

    2016-10-01

    Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy-conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO3. Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ˜1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of W and O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications.

  16. Resistance switching in oxides with inhomogeneous conductivity

    Institute of Scientific and Technical Information of China (English)

    Shang Da-Shan; Sun Ji-Rong; Shen Bao-Gen; Wuttig Matthias

    2013-01-01

    Electric-field-induced resistance switching (RS) phenomena have been studied for over 60 years in metal/dielectrics/metal structures.In these experiments a wide range of dielectrics have been studied including binary transition metal oxides,perovskite oxides,chalcogenides,carbon-and silicon-based materials,as well as organic materials.RS phenomena can be used to store information and offer an attractive performance,which encompasses fast switching speeds,high scalability,and the desirable compatibility with Si-based complementary metal--oxide-semiconductor fabrication.This is promising for nonvolatile memory technology,i.e.,resistance random access memory (RRAM).However,a comprehensive understanding of the underlying mechanism is still lacking.This impedes faster product development as well as accurate assessment of the device performance potential.Generally speaking,RS occurs not in the entire dielectric but only in a small,confined region,which results from the local variation of conductivity in dielectrics.In this review,we focus on the RS in oxides with such an inhomogeneous conductivity.According to the origin of the conductivity inhomogeneity,the RS phenomena and their working mechanism are reviewed by dividing them into two aspects:interface RS,based on the change of contact resistance at metal/oxide interface due to the change of Schottky barrier and interface chemical layer,and bulk RS,realized by the formation,connection,and disconnection of conductive channels in the oxides.Finally the current challenges of RS investigation and the potential improvement of the RS performance for the nonvolatile memories are discussed.

  17. Platinum single crystal electrodes for the electrocatalysis of methane oxidation

    Directory of Open Access Journals (Sweden)

    Mayara Munaretto

    2011-03-01

    Full Text Available The main objective of this paper is to characterize the voltammetric profiles of platinum single crystals of low Miller indexes Pt(100 and Pt(110 and study their catalytic activities on the oxidation of methane. In this way, it was developed a metallic surface modified by presence of other metal oxide, which presents catalytic activity for this reaction. It is well known that the electrooxidation of methane (CH4 leads mainly to the formation of CO2 and H2O, however, the oxidation can also lead to the formation of CO, a reaction intermediate that has strong interaction with metal surfaces, such as platinum. This molecule tends to accumulate on the platinum surface and to passive it, due to the self-poisoning, decreasing its catalytic activity. Therefore, the main aim of this work was the development of a platinum electrode modified by deposition of titanium oxide, which presented electrocatalytic properties for the oxidation of methane.

  18. Improvements and artifact analysis in conductivity images using multiple internal electrodes.

    Science.gov (United States)

    Farooq, Adnan; Tehrani, Joubin Nasehi; McEwan, Alistair Lee; Woo, Eung Je; Oh, Tong In

    2014-06-01

    Electrical impedance tomography is an attractive functional imaging method. It is currently limited in resolution and sensitivity due to the complexity of the inverse problem and the safety limits of introducing current. Recently, internal electrodes have been proposed for some clinical situations such as intensive care or RF ablation. This paper addresses the research question related to the benefit of one or more internal electrodes usage since these are invasive. Internal electrodes would be able to reduce the effect of insulating boundaries such as fat and bone and provide improved internal sensitivity. We found there was a measurable benefit with increased numbers of internal electrodes in saline tanks of a cylindrical and complex shape with up to two insulating boundary gel layers modeling fat and muscle. The internal electrodes provide increased sensitivity to internal changes, thereby increasing the amplitude response and improving resolution. However, they also present an additional challenge of increasing sensitivity to position and modeling errors. In comparison with previous work that used point sources for the internal electrodes, we found that it is important to use a detailed mesh of the internal electrodes with these voxels assigned to the conductivity of the internal electrode and its associated holder. A study of different internal electrode materials found that it is optimal to use a conductivity similar to the background. In the tank with a complex shape, the additional internal electrodes provided more robustness in a ventilation model of the lungs via air filled balloons.

  19. Multifunctional oxides for integrated manufacturing of efficient graphene electrodes for organic electronics

    Science.gov (United States)

    Kidambi, Piran R.; Weijtens, Christ; Robertson, John; Hofmann, Stephan; Meyer, Jens

    2015-02-01

    Using multi-functional oxide films, we report on the development of an integration strategy for scalable manufacturing of graphene-based transparent conducting electrodes (TCEs) for organic electronics. A number of fundamental and process challenges exists for efficient graphene-based TCEs, in particular, environmentally and thermally stable doping, interfacial band engineering for efficient charge injection/extraction, effective wetting, and process compatibility including masking and patterning. Here, we show that all of these challenges can be effectively addressed at once by coating graphene with a thin (>10 nm) metal oxide (MoO3 or WO3) layer. We demonstrate graphene electrode patterning without the need for conventional lithography and thereby achieve organic light emitting diodes with efficiencies exceeding those of standard indium tin oxide reference devices.

  20. Patterning Cells on Optically Transparent Indium Tin Oxide Electrodes

    OpenAIRE

    Shah, Sunny; Revzin, Alexander

    2007-01-01

    The ability to exercise precise spatial and temporal control over cell-surface interactions is an important prerequisite to the assembly of multi-cellular constructs serving as in vitro mimics of native tissues. In this study, photolithography and wet etching techniques were used to fabricate individually addressable indium tin oxide (ITO) electrodes on glass substrates. The glass substrates containing ITO microelectrodes were modified with poly(ethylene glycol) (PEG) silane to make them pr...

  1. Sub-micrometer-sized graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells.

    Science.gov (United States)

    Veerappan, Ganapathy; Bojan, Karunagaran; Rhee, Shi-Woo

    2011-03-01

    Sub-micrometer-sized colloidal graphite (CG) was tested as a conducting electrode to replace transparent conducting oxide (TCO) electrodes and as a catalytic material to replace platinum (Pt) for I(3)(-) reduction in dye-sensitized solar cell (DSSC). CG paste was used to make a film via the doctor-blade process. The 9 μm thick CG film showed a lower resistivity (7 Ω/◻) than the widely used fluorine-doped tin oxide TCO (8-15 Ω/◻). The catalytic activity of this graphite film was measured and compared with the corresponding properties of Pt. Cyclic voltammetry and electrochemical impedance spectroscopy studies clearly showed a decrease in the charge transfer resistance with the increase in the thickness of the graphite layer from 3 to 9 μm. Under 1 sun illumination (100 mW cm(-2), AM 1.5), DSSCs with submicrometer-sized graphite as a catalyst on fluorine-doped tin oxide TCO showed an energy conversion efficiency greater than 6.0%, comparable to the conversion efficiency of Pt. DSSCs with a graphite counter electrode (CE) on TCO-free bare glass showed an energy conversion efficiency greater than 5.0%, which demonstrated that the graphite layer could be used both as a conducting layer and as a catalytic layer.

  2. Preparation and characterization of copper-doped cobalt oxide electrodes.

    Science.gov (United States)

    Rosa-Toro, A La; Berenguer, R; Quijada, C; Montilla, F; Morallón, E; Vazquez, J L

    2006-11-30

    Cobalt oxide (Co3O4) and copper-doped cobalt oxide (CuxCo(3-x)O4) films have been prepared onto titanium support by the thermal decomposition method. The electrodes have been characterized by different techniques such as cyclic voltammetry, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). The effect on the electrochemical and crystallographic properties and surface morphology of the amount of copper in the oxide layer has been analyzed. The XPS spectra correspond to a characteristic monophasic Cu-Co spinel oxides when x is below 1. However, when the copper content exceeds that for the stoichiometric CuCo2O4 spinel, a new CuO phase segregates at the surface. The analysis of the surface cation distribution indicates that Cu(II) has preference for octahedral sites.

  3. Effective passivation of Ag nanowire-based flexible transparent conducting electrode by TiO2 nanoshell

    Science.gov (United States)

    Lee, Dong Geon; Lee, Dongjun; Yoo, Jin Sun; Lee, Sangwook; Jung, Hyun Suk

    2016-08-01

    Silver nanowire-based flexible transparent electrodes have critical problem, in spite of their excellent electrical and optical properties, that the electrical conductance and transparency degrade within several days in air because of oxidation of silver. To prevent the degradation of the silver nanowire, we encapsulated Ag-NWs with thin TiO2 barrier. Bar-coated silver nanowires on flexible polymer substrate were laminated at 120 °C, followed by atomic layer deposition of TiO2 nanoshell. With 20 nm of TiO2 nanoshells on silver nanowires, the transparent electrode keeps its electrical and optical properties over 2 months. Moreover, the TiO2-encapsulated silver nanowire-based transparent electrodes exhibit excellent bending durability.

  4. Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes: synthesis and optical and electrical properties.

    Science.gov (United States)

    Yang, Zhenzhen; Gao, Shanmin; Li, Wei; Vlasko-Vlasov, Vitalii; Welp, Ulrich; Kwok, Wai-Kwong; Xu, Tao

    2011-04-01

    Photovoltaic (PV) schemes often encounter a pair of fundamentally opposing requirements on the thickness of semiconductor layer: a thicker PV semiconductor layer provides enhanced optical density, but inevitably increases the charge transport path length. An effective approach to solve this dilemma is to enhance the interface area between the terminal electrode, i.e., transparent conducting oxide (TCO) and the semiconductor layer. As such, we report a facile, template-assisted, and solution chemistry-based synthesis of 3-dimensional inverse opal fluorinated tin oxide (IO-FTO) electrodes. Synergistically, the photonic crystal structure possessed in the IO-FTO exhibits strong light trapping capability. Furthermore, the electrical properties of the IO-FTO electrodes are studied by Hall effect and sheet resistance measurement. Using atomic layer deposition method, an ultrathin TiO(2) layer is coated on all surfaces of the IO-FTO electrodes. Cyclic voltammetry study indicates that the resulting TiO(2)-coated IO-FTO shows excellent potentials as electrodes for electrolyte-based photoelectrochemical solar cells.

  5. Design of a MHD conduction machine with frame-type electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gel' fgat, Yu.M.; Gorbunov, L.A.

    1977-01-01

    An examination is made of a spatial channel model of a MHD conduction machine with frame type electrodes. The design was performed by the finite differences method. Relationships were obtained between the channel's basic magnetohydrodynamic characteristics and its form and the shape of the frame electrodes.

  6. Characteristics of SnO2:Sb Films as Transparent Conductive Electrodes of Flexible Inverted Organic Solar Cells.

    Science.gov (United States)

    Lee, Jaehyeong; Kim, Nam-Hoon; Park, Yong Seob

    2016-05-01

    Antimony-doped tin oxide (ATO) films were deposited on polyethersulfone (PES) substrates by means of a radio frequency (RF) magnetron sputtering method, using a SnO2 target mixed with 6 wt% Sb at room temperature and using various RF powers; these films were used as transparent electrodes in inverted organic solar cells (IOSC). We investigated the structural, optical, and electrical properties of the resulting films by means of various analyses, including X-ray diffraction (XRD), UV-visible spectroscopy, and Hall effect measurements. The crystallinity and conductivity of the ATO films were increased by increasing the RF power used. Based on the experimental data acquired, we fabricated IOSCs based on ATO electrodes deposited by using various conditions. Each IOSC device was composed of an ATO electrode, a ZnO buffer layer, a photoactive layer (P3HT:PCBM), and an Al cathode. The IOSC based on an ATO electrode fabricated at the RF power of 160 W exhibited good device performance due to the electrode's high conductivity and crystallinity.

  7. Effect of conductive substrate (working electrode) on the morphology of electrodeposited Cu2O

    Science.gov (United States)

    ELmezayyen, Ayman S.; Guan, Shian; Reicha, Fikry M.; El-Sherbiny, Ibrahim M.; Zheng, jianming; Xu, Chunye

    2015-05-01

    Cu2O thin films were electrodeposited from a Cu(II) acetate solution containing 0.02 M Copper(II) acetate (Cu(OAc)2) and 0.1 M sodium acetate (NaOAc) at pH 5.6, using three different working conductive electrodes with approximately the same square resistance -indium doped tin oxide glass (ITO/Glass), fluorine-doped tin oxide glass (FTO/Glass), and indium doped tin oxide polyethylene terephthalate (ITO/PET)—under identical conditions using a common growth condition. The Cu2O thin films were characterized by means of scanning electron microscopy, x-ray diffraction (XRD), current density versus growth time for Cu2O films, and electrochemical impedance spectroscopy. The results showed that the choice of substrate materials has a crucial role in controlling Cu2O growth. The charge transfer resistance (Rct) of FTO/Glass-Cu2O exhibits the lowest value; this means that FTO/Glass-Cu2O possess the highest electron transfer efficiency. All Cu2O films showed n-type semiconductor characteristic with charge carrier densities varying between 1.4 × 1018-1.2 × 1019 cm-3.

  8. Investigation of ITO free transparent conducting polymer based electrode

    Science.gov (United States)

    Sharma, Vikas; Sapna, Sachdev, Kanupriya

    2016-05-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10-4Ω-cm), high carrier concentration (2.9 x 1021 cm-3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  9. Application of symmetric solid oxide fuel cell in fuel containing sulfur: I. Effect of electrodes

    Science.gov (United States)

    Tan, Wenyi; Pan, Cai; Yang, Song; Zhong, Qin

    2015-03-01

    Symmetric solid oxide fuel cells (SFCs) with double perovskite materials serving as symmetric electrodes are applied for the first time in fuel containing sulfur, aiming to explore solution to sulfur poison. Temperature-programmed techniques, including H2-TPR, O2-TPD, were used to evaluate catalytic activities of electrodes in different atmosphere, while stabilities of electrode materials in sulfur containing fuel gas were characterized in terms of phase structures, conductivity, and microstructures by SEM, four-probe method and XRD as a function of temperature and operating time. It is evidenced that Sr2CoMoO6 (denoted as SCMO) possesses better hydrogen reducibility, oxygen desorption and stability in sulfur containing fuel gas. In configuration of Sr2XMoO6 (X = Co, Ni)|Ce0.85Sm0.15O2-δ (SDC)|Sr2XMoO6, the maximum power density Pmax reaches 95 mW cm-2 for SCMO and 68 mW cm-2 for SNMO with H2-0.1% H2S at 750 °C. Lower polarization resistance of SCMO (about 2.7 Ω cm2 at 750 °C) is achieved. It is interestingly noted that SFC performance composed of ex-situ regenerated symmetric electrodes SCMO falls only by 21%, as compared to that of fresh electrodes. The combinations of thermal analysis (TG-DTA) and surface analysis (XPS) convince that an ex-situ regeneration of symmetric electrode can be realized.

  10. P-type transparent conducting oxides

    Science.gov (United States)

    Zhang, Kelvin H. L.; Xi, Kai; Blamire, Mark G.; Egdell, Russell G.

    2016-09-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d 10 orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu+-based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr3+-based oxides (3d 3) and post-transition metal oxides with lone pair state (ns 2). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.

  11. Inkjet Impregnation for Tailoring Air Electrode Microstructure to Improve Solid Oxide Cells Performance

    KAUST Repository

    Da’as, Eman H.

    2015-09-30

    The urge to lower the operating temperature of solid oxide cells (SOCs) to the intermediate ranges between 500-700°C motivated the research into impregnation processes, which offer highly efficient SOC air electrodes at low operating temperatures. Lack of controllability and reproducibility of this technique in the conventional way is still considered as an inadequacy for industrialization since it is performed manually. Therefore, inkjet-printing technology was proposed as an adequate approach to perform scalable and controllable impregnation for SOC air electrodes, which in turn leads to low operating temperatures. Composite LSM-ionic conductive air electrodes of weight ratio 1:2 were fabricated by inkjet impregnation of lanthanum strontium manganite (La0.8Sr0.2MnO3) precursor nitrates onto a porous ionic conductive backbone structure. First, porous yttria stabilized zirconia (8YSZ) substrates prepared by tape casting were used to study the influence of the printing parameters on the lateral dispersion and penetration of LSM ink inside the pores. XRD analysis confirmed the formation of LSM phase after calcination at 800°C for 2 h, while SEM revealed the formation of LSM nanostructures. It has been found by optical microscope observations that the spacing between the drops and the substrate temperature have a significant role in controlling the printing process. Next, the optimized printing parameters were applied in the inkjet impregnation of the LSM ink into porous YSZ electrodes that were spin coated on both sides of dense YSZ layers. LSM-YSZ composite air electrodes achieved an area specific resistance (ASR) of around 0.29 Ω.cm2 at 700°C. The performance of LSM-YSZ composite electrodes was influenced by the microstructure and the thickness, and by the electrode/electrolyte interface characteristics. As a result, the enhancement in LSM-YSZ composite electrode performance was observed due to the better percolation in LSM, YSZ and oxygen diffusion. Finally

  12. Flexible polymer solar cells based on Ag metallic grids and functional reduced graphene oxide composite electrode

    Science.gov (United States)

    Zheng, Qiao; Cheng, Shuying; Jia, Hongjie; Zhang, Hong; Liu, Si; Lai, Yunfeng; Yu, Jinling; Zhou, Haifang

    2017-10-01

    By combining the appropriate Ag metallic grids with a thin functional reduced graphene oxide (MGs/F-rGO) film, a suitable photoelectric flexible electrode of the polymer solar cells (PSCs) is obtained. The conductivity and transmission of the MGs/F-rGO composited films can be improved by HNO3 modified. The optimized sheet resistance and transmission of the flexible electrode achieve to 25 Ω □‑1 and 83% at 550 nm wavelength. Flexible PSCs with the MGs/F-rGO electrode show 5.63% power conversion efficiency. The photoelectric properties of the MGs/F-rGO film comparable with that of ITO substrates guarantee a high short current and an enhanced PCE of the solar cells. This method provides a feasible way for fabricating low-cost and flexible PSCs.

  13. Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides

    KAUST Repository

    Paniagua, Sergio A.

    2016-05-26

    Transparent conducting oxides (TCOs), such as indium tin oxide and zinc oxide, play an important role as electrode materials in organic-semiconductor devices. The properties of the inorganic-organic interface - the offset between the TCO Fermi level and the relevant transport level, the extent to which the organic semiconductor can wet the oxide surface, and the influence of the surface on semiconductor morphology - significantly affect device performance. This review surveys the literature on TCO modification with phosphonic acids (PAs), which has increasingly been used to engineer these interfacial properties. The first part outlines the relevance of TCO surface modification to organic electronics, surveys methods for the synthesis of PAs, discusses the modes by which they can bind to TCO surfaces, and compares PAs to alternative organic surface modifiers. The next section discusses methods of PA monolayer deposition, the kinetics of monolayer formation, and structural evidence regarding molecular orientation on TCOs. The next sections discuss TCO work-function modification using PAs, tuning of TCO surface energy using PAs, and initiation of polymerizations from TCO-tethered PAs. Finally, studies that examine the use of PA-modified TCOs in organic light-emitting diodes and organic photovoltaics are compared. © 2016 American Chemical Society.

  14. CATALYTIC AND ELECTROCATALYTIC ACTIVITY OF Pt-Ru/C ELECTRODE FOR HYDROGEN OXIDATION IN ALKALINE

    Directory of Open Access Journals (Sweden)

    D. LABOU

    2008-07-01

    Full Text Available The kinetics of the oxidation of H2 on PtRu/C gas-diffusion electrode was studied by interfacing the electrode with aqueous electrolytes at different pH values. The conducting electrolytes were KOH and HClO4 aqueous solutions with different concentrations. It is shown that the nature of the aqueous electrolyte plays the role of an active catalyst support for the PtRu/C electrode which drastically affects its catalytic properties. During the aforementioned interaction, termed electrochemical metal support interaction (EMSI, the electrochemical potential of the electrons at the catalyst Fermi level is equalised with the electrochemical potential of the solvated electron in the aqueous electrolyte. The electrochemical experiments carried out at various pH values showed that the electrochemical promotion catalysis (EPOC is more intense when the catalyst-electrode is interfaced with electrolytes with high pH values where the OH– ionic conduction prevails. It was concluded that similar to the solid state electrochemical systems EPOC proceeds through the formation of a polar adsorbed promoting layer of , electrochemically supplied by the OH- species, at the three phase boundaries of the gas exposed gas diffusion catalyst-electrode surface.

  15. STUDY OF THE ELECTRICAL CONDUCTIVITY OF GRAPHITE FELT EMPLOYED AS A POROUS ELECTRODE

    Directory of Open Access Journals (Sweden)

    E.O. Vilar

    1998-09-01

    Full Text Available The objective of the present work is to study the variation of the electrode distribution potential under electrical conductivity variation of graphite felt RVG 4000 ( Le Carbone Lorraine when submitted to a mechanical compression. Experimental and theoretical studies show that this electrical conductivity variation can changes the electrode potential distribution E(x working under limiting current conditions. This may occur when graphite felt is confined in an electrochemical reactor compartment or simply when it is submitted to a force performed by an electrolyte percolation in a turbulent flow. This investigation can contribute to the improvement of electrochemical cells that may use this material as an electrode. Finally, one modification is suggested in the equation that gives the electrode potential distribution E(x - E(0. In this case the parameter L (thickness in metal porous electrodes is substituted for Lf = Li (1-j, where j corresponds to the reduction factor of the initial thickness Li.

  16. Metalless electrodes for capacitively coupled contactless conductivity detection on electrophoresis microchips.

    Science.gov (United States)

    Duarte Junior, Gerson F; Fracassi da Silva, José Alberto; Mendonça Francisco, Kelliton José; do Lago, Claudimir Lucio; Carrilho, Emanuel; Coltro, Wendell K T

    2015-08-01

    This paper describes the use of ionic solutions as sensing electrodes for capacitively coupled contactless conductivity detection on electrophoresis microchips. Initially, two channels were engraved in a PMMA holder by using a CO2 laser system and sealed with a thin adhesive membrane. PDMS electrophoresis chips were fabricated by soft lithography and reversibly sealed against the polymer membrane. Different ionic solutions were investigated as metalless electrodes. The electrode channels were filled with KCl solutions prepared in conductivity values from approximately 10 to 40 S/m. The best analytical response was achieved using the KCl solution with 21.9 S/m conductivity (2 mol/L). Besides KCl, we also tested NaCl and LiCl solutions for actuating as detection electrodes. Taking into account the same electrolyte concentration (2 mol/L), the best response was recorded with KCl solution due to its higher ionic conductivity. The optimum operating frequency (400 kHz) and the best sensing electrode (2 mol/L KCl) were used to monitor electrophoretic separations of a mixture containing K(+) , Na(+) , and Li(+) . The use of liquid solutions as sensing electrodes for capacitively coupled contactless conductivity detection measurements has revealed great performance to monitor separations on chip-based devices, avoiding complicated fabrication schemes to include metal deposition and encapsulation of electrodes. The LOD values were estimated to be 28, 40, and 58 μmol/L for K(+) , Na(+) , and Li(+) , respectively, what is comparable to that of conventional metal electrodes. When compared to the use metal electrodes, the proposed approach offers advantages regarding the easiness of fabrication, simplicity, and lower cost per device.

  17. Plasmonic resonances in nanostructured transparent conducting oxide films

    CERN Document Server

    Kim, Jongbum; Emani, Naresh K; Boltasseva, Alexandra

    2012-01-01

    Transparent conducting oxides (TCO) are emerging as possible alternative constituent materials to replace noble metals such as silver and gold for low-loss plasmonic and metamaterial (MMs) applications in the near infrared (NIR) regime. The optical characteristics of TCOs have been studied to evaluate the functionalities and potential of these materials as metal substitutes in plasmonic and MM devices, even apart from their usual use as electrode materials. However, patterning TCOs at the nanoscale, which is necessary for plasmonic and MM devices, is not well-studied. This paper investigates nanopatterning processes for TCOs, especially the lift-off technique with electron-beam lithography, and the realization of plasmonic nanostructures with TCOs. By employing the developed nanopatterning process, we fabricate 2D-periodic arrays of TCO nanodisks and characterize the material's plasmonic properties to evaluate the performance of TCOs as metal substitutes. Light-induced collective oscillations of the free elec...

  18. Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells.

    Science.gov (United States)

    Werner, Jérémie; Geissbühler, Jonas; Dabirian, Ali; Nicolay, Sylvain; Morales-Masis, Monica; Wolf, Stefaan De; Niesen, Bjoern; Ballif, Christophe

    2016-07-13

    Transition metal oxides (TMOs) are commonly used in a wide spectrum of device applications, thanks to their interesting electronic, photochromic, and electrochromic properties. Their environmental sensitivity, exploited for gas and chemical sensors, is however undesirable for application in optoelectronic devices, where TMOs are used as charge injection or extraction layers. In this work, we first study the coloration of molybdenum and tungsten oxide layers, induced by thermal annealing, Ar plasma exposure, or transparent conducting oxide overlayer deposition, typically used in solar cell fabrication. We then propose a discoloration method based on an oxidizing CO2 plasma treatment, which allows for a complete bleaching of colored TMO films and prevents any subsequent recoloration during following cell processing steps. Then, we show that tungsten oxide is intrinsically more resilient to damage induced by Ar plasma exposure as compared to the commonly used molybdenum oxide. Finally, we show that parasitic absorption in TMO-based transparent electrodes, as used for semitransparent perovskite solar cells, silicon heterojunction solar cells, or perovskite/silicon tandem solar cells, can be drastically reduced by replacing molybdenum oxide with tungsten oxide and by applying a CO2 plasma pretreatment prior to the transparent conductive oxide overlayer deposition.

  19. Conductive Gel Increases the Small Tumor Treatment With Electrochemotherapy Using Needle Electrodes.

    Science.gov (United States)

    Suzuki, Daniela O H; Marques, Claudia M G; Rangel, Marcelo M M

    2016-07-01

    The combination of chemotherapy drugs and high electric field treatment in local cancer is named electrochemotherapy. The European Standard Operation Procedure of Electrochemotherapy (ESOPE) provides guidelines for treatment of cutaneous and subcutaneous tumors. The electrochemotherapy of numerous tumors varying in sizes is more convenient using needle electrodes. However, ESOPE recommends that needle electrodes are applied to deeper tumors. The application of needle electrodes to treatment of superficial small tumors seems to be practical in electrochemotherapy. Plate electrodes and gel improve the electrochemotherapy efficacy. This technique provides electric field homogeneity in irregularly shaped tissue structures (bulk tumors). We propose an investigation of needle electrode and gel in electrochemotherapy of superficial tumors. In vivo experiment with squamous cell carcinoma (SCC) spontaneous nodules in dog was used to validate the mathematical tissue model. The numerical model considers the tissue conductivity dependent on local electric field. Our studies demonstrated that conductive gel is important for effective treatment of superficial tumors with needle electrodes. The needle electrodes and gel presented reduction of medium current, increased the tumor-free margin, and improved the practical application in relation to plate electrode.

  20. Amperometric detection and electrochemical oxidation of aliphatic amines and ammonia on silver-lead oxide thin-film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jisheng [Iowa State Univ., Ames, IA (United States)

    1996-01-08

    This thesis comprises three parts: Electrocatalysis of anodic oxygen-transfer reactions: aliphatic amines at mixed Ag-Pb oxide thin-film electrodes; oxidation of ammonia at anodized Ag-Pb eutectic alloy electrodes; and temperature effects on oxidation of ethylamine, alanine, and aquated ammonia.

  1. Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell

    Science.gov (United States)

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Choi, Yun Seon; Jeong, Sung Hoon

    2016-07-01

    Textile fabric based electrodes due to their lightweight, flexibility and cost effectiveness, coupled with the ease of fabrication are recently given a huge attention as wearable energy sources. The current dye sensitized solar cells (DSSCs) are based on Platinized-Fluorinated Tin oxide (Pt-FTO) glass electrode, which is not only expensive, but also rigid and heavyweight. In this work, a highly conductive-graphene coated cotton fabric (HC-GCF) is fabricated with a surface resistance of only 7 Ω sq-1. HC-GCF is used as an efficient counter electrode (CE) in DSSC and the results are examined using photovoltaic and electrochemical analysis. HC-GCF counter electrode shows a negligible change of resistance to bending at various bending positions and is also found extremely resistant to electrolyte solution and washing with water. Cyclic voltammogram, Nyquist and the Tafel plots suggest an excellent electro catalytic activity (ECA) for the reduction of tri-iodide (I3-) ions. Symmetrical cells prepared using HC-GCF, indicate a very low charge transfer resistance (RCT) of only 1.2 Ω, which is nearly same to that of the Pt with 1.04 Ω. Furthermore, a high photovoltaic conversion efficiency (PCE) of 6.93% is achieved using HC-GCF counter electrode using polymer electrolyte.

  2. Preparation of Reduced Graphene Oxides as Electrode Materials for Supercapacitors

    KAUST Repository

    Bai, Yaocai

    2012-06-01

    Reduced graphene oxide as outstanding candidate electrode material for supercapacitor has been investigated. This thesis includes two topics. One is that three kinds of reduced graphene oxides were prepared by hydrothermal reduction under different pH conditions. The pH values were found to have great influence on the reduction of graphene oxides. Acidic and neutral media yielded reduced graphene oxides with more oxygen-functional groups, lower specific surface areas but broader pore size distributions than those in basic medium. Variations induced by the pH changes resulted in great differences in the supercapacitor performance. The graphene produced in the basic solution presented mainly electric double layer behavior with specific capacitance of 185 F/g, while the other two showed additional pseudocapacitance behavior with specific capacitance of 225 F/g (acidic) and 230 F/g (neutral), all at a constant current density of 1A/g. The other one is that different reduced graphene oxides were prepared via solution based hydrazine reduction, low temperature thermal reduction, and hydrothermal reduction. The as- prepared samples were then investigated by UV-vis spectroscopy, X-ray diffraction, Raman spectroscopy, and Scanning electron microscope. The supercapacitor performances were also studied and the hydrothermally reduced graphene oxide exhibited the highest specific capacitance.

  3. Potential electrode materials for symmetrical Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ruiz Morales, J. C.

    2008-08-01

    Full Text Available Chromites, titanates and Pt-YSZ-CeO2 cermets have been investigated as potential electrode materials for an alternative concept of Solid Oxide Fuel Cell (SOFC, the symmetrical SOFCs (SFC. In this configuration, the same electrode material is used simultaneously as anode and cathode. Interconnector materials, such as chromites, could be considered as potential SFC electrodes, at least under pure hydrogen-fed at relatively high temperatures, as they do not exhibit significant catalytic activity towards hydrocarbon oxidation. This may be overcome by partially substituting Cr in the perovskite B-sites by other transition metal cations such as Mn. La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM is a good candidate for such SFCs, rendering fuel cell performances in excess of 500 and 300mW/cm2 using pure H2 and CH4 as fuel, at 950 oC. Similarly, typical n-type electronic conductors traditionally regarded as anode materials, such as strontium titanates, may also operate under oxidising conditions as cathodes by substituting some Ti content for Fe to introduce p-type conductivity. Preliminary electrochemical experiments on La4Sr8Ti12-xFexO38-δ-based SFCs show that they perform reasonably well under humidified H2, at high temperatures. A third group of materials is the support material of any typical cermet anode, i.e. YSZ, CeO2 plus a current collector. It has been found that this combination could be optimised to operate as SFC electrodes, rendering performances of 400mW/cm2 under humidified pure H2 at 950oC.

    Cromitas, titanatos y cermets de Pt-YSZ-CeO2 han sido investigados como potenciales materiales de electrodo para un concepto alternativo de Pilas de Combustible de Óxidos Sólidos (SOFC, las pilas SOFC simétricas (SFC. En

  4. Study of a sandwich structure of transparent conducting oxide films prepared by electron beam evaporation at room temperature

    OpenAIRE

    Chiu, Po Kai; Cho, Wen Hao; Chen, Hung Ping; Hsiao, Chien Nan; Yang, Jer Ren

    2012-01-01

    Transparent conducting ZnO/Ag/ZnO multilayer electrodes having electrical resistance much lower than that of widely used transparent electrodes were prepared by ion-beam-assisted deposition (IAD) under oxygen atmosphere. The optical parameters were optimized by admittance loci analysis to show that the transparent conducting oxide (TCO) film can achieve an average transmittance of 93%. The optimum thickness for high optical transmittance and good electrical conductivity was found to be 11 nm ...

  5. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes

    Science.gov (United States)

    Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C.

    2016-05-01

    The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability.The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability

  6. Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells.

    Science.gov (United States)

    La Notte, Luca; Villari, Enrica; Palma, Alessandro Lorenzo; Sacchetti, Alberto; Michela Giangregorio, Maria; Bruno, Giovanni; Di Carlo, Aldo; Bianco, Giuseppe Valerio; Reale, Andrea

    2017-01-07

    A five-layer (5L) graphene on a glass substrate has been demonstrated as a transparent conductive electrode to replace indium tin oxide (ITO) in organic photovoltaic devices. The required low sheet resistance, while maintaining high transparency, and the need of a wettable surface are the main issues. To overcome these, two strategies have been applied: (i) the p-doping of the multilayer graphene, thus reaching 25 Ω□(-1) or (ii) the O2-plasma oxidation of the last layer of the 5L graphene that results in a contact angle of 58° and a sheet resistance of 134 Ω□(-1). A Nd:YVO4 laser patterning has been implemented to realize the desired layout of graphene through an easy and scalable way. Inverted Polymer Solar Cells (PSCs) have been fabricated onto the patterned and modified graphene. The use of PEDOT:PSS has facilitated the deposition of the electron transport layer and a non-chlorinated solvent (ortho-xylene) has been used in the processing of the active layer. It has been found that the two distinct functionalization strategies of graphene have beneficial effects on the overall performance of the devices, leading to an efficiency of 4.2%. Notably, this performance has been achieved with an active area of 10 mm(2), the largest area reported in the literature for graphene-based inverted PSCs.

  7. Electrical conductance through nanocontacts between fcc(100) electrodes of gold

    Energy Technology Data Exchange (ETDEWEB)

    Koudela, Daniela; Lopez-Acevedo, Olga; Walter, Michael [Department of Physics, Nanoscience Center, P.O. Box 35, FIN-40014 University of Jyvaeskylae (Finland); Haekkinen, Hannu [Department of Physics, Nanoscience Center, P.O. Box 35, FIN-40014 University of Jyvaeskylae (Finland); Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyvaeskylae (Finland)

    2008-07-01

    Both experimental and theoretical work has been done to explain conductance curves for metal nanowires, giving presently a good model that allows to explain experimental results microscopically. For one atom contacts it has moreover been shown, theoretically and experimentally, a strong relation between the number of valence orbitals of the single atom and the maximum value of the conductance that can be obtained. We have studied Au nanowires of different lengths connected to fcc(100) tips corresponding to possible configurations in the elongation process. For those systems we have calculated the self-consistent potential obtained with Density Functional Theory and used it to calculate the conductance using the recursion-transfer-matrix method. Our results show that though gold has formally only one valence electron (6s), for wires shorter than 3 atoms there are 3 (partially) open eigenmodes.

  8. Dopants and defects in conductive oxide spinels

    Science.gov (United States)

    Zakutayev, Andriy; Perkins, John; Parilla, Phillip; Paudel, Tula; Lany, Staphan; Ginely, David; Zunger, Alex

    2011-03-01

    We will discuss the effects of extrinsic and intrinsic imperfections (dopants and defects) in a group of conductive oxide materials related to Co3O4. Co3O4 is a spinel with Co2+ and Co3+ on tetrahedral and octahedral sites, respectively. Doping of Co3O4 with Zn and Ni represent two limiting cases: Zn2+ ions have a preference to occupy tetrahedral (Co2+) sites and are predicted to be unable to dope effectively; Ni2+ ions have a preference to occupy octahedral (Co3+) sites, so these atoms are expected to be efficient dopants. We found that substitution of Co3O4 spinel with up to 33 percent of Zn and Ni results in formation of ZnCo2O4 normal spinel and NiCo2O4 inverse spinel, and causes 100-fold and 1000-fold increases in conductivity, respectively, matching the predicted trend. Increase in Zn and Ni concentraion up to 40 percent cause phase separation of ZnO and NiO and leveling out of the conductivity. The conductivity decreases sharply above 50-60 percent Zn and Ni substitution level. Small differences with the theoretical predictions may be explained by non-equilibrium character of the thin film deposition process. This work was supported by the ``Center for Inverse Design'' EFRC of the Department of Energy.

  9. Fabrication of a flexible and conductive lyocell fabric decorated with graphene nanosheets as a stable electrode material.

    Science.gov (United States)

    Mengal, Naveed; Sahito, Iftikhar Ali; Arbab, Alvira Ayoub; Sun, Kyung Chul; Qadir, Muhammad Bilal; Memon, Anam Ali; Jeong, Sung Hoon

    2016-11-01

    Textile electrodes are highly desirable for wearable electronics as they offer light-weight, flexibility, cost effectiveness and ease of fabrication. Here, we propose the use of lyocell fabric as a flexible textile electrode because of its inherently super hydrophilic characteristics and increased moisture uptake. A highly concentrated colloidal solution of graphene oxide nanosheets (GONs) was coated on to lyocell fabric and was then reduced in to graphene nanosheets (GNs) using facile chemical reduction method. The proposed textile electrode has a very high surface conductivity with a very low value of surface resistance of only 40Ωsq(-1), importantly without use of any binding or adhesive material in the processing step. Atomic force spectroscopy (AFM) and Transmission electron microscopy (TEM) were conducted to study the topographical properties and sheet exfoliation of prepared GONs. The surface morphology, structural characterization and thermal stability of the fabricated textile electrode were studied by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), X ray photon spectroscopy (XPS), Raman spectroscopy, Wide angle X ray diffraction spectroscopy (WAXD) and Thermogravimetric analysis (TGA) respectively. These results suggest that the GONs is effectively adhered on to the lyocell fabric and the conversion of GONs in to GNs by chemical reduction has no adverse effect on the crystalline structure of textile substrate. The prepared graphene coated conductive lyocell fabric was found stable in water and electrolyte solution and it maintained nearly same surface electrical conductivity at various bending angles. The electrical resistance results suggest that this lyocell based textile electrode (L-GNs) is a promising candidate for flexible and wearable electronics and energy harvesting devices.

  10. The Development of Nano-Composite Electrodes for Solid Oxide Electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Gorte, Raymond J.; Vohs, John M.

    2014-03-26

    Solid oxide fuel cells (SOFC) and electrolyzers (SOE) offer an attractive means for converting between electrical and chemical energy. Because they operate at high temperatures and are usually based on electrolytes that are oxygen-ion conducting ceramics, such as yttria-stabilized zirconia (YSZ), they are equally capable of converting between CO and CO2 as between H2 and H2O. When operated in the SOFC mode, they are able to operate on hydrocarbon fuels so long as there are no materials within the anode that can catalyze carbon formation. Compared to other types of electrolyzers, SOE can exhibit the highest efficiencies because the theoretical Nernst potential is lower at high temperatures and because the electrode overpotentials in SOE tend to be much lower. Finally, pure H2 can be produced without an external electrical source by electrolysis of steam at one electrode and oxidation of any fuel at the other electrode through a process known as Natural-Gas Assisted Steam Electrolysis. This final report describes results from studies of novel electrodes for SOE and SOFC prepared by infiltration methods.

  11. A reduced graphene oxide/Co{sub 3}O{sub 4} composite for supercapacitor electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Chengcheng; Li, Ming; Zhi, Mingjia; Manivannan, Ayyakkannu; Wu, Nianqiang

    2013-03-15

    20 nm sized Co{sub 3}O{sub 4} nanoparticles are in-situ grown on the chemically reduced graphene oxide (rGO) sheets to form a rGO-Co{sub 3}O{sub 4} composite during hydrothermal processing. The rGO-Co{sub 3}O{sub 4} composite is employed as the pseudocapacitor electrode in the 2 M KOH aqueous electrolyte solution. The rGOCo{sub 3}O{sub 4} composite electrode exhibits a specific capacitance of 472 F/g at a scan rate of 2 mV/s in a two-electrode cell. 82.6% of capacitance is retained when the scan rate increases to 100 mV/s. The rGOCo{sub 3}O{sub 4} composite electrode shows high rate capability and excellent long-term stability. It also exhibits high energy density at relatively high power density. The energy density reaches 39.0 Wh/kg at a power density of 8.3 kW/kg. The super performance of the composite electrode is attributed to the synergistic effects of small size and good redox activity of the Co{sub 3}O{sub 4} particles combined with high electronic conductivity of the rGO sheets.

  12. A self-regenerable soot sensor with a proton-conductive thin electrolyte and a nanostructured platinum sensing electrode

    Science.gov (United States)

    Lv, Peiling; Ito, Takenori; Oogushi, Akihide; Nakashima, Kensaku; Nagao, Masahiro; Hibino, Takashi

    2016-11-01

    In recent years, exhaust sensors have become increasingly attractive for use in energy and environmental technologies. Important issues regarding practical applications of these sensors, especially for soot measurements, include the further development of ion-conductive electrolytes and active electrode catalysts for meeting performance and durability requirements. Herein, we design a proton conductor with a high breakdown voltage and a sensing electrode with high sensitivity to electrochemical carbon oxidation, enabling continuous soot monitoring with self-regeneration of the sensor. A Si0.97Al0.03HxP2O7-δ layer with an excellent balance between proton conductivity and voltage endurance was grown on the surface of a Si0.97Al0.03O2-δ substrate by reacting it with liquid H3PO4 at 600 °C. Specific reactivity of the electrochemically formed active oxygen toward soot was accomplished by adding a Pt-impregnated Sn0.9In0.1HxP2O7-δ catalyst into a Pt sensing electrode. To make the best use of these optimized materials, a unipolar electrochemical device was fabricated by configuring the sensing and counter electrodes on the same surface of the electrolyte layer. The resulting amperometric mode sensor successfully produced a current signal that corresponded to the quantity of soot.

  13. Protective Oxide Coating for Ionic Conductive Solid Electrolyte Interphase.

    Science.gov (United States)

    Kim, Yong Su; Kim, Seong Heon; Kim, Gyusung; Heo, Sung; Mun, Jinsoo; Han, Sungsoo; Jung, Heechul; Kyoung, Yong Koo; Yun, Dong Jin; Baek, Woon Joong; Doo, Seokgwang

    2016-11-16

    To employ Li-based batteries to their full potential in a wide range of energy-storage applications, their capacity and performance stability must be improved. Si is a viable anode material for Li-based batteries in electric vehicles due to its high theoretical capacity and good economic feasibility. However, it suffers from physical and chemical degradation, leading to unstable electrochemical performance and preventing its incorporation in new Li-based battery systems. Herein, we applied a poly(vinyl alcohol)-PO4 protective coating for Si-graphite anodes and confirmed an improvement in the electrochemical performance. The experimental results revealed that the polymer acts as a binder to alleviate the pulverization of the electrode. Furthermore, the oxide coating reduces the loss of Li2O, which has high ionic conductivity, during operation, resulting in the formation of a stable solid electrolyte interphase. Our findings suggest that a stable and ion-conducting anode/interphase can be developed by applying an oxide and polymer coating in combined approach. Therefore, this study is expected to provide a basis for the further development and design of high-performance Li-based battery systems.

  14. High quality transparent conductive electrodes in organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Chakaroun, M. [XLIM Institute, UMR 6172, Universite de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges (France); Lucas, B., E-mail: bruno.lucas@unilim.f [XLIM Institute, UMR 6172, Universite de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges (France); Ratier, B. [XLIM Institute, UMR 6172, Universite de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges (France); Defranoux, C.; Piel, J.P. [SOPRA-SA, 26 rue Pierre Joigneaux, 92270 Bois-Colombes (France); Aldissi, M. [XLIM Institute, UMR 6172, Universite de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges (France)

    2009-12-15

    The use of indium tin oxide (ITO) in conjunction with polymeric substrates requires deposition at low temperatures or room temperature, and with a limited or no thermal treatment. This process results in high resistivity materials. To achieve practical resistivity levels, we replaced ITO, the workhorse in organic optoelectronic devices, with an ITO/Ag/ITO tri-layer anode. This material yielded the desired electrical properties without a significant effect on its optical properties. For example, a sheet resistance of 15 {Omega}/{open_square} and an optical transmission of 90% at 550 nm were obtained for a tri-layer film in which thickness of each ITO layer is 50 nm and the Ag layer thickness is 8 nm. The use of these tri-layer anodes in CuPc-C{sub 60}-based organic solar cells led to an increase in the fill factor under illumination, and thus an improvement of the external power conversion efficiency.

  15. Roll-offset printed transparent conducting electrode for organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inyoung, E-mail: ikim@kimm.re.kr; Kwak, Sun-Woo; Ju, Yeonkyeong; Park, Gun-Young; Lee, Taik-Min; Jang, Yunseok; Choi, Young-Man; Kang, Dongwoo

    2015-04-01

    Transparent conducting electrodes (TCEs) were developed through the roll-offset printing of Ag grid mesh patterns for the application of all-solution processed organic solar cells (OSCs). Due to the remarkable printability of roll-offset printing, the printed TCEs did not show the step coverage problem of subsequent thin layers, which was a chronic problem in other printing techniques. The control of ink cohesion was verified as a critical factor for the high printing quality, which was optimized by adding a polyurethane diol of 2 wt.%. The tensile strength of optimized Ag ink was 322 mN, which led to the clear patterning of Ag nanoparticles. The printed TCEs with different mesh densities of the Ag grid were designed to have a similar property of indium tin oxide (ITO). The measured sheet resistance was 13 Ω/□, and optical transmittance was 86%, including the glass substrate, which was found to be independent of wavelength in the visible spectrum, in contrast with the optical transmittance of ITO. To evaluate the TCE performance as bottom electrodes, all-solution processed OSCs were fabricated on top of the TCEs. The power conversion efficiency (PCE) of the OSCs increased with the increments of the mesh density due to the distinctive increase of the short circuit current density (J{sub sc}), notwithstanding the similar transmittance and sheet resistance of the TCEs. In comparison with ITO, a higher PCE of OSCs was obtained because the printed TCEs with a high mesh density were able to facilitate effective current collection, leading to a significant increase of J{sub sc}. - Highlights: • Roll-offset printing provided a remarkable printability of Ag nano-ink. • Control of ink cohesion played a critical role on the patterning of Ag nano-ink. • Printed Ag mesh was used as a transparent conducting electrode. • Transparency and sheet resistance of printed Ag mesh can be designed simply. • Printed Ag mesh was effective for the current collection of organic

  16. Structure and photoelectrochemical effeciency of oxidized titanium electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, V. (Istituto C.N.R. di Ricerche sui Metodi e Processi Chimici per la Trasformazione e l' Accumulo dell' Energia, Messina, Italy); Giordano, N.; Bart, J.C.J.

    1982-01-01

    Pure titanium laminae were oxidized in air between 300 and 1300/sup 0/C and used as electrodes in the photodecomposition of water. The maximum photoelectrochemical conversion was found for flame-oxidized (1300/sup 0/C) samples. Although the efficiency shows a parallelism with the presence of the metallic interstitial compounds TiO/sub 0 + x/(x<0.33) and Ti/sub 2/O/sub 1-y/(0.33>y>0) at the metal-semiconductor interface, the thickness of the suboxide layer and that of the external rutile scale, it is argued that other factors (optimal suboxide-rutile distribution, overall layer thickness, layer perfection, non-stoichiometry of TiO/sub 2/, isoelectric point of solids (IEPS), etc.) may be more important in the process.

  17. Bromination of graphene: a new route to making high performance transparent conducting electrodes with low optical losses

    KAUST Repository

    Mansour, Ahmed

    2015-09-03

    The high optical transmittance, electrical conductivity, flexibility and chemical stability of graphene have triggered great interest in its application as a transparent conducting electrode material and as a potential replacement for indium doped tin oxide. However, currently available large scale production methods such as chemical vapor deposition produce polycrystalline graphene, and require additional transfer process which further introduces defects and impurities resulting in a significant increase in its sheet resistance. Doping of graphene with foreign atoms has been a popular route for reducing its sheet resistance which typically comes at a significant loss in optical transmission. Herein, we report the successful bromine doping of graphene resulting in air-stable transparent conducting electrodes with up to 80% reduction of sheet resistance reaching ~180 Ω/ at the cost of 2-3% loss of optical transmission in case of few layer graphene and 0.8% in case of single layer graphene. The remarkably low tradeoff in optical transparency leads to the highest enhancements in figure of merit reported thus far. Furthermore, our results show a controlled increase in the workfunction up to 0.3 eV with the bromine content. These results should help pave the way for further development of graphene as potentially a highly transparent substitute to other transparent conducting electrodes in optoelectronic devices.

  18. Nanoscale Chemical and Electrical Stabilities of Graphene-covered Silver Nanowire Networks for Transparent Conducting Electrodes

    Science.gov (United States)

    Kim, Seong Heon; Choi, Woon Ih; Kim, Kwang Hee; Yang, Dae Jin; Heo, Sung; Yun, Dong-Jin

    2016-09-01

    The hybrid structure of Ag nanowires (AgNWs) covered with graphene (Gr) shows synergetic effects on the performance of transparent conducting electrodes (TCEs). However, these effects have been mainly observed via large-scale characterization, and precise analysis at the nanoscale level remains inadequate. Here, we present the nanoscale verification and visualization of the improved chemical and electrical stabilities of Gr-covered AgNW networks using conductive atomic force microscopy (C-AFM), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS) combined with the gas cluster ion beam (GCIB) sputtering technique. Specifically by transferring island Gr on top of the AgNW network, we were able to create samples in which both covered and uncovered AgNWs are simultaneously accessible to various surface-characterization techniques. Furthermore, our ab initio molecular dynamics (AIMD) simulation elucidated the specific mechanistic pathway and a strong propensity for AgNW sulfidation, even in the presence of ambient oxidant gases.

  19. Nanoscale Chemical and Electrical Stabilities of Graphene-covered Silver Nanowire Networks for Transparent Conducting Electrodes.

    Science.gov (United States)

    Kim, Seong Heon; Choi, Woon Ih; Kim, Kwang Hee; Yang, Dae Jin; Heo, Sung; Yun, Dong-Jin

    2016-09-13

    The hybrid structure of Ag nanowires (AgNWs) covered with graphene (Gr) shows synergetic effects on the performance of transparent conducting electrodes (TCEs). However, these effects have been mainly observed via large-scale characterization, and precise analysis at the nanoscale level remains inadequate. Here, we present the nanoscale verification and visualization of the improved chemical and electrical stabilities of Gr-covered AgNW networks using conductive atomic force microscopy (C-AFM), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS) combined with the gas cluster ion beam (GCIB) sputtering technique. Specifically by transferring island Gr on top of the AgNW network, we were able to create samples in which both covered and uncovered AgNWs are simultaneously accessible to various surface-characterization techniques. Furthermore, our ab initio molecular dynamics (AIMD) simulation elucidated the specific mechanistic pathway and a strong propensity for AgNW sulfidation, even in the presence of ambient oxidant gases.

  20. CaCu{sub 3}Ti{sub 4}O{sub 12} thin films on conductive oxide electrode: A comparative study between chemical and physical vapor deposition routes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Maria R.; Malandrino, Graziella [Dipartimento di Scienze Chimiche, Universita di Catania, and INSTM, UdR Catania, Viale A. Doria 6, 95125 Catania (Italy); Bongiorno, Corrado [Istituto per la Microelettronica e Microsistemi, IMM-CNR, Strada VIII 5, 95121 Catania (Italy); Toro, Roberta G. [Istituto per lo Studio dei Materiali Nanostrutturati, ISMN-CNR, Via dei Taurini, 19, 00185 Roma (Italy); Fiorenza, Patrick [Istituto per la Microelettronica e Microsistemi, IMM-CNR, Strada VIII 5, 95121 Catania (Italy); Bodeux, Romain [Laboratoire LEMA, UMR 6157 CNRS/CEA, Universite F. Rabelais, Parc de Grandmont, 37200 Tours (France); STMicroelectronics, R and D, Rue Pierre et Marie Curie, 37000 Tours (France); Wolfman, Jerome; Gervais, Monique; Lambert, Cecile Autret; Gervais, Francois [Laboratoire LEMA, UMR 6157 CNRS/CEA, Universite F. Rabelais, Parc de Grandmont, 37200 Tours (France); Lo Nigro, Raffaella, E-mail: raffaella.lonigro@imm.cnr.it [Istituto per la Microelettronica e Microsistemi, IMM-CNR, Strada VIII 5, 95121 Catania (Italy)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Dielectrics growth and characterization is one of the most hot topics of materials science and microelectronics. Black-Right-Pointing-Pointer CaCu{sub 3}Ti{sub 4}O{sub 12} perovskite, recently, demonstrated to possess peculiar dielectric properties (Science, 2001, 293, 673-676). Black-Right-Pointing-Pointer To date no deep discussion on the growth processes, properties and perspective of CCTO thin films has been proposed. Black-Right-Pointing-Pointer Our paper is an effective example of interdisciplinarity, since the comparison between PLD and MOCVD has been addressed. Black-Right-Pointing-Pointer Great attention has been paid to CaCu{sub 3}Ti{sub 4}O{sub 12} film/substrate interfaces since dielectric properties are strongly affected. - Abstract: Metal Organic Chemical Vapor Deposition (MOCVD) and Pulsed Laser Deposition (PLD) techniques have been used for the growth of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) thin films on La{sub 0.9}Sr{sub 1.1}NiO{sub 4}/LaAlO{sub 3} (LSNO/LAO) stack. (1 0 0) oriented CCTO films have been formed through both deposition routes and film complete structural and morphological characterizations have been carried out using several techniques (X-ray diffraction, scanning electron microscopy, energy-filtered transmission electron microscopy). The comparative study demonstrated some differences at the CCTO/LSNO interfaces depending on the adopted deposition technique. Chemical/structural modification of the LSNO electrode probably occurred as a function of the different oxygen partial pressure used in the PLD and MOCVD processes.

  1. Quantum conductance of zigzag graphene oxide nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Zhe; Nelson, Christopher; Khatun, Mahfuza, E-mail: mkhatun@bsu.edu [Department of Physics and Astronomy, Center for Computational Nanoscience, Ball State University, Muncie, Indiana 47306 (United States)

    2014-04-21

    The electronic properties of zigzag graphene oxide nanoribbons (ZGOR) are presented. The results show interesting behaviors which are considerably different from the properties of the perfect graphene nanoribbons (GNRs). The theoretical methods include a Huckel-tight binding approach, a Green's function methodology, and the Landauer formalism. The presence of oxygen on the edge results in band bending, a noticeable change in density of states and thus the conductance. Consequently, the occupation in the valence bands increase for the next neighboring carbon atom in the unit cell. Conductance drops in both the conduction and valence band regions are due to the reduction of allowed k modes resulting from band bending. The asymmetry of the energy band structure of the ZGOR is due to the energy differences of the atoms. The inclusion of a foreign atom's orbital energies changes the dispersion relation of the eigenvalues in energy space. These novel characteristics are important and valuable in the study of quantum transport of GNRs.

  2. Conducting polymers based counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Veerender, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Saxena, Vibha, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gusain, Abhay, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Jha, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Koiry, S. P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Chauhan, A. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Aswal, D. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gupta, S. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

    2014-04-24

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  3. Conducting polymers based counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Veerender, P.; Saxena, Vibha; Gusain, Abhay; Jha, P.; Koiry, S. P.; Chauhan, A. K.; Aswal, D. K.; Gupta, S. K.

    2014-04-01

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  4. Electrochemical oxidation of textile industry wastewater by graphite electrodes.

    Science.gov (United States)

    Bhatnagar, Rajendra; Joshi, Himanshu; Mall, Indra D; Srivastava, Vimal C

    2014-01-01

    In the present article, studies have been performed on the electrochemical (EC) oxidation of actual textile industry wastewater by graphite electrodes. Multi-response optimization of four independent parameters namely initial pH (pHo): 4-10, current density (j): 27.78-138.89 A/m(2), NaCl concentration (w): 0-2 g/L and electrolysis time (t): 10-130 min have been performed using Box-Behnken (BB) experimental design. It was aimed to simultaneously maximize the chemical oxygen demand (COD) and color removal efficiencies and minimize specific energy consumption using desirability function approach. Pareto analysis of variance (ANOVA) showed a high coefficient of determination value for COD (R(2) = 0.8418), color (R(2) = 0.7010) and specific energy (R(2) = 0.9125) between the experimental values and the predicted values by a second-order regression model. Maximum COD and color removal and minimum specific energy consumed was 90.78%, 96.27% and 23.58 kWh/kg COD removed, respectively, were observed at optimum conditions. The wastewater, sludge and scum obtained after treatment at optimum condition have been characterized by various techniques. UV-visible study showed that all azo bonds of the dyes present in the wastewater were totally broken and most of the aromatic rings were mineralized during EC oxidation with graphite electrode. Carbon balance showed that out of the total carbon eroded from the graphite electrodes, 27-29.2% goes to the scum, 71.1-73.3% goes into the sludge and rest goes to the treated wastewater. Thermogravimetric analysis showed that the generated sludge and scum can be dried and used as a fuel in the boilers/incinerators.

  5. Gate-tunable conducting oxide metasurfaces

    CERN Document Server

    Huang, Yao-Wei; Sokhoyan, Ruzan; Pala, Ragip; Thyagarajan, Krishnan; Han, Seunghoon; Tsai, Din Ping; Atwater, Harry A

    2015-01-01

    Metasurfaces composed of planar arrays of sub-wavelength artificial structures show promise for extraordinary light manipulation; they have yielded novel ultrathin optical components such as flat lenses, wave plates, holographic surfaces and orbital angular momentum manipulation and detection over a broad range of electromagnetic spectrum. However the optical properties of metasurfaces developed to date do not allow for versatile tunability of reflected or transmitted wave amplitude and phase after fabrication, thus limiting their use in a wide range of applications. Here, we experimentally demonstrate a gate-tunable metasurface that enables dynamic electrical control of the phase and amplitude of the plane wave reflected from the metasurface. Tunability arises from field-effect modulation of the complex refractive index of conducting oxide layers incorporated into metasurface antenna elements which are configured in a reflectarray geometry. We measure a phase shift of {\\pi} and ~ 30% change in the reflectanc...

  6. Hydroxide Ion Oxidation in Aqueous Solutions Using Boron-Doped Diamond Electrodes.

    Science.gov (United States)

    Irkham; Watanabe, Takeshi; Einaga, Yasuaki

    2017-07-05

    The electrochemical oxidation behavior of hydroxide ions at the surface of boron-doped diamond (BDD) electrodes is presented. The hydroxide ion oxidation behavior was found to be affected by the surface conditions of the BDD electrode. Over the NaOH concentration range of 0.5-10 mM, a well-defined voltammetric wave attributed to hydroxide ion oxidation was observed at ∼1.25 V versus a Ag/AgCl reference electrode when using an anodically oxidized BDD (AO-BDD) electrode, while it was observed at around ∼1.15 V when a cathodically reduced BDD (CR-BDD) electrode was used. Although the hydroxide ion oxidation profiles were slightly different for the AO-BDD and CR-BDD electrodes, the peak currents was each found to have linear relationships with the NaOH concentration over the same range.

  7. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes

    Science.gov (United States)

    Pan, Jie; Cheng, Yang-Tse; Qi, Yue

    2015-04-01

    Understanding the ionic conduction in solid electrolytes in contact with electrodes is vitally important to many applications, such as lithium ion batteries. The problem is complex because both the internal properties of the materials (e.g., electronic structure) and the characteristics of the externally contacting phases (e.g., voltage of the electrode) affect defect formation and transport. In this paper, we developed a method based on density functional theory to study the physics of defects in a solid electrolyte in equilibrium with an external environment. This method was then applied to predict the ionic conduction in lithium fluoride (LiF), in contact with different electrodes which serve as reservoirs with adjustable Li chemical potential (μLi) for defect formation. LiF was chosen because it is a major component in the solid electrolyte interphase (SEI) formed on lithium ion battery electrodes. Seventeen possible native defects with their relevant charge states in LiF were investigated to determine the dominant defect types on various electrodes. The diffusion barrier of dominant defects was calculated by the climbed nudged elastic band method. The ionic conductivity was then obtained from the concentration and mobility of defects using the Nernst-Einstein relationship. Three regions for defect formation were identified as a function of μLi: (1) intrinsic, (2) transitional, and (3) p -type region. In the intrinsic region (high μLi, typical for LiF on the negative electrode), the main defects are Schottky pairs and in the p -type region (low μLi, typical for LiF on the positive electrode) are Li ion vacancies. The ionic conductivity is calculated to be approximately 10-31Scm-1 when LiF is in contact with a negative electrode but it can increase to 10-12Scm-1 on a positive electrode. This insight suggests that divalent cation (e.g., Mg2+) doping is necessary to improve Li ion transport through the engineered LiF coating, especially for LiF on negative

  8. Synthesis and Stability of a Nanoparticle-Infiltrated Solid OxideFuel Cell Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal Z.; Radmilovic, Velimir; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2006-11-20

    Nanoparticulate catalysts infiltrated into SOFC (Solid OxideFUel Cell) electrodes can significantly enhance the cell performance, butthe stability of these electrodes has been an open issue. An infiltrationprocedure is reported that leads to a stable scandia-stablized zirconia(SSZ) cathode electrode performance.

  9. Computer Simulations of Composite Electrodes in Solid-Oxide Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Svein

    1999-07-01

    Fuel cells are devices for converting the combined chemical (free) energy of fuels and oxygen (air) directly to electrical energy without relying on the dynamic action of steam heated by reacting fuel-oxygen mixtures, like in steam turbines, or of the reacting gas mixtures themselves, like in gas turbines. The basic rationale for fuel cells is their high efficiencies as compared to indirect-conversion methods. Fuel cells are currently being considered for a number of applications, among them de-centralised power supply. Fuel cells come in five basic types and are usually classified according to the type of electrolyte used, which in turn to a significant degree limits the options for anode and cathode materials. The solid-oxide fuel-cell (SOFC) , with which this thesis is concerned, is thus named after its oxide electrolyte, typically the oxide-ion conducting material yttria-stabilised zirconia (YSZ). While the cathode of an SOFC is often uniform in chemical composition (or at least intended to be), various problems of delamination, cracking etc. associated with the use of metallic anode electrocatalysts led to the development of composite SOFC anodes. Porous anodes consisting of Ni and YSZ particles in roughly 50/50 wt-% mixtures are now almost standard with any SOFC-development programme. The designer of composite SOFC electrodes is faced with at least three, interrelated questions: (1) What will be the optimum microstructure and composition of the composite electrode? (2) If the structure changes during operation, as is often observed, what will be the consequences for the internal losses in the cell? (3) How do we interpret electrochemical and conductivity measurements with regard to structure and composition? It is the primary purpose of this thesis to provide a framework for modelling the electrochemical and transport properties of composite electrodes for SOFC, and to arrive at some new insights that cannot be offered by experiment alone. Emphasis is put on

  10. Using nanostructured conductive carbon tape modified with bismuth as the disposable working electrode for stripping analysis in paper-based analytical devices.

    Science.gov (United States)

    Feng, Qiu-Mei; Zhang, Qing; Shi, Chuan-Guo; Xu, Jing-Juan; Bao, Ning; Gu, Hai-Ying

    2013-10-15

    Low cost disposable working electrodes are specifically desired for practical applications of electrochemical detection considering maturity of electrochemical stations and data collection protocols. In this paper double-sided conductive adhesive carbon tape with nanostructure was applied to fabricate disposable working electrodes. Being supported by indium tin oxide glass, the prepared carbon tape electrodes were coated with bismuth film for stripping analysis of heavy metal ions. By integrating the bismuth modified electrodes with paper-based analytical devices, we were able to differentiate Zn, Cd and Pb ions with the sample volume of around 15 μL. After the optimization of parameters, including modification of bismuth film and the area of the electrodes, etc., Pb ions could be measured in the linear range from 10 to 500 μg/L with the detection limit of 2 μg/L. Our experimental results revealed that the disposable modified electrodes could be used to quantify migrated lead from toys with the results agreed well with that using atomic absorption spectrometry. Although bismuth modification and stripping analysis could be influenced by the low conductivity of the carbon tape, the low cost disposable carbon tape electrodes take the advantages of large-scaled produced double-sided carbon tape, including its reproducible nanostructure and scaled-up fabrication process. In addition, the preparation of disposable electrodes avoids time-consuming pretreatment and experienced operation. This study implied that the carbon tape might be an alternative candidate for practical applications of electrochemical detection.

  11. Fabrication and evaluation of solution-processed reduced graphene oxide electrodes for p- and n-channel bottom-contact organic thin-film transistors.

    Science.gov (United States)

    Becerril, Hector A; Stoltenberg, Randall M; Tang, Ming Lee; Roberts, Mark E; Liu, Zunfeng; Chen, Yongsheng; Kim, Do Hwan; Lee, Bang-Lin; Lee, Sangyoon; Bao, Zhenan

    2010-11-23

    Reduced graphene oxide (RGO) is an electrically conductive carbon-based nanomaterial that has recently attracted attention as a potential electrode for organic electronics. Here we evaluate several solution-based methods for fabricating RGO bottom-contact (BC) electrodes for organic thin-film transistors (OTFTs), demonstrate functional p- and n-channel devices with such electrodes, and compare their electrical performance with analogous devices containing gold electrodes. We show that the morphology of organic semiconductor films deposited on RGO electrodes is similar to that observed in the channel region of the devices and that devices fabricated with RGO electrodes have lower contact resistances compared to those fabricated with gold contacts. Although the conductivity of RGO is poor compared to that of gold, RGO is still an enticing electrode material for organic electronic devices possibly owing to the retention of desirable morphological features, lower contact resistance, lower cost, and solution processability.

  12. Anodic oxidation with doped diamond electrodes: a new advanced oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Alexander; Stadelmann, Manuela; Blaschke, Manfred

    2003-10-31

    Boron-doped diamond anodes allow to directly produce OH{center_dot} radicals from water electrolysis with very high current efficiencies. This has been explained by the very high overvoltage for oxygen production and many other anodic electrode processes on diamond anodes. Additionally, the boron-doped diamond electrodes exhibit a high mechanical and chemical stability. Anodic oxidation with diamond anodes is a new advanced oxidation process (AOP) with many advantages compared to other known chemical and photochemical AOPs. The present work reports on the use of diamond anodes for the chemical oxygen demand (COD) removal from several industrial wastewaters and from two synthetic wastewaters with malic acid and ethylenediaminetetraacetic (EDTA) acid. Current efficiencies for the COD removal between 85 and 100% have been found. The formation and subsequent removal of by-products of the COD oxidation has been investigated for the first time. Economical considerations of this new AOP are included.

  13. Characterization of Transition-Metal Oxide Deposition on Carbon Electrodes of a Supercapacitor

    Directory of Open Access Journals (Sweden)

    Ying-Chung Chen

    2016-12-01

    Full Text Available In order to fabricate the composite electrodes of a supercapacitor, transition-metal oxide materials NiO and WO3 were deposited on carbon electrodes by electron beam evaporation. The influences of various transition-metal oxides, scan rates of cyclic voltammograms (CVs, and galvanostatic charge/discharge tests on the characteristics of supercapacitor were studied. The charge/discharge efficiency and the lifetime of the composite electrodes were also investigated. It was found that the composite electrodes exhibited more favorable capacitance properties than those of the carbon electrodes at high scan rates. The results revealed the promotion of the capacitance property of the supercapacitor with composite electrode and the improving of the decay property in capacitance at high scan rate. In addition, the charge/discharge efficiency is close to 100% after 5000 cycles, and the composite electrode retains strong adhesion between the electrode material and the substrate.

  14. Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes.

    Science.gov (United States)

    Lin, Chenwen; Zhu, Xiaojiao; Feng, Jun; Wu, Changzheng; Hu, Shuanglin; Peng, Jing; Guo, Yuqiao; Peng, Lele; Zhao, Jiyin; Huang, Jianliu; Yang, Jinlong; Xie, Yi

    2013-04-03

    As a conceptually new class of two-dimensional (2D) materials, the ultrathin nanosheets as inorganic graphene analogues (IGAs) play an increasingly vital role in the new-generation electronics. However, the relatively low electrical conductivity of inorganic ultrathin nanosheets in current stage significantly hampered their conducting electrode applications in constructing nanodevices. We developed the unprecedentedly high electrical conductivity in inorganic ultrathin nanosheets. The hydric titanium disulfide (HTS) ultrathin nanosheets, as a new IGAs, exhibit the exclusively high electrical conductivity of 6.76 × 10(4) S/m at room temperature, which is superior to indium tin oxide (1.9 × 10(4) S/m), recording the best value in the solution assembled 2D thin films of both graphene (5.5 × 10(4) S/m) and inorganic graphene analogues (5.0 × 10(2) S/m). The modified hydrogen on S-Ti-S layers contributes additional electrons to the TiS2 layered frameworks, rendering the controllable electrical conductivity as well as the electron concentrations. Together with synergic advantages of the excellent mechanical flexibility, high stability, and stamp-transferrable properties, the HTS thin films show promising capability for being the next generation conducting electrode material in the nanodevice fields.

  15. Contact conductance of a graphene nanoribbon with its graphene nano-electrodes

    Science.gov (United States)

    Srivastava, Saurabh; Kino, Hiori; Joachim, Christian

    2016-04-01

    Electronically contacted between two graphene nano-electrodes, the contact conductance (G0) of a graphene nanoribbon (GNR) molecular wire is calculated using mono-electronic Elastic Scattering Quantum Chemistry (ESQC) theory. Different nano-electrode contact geometries are considered ranging from a top face to face van der Waals contact to an adiabatic funnel like planar chemical bonding. The Tamm state contributions to the GNR-graphene nano-electrode electronic interactions are discussed as a function of the molecular orbital hybridization. Contrary to the common belief, the adiabatic-like triangle shaped contact nano-graphene electrode does not provide a large G0 as compared to the abrupt contact geometry. The abrupt contact geometry is even worth than a top face to face van der Waals electronic contact with a metal.

  16. Electrical characterization of conductive textile materials and its evaluation as electrodes for venous occlusion plethysmography.

    Science.gov (United States)

    Goy, C B; Dominguez, J M; Gómez López, M A; Madrid, R E; Herrera, M C

    2013-08-01

    The ambulatory monitoring of biosignals involves the use of sensors, electrodes, actuators, processing tools and wireless communication modules. When a garment includes these elements with the purpose of recording vital signs and responding to specific situations it is call a 'Smart Wearable System'. Over the last years several authors have suggested that conductive textile material (e-textiles) could perform as electrode for these systems. This work aims at implementing an electrical characterization of e-textiles and an evaluation of their ability to act as textile electrodes for lower extremity venous occlusion plethysmography (LEVOP). The e-textile electrical characterization is carried out using two experimental set-ups (in vitro evaluation). Besides, LEVOP records are obtained from healthy volunteers (in vivo evaluation). Standard Ag/AgCl electrodes are used for comparison in all tests. Results shown that the proposed e-textiles are suitable for LEVOP recording and a good agreement between evaluations (in vivo and in vitro) is found.

  17. Digital grayscale printing for patterned transparent conducting Ag electrodes and their applications in flexible electronics

    DEFF Research Database (Denmark)

    Gupta, Ritu; Hösel, Markus; Jensen, Jacob

    2014-01-01

    Grayscale (halftone) laser printing is developed as a low-cost and solution processable fabrication method for ITO-free, semi-transparent and conducting Ag electrodes extendable over large area on a flexible substrate. The transmittance and sheet resistance is easily tunable by varying the graysc......Grayscale (halftone) laser printing is developed as a low-cost and solution processable fabrication method for ITO-free, semi-transparent and conducting Ag electrodes extendable over large area on a flexible substrate. The transmittance and sheet resistance is easily tunable by varying...

  18. Oxidation behavior of CNTs and the electric double layer capacitor made of the CNT electrodes

    Institute of Scientific and Technical Information of China (English)

    李辰砂; 王大志; 梁彤祥; 李贵涛; 王晓峰; 曹茂盛; 梁吉

    2003-01-01

    The effect of CO2 oxidized carbon nanotubes (CNTs) on the performance of electric double layer capacitors (EDLCs) was studied. CO2 oxidation increased the specific area and improved the dispersity of CNTs. Specific capacitance of the polarizable electrodes in EDLCs based on the oxidized CNTs were obviously improved and the maximum specific capacitance of 47 F/g was obtained. CO2 oxidizing CNTs is hence an effective way to improve the performances of EDLCs based on the CNT electrodes.

  19. Water oxidation and oxygen monitoring by cobalt-modified fluorine-doped tin oxide electrodes.

    Science.gov (United States)

    Kent, Caleb A; Concepcion, Javier J; Dares, Christopher J; Torelli, Daniel A; Rieth, Adam J; Miller, Andrew S; Hoertz, Paul G; Meyer, Thomas J

    2013-06-12

    Electrocatalytic water oxidation occurs at fluoride-doped tin oxide (FTO) electrodes that have been surface-modified by addition of Co(II). On the basis of X-ray photoelectron spectroscopy and transmission electron microscopy measurements, the active surface site appears to be a single site or small-molecule assembly bound as Co(II), with no evidence for cobalt oxide film or cluster formation. On the basis of cyclic voltammetry measurements, surface-bound Co(II) undergoes a pH-dependent 1e(-)/1H(+) oxidation to Co(III), which is followed by pH-dependent catalytic water oxidation. O2 reduction at FTO occurs at -0.33 V vs NHE, allowing for in situ detection of oxygen as it is formed by water oxidation on the surface. Controlled-potential electrolysis at 1.61 V vs NHE at pH 7.2 resulted in sustained water oxidation catalysis at a current density of 0.16 mA/cm(2) with 29,000 turnovers per site over an electrolysis period of 2 h. The turnover frequency for oxygen production per Co site was 4 s(-1) at an overpotential of 800 mV at pH 7.2. Initial experiments with Co(II) on a mesoporous, high-surface-area nanoFTO electrode increased the current density by a factor of ~5.

  20. Importance of pressure gradient in solid oxide fuel cell electrodes for modeling study

    Science.gov (United States)

    Ni, Meng; Leung, Dennis Y. C.; Leung, Michael K. H.

    The pressure gradients in the electrodes of a solid oxide fuel cell (SOFC) are frequently neglected without any justification in calculating the concentration overpotentials of the SOFC electrodes in modeling studies. In this short communication, a comparative study has been conducted to study the effect of pressure gradients on mass transfer and the resulting concentration overpotentials of an SOFC running on methane (CH 4) fuel. It is found that the pressure gradients in both anode and cathode are significant in the fuel cell electrochemical activities. Neglecting the anode pressure gradient in the calculation can lead to underestimation of the concentration overpotential by about 20% at a typical current density of 5000 A m -2 and at a temperature of 1073 K. The deviation can be even larger at a higher temperature. At the cathode, neglecting the pressure gradient can result in overestimation of the concentration overpotential by about 10% under typical working conditions.

  1. A novel method to prepare metal oxide electrode: Spin-coating with thermal decomposition

    Institute of Scientific and Technical Information of China (English)

    Hao Xu; Wei Yan; Cheng Li Tang

    2011-01-01

    In this work, we propose a new spin-coating method coupling with high thermal decomposition, to prepare the tin-antimony (Sn-Sb) oxide electrode. The character of the spin-coating electrode was compared with the dip-coating electrode through X-ray diffraction (XRD), scanning electron microscopy (SEM), accelerated life test, cyclic voltammetry, and electrolytic degradability. The results showed that the spin-coating electrode had a better defined crystal form, a smoother and more compact surface than that of the dip-coating electrode. Service time of the spin-coating electrode was determined to be longer than 15 h, and it was less than 2 min for the dip-coating electrode. Electrochemical characterization analysis showed that the electrolytic degradability of the spin-coating electrode is better than that of the dip-coating electrode.

  2. Gate-Tunable Conducting Oxide Metasurfaces.

    Science.gov (United States)

    Huang, Yao-Wei; Lee, Ho Wai Howard; Sokhoyan, Ruzan; Pala, Ragip A; Thyagarajan, Krishnan; Han, Seunghoon; Tsai, Din Ping; Atwater, Harry A

    2016-09-14

    Metasurfaces composed of planar arrays of subwavelength artificial structures show promise for extraordinary light manipulation. They have yielded novel ultrathin optical components such as flat lenses, wave plates, holographic surfaces, and orbital angular momentum manipulation and detection over a broad range of the electromagnetic spectrum. However, the optical properties of metasurfaces developed to date do not allow for versatile tunability of reflected or transmitted wave amplitude and phase after their fabrication, thus limiting their use in a wide range of applications. Here, we experimentally demonstrate a gate-tunable metasurface that enables dynamic electrical control of the phase and amplitude of the plane wave reflected from the metasurface. Tunability arises from field-effect modulation of the complex refractive index of conducting oxide layers incorporated into metasurface antenna elements which are configured in reflectarray geometry. We measure a phase shift of 180° and ∼30% change in the reflectance by applying 2.5 V gate bias. Additionally, we demonstrate modulation at frequencies exceeding 10 MHz and electrical switching of ±1 order diffracted beams by electrical control over subgroups of metasurface elements, a basic requirement for electrically tunable beam-steering phased array metasurfaces. In principle, electrically gated phase and amplitude control allows for electrical addressability of individual metasurface elements and opens the path to applications in ultrathin optical components for imaging and sensing technologies, such as reconfigurable beam steering devices, dynamic holograms, tunable ultrathin lenses, nanoprojectors, and nanoscale spatial light modulators.

  3. PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells.

    Science.gov (United States)

    Yu, Zhimeng; Xia, Yijie; Du, Donghe; Ouyang, Jianyong

    2016-05-11

    A transparent electrode is an indispensable component of optoelectronic devices, and there as been a search for substitutes of indium tin oxide (ITO) as the transparent electrode. Poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) ( PSS) is a conducting polymer that is very promising as the next generation of materials for the transparent electrode if it can obtain conductivity as high as that of ITO. Here, we report the treatment of PSS with organic solutions to significantly enhance its conductivity. Common organic solvents like dimethylformamide and γ-butyrolactone and common organic salts like methylammonium iodide and methylammonium bromide are used for the organic solutions. The conductivity of pristine PSS films is only ∼0.2 S/cm, and it can be increased to higher than 2100 S/cm. The conductivity enhancement is much more significant than control treatments of PSS films with neat organic solvents or aqueous solutions of the organic salts. The mechanism for the conductivity enhancement is the synergetic effects of both the organic salts and organic solvents on the microstructure and composition of PSS. They induce the segregation of some PSSH chains from PSS. Highly conductive PSS films were studied as the transparent electrode of polymer solar cells. The photovoltaic efficiency is comparable to that with an ITO transparent electrode.

  4. Layered conductive polymer on nylon membrane templates for high performance, thin-film supercapacitor electrodes

    Science.gov (United States)

    Shi, HaoTian Harvey; Naguib, Hani E.

    2016-04-01

    Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.

  5. Bromination of Graphene: A New Route to Making High Performance Transparent Conducting Electrodes with Low Optical Losses

    KAUST Repository

    Mansour, Ahmed

    2015-07-22

    The unique optical and electrical properties of graphene have triggered great interest in its application as a transparent conducting electrode material and significant effort has been invested in achieving high conductivity while maintaining transparency. Doping of graphene has been a popular route for reducing its sheet resistance, but this has typically come at a significant cost in optical transmission. We demonstrate doping of few layers graphene with bromine as a means of enhancing the conductivity via intercalation without major optical losses. Our results demonstrate the encapsulation of bromine leads to air-stable transparent conducting electrodes with five-fold improvement of sheet resistance reaching at the cost of only 2-3% loss of optical transmission. The remarkably low tradeoff in optical transparency leads to the highest enhancements in the figure of merit reported thus far for FLG. Furthermore, we tune the workfunction by up to 0.3 eV by tuning the bromine content. These results should help pave the way for further development of graphene as a potential substitute to transparent conducting polymers and metal oxides used in optoelectronics, photovoltaics and beyond.

  6. Solid-Oxide Fuel Cell Electrode Microstructures: Making Sense of the Internal Framework Affecting Gas Transport

    Science.gov (United States)

    Hanna, Jeffrey

    Optimal electrodes for solid-oxide fuel cells will combine high porosity for gas diffusion, high phase connectivity for ion and electron conduction, and high surface area for chemical and electrochemical reactions. Tracer-diffusion simulations are used to gain a better understanding of the interplay between microstructure and transport in porous materials. Results indicate that the coefficient of diffusion through a porous medium is a function of the details of the internal geometry (microscopic) and porosity (macroscopic). I report that current solid-oxide fuel cell electrodes produced from high-temperature sintering of ceramic powders severely hinder gas transport because the resulting structures are highly tortuous, complex three-dimensional networks. In addition, poor phase connectivities will assuredly limit ion and electron transport, as well as the density of active sites for power-producing reactions. With new access to a wide range of technologies, micro- and nano-fabrication capabilities, and high-performance materials, there is a new ability to engineer the fuel cell electrode architecture, optimizing the physical processes within, increasing performance, and greatly reducing cost per kilowatt. Even simple packed-sphere and inverse-opal architectures will increase gas diffusion by an order of magnitude, and provide a higher level of connectivity than traditional powder-based structures.

  7. Design of a smart ECG garment based on conductive textile electrode and flexible printed circuit board.

    Science.gov (United States)

    Cai, Zhipeng; Luo, Kan; Liu, Chengyu; Li, Jianqing

    2017-08-09

    A smart electrocardiogram (ECG) garment system was designed for continuous, non-invasive and comfortable ECG monitoring, which mainly consists of four components: Conductive textile electrode, garment, flexible printed circuit board (FPCB)-based ECG processing module and android application program. Conductive textile electrode and FPCB-based ECG processing module (6.8 g, 55 mm × 53 mm × 5 mm) are identified as two key techniques to improve the system's comfort and flexibility. Preliminary experimental results verified that the textile electrodes with circle shape, 40 mm size in diameter, and 5 mm thickness sponge are best suited for the long-term ECG monitoring application. The tests on the whole system confirmed that the designed smart garment can obtain long-term ECG recordings with high signal quality.

  8. Transparent conductive zinc oxide basics and applications in thin film solar cells

    CERN Document Server

    Klein, Andreas; Rech, Bernd

    2008-01-01

    Zinc oxide (ZnO) belongs to the class of transparent conducting oxides which can be used as transparent electrodes in electronic devices or heated windows. In this book the material properties of, the deposition technologies for, and applications of zinc oxide in thin film solar cells are described in a comprehensive manner. Structural, morphological, optical and electronic properties of ZnO are treated in this review. The editors and authors of this book are specialists in deposition, analysis and fabrication of thin-film solar cells and especially of ZnO. This book is intended as an overview and a data collection for students, engineers and scientist.

  9. Oxidation stages of Ni electrodes in solid oxide fuel cell environments.

    Science.gov (United States)

    El Gabaly, Farid; McCarty, Kevin F; Bluhm, Hendrik; McDaniel, Anthony H

    2013-06-07

    Nickel is the most commonly used anode for solid-oxide fuel cells (SOFC) due to its fast kinetics and low price. A leading cause of degradation in Ni electrodes is oxidation. Here we use operando ambient-pressure X-ray photoelectron spectroscopy (XPS) to chemically characterize the Ni electrode of a fuel cell anode during oxidation in a H2/H2O atmosphere. We find three different stages of Ni oxidation in the model SOFC. In the first two stages, the Ni exposed to the gas remains metallic but the Ni at the interface with the zirconia electrolyte is oxidized. In the third oxidation stage, we find that Ni transforms to NiOOH, a phase not previously considered in the SOFC literature. We show that the transformation between Ni and NiOOH is reversible and is initiated at the Ni/gas interface. In addition we find that NiOOH stores charge, as evidenced by the stable discharge plateau (voltage) measured as this oxyhydroxide phase reduces to metallic Ni.

  10. Four point probe structures with buried and surface electrodes for the electrical characterization of ultrathin conducting films

    NARCIS (Netherlands)

    Groenland, A.W.; Wolters, R.A.M.; Kovalgin, A.Y.; Schmitz, J.

    2012-01-01

    Test structures for the electrical characterization of ultrathin conductive films are presented based on electrodes on which the ultrathin film is deposited. Two different designs are discussed: a novel design with buried electrodes and a conventional design with electrodes at the surface. This work

  11. Study of Capacitive and Electrical Conductivity Characteristics of the System «Nanostructured Electrodes - Dielectric Liquid»

    Directory of Open Access Journals (Sweden)

    S.G. Emelyanov

    2014-07-01

    Full Text Available The results of research of capacitive and conductive characteristics of the system "the nanostructured metal electrodes – dielectric liquid" are given. It is shown the difference of states near the electrodes of electric double layers on the surfaces of copper and tungsten electrodes.

  12. Mixed conductivity in terbia-stabilized bismuth oxide

    NARCIS (Netherlands)

    Vinke, I.C.; Boukamp, B.A.; Vries, de K.J.; Burggraaf, A.J.

    1992-01-01

    The mixed conducting solid solution 0.75Bi2O3−0.25Tb4O7 (BT40) was studied by impedance techniques using ionically blocking electrodes. These measurements confirmed the p-type electronic conductivity suggested in literature. In air at temperatures between 600 and 900 K the ionic transference number

  13. Electrochemical oxidation of organic carbonate based electrolyte solutions at lithium metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, R.; Novak, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The oxidative decomposition of carbonate based electrolyte solutions at practical lithium metal oxide composite electrodes was studied by differential electrochemical mass spectrometry. For propylene carbonate (PC), CO{sub 2} evolution was detected at LiNiO{sub 2}, LiCoO{sub 2}, and LiMn{sub 2}O{sub 4} composite electrodes. The starting point of gas evolution was 4.2 V vs. Li/Li{sup +} at LiNiO{sub 2}, whereas at LiCoO{sub 2} and LiMn{sub 2}O{sub 4}, CO{sub 2} evolution was only observed above 4.8 V vs. Li/Li{sup +}. In addition, various other volatile electrolyte decomposition products of PC were detected when using LiCoO{sub 2}, LiMn{sub 2}O4, and carbon black electrodes. In ethylene carbonate / dimethyl carbonate, CO{sub 2} evolution was only detected at LiNiO{sub 2} electrodes, again starting at about 4.2 V vs. Li/Li{sup +}. (author) 3 figs., 2 refs.

  14. Biofunctionalization of conductive hydrogel coatings to support olfactory ensheathing cells at implantable electrode interfaces.

    Science.gov (United States)

    Hassarati, Rachelle T; Marcal, Helder; John, L; Foster, R; Green, Rylie A

    2016-05-01

    Mechanical discrepancies between conventional platinum (Pt) electrodes and neural tissue often result in scar tissue encapsulation of implanted neural recording and stimulating devices. Olfactory ensheathing cells (OECs) are a supportive glial cell in the olfactory nervous system which can transition through glial scar tissue while supporting the outgrowth of neural processes. It has been proposed that this function can be used to reconnect implanted electrodes with the target neural pathways. Conductive hydrogel (CH) electrode coatings have been proposed as a substrate for supporting OEC survival and proliferation at the device interface. To determine an ideal CH to support OECs, this study explored eight CH variants, with differing biochemical composition, in comparison to a conventional Pt electrodes. All CH variants were based on a biosynthetic hydrogel, consisting of poly(vinyl alcohol) and heparin, through which the conductive polymer (CP) poly(3,4-ethylenedioxythiophene) was electropolymerized. The biochemical composition was varied through incorporation of gelatin and sericin, which were expected to provide cell adherence functionality, supporting attachment, and cell spreading. Combinations of these biomolecules varied from 1 to 3 wt %. The physical, electrical, and biological impact of these molecules on electrode performance was assessed. Cyclic voltammetry and electrochemical impedance spectroscopy demonstrated that the addition of these biological molecules had little significant effect on the coating's ability to safely transfer charge. Cell attachment studies, however, determined that the incorporation of 1 wt % gelatin in the hydrogel was sufficient to significantly increase the attachment of OECs compared to the nonfunctionalized CH.

  15. Graphene as conductive additives in binderless activated carbon electrodes for power enhancement of supercapacitor

    Science.gov (United States)

    Nor, N. S. M.; Deraman, M.; Suleman, M.; Norizam, M. D. M.; Basri, N. H.; Sazali, N. E. S.; Hamdan, E.; Hanappi, M. F. Y. M.; Tajuddin, N. S. M.; Othman, M. A. R.; Shamsudin, S. A.; Omar, R.

    2016-11-01

    Carbon based supercapacitor electrodes from composite of binderless activated carbon and graphene as a conductive additive were fabricated with various amount of graphene (0, 2, 4, 6, 8 and 10 wt%). Graphene was mixed in self-adhesive carbon grains produced from pre-carbonized powder derived from fibers of oil palm empty fruit bunches and converted into green monoliths (GMs). The GMs were carbonized (N2) and activated (CO2) to produce activated carbon monoliths (ACMs) electrodes. Porosity characterizations by nitrogen adsorption-desorption isotherm method shows that the pore characteristics of the ACMs are influenced by the graphene additive. The results of galvanostatic charge-discharge tests carried out on the supercapacitor cells fabricated using these electrodes shows that the addition of graphene additive (even in small amount) decreases the equivalent series resistance and enhances the specific power of the cells but significantly lowers the specific capacitance. The supercapacitor cell constructed with the electrode containing 4 wt % of graphene offers the maximum power (175 W kg-1) which corresponds to an improvement of 55%. These results demonstrate that the addition of graphene as conductive additive in activated carbon electrodes can enhance the specific power of the supercapacitor.

  16. A microchip electrophoresis system with integrated in-plane electrodes for contactless conductivity detection

    NARCIS (Netherlands)

    Lichtenberg, Jan; de Rooij, Nico F.; Verpoorte, Elisabeth

    2002-01-01

    We present a new approach for contactless conductivity detection for microchip-based capillary electrophoresis (CE). The detector integrates easily with well-known microfabrication techniques for glass-based microfluidic devices. Platinum electrodes are structured in recesses in-plane with the micro

  17. Conductive plastic film electrodes for Pulsed Electric Field (PEF) treatment : A proof of principle

    NARCIS (Netherlands)

    Roodenburg, B.; Haan, S.W.H. de; Boxtel, L.B.J. van; Hatt, V.; Wouters, P.C.; Coronel, P.; Ferreira, J.A.

    2010-01-01

    Nowadays Pulsed Electric Field (PEF) treatment of food needs to be performed prior to packaging, either hygienic or aseptic packaging is necessary. New techniques for PEF treatment after packaging can be considered when plastic conductive (film) electrodes can be integrated within the package, so th

  18. THE ELECTROCHEMISTRY OF ANTIBODY-MODIFIED CONDUCTING POLYMER ELECTRODES. (R825323)

    Science.gov (United States)

    AbstractThe modification of conducting polymer electrodes with antibodies (i.e. proteins) by means of electrochemical polymerization is a simple step that can be used to develop an immunological sensor. However, the electrochemical processes involved leading to the ge...

  19. Injection molded chips with integrated conducting polymer electrodes for electroporation of cells

    DEFF Research Database (Denmark)

    Andresen, Kristian; Hansen, Morten; Matschuk, Maria

    2010-01-01

    We present the design-concept for an all polymer injection molded single use microfluidic device. The fabricated devices comprise integrated conducting polymer electrodes and Luer fitting ports to allow for liquid and electrical access. A case study of low voltage electroporation of biological ce...

  20. The dependence of polymer conductivity on the work function of metallic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Dunaevskii, M.S. [A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation); Nikolaeva, M.N. [Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi Pr. 31, 199004 St. Petersburg (Russian Federation); Rentzsch, R. [Institut fuer Experimentalphysik, Freie Universitaet Berlin, 14195 Berlin (Germany); Ionov, A.N.

    2009-12-15

    It is shown that the occurrence of metallic conductivity in polymers is due to their electrification. In particular, the current density depends on the electron work function of metallic electrodes which are in contact with the polymer. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  1. Four point probe structures with buried electrodes for the electrical characterization of ultrathin conducting films

    NARCIS (Netherlands)

    Groenland, A.W.; Wolters, R.A.M.; Kovalgin, A.Y.; Schmitz, J.

    2009-01-01

    Test structures for the electrical characterization of ultrathin conductive (ALD) films are presented based on buried electrodes on which the ultrathin film is deposited. This work includes test structure design and fabrication, and the electrical characterization of ALD TiN films down to 4 nm. It i

  2. Conductive plastic film electrodes for Pulsed Electric Field (PEF) treatment : A proof of principle

    NARCIS (Netherlands)

    Roodenburg, B.; Haan, S.W.H. de; Boxtel, L.B.J. van; Hatt, V.; Wouters, P.C.; Coronel, P.; Ferreira, J.A.

    2010-01-01

    Nowadays Pulsed Electric Field (PEF) treatment of food needs to be performed prior to packaging, either hygienic or aseptic packaging is necessary. New techniques for PEF treatment after packaging can be considered when plastic conductive (film) electrodes can be integrated within the package, so

  3. The oxidation of formaldehyde on high overvoltage DSA type electrodes

    Directory of Open Access Journals (Sweden)

    Motheo Artur J.

    2000-01-01

    Full Text Available The electrochemical oxidation of formaldehyde is studied on dimensionally stable anodes prepared by thermal decomposition of precursors (the corresponding chlorides. The working electrodes used were: Ti/Ir0.3Ti0.7O2, Ti/Ru0.3Ti0.7O2 and Ti/Ir0.2Ru0.2Ti0.6O2. The electrolyses were performed galvanostatically in a filter press cell with 0.5 mol L-1 H2SO4 solutions with initial formaldehyde concentration equal to 100 mmol L-1. The concentration of formaldehyde decreases fast with the electrolysis time, with the ternary anode (Ir + Ru + Ti presenting the best performance for this step. The anode containing only Ir, despite presenting the higher superficial charge, is the one with the lowest electrocatalytic activity. For the formic acid oxidation step, the presence of iridium in the anode composition does not promote the process, the anode containing only ruthenium being the most effective for this step.

  4. Electrochemical oxidation of imazapyr with BDD electrode in titanium substrate.

    Science.gov (United States)

    Souza, F L; Teodoro, T Q; Vasconcelos, V M; Migliorini, F L; Lima Gomes, P C F; Ferreira, N G; Baldan, M R; Haiduke, R L A; Lanza, M R V

    2014-12-01

    In this work we have studied the treatment of imazapyr by electrochemical oxidation with boron-doped diamond anode. Electrochemical degradation experiments were performed in a one-compartment cell containing 0.45 L of commercial formulations of herbicide in the pH range 3.0-10.0 by applying a density current between 10 and 150 mA cm(-2) and in the temperature range 25-45 °C. The maximum current efficiencies were obtained at lower current densities since the electrochemical system is under mass transfer control. The mineralization rate increased in acid medium and at higher temperatures. The treatment was able to completely degrade imazapyr in the range 4.6-100.0 mg L(-1), although the current charge required rises along with the increasing initial concentration of the herbicide. Toxicity analysis with the bioluminescent bacterium Vibrio fischeri showed that at higher pollutant concentrations the toxicity was reduced after the electrochemical treatment. To clarify the reaction pathway for imazapyr mineralization by OH radicals, LC-MS/MS analyses we performed together with a theoretical study. Ions analysis showed the formation of high levels of ammonium in the cathode. The main final products of the electrochemical oxidation of imazapyr with diamond thin film electrodes are formic, acetic and butyric acids.

  5. A three-dimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode

    Science.gov (United States)

    Zhou, Qianlong; Ye, Xingke; Wan, Zhongquan; Jia, Chunyang

    2015-11-01

    Recently, the topic of developing lightweight, flexible and implantable energy storage systems to address the energy-supply problem of wearable electronics has aroused increasing interests. In this paper, by introducing reduced graphene oxide (rGO), we successfully converted the commercial cotton fabric into free-standing, electrically conductive and electrochemically active fabric. Flexible supercapacitor based on the obtained conductive reduced graphene oxide-carbonized cotton fabric (rGO/CCF) exhibits high capacitance (87.53 mF cm-2 at 2 mV s-1), well cycling stability (89.82% capacitance retention after 1000 charge-discharge cycles) and excellent electrochemical stability (90.5% capacitance retention after 100 bending cycles). Moreover, a macroscopic three-dimensional sandwich-interdigital device structure was designed to enhance the supercapacitor performance. The unique rGO/CCF based sandwich-interdigital structure (SIS) supercapacitor shows a volumetric capacitance of 5.53 F cm-3 at current density of 0.0625 A cm-3 in aqueous electrolyte, which is 1.67 and 4.28 orders higher than the traditional sandwich structure (SS) and interdigital structure (IS) supercapacitor based on the same electrode material and electrolyte. Furthermore, energy density enhancement of the supercapacitor has also been achieved by adopting the well-designed device structure. The original SIS supercapacitor based on the elaborate device structure and high-performance electrode material may provide new design opportunities for flexible energy storage devices.

  6. Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmad Hadi, E-mail: ahadi@uthm.edu.my [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Penang (Malaysia); Science Department, Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor (Malaysia); Shuhaimi, Ahmad [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur (Malaysia); Hassan, Zainuriah [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Penang (Malaysia)

    2014-01-01

    We report on the transparent conductive oxides (TCO) characteristics based on the indium tin oxides (ITO) and ITO/metal thin layer as an electrode for optoelectronics device applications. ITO, ITO/Ag and ITO/Ni were deposited on Si and glass substrate by thermal evaporator and radio frequency (RF) magnetron sputtering at room temperature. Post deposition annealing was performed on the samples in air at moderate temperature of 500 °C and 600 °C. The structural, optical and electrical properties of the ITO and ITO/metal were characterized using X-ray diffraction (XRD), UV–Vis spectrophotometer, Hall effect measurement system and atomic force microscope (AFM). The XRD spectrum reveals significant polycrystalline peaks of ITO (2 2 2) and Ag (1 1 1) after post annealing process. The post annealing also improves the visible light transmittance and electrical resistivity of the samples. Figure of merit (FOM) of the ITO, ITO/Ag and ITO/Ni were determined as 5.5 × 10{sup −3} Ω{sup −1}, 8.4 × 10{sup −3} Ω{sup −1} and 3.0 × 10{sup −5} Ω{sup −1}, respectively. The results show that the post annealed ITO with Ag intermediate layer improved the efficiency of the transparent conductive electrodes (TCE) as compared to the ITO and ITO/Ni.

  7. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides

    KAUST Repository

    Bi, Lei

    2014-01-01

    Energy crisis and environmental problems caused by the conventional combustion of fossil fuels boost the development of renewable and sustainable energies. H2 is regarded as a clean fuel for many applications and it also serves as an energy carrier for many renewable energy sources, such as solar and wind power. Among all the technologies for H2 production, steam electrolysis by solid oxide electrolysis cells (SOECs) has attracted much attention due to its high efficiency and low environmental impact, provided that the needed electrical power is generated from renewable sources. However, the deployment of SOECs based on conventional oxygen-ion conductors is limited by several issues, such as high operating temperature, hydrogen purification from water, and electrode stability. To avoid these problems, proton-conducting oxides are proposed as electrolyte materials for SOECs. This review paper provides a broad overview of the research progresses made for proton-conducting SOECs, summarizing the past work and finding the problems for the development of proton-conducting SOECs, as well as pointing out potential development directions.

  8. An approach to characterize ultra-thin conducting films protected against native oxidation by an in-situ capping layer

    NARCIS (Netherlands)

    Van Bui, H.; Wiggers, F.B.; Jong, de M.P.; Kovalgin, A.Y.

    2014-01-01

    We propose and demonstrate the application of a test structure to characterize electrical properties of ultra-thin titanium nitride films passivated by a non-conducting amorphous silicon layer. The amorphous silicon layer is used to prevent the oxidation of the conducting layer. Platinum electrodes

  9. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  10. ITO-Free Solution-Processed Flexible Electrochromic Devices Based on PEDOT:PSS as Transparent Conducting Electrode.

    Science.gov (United States)

    Singh, Rekha; Tharion, Joseph; Murugan, Sengottaiyan; Kumar, Anil

    2017-06-14

    Electrochromic devices (ECDs) are emerging as novel technology for various applications ranging from commercialized smart window glasses, goggles, and autodimming rear view mirrors to uncommon yet more sophisticated applications such as infrared camouflage in military and thermal control in space satellites. The development of low-power, lightweight, inexpensive, and flexible devices is the need of the hour. In this respect, utilizing PEDOT:PSS as transparent conducting electrode (TCE) to replace indium tin oxide (ITO) and metal based TCEs for ECDs is a promising solution for the aforementioned requirements. In this work we have demonstrated the performance of PEDOT:PSS films coated on flexible substrates, treated with PTSA-DMSO, as TCEs for ECD applications and their comparison with that of ITO based ECDs. The PEDOT:PSS based flexible TCEs used in this study have conductivity of 1400-1500 S·cm(-1) and figure of merit (FoM) of 70-77. The process of increasing the conductivity of PEDOT:PSS films also led to the broadening of the conducting potential window (CPW), which is important for electrochemical applications of PEDOT:PSS when used as a stand-alone electrode. More than achieving a comparable electrochromic contrast, switching time, and coloration efficiency with respect to the ITO based ECDs, PEDOT:PSS devices also had the added advantage of good mechanical flexibility. These devices demonstrated superior stability during electrochemical cycling and multiple mechanical bending tests, making them an inexpensive alternative to the costly ITO based ECD technology.

  11. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.

    2010-08-11

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from that of optically thick metallic films. We analyze the optical properties when performing a geometrical transformation that maintains the electrical properties. For one-dimensional patterns of metallic wires, the analysis favors tall and narrow wires. Our design principles remain valid for oblique incidence and readily carry over to two-dimensional patterns. © 2010 American Chemical Society.

  12. Graphene oxide-immobilized NH₂-terminated silicon nanoparticles by cross-linked interactions for highly stable silicon negative electrodes.

    Science.gov (United States)

    Sun, Cheng; Deng, Yuanfu; Wan, Lina; Qin, Xusong; Chen, Guohua

    2014-07-23

    There is a great interest in the utilization of silicon-based anodes for lithium-ion batteries. However, its poor cycling stability, which is caused by a dramatic volume change during lithium-ion intercalation, and intrinsic low electric conductivity hamper its industrial applications. A facile strategy is reported here to fabricate graphene oxide-immobilized NH2-terminated silicon nanoparticles (NPs) negative electrode (Si@NH2/GO) directed by hydrogen bonding and cross-linked interactions to enhance the capacity retention of the anode. The NH2-modified Si NPs first form strong hydrogen bonds and covalent bonds with GO. The Si@NH2/GO composite further forms hydrogen bonds and covalent bonds with sodium alginate, which acts as a binder, to yield a stable composite negative electrode. These two chemical cross-linked/hydrogen bonding interactions-one between NH2-modified Si NPs and GO, and another between the GO and sodium alginate-along with highly mechanically flexible graphene oxide, produced a robust network in the negative electrode system to stabilize the electrode during discharge and charge cycles. The as-prepared Si@NH2/GO electrode exhibits an outstanding capacity retention capability and good rate performance, delivering a reversible capacity of 1000 mAh g(-1) after 400 cycles at a current of 420 mA g(-1) with almost 100% capacity retention. The results indicated the importance of system-level strategy for fabricating stable electrodes with improved electrochemical performance.

  13. High performance of symmetrical supercapacitor based on multilayer films of graphene oxide/polypyrrole electrodes

    Energy Technology Data Exchange (ETDEWEB)

    De la Fuente Salas, Ixra Marisol [Department of Chemical Engineering, Technological Institute of La Laguna, Torreón, Coahuila (Mexico); Sudhakar, Y.N. [Department of Chemistry, Manipal Institute of Technology, Manipal, Karnataka (India); Selvakumar, M., E-mail: chemselva78@gmail.com [Department of Chemistry, Manipal Institute of Technology, Manipal, Karnataka (India)

    2014-03-01

    Graphical abstract: Schematic representation of synthesis of graphene oxide/PPy multilayer film. - Highlights: • Influence of current density, concentration of supporting electrolyte and conducting polymer deposition time on GO matrix are studied in detail. • High performance capacitive electrode for multilayer film of GO/PPy is compared with single layer GO/PPy film. • Morphology of the multilayer film and probable mechanism of multilayer deposition of PPy in GO are discussed. - Abstract: In this work we have deposited multlilayer films of polypyrrole (PPy) by galvanostatic method with three different dopants namely p-toluenesulphonic acid, benzene sulphonic acid, and sulfuric acid ions on graphene oxide (GO) layer. The better deposition of PPy films on GO is addressed by studying the influence of different electrolytes, concentrations and current densities. The multilayer films of GO/PPy exhibits greater capacitance compared to GO/PPy single layer. The morphology of the graphene oxide (GO)/multilayer nano PPy structures is carefully analyzed by scanning electron microscopy, FTIR and XPS spectrum. Specific capacitance of fabricated supercapacitor using multilayer electrodes is as high as 332 F g{sup −1} at 10 mV s{sup −1} and also compared with another supercapacitor made from single GO/PPy layer whose capacitance is 215 F g{sup −1}. Galvanostatic charge–discharge studies show good performance and stability.

  14. Method of fabricating conductive electrodes on the front and backside of a thin film structure

    Science.gov (United States)

    Tabada, Phillipe J.; Tabada, legal representative, Melody; Pannu, Satinderpall S.

    2011-05-22

    A method of fabricating a thin film device having conductive front and backside electrodes or contacts. Top-side cavities are first formed on a first dielectric layer, followed by the deposition of a metal layer on the first dielectric layer to fill the cavities. Defined metal structures are etched from the metal layer to include the cavity-filled metal, followed by depositing a second dielectric layer over the metal structures. Additional levels of defined metal structures may be formed in a similar manner with vias connecting metal structures between levels. After a final dielectric layer is deposited, a top surface of a metal structure of an uppermost metal layer is exposed through the final dielectric layer to form a front-side electrode, and a bottom surface of a cavity-filled portion of a metal structure of a lowermost metal layer is also exposed through the first dielectric layer to form a back-side electrode.

  15. Colloidal transparent conducting oxide nanocrystals: A new infrared plasmonic material

    Indian Academy of Sciences (India)

    Bharat Tandon; Aswathi Ashok; Angshuman Nag

    2015-06-01

    Thin films of transparent conducting oxides (TCO) are technologically important for applications as a visible light transparent electrode in a wide variety of optoelectronic devices. In the last few years, researchers started to explore novel size- and shape-dependent properties of TCO, where the crystallite size is ∼10 nm. So far, the localized surface plasmon resonance (LSPR) properties of TCO nanocrystals (NCs) have been found to be the most interesting. TCOs like Sn-doped In2O3, Al-doped ZnO and In-doped CdO NCs, exhibit LSPR band in near- to mid-infrared region. LSPR from a TCO NC exhibits many intrinsic differences with that of a metal NC. Carrier density in a TCO NC can easily be tuned by controlling the dopant concentration, which allows the LSPR band to be tuned over a range of ∼2000 nm (∼0.62 eV) in the near- to mid-infrared region. This review discusses recent advances in the understanding of plasmonic properties of various TCO NCs and highlights the potential applications of such unique plasmonic properties.

  16. Silver nanoparticle decorated poly(2-aminodiphenylamine) modified carbon paste electrode as a simple and efficient electrocatalyst for oxidation of formaldehyde

    Institute of Scientific and Technical Information of China (English)

    Reza Ojani; Saeid Safshekan; Jahan-Bakhsh Raoof

    2014-01-01

    This work describes the promising activity of silver nanoparticles on the surface of a poly(2-amino diphenylamine) modified carbon paste electrode (CPE) towards formaldehyde oxidation. Electro-deposition of the conducting polymer film on the CPE was carried out using consecutive cyclic voltammetry in an aqueous solution of 2-aminodiphenylamine and HCl. Nitrogen groups in the polymer backbone had a Ag ion accumulating effect, allowing Ag nanoparticles to be electrochemi-cally deposited on the surface of the electrode. The electrochemical and morphological characteris-tics of the modified electrode were investigated. The electro-oxidation of formaldehyde on the sur-face of electrode was studied using cyclic voltammetry and chronoamperometry in aqueous solu-tion of 0.1 mol/L NaOH. The electro-oxidation onset potential was found to be around-0.4 V, which is unique in the literature. The effect of different concentrations of formaldehyde on the electrocat-alytic activity of the modified electrode was investigated. Finally, the diffusion coefficient of formal-dehyde in alkaline media was calculated to be 0.47 × 10-6 cm2/s using chronoamperometry.

  17. Bridging Redox Species-Coated Graphene Oxide Sheets to Electrode for Extending Battery Life Using Nanocomposite Electrolyte.

    Science.gov (United States)

    Huang, Yi Fu; Ruan, Wen Hong; Lin, Dong Ling; Zhang, Ming Qiu

    2017-01-11

    Substituting conventional electrolyte for redox electrolyte has provided a new intriguing method for extending battery life. The efficiency of utilizing the contained redox species (RS) in the redox electrolyte can benefit from increasing the specific surface area of battery electrodes from the electrode side of the electrode-electrolyte interface, but is not limited to that. Herein, a new strategy using nanocomposite electrolyte is proposed to enlarge the interface with the aid of nanoinclusions from the electrolyte side. To do this, graphene oxide (GO) sheets are first dispersed in the electrolyte solution of tungstosilicic salt/lithium sulfate/poly(vinyl alcohol) (SiWLi/Li2SO4/PVA), and then the sheets are bridged to electrode, after casting and evaporating the solution on the electrode surface. By applying in situ conductive atomic force microscopy and Raman spectra, it is confirmed that the GO sheets doped with RS of SiWLi/Li2SO4 can be bridged and electrically reduced as an extended electrode-electrolyte interface. As a result, the RS-coated GO sheets bridged to LiTi2(PO4)3//LiMn2O4 battery electrodes are found to deliver extra energy capacity (∼30 mAh/g) with excellent electrochemical cycling stability, which successfully extends the battery life by over 50%.

  18. Transparent Conductive Oxides for Thin-Film Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, J.

    2005-04-25

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150C and 350C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the

  19. Transparent conductive oxides for thin-film silicon solar cells

    Science.gov (United States)

    Löffler, J.

    2005-04-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150 º C and 350 º C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the cells

  20. Screen-printed calcium-birnessite electrodes for water oxidation at neutral pH and an "electrochemical harriman series".

    Science.gov (United States)

    Lee, Seung Y; González-Flores, Diego; Ohms, Jonas; Trost, Tim; Dau, Holger; Zaharieva, Ivelina; Kurz, Philipp

    2014-12-01

    A mild screen-printing method was developed to coat conductive oxide surfaces (here: fluorine-doped tin oxide) with micrometer-thick layers of presynthesized calcium manganese oxide (Ca-birnessite) particles. After optimization steps concerning the printing process and layer thickness, electrodes were obtained that could be used as corrosion-stable water-oxidizing anodes at pH 7 to yield current densities of 1 mA cm(-2) at an overpotential of less than 500 mV. Analyses of the electrode coatings of optimal thickness (≈10 μm) indicated that composition, oxide phase, and morphology of the synthetic Ca-birnessite particles were hardly affected by the screen-printing procedure. However, a more detailed analysis by X-ray absorption spectroscopy revealed small modifications of both the Mn redox state and the structure at the atomic level, which could affect functional properties such as proton conductivity. Furthermore, the versatile new screen-printing method was used for a comparative study of various transition-metal oxides concerning electrochemical water oxidation under "artificial leaf conditions" (neutral pH, fairly low overpotential and current density), for which a general activity ranking of RuO2 >Co3 O4 ≈(Ca)MnOx ≈NiO was observed. Within the group of screened manganese oxides, Ca-birnessite performed better than "Mn-only materials" such as Mn2 O3 and MnO2 .

  1. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Vosgueritchian, Michael; Lipomi, Darren J.; Bao, Zhenan [Department of Chemical Engineering, Stanford University, CA (United States)

    2012-01-25

    Highly conductive and transparent poly-(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) films, incorporating a fluorosurfactant as an additive, have been prepared for stretchable and transparent electrodes. The fluorosurfactant-treated PEDOT:PSS films show a 35% improvement in sheet resistance (R{sub s}) compared to untreated films. In addition, the fluorosurfactant renders PEDOT:PSS solutions amenable for deposition on hydrophobic surfaces, including pre-deposited, annealed films of PEDOT:PSS (enabling the deposition of thick, highly conductive, multilayer films) and stretchable poly(dimethylsiloxane) (PDMS) substrates (enabling stretchable electronics). Four-layer PEDOT:PSS films have an R{sub s} of 46 {omega} per square with 82% transmittance (at 550 nm). These films, deposited on a pre-strained PDMS substrate and buckled, are shown to be reversibly stretchable, with no change to R{sub s}, during the course of over 5000 cycles of 0 to 10% strain. Using the multilayer PEDOT:PSS films as anodes, indium tin oxide (ITO)-free organic photovoltaics are prepared and shown to have power conversion efficiencies comparable to that of devices with ITO as the anode. These results show that these highly conductive PEDOT:PSS films can not only be used as transparent electrodes in novel devices (where ITO cannot be used), such as stretchable OPVs, but also have the potential to replace ITO in conventional devices. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Effect of acid oxidization of carbon nanotube electrode on the capacitances of double layer capacitors

    Institute of Scientific and Technical Information of China (English)

    LI; Chensha; WANG; Dazhi; LIANG; Tongxiang; WANG; Xiaofen

    2004-01-01

    Polarizable electrode of electric double layer capacitor was made from carbon nanotubes. The effect of acid oxidation of electrode on the specific capacitance was studied. Oxidation removed the redundant carbon, expanded the pore size and introduced some kinds of functional groups on the surface of CNTs. The specific capacit ance of the electrodes with organic electrolyte was increased from 21.4 to 49.6 F/gafter being oxidized at a volume ratio of H2SO4 to HNO3 of 3:1.

  3. Numerical and experimental evaluation of the relationship between porous electrode structure and effective conductivity of ions and electrons in lithium-ion batteries

    Science.gov (United States)

    Inoue, Gen; Kawase, Motoaki

    2017-02-01

    This study aims to develop a correlation equation between a porous electrode structure and the effective conductivity so as to design an optimal structure for a thick electrode layer of a high-capacity battery. We carried out a three-dimensional reconstruction of a lithium cobalt oxide and graphite electrode based on the cross-sectional images obtained via focused ion beam-scanning electron microscopy (FIB-SEM). The Li ion and electron conductivities are evaluated based on the effective conductive path determined from simulation and these values are compared with the experimental results obtained by electrochemical impedance spectroscopy carries out with a symmetric cell and the direct conductivity measurement under compression. Moreover, the amount of binder and the diameter of the active material particles are increased and decreased numerically using an actual reconstructed electrode structure, and the effect of those structures on the effective conductivity is examined. The most dominant factors that degrade ionic conductivity are the binder distribution and the particle morphology, respectively, in the cathode and anode, and a correlation equation with the function of porosity is obtained. These values are compared with those obtained by theoretical model equations, and the difference between the current effective ionic conductivity and the physical limiting value is determined.

  4. Electrodeposited reduced-graphene oxide/cobalt oxide electrodes for charge storage applications

    Energy Technology Data Exchange (ETDEWEB)

    García-Gómez, A. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Eugénio, S., E-mail: s.eugenio@tecnico.ulisboa.pt [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Duarte, R.G. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ESTBarreiro, Instituto Politécnico de Setúbal, Setúbal (Portugal); Silva, T.M. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ADEM, GI-MOSM, ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa (Portugal); Carmezim, M.J. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ESTSetúbal, Instituto Politécnico de Setúbal, Setúbal (Portugal); Montemor, M.F. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal)

    2016-09-30

    Highlights: • Electrochemically reduced graphene/CoOx composites were successfully produced by electrodeposition. • The composite material presents a specific capacitance of about 430 F g{sup −1}. • After heat treatment, the capacitance retention of the composite was 76% after 3500 cycles. - Abstract: In the present work, electrochemically reduced-graphene oxide/cobalt oxide composites for charge storage electrodes were prepared by a one-step pulsed electrodeposition route on stainless steel current collectors and after that submitted to a thermal treatment at 200 °C. A detailed physico-chemical characterization was performed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical response of the composite electrodes was studied by cyclic voltammetry and charge-discharge curves and related to the morphological and phase composition changes induced by the thermal treatment. The results revealed that the composites were promising materials for charge storage electrodes for application in redox supercapacitors, attaining specific capacitances around 430 F g{sup −1} at 1 A g{sup −1} and presenting long-term cycling stability.

  5. Microwave sintered nanocomposite electrodes for solid oxide fuel cells.

    Science.gov (United States)

    Raza, Rizwan; Zhu, Bin

    2011-06-01

    Microwave sintering is a very interesting subject, which provides an alternative method to overcome problems faced with conventional sintering. This process is very efficient and only requires a few minutes. In this paper, nanocomposite electrodes (Cu0.15Ni0.85-GDC) were sintered at 700 degrees C for 10 mins in a single mode 2.45 GHz microwave oven by the solid state reaction method. The composition influence and the sintering methods on the as-obtained powder were characterized by XRD, SEM and TEM. It was observed that excellent sintering took place. Excellent fuel cell performance was achieved with microwave sintering compared tosamples sintered using conventional sintering. Electrochemical analysis was carried out using AC Impedance technique. This paper reports a new approach to develop a microwave sintered based nanocomposite material, which is more efficient on time and energy. This method can gain significant economical benefits compared to conventional sintered materials for applications in low temperature solid oxide fuel cells (LTSOFC).

  6. ELECTROCHEMICAL OXIDATION OF ETHYLENE AT PANI/Pt AND Ag/PANI/Pt MODIFIED ELECTRODES

    Directory of Open Access Journals (Sweden)

    Lenys Fernández

    Full Text Available The electrochemical behavior of ethylene on PANI/Pt and Ag/PANI/Pt modified electrodes was investigated in different media. Morphology of the deposits of PANI were observed by SEM analysis, complemented by the EDX techniques to obtain the Ag composition that shows that Ag is deposited in the polymeric matrix which covered the whole platinum surface. The electrodic system comprising Ag/PANI/ Pt electrode exhibited a more important electrocatalytic response for ethylene oxidation in neutral solutions than the PAN/Pt and Pt electrodes at 20 ºC.The results suggest that the oxidation of ethylene on Ag/PANI/Pt electrode is limited by adsorption-controlled reaction while the oxidation at PANI/Pt is mass transport-limited.

  7. Advanced Manufacturing of Intermediate Temperature, Direct Methane Oxidation Membrane Electrode Assemblies for Durable Solid Oxide Fuel Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation builds on the successes of the Phase I program by integrating our direct oxidation membrane electrode assembly (MEA) into a monolithic solid...

  8. Advanced manufacturing of intermediate temperature, direct methane oxidation membrane electrode assemblies for durable solid oxide fuel cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ITN proposes to create an innovative anode supported membrane electrode assembly (MEA) for solid oxide fuel cells (SOFCs) that is capable of long-term operation at...

  9. Oxide/ metal/oxide nanolaminate structures for application of transparent electrodes

    Science.gov (United States)

    Dikov, Hr; Ivanova, T.; Vitanov, P.

    2016-10-01

    Transparent and conductive oxide/ metal/ oxide nanolaminate structures were deposited on glass and polymer substrate by RF magnetron sputtering without substrate heating. The Ag nanoparticles with different size and distance between neighboring particles were located on the interface of two thin oxide layers. This sputtering configuration allows obtaining thin films with homogeneous thickness. The three targets give the opportunity to deposit successively three different layers without opening the chamber. The developed process for transparent conducting coating is a low temperature and it is suitable for application on organic materials as substrate and foils. The experiment with different substrates manifest that the optical transparency of the conducting coating depends on substrate material. The obtained results have demonstrated that the nanolaminate structures oxide/metal/oxide (OMO) as TCO coating are especially suitable for applications in flexible electronics and optoelectronics

  10. Percolation conductivity in hafnium sub-oxides

    Energy Technology Data Exchange (ETDEWEB)

    Islamov, D. R., E-mail: damir@isp.nsc.ru; Gritsenko, V. A., E-mail: grits@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Cheng, C. H. [Department of Mechatronic Technology, National Taiwan Normal University, Taipei 106, Taiwan (China); Chin, A., E-mail: albert-achin@hotmail.com [National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2014-12-29

    In this study, we demonstrated experimentally that formation of chains and islands of oxygen vacancies in hafnium sub-oxides (HfO{sub x}, x < 2) leads to percolation charge transport in such dielectrics. Basing on the model of Éfros-Shklovskii percolation theory, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. Based on the percolation theory suggested model shows that hafnium sub-oxides consist of mixtures of metallic Hf nanoscale clusters of 1–2 nm distributed onto non-stoichiometric HfO{sub x}. It was shown that reported approach might describe low resistance state current-voltage characteristics of resistive memory elements based on HfO{sub x}.

  11. Developing Infrared (IR) Transparent Conductive Electrode Technology for Multi-Functional Infrared (IR) Sensing

    Science.gov (United States)

    2011-07-13

    Lett., vol. 63, pp. 1-3 (1993). [4] C. G. Granqvist, ―Transparent conductive electrodes for electrochromic devices : A review,‖ Applied Physics A...2]. The poor mechanical flexibility and high substrate temperature requirement seriously limit its applications in flexible devices , such as...Surface Science, vol. 252, pp. 425-429 (2005). [12] S. M. Sze, "Physics of Semiconductor Devices ," 3rd Ed. pp. 305, 2007. [13] J. E. Baumgardner, A. A

  12. Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable conductive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Dong Choon; Park, Minwoo; Park, ChooJin; Kim, Bongsoo; Jeong, Unyong [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seoul (Korea, Republic of); Xia, Younan [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seoul (Korea, Republic of); Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 (United States); Hur, Jae Hyun; Kim, Jong Min; Park, Jong Jin [Samsung Advanced Institute of Technology, Mt.14-1, Nongseo-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 446-712 (Korea, Republic of)

    2011-07-12

    Highly stretchable conductive composite lines with an ordered zigzag structure are prepared. The high stretchability arises from the interpenetrating network between the polymer gel and Ag nanoparticles, as well as the ordered zigzag morphology. Double transfer of the structures in a perpendicular configuration allows for the fabrication of 2D stretchable electrodes. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Boron-Doped Diamond Electrodes for the Electrochemical Oxidation and Cleavage of Peptides

    NARCIS (Netherlands)

    Roeser, Julien; Alting, Niels F. A.; Permentier, Hjalmar P.; Bruins, Andries P.; Bischoff, Rainer

    2013-01-01

    Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy ca

  14. Enantioselective oxidation of secondary alcohols at a quinohaemoprotein alcohol dehydrogenase electrode

    NARCIS (Netherlands)

    Somers, W.A.C.; Stigter, E.C.A.; Hartingsveldt, W. van; Lugt, J.P. van der

    1998-01-01

    Quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni was co-immobilized with a redox polymer (a poly(vinylpyridine) complex functionalized with osmium bis(bipyridine) chloride) on an electrode. The enzyme electrode readily oxidizes primary alcohols and secondary alcohols with maximum

  15. Boron-Doped Diamond Electrodes for the Electrochemical Oxidation and Cleavage of Peptides

    NARCIS (Netherlands)

    Roeser, Julien; Alting, Niels F. A.; Permentier, Hjalmar P.; Bruins, Andries P.; Bischoff, Rainer

    2013-01-01

    Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy

  16. Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications

    Science.gov (United States)

    Brooke, Robert; Fabretto, Manrico; Vucaj, Nastasja; Zuber, Kamil; Switalska, Eliza; Reeks, Lachlan; Murphy, Peter; Evans, Drew

    2015-03-01

    Conductive polymers synthesized by vacuum vapour phase polymerization (VPP) were investigated and optimized by changing the oxidant solution and VPP chamber parameters for their incorporation into ‘smart window’ electrochromic devices. Additionally, the interaction of two oxidant solutions with typical electrode materials (aluminium and indium tin oxide) were examined with respect to material etching, device cosmetics and long term device degradation (over 10 000 switch cycles). Devices made with conducting polymers synthesized with the oxidant Fe(Tos)3 rather than FeCl3 produced superior device performance with respect to optical switching range (%T), switch speed and optical relaxation.

  17. High-Performance Capacitive Deionization Disinfection of Water with Graphene Oxide-graft-Quaternized Chitosan Nanohybrid Electrode Coating.

    Science.gov (United States)

    Wang, Yilei; El-Deen, Ahmed G; Li, Peng; Oh, Bernice H L; Guo, Zanru; Khin, Mya Mya; Vikhe, Yogesh S; Wang, Jing; Hu, Rebecca G; Boom, Remko M; Kline, Kimberly A; Becker, David L; Duan, Hongwei; Chan-Park, Mary B

    2015-10-27

    Water disinfection materials should ideally be broad-spectrum-active, nonleachable, and noncontaminating to the liquid needing sterilization. Herein, we demonstrate a high-performance capacitive deionization disinfection (CDID) electrode made by coating an activated carbon (AC) electrode with cationic nanohybrids of graphene oxide-graft-quaternized chitosan (GO-QC). Our GO-QC/AC CDID electrode can achieve at least 99.9999% killing (i.e., 6 log reduction) of Escherichia coli in water flowing continuously through the CDID cell. Without the GO-QC coating, the AC electrode alone cannot kill the bacteria and adsorbs a much smaller fraction (<82.8 ± 1.8%) of E. coli from the same biocontaminated water. Our CDID process consists of alternating cycles of water disinfection followed by electrode regeneration, each a few minutes duration, so that this water disinfection process can be continuous and it only needs a small electrode voltage (2 V). With a typical brackish water biocontamination (with 10(4) CFU mL(-1) bacteria), the GO-QC/AC electrodes can kill 99.99% of the E. coli in water for 5 h. The disinfecting GO-QC is securely attached on the AC electrode surface, so that it is noncontaminating to water, unlike many other chemicals used today. The GO-QC nanohybrids have excellent intrinsic antimicrobial properties in suspension form. Further, the GO component contributes toward the needed surface conductivity of the CDID electrode. This CDID process offers an economical method toward ultrafast, contaminant-free, and continuous killing of bacteria in biocontaminated water. The proposed strategy introduces a green in situ disinfectant approach for water purification.

  18. FISH & CHIPS: Four Electrode Conductivity / Salinity Sensor on a Silicon Multi-sensor chip for Fisheries Research

    DEFF Research Database (Denmark)

    Hyldgård, Anders; Olafsdottir, Iris; Olesen, M.;

    2005-01-01

    The design and fabrication of a single chip silicon salinity, temperature, pressure and light multisensor is presented. The behavior 2- and 4-electrode conductivity microsensors are described and methods for precise determination of water conductivity are given......The design and fabrication of a single chip silicon salinity, temperature, pressure and light multisensor is presented. The behavior 2- and 4-electrode conductivity microsensors are described and methods for precise determination of water conductivity are given...

  19. Electrocatalytic Activity of Pt/C Electrodes for Ethanol Oxidation in Vapor Phase

    Institute of Scientific and Technical Information of China (English)

    LIANG Hong; YE Dai-qi; LIN Wei-ming

    2005-01-01

    High performance platinized-carbon electrodes have been developed for the electrocatalytic oxidation of ethanol to acetaldehyde in electrogenerative processes. A load current density of the electrode can be achieved as high as 600 mA per square centimeter for oxygen reducing in 3 mol/L sulfuric acid with a good stability. With these electrodes and sulfuric acid as an electrolyte in fuel cells, ethanol vapor carried by nitrogen gas can be oxidized selectively to acetaldehyde. Selectivity of acetaldehyde depends on the potential of the cell and the feed rate of ethanol vapor and it can be more than 80% under optimized conditions. The initial product of ethanol oxidized on a platinized-carbon electrode is acetaldehyde and the ethanol oxidation mechanism is discussed.

  20. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review

    Directory of Open Access Journals (Sweden)

    Shen-Ming Chen

    2008-01-01

    Full Text Available Past few decades, conducting and redox active polymers play a critical role in the development of transducers for biosensing. It has been evidenced by increasing numerous reports on conducting and redox active polymers incorporated electrodes for assay of biomolcules. This review highlights the potential uses of electrogenerated polymer modified electrodes and polymer/carbon nanotubes composite modified electrodes for electroanalysis of reduced form of nicotinamide adenine dinuceltoide (NADH. In addition, carbon electrodes modified with organic and inorganic materials as modifier have been discussed in detail for the quantification of NADH based on mediator or mediator-less methods.

  1. ITO with embedded silver grids as transparent conductive electrodes for large area organic solar cells.

    Science.gov (United States)

    Patil, Bhushan R; Mirsafaei, Mina; Cielecki, Paweł Piotr; Cauduro, André Luis Fernandes; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2017-10-06

    In this work, development of semi-transparent electrodes for efficient large area organic solar cells (OSCs) has been demonstrated. Electron beam evaporated silver grids were embedded in commercially available ITO coatings on glass, through a standard negative photolithography process, in order to improve the conductivity of planar ITO substrates. The fabricated electrodes with embedded line and square patterned Ag grids reduced the sheet resistance of ITO by 25% and 40%, respectively, showing optical transmittance drops of less than 6% within the complete visible light spectrum for both patterns. Solution processed bulk heterojunction OSCs based on PTB7:[70]PCBM were fabricated on top of these electrodes with cell areas of 4.38 cm(2), and the performance of these OSCs was compared to reference cells fabricated on pure ITO electrodes. The Fill Factor (FF) of the large-scale OSCs fabricated on ITO with embedded Ag grids was enhanced by 18% for the line grids pattern and 30% for the square grids pattern compared to that of the reference OSCs. The increase in the FF was directly correlated to the decrease in the series resistance of the OSCs. The maximum power conversion efficiency (PCE) of the OSCs was measured to be 4.34%, which is 23% higher than the PCE of the reference OSCs. As the presented method does not involve high temperature processing, it could be considered a general approach for development of large area organic electronics on solvent resistant, flexible substrates.

  2. ITO with embedded silver grids as transparent conductive electrodes for large area organic solar cells

    Science.gov (United States)

    Patil, Bhushan R.; Mirsafaei, Mina; Piotr Cielecki, Paweł; Fernandes Cauduro, André Luis; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2017-10-01

    In this work, development of semi-transparent electrodes for efficient large area organic solar cells (OSCs) has been demonstrated. Electron beam evaporated silver grids were embedded in commercially available ITO coatings on glass, through a standard negative photolithography process, in order to improve the conductivity of planar ITO substrates. The fabricated electrodes with embedded line and square patterned Ag grids reduced the sheet resistance of ITO by 25% and 40%, respectively, showing optical transmittance drops of less than 6% within the complete visible light spectrum for both patterns. Solution processed bulk heterojunction OSCs based on PTB7:[70]PCBM were fabricated on top of these electrodes with cell areas of 4.38 cm2, and the performance of these OSCs was compared to reference cells fabricated on pure ITO electrodes. The Fill Factor (FF) of the large-scale OSCs fabricated on ITO with embedded Ag grids was enhanced by 18% for the line grids pattern and 30% for the square grids pattern compared to that of the reference OSCs. The increase in the FF was directly correlated to the decrease in the series resistance of the OSCs. The maximum power conversion efficiency (PCE) of the OSCs was measured to be 4.34%, which is 23% higher than the PCE of the reference OSCs. As the presented method does not involve high temperature processing, it could be considered a general approach for development of large area organic electronics on solvent resistant, flexible substrates.

  3. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    Science.gov (United States)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  4. Liquid Crystalline Graphene Oxide/PEDOT:PSS Self-Assembled 3D Architecture for Binder-Free Supercapacitor Electrodes

    OpenAIRE

    Islam, Md. Monirul; Chidembo, Alfred T.; Aboutalebi, Seyed Hamed; Cardillo, Dean; Liu, Hua Kun; Konstantinov, Konstantin; Dou, Shi Xue

    2014-01-01

    Binder-free self-assembled 3D architecture electrodes have been fabricated by a novel convenient method. Liquid crystalline graphene oxide was used as precursor to interact with poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in dispersion in order to form a conductive polymer entrapped, self-assembled layer-by-layer structure. This advanced network containing PEDOT:PSS enabled us to ascribe the superior electrochemical properties of particular graphene sheets. This layer...

  5. Liquid crystalline graphene oxide/PEDOT:PSS self-assembled 3D architecture for binder-free supercapacitor electrodes

    OpenAIRE

    Monirul eIslam; Alfred eChidembo; Hamed eAboutalebi; Dean eCardillo; Hua Kun Liu; Konstantin eKonstantinov; Shi Xue Dou

    2014-01-01

    Binder-free self-assembled 3D architecture electrodes have been fabricated by a novel convienient method. Liquid crystalline graphene oxide (LC GO) was used as precursor to interact with poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in dispersion in order to form a conductive polymer entrapped, self-assembled layer-by-layer structure. This advanced network containing PEDOT:PSS enabled us to ascribe the superior electrochemical properties of particular graphene sheets. T...

  6. Electrode Kinetics and Gas Conversion in Solid Oxide Cells

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude

    for operation in the different fuels, operation temperature and operation modes it is important to understand the kinetics of the SOC electrodes. This thesis was aimed at understanding the kinetics of the SOC under different operation conditions of temperature, polarization, and fuel mixture. For investigations...... conditions of temperature and current density nano particles were also found on Ni particles, identified as ZrO2 and attributed the major cause of fuel electrode ageing. In cyclic operation these enhancing conditions were not maintained long-enough for severe nickel precipitation. It is known...... compared well with those reported in literature and their evolution with temperature was similar to that reported in literature based on porous Ni/YSZ fuel electrodes. From the two investigated oxygen electrodes, the higher performing (La0.6Sr0.4)0.99CoO3/Ce0.9Gd0.1O1.95 (LSC/CGO) oxygen electrode showed...

  7. Electrochemical Oxidation of Paracetamol Mediated by MgB2 Microparticles Modified Glassy Carbon Electrode

    OpenAIRE

    Mohammed Zidan; Tan Wee Tee; A. Halim Abdullah; Zulkarnain Zainal; Goh Joo Kheng

    2011-01-01

    A MgB2 microparticles modified glassy carbon electrode (MgB2/GCE) was fabricated by adhering microparticles of MgB2 onto the electrode surface of GCE. It was used as a working electrode for the detection of paracetamol in 0.1 M KH2PO4 aqueous solution during cyclic voltammetry. Use of the MgB2/GCE the oxidation process of paracetamol with a current enhancement significantly by about 2.1 times. The detection limit of this modified electrode was found to be 30 μM. The sensitivity under conditio...

  8. First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes

    KAUST Repository

    Chen, X.

    2012-03-26

    Rapid and cost-effective DNA sequencing at the single nucleotide level might be achieved by measuring a transverse electronic current as single-stranded DNA is pulled through a nanometer-sized pore. In order to enhance the electronic coupling between the nucleotides and the electrodes and hence the current signals, we employ a pair of single-walled close-ended (6,6) carbon nanotubes (CNTs) as electrodes. We then investigate the electron transport properties of nucleotides sandwiched between such electrodes by using first-principles quantum transport theory. In particular, we consider the extreme case where the separation between the electrodes is the smallest possible that still allows the DNA translocation. The benzene-like ring at the end cap of the CNT can strongly couple with the nucleobases and therefore it can both reduce conformational fluctuations and significantly improve the conductance. As such, when the electrodes are closely spaced, the nucleobases can pass through only with their base plane parallel to the plane of CNT end caps. The optimal molecular configurations, at which the nucleotides strongly couple to the CNTs, and which yield the largest transmission, are first identified. These correspond approximately to the lowest energy configurations. Then the electronic structures and the electron transport of these optimal configurations are analyzed. The typical tunneling currents are of the order of 50 nA for voltages up to 1 V. At higher bias, where resonant transport through the molecular states is possible, the current is of the order of several μA. Below 1 V, the currents associated to the different nucleotides are consistently distinguishable, with adenine having the largest current, guanine the second largest, cytosine the third and, finally, thymine the smallest. We further calculate the transmission coefficient profiles as the nucleotides are dragged along the DNA translocation path and investigate the effects of configurational variations

  9. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    Science.gov (United States)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-07-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability.

  10. Facile preparation of reduced graphene oxide - ruthenium oxide nanocomposite electrodes for high-performance supercapacitors

    Science.gov (United States)

    Amir, Fatima; Pham, Viet; Dickerson, James; Winthrop University Team; CFN-Brookhaven National Lab Team

    2015-03-01

    Herein we report a facile approach of synthesis of graphene oxide (GO) sheets modified with ruthenium oxide (RuO2) nanoparticles, followed by a reduction of graphene oxide in an alkaline medium. The as-prepared reduced graphene oxide (rGO)/ruthenium oxide (RuO2) nanocomposite was used for the fabrication of a symmetric supercapacitor. The specific capacitance and charge-discharge periods of the supercapacitor were found to be dependent on both the structural and morphological properties, and the electrolytes used. Surface morphology analysis using scanning electron microscopy (SEM) shows the RuO2 nanoparticles decorating rGO sheets, comprising a highly porous surface. Structural analysis obtained by x-ray diffraction (XRD) revealed an amorphous structure that is necessary to achieve a high cycling rate capability. The electrochemical properties of rGO/RuO2 were measured in a two electrodes system, using two different electrolytes: H2SO4andNa2SO4. The specific capacitance of rGO/RuO2 in H2SO4 was found to be 318 F/g, and is much higher than that of Na2SO4 (184 F/g).

  11. Performance characteristics of lead oxides in pasted lead/acid battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Afifi, S.E. (Electrometallurgy Lab., Central Metallurgical Research and Development Inst., Cairo (Egypt)); Saba, A.E. (Electrometallurgy Lab., Central Metallurgical Research and Development Inst., Cairo (Egypt)); Shenouda, A.Y. (Electrometallurgy Lab., Central Metallurgical Research and Development Inst., Cairo (Egypt))

    1993-10-15

    The performance characteristics of lead oxides used for the pasted type of lead/acid battery plate have been investigated. The [alpha]- and [beta]-PbO polymorphs have been prepared carefully and used for pasting model electrodes. The factors that may affect the electrical capacity of such electrodes have been studied. These are: the type of oxide; percentage of free lead; additives such as carboxymethyl cellulose, zeolite and graphite. Lead hydroxide has also been studied with special attention. Photomicrographs have been taken to examine the crystal forms that develop on the electrode surface. Finally, some industrial samples have been investigated. (orig.)

  12. Electrochemical Sensing of Nitric Oxide on Electrochemically Reduced Graphene-Modified Electrode

    Directory of Open Access Journals (Sweden)

    Yu-Li Wang

    2011-01-01

    Full Text Available Graphene-modified electrode was prepared through electrochemically reducing graphene oxide on the surface of a glassy carbon electrode in PBS solution. The as-prepared electrode owns higher stability and stronger catalytic activity towards the oxidation of nitric oxide (NO. At the electrode, an oxidation peak of NO can be observed at about 1.05 V (versus Ag/AgCl, and the electrode reaction of NO is controlled by diffusion process. Under the optimum conditions, the peak currents are dependent linearly on NO concentrations in the range from 7.2×10−7 to 7.84×10−5 M with a limit of detection of 2.0×10−7 M. The response time of the as-prepared electrode to NO is less than 3 s, and the sensitivity is about 299.1 μA/mM, revealing that the electrode can be used as an excellent sensor for the determination of NO. With further modification of Nafion, the determination is free from the interference of nitrite and some other biological substances. This investigation provides an alternate way for the determination of NO.

  13. Double-shot inkjet printing for high-conductivity polymer electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sejeong [The School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Sohn, Sunyoung; Kwon, Jimin; Park, Ju An [Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Jung, Sungjune, E-mail: sjjung@postech.ac.kr [The School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of)

    2016-05-31

    This paper presents a printing method to form a high-conductivity patterned poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film. A modified PEDOT:PSS ink containing a secondary dopant (dimethyl sulfoxide) and fluorosurfactant (Zonyl FS-300) was inkjet-printed to form a uniform conducting layer, and the dimethyl sulfoxide, conductivity enhancer, was over-printed onto it to further enhance its conductivity. We achieved high-conductivity greater than 1000 S cm{sup −1} by only using inkjet-printing technique. The mechanism of conductivity enhancement was investigated with X-ray photoelectron spectroscopy and atomic force microscopy analyses. The printing process for high-conductivity PEDOT:PSS was applied to pattern a transparent anode for the fabrication of an organic light emitting diode. - Highlights: • Demonstrated a double-shot inkjet printing process for high-conductivity electrodes • Achieved high-conductivity greater than 1000 S cm{sup −1} only by inkjet-printing • Fabricated OLEDs with high-conductivity inkjet-printed anodes.

  14. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes.

    Science.gov (United States)

    Bagastyo, Arseto Y; Radjenovic, Jelena; Mu, Yang; Rozendal, René A; Batstone, Damien J; Rabaey, Korneel

    2011-10-15

    Reverse osmosis (RO) membranes have been successfully applied around the world for wastewater reuse applications. However, RO is a physical separation process, and besides the clean water stream (permeate) a reverse osmosis concentrate (ROC) is produced, usually representing 15-25% of the feed water flow and containing the organic and inorganic contaminants at higher concentrations. In this study, electrochemical oxidation was investigated for the treatment of ROC generated during the reclamation of municipal wastewater effluent. Using laboratory-scale two-compartment electrochemical systems, five electrode materials (i.e. titanium coated with IrO2-Ta2O5, RuO2-IrO2, Pt-IrO2, PbO2, and SnO2-Sb) were tested as anodes in batch mode experiments, using ROC from an advanced water treatment plant. The best oxidation performance was observed for Ti/Pt-IrO2 anodes, followed by the Ti/SnO2-Sb and Ti/PbO2 anodes. The effectiveness of the treatment appears to correlate with the formation of oxidants such as active chlorine (i.e. Cl2/HClO/ClO-). As a result, electro-generated chlorine led to the abundant formation of harmful by-products such as trihalomethanes (THMs) and haloacetic acids (HAAs), particularly at Ti/SnO2-Sb and Ti/Pt-IrO2 anodes. The highest concentration of total HAAs (i.e. 2.7 mg L(-1)) was measured for the Ti/SnO2-Sb electrode, after 0.55 Ah L(-1) of supplied specific electrical charge. Irrespective of the used material, electrochemical oxidation of ROC needs to be complemented by a polishing treatment to alleviate the release of halogenated by-products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Stability and Performance of Oxygen Electrodes for Reversible Solid Oxide Cells

    Science.gov (United States)

    Railsback, Justin Gary

    Worldwide, governments are beginning to take action to reduce anthropogenic CO2 emissions in order to mitigate the extent of global climate change. The largest fraction of global CO2 emission comes from electrical power generation, which is rapidly being converted to wind and solar installations. The intermittent nature of renewable resources requires that large scale energy storage be implemented to ensure grid stability. Pumped hydro storage is currently the only technology available for large scale energy storage; however, pumped hydro remains geographically confined and susceptible to seasonal fluctuations and offers limited discharge hours. Recent system level models predict that reversible solid oxide cells may be a competitive solution, but two key advancements are required to realize the technology: low cell resistance (<0.2 O•cm2 at <650 °C), particularly low polarization resistance at the oxygen electrode, and low degradation rate (<0.5%/khr for 50,000 hours). The oxygen electrode is typically the largest contributor to the total cell resistance, and when a cell is operated in electrolysis the oxygen electrode is known to degrade quickly. This work focuses on both aspects of the oxygen electrode. A Pr2NiO4 based electrode is developed that has improved phase stability and good polarization resistance ( 0.1 O•cm2 at 650 °C). The electrode is prepared by wet chemical impregnation (infiltration) of Pr2NiO4 precursors into a La0.9Sr 0.1Ga0.8Mg0.2O3 scaffold. Electrochemical data for a number cells is presented and the number of infiltrations is optimized. Preliminary life tests and x-ray data are presented. Pressurization of the oxygen electrode is predicted to decrease its polarization resistance and pressurization of the reversible solid oxide cell system is desirable to achieve high round-trip efficiency. The electrochemical performance of mixed electronic-ionic conducting electrodes has not been reported above 1 atm. Four candidate electrodes are

  16. Transparent bipolar resistive switching memory on a flexible substrate with indium-zinc-oxide electrodes

    Science.gov (United States)

    Yeom, Seung-Won; Ha, Hyeon Jun; Park, Junsu; Shim, Jae Won; Ju, Byeong-Kwon

    2016-12-01

    We fabricated transparent indium zinc oxide (IZO)/TiO2/IZO devices on flexible polyethylene phthalate (PET) substrates. These devices demonstrate bipolar resistive switching behavior, exhibit a transmittance greater than 80 % for visible light, and have stable resistive switching properties, including long retention and good endurance. In addition, the devices were investigated based on their temperature dependence; the results show metallic properties in the low-resistance state (LRS) and semiconducting properties in the high-resistance state (HRS). The conduction mechanism for resistive switching in our device was well-fitted with Ohmic conduction in the LRS and Poole-Frenkel emission in the HRS. The mechanism could be explained by the formation and the rupture of the conduction paths formed by the movement of oxygen ions and vacancies. Moreover, acute bending of the devices did not affect the memory characteristics because of the pliability of both the IZO electrodes and the thin oxide layer. These results indicate potential applications as resistive random access memories in future flexible, transparent electronic devices.

  17. Characteristics of graphite felt electrode electrochemically oxidized for vanadium redox battery application

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-gang; HUANG Ke-long; LIU Su-qin; TAN Ning; CHEN Li-quan

    2007-01-01

    The graphite felt was oxidized at a positive electrode potential in sulfuric acid solution. The electrochemical performance of the treated graphite felt served as electrode for vanadium redox battery was investigated with FT-IR, SEM, XPS, BET, cyclic voltammetry and testing VRB system, respectively. The results show that the molar ratio of O to C increases from 0.085 to 0.15 due to the increase of -COOH functional groups during electrochemical oxidation treatment, and the GF surface is eroded by electrochemical oxidation, resulting in the surface area increase from 0.33 m2/g to 0.49 m2/g. The VRB with modified GF electrode exhibits excellent performance under a current density of 30 mA/cm2. The average current efficiency reaches 94% and average voltage efficiency reaches 85%. The improvement of electrochemical activity for the electrode is ascribed to the increase of the number of -COOH group and the special surface of GF.

  18. Electrocatalytic Oxidation of Dopamine by Ferrocene in Lipid Film Cast on a Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG,Jian-Guo(王建国); WU,Zheng-Yan(吴正岩); TANG,Ji-Lin(唐纪琳); TENG,Ren-Rui(滕人瑞); WANG,Er-Kang(汪尔康)

    2002-01-01

    The ferrocene-lipid film electrode was successfully prepared by means of casting the solution of ferrocene and lipid in chloroform onto a glassy carbon (GC) electrode surface. Ferrocene saved in the biological membrane gave a couple of quasi-reversble peaks of cyclic voltammmogram. The electrode displays a preferential electrocatalytic oxidation of dopamine (DA).The effect of electrocatalytic oxidation of DA depends on the solution pH and the negative charge lipid is in favor of catalytic oxidation of DA. The charistic was employed for separating the electrochemical responses of DA and ascorbic acid (AA). The electrode was assessed for the voltammtric differentiation of DA and AA. The measurement of DA can be achieved with differential pulse voltammetry in the presence of high conentration of AA. The catalytic peak current was proportional to the concentration of DA in the range of 1 ×10- 4-3 × 10-3 mol/L.

  19. Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli, E-mail: tgl@hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou, Lingyu [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory of Clean Energy, Dalian 116023 (China); Zhang, Jian, E-mail: jianzhang@guet.edu.cn [Department of Material Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China)

    2015-02-23

    Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a useful approach to improve the performance of inverted polymer solar cells.

  20. Non-destructive sensing of the freshness of packed cod fish using conductivity and pH electrodes

    NARCIS (Netherlands)

    Heising, J.K.; Bartels, P.V.; Boekel, van M.A.J.S.; Dekker, M.

    2014-01-01

    The use of pH and conductivity electrodes as non-destructive methods for monitoring changes in the freshness status of packed fish is explored. The electrodes monitor changes in the electrical properties of an aqueous phase positioned in the headspace of the fish package. Volatile compounds produced

  1. Non-destructive sensing of the freshness of packed cod fish using conductivity and pH electrodes

    NARCIS (Netherlands)

    Heising, J.K.; Bartels, P.V.; Boekel, van M.A.J.S.; Dekker, M.

    2014-01-01

    The use of pH and conductivity electrodes as non-destructive methods for monitoring changes in the freshness status of packed fish is explored. The electrodes monitor changes in the electrical properties of an aqueous phase positioned in the headspace of the fish package. Volatile compounds produced

  2. Nanoscale characterization of the electrical properties of oxide electrodes at the organic semiconductor-oxide electrode interface in organic solar cells

    Science.gov (United States)

    MacDonald, Gordon Alex

    This dissertation focuses on characterizing the nanoscale and surface averaged electrical properties of transparent conducting oxide electrodes such as indium tin oxide (ITO) and transparent metal-oxide (MO) electron selective interlayers (ESLs), such as zinc oxide (ZnO), the ability of these materials to rapidly extract photogenerated charges from organic semiconductors (OSCs) used in organic photovoltaic (OPV) cells, and evaluating their impact on the power conversion efficiency (PCE) of OPV devices. In Chapter 1, we will introduce the fundamental principles, benefits, and the key innovations that have advanced this technology. In Chapter 2 of this dissertation, we demonstrate an innovative application of conductive probe atomic force microscopy (CAFM) to map the nanoscale electrical heterogeneity at the interface between ITO, and a well-studied OSC, copper phthalocyanine (CuPc).(MacDonald et al. (2012) ACS Nano, 6, p. 9623) In this work we collected arrays of current-voltage (J-V) curves, using a CAFM probe as the top contact of CuPc/ITO systems, to map the local J-V responses. By comparing J-V responses to known models for charge transport, we were able to determine if the local rate-limiting-step for charge transport is through the OSC (ohmic) or the CuPc/ITO interface (non-ohmic). Chapter 3 focus on the electrical property characterization of RF-magnetron sputtered ZnO (sp-ZnO) ESL films on ITO substrates. We have shown that the energetic alignment of ESLs and the OSC active materials plays a critical role in determining the PCE of OPV devices and UV light soaking sensitivity. We have used a combination of device testing, modeling, and impedance spectroscopy to characterize the effects that energetic alignment has on the charge carrier transport and distribution within the OPV device. In Chapter 4 we demonstrate that the local properties of sp-ZnO films varies as a function of the underlying ITO crystal face. We show that the local ITO crystal face determines

  3. High conducting oxide--sulfide composite lithium superionic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin

    2017-01-17

    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  4. Electrochromic Performance of Nanocomposite Nickel Oxide Counter Electrodes Containing Lithium and Zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Engtrakul, Chaiwat [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Feng [Formerly NREL; Colorado School of Mines; Montano, Manuel [Colorado School of Mines; Tian, Chixia [Colorado School of Mines; Ji, Yazhou [Colorado School of Mines; Nordlund, Dennis [SLAC National Accelerator Laboratory; Weng, Tsu-Chien [SLAC National Accelerator Laboratory; Moore, Rob G. [SLAC National Accelerator Laboratory; Gillaspie, Dane T. [Formerly NREL; Jones, Kim M. [Formerly NREL; Dillon, Anne C. [Formerly NREL; Richards, Ryan M. [Colorado School of Mines

    2013-12-02

    Nickel oxide materials are suitable for counter electrodes in complementary electrochromic devices. The state-of-the-art nickel oxide counter electrode materials are typically prepared with multiple additives to enhance peformance. Herein, nanocomposite nickel oxide counter electrodes were fabricated via RF magnetron co-sputtering from Ni-Zr alloy and Li2O ceramic targets. The as-deposited nanocomposite counter electrodes were characterized with inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). It was found that the stoichiometry, crystal structure and electronic structure of the nickel oxide-based materials could be readily tuned by varying the Li2O sputter deposition power level. Comprehensive electrochromic evaluation demonstrated that the performance of the nickel oxide-based materials was dependent on the overall Li stoichiometry. Overall, the nanocomposite nickel oxide counter electrode containing lithium and zirconium synthesized with a Li2O deposition power of 45 W exhibited the optimal performance with an optical modulation of 71% and coloration efficiency of 30 cm2/C at 670 nm in Li-ion electrolyte.

  5. Photoelectrochemical Properties of Bacteriorhodopsin Langmuir-Blodgett Films on ITO Conductive Electrode

    Institute of Scientific and Technical Information of China (English)

    王建平; 李津如; 陶培德; 李兴长; 江龙

    1994-01-01

    Langmuir-Blodgett films containing bacteriorhodopsin were deposited on ITO conduc-tive electrodes.A sandwiched photocell with a junction structure of ITO/bR/electrolyte/ITO has beenconstructed,in which the bR LB film was directly put into contact with an aqueous electrolyte immobi-lized in an agar gel.Under visible light irradiation,the photocell produced a transient photocurrent due tothe change of light intensity,which characterized vision imitative material.A photoalarm device based ondifferential responsivity phenomena was fabricated.

  6. Dual-electrode oxidation used for aniline degradation in aqueous electrolyte.

    Science.gov (United States)

    Yan-Yang, Chu; Ling-Ling, Li; Mao-Juan, Bai

    2011-01-01

    The electrochemical degradation of aniline in aqueous electrolyte has been studied by dual-electrode oxidation process using Ti/SnO2-Sb2O5 for anodic oxidation and graphite cathode to produce H2O2 in situ. The linear voltammograms were employed to obtain reasonable anodic and cathodic potential values for the purpose of restraining side reactions. The influence of Fe2+ on aniline degradation was investigated under potentiostatic condition with a three-electrode system. It was found that an anodic potential range of 2.0 +/- 0.1 V and a cathodic potential of -0.65 V could favor anodic oxidation and H2O2 generation. Anodic oxidation was accounted for aniline degradation in the absence of Fe2+, while in the presence of Fe2+ both electro-Fenton oxidation and anodic oxidation (dual-electrode oxidation) could degradate aniline effectively. When cathodic potential values were -0.65 and -0.80 V, the optimum Fe2+ concentration were 0.50 and 0.30 mM, respectively. 77.5% COD removal and 70.4% TOC removal with a current efficiency (CE) of 96-100% were achieved under the optimum conditions. This work indicates that dual-electrode oxidation process characterized by a high CE is feasible for the degradation of organic compounds.

  7. A Novel Amperometric Nitric Oxide Sensor Based on Polythionine /Nation Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel amperometric sensor for the determination of nitric oxide was developed by coating polythionine / nafion on a glassy carbon electrode. This sensor exhibited a great enhancement to the oxidation of nitric oxide. The oxidation peak currents were linear to the concentration of nitric oxide over the wide range from 3.6×10-7 to 6.8×10-5 mol. L-1, and the detection limit was 7.2×10-8 mol. L-1. Experimental results showed that this nitric oxide sensor possessed excellent selectivity and longer stability. NO releasing from rat kidney was monitored by this sensor.

  8. Using a sensitivity study to facilitate the design of a multi-electrode array to measure six cardiac conductivity values.

    Science.gov (United States)

    Johnston, Barbara M

    2013-07-01

    When using the bidomain model to model the electrical activity of the heart, there are potentially six cardiac conductivity values involved: conductivity values in directions along and normal to the cardiac fibres with a sheet, as well as a conductivity value in the normal direction between the sheets, and these occur for both the extracellular and intracellular domains in the model. To date it has been common to assume that the two normal direction conductivity values are the same. However, recent work has demonstrated that six cardiac conductivity values, rather than four, are necessary for accurate modelling, which can then facilitate understanding of cardiovascular disease. To design a method to determine these conductivities, it is also necessary to design a suitable multi-electrode array, which can be used, in conjunction with an inversion technique, to retrieve conductivity values from measurements of potential made on the array. This work uses the results of a study, into the sensitivity of the measuring potentials to variability in the input conductivities, to facilitate the design of an array that could be used to retrieve six cardiac conductivity values, as well as fibre rotation angle. It is found that if an electrode in the array has a much lower value of potential than the other electrodes, then it tends to be much more sensitive to the input conductivities than the other electrodes. It also appears that inclusion of this type of electrode in the set of measuring electrodes is essential for accurately retrieving conductivity values. This technique is used to identify electrodes to be included in the array and using the final design it is demonstrated, using synthetic values of potential, that the six cardiac conductivity values, and the fibre rotation angle, can be retrieved very accurately.

  9. Electrocatalytic activity of Cu2O nanocubes-based electrode for glucose oxidation

    Indian Academy of Sciences (India)

    Sathiyanathan Felix; Pratap Kollu; Bala P C Raghupathy; Soon Kwan Jeong; Andrews Nirmala Grace

    2014-01-01

    A direct electrocatalytic activity of glucose oxidation on cuprous oxide modified glassy carbon electrode is reported. Cu2O nanocubes were synthesized by a simple wet chemical route in the absence of surfactants. Purity, shape and morphology of Cu2O are characterized by XRD, SEM, XPS and DRS-UV. The Cu2O nanocubes-modified glassy carbon electrode (GCE) exhibited high electrocatalytic activity towards glucose oxidation compared with bare GCE electrode. At an applied potential of +0.60V, the Cu2O electrode presented a high sensitivity of 121.7 A/mM. A linear response was obtained from 0 to 500 M, a response time less than 5 s and a detection limit of 38 M (signal/noise=3). The Cu2O nanocubes-modified electrode was stable towards interfering molecules like uric acid (UA), ascorbic acid (AA) and dopamine (DA). In short, a facile chemical preparation process of cuprous oxide nanocubes, and the fabricated modified electrode allow highly sensitive, selective, and fast amperometric sensing of glucose, which is promising for the future development of non-enzymatic glucose sensors.

  10. Electrodeposition of Polypyrrole and Reduced Graphene Oxide onto Carbon Bundle Fibre as Electrode for Supercapacitor

    Science.gov (United States)

    Abdul Bashid, Hamra Assyaima; Lim, Hong Ngee; Kamaruzaman, Sazlinda; Abdul Rashid, Suraya; Yunus, Robiah; Huang, Nay Ming; Yin, Chun Yang; Rahman, Mohammad Mahbubur; Altarawneh, Mohammednoor; Jiang, Zhong Tao; Alagarsamy, Pandikumar

    2017-04-01

    A nanocomposite comprising of polypyrrole and reduced graphene oxide was electrodeposited onto a carbon bundle fibre (CBF) through a two-step approach (CBF/PPy-rGO-2). The CBF/PPy-rGO-2 had a highly porous structure compared to a nanocomposite of polypyrrole and reduced graphene oxide that was electrodeposited onto a CBF in a one-step approach (CBF/PPy-rGO), as observed through a field emission scanning electron microscope. An X-ray photoelectron spectroscopic analysis revealed the presence of hydrogen bond between the oxide functional groups of rGO and the amine groups of PPy in PPy-rGO-2 nanocomposite. The fabricated CBF/PPy-rGO-2 nanocomposite material was used as an electrode material in a symmetrical solid-state supercapacitor, and the device yielded a specific capacitance, energy density and power density of 96.16 F g- 1, 13.35 Wh kg- 1 and of 322.85 W kg- 1, respectively. Moreover, the CBF/PPy-rGO-2 showed the capacitance retention of 71% after 500 consecutive charge/discharge cycles at a current density of 1 A g- 1. The existence of a high degree of porosity in CBF/PPy-rGO-2 significantly improved the conductivity and facilitated the ionic penetration. The CBF/PPy-rGO-2-based symmetrical solid-state supercapacitor device demonstrated outstanding pliability because the cyclic voltammetric curves remained the same upon bending at various angles.

  11. Anodic oxidation of o-nitrophenol on BDD electrode: Variable effects and mechanisms of degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rabaaoui, Nejmeddine, E-mail: chimie_tunisie@yahoo.fr [Materials, Environment and Energy Laboratory (06/UR/12-01), Science Faculty of Gafsa, 2112, University of Gafsa (Tunisia); Saad, Mohamed El Khames [Materials, Environment and Energy Laboratory (06/UR/12-01), Science Faculty of Gafsa, 2112, University of Gafsa (Tunisia); Moussaoui, Younes [Materials, Environment and Energy Laboratory (06/UR/12-01), Science Faculty of Gafsa, 2112, University of Gafsa (Tunisia); Physical Organic Chemistry Laboratory, Science Faculty of Sfax, University of Sfax (Tunisia); Allagui, Mohamed Salah [Science Faculty of Gafsa, University of Gafsa (Tunisia); Bedoui, Ahmed [Materials, Environment and Energy Laboratory (06/UR/12-01), Science Faculty of Gafsa, 2112, University of Gafsa (Tunisia); Science Faculty of Gabes, 6072, University of Gabes (Tunisia); Elaloui, Elimame [Materials, Environment and Energy Laboratory (06/UR/12-01), Science Faculty of Gafsa, 2112, University of Gafsa (Tunisia); Science Faculty of Gafsa, University of Gafsa (Tunisia)

    2013-04-15

    Highlights: ► Anodic oxidation is an effective method for degrading o-nitrophenol. ► The effect of operating parameters on the degradation was investigated. ► The main intermediate products were determined by HPLC technique. ► A plausible degradation pathway of o-nitrophenol was proposed. -- Abstract: The electrochemical oxidation of pesticide, o-nitrophenol (ONP) as one kind of pesticide that is potentially dangerous and biorefractory, was studied by galvanostatic electrolysis using boron-doped diamond (BDD) as anode. The influence of several operating parameters, such as applied current density, supporting electrolyte, and initial pH value, was investigated. The best degradation occurred in the presence of Na{sub 2}SO{sub 4} (0.05 M) as conductive electrolyte. After 8 h, nearly complete degradation of o-nitrophenol was achieved (92%) using BDD electrodes at pH 3 and at current density equals 60 mA cm{sup −2}. The decay kinetics of o-nitrophenol follows a pseudo-first-order reaction. Aromatic intermediates such as catechol, resorcinol, 1,2,4-trihydroxybenzene, hydroquinone and benzoquinone and carboxylic acids such as maleic glycolic, malonic, glyoxilic and oxalic, have been identified and followed during the ONP treatment by chromatographic techniques. From these anodic oxidation by-products, a plausible reaction sequence for ONP mineralization on BDD anodes is proposed.

  12. Reduced graphene oxide with ultrahigh conductivity as carbon coating layer for high performance sulfur@reduced graphene oxide cathode

    Science.gov (United States)

    Zhao, Hongbin; Peng, Zhenhuan; Wang, Wenjun; Chen, Xikun; Fang, Jianhui; Xu, Jiaqiang

    2014-01-01

    We developed hydrogen iodide (HI) reduction of rGO and surfactant-assisted chemical reaction- deposition method to form hybrid material of sulfur (S) encapsulated in reduced graphene oxide (rGO) sheets for rechargeable lithium batteries. The surfactant-assisted chemical reaction-deposition method strategy provides intimate contact between the S and graphene oxide. Chemical reduced rGO with high conductivity as carbon coating layer prevented the dissolution of polysulfide ions and improved the electron transfer. This novel core-shell structured S@rGO composites with high S content showed high reversible capacity, good discharge capacity retention and enhanced rate capability used as cathodes in rechargeable Li/S cells. We demonstrated here that an electrode prepared from a S@rGO with up to 85 wt% S maintains a stable discharge capacity of about 980 mAh g-1 at 0.05 C and 570 mAh g-1 at 1C after 200 cycles charge/discharge. These results emphasize the importance of rGO with high electrical conductivity after HI-reduced rGO homogeneously coating on the surface of S, therefore, effectively alleviating the shuttle phenomenon of polysulfides in organic electrolyte. Our surfactant-assisted chemical reaction-HI reduction approach should offer a new technique for the design and synthesis of battery electrodes based on highly conducting carbon materials.

  13. 3D indium tin oxide electrodes by ultrasonic spray deposition for current collection applications

    Science.gov (United States)

    van den Ham, E. J.; Elen, K.; Bonneux, G.; Maino, G.; Notten, P. H. L.; Van Bael, M. K.; Hardy, A.

    2017-04-01

    Three dimensionally (3D) structured indium tin oxide (ITO) thin films are synthesized and characterized as a 3D electrode material for current collection applications. Using metal citrate chemistry in combination with ultrasonic spray deposition, a low cost wet-chemical method has been developed to achieve conformal ITO coatings on non-planar scaffolds. Although there is room for improvement with respect to the resistivity (9.9·10-3 Ω•cm, 220 nm thick planar films), high quality 3D structured coatings were shown to exhibit conductive properties based on ferrocene reactivity. In view of applications in Li-ion batteries, the electrochemical stability of the current collector was investigated, indicating that stability is guaranteed for voltages of 1.5 V and up (vs. Li+/Li). In addition, subsequent 3D coating of the ITO with WO3 as a negative electrode (battery) material confirmed the 3D ITO layer functions as a proper current collector. Using this approach, an over 4-fold capacity increase was booked for 3D structured WO3 in comparison to planar samples, confirming the current collecting capabilities of the 3D ITO coating. Therefore, the 3D ITO presented is considered as a highly interesting material for 3D battery applications and beyond.

  14. Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes

    Science.gov (United States)

    Yan, Xingzhen; Ma, Jiangang; Xu, Haiyang; Wang, Chunliang; Liu, Yichun

    2016-08-01

    In this paper, we prepared the silver nanowires (AgNWs)/aluminum-doped zinc oxide (AZO) composite transparent conducting electrodes for n-ZnO/p-GaN heterojunction light emitting-diodes (LEDs) by drop casting AgNW networks and subsequent atomic layer deposition (ALD) of AZO at 150 °C. The contact resistances between AgNWs were dramatically reduced by pre-annealing in the vacuum chamber before the ALD of AZO. In this case, AZO works not only as the conformal passivation layer that protects AgNWs from oxidation, but also as the binding material that improves AgNWs adhesion to substrates. Due to the localized surface plasmons (LSPs) of the AgNWs resonant coupling with the ultraviolet (UV) light emission from the LEDs, a higher UV light extracting efficiency is achieved from LEDs with the AgNWs/AZO composite electrodes in comparison with the conventional AZO electrodes. Additionally, the antireflective nature of random AgNW networks in the composite electrodes caused a broad output light angular distribution, which could be of benefit to certain optoelectronic devices like LEDs and solar cells.

  15. Rapid atmospheric pressure plasma jet processed reduced graphene oxide counter electrodes for dye-sensitized solar cells.

    Science.gov (United States)

    Liu, Hsiao-Wei; Liang, Sheng-Ping; Wu, Ting-Jui; Chang, Haoming; Kao, Peng-Kai; Hsu, Cheng-Che; Chen, Jian-Zhang; Chou, Pi-Tai; Cheng, I-Chun

    2014-09-10

    In this work, we present the use of reduced graphene oxide (rGO) as the counter electrode materials in dye-sensitized solar cells (DSSCs). rGO was first deposited on a fluorine-doped tin oxide glass substrate by screen-printing, followed by post-treatment to remove excessive organic additives. We investigated the effect of atmospheric pressure plasma jet (APPJ) treatment on the DSSC performance. A power conversion efficiency of 5.19% was reached when DSSCs with an rGO counter electrode were treated by APPJs in the ambient air for a few seconds. For comparison, it requires a conventional calcination process at 400 °C for 15 min to obtain comparable efficiency. Scanning electron micrographs show that the APPJ treatment modifies the rGO structure, which may reduce its conductivity in part but simultaneously greatly enhances its catalytic activity. Combined with the rapid removal of organic additives by the highly reactive APPJ, DSSCs with APPJ-treated rGO counter electrode show comparable efficiencies to furnace-calcined rGO counter electrodes with greatly reduced process time. This ultrashort process time renders an estimated energy consumption per unit area of 1.1 kJ/cm(2), which is only one-third of that consumed in a conventional furnace calcination process. This new methodology thus saves energy, cost, and time, which is greatly beneficial to future mass production.

  16. A reduced graphene oxide/Co3O4 composite for supercapacitor electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Chengcheng; Li, Ming; Zhi, Mingjia; Manivannan, Ayyakkannu; Wu, Nianqiang

    2013-03-01

    20 nm sized Co3O4 nanoparticles are in-situ grown on the chemically reduced graphene oxide (rGO) sheets to form a rGO-Co3O4 composite during hydrothermal processing. The rGO-Co3O4 composite is employed as the pseudocapacitor electrode in the 2 M KOH aqueous electrolyte solution. The rGOCo3O4 composite electrode exhibits a specific capacitance of 472 F/g at a scan rate of 2 mV/s in a two-electrode cell. 82.6% of capacitance is retained when the scan rate increases to 100 mV/s. The rGOCo3O4 composite electrode shows high rate capability and excellent long-term stability. It also exhibits high energy density at relatively high power density. The energy density reaches 39.0 Wh/kg at a power density of 8.3 kW/kg. The super performance of the composite electrode is attributed to the synergistic effects of small size and good redox activity of the Co3O4 particles combined with high electronic conductivity of the rGO sheets.

  17. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes.

    Science.gov (United States)

    Kim, Jaehwan; Jeon, Jin-Han; Kim, Hyun-Jun; Lim, Hyuneui; Oh, Il-Kwon

    2014-03-25

    Ionic polymer actuators driven by electrical stimuli have been widely investigated for use in practical applications such as bioinspired robots, sensors, and biomedical devices. However, conventional ionic polymer-metal composite actuators have a serious drawback of poor durability under long-term actuation in open air, mainly because of the leakage of the inner electrolyte and hydrated cations through cracks in the metallic electrodes. Here, we developed a highly durable and water-floatable ionic polymer artificial muscle by employing hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes (HLrGOP). The highly conductive, flexible, and cost-effective HLrGOP electrodes have asymmetrically smooth hydrophobic outer and rough inner surfaces, resulting in liquid-impermeable and water-floatable functionalities and strong bonding between an ionic polymer and the electrodes. More interestingly, the HLrGOP electrode, which has a unique functionality to prevent the leakage of the vaporized or liquid electrolyte and mobile ions during electrical stimuli, greatly contributes to an exceptionally durable ionic polymer-graphene composite actuator that is a prerequisite for practical applications in active biomedical devices, biomimetic robots, touch-feedback haptic systems, and flexible soft electronics.

  18. Conductivity control of as-grown branched indium tin oxide nanowire networks.

    Science.gov (United States)

    Laforge, J M; Cocker, T L; Beaudry, A L; Cui, K; Tucker, R T; Taschuk, M T; Hegmann, F A; Brett, M J

    2014-01-24

    Branched indium tin oxide (ITO) nanowire networks are promising candidates for transparent conductive oxide applications, such as optoelectronic electrodes, due to their high porosity. However, these branched networks also present new challenges in assessing conductivity. Conventional four-point probe techniques cannot separate the effect of porosity on the long-range conductivity from the intrinsic material conductivity. Here we compare the average nanoscale conductivity within the film measured by terahertz time-domain spectroscopy (THz-TDS) to the film conductivity measured by four-point probe in a branched ITO nanowire network. Both techniques report conductivity increases with deposition flux rate from 0.5 to 3.0 nm s(-1), achieving a maximum of ~ 10 (Ω cm)(-1). Modeling the THz-TDS conductivity data using the Drude-Smith model allows us to distinguish between conductivity increases resulting from morphological changes and those resulting from the intrinsic properties of the ITO. In particular, the intrinsic material conductivity within the nanowires can be extracted, and is found to reach a maximum of ~ 3000 (Ω cm)(-1), comparable to bulk ITO. To determine the mechanism responsible for increasing conductivity with flux rate, we characterize dopant concentration and morphological changes (i.e., to branching behavior, nanowire diameter and nucleation layers). We propose that changes in the electron density, primarily due to changes in O-vacancy concentration at different flux rates, are responsible for the observed conductivity increase. This understanding will assist balancing structural and conductivity requirements in applications of transparent conductive oxide networks.

  19. Electrochemical characterisation of solid oxide cell electrodes for hydrogen production

    DEFF Research Database (Denmark)

    Bernuy-Lopez, Carlos; Knibbe, Ruth; He, Zeming;

    2011-01-01

    ) in a one-atmosphere set-up. For the oxygen electrode, nano-structured La0.75Sr0.25MnO3 (LSM25) is impregnated into a LSM25/yttria stabilised zirconia (YSZ) composite, whereas for the steam electrode, nano-structured Ni and Ce0.8Gd0.2O2−δ (CGO) is impregnated into a Sr0.94Ti0.9Nb0.10O3−δ (STN) backbone...

  20. Percolation Theory in Solid Oxide Fuel Cell Composite Electrodes with a Mixed Electronic and Ionic Conductor

    Directory of Open Access Journals (Sweden)

    Meng Ni

    2013-03-01

    Full Text Available Percolation theory is generalized to predict the effective properties of specific solid oxide fuel cell composite electrodes, which consist of a pure ion conducting material (e.g., YSZ or GDC and a mixed electron and ion conducting material (e.g., LSCF, LSCM or CeO2. The investigated properties include the probabilities of an LSCF particle belonging to the electron and ion conducting paths, percolated three-phase-boundary electrochemical reaction sites, which are based on different assumptions, the exposed LSCF surface electrochemical reaction sites and the revised expressions for the inter-particle ionic conductivities among LSCF and YSZ materials. The effects of the microstructure parameters, such as the volume fraction of the LSCF material, the particle size distributions of both the LSCF and YSZ materials (i.e., the mean particle radii and the non-dimensional standard deviations, which represent the particle size distributions and the porosity are studied. Finally, all of the calculated results are presented in non-dimensional forms to provide generality for practical application. Based on these results, the relevant properties can be easily evaluated, and the microstructure parameters and intrinsic properties of each material are specified.

  1. Nanostructured metal-oxide-conducting polymer based ultracapacitors for energy storage

    Science.gov (United States)

    Sidhu, Navjot Kaur

    Ultracapacitors often called supercapacitors or electrochemical double layer capacitors are emerging with a potential reflecting great advancement in the energy storage systems over past several last years. Traditional and commercially used electrical energy storage technology consists of mainly the batteries. Capacitors and ultracapacitors offer limited utility by trade off between energy density and power density. Batteries, fuel cells deliver high energy density while electrostatic capacitor and ultracapacitors provide high power density. Research on future energy storage device with optimum combination of high energy and power density has gained momentum over recent few years. Ultracapacitors provide a tantalizing capability to achieve high energy while maintaining high power density device which can bridge the gap between batteries and conventional capacitors This research is focused on the synthesis of conducting polymers as well as its composites with the metal oxides as electrodes, their electrochemical and structural characterizations for use in ultracapacitor devices and modeling. An innovative aspect of this research is the use of the nanorods, nanotubes and similar nanotemplates in order to introduce the morphological changes in the electroactive electrodes. Using these approaches, this research aims at high surface area for dense energy storage through ion intercalation and oxidation state changes. For the nanocomposite electrode materials synthesis, electrochemical, chemical and solution methods have been used. For nanostructuring, thin film templates of TiO2 (titanium dioxide) nanotubes, ZnO (zinc oxide) nanorods and nanowires have been synthesized using hydrothermal and electro-etching techniques. Various electroactive electrode materials in this research are investigated. The materials system studied in this work are nanocomposites of ZnO, TiO2, Ppy (polypyrrole), MnO2 (manganese dioxide), Pedot (Poly (3,4-ethylene dioxythiophene). Further

  2. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    Science.gov (United States)

    Rieke, Peter C.; Coffey, Gregory W.; Pederson, Larry R.; Marina, Olga A.; Hardy, John S.; Singh, Prabhaker; Thomsen, Edwin C.

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  3. Electrocatalytic oxidation of methanol at platinum electrode modified with Eu-Fe cyanide-bridged binuclear complexes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The electrocatalytic oxidation of methanol at the platinum electrode modified with Eu-Fe cyanide-bridged binuclear complexes (Eu-Fe film) was investigated for the first time by cyclic voltammetry.Compared with the bare platinum electrode,the results showed that the modified electrode had excellent electrocatalytic activity for the oxidation of methanol;the oxidation peak potential shifted more negatively and the peak current increased about twenty times.The electrooxidation of methanol at the modified el...

  4. Investigation of electro-oxidation activity of Pt-CNTs/GC electrodes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The morphology and structure of Pt-CNTs/GC electrodes were characterized via Transmission Electron Microscopy (TEM) and selected area electron diffraction.The electro-oxidation behavior of CO and methanol on Pt-CNTs/GC electrodes were studied with cyclic voltommograms or chronoamperometry.Three oxidation peaks were observed for CO absorbed on PtCNTs/GC electrodes.Methanol was found to be dissociated spontaneously on the electrode to produce a strong absorbed intermediate CO.Among the three oxidation peaks,peak Ⅰ was presumed to be due to the bridged CO absorption while peaks Ⅱ and Ⅲ were attributed to the split in the linear CO which is absorbed on the PtCNTs/GC nanocluster with different particle size and Pt film.The oxidation current of methanol on the Pt-CNTs/GC electrode did not always increase with the increase in the amount of Pt loading,The result indicates that there is an optimal Pt loading for methanol oxidation.It is necesSary to select the catalyst with proper Pt loading when the anode of a direct-methanol fuel cell is prepared.

  5. Electrochemical degradation of 4-chlorophenol at nickel-antimony doped tin oxide electrode.

    Science.gov (United States)

    Wang, Y H; Chan, K Y; Li, X Y; So, S K

    2006-11-01

    The effectiveness of a novel nickel-antimony doped tin oxide electrode for electrochemical degradation of organic pollutants was investigated using 4-chlorophenol (4-CP) as a model toxic organic. The experimental results demonstrate that the optimal Ni content was at Ni:Sn=1:500 in atomic ratio in the precursor coating solution, whereas the Sb:Sn ratio was set at 8:500. Using the electrode prepared with the optimal Ni doping ratio for 4-CP degradation, the charge-based efficiencies were up to 89 microg C(-1) for 4-CP destruction and 15 microg C(-1) for TOC removal, which were considerably higher than the efficiencies observed for other electrodes. It is suggested that the enhancement of the electrode for electrochemical oxidation of organics could be attributed to the production of hydroxyl radicals in anodic water electrolysis.

  6. Electrochemical energy storage devices using electrodes incorporating carbon nanocoils and metal oxides nanoparticles

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-07-28

    Carbon nanocoil (CNC) based electrodes are shown to be promising candidates for electrochemical energy storage applications, provided the CNCs are properly functionalized. In the present study, nanocrystalline metal oxide (RuO 2, MnO2, and SnO2) dispersed CNCs were investigated as electrodes for supercapacitor applications using different electrochemical methods. In the two electrode configuration, the samples exhibited high specific capacitance with values reaching up to 311, 212, and 134 F/g for RuO2/CNCs, MnO2/CNCs, and SnO2/CNCs, respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be superior to those reported for metal oxide dispersed multiwalled carbon nanotubes in two electrode configuration. In addition, the fabricated supercapacitors retained excellent cycle life with ∼88% of the initial specific capacitance retained after 2000 cycles. © 2011 American Chemical Society.

  7. Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrode

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard;

    2008-01-01

    Solid oxide fuel cells produced at Risø DTU have been tested as solid oxide electrolysis cells for steam electrolysis by applying an external voltage. Varying the sealing on the hydrogen electrode side of the setup verifies that the previously reported passivation over the first few hundred hours...... of electrolysis testing was an effect of the applied glass sealing. Degradation of the cells during long-term galvanostatic electrolysis testing [850°C, −1/2 A/cm2, p(H2O)/p(H2)=0.5/0.5] was analyzed by impedance spectroscopy and the degradation was found mainly to be caused by increasing polarization resistance...... associated with the hydrogen electrode. A cell voltage degradation of 2%/1000 h was obtained. Postmortem analysis of cells tested at these conditions showed that the electrode microstructure could withstand at least 1300 h of electrolysis testing, however, impurities were found in the hydrogen electrode...

  8. Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation.

    Science.gov (United States)

    Kato, Masaru; Cardona, Tanai; Rutherford, A William; Reisner, Erwin

    2013-07-24

    Photosystem II (PSII) offers a biological and sustainable route of photochemical water oxidation to O2 and can provide protons and electrons for the generation of solar fuels, such as H2. We present a rational strategy to electrostatically improve the orientation of PSII from a thermophilic cyanobacterium, Thermosynechococcus elongatus , on a nanostructured indium tin oxide (ITO) electrode and to covalently immobilize PSII on the electrode. The ITO electrode was modified with a self-assembled monolayer (SAM) of phosphonic acid ITO linkers with a dangling carboxylate moiety. The negatively charged carboxylate attracts the positive dipole on the electron acceptor side of PSII via Coulomb interactions. Covalent attachment of PSII in its electrostatically improved orientation to the SAM-modified ITO electrode was accomplished via an amide bond to further enhance red-light-driven, direct electron transfer and stability of the PSII hybrid photoelectrode.

  9. Benzene Oxidation on Boron-Doped Diamond Electrode: Electrochemical-Impedance Study of Adsorption Effects

    Directory of Open Access Journals (Sweden)

    Yuri Pleskov

    2012-01-01

    Full Text Available Benzene oxidation at a boron-doped diamond anode in 0.5 M K2SO4 aqueous solution is studied by cyclic voltammetry and electrochemical impedance spectroscopy. It is shown by measurements of differential capacitance and anodic current that in the ideal-polarizability potential region benzene either is not adsorbed at the diamond electrode or the benzene adsorption does not affect its capacitance. At more positive potentials, the adsorption of some intermediate of the benzene oxidation occurs at the electrode. The intermediate partially blocks the electrode surface and lowers the anodic current. The very fact of the electrode surface blocking is reflected in the complex-plane presentation of the impedance-potential plots.

  10. Copper conducting electrode with nickel as a seed layer for selective emitter crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Atteq ur; Shin, Eun Gu; Lee, Soo Hong [Sejong University, Seoul (Korea, Republic of)

    2014-09-15

    In this research, we investigated selective emitter formation with a single-step photolithography process having a metallization scheme composed of nickel/copper metal stacks. The nickel seed layers were deposited by applying the electroless deposition process while copper was formed by light induced electro-plating arrangements as the main conducting electrode. The electroless deposition of nickel, along with a sintering process, was employed to create a diffusion barrier between copper and silicon. The nickel metal stack below the copper-conducting electrode also helped in lowering the sheet resistance and improving the contact adhesion. The nickel used as a seed layer was successfully demonstrated in the fabrication of a homogeneous 60 Ω/ emitter and selective emitter cells. Lower series resistances of 0.165 Ω and 0.253 Ω were achieved for the selective emitter and the homogeneous emitter cells, respectively. The best cell efficiency of 18.37% for the selective emitter solar cell was achieved, with average cell efficiencies of 18.17% and 17.3% for the selective emitter and the homogeneous emitter cells, respectively. An approximate efficiency increase of about 0.8% was recorded for the selective emitter solar cells.

  11. Conductive Polymer-Coated VS4 Submicrospheres As Advanced Electrode Materials in Lithium-Ion Batteries.

    Science.gov (United States)

    Zhou, Yanli; Li, Yanlu; Yang, Jing; Tian, Jian; Xu, Huayun; Yang, Jian; Fan, Weiliu

    2016-07-27

    VS4 as an electrode material in lithium-ion batteries holds intriguing features like high content of sulfur and one-dimensional structure, inspiring the exploration in this field. Herein, VS4 submicrospheres have been synthesized via a simple solvothermal reaction. However, they quickly degrade upon cycling as an anode material in lithium-ion batteries. So, three conductive polymers, polythiophene (PEDOT), polypyrrole (PPY), and polyaniline (PANI), are coated on the surface to improve the electron conductivity, suppress the diffusion of polysulfides, and modify the interface between electrode/electrolyte. PANI is the best in the polymers. It improves the Coulombic efficiency to 86% for the first cycle and keeps the specific capacity at 755 mAh g(-1) after 50 cycles, higher than the cases of naked VS4 (100 mAh g(-1)), VS4@PEDOT (318 mAh g(-1)), and VS4@PPY (448 mAh g(-1)). The good performances could be attributed to the improved charge-transfer kinetics and the strong interaction between PANI and VS4 supported by theoretical simulation. The discharge voltage ∼2.0 V makes them promising cathode materials.

  12. Electrochemical oxidation of methanol on Pt nanoparticles composited MnO 2 nanowire arrayed electrode

    Science.gov (United States)

    Zhao, Guang-Yu; Li, Hu-Lin

    2008-03-01

    By use of the membrane-template synthesis route, MnO 2 nanowire arrayed electrodes are successfully synthesized by means of the anodic deposition technique. The Pt nanoparticles composited MnO 2 nanowire arrayed electrodes (PME) are obtained through depositing Pt on MnO 2 nanowire arrayed electrode by cathode deposition technique. For comparison of electrochemical performance, Pt nanowire arrayed electrodes which have the same amount of Pt with PME are also prepared. The electro-oxidation of methanol on PME and Pt nanowire arrayed electrodes is investigated at room temperature by cyclic voltammetry, which show that about 110 mV decreased overpotential and 2.1-fold enhanced votammetric current are achieved on PME. The chronoamperometry result demonstrates that the resistance to carbon monoxide for PME is improved.

  13. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Energy Technology Data Exchange (ETDEWEB)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.; Brown, Gilbert M.

    2017-04-11

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  14. Lactate Oxidation Coupled to Iron or Electrode Reduction by Geobacter sulfurreducens PCA

    KAUST Repository

    Call, D. F.

    2011-10-14

    Geobacter sulfurreducens PCA completely oxidized lactate and reduced iron or an electrode, producing pyruvate and acetate intermediates. Compared to the current produced by Shewanella oneidensis MR-1, G. sulfurreducens PCA produced 10-times-higher current levels in lactate-fed microbial electrolysis cells. The kinetic and comparative analyses reported here suggest a prominent role of G. sulfurreducens strains in metaland electrode-reducing communities supplied with lactate. © 2011, American Society for Microbiology.

  15. Index-matched indium tin oxide electrodes for capacitive touch screen panel applications.

    Science.gov (United States)

    Hong, Chan-Hwa; Shin, Jae-Heon; Ju, Byeong-Kwon; Kim, Kyung-Hyun; Park, Nae-Man; Kim, Bo-Sul; Cheong, Woo-Seok

    2013-11-01

    Index-matched indium tin oxide (ITO) electrodes for capacitive touch screen panels have been fabricated to improve optical transmittance and reduce the difference of reflectance (deltaR) between the etched and un-etched regions. 8.5 nm Nb2O5 and 49 nm SiO2 thin films were deposited by magnetron sputtering as index-matching layers between an ITO electrode and a glass substrate. In case of 30 nm ITO electrode, a 4.3% improvement in the optical transmittance and a deltaR of less than 1% were achieved, along with a low sheet resistance of 90 omega/square.

  16. Characterization of solid oxide fuel cell electrodes by impedance spectroscopy and I-V characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Van Berkel, F.P.F.; Van Heuveln, F.H.; Huijsmans, J.P.P.

    1993-10-01

    Impedance spectroscopy has been used to optimize the three-phase-boundaries of porous electrodes in solid oxide fuel cells. The three-phase-boundaries (TPB`s) are the sites where the electrode reaction occurs and their nature is determined by the microstructure of the electrode. The TPB-length (TPBL) of the cathode can be optimized by using small powder particles and a high loading of the particles on the electrolyte surface. The TPBL of the Ni/8YSZ-anode can be optimized by using small Ni-particles and a high 8YSZ/Ni-particle size ratio. 5 figs., 4 tabs., 8 refs.

  17. Characterization of solid oxide fuel cell electrodes by impedance spectroscopy and I-V characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Van Berkel, F.P.F.; Van Heuveln, F.H.; Huijsmans, J.P.P. (Netherlands Energy Research Foundation ECN, Petten (Netherlands))

    1994-09-01

    Impedance spectroscopy has been used to optimize the three-phase boundaries of porous electrodes in solid oxide fuel cells. The three-phase boundaries (TPBs) are the sites where the electrode reaction occurs and their nature is determined by the microstructure of the electrode. The three-phase boundary length (TPBL) of the cathode can be optimized by using small powder particles and a high loading of the particles on the electrolyte surface. The TPBL of the Ni/8YSZ anode can be optimized by using small Ni particles and a high 8YSZ/Ni-particle size ratio

  18. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jian; Liu, Jinping; Huang, Xintang [Institute of Nanoscience and Nanotechnology, Department of Physics, Central China Normal University, Wuhan, Hubei (China); Li, Yuanyuan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China); Yuan, Changzhou; Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore (China)

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part ''how to design superior electrode architectures''. In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Electrocatalytic oxidation behavior of L-cysteine at Pt microparticles modified nanofibrous polyaniline film electrode

    Institute of Scientific and Technical Information of China (English)

    MA Song-jiang; LUO Sheng-lian; ZHOU Hai-hui; KUANG Ya-fei; NING Xiao-hui

    2008-01-01

    Platinum(Pt)/nanofibrous polyaniline(PANI) electrode was prepared by pulse galvanostatic method and characterized by scanning electron microscopy. The electrochemical behavior of L-cysteine at the Pt/nanofibrous PANI electrode was investigated by cyclic voltammetry. The results indicate that the pH value of the solution and the Pt loading of the electrode have great effect on the electrocatalytic property of the Pt/nanofibrous PANI electrode; the suitable Pt loading of the electrode is 600 μg/cm2 and the suitable pH value of the solution is 4.5 for investigating L-cysteine oxidation. The L-cysteine sensor based on the Pt/nanofibrous PANI electrode has a good selectivity, reproducibility and stability. The Pt/nanofibrous PANI electrode is highly sensitive to L-cysteine, and the linear calibration curve for the oxidation of L-cysteine can be observed in the range of 0.2-5.0 mmol/L.

  20. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    Science.gov (United States)

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mechanically exfoliated MoS2 sheet coupled with conductive polyaniline as a superior supercapacitor electrode material.

    Science.gov (United States)

    Ansari, Sajid Ali; Fouad, H; Ansari, S G; Sk, Md Palashuddin; Cho, Moo Hwan

    2017-10-15

    The development of electrically conductive metal sulfide-based polymer nanocomposites for energy storage materials has been a major focus by researchers to solve the energy crisis. In this study, a simple and facile method was used to construct a nanocomposite by combining a mechanically exfoliated MoS2 (M-MoS2) sheet with polyaniline (Pani) using a simple and scalable in-situ chemical oxidative polymerization method. The as-prepared nanocomposite (M-MoS2-Pani nanocomposite) was characterized further by usual basic spectroscopic techniques, such as X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller surface area analysis. The electrochemical supercapacitive characteristics of the M-MoS2-Pani nanocomposite was tested in a three-electrode assembly by obtaining cyclic voltammetric (CV) curves and galvanostatic charge-discharge (GCD) measurements. The results were compared with those of a C-MoS2-Pani nanocomposite that had been synthesized using bulk MoS2. The M-MoS2-Pani nanocomposite synthesized using exfoliated MoS2 exhibited a higher specific capacitance of 510.12Fg(-1) at a current of 1Ag(-1) than the C-MoS2-Pani nanocomposite (225.15Fg(-1)), which was synthesized using bulk C-MoS2 delivered. The enhanced electrochemical supercapacitive performance was correlated to the synergistic effect and chemical interactions between the Pani and MoS2, which provide high electrical conductivity and a sufficient empty state for electrode/electrolyte contact. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Improvement of transparent conducting materials by metallic grids on transparent conductive oxides

    NARCIS (Netherlands)

    Deelen, J. van; Klerk, L.A.; Barink, M.; Rendering, H.; Voorthuijzen, P.; Hovestad, A.

    2013-01-01

    The trade-off between transparency and conductivity in transparent conductors used in optoelectronic devices is a major bottleneck towards higher device performances. Grid deposition on transparent conductive oxides was demonstrated using electrochemical deposition, which has the advantage of a high

  3. Electrochemical oxidation of amoxicillin in its pharmaceutical formulation at boron doped diamond (BDD electrode

    Directory of Open Access Journals (Sweden)

    Corneil Quand-Meme Gnamba

    2015-08-01

    Full Text Available In this work, voltammetric andelectrolysis experiments have been carried out on a conductive boron dopeddiamond (BDD electrode in solution containing amoxicillin in itspharmaceutical formulation. The physical characterization of the BDD surface byscanning electron microscopy (SEM reveals a polycrystalline structure withgrain sizes ranging between 0.3 and 0.6 µm. With Raman spectroscopy, BDDsurface is composed of diamons (Csp3 type carbon (Csp3and graphitic type carbon (Csp2. The electrochemical characterization of the BDD electrode in sulfuric acid electrolyte showed a wide potential window worthing 2.74 V. The oxidation of Amoxicillin showed an irreversible anodic wave on the voltammogram in the domain of water stability indicating a direct oxidation of amoxicillin at BDD surface. The treatment of Amoxicillin in the synthetic wastewaters under various constant current densities 20, 50, 100, 135 mA cm-2 on BDD showed that Amoxicillin is highly reducedunder 100 mA cm-2 reaching 92% of the Chemical Oxygen Demand (CODremoval after 5 h of electrolysis. Investigation performed in perchloric acidas supporting electrolyte led to 87% of COD removal after 5 h of electrolysis.Mineralization of amoxicillin occurs on BDD and the chemical oxygen demandremoval was higher in sulfuric acid than in perchloric acid owing to theinvolvement of the in-situ formed persulfate and perchlorate  to the degradation process mainly in the bulkof the solution. The instantaneous current efficiency (ICE presents anexponential decay indicating that the process was limited by diffusion. Thespecific energy consumed after 5h of the amoxicillin electrolysis was 0.096 kWh COD-1and 0.035 kWh COD-1 in sulfuric acid and in perchloric acidrespectively.

  4. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment

    Directory of Open Access Journals (Sweden)

    Diana E. Proffit

    2010-11-01

    Full Text Available Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides Zn0, In2O3, and SnO2 as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode materials and illustrates how these relate to the underlying defect chemistry, the dependence of surface dipoles on crystallographic orientation and/or surface termination, and Fermi level pinning.

  5. Electro-catalytic effect of manganese oxide on oxygen reduction at teflonbonded carbon electrode

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Oxygen reduction(OR)on Teflon-bonded carbon electrodes with manganese oxide as catalyst in 6 mol/L KOH solution was investigated using AC impedance spectroscopy combined with other techniques. For OR at this electrode, the Tafel slope is-0.084V/dec and the apparent exchange current density is (1.02-3.0)×10-7 A/cm2. In the presence of manganese oxide on carbon electrode,the couple Mn3+/Mn4+ reacts with the O2 adsorbed on carbon sites forming O2- radicals and acceletes the dismutation of O2-, which contributes to the catalytic effect of manganese oxide for OR reaction.

  6. Genome Scale Mutational Analysis of Geobacter sulfurreducens Reveals Distinct Molecular Mechanisms for Respiration and Sensing of Poised Electrodes versus Fe(III) Oxides.

    Science.gov (United States)

    Chan, Chi Ho; Levar, Caleb E; Jiménez-Otero, Fernanda; Bond, Daniel R

    2017-10-01

    metals using the same molecular mechanisms used to form biofilms on electrodes and produce electricity. However, by simultaneously comparing thousands of Geobacter sulfurreducens transposon mutants undergoing electrode-dependent respiration, we discovered new cytochromes and chemosensory proteins supporting growth with electrodes that are not required for metal respiration. This supports an emerging model where G. sulfurreducens recognizes surfaces and forms conductive biofilms using mechanisms distinct from those used for growth with metal oxides. These findings provide a possible explanation for studies that correlate electricity generation with syntrophic interspecies electron transfer by Geobacter and reveal many previously unrecognized targets for engineering this useful capability in other organisms. Copyright © 2017 Chan et al.

  7. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    Science.gov (United States)

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (flexible enough to withstand 10 000 bending cycles with a 1 mm bending radius. Furthermore, a few μm scale patterning of the electrode was easily implemented by using photolithography, which is widely employed industrially for patterning. Flexible organic light-emitting diodes and a transparent flexible thin-film transistor were successfully fabricated with the proposed electrode. Various practical applications of this electrode to new transparent flexible electronics are expected.

  8. Oxide sandwiched metal thin-film electrodes for long-term stable organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Sylvio; Hermenau, Martin; Meiss, Jan; Mueller-Meskamp, Lars; Leo, Karl [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, George-Baehr Strasse 1, 01062 Dresden (Germany)

    2012-12-05

    Oxide/silver/oxide multilayers as semitransparent top electrode for small molecule organic solar cells (OSCs) are presented. It is shown that two oxide layers sandwiching a central metal layer greatly improve the stability and lifetime of the organic solar cell. Thermally evaporated MoO{sub 3}, WO{sub 3}, or V{sub 2}O{sub 5} layers are employed as an interlayer for subsequent silver deposition and significantly change the morphology of the ultrathin silver layer, improving charge extraction and electrodes series resistance. The transmittance of the electrode is increased by introducing oxide or oxide and organic multilayers as capping layer, which leads to higher photocurrent generation in the absorber layer. Application of 1 nm MoO{sub 3}/11 nm Ag/10 nm MoO{sub 3}/50 nm Alq{sub 3} multilayer electrodes in OSCs lead to an efficiency of 2.6% for a standard ZnPc:C60 cell, showing superior performance compared to devices with pure silver top contacts. The device lifetime is also strongly increased. MoO{sub 3} layers can saturate and stabilize the inner and outer metal surface, passivating it against most of the degradation mechanisms. With such an oxide/silver/oxide multilayer electrode, the time until the glass encapsulated OSC is degraded to 80% of its starting efficiency is enhanced from 86 h to approximately 4500 h compared to an OSC without an oxide interlayer. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Fluorine compounds for doping conductive oxide thin films

    Science.gov (United States)

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  10. Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability

    Science.gov (United States)

    Lyu, Shaoyi; Chang, Huanjun; Fu, Feng; Hu, La; Huang, Jingda; Wang, Siqun

    2016-09-01

    A paper-based wearable supercapacitor with excellent foldability and tailorability is fabricated from a chopped carbon fiber (CCF)-reinforced cellulose paper electrode material by coating with reduced graphene oxide (RGO) and polypyrrole (PPy) via in situ polymerization. The CCFs not only form an interpenetrating conducting network that acts as highly conductive electron transfer highways for the RGO/PPy layer in the paper electrode, but also endow the resulting electrode with an excellent areal capacitance of 363 mF cm-2 and a volumetric energy density of 0.28 mW h cm-3. Further, the CCFs give the electrode remarkable mechanical robustness, guaranteeing foldability and tailorability, with only slight loss of capacitance after repeated folding 600 times. Even after being subjected to severe cut-in fracture, the capacitance retention is up to 84%, indicating outstanding damage tolerance. The present study reveals a promising candidate for flexible wearable energy storage devices that are required to function in harsh environments.

  11. Silver Nanowire Transparent Conductive Electrodes for High-Efficiency III-Nitride Light-Emitting Diodes

    Science.gov (United States)

    Oh, Munsik; Jin, Won-Yong; Jun Jeong, Hyeon; Jeong, Mun Seok; Kang, Jae-Wook; Kim, Hyunsoo

    2015-09-01

    Silver nanowires (AgNWs) have been successfully demonstrated to function as next-generation transparent conductive electrodes (TCEs) in organic semiconductor devices owing to their figures of merit, including high optical transmittance, low sheet resistance, flexibility, and low-cost processing. In this article, high-quality, solution-processed AgNWs with an excellent optical transmittance of 96.5% at 450 nm and a low sheet resistance of 11.7 Ω/sq were demonstrated as TCEs in inorganic III-nitride LEDs. The transmission line model applied to the AgNW contact to p-GaN showed that near ohmic contact with a specific contact resistance of ~10-3 Ωcm2 was obtained. The contact resistance had a strong bias-voltage (or current-density) dependence: namely, field-enhanced ohmic contact. LEDs fabricated with AgNW electrodes exhibited a 56% reduction in series resistance, 56.5% brighter output power, a 67.5% reduction in efficiency droop, and a approximately 30% longer current spreading length compared to LEDs fabricated with reference TCEs. In addition to the cost reduction, the observed improvements in device performance suggest that the AgNWs are promising for application as next-generation TCEs, to realise brighter, larger-area, cost-competitive inorganic III-nitride light emitters.

  12. Superhydrophobic SAM Modified Electrodes for Enhanced Current Limiting Properties in Intrinsic Conducting Polymer Surge Protection Devices.

    Science.gov (United States)

    Jabarullah, Noor H; Verrelli, Emanuele; Mauldin, Clayton; Navarro, Luis A; Golden, Josh H; Madianos, Leonidas M; Kemp, Neil T

    2015-06-09

    Surface interface engineering using superhydrophobic gold electrodes made with 1-dodecanethiol self-assembled monolayer (SAM) has been used to enhance the current limiting properties of novel surge protection devices based on the intrinsic conducting polymer, polyaniline doped with methanesulfonic acid. The resulting devices show significantly enhanced current limiting characteristics, including current saturation, foldback, and negative differential effects. We show how SAM modification changes the morphology of the polymer film directly adjacent to the electrodes, leading to the formation of an interfacial compact thin film that lowers the contact resistance at the Au-polymer interface. We attribute the enhanced current limiting properties of the devices to a combination of lower contact resistance and increased Joule heating within this interface region which during a current surge produces a current blocking resistive barrier due to a thermally induced dedoping effect caused by the rapid diffusion of moisture away from this region. The effect is exacerbated at higher applied voltages as the higher temperature leads to stronger depletion of charge carriers in this region, resulting in a negative differential resistance effect.

  13. Interconnection of multichannel polyimide electrodes using anisotropic conductive films (ACFs) for biomedical applications.

    Science.gov (United States)

    Baek, Dong-Hyun; Park, Ji Soo; Lee, Eun-Joong; Shin, SuJung; Moon, Jin-Hee; Pak, James Jungho; Lee, Sang-Hoon

    2011-05-01

    In this paper, we propose a method for interconnecting soft polyimide (PI) electrodes using anisotropic conductive films (ACFs). Reliable and automated bonding was achieved through development of a desktop thermocompressive bonding device that could simultaneously deliver appropriate temperatures and pressures to the interconnection area. The bonding conditions were optimized by changing the bonding temperature and bonding pressure. The electrical properties were characterized by measuring the contact resistance of the ACF bonding area, yielding a measure that was used to optimize the applied pressure and temperature. The optimal conditions consisted of applying a pressure of 4 kg f/cm(2) and a temperature of 180 °C for 20 s. Although ACF base bonding is widely used in industry (e.g., liquid crystal display manufacturing), this study constitutes the first trial of a biomedical application. We performed a preliminary in vivo biocompatibility investigation of ACF bonded area. Using the optimized temperature and pressure conditions, we interconnected a 40-channel PI multielectrode device for measuring electroencephalography (EEG) signals from the skulls of mice. The electrical properties of electrode were characterized by measuring the impedance. Finally, EEG signals were measured from the mice skulls using the fabricated devices to investigate suitability for application to biomedical devices.

  14. Aging in chemically prepared divalent silver oxide electrodes for silver/zinc reserve batteries

    Science.gov (United States)

    Smith, David F.; Brown, Curtis

    The instability of silver(II) oxide electrodes used in silver/zinc reserve batteries is the well known cause of capacity loss and delayed activation in reserve batteries after they are stored in the dry, unactivated state for extended periods of time. Metal contaminants in sintered/electroformed electrodes destabilize the oxide and the solid state reaction between AgO and elemental silver results in the formation of the lower capacity monovalent oxide Ag 2O. Chemically prepared (CP) AgO can be used to avoid the metal contaminants and to minimize the interfacial contact area between AgO and Ag, thus minimizing the affects of aging on the electrodes. Electrodes were fabricated with CP AgO and polytetrafluoroethylene (PTFE) binder and expanded silver metal current collectors. Experimentally, both electrode active material compacts (AgO and binder only) and electrodes complete with AgO/binder and silver current collector were tested to evaluate the influence of the current collector on aging. The electrode samples were discharged at a constant rate of 50 mA cm -2 before and after storage at 60°C for 21 days as well as after storage at room ambient temperature conditions for 91 months. The results indicate that the affects of aging upon the AgO/binder compacts are insignificant for long term storage at room temperature. However, thermally accelerated aging at high temperature (60°C) affects both transient and stabilized load voltage as well as capacity. In terms of capacity, the AgO/binder mix itself looses about 5% capacity after 21 days dry storage at 60°C while electrodes complete with current collector loose about 8%. The 60% increase in capacity loss is attributed to the solid state reaction between AgO and elemental silver.

  15. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Zhi, E-mail: lizhi@plen.ku.dk [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Hansen, Hans Christian B. [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Bjerrum, Morten Jannik [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK–2100 København Ø (Denmark)

    2016-04-05

    Highlights: • Composite layers of single sheet iron oxides were coated on indium tin oxide electrodes. • Single sheet iron oxide is an electro-catalyst for reduction of nitroaromatic compounds in aqueous solution. • The reduction is well explained by a diffusion layer model. • The charge properties of the nitrophenols have an important influence on reduction. • Low-cost iron oxide based materials are promising electro-catalyst for water treatment. - Abstract: Nitroaromatic compounds are substantial hazard to the environment and to the supply of clean drinking water. We report here the successful reduction of nitroaromatic compounds by use of iron oxide coated electrodes, and demonstrate that single sheet iron oxides formed from layered iron(II)-iron(III) hydroxides have unusual electrocatalytic reactivity. Electrodes were produced by coating of single sheet iron oxides on indium tin oxide electrodes. A reduction current density of 10 to 30 μA cm{sup −2} was observed in stirred aqueous solution at pH 7 with concentrations of 25 to 400 μM of the nitroaromatic compound at a potential of −0.7 V vs. SHE. Fast mass transfer favors the initial reduction of the nitroaromatic compound which is well explained by a diffusion layer model. Reduction was found to comprise two consecutive reactions: a fast four-electron first-order reduction of the nitro-group to the hydroxylamine-intermediate (rate constant = 0.28 h{sup −1}) followed by a slower two-electron zero-order reduction resulting in the final amino product (rate constant = 6.9 μM h{sup −1}). The zero-order of the latter reduction was attributed to saturation of the electrode surface with hydroxylamine-intermediates which have a more negative half-wave potential than the parent compound. For reduction of nitroaromatic compounds, the SSI electrode is found superior to metal electrodes due to low cost and high stability, and superior to carbon-based electrodes in terms of high coulombic efficiency and

  16. Dry writing of highly conductive electrodes on papers by using silver nanoparticle-graphene hybrid pencils.

    Science.gov (United States)

    Park, Jun-Ho; Park, Myung-Joo; Lee, Jang-Sik

    2017-01-05

    The development of paper electronics would enable realization of extremely cheap devices for portable, disposable, and environmentally-benign electronics. Here, we propose a simple dry-writing tool similar to a pencil, which can be used to draw electrically conducting lines on paper for use in paper-based electronic devices. The fabricated pencil is composed of silver nanoparticles decorated on graphene layers to construct layered hybrid nanostructures. This pencil can draw highly conductive lines that are flexible and foldable on conventional papers. Electrodes drawn using this pencil on conventional copy paper are stable during repetitive mechanical folding and highly resistant to moisture/chemicals. This pencil can draw a conductive line where its resistance can be tuned by changing the amount of nanoparticles. A nonvolatile memory device is realized on papers by hand written lines with different resistance. All memory elements are composed of carbons on papers, so complete data security can be achieved by burning the memory papers. This work will provide a new opportunity to fabricate electronic devices on real papers with good conductivity as well as robust mechanical/chemical stability.

  17. Anodic oxidation of o-nitrophenol on BDD electrode: variable effects and mechanisms of degradation.

    Science.gov (United States)

    Rabaaoui, Nejmeddine; Saad, Mohamed El Khames; Moussaoui, Younes; Allagui, Mohamed Salah; Bedoui, Ahmed; Elaloui, Elimame

    2013-04-15

    The electrochemical oxidation of pesticide, o-nitrophenol (ONP) as one kind of pesticide that is potentially dangerous and biorefractory, was studied by galvanostatic electrolysis using boron-doped diamond (BDD) as anode. The influence of several operating parameters, such as applied current density, supporting electrolyte, and initial pH value, was investigated. The best degradation occurred in the presence of Na2SO4 (0.05 M) as conductive electrolyte. After 8h, nearly complete degradation of o-nitrophenol was achieved (92%) using BDD electrodes at pH 3 and at current density equals 60 mA cm(-2). The decay kinetics of o-nitrophenol follows a pseudo-first-order reaction. Aromatic intermediates such as catechol, resorcinol, 1,2,4-trihydroxybenzene, hydroquinone and benzoquinone and carboxylic acids such as maleic glycolic, malonic, glyoxilic and oxalic, have been identified and followed during the ONP treatment by chromatographic techniques. From these anodic oxidation by-products, a plausible reaction sequence for ONP mineralization on BDD anodes is proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    Science.gov (United States)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-06-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ~ 4.1 Å), and low electrical resistivity (4.2 × 10-4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained "on/off" current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 × 107, 0.43 V/decade, 0.7 V, and 2.1 cm2/V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs.

  19. Enhancing the capacitances of electric double layer capacitors based on carbon nanotube electrodes by carbon dioxide activation and acid oxidization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polarizable electrodes of electric double layer capacitors(EDLCs) were made from carbon nanotubes(CNTs).Effect of carbon dioxide activation together with acid oxidation for the electrodes on the characteristics and performances of electrodes and EDLCs was studied.Carbon dioxide activation changed the microstructure of the electrodes,increased the effective surface area of CNTs and optimized the distribution of apertures of the electrodes.Acid oxidization modified the surface characteristics of CNTs.Based on the polarizable electrodes treated by carbon dioxide activation and acid oxidization,the performances of EDLCs were greatly enhanced.The specific capacitance of the electrodes with organic electrolyte was increased from 21.8 F/g to 60.4 F/g.

  20. Modelling of diffusion and conductivity relaxation of oxide ceramics

    Science.gov (United States)

    Preis, Wolfgang

    2016-12-01

    A two-dimensional square grain model has been applied to simulate simultaneously the diffusion process and relaxation of the dc conduction of polycrystalline oxide materials due to a sudden change of the oxygen partial pressure of the surrounding gas phase. The numerical calculations are performed by employing the finite element approach. The grains are squares of equal side length (average grain size) and the grain boundaries may consist of thin slabs of uniform thickness. An additional (space charge) layer adjacent to the grain boundary cores (thin slabs) either blocking (depletion layer) or highly conductive for electronic charge carriers may surround the grains. The electronic transport number of the mixed ionic-electronic conducting oxide ceramics may be close to unity (predominant electronic conduction). If the chemical diffusion coefficient of the neutral mobile component (oxygen) of the grain boundary core regions is assumed to be higher by many orders of magnitude than that in the bulk, the simulated relaxation curves for mass transport (diffusion) and dc conduction can deviate remarkably from each other. Deviations between the relaxation of mass transport and dc conduction are found in the case of considerably different electronic conductivities of grain boundary core regions, space charge layers, and bulk. On the contrary, the relaxation curves of mass transport and electronic conductivity are in perfect coincidence, when either effective medium diffusion occurs or the effective conductivity is unaffected by the individual conductivities of core regions and possible space charge layers, i.e. the grain boundary resistivity is negligible.

  1. Simultaneous determination of nitrophenol isomers at the single-wall carbon nanotube compound conducting polymer film modified electrode

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; WANG Zhenhui; ZHOU Shuping

    2005-01-01

    Based on the molecular recognition ability of conductive polymer and the peculiar properties of carbon nanotubes, a novel single wall nanotubes (SWNTs) compound poly(4- aminopyridine) modified electrode (SWNTs/POAPE) is prepared at glass carbon electrode (GCE). The electrochemistry response of nitrophenol isomers is studied at the SWNTs/POAPE. The result indicates that o-, m- and p-nitrophenol are separated entirely at the SWNTs/POAPE interface. The electrode present here can be easily used to determine nitrophenol isomers simultaneously with higher sensitivity.

  2. [A new ECG electrode concept for the conduction of fetal heart action potentials without penetration of the skin].

    Science.gov (United States)

    Schmidt, S; Langner, K; Rothe, J; Saling, E

    1982-10-01

    Internal cardiotocography is an important method for reliable supervision of the fetus during labor. The main task is the prevention of fetal hypoxia. However, there is a considerable disadvantage as the electrodes used penetrate the fetal skin, creating a possible entry point for organisms. The concept we have developed forms a new way of decreasing the risk of infection during labor by conducting the fetal heart rate potentials without penetrating the skin. The electrode is fixed to the skin of the presenting part by tissue adhesive and electrical contact between the fetal skin and the wire of the electrode is established through using electrolyte fluid.

  3. Determining conduction patterns on a sparse electrode grid: Implications for the analysis of clinical arrhythmias

    Science.gov (United States)

    Vidmar, David; Narayan, Sanjiv M.; Krummen, David E.; Rappel, Wouter-Jan

    2016-11-01

    We present a general method of utilizing bioelectric recordings from a spatially sparse electrode grid to compute a dynamic vector field describing the underlying propagation of electrical activity. This vector field, termed the wave-front flow field, permits quantitative analysis of the magnitude of rotational activity (vorticity) and focal activity (divergence) at each spatial point. We apply this method to signals recorded during arrhythmias in human atria and ventricles using a multipolar contact catheter and show that the flow fields correlate with corresponding activation maps. Further, regions of elevated vorticity and divergence correspond to sites identified as clinically significant rotors and focal sources where therapeutic intervention can be effective. These flow fields can provide quantitative insights into the dynamics of normal and abnormal conduction in humans and could potentially be used to enhance therapies for cardiac arrhythmias.

  4. Hybrid Electrodes of Carbon Nanotube and Reduced Graphene Oxide for Energy Storage Applications.

    Science.gov (United States)

    Choi, Eunmi; Chae, Su Jin; Kim, Areum; Kang, Keun Won; Oh, Min Seok; Kwon, Soon Hyeong; Yoon, Sung Pil; Pyo, Sung Gyu

    2015-11-01

    The choice of electrode materials in lithium ion batteries and supercapacitors is important for the stability, capacity, and cycle life of the device. Despite its low capacity, graphite has often been used as an electrode material due to its inherent stability. Due to an increasing demand for large-capacity energy storage systems, there is also a demand for the development of large-capacity Li ion batteries and supercapacitors. Therefore, carbonaceous materials like graphene and carbon nanotubes (CNTs), which have high stability as well as excellent electrical conductivity and mechanical strength, are receiving attention as new electrode materials. Recently, starting from simply applying graphene and CNTs as electrode materials and progressing to the development of hybrid materials, there have been increasing research efforts in enhancing the performance of Li ion batteries and supercapacitors through the use of carbonaceous materials. This paper will discuss new composite materials and electrode structures that use graphene and CNTs for applications in Li ion batteries and supercapacitors.

  5. Can graphene outperform indium tin oxide as transparent electrode in organic solar cells?

    Science.gov (United States)

    Paletti, Paolo; Pawar, Ravinder; Ulisse, Giacomo; Brunetti, Francesca; Iannaccone, Giuseppe; Fiori, Gianluca

    2015-12-01

    Graphene holds promises as a transparent electrode in flexible solar cells due to its high mobility and transparency. However, the experimental power conversion efficiency of cells with graphene electrode is still small (power conversion efficiency, by means of multi-scale simulation approach including ab-initio simulations of graphene contacts to improve electrode workfunction and conductance, electromagnetic simulations to improve light management, and electrical simulations of complete cells. We find that the combined effect of using a transparent electrode of graphene with a few monolayers of MoO3 on top to optimize work function and resistivity, and of applying optimized grating to the graphene electrode, can increase power efficiency by up to 29%-47%, with respect to the ITO benchmark, depending on the material used for the hole transport layer (P3HT,PTB7, and Perovskite).

  6. Recent Advancements in the Cobalt Oxides, Manganese Oxides, and Their Composite As an Electrode Material for Supercapacitor: A Review

    Directory of Open Access Journals (Sweden)

    Santosh J. Uke

    2017-08-01

    Full Text Available Recently, our modern society demands the portable electronic devices such as mobile phones, laptops, smart watches, etc. Such devices demand light weight, flexible, and low-cost energy storage systems. Among different energy storage systems, supercapacitor has been considered as one of the most potential energy storage systems. This has several significant merits such as high power density, light weight, eco-friendly, etc. The electrode material is the important part of the supercapacitor. Recent studies have shown that there are many new advancement in electrode materials for supercapacitors. In this review, we focused on the recent advancements in the cobalt oxides, manganese oxides, and their composites as an electrode material for supercapacitor.

  7. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Wencheng [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Wang, Lei [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2014-07-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E{sup 0′}) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H{sub 2}O{sub 2}. Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized.

  8. Electrochemical Oxidation of Paracetamol Mediated by MgB2 Microparticles Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Mohammed Zidan

    2011-01-01

    Full Text Available A MgB2 microparticles modified glassy carbon electrode (MgB2/GCE was fabricated by adhering microparticles of MgB2 onto the electrode surface of GCE. It was used as a working electrode for the detection of paracetamol in 0.1 M KH2PO4 aqueous solution during cyclic voltammetry. Use of the MgB2/GCE the oxidation process of paracetamol with a current enhancement significantly by about 2.1 times. The detection limit of this modified electrode was found to be 30 μM. The sensitivity under conditions of cyclic voltammetry is significantly dependent on pH, supporting electrolyte, temperature and scan rate. The current enhancement observed in different electrolytic media varied in the following order: KH2PO4 > KCl > K2SO4 > KBr. Interestingly, the oxidation of paracetamol using modified GC electrode remain constant even after 15 cycling. It is therefore evident that the MgB2 modified GC electrode possesses some degree of stability. A slope of 0.52 dependent of scan rate on current indicates that the system undergoes diffusion-controlled process.

  9. Performance and cycle life of carbon- and conductive-based air electrodes for rechargeable Zn-air battery applications

    Science.gov (United States)

    Chellapandi Velraj, Samgopiraj

    The development of high-performance, cyclically stable bifunctional air electrodes are critical to the commercial deployment of rechargeable Zn-air batteries. The carbon material predominantly used as support material in the air electrodes due to its higher surface area and good electrical conductivity suffers from corrosion at high oxygen evolution overpotentials. This study addresses the carbon corrosion issues and suggests alternate materials to replace the carbon as support in the air electrode. In this study, Sm0.5Sr0.5CoO3-delta with good electrochemical performance and cyclic lifetime was identified as an alternative catalyst material to the commonly used La0.4Ca 0.6CoO3 catalyst for the carbon-based bifunctional electrodes. Also, a comprehensive study on the effects of catalyst morphology, testing conditions on the cycle life as well as the relevant degradation mechanism for the carbon-based electrode was conducted in this dissertation. The cyclic life of the carbon-based electrodes was strongly dependent on the carbon support material, while the degradation mechanisms were entirely controlled by the catalyst particle size/morphology. Some testing conditions like resting time and electrolyte concentration did not change the cyclic life or degradation mechanism of the carbon-based electrode. The current density used for cyclic testing was found to dictate the degradation mechanism leading to the electrode failure. An alternate way to circumvent the carbon corrosion is to replace the carbon support with a suitable electrically-conductive ceramic material. In this dissertation, LaNi0.9Mn0.1O3, LaNi 0.8Co0.2O3, and NiCo2O4 were synthesized and evaluated as prospective support materials due to their good electrical conductivity and their ability to act as the catalyst needed for the bifunctional electrode. The carbon-free electrodes had remarkably higher catalytic activity for oxygen evolution reaction (OER) when compared to the carbon-based electrode. However

  10. Improved Internal Reference Oxygen Sensors Using Composite Oxides as Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang

    The thesis describes the research on and development of an internal reference oxygen sensor (IROS). The IROS is potentiometric and uses the equilibrium pO2of the binary mixture of Ni/NiO as the reference pO2. The sensing electrode of the IROS are made from metallic Pt or the composite of (La0.75Sr0...... comprehensively and the evaluation is targeted to the performance indicators that relate closely to the practical application. IROSes show high accuracy, good stability, fast response, good tolerance to thermal and pO2cycling and easy recoverability when Ni is depleted. Both cell fabrication and performance show...

  11. Wrinkle-free graphene electrodes in zinc tin oxide thin-film transistors for large area applications

    Science.gov (United States)

    Lee, Se-Hee; Kim, Jae-Hee; Park, Byeong-Ju; Park, Jozeph; Kim, Hyun-Suk; Yoon, Soon-Gil

    2017-02-01

    Wrinkle-free graphene was used to form the source-drain electrodes in thin film transistors based on a zinc tin oxide (ZTO) semiconductor. A 10 nm thick titanium adhesion layer was applied prior to transferring a conductive graphene film on top of it by chemical detachment. The formation of an interlayer oxide between titanium and graphene allows the achievement of uniform surface roughness over the entire substrate area. The resulting devices were thermally treated in ambient air, and a substantial decrease in field effect mobility is observed with increasing annealing temperature. The increase in electrical resistivity of the graphene film at higher annealing temperatures may have some influence, however the growth of the oxide interlayer at the ZTO/Ti boundary is suggested to be most influential, thereby inducing relatively high contact resistance.

  12. Effect of Structure on the Storage Characteristics of ManganeseOxide Electrode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Joon; Doeff, Marca M.

    2006-01-31

    Eleven types of manganese-containing electrode materialswere subjected to long-term storage at 55oC in 1M LiPF6 ethylenecarbonate/dimethyl carbonate (EC/DMC) solutions. The amount of manganesedissolution observed depended upon the sample surface area, the averageMn oxidation state, the structure, and substitution levels of themanganese oxide. In some cases, structural changes such as solvateformation were exacerbated by the high temperature storage, andcontributed to capacity fading upon cycling even in the absence ofsignificant Mn dissolution. The most stable materials appear to beTi-substituted tunnel structures and mixed metal layered oxides with Mnin the +4 oxidation state.

  13. Ultra-thin solution-based coating of molybdenum oxide on multiwall carbon nanotubes for high-performance supercapacitor electrodes

    KAUST Repository

    Shakir, Imran

    2014-02-01

    Uniform and conformal coating of ultrathin molybdenum oxide (MoO 3) thin film onto conducting MWCNTs was successfully synthesized through a facile, nontoxic and generally applicable precipitation method, followed by a simple heat treatment. The ultrathin MoO3 coating enables a fast and reversible redox reaction which improves the specific capacitance by utilizing the maximum number of active sites for the redox reaction, while the high porosity of the MWCNTs facilitates ion migration in the electrolyte and shorten the ion diffusion path. The ultrathin MoO3 coated MWCNTs electrodes show a very high specific capacitance of 1145 Fg -1 in 2 M Na2SO4 aqueous solution when 5 nm thick MoO3 was considered alone despite the low weight percentage of the MoO3 (16wt%). Furthermore, the ultrathin MoO3 coated MWCNTs supercapacitor electrodes exhibited excellent cycling performance of > 97% capacitance retention over 1000 cycles. © 2013 Elsevier Ltd.

  14. 3D geometrical characterization and modelling of solid oxide cells electrodes microstructure by image analysis

    Science.gov (United States)

    Moussaoui, H.; Debayle, J.; Gavet, Y.; Delette, G.; Hubert, M.; Cloetens, P.; Laurencin, J.

    2017-03-01

    A strong correlation exists between the performance of Solid Oxide Cells (SOCs), working either in fuel cell or electrolysis mode, and their electrodes microstructure. However, the basic relationships between the three-dimensional characteristics of the microstructure and the electrode properties are not still precisely understood. Thus, several studies have been recently proposed in an attempt to improve the knowledge of such relations, which are essential before optimizing the microstructure, and hence, designing more efficient SOC electrodes. In that frame, an original model has been adapted to generate virtual 3D microstructures of typical SOCs electrodes. Both the oxygen electrode, which is made of porous LSCF, and the hydrogen electrodes, made of porous Ni-YSZ, have been studied. In this work, the synthetic microstructures are generated by the so-called 3D Gaussian `Random Field model'. The morphological representativeness of the virtual porous media have been validated on real 3D electrode microstructures of a commercial cell, obtained by X-ray nano-tomography at the European Synchrotron Radiation Facility (ESRF). This validation step includes the comparison of the morphological parameters like the phase covariance function and granulometry as well as the physical parameters like the `apparent tortuosity'. Finally, this validated tool will be used, in forthcoming studies, to identify the optimal microstructure of SOCs.

  15. A Novel Electrochemical Detector using Prussian Blue Modified Indium Tin Oxide Electrode

    Science.gov (United States)

    Yi, In-Je; Kim, Ju-Ho; Kang, C. J.; Choi, Y. J.; Lee, Kisay; Kim, Yong-Sang

    2006-01-01

    We propose a novel electrochemical detector (ECD) to catalyze redox efficiently by electrodepositing Prussian blue (PB, ferric hexacyanoferrate) on the indium tin oxide (ITO) electrode. Capillary electrophoresis (CE) and amperometric methods were used. We investigated the PB surface properties by topography from atomic force microscopy (AFM). The PB film on dense and smooth surfaces could catalyze redox reaction efficiently. Compared with CE-ECD microchips using a bare-ITO electrode, the proposed CE-ECD microchip using a PB modified electrode has shown better sensitivity of the electropherograms. It has been verified that wide-ranging detection can be performed under the limits of 0.01 mM of dopamine and catechol respectively when we use a PB modified electrode.

  16. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral, E-mail: shaynnedn@hotmail.com, E-mail: nataliakm@usp.br, E-mail: fntabuti@ipen.br, E-mail: fabiocf@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Florio, Daniel Zanetti de, E-mail: daniel.florio@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2017-01-15

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  17. Hydrogen peroxide biosensor based on electrodeposition of zinc oxide nanoflowers onto carbon nanotubes film electrode

    Institute of Scientific and Technical Information of China (English)

    Hui Ping Bai; Xu Xiao Lu; Guang Ming Yang; Yun Hui Yang

    2008-01-01

    A new amperometric biosensor for hydrogen peroxide was developed based on adsorption of horseradish peroxidase at the glassy carbon electrode modified with zinc oxide nanoflowers produced by electrodeposition onto multi-walled carbon nanotubes (MWNTs) firm. The morphology of the MWNTs/nano-ZnO electrode has been investigated by scanning electron microscopy (SEM), and the electrochemical performance of the electrode has also been studied by amperometric method. The resulting electrode offered an excellent detection for hydrogen peroxide at -0.11 V with a linear response range of 9.9 × 10(-7) to 2.9 × 10(-3) mol/L with a correlation coefficient of 0.991, and response time <5 s. The biosensor displays rapid response and expanded linear response range, and excellent stability.

  18. Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials

    Science.gov (United States)

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive, and large scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes made up of nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow center. We show that this geometry enhances cell-electrode coupling and results in measuring much larger intracellular action potentials. The nanotube electrodes afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the electrode performance can be significantly improved by optimizing the electrode geometry. PMID:24487777

  19. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid

    Science.gov (United States)

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-01

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (Ep, 1.10 ≤ Ep ≤ 1.50 V), polarization time (tp, 100 ≤ tp ≤ 104 s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (dox). Because X1 > dox for the entire range of Ep, tp, and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Ptδ+-Oδ- surface dipole (μPtO), and the potential drop (Vox) and electric field (Eox) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide.

  20. Flexible viologen electrochromic devices with low operational voltages using reduced graphene oxide electrodes.

    Science.gov (United States)

    Palenzuela, Jesús; Viñuales, Ana; Odriozola, Ibon; Cabañero, Germán; Grande, Hans J; Ruiz, Virginia

    2014-08-27

    Reduced graphene oxide (RGO) films have been electrodeposited on indium tin oxide-coated polyethylene terephthalate (ITO-PET) substrates from graphene oxide (GO) solutions, and the resulting flexible transparent electrodes have been used in electrochromic devices of ethyl viologen (EtV(2+)). The electrochromic performance of devices with bare ITO-PET electrodes and ITO-PET coated with RGO has been compared. Under continuous cycling tests up to large voltages, the RGO film was oxidized and dispersed in the electrochromic mixture. The resulting devices, which contained GO and RGO in the electrochromic mixture, showed lower switching voltages between the colored and bleached states. This electrocatalytic activity of the solution-phase GO/RGO pair toward the electrochemical reaction of the electrochromic redox couple (the dication EtV(2+) and the radical cation EtV(+•)) allowed devices with an optical contrast higher than the contrast of those free of GO at the same applied voltage.

  1. Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dares, C. J.; Lapides, A. M.; Mincher, B. J.; Meyer, T. J.

    2015-11-05

    A high surface area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand has been applied to the oxidation of trivalent americium to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 V vs. the saturated calomel electrode are used, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 M acid. This simple electrochemical procedure provides, for the first time, a method for accessing the higher oxidation states of Am in non-complexing media for developing the coordination chemistries of Am(V) and Am(VI) and, more importantly, for separation of americium from nuclear waste streams.

  2. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode.

    Science.gov (United States)

    Zeng, Ting; Leimkühler, Silke; Koetz, Joachim; Wollenberger, Ulla

    2015-09-30

    The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.

  3. Vanadium oxide (VO) based low cost counter electrode in dye sensitized solar cell (DSSC) applications

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, P.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Kalavakkam-603 110, Chennai, Tamilnadu (India)

    2015-06-24

    Vanadium oxide nanostars were synthesized by chemical method. The prepared Vanadium oxide nanostars are introduced into dye sensitized solar cell (DSSC) as counter electrode (CE) catalyst to replace the expensive platinum (Pt). The products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) method. The photovoltaic performance of the VO as counter electrode based DSSC was evaluated under simulated standard global AM 1.5G sunlight (100 mW/cm{sup 2}). The solar to electrical energy conversion efficiency (η) of the DSSC was found to be 0.38%.This work expands the Counter electrode catalyst, which can help to reduce the cost of DSSC and thereby encourage their fundamental research and commercial application.

  4. Reusable urine glucose sensor based on functionalized graphene oxide conjugated Au electrode with protective layers

    Directory of Open Access Journals (Sweden)

    Hye Youn Kim

    2014-09-01

    Full Text Available An electrochemical based system with multiple layers coated on a functionalized graphene oxide Au electrode was developed to measure glucose concentration in urine in a more stable way. Two types of gold printed circuit boards were fabricated and graphene oxide was immobilized on their surface by chemical adsorption. Multiple layers, composed of a couple of polymers, were uniformly coated on the surface electrode. This device exhibited higher electrochemical responses against glucose, a greater resistivity in the presence of interferential substances in urine, and durable stabilities for longer periods of time than conventional units. The efficiency in current level according to the order and ratio of solution was evaluated during the immobilization of the layer. The fabricated electrodes were then also evaluated using hyperglycemic clinical samples and compared with the patterns of blood glucose measured with commercially available glucose meters. Our findings show that not only was their pattern similar but this similarity is well correlated.

  5. Electro-catalytic oxidation of phenol with Ti-base lead dioxide electrode

    Institute of Scientific and Technical Information of China (English)

    王东田; 魏杰; 于秀娟; 杨红

    2003-01-01

    The Ti-base PbO2 electrode prepared by electrodeposition of PbO2 on the surface of titanium was used for electro-catalytic oxidation of phenol in waste water. The experimental results show that the electrodeposition of PbO2 at a higher current density for a short time, then followed by a lower current density can get a compact and combinative PbO2 layer. The properties of a Ti/PbO2 electrode with an interlayer of oxide are the best. When this kind of electrode is used to treat phenol containing waste water, the phenol-removal rate is higher and the slot voltage is lower. In addition, by using the phenol-removal rate as an index, the influences of electrolysis current density, mass transfer condition and pH were studied and the optimal condition was confirmed.

  6. Synthetic silver oxide and mercury-free zinc electrodes for silver-zinc reserve batteries

    Science.gov (United States)

    Smith, David F.; Gucinski, James A.

    Reserve activated silver oxide-zinc cells were constructed with synthetic silver oxide (Ag 2O) electrodes with Pb-treated zinc electrodes produced by a non-electrolytic process. The cells were tested before and after thermally accelerated aging. At discharge rates up to 80 mA cm -2, the discharge was limited by the Ag 2O electrode, with a coulombic efficiency between 89-99%. At higher rates, the cells are apparently zinc-limited. Test cells were artificially aged at 90°C for 19 h and discharged at 21°C at 80 mA cm -2. No capacity loss was measured, but a delayed activation rise time was noted (192 ms fresh vs. 567 ms aged). The delay is thought to be caused by zinc passivation due to the outgassing of cell materials.

  7. Nanostructured Transparent Conductive Oxide Films for Plasmonic Applications

    DEFF Research Database (Denmark)

    Kim, Jongbum; Zhao, Yang; Naik, Gururaj V.;

    2013-01-01

    Transparent conductive oxides (TCOs) as substitutes to metals could offer many advantages for low-loss plasmonic and metamaterial (MM) applications in the near infrared (NIR) regime. By employing a lift-off process, we fabricated 2D-periodic arrays of TCO nanodisks and characterized the material'...

  8. Bismuth-lead oxide, a new highly conductive oxygen materials

    NARCIS (Netherlands)

    Honnart, F.; Boivin, J.C.; Thomas, D.; Vries, de K.J.

    1983-01-01

    The transport properties of an oxygen-deficient solid solution containing lead and bismuth oxides have been investigated. The conductivity is larger than 1 (ω× cm)−1 at 600 °C. Thermogalvanic measurements confirm that no significant electronic contribution occurs in the range 1–10−3atm p O2. The hea

  9. Transparent conducting oxides on polymeric substrates by pulsed laser deposition

    NARCIS (Netherlands)

    Dekkers, Jan Matthijn

    2007-01-01

    This thesis describes the research on thin films of transparent conducting oxides (TCOs) on polymeric substrates manufactured by pulsed laser deposition (PLD). TCOs are an indispensable part in optoelectronic applications such as displays, solar cells, light-emitting diodes, etc. At present, in many

  10. Methodologies For Characterising Mixed Conducting Oxides For Oxygen Membrane And SOFC Cathode Application

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Søgaard, Martin; Plonczak, Pawel

    2012-01-01

    Two methods for detailed characterization of the process of oxygen exchange between the gas phase and a mixed conducting solid oxide are discussed. First, the use of solid electrolyte probes for measuring the change in oxygen activity over the surface of a mixed conductor is presented and advanta......Two methods for detailed characterization of the process of oxygen exchange between the gas phase and a mixed conducting solid oxide are discussed. First, the use of solid electrolyte probes for measuring the change in oxygen activity over the surface of a mixed conductor is presented...... and advantages of the technique discussed. Secondly, the use of thin film model electrodes is treated. Studies of thin films applied by PLD on both sides of a YSZ single crystal are presented for three different film materials; La0.85Sr0.15MnO3, La0.6Sr0.4Fe0.8Co0.2O3 and La0.6Sr0.4CoO3. Variations in electrode...

  11. Cathodic electrochemiluminescence of luminol in aqueous solutions based on C-doped oxide covered titanium electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jian; Zhao Rongrong; Xu Meizhu [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, 523 Gongye Road, Fuzhou, Fujian 350002 (China); Chen Guonan, E-mail: gnchen@fzu.edu.c [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, 523 Gongye Road, Fuzhou, Fujian 350002 (China)

    2010-12-15

    In the present work, a novel sensor for luminol electrochemiluminescence (ECL) was constructed on the base of a C-doped titanium oxide amorphous semiconductor electrode. The morphology, structural and electrochemical properties of the electrode was characterized by X-Ray diffraction, X-Ray photoelectron spectroscopy and electrochemical methods. The ECL behavior of luminol excited by hot electrons injected from C-doped oxide film-covered electrodes in aqueous medium has been investigated in B-R buffer solution (pH = 9) when linear sweep cyclic voltammetry (CV) was applied. Two ECL peaks were observed at -1.0 V (vs. Ag/AgCl, reduction process) and -0.75 V (vs. Ag/AgCl, oxidation process). The possible mechanism was discussed. The C-doped Ti oxide electrode shows excellent properties for sensitive determination of luminol with good reproducibility and stability. The linear response of luminol was in the range of 1 x 10{sup -8} to 9 x 10{sup -8} mol/L with the detection limit of 3 x 10{sup -9} mol/L (S/N = 3). Since luminol is one of the most useful ECL probe, many bioactive compounds which can be labeled by luminol are able to be detected by using the proposed method.

  12. Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode materials for Supercapacitor

    Institute of Scientific and Technical Information of China (English)

    Zhang; Jianrong

    2001-01-01

    In this paper, we reported a new method to directly prepare the amorphous hydrous ruthenium oxide/active carbon powders. The relationship between the specific capacitance and ruthenium content in powders was studied in detail. Physical properties of the powders such as crystallinity、 particle size, and electrochemical characteristics of electrodes were reported along with the capacitor performance.  ……

  13. Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode materials for Supercapacitor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ In this paper, we reported a new method to directly prepare the amorphous hydrous ruthenium oxide/active carbon powders. The relationship between the specific capacitance and ruthenium content in powders was studied in detail. Physical properties of the powders such as crystallinity、 particle size, and electrochemical characteristics of electrodes were reported along with the capacitor performance.

  14. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Yuan, E-mail: cyho@cycu.edu.tw [Department of Mechanical Engineering, Chung Yuan Christian University, Chung-Li, Taiwan (China); Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan (China); Wang, Hong-Wen [Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan (China); Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan (China)

    2015-12-01

    Graphical abstract: Experimental process: (1) graphite oxidized to graphene oxide; (2) thermal reduction from graphene oxide to graphene; (3) applying to DSSC counter electrode. - Highlights: • Intercalated defects were eliminated by increasing reduction temperature of GO. • High reduction temperature of tGP has lower resistance, high the electron lifetime. • Higher thermal reduction of GO proposes electrocatalytic properties. • DSSC using tGP{sub 250} as counter electrode has energy conversion efficiency of 3.4%. - Abstract: Graphene oxide (GO) was synthesized from a flake-type of graphite powder, which was then reduced to a few layers of graphene sheets using the thermal reduction method. The surface morphology, phase crystallization, and defect states of the reduced graphene were determined from an electron microscope equipped with an energy dispersion spectrometer, X-ray diffraction, Raman spectroscopy, and infrared spectra. After graphene formation, the intercalated defects that existed in the GO were removed, and it became crystalline by observing impurity changes and d-spacing. Dye-sensitized solar cells, using reduced graphene as the counter electrode, were fabricated to evaluate the electrolyte activity and charge transport performance. The electrochemical impedance spectra showed that increasing the thermal reduction temperature could achieve faster electron transport and longer electron lifetime, and result in an energy conversion efficiency of approximately 3.4%. Compared to the Pt counter electrode, the low cost of the thermal reduction method suggests that graphene will enjoy a wide range of potential applications in the field of electronic devices.

  15. The Effect of Anodic Surface Treatment on the Oxidation of Catechols at Ultrasmall Carbon Ring Electrodes

    Science.gov (United States)

    1991-07-09

    selectivity. A model of the surface formed following anodic oxidation is consistent with previous models involving both surface cleanliness and carbon...involving both surface cleanliness and carbon structure orientation. 2 INTRODUCTION Because of the vast electroanalytical utility of carbon electrodes...of the electron transfer rate following treatment are a function of the surface cleanliness and the orientation of the carbon structure

  16. In Situ Conductance Analysis of Zinc Oxide Nucleation and Coalescence during Atomic Layer Deposition on Metal Oxides and Polymers.

    Science.gov (United States)

    Sweet, William J; Parsons, Gregory N

    2015-07-07

    Real time in situ conductance is collected continuously during atomic layer deposition (ALD) of zinc oxide films, and trends are used to study ALD nucleation on polypropylene, nylon-6, SiO2, TiO2, and Al2O3 substrates. The detailed conductance change during the ALD cycle is ascribed to changes in surface band bending upon precursor/reactant exposure. Conductive pathways form earlier on the inorganic surfaces than on the polymers, with Al2O3 substrates showing more rapid nucleation than SiO2 or TiO2, consistent with the expected density of nucleation sites (e.g., hydroxyl groups) on these different materials. The measured conductance is ohmic, and both two- and four-electrode configurations show the same data trends. Detailed analysis of conductivity at deposition temperatures between 100 and 175 °C shows faster conductivity decay at higher temperature during the water purge step, ascribed to thermally activated water desorption kinetics. Analysis of real-time conductivity during ALD of other material systems could provide further insight into key aspects of film nucleation and nuclei coalescence.

  17. Lanthanum chromite materials as potential symmetrical electrodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ruiz-Morales, J. C.

    2007-08-01

    Full Text Available A commonly used interconnector material has been tested as electrode for a new concept of Solid Oxide Fuel Cell, where the same material could be used, simultaneously, as interconnector, anode and cathode. We have found that a typical substituted chromite, such as La0.7Ca0.3CrO3-δ (LCC can be considered a good candidate for such configuration, due to its high electronic conductivity in both reducing and oxidising conditions, and moderate catalytic properties for oxygen reduction and hydrogen oxidation. The symmetrical design renders performances of 100 mWcm-2 at 950ºC, using O2 and H2 as oxidant and fuel respectively. Performances exceeding 300 mWcm-2 can be predicted for a 100μm-thick YSZ electrolyte.

    Un material comúnmente utilizado como interconector ha sido probado como electrodo para un nuevo concepto de Pila de Combustible de Óxidos Sólido, en el cual el mismo material se utiliza, simultáneamente, como interconector, ánodo y cátodo. Hemos encontrado que una cromita típica como La0.7Ca0.3CrO3-δ (LCC puede ser considerada una buena candidata para dicha configuración, debido a sus altas conductividades eléctricas tanto en condiciones reductoras como oxidantes y una aceptable actividad catalítica para la reducción del oxígeno y la oxidación del hidrógeno. El diseño simétrico permite obtener rendimientos del orden de 100mWcm-2 a 950ºC, utilizando O2 e H2 como oxidante y combustible, respectivamente. Rendimientos que superan los 300mWcm-2 pueden predecirse para pilas con electrolitos de YSZ de 100 μm de grosor.

  18. XPS Studies on Rare Earth Oxide LSCO/YSZ Electrodes

    Institute of Scientific and Technical Information of China (English)

    丁铁柱; 李健; 其其格; 季秉厚; 刘健; 张常在

    2003-01-01

    The X-ray diffraction spectra and X-ray photoelectron spectroscopy were measured for Sr-doped La1-xSrx CoO3 materials with perovskite structure prepared by the solid-state reaction method. The influence of heat-treatment temperature on the average crystal size of La1-xSrx CoO3 was studied. The surface chemical states of La1-xSrxCoO3 cathodes with different Sr-doped content were discussed. The experimental results show that average crystal size of La1-xSrxCoO3 under the condition of heat-treatment in the range of 900~1200 ℃ is larger than that at other temperatures, which is of benefit to forming porous electrodes. When La is replaced by Sr gradually, the oxygen vacancy concentration increases. It is of benefit to enhancing the transport property of oxygen ion.

  19. Magnetic Transparent Conducting Oxide Film And Method Of Making

    Science.gov (United States)

    Windisch, Jr., Charles F.; Exarhos, Gregory J.; Sharma, Shiv K.

    2006-03-14

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 O·cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450° C. in air. An increase in film resistivity was found upon substitution of other cations (e.g., Zn2+, Al3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo2O4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x0.67, the oxide was all spinel but the increased Co content lowered the conductivity.

  20. Magnetic Transparent Conducting Oxide Film And Method Of Making

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Jr., Charles F. (Richland, WA); Exarhos, Gregory J. (Richland, WA); Sharma, Shiv K. (Honolulu, HI)

    2006-03-14

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 O·cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450° C. in air. An increase in film resistivity was found upon substitution of other cations (e.g., Zn2+, Al3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo2O4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity.

  1. Impedance Spectra of Activating/Passivating Solid Oxide Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Sun, Xiufu; Koch, Søren;

    2014-01-01

    The aim of this paper is to show that the inductive arcs seen in electrochemical impedance spectra of solid oxide cells (SOCs) are real electrochemical features that in several cases can be qualitatively explained by passivation/activation processes. Several degradation processes of Solid Oxide...... Fuel Cells (SOFC) and Electrolyser Cells (SOEC) exist. Not all of them are irreversible, especially not over short periods. A reversible degradation is termed “passivation” and the reverse is then “activation”. These processes may exhibit themselves in the Electrochemical Impedance Spectra (EIS...

  2. Freeze Drying Improves the Shelf-Life of Conductive Polymer Modified Neural Electrodes

    Directory of Open Access Journals (Sweden)

    Himadri S. Mandal

    2015-08-01

    Full Text Available Coating microelectrodes with conductive polymer is widely recognized to decrease impedance and improve performance of implantable neural devices during recording and stimulation. A concern for wide-spread use of this approach is shelf-life, i.e., the electrochemical stability of the coated microelectrodes prior to use. In this work, we investigated the possibility of using the freeze-drying process in order to retain the native low impedance state and, thereby, improve the shelf-life of conductive polymer poly(3,4-ethylenedioxythiophene (PEDOT-PSS modified neural electrodes. Control PEDOT-PSS coated microelectrodes demonstrated a significant increase in impedance at 1 kHz after 41–50 days of room temperature storage. Based on equivalent circuit modeling derived from electrochemical impedance spectroscopy, this increase in impedance could be largely attributed to a decrease in the interfacial capacitance consistent with a collapse and closing of the porous structure of the polymeric coating. Time-dependent electrochemical impedance measurements revealed higher stability of the freeze-dried coated microelectrodes compared to the controls, such that impedance values after 41–50 days appeared to be indistinguishable from the initial levels. This suggests that freeze drying PEDOT-PSS coated microelectrodes correlates with enhanced electrochemical stability during shelf storage.

  3. Preparation of reusable conductive activated charcoal plate as a new electrode for industrial wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ayoubi-Feiz, Baharak; Aber, Soheil [University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-10-15

    A conductive activated charcoal plate (ACP) was prepared from a low-cost, abundant, and non-conductive charcoal. The prepared ACP was characterized using N{sub 2} adsorption/desorption isotherms, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Brunauer-Emmett-Teller (BET) surface area of the charcoal and the ACP was 0.58m{sup 2} g{sup -1} and 461.67m{sup 2} g{sup -1}, respectively. The ACP was employed in textile wastewater treatment using electrosorption process. Response surface methodology (RSM) was applied to design the experiments. The decolorization efficiency of 76% at optimum conditions of voltage=450mV, pH=4, and contact time=120 min indicated that the ACP has promising potential to decolorize textile wastewater. Moreover, the results of the kinetic analyses demonstrated that wastewater treatment followed pseudo-first order kinetic model. The ACP electrode could be regenerated and reused effectively at five successive cycles of electrosorption/electrodesorption.

  4. The role of probe oxide in local surface conductivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C. J.; Kryvchenkova, O.; Wilson, L. S. J.; Maffeis, T. G. G.; Cobley, R. J. [Multidisciplinary Nanotechnology Centre, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Kalna, K. [Electronic Systems Design Centre, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2015-05-07

    Local probe methods can be used to measure nanoscale surface conductivity, but some techniques including nanoscale four point probe rely on at least two of the probes forming the same low resistivity non-rectifying contact to the sample. Here, the role of probe shank oxide has been examined by carrying out contact and non-contact I V measurements on GaAs when the probe oxide has been controllably reduced, both experimentally and in simulation. In contact, the barrier height is pinned but the barrier shape changes with probe shank oxide dimensions. In non-contact measurements, the oxide modifies the electrostatic interaction inducing a quantum dot that alters the tunneling behavior. For both, the contact resistance change is dependent on polarity, which violates the assumption required for four point probe to remove probe contact resistance from the measured conductivity. This has implications for all nanoscale surface probe measurements and macroscopic four point probe, both in air and vacuum, where the role of probe oxide contamination is not well understood.

  5. Electrochemistry behavior of endogenous thiols on fluorine doped tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Luciana; Molero, Leonard; Tapia, Ricardo A.; Rio, Rodrigo del; Valle, M. Angelica del; Antilen, Monica [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Av Vicuna Mackenna 4860, Casilla 306, Correo 22, Macul, Santiago (Chile); Armijo, Francisco, E-mail: jarmijom@uc.cl [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Av Vicuna Mackenna 4860, Casilla 306, Correo 22, Macul, Santiago (Chile)

    2011-10-01

    Highlights: > The first time that fluorine doped tin oxide electrodes are used for the electrooxidation of endogenous thiols. > Low potentials of electrooxidation were obtained for the different thiols. > The electrochemical behavior of thiols depends on the pH and the ionic electroactive species, the electrooxidation proceeds for a process of adsorption of electroactive species on FTO and high values the heterogeneous electron tranfer rate constant of the reaction were obtained. - Abstract: In this work the electrochemical behavior of different thiols on fluorine doped tin oxide (FTO) electrodes is reported. To this end, the mechanism of electrochemical oxidation of glutathione (GSH), cysteine (Cys), homocysteine (HCys) and acetyl-cysteine (ACys) at different pH was investigated. FTO showed electroactivity for the oxidation of the first three thiols at pH between 2.0 and 4.0, but under these conditions no acetyl-cysteine oxidation was observed on FTO. Voltammetric studies of the electro-oxidation of GSH, Cys and HCys showed peaks at about 0.35, 0.29, and 0.28 V at optimum pH 2.4, 2.8 and 3.4, respectively. In addition, this study demonstrated that GSH, Cys and HCys oxidation occurs when the zwitterion is the electro-active species that interact by adsorption on FTO electrodes. The overall reaction involves 4e{sup -}/4H{sup +} and 2e{sup -}/2H{sup +}, respectively, for HCys and for GSH and Cys and high heterogeneous electron transfer rate constants. Besides, the use of FTO for the determination of different thiols was evaluated. Experimental square wave voltammetry shows a linear current vs. concentrations response between 0.1 and 1.0 mM was found for HCys and GSH, indicating that these FTO electrodes are promising candidates for the efficient electrochemical determination of these endogenous thiols.

  6. Indium-free Cu/fluorine doped ZnO composite transparent conductive electrodes with stretchable and flexible performance on poly(ethylene terephthalate) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun; Gong, Haibo; Yang, Xiaopeng; Qiu, Zhiwen; Zi, Min; Qiu, Xiaofeng [Key Lab of Inorganic Functional Material in Universities of Shandong, School of Material Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Wang, Hongqiang [Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Peach Street, Liverpool L69 7ZF (United Kingdom); Cao, Bingqiang, E-mail: mse_caobq@ujn.edu.cn [Key Lab of Inorganic Functional Material in Universities of Shandong, School of Material Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Cu/FZO bilayer films grow on PET substrates at room temperature. • The lowest resistivity of 6.6 × 10{sup −5} Ω cm is obtained. • The Cu/FZO film exhibits mechanical flexibility and stability. - Abstract: Material-abundant ZnO and metal thin film have been proposed as potential alternatives for the most widely commercial indium tin oxide (ITO) transparent and conductive electrode. Yet the deterioration of optical transparency and conductivity for these materials makes them difficult to compete with ITO. In this work, a double-layer structured film-composed of FZO and Cu film is presented at room temperature, which combines the high transparency of FZO and high conductivity of Cu film. We first studied the effect of oxygen pressure on the transparency and conductivity of free-standing FZO layer deposited on poly(ethylene terephthalate) (PET) by PLD method. Also the structural, electrical, and optical properties of bilayers electrode dependence on the Cu layer thickness were optimized in detail. As the Cu layer thickness increases, the resistivity decreases. The lowest resistivity of 6.6 × 10{sup −5} Ω cm with a carrier concentration of 1.11 × 10{sup 22} cm{sup −3} and mobility of 8.52 cm{sup 2} V{sup −1} s{sup −1} was obtained at the optimum Cu (12 nm) layer thickness. We find that FZO layer have anti-reflection effect for Cu/FZO (250 nm) bilayer in the wavelength range of 650–1000 nm compared with single Cu layer. And we firstly study the stretchable performance for Cu film-based composite electrodes with stretching ratio changing from 0 to 5%. Furthermore, we study excellent mechanical flexibility and stability of composite electrodes by bending test.

  7. High performance fuel electrode for a solid oxide electrochemical cell

    DEFF Research Database (Denmark)

    2013-01-01

    perovskite oxides selected from the group consisting of niobium-doped strontium titanate, vanadium-doped strontium titanate, tantalum-doped strontium titanate and mixtures thereof, thereby obtaining a porous anode backbone, (b) sintering the coated electrolyte at a high temperature, such as 1200 DEG C...

  8. Graphene, conducting polymer and their composites as transparent and current spreading electrode in GaN solar cells

    Science.gov (United States)

    Mahala, Pramila; Kumar, Ajay; Nayak, Sasmita; Behura, Sanjay; Dhanavantri, Chenna; Jani, Omkar

    2016-04-01

    Understanding the physics of charge carrier transport at graphene/p-GaN interface is critical for achieving efficient device functionality. Currently, the graphene/p-GaN interface is being explored as light emitting diodes, however this interface can be probed as a potential photovoltaic cell. We report the intimate interfacing of mechanically exfoliated graphene (EG), conducting polymer (PEDOT:PSS) and composite of reduced graphene oxide (rGO) and PEDOT:PSS with a wide band gap p-GaN layer. To explore their potential in energy harvesting, three heterojunction devices such as: (i) EG/p-GaN/sapphire, (ii) PEDOT:PSS/p-GaN/sapphire and (iii) PEDOT:PSS(rGO)/p-GaN/sapphire are designed and their photovoltaic characteristics are examined. It is interesting to observe that the EG/p-GaN/sapphire solar cell exhibits high open-circuit voltage of 0.545 V with low ideality factor and reverse saturation current. However, improved short circuit current density (13.7 mA/cm2) is noticed for PEDOT:PSS/p-GaN/sapphire solar cell because of enhanced conductivity accompanied by high transmittance for PEDOT:PSS. Further, the low series resistance for PEDOT:PSS(rGO)/p-GaN/sapphire is observed suggesting that the PEDOT:PSS and rGO composite is well dispersed and exhibits low interfacial resistances with p-GaN. The present investigation leverages the potential of graphene, conducting polymer and their composites as dual capability of (a) transparent and current spreading electrode and (b) an active top layer to make an intimate contact with wide bandgap p-type GaN for possible prospect towards high performance diodes, switches and solar cells.

  9. Organic photovoltaic cells fabricated on a SnO{sub x}/Ag/SnO{sub x} multilayer transparent conducting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jeong-Do [Interface Control Research Center, Korea Institute of Science and Technology, Sungbuk-Gu, Hwarangno 14-gil 5, Seoul 136-791 (Korea, Republic of); Department of Physics, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Cho, Se-Hee; Hong, Tae-Woo; Son, Dong Ick; Park, Dong-Hee [Interface Control Research Center, Korea Institute of Science and Technology, Sungbuk-Gu, Hwarangno 14-gil 5, Seoul 136-791 (Korea, Republic of); Yoo, Kyung-Hwa [Department of Physics, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Choi, Won-Kook, E-mail: wkchoi@kist.re.kr [Interface Control Research Center, Korea Institute of Science and Technology, Sungbuk-Gu, Hwarangno 14-gil 5, Seoul 136-791 (Korea, Republic of)

    2012-07-31

    Transparent conducting multilayer structured electrode of a few nm Ag layer embedded in tin oxide thin film SnO{sub x}/Ag/SnO{sub x} was fabricated on a glass by RF magnetron sputtering at room temperature. The multilayer of the SnO{sub x}(40 nm)/Ag(11 nm)/SnO{sub x}(40 nm) electrode shows the maximum optical transmittance of 87.3% at 550 nm and a quite low electrical resistivity of 6.5 Multiplication-Sign 10{sup -5} {Omega} cm, and the corresponding figure of merit (T{sup 10}/R{sub S}) is equivalent to 3.6 Multiplication-Sign 10{sup -2} {Omega}{sup -1}. A normal organic photovoltaic (OPV) structure of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/polythiophene:phenyl-C60-butyric acid methyl ester/Al was fabricated on glass/SnO{sub x}/Ag/SnO{sub x} to examine the compatibility of OPV as a transparent conducting electrode. Measured characteristic values of open circuit voltage of 0.62 V, saturation current of 8.11 mA/cm{sup 2} and fill factor of 0.54 are analogous to 0.63 V, 8.37 mA/cm{sup 2} and 0.58 of OPV on commercial glass/indium tin oxide (ITO) respectively. A resultant power conversion efficiency of 2.7% is also very comparable with the 3.09% of the same OPV structure on the commercial ITO glass as a reference, and which reveals that SnO{sub x}/Ag/SnO{sub x} can be appropriate to OPV solar cells as a sound transparent conducting electrode. - Highlights: Black-Right-Pointing-Pointer We fabricated the highly transparent and low resistive electrode. Black-Right-Pointing-Pointer The Ag embedded multilayer was used for the organic photovoltaic cells. Black-Right-Pointing-Pointer The multilayer shows the possibility to replace indium tin oxide.

  10. Ionic conductivity in oxide heterostructures: the role of interfaces

    Directory of Open Access Journals (Sweden)

    Emiliana Fabbri, Daniele Pergolesi and Enrico Traversa

    2010-01-01

    Full Text Available Rapidly growing attention is being directed to the investigation of ionic conductivity in oxide film heterostructures. The main reason for this interest arises from interfacial phenomena in these heterostructures and their applications. Recent results revealed that heterophase interfaces have faster ionic conduction pathways than the bulk or homophase interfaces. This finding can open attractive opportunities in the field of micro-ionic devices. The influence of the interfaces on the conduction properties of heterostructures is becoming increasingly important with the miniaturization of solid-state devices, which leads to an enhanced interface density at the expense of the bulk. This review aims to describe the main evidence of interfacial phenomena in ion-conducting film heterostructures, highlighting the fundamental and technological relevance and offering guidelines to understanding the interface conduction mechanisms in these structures.

  11. Anisotropic thermal conductivity of thin polycrystalline oxide samples

    Directory of Open Access Journals (Sweden)

    A. Tiwari

    2013-11-01

    Full Text Available This paper reports about the development of a modified laser-flash technique and relation to measure the in-plane thermal diffusivity of thin polycrystalline oxide samples. Thermal conductivity is then calculated with the product of diffusivity, specific heat and density. Design and operating features for evaluating in-plane thermal conductivities are described. The technique is advantageous as thin samples are not glued together to measure in-plane thermal conductivities like earlier methods reported in literature. The approach was employed to study anisotropic thermal conductivity in alumina sheet, textured kaolin ceramics and montmorillonite. Since it is rare to find in-plane thermal conductivity values for such anisotropic thin samples in literature, this technique offers a useful variant to existing techniques.

  12. Anisotropic thermal conductivity of thin polycrystalline oxide samples

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A., E-mail: abhishektiwariiitr@gmail.com [Groupe d’Etudes des Matériaux Hétérogènes (GEMH, EA 3178), Ecole Nationale Supérieure de Céramique Industrielle, 12, Rue Atlantis, 87068 Limoges Cedex (France); Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800 (Australia); Boussois, K.; Nait-Ali, B.; Smith, D. S.; Blanchart, P. [Groupe d’Etudes des Matériaux Hétérogènes (GEMH, EA 3178), Ecole Nationale Supérieure de Céramique Industrielle, 12, Rue Atlantis, 87068 Limoges Cedex (France)

    2013-11-15

    This paper reports about the development of a modified laser-flash technique and relation to measure the in-plane thermal diffusivity of thin polycrystalline oxide samples. Thermal conductivity is then calculated with the product of diffusivity, specific heat and density. Design and operating features for evaluating in-plane thermal conductivities are described. The technique is advantageous as thin samples are not glued together to measure in-plane thermal conductivities like earlier methods reported in literature. The approach was employed to study anisotropic thermal conductivity in alumina sheet, textured kaolin ceramics and montmorillonite. Since it is rare to find in-plane thermal conductivity values for such anisotropic thin samples in literature, this technique offers a useful variant to existing techniques.

  13. Dielectric relaxation and hopping conduction in reduced graphite oxide

    Science.gov (United States)

    Wei, Guidan; Yu, Ji; Gu, Min; Tang, Tong B.

    2016-06-01

    Graphite oxide reduced by sodium borohydride was characterised and its electrical conduction investigated with impedance spectroscopy. Thermal dependence of electrical modulus (instead of permittivity, its inverse) was calculated from complex impedance spectra, an approach that prevents any peak in dielectric loss (imaginary component) from being swarmed by large dc conductivity. Two loss peaks appeared at each tested frequency, in a sample of either degree of reduction. The set of weaker peak should arise from the relaxation of some polar bonds, as proposed earlier by us. The stronger loss peaks may correspond to the hopping of conduction electrons; variable range hopping is also consistent with the observed thermal dependence of conductivity. However, nearer ambient temperature there is a change in mechanism, to band transport, with an activation energy of fairly similar values as derived from both loss peaks and conductivity.

  14. Enhanced Growth and Redox Characteristics of Some Conducting Polymers on Carbon Nanotube Modified Electrodes

    Institute of Scientific and Technical Information of China (English)

    R.Saraswathi

    2007-01-01

    1 Results Recent studies on the electrochemistry of a number of active compounds at carbon nanotube electrodes have proved beyond doubt their excellent electrocatalytic properties.Particularly,the advancements accomplished towards the functionalization of carbon nanotubes resulting in their enhanced solubilization in aqueous solutions have helped in the preparation of stable carbon nanotube electrodes.Glassy carbon has been invariably the preferred substrate for casting carbon nanotube electrodes.Such c...

  15. Novel transparent conducting oxide technology for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, P.T.; Sutton, P.A.; Gardener, M.; Wakefield, G.

    2005-07-01

    This report outlines the development of both n- and p-type transparent Conducting Oxide (TCO) materials and the demonstrated feasibility of economic production of TCO films by deposition techniques. Descriptions are given of the four main tasks of the project with Task A concentrating on material design and synthesis covering the new precursor to zinc oxide thin films and selection of polymers for formulation; Task B dealing with film formation involving film deposition by spin coating, screen printing, inkjet printing, dip coating and chemical vapour deposition; Task C concerning performance evaluation; and Task D examining manufacturing process development. The prospects for commercialisation are explored and recommendation for future work are considered.

  16. Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content

    Directory of Open Access Journals (Sweden)

    Nancy Gabriela García-Morales

    2015-01-01

    Full Text Available This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA production.

  17. Improving performance and cyclability of zinc-silver oxide batteries by using graphene as a two dimensional conductive additive.

    Science.gov (United States)

    Ozgit, Dilek; Hiralal, Pritesh; Amaratunga, Gehan A J

    2014-12-10

    In this article, the use of reduced graphene oxide (rGO) as a high-surface-area conductive additive for enhancing zinc-silver oxide (Zn-Ag2O) batteries is reported for the first time. Specific capacity, rate capability and cyclability are all improved with the addition of 5% thermally reduced graphene oxide to the electrode. It is shown that the rGO morphology becomes more beneficial as the active materials tend toward the nanoscale. The combination results in a better utilization of the active material, which in turn improves the specific capacity of the zinc-silver oxide batteries by ca. 50%, as a result of the more intimate contact with the nano (∼50 nm) electrode particles. The resulting rGO network also creates a high-surface-area conducting template for ZnO electrodeposition upon discharge, significantly reducing the overall particle size of the ZnO deposit, thus inhibiting the formation of dendrites, and increasing the number of achievable cycles from 4 to >160 with a basic cellulose separator. The morphology of the electrodes and its electrochemical parameters are studied as a function of cycling.

  18. Hydrogen evolution reaction on titanium and oxide-covered titanium electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M.W.; Abdel Rahim, M.A. (Cairo Univ., Gizeh (Egypt). Dept. of Chemistry)

    1991-10-01

    The kinetics of hydrogen evolution reaction (HER) on Ti electrodes in H{sub 2}SO{sub 4} of various concentrations in the pH range of 0.24-1.88 was studied. Cathodic Tafel lines were measured potentiodynamically at a scan rate 1.0 mVs{sup -1} within the H{sub 2} evolution potential range. Linear parallel Tafel lines of a slope of 152 mVdecade{sup -1} were obtained. A value of 0.73 was calculated for the reaction order wrt asub(H{sup +})using the exchange cd, i{sub 0}. Tafel lines measured on oxide covered electrodes showed three deviations from linearity. An attempt was made to explain the deviations in terms of hydride formation and chemical oxide dissolution. Tafel slopes of 152 mVdecade{sup -1} were also observed for the HER on oxide-covered electrodes. The nature and compositions of the oxide did not depend on the electrolyte in which the oxides were formed. (orig.).

  19. Electrochemical oxidation of N-nitrosodimethylamine with boron-doped diamond film electrodes.

    Science.gov (United States)

    Chaplin, Brian P; Schrader, Glenn; Farrell, James

    2009-11-01

    This research investigated NDMA oxidation by boron-doped diamond (BDD) film electrodes. Oxidation rates were measured as a function of electrode potential, current density, and temperature using rotating disk and flow-through reactors. Final NDMA reaction products were carbon dioxide, ammonium, and nitrate, with dimethylamine and methylamine as intermediate products. Reaction rates were first-order with respect to NDMA concentration and surface area normalized oxidation rates as high as 850 +/- 50 L/m(2)-hr were observed at a current density of 10 mA/cm(2). The flow-through reactor yielded mass transfer limited reaction rates that were first-order in NDMA concentration, with a half-life of 2.1 +/- 0.1 min. Experimental evidence indicates that NDMA oxidation proceeds via a direct electron transfer at potentials >1.8 V/SHE with a measured apparent activation energy of 3.1 +/- 0.5 kJ/mol at a potential of 2.5 V/SHE. Density functional theory calculations indicate that a direct two-electron transfer can produce a stable NDMA((+2)) species that is stabilized by forming an adduct with water. The transfer of two electrons from NDMA to the electrode allows an activation-less attack of hydroxyl radicals on the NDMA((+2)) water adduct. At higher overpotentials the oxidation of NDMA occurs by a combination of direct electron transfer and hydroxyl radicals produced via water electrolysis.

  20. Influence of patterned electrode geometry on performance of co-planar, single-chamber, solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sung-Jin; Kim, Yong-Bum; Moon, Jooho [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea); Lee, Jong-Ho; Kim, Joosun [Nano-Materials Research Center, KIST, Seoul 136-791 (Korea)

    2007-09-27

    Co-planar, single-chamber, solid oxide fuel cells (SC-SOFCs) with linearly patterned electrode structures on one surface of the electrolyte are fabricated via a robo-dispensing method. The SC-SOFCs with various electrode patterns are prepared to investigate the relationship between electrode geometry and cell performance. The open-circuit voltage (OCV) for cells with a single electrode pair is unaffected by the anode-to-cathode distance. By contrast, for cells with multiple electrode pairs, increasing the number of electrode pairs leads to a gradual decrease in OCV. These observations confirm that the inter-mixing of product gases causes a loss in OCV and power density, which in turn reduces the oxygen partial pressure gradient between the anode and cathode. Keeping the electrode pairs apart by {proportional_to}4 mm permits cells with complex electrode geometry to exhibit higher OCVs and power densities. (author)

  1. Influence of patterned electrode geometry on performance of co-planar, single-chamber, solid oxide fuel cell

    Science.gov (United States)

    Ahn, Sung-Jin; Kim, Yong-Bum; Moon, Jooho; Lee, Jong-Ho; Kim, Joosun

    Co-planar, single-chamber, solid oxide fuel cells (SC-SOFCs) with linearly patterned electrode structures on one surface of the electrolyte are fabricated via a robo-dispensing method. The SC-SOFCs with various electrode patterns are prepared to investigate the relationship between electrode geometry and cell performance. The open-circuit voltage (OCV) for cells with a single electrode pair is unaffected by the anode-to-cathode distance. By contrast, for cells with multiple electrode pairs, increasing the number of electrode pairs leads to a gradual decrease in OCV. These observations confirm that the inter-mixing of product gases causes a loss in OCV and power density, which in turn reduces the oxygen partial pressure gradient between the anode and cathode. Keeping the electrode pairs apart by ∼4 mm permits cells with complex electrode geometry to exhibit higher OCVs and power densities.

  2. Synchronized Current Oscillations of Formic Acid Electro-oxidation in a Microchip-based Dual-Electrode Flow Cell

    Science.gov (United States)

    Kiss, István Z.; Munjal, Neil; Martin, R. Scott

    2009-01-01

    We investigate the oscillatory electro-oxidation of formic acid on platinum in a microchip-based dual-electrode cell with microfluidic flow control. The main dynamical features of current oscillations on single Pt electrode that had been observed in macro-cells are reproduced in the microfabricated electrochemical cell. In dual-electrode configuration nearly in-phase synchronized current oscillations occur when the reference/counter electrodes are placed far away from the microelectrodes. The synchronization disappears with close reference/counter electrode placements. We show that the cause for synchronization is weak albeit important, bidirectional electrical coupling between the electrodes; therefore the unidirectional mass transfer interactions are negligible. The experimental design enables the investigation of the dynamical behavior in micro-electrode arrays with well-defined control of flow of the electrolyte in a manner where the size and spacing of the electrodes can be easily varied. PMID:20160883

  3. Synchronized Current Oscillations of Formic Acid Electro-oxidation in a Microchip-based Dual-Electrode Flow Cell.

    Science.gov (United States)

    Kiss, István Z; Munjal, Neil; Martin, R Scott

    2009-12-30

    We investigate the oscillatory electro-oxidation of formic acid on platinum in a microchip-based dual-electrode cell with microfluidic flow control. The main dynamical features of current oscillations on single Pt electrode that had been observed in macro-cells are reproduced in the microfabricated electrochemical cell. In dual-electrode configuration nearly in-phase synchronized current oscillations occur when the reference/counter electrodes are placed far away from the microelectrodes. The synchronization disappears with close reference/counter electrode placements. We show that the cause for synchronization is weak albeit important, bidirectional electrical coupling between the electrodes; therefore the unidirectional mass transfer interactions are negligible. The experimental design enables the investigation of the dynamical behavior in micro-electrode arrays with well-defined control of flow of the electrolyte in a manner where the size and spacing of the electrodes can be easily varied.

  4. A Robust and Conductive Black Tin Oxide Nanostructure Makes Efficient Lithium-Ion Batteries Possible.

    Science.gov (United States)

    Dong, Wujie; Xu, Jijian; Wang, Chao; Lu, Yue; Liu, Xiangye; Wang, Xin; Yuan, Xiaotao; Wang, Zhe; Lin, Tianquan; Sui, Manling; Chen, I-Wei; Huang, Fuqiang

    2017-06-01

    SnO2 -based lithium-ion batteries have low cost and high energy density, but their capacity fades rapidly during lithiation/delithiation due to phase aggregation and cracking. These problems can be mitigated by using highly conducting black SnO2-x , which homogenizes the redox reactions and stabilizes fine, fracture-resistant Sn precipitates in the Li2 O matrix. Such fine Sn precipitates and their ample contact with Li2 O proliferate the reversible Sn → Li x Sn → Sn → SnO2 /SnO2-x cycle during charging/discharging. SnO2-x electrode has a reversible capacity of 1340 mAh g(-1) and retains 590 mAh g(-1) after 100 cycles. The addition of highly conductive, well-dispersed reduced graphene oxide further stabilizes and improves its performance, allowing 950 mAh g(-1) remaining after 100 cycles at 0.2 A g(-1) with 700 mAh g(-1) at 2.0 A g(-1) . Conductivity-directed microstructure development may offer a new approach to form advanced electrodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fabrication of copper-ceria hybrid composite electrode for electrocatalytic oxidation of methanol

    Institute of Scientific and Technical Information of China (English)

    LI Jing; LI Lijun; YU Yuting; GAO Yanfang; LIU Jinrong

    2013-01-01

    Copper-ceria hybrid composite electrode prepared by electrochemical co-deposition was examined for their redox process and electrocatalytic activities towards the oxidation of methanol.The structure and morphology of electrodes were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM),respectively.XRD pattern of the copper-ceria hybrid composite electrode exhibited some diffraction peaks of CeO2 and SEM micrograph showed that it was composed of grains and flakes.The energy dispersive spectroscopy (EDS) spectrum of this area also showed the presence of cerium.Cyclic voltammetry,CO stripping and chronoamperometry were performed to characterize electrocatalytic property of the prepared samples.In cyclic voltammetry studies and chronoamperometry,copper-ceria hybrid composite electrode towards oxidation of methanol showed a significantly higher response and long term stability.CO stripping results indicated the facile removal of intermediate poisoning species CO in the presence of CeO2,which was helpful for CO and methanol electro-oxidation.

  6. Microwave activation of electrochemical processes: High temperature phenol and triclosan electro-oxidation at carbon and diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ghanem, Mohamed A.; Marken, Frank [Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Compton, Richard G.; Coles, Barry A. [Physical and Theoretical Chemistry Laboratory, Oxford University, Oxford OX1 3QZ (United Kingdom); Psillakis, Elefteria [Laboratory of Aquatic Chemistry, Department of Environmental Engineering, Technical University of Crete, Polytechnioupolis, 73100 Chania-Crete (Greece); Kulandainathan, M. Anbu [Central Electrochemical Research Institute, Karaikudi (India)

    2007-12-20

    The electrochemical oxidation of phenolic compounds in aqueous media is known to be affected by the formation of electro-polymerized organic layers which lead to partial or complete electrode blocking. In this study the effect of high intensity microwave radiation applied locally at the electrode surface is investigated for the oxidation of phenol and triclosan in alkaline solution at a 500 {mu}m diameter glassy carbon or at a 500 {mu}m x 500 {mu}m boron-doped diamond electrode. The temperature at the electrode surface and mass transport enhancement are determined by calibration with the Fe(CN){sub 6}{sup 3-/4-} redox system in aqueous 0.3 M NaOH and 0.2 NaCl (pH 12) solution. The calibration shows that strong thermal and mass transport effects occur at both glassy carbon and boron-doped diamond electrodes. The average electrode temperature reaches up to 390 K and mass transport enhancements of more than 20-fold are possible. For the phenol electro-oxidation at glassy carbon electrodes and at a concentration below 2 mM a multi-electron oxidation (ca. 4 electrons) occurs in the presence of microwave radiation. For the electro-oxidation of the more hydrophobic triclosan only the one-electron oxidation occurs. Although currents are enhanced in presence of microwave radiation, rapid blocking of the electrode surface in particular at high phenol concentrations still occurs. (author)

  7. Low Reflectivity and High Flexibility of Tin-Doped Indium Oxide Nanofiber Transparent Electrodes

    KAUST Repository

    Wu, Hui

    2011-01-12

    Tin-doped indium oxide (ITO) has found widespread use in solar cells, displays, and touch screens as a transparent electrode; however, two major problems with ITO remain: high reflectivity (up to 10%) and insufficient flexibility. Together, these problems severely limit the applications of ITO films for future optoelectronic devices. In this communication, we report the fabrication of ITO nanofiber network transparent electrodes. The nanofiber networks show optical reflectivity as low as 5% and high flexibility; the nanofiber networks can be bent to a radius of 2 mm with negligible changes in the sheet resistance. © 2010 American Chemical Society.

  8. Pt modified TiO{sub 2} nanotubes electrode: Preparation and electrocatalytic application for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Li; Jia, Jianbo; Wang, Yizhe; Zhang, Bailin; Dong, Shaojun [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-11-15

    Pt nanoparticles decorated TiO{sub 2} nanotubes (Pt/TiO{sub 2}NTs) modified electrode has been successfully synthesized by depositing Pt in TiO{sub 2}NTs, which were prepared by anodization of the Ti foil. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical methods were adopted to characterize their structures and properties. The Pt/TiO{sub 2}NTs electrode shows excellent electrocatalytic activity toward methanol oxidation reaction (MOR) in alkaline electrolyte without UV irradiation. (author)

  9. Electrocatalytic oxidation of methanol on carbon-nanotubes/graphite electrode modified with platinum and molybdenum oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    GAN Yong-ping; HUANG Hui; ZHANG Wen-kui

    2007-01-01

    Electrochemical codeposition and electrocatalytic properties of platinum and molybdenum oxide nanoparticles (Pt-MoOx) on carbon-nanotubes/graphite electrode for methanol oxidation were investigated. The micrograph and elemental composition of the resulting Pt-MoOx/CNTs/graphite electrode were characterized by scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS). The results show that the Pt-MoOx particles with the average size of about 50 nm are highly dispersed on the CNTs surface. The Pt-MoOx/CNTs/graphite electrode delivers excellent electrocatalytic properties for methanol oxidation. The highest mass activity(Am) reaches 264.8 A/g at the loading mass of 159.3 (g/cm2. This may be attributed to the small particle size and high dispersion of Pt-MoOx catalysts deposited on the CNTs surface. The kinetic analysis from electrochemical impedance spectroscopy(EIS) reveals that the existed MoOx phase can improve the chemisorptive and catalytic properties for methanol oxidation.

  10. 光电催化氧化甲醇电极%Electrode for Photo-electro-catalytic Oxidation of Methanol

    Institute of Scientific and Technical Information of China (English)

    赵倩; 贾振斌; 曹江林; 蒋殿录; 魏雨

    2001-01-01

    The photo-electro-catalytic oxidation of methanol in acid solution on Pt-Ru modified and unmodified titanium dioxide film electrodes has been studied. The photo-catalysis current of the OTE/TiO2 electrode and photo-electro-catalysis current of the OTE/TiO2/Pt-Ru electrode both were three order of magnitude larger than that created by the common electrical oxidation. In addition, the effect of Pt-Ru on the current is described. The electrode sensitized by RuL2(NCS)2 showed a broader photoresponse spectral region.

  11. Optimized spherical manganese oxide-ferroferric oxide-tin oxide ternary composites as advanced electrode materials for supercapacitors.

    Science.gov (United States)

    Zhu, Jian; Tang, Shaochun; Vongehr, Sascha; Xie, Hao; Meng, Xiangkang

    2015-09-18

    Inexpensive MnO2 is a promising material for supercapacitors (SCs), but its application is limited by poor electrical conductivity and low specific surface area. We design and fabricate hierarchical MnO2-based ternary composite nanostructures showing superior electrochemical performance via doping with electrochemically active Fe3O4 in the interior and electrically conductive SnO2 nanoparticles in the surface layer. Optimization composition results in a MnO2-Fe3O4-SnO2 composite electrode material with 5.9 wt.% Fe3O4 and 5.3 wt.% SnO2, leading to a high specific areal capacitance of 1.12 F cm(-2) at a scan rate of 5 mV s(-1). This is two to three times the values for MnO2-based binary nanostructures at the same scan rate. The low amount of SnO2 almost doubles the capacitance of porous MnO2-Fe3O4 (before SnO2 addition), which is attributed to an improved conductivity and remaining porosity. In addition, the optimal ternary composite has a good rate capability and an excellent cycling performance with stable capacitance retention of ~90% after 5000 charge/discharge cycles at 7.5 mA cm(-2). All-solid-state SCs are assembled with such electrodes using polyvinyl alcohol/Na2SO4 electrolyte. An integrated device made by connecting two identical SCs in series can power a light-emitting diode indicator for more than 10 min.

  12. Graphene Oxide Involved Air-Controlled Electrospray for Uniform, Fast, Instantly Dry, and Binder-Free Electrode Fabrication.

    Science.gov (United States)

    Fei, Ling; Yoo, Sang Ha; Villamayor, Rachel Ann R; Williams, Brian P; Gong, Seon Young; Park, Sunchan; Shin, Kyusoon; Joo, Yong Lak

    2017-03-22

    We report a facile air-controlled electrospray method to directly deposit binder-free active materials/graphene oxide (GO) onto current collectors. This method is inspired from an electrospinning process, and possesses all the advantages that electrospinning has such as low cost, easy scaling up, and simultaneous solvent evaporation during the spraying process. Moreover, the spray slurry is only a simple mixture of active materials and GO suspension in water, no binder polymer, organic solvent, and conductive carbon required. In our research, high-capacity Si nanoparticles (Si NP, 70-100 nm) and SiO microparticles (SiO MP, 3-10 μm) were selected to demonstrate the capability of this method to accommodate particles with different sizes. Their mixture with GO was sprayed onto a collector and then thermally annealed in an inert gas to obtain Si NP or SiO MP/reduced graphene oxide (RGO) binder-free electrodes. We are also able to directly deposit fairly large electrode sheets (e.g., 12 × 21 in.) upon the application requirement. To the best of our knowledge, this is the simplest approach to produce Si-related materials/RGO layered structures directly on current collector with controllable area and loading. Si and SiO MP/RGO are evaluated in both half and full lithium cells, showing good electrochemical performance. Prelithiation is also studied and gives a high first cycle Coulombic efficiency. In addition to Si-related materials, other materials with different shapes and sizes (e.g., MoO3 nanobelts, Sn/carbon nanofibers, and commercial sulfur particles) can also be sprayed. Beyond the preparation of battery electrodes, this approach can also be applied for other types of electrode preparation such as that of a supercapacitor, fuel cell, and solar cell.

  13. Fabrication of Oxidation-Resistant Metal Wire Network-Based Transparent Electrodes by a Spray-Roll Coating Process.

    Science.gov (United States)

    Kiruthika, S; Gupta, Ritu; Anand, Aman; Kumar, Ankush; Kulkarni, G U

    2015-12-16

    Roll and spray coating methods have been employed for the fabrication of highly oxidation resistant transparent and conducting electrodes (TCEs) by a simple solution process using crackle lithography technique. We have spray-coated a crackle paint-based precursor to produce highly interconnected crackle network on PET roll mounted on a roll coater with web speed of 0.6 m/min. Ag TCE with a transmittance of 78% and sheet resistance of ∼20 Ω/□ was derived by spraying Ag precursor ink over the crackle template followed by lift-off and annealing under ambient conditions. The Ag wire mesh was stable toward bending and sonication tests but prone to oxidation in air. When electrolessly coated with Pd, its robustness toward harsh oxidation conditions was enhanced. A low-cost transparent electrode has also been realized by using only small amounts of Ag as seed layer and growing Cu wire mesh by electroless method. Thus, made Ag/Cu meshes are found to be highly stable for more than a year even under ambient atmosphere.

  14. Highly sensitive contactless conductivity microchips based on concentric electrodes for flow analysis.

    Science.gov (United States)

    Lima, Renato S; Piazzetta, Maria H O; Gobbi, Angelo L; Segato, Thiago P; Cabral, Murilo F; Machado, Sergio A S; Carrilho, Emanuel

    2013-12-18

    In this communication, we describe for the first time the integration of concentric electrodes (wrapping around the microchannel) in microchips. The use of such electrodes has been shown to be effective towards improvement of the sensitivity and detectability in pressure-driven flow platforms incorporating C(4)D.

  15. Thermal conductivity, viscosity, and electrical conductivity of iron oxide with a cloud fractal structure

    Science.gov (United States)

    Jamilpanah, Pouya; Pahlavanzadeh, Hassan; Kheradmand, Amanj

    2016-09-01

    In the present study, nanoscale iron oxide was synthesized using a hydrothermal method; XRD analysis revealed that all the produced crystals are iron oxide. FESEM microscopic imaging showed that particles are on the scale of nano and their morphology is cloud fractal. To study the laboratory properties of thermal conductivity, viscosity, and electrical conductivity of the nanoparticles, they were dispersed in ethylene glycol-based fluid and the nanofluid was in a two-step synthesis during this process. The experiments were carried out with a weight fraction between 0 and 2 % at temperatures between 25 and 45 °C. According to the results of the experiments, increasing the density of nanoparticles in the fluid increases thermal conductivity, as it was predicted in all theoretical models. On the other hand, nano viscosity increases as the weight fraction increases while it decreases as temperature goes up. Electrical conductivity also increases with raising the temperature and weight fraction. Theoretical models were studied to predict Thermal conductivity, viscosity, and electrical conductivity of the nanofluid.

  16. Thermal conductivity, viscosity, and electrical conductivity of iron oxide with a cloud fractal structure

    Science.gov (United States)

    Jamilpanah, Pouya; Pahlavanzadeh, Hassan; Kheradmand, Amanj

    2017-04-01

    In the present study, nanoscale iron oxide was synthesized using a hydrothermal method; XRD analysis revealed that all the produced crystals are iron oxide. FESEM microscopic imaging showed that particles are on the scale of nano and their morphology is cloud fractal. To study the laboratory properties of thermal conductivity, viscosity, and electrical conductivity of the nanoparticles, they were dispersed in ethylene glycol-based fluid and the nanofluid was in a two-step synthesis during this process. The experiments were carried out with a weight fraction between 0 and 2 % at temperatures between 25 and 45 °C. According to the results of the experiments, increasing the density of nanoparticles in the fluid increases thermal conductivity, as it was predicted in all theoretical models. On the other hand, nano viscosity increases as the weight fraction increases while it decreases as temperature goes up. Electrical conductivity also increases with raising the temperature and weight fraction. Theoretical models were studied to predict Thermal conductivity, viscosity, and electrical conductivity of the nanofluid.

  17. Electrical Conductivity of Alkaline-reduced Graphene Oxide

    Institute of Scientific and Technical Information of China (English)

    WANG Huan; TIAN Hong-wei; WANG Xin-wei; QIAO Liang; WANG Shu-min; WANG Xing-li; ZHENG Wei-tao; LIU Yi-chun

    2011-01-01

    A green route using a very simple and straightforward ultrasonic process under alkaline conditions,rather than a general chemical reduction process using hydrazine,was utilized to obtain the hydrophilic reduced graphene oxide(RGO) sheets,via removing oxygen functional groups from graphene oxide(GO) and repairing the aromatic structure.It is found that the conductivity of the obtained RGO could be tuned by changing pH value in alkaline solution,and the current-voltage(Ⅰ-Ⅴ) curves of both GO and RGO are nonlinear and slightly asymmetric.Under the same applied voltage,the current of RGO is much larger than that of GO,indicating a pronounced increase in the electrical conductivity of RGO,compared to that of GO.

  18. Studying the Performance of Conductive Polymer Films as Textile Electrodes for Electrical Bioimpedance Measurements

    Science.gov (United States)

    Cunico, F. J.; Marquez, J. C.; Hilke, H.; Skrifvars, M.; Seoane, F.

    2013-04-01

    With the goal of finding novel biocompatible materials suitable to replace silver in the manufacturing of textile electrodes for medical applications of electrical bioimpedance spectroscopy, three different polymeric materials have been investigated. Films have been prepared from different polymeric materials and custom bracelets have been confectioned with them. Tetrapolar total right side electrical bioimpedance spectroscopy (EBIS) measurements have been performed with polymer and with standard gel electrodes. The performance of the polymer films was compared against the performance of the gel electrodes. The results indicated that only the polypropylene 1380 could produce EBIS measurements but remarkably tainted with high frequency artefacts. The influence of the electrode mismatch, stray capacitances and large electrode polarization impedance are unclear and they need to be clarified with further studies. If sensorized garments could be made with such biocompatible polymeric materials the burden of considering textrodes class III devices could be avoided.

  19. Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach

    Science.gov (United States)

    Kou, Pengfei; Yang, Liu; Chang, Cheng; He, Sailing

    2017-01-01

    Silver nanowire (Ag NW) networks have attracted wide attention as transparent electrodes for emerging flexible optoelectronics. However, the sheet resistance is greatly limited by large wire-to-wire contact resistances. Here, we propose a simple sunlight illumination approach to remarkably improve their electrical conductivity without any significant degradation of the light transmittance. Because the power density is extremely low (0.1 W/cm2, 1-Sun), only slight welding between Ag NWs has been observed. Despite this, a sheet resistance of <20 Ω/sq and transmittance of ~87% at wavelength of 550 nm as well as excellent mechanical flexibility have still been achieved for Ag NW networks after sunlight illumination for 1 hour or longer, which are significant upgrades over those of ITO. Slight plasmonic welding together with the associated self-limiting effect has been investigated by numerical simulations and further verified experimentally through varied solar concentrations. Due to the reduced resistance, high-performance transparent film heaters as well as efficient defrosters have been demonstrated, which are superior to the previously-reported Ag NW based film heaters. Since the sunlight is environmentally friendly and easily available, sophisticated or expensive facilities are not necessary. Our findings are particularly meaningful and show enormous potential for outdoor applications. PMID:28169343

  20. Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    Kamlesh Patel

    2015-07-01

    Full Text Available In this paper, the structure of a graphene/silicon heterojunction solar cell has been studied under simulated conditions. The parameters of the cell’s layers have been optimized by using AFORS-HET software. Instead of reported 2D nature, we considered graphene as 3D in nature. To ensure the formation of Schottky junction, electrical contacts were made along c-axis to collect the minority carriers, which generate upon illumination. By optimizing the various parameters of n-type multilayer graphene, we achieved the best-simulated cell with the power conversion efficiency of 7.62 % at room temperature. Up to 40 layers of n-type graphene, the efficiency found to be constant and enhanced only to 7.623 %. After further optimization of the parameters of p-crystalline silicon wafer, a maximum efficiency of 11.23 % has been achieved. Temperature dependence on the cell performance has also been studied and an efficiency of 11.38 % has been achieved at 270 K. Finally, we have demonstrated that n-type multilayer graphene can act as an excellent transparent conducting electrode.

  1. Hybrid Tunnel Junction-Graphene Transparent Conductive Electrodes for Nitride Lateral Light Emitting Diodes.

    Science.gov (United States)

    Wang, Liancheng; Cheng, Yan; Liu, Zhiqiang; Yi, Xiaoyan; Zhu, Hongwei; Wang, Guohong

    2016-01-20

    Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial advanced physical models of semiconductor devices (APSYS), we found that low tunnel resistance can be achieved in the n(+)-GaN/u-InGaN/p(+)-GaN TJ, which has a lower tunneling barrier and an enhanced electric field due to the polarization effect. Graphene TCEs and hybrid graphene-TJ TCEs are then modeled. The designed hybrid TJ-graphene TCEs show sufficient current diffusion length (Ls), low introduced series resistance, and high transmittance. The assembled TJ LED with the triple-layer graphene (TLG) TCEs show comparable optoelectrical performance (3.99 V@20 mA, LOP = 10.8 mW) with the reference LED with ITO TCEs (3.36 V@20 mA, LOP = 12.6 mW). The experimental results further prove that the TJ-graphene structure can be successfully incorporated as TCEs for lateral nitride LEDs.

  2. Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells

    Science.gov (United States)

    Patel, Kamlesh; Tyagi, Pawan K.

    2015-07-01

    In this paper, the structure of a graphene/silicon heterojunction solar cell has been studied under simulated conditions. The parameters of the cell's layers have been optimized by using AFORS-HET software. Instead of reported 2D nature, we considered graphene as 3D in nature. To ensure the formation of Schottky junction, electrical contacts were made along c-axis to collect the minority carriers, which generate upon illumination. By optimizing the various parameters of n-type multilayer graphene, we achieved the best-simulated cell with the power conversion efficiency of 7.62 % at room temperature. Up to 40 layers of n-type graphene, the efficiency found to be constant and enhanced only to 7.623 %. After further optimization of the parameters of p-crystalline silicon wafer, a maximum efficiency of 11.23 % has been achieved. Temperature dependence on the cell performance has also been studied and an efficiency of 11.38 % has been achieved at 270 K. Finally, we have demonstrated that n-type multilayer graphene can act as an excellent transparent conducting electrode.

  3. Method for producing highly conformal transparent conducting oxides

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Mane, Anil U.

    2016-07-26

    A method for forming a transparent conducting oxide product layer. The method includes use of precursors, such as tetrakis-(dimethylamino) tin and trimethyl indium, and selected use of dopants, such as SnO and ZnO for obtaining desired optical, electrical and structural properties for a highly conformal layer coating on a substrate. Ozone was also input as a reactive gas which enabled rapid production of the desired product layer.

  4. Accumulation-layer surface plasmons in transparent conductive oxides.

    Science.gov (United States)

    Fardad, Shima; Alexander Ramos, E; Salandrino, Alessandro

    2017-05-15

    A rigorous analytical study of the eigenmodes supported by a charge accumulation layer within a transparent conductive oxide (TCO) is presented. The new class of surface plasmons termed accumulation-layer surface plasmons (ASPs) is introduced. Near resonance ASPs are tightly bound and display a vast effective index tunability that could be of great practical interest. The suppression of ASPs in the presence of epsilon-near zero regions is discussed.

  5. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Anil V. Virkar

    2003-05-23

    This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid

  6. Transparent conducting oxides: a δ-doped superlattice approach.

    Science.gov (United States)

    Cooper, Valentino R; Seo, Sung S Ambrose; Lee, Suyoun; Kim, Jun Sung; Choi, Woo Seok; Okamoto, Satoshi; Lee, Ho Nyung

    2014-08-11

    Metallic states appearing at interfaces between dissimilar insulating oxides exhibit intriguing phenomena such as superconductivity and magnetism. Despite tremendous progress in understanding their origins, very little is known about how to control the conduction pathways and the distribution of charge carriers. Using optical spectroscopic measurements and density-functional theory (DFT) simulations, we examine the effect of SrTiO3 (STO) spacer layer thickness on the optical transparency and carrier distribution in La δ-doped STO superlattices. We experimentally observe that these metallic superlattices remain highly transparent to visible light; a direct consequence of the appropriately large gap between the O 2p and Ti 3d states. In superlattices with relatively thin STO layers, we predict that three-dimensional conduction would occur due to appreciable overlap of quantum mechanical wavefunctions between neighboring δ-doped layers. These results highlight the potential for using oxide heterostructures in optoelectronic devices by providing a unique route for creating novel transparent conducting oxides.

  7. A sensor for acetaminophen in a blood medium using a Cu(II)-conducting polymer complex modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Boopathi, Mannan; Won, Mi-Sook; Shim, Yoon-Bo

    2004-06-11

    Complexation of Cu ions in a terthiophene carboxylic acid (TTCA) polymer film resulted an enhanced anodic current for acetaminophen oxidation when compared to polymer coated and bare glassy carbon electrodes in human blood and buffer media. Scanning electron microscopy (SEM) and ESCA experiments indicate the involvement of copper in the electrocatalytic oxidation of acetaminophen. No interference was observed from other biologically important and phenolic compounds used with this modified electrode. Especially, the non-interference from N-acetylcysteine, an antidote for the treatment of acetaminophen poisoning, reveals the proposed method's superiority in medicinal applications. In addition, the present modified electrode avoids surface fouling at higher concentrations of acetaminophen. The calibration range obtained with CV was based between 2.0x10{sup -5} and 5.0x10{sup -3} M [r{sup 2}=0.997 (n=5, R.S.D.=2.5%); DL=5.0x10{sup -6} M (S/N=3)]. The analytical utility of the modified electrode was achieved by analyzing the content of acetaminophen in different drugs without pretreatment using CV and amperometric techniques.

  8. Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Simchi, Abdolreza; Fan, Zhiyong; Aashuri, Hossein

    2016-01-07

    We present a novel chemical procedure to prepare three-dimensional graphene networks (3DGNs) as a transparent conductive film to enhance the photovoltaic performance of PbS quantum-dot (QD) solar cells. It is shown that 3DGN electrodes enhance electron extraction, yielding a 30% improvement in performance compared with the conventional device.

  9. Development of conductive coated polyester film as RPC electrodes using screen printing

    Science.gov (United States)

    Kalmani, S. D.; Mondal, N. K.; Satyanarayana, B.; Verma, P.; Datar, V. M.

    2009-05-01

    Each of the three 16 kton ICAL detector modules at the India-based Neutrino Observatory (INO) will use RPCs as the active element, sandwiched between 6 cm thick soft iron plates, for measurements on atmospheric neutrinos. The electrodes of the RPC are float glass sheets having a volume resistivity of about 10 12-10 13 Ω cm (at room temperature) covered with carbon/graphite or a conductive paint with a surface resistivity of ˜800 kΩ/square to 1 MΩ/square to apply high voltage on the glass surface, so that this surface does not shield the discharge signal from the external pickup plates and is small compared to the resistivity of the glass to provide a uniform potential across the entire surface. We initially coated the surface with locally available graphite powder, mixed with lacquer and thinner, and were able to get a few hundred kΩ/square resistivity. However, we observed a drastic reduction in surface resistivity with time and it came unstuck from the glass. Subsequently a conductive paint developed by Kansai-Nerolac was used. This paint uses modified acrylic resin as binder, conductive black pigment and solvents, which include aromatic hydrocarbons and alcohols. At room temperature, the surface dries in 10 minutes, while complete drying takes ˜18 hours. The spraying is done at a pressure of 4 kg/cm 2 with the glass plate kept at a distance of 8-10 in. Using this paint, we are able to achieve the required resistance of ˜ few hundred kΩ/square. We still need to study the long term stability and best curing method. We need to automate the procedure to get a uniform coat and to coat a large number of glasses for the final detector. While robotic systems are available abroad costing about 5 000 000 rupees, we are exploring other alternatives. In particular, we are in the process of developing a polyester film, with a conductive coating on one side, which can be glued on to the glass. The coating was done using on a local commercial screen printing machine

  10. Electrocatalytic oxidation of some anti-inflammatory drugs on a nickel hydroxide-modified nickel electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hajjizadeh, M. [Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Haghgoo, S. [Center of Quality Control of Drug, Tehran (Iran, Islamic Republic of)

    2007-12-31

    The electrocatalytic oxidation of several anti-inflammatory drugs (mefenamic acid, diclofenac and indomethacin) was investigated on a nickel hydroxide-modified nickel (NHMN) electrode in alkaline solution. This oxidation process and its kinetics were studied using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of drugs, the anodic peak current of low-valence nickel species increases, followed by a decrease in the corresponding cathodic current. This pattern indicates that drugs were oxidized on the redox mediator immobilized on the electrode surface via an electrocatalytic mechanism. A mechanism based on the electrochemical generation of Ni(III) active sites and their subsequent consumption by drugs was also investigated. The corresponding rate law under the control of charge transfer was developed and kinetic parameters were derived. In this context, the charge-transfer resistance accessible both theoretically and through impedancemetry was used as a criterion. The rate constants of the catalytic oxidation of drugs and the electron-transfer coefficients are reported. A sensitive, simple and time-saving amperometric procedure was developed for the analysis of these drugs in bulk form and for the direct assay of tablets, using the NHMN electrode.

  11. Temperature dependence studies on the electro-oxidation of aliphatic alcohols with modified platinum electrodes

    Indian Academy of Sciences (India)

    Panadda Katikawong; Tanakorn Ratana; Waret Veerasai

    2009-05-01

    Temperature dependence on the electro-oxidation of methanol, ethanol and 1-propanol in 0.5 M H2SO4 were investigated with Pt and PtRu electrodes. Tafel slope and apparent activation energy were evaluated from the cyclic voltammetric data in the low potential region (0.3-0.5 V vs SHE). The CV results provided Tafel slopes for alcohols in the range of 200-400 mV dec-1 which indicated a difference in the rate determining step. The decrease in Tafel slope was only observed in the case of methanol for the Ru-modified Pt electrode. This indicates that Ru improves the rate of determining step for methanol while hindering it for the other alcohols. The electrochemical impedance spectroscopy was also used to evaluate the electro-oxidation mechanism of alcohols on these electrodes. The simulated EIS results provided two important parameters: charge transfer resistance () and inductance (). The $R^{-1}_{ct}$ and -1 represent the rate of alcohol electro-oxidation and rate of desorption of intermediate species, respectively. These values increased with the increasing of temperature. The results from two techniques were well agreed that the electro-oxidation of methanol was improved by raising the temperature and ruthenium modification.

  12. Toward Plastic Smart Windows: Optimization of Indium Tin Oxide Electrodes for the Synthesis of Electrochromic Devices on Polycarbonate Substrates.

    Science.gov (United States)

    Laurenti, Marco; Bianco, Stefano; Castellino, Micaela; Garino, Nadia; Virga, Alessandro; Pirri, Candido F; Mandracci, Pietro

    2016-03-01

    Plastic smart windows are becoming one of the key elements in view of the fabrication of inexpensive, lightweight electrochromic (EC) devices to be integrated in the new generation of high-energy-efficiency buildings and automotive applications. However, fabricating electrochromic devices on polymer substrates requires a reduction of process temperature, so in this work we focus on the development of a completely room-temperature deposition process aimed at the preparation of ITO-coated polycarbonate (PC) structures acting as transparent and conductive plastic supports. Without providing any substrate heating or surface activation pretreatments of the polymer, different deposition conditions are used for growing indium tin oxide (ITO) thin films by the radiofrequency magnetron sputtering technique. According to the characterization results, the set of optimal deposition parameters is selected to deposit ITO electrodes having high optical transmittance in the visible range (∼90%) together with low sheet resistance (∼8 ohm/sq). The as-prepared ITO/PC structures are then successfully tested as conductive supports for the fabrication of plastic smart windows. To this purpose, tungsten trioxide thin films are deposited by the reactive sputtering technique on the ITO/PC structures, and the resulting single electrode EC devices are characterized by chronoamperometric experiments and cyclic voltammetry. The fast switching response between colored and bleached states, together with the stability and reversibility of their electrochromic behavior after several cycling tests, are considered to be representative of the high quality of the EC film but especially of the ITO electrode. Indeed, even if no adhesion promoters, additional surface activation pretreatments, or substrate heating were used to promote the mechanical adhesion among the electrode and the PC surface, the observed EC response confirmed that the developed materials can be successfully employed for the

  13. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, Mariappan Parans; Liu, Hansan; Brown, Gilbert M.; Sun, Xiao-Guang; Bi, Zhonghe

    2016-12-06

    Compositions and methods of making are provided for mesoporous metal oxide microspheres electrodes. The mesoporous metal oxide microsphere compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g. The methods of making comprise forming composite powders. The methods may also comprise refluxing the composite powders in a basic solution to form an etched powder, washing the etched powder with an acid to form a hydrated metal oxide, and heat-treating the hydrated metal oxide to form mesoporous metal oxide microspheres.

  14. The Catalysis of NAD+ on Methanol Anode Oxidation Electrode for Direct Methanol Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; PAN Mu; YUAN Run-zhang

    2004-01-01

    A tentative idea of developing a liquid-catalytic system on methanol anode oxidation was proposed by analyzing the characteristics of methanol anode oxidation in direct methanol fuel cell. The kinetics of methanol oxidation at a glassy carbon electrode in the presence of nicotinamide adenine dinucleotide (NAD+) was investigated. It is found that the current density of methanol oxidation increases greatly and the electrochemical reaction impedance reduces obviously in the presence of NAD+ compared with those in the absence of NAD+. The catalytic activity of NAD+ is sensitive to temperature. When the temperature preponderates over 45℃, NAD+ is out of function of catalysis for methanol oxidation, which is probably due to the denaturation of NAD+ at a relatively high temperature.

  15. Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Lybye, D.; Bonanos, N.

    2004-01-01

    for the oxide ion movement, (2) free lattice volume, and (3) average metal-oxide bond energy have been proposed as predictors of high oxide ion conductivity. We discuss how these parameters all depend on ionic radii, and therefore, some of these may be redundant. Furthermore, we explore the interrelations among...... such parameters for fluorite and perovskite oxides by considering their sensitivities to the individual ionic radii. Based on experimental data available in the literature, it is argued that lattice distortion (lattice stress and deviation from cubic symmetry) due to ion radii mismatch determines the ionic...

  16. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shumin; Zheng, Yudong, E-mail: zhengyudong@mater.ustb.edu.cn; Qiao, Kun [University of Science and Technology Beijing, School of Material Science and Engineering (China); Su, Lei [University of Science and Technology Beijing, School of Chemistry and Biological Engineering (China); Sanghera, Amendeep; Song, Wenhui [University College London, UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science (United Kingdom); Yue, Lina; Sun, Yi [University of Science and Technology Beijing, School of Material Science and Engineering (China)

    2015-12-15

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  17. Fabrication of nano-engineered transparent conducting oxides by pulsed laser deposition.

    Science.gov (United States)

    Gondoni, Paolo; Ghidelli, Matteo; Di Fonzo, Fabio; Li Bassi, Andrea; Casari, Carlo S

    2013-02-27

    Nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas allows the deposition of metal oxides with tunable morphology, structure, density and stoichiometry by a proper control of the plasma plume expansion dynamics. Such versatility can be exploited to produce nanostructured films from compact and dense to nanoporous characterized by a hierarchical assembly of nano-sized clusters. In particular we describe the detailed methodology to fabricate two types of Al-doped ZnO (AZO) films as transparent electrodes in photovoltaic devices: 1) at low O₂ pressure, compact films with electrical conductivity and optical transparency close to the state of the art transparent conducting oxides (TCO) can be deposited at room temperature, to be compatible with thermally sensitive materials such as polymers used in organic photovoltaics (OPVs); 2) highly light scattering hierarchical structures resembling a forest of nano-trees are produced at higher pressures. Such structures show high Haze factor (>80%) and may be exploited to enhance the light trapping capability. The method here described for AZO films can be applied to other metal oxides relevant for technological applications such as TiO₂, Al₂O₃, WO₃ and Ag₄O₄.

  18. On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode.

    Science.gov (United States)

    Xu, Jie; Yuan, Daofu; Yang, Fan; Mei, Dong; Zhang, Zunbiao; Chen, Yan-Xia

    2013-03-28

    In order determine whether formate is a reaction intermediate of the direct pathway for formic acid oxidation at a Pt electrode, formic acid (HCOOH) oxidation at a Pt(111) electrode has been studied by normal and fast scan voltammetry in 0.1 M HClO4 solutions with different HCOOH concentrations. The relationship between the HCOOH oxidation current density (j(ox)) and formate coverage (θ(formate)) is quantitatively analyzed. The kinetic simulation reveals that the previously proposed formate pathway, with decomposition of the bridge-bonded formate (HCOO(B)) as a rate determining step (rds), cannot be the main pathway responsible for the majority of the current for HCOOH oxidation. Instead, a kinetic model based on a mechanism with formic acid adsorption [structure: see text], along with simultaneous C-H bond activation as the rds for the direct pathway, explains the measured data well. It was found for the relatively slow rate of formic acid oxidation, that adsorption-desorption of the formate is faster, which competes for the surface sites for formic acid oxidation.

  19. Kinetic study of CO oxidation on step decorated Pt(1 1 1) vicinal single crystal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Qingsong [Institute of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante (Spain); State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Feliu, Juan M., E-mail: juan.feliu@ua.es [Institute of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante (Spain); Berna, Antonio; Climent, Victor [Institute of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante (Spain); Sun Shigang, E-mail: sgsun@xmu.edu.cn [State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2011-07-01

    Highlights: > Chronoamperometry has been used to study CO oxidation on Pt stepped surfaces. > Adatoms step decoration allows determination of the role of steps on CO oxidation. > Rate constant decreases after step decoration with adatoms. > Tafel slopes are around 60-90 mV/dec, suggesting a Langmuir-Hinshelwood mechanism. - Abstract: In this work, surface modification at atomic level was applied to study the reactivity of step sites on platinum single crystal surfaces. Stepped platinum single crystal electrodes with (1 1 1) terraces separated by monoatomic step sites with different symmetry were decorated with irreversibly adsorbed adatoms, without blocking the terrace sites, and characterized in 0.1 M HClO{sub 4} solution. The kinetics of CO oxidation on the different platinum single crystal planes as well as on the step decorated surfaces has been studied using chronoamperometry. The apparent rate constants, which were determined by fitting the experimental data to a mean-field model, decrease after the steps of platinum single crystal electrodes have been blocked by the adatoms. This behavior indicates that steps are active sites for CO oxidation. Tafel slopes measured from the potential dependence of the apparent rate constants of CO oxidation were similar in all cases. This result demonstrates that the electrochemical oxidation of the CO adlayer on all the surfaces follows the same Langmuir-Hinshelwood model, irrespectively of step modification.

  20. Nitrite Oxidation with Copper-Cobalt Nanoparticles on Carbon Nanotubes Doped Conducting Polymer PEDOT Composite.

    Science.gov (United States)

    Wang, Junjie; Xu, Guiyun; Wang, Wei; Xu, Shenghao; Luo, Xiliang

    2015-09-01

    Copper-cobalt bimetal nanoparticles (Cu-Co) have been electrochemically prepared on glassy carbon electrodes (GCEs), which were electrodeposited with conducting polymer nanocomposites of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes (CNTs). Owing to their good conductivity, high mechanical strength, and large surface area, the PEDOT/CNTs composites offered excellent substrates for the electrochemical deposition of Cu-Co nanoparticles. As a result of their nanostructure and the synergic effect between Cu and Co, the Cu-Co/PEDOT/CNTs composites exhibited significantly enhanced catalytic activity towards the electrochemical oxidation of nitrite. Under optimized conditions, the nanocomposite-modified electrodes had a fast response time within 2 s and a linear range from 0.5 to 430 μm for the detection of nitrite, with a detection limit of 60 nm. Moreover, the Cu-Co/PEDOT/CNTs composites were highly stable, and the prepared nitrite sensors could retain more than 96 % of their initial response after 30 days.

  1. Application of graphene oxide/lanthanum-modified carbon paste electrode for the selective determination of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Fengying; Feng, Chenqi; Fu, Ning; Wu, Huihui; Jiang, Jibo, E-mail: jibojiang0506@163.com; Han, Sheng, E-mail: hansheng654321@sina.com

    2015-12-01

    Highlights: • The effective surface area of the modified CPE has been expanded after self-assembly. • The GO–La composite exhibited excellent electrocatalytic activity toward DA. • The GO–La/CPE presented high selectivity, sensitivity, excellent stability and repeatability. - Abstract: A home-made carbon paste electrode (CPE) was reformed by graphene oxide (GO)/lanthanum (La) complexes, and a modified electrode, called GO–La/CPE, was fabricated for the selective determination of dopamine (DA) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several factors affecting the electrocatalytic performance of the modified sensor were investigated. Owning to the combination of GO and La ions, the GO–La/CPE sensor exhibited large surface area, well selectivity, good repeatability and stability in the oxidation reaction of DA. At optimal conditions, the response of the GO–La/CPE electrode for determining DA was linear in the region of 0.01–0.1 μM and 0.1–400.0 μM. The limit of detection was down to 0.32 nM (S/N = 3). In addition, this modified electrode was successfully applied to the detection of DA in real urine and serum samples by using standard adding method, showing its promising application in the electroanalysis of real samples.

  2. Electrocatalytic enhancement of methanol oxidation by adding CeO2 nanoparticle on porous electrode

    Institute of Scientific and Technical Information of China (English)

    FENG Xiaojuan; SHI Yanlong; ZHOU Huijuan

    2012-01-01

    The polyaniline/polysulfone (PAN/PSF) composite films were prepared by electropolymerization,and then CeO2-Pt particles were codeposited into this composite film to obtain the CeO2-Pt-modified polyaniline/polysulfone (CeO2-Pt/PAN/PSF) electrodes.Their morphology and chemical component were characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS),respectively.The results showed that the composite film had bi-layer structure with asymmetrical pores,and platinum and cerium oxide particles were homogeneously dispersed in the modified film electrodes.The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques were applied to investigate the electrocatalytic activity of the Pt-CeO2/PAN/PSF electrodes.It was indicated that appropriate amount of CeO2 could enhance the catalytic activity of Pt for methanol electro-oxidation.Chronoamperometry (i-t)measurements revealed that the Pt-CeO2/PAN/PSF electrode was relatively endurable for intermediate production.In addition,different mixing amounts of Pt and CeO2 nanoparticles were also investigated in detail.

  3. Carbon and Nickel Oxide/Carbon Composites as Electrodes for Supercapacitors

    Institute of Scientific and Technical Information of China (English)

    Liutauras Marcinauskas; Zydrunas Kavaliauskas; Vitas Valincius

    2012-01-01

    The carbon and nickel oxide/carbon composite electrodes were prepared by plasma jet and magnetron sput-tering techniques. The investigations were performed to evaluate the influence of the Ar/C2H2 ratio on the specific capacitance values of carbon and NiO/carbon electrodes. The obtained electrodes were investigated by scanning electron microscopy, Raman scattering spectroscopy (RS), and X-ray diffraction techniques. The surface of the carbon electrodes became less porous and more homogenous with increasing Ar/C2H2. The RS results indicated that the fraction of the sp2 carbon sites increased with increasing Ar/C2H2 ratio. The increase of the Ar/C2H2 ratio increased the capacitance values from 0.73 up to 3.8 F/g. Meanwhile, after the deposition of the nickel oxide on the carbon, the capacitance increased ten and more times and varied in the range of 7.6-86.1 F/g.

  4. Electrodeposition of Pd catalyst layer on graphite rod electrodes for direct formic acid oxidation

    Science.gov (United States)

    Zhang, Biao; Ye, Dingding; Li, Jun; Zhu, Xun; Liao, Qiang

    2012-09-01

    An electrodeposition method for preparing the Pd catalyst layer on graphite rod electrodes for direct formic acid oxidation is proposed in this study. This method consists of a repeated procedure involving the electrodeposition of Pd catalyst onto the graphite rods, followed by Nafion coating (RENC). The structural features and electrocatalytic properties of the electrode were extensively investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results show that coating the electrode with Nafion during each electrodepositing step plays a crucial role on the morphology, particle size and crystallinity of the electrocatalysts. Although the commercial Pd catalyst has the smaller particle size and more uniform distribution than that prepared by RENC, the RENC electrode exhibits almost the same electrochemical surface area, a better performance and durability toward formic acid electro-oxidation. These results can be attributed to the improved catalyst utilization resulting from the multi-layer structure and the predominance of the highly active Pd (111) crystallite phase on the surface of the catalyst layer.

  5. Zn2+-Doped Polyaniline/Graphene Oxide as Electrode Material for Electrochemical Supercapacitors

    Science.gov (United States)

    Xu, Hui; Tang, Jing; Chen, Yong; Liu, Jian; Pu, Jinjuan; Li, Qi

    2017-10-01

    Electrodes based on Zn2+-doped polyaniline/graphene oxide (Zn2+/PANI/GO) were synthesized on stainless steel mesh substrates in H2SO4 solution via electrochemical codeposition. Different concentrations of graphene oxide (GO) were incorporated into the films to improve the electrochemical performance of the electrodes. Electrochemical properties of the films were tested by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy, in a three-electrode system. The maximum specific capacitance of the Zn2+/PANI/GO film with a GO concentration of 15 mg L-1 was found to be 1266 F g-1 at a scan rate of 3 mV s-1. This value was higher than that of a Zn2+ doped polyaniline (Zn2+/PANI) film (814 F g-1). The Zn2+/PANI/GO film also showed good cycling stability, retaining over 86% of its initial capacitance after 1000 cycles. These results indicate that the Zn2+/PANI/GO composites can be applied as high performance supercapacitor electrodes.

  6. Penetrating microelectrode arrays with low-impedance sputtered iridium oxide electrode coatings.

    Science.gov (United States)

    Cogan, Stuart F; Ehrlich, Julia; Plante, Timothy D; Van Wagenen, Rick

    2009-01-01

    Sputtered iridium oxide (SIROF) is a candidate low-impedance coating for neural stimulation and recording electrodes. SIROF on planar substrates has exhibited a high charge-injection capacity and impedance suitable for indwelling cortical microelectrode applications. In the present work, the properties of SIROF electrode coatings deposited onto multi-shank penetrating arrays intended for intracortical and intraneural applications were examined. The charge-injection properties under constant current pulsing were evaluated for a range of pulsewidths and current densities using voltage transients to determine maximum potential excursions in an inorganic model of interstitial fluid at 37 degrees C. The charge-injection capacity of the SIROFs was significantly improved by the use of positive potential biasing in the interpulse period, but even without bias, the SIROFs reversibly inject higher charge than other iridium oxides or platinum. Typical deliverable charge levels of 25 to 160 nC/phase were obtained with 2000 mum(2) electrodes depending on pulsewidth and interpulse bias. Similar sized platinum electrodes could inject 3 to 8 nC/phase.

  7. Performance Assessment of Single Electrode-Supported Solid Oxide Cells Operating in the Steam Electrolysis Mode

    Energy Technology Data Exchange (ETDEWEB)

    X. Zhang; J. E. O' Brien; R. C. O' Brien; N. Petigny

    2011-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.

  8. Electrochemical oxidation of methane at metal and oxide electrodes. Annual report, December 1, 1987-December 1, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Summers, D.P.; Pound, B.G.; Frese, K.W.

    1989-03-01

    Electrochemical oxidation of methane at noble metal electrodes was investigated. Auger electron spectra showed no buildup of carbon on Rh electrodes after extended electroysis in 140C H/sub 3/PO/sub 4/. The surface oxidation of Rh in 140C H/sub 3/PO/sub 4/ was studied. The open-circuit potential decay method was applied to the reaction between surface oxygen species on Pt and Rh and CH/sub 4/, C/sub 2/H/sub 6/, and C/sub 3/H/sub 8/, and H/sub 2/. Methane was the least reactive hydrocarbon. The peak oxidation currents at 1 atm gas pressure were: 480 micro A cm/sq, 110 micro A cm/sq, 3.5 micro A cm/sq, for propane, ethane, and methane, respectively. Methane oxidation to CO/sub 2/ at Rh surfaces onsets at 0.3 V vs. SCE, is maximal at 0.7 to 0.8 V, and then declines at higher anodic potentials. The rising portion of the rate characteristic precedes detectible oxygen deposition, but the drop in oxidation is correlated with blocking of sites with adsorbed oxygen species.

  9. Preparation, characterization and electrocatalytic behavior of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate hybrid film-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chu, H.-W.; Thangamuthu, R. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, S.-M. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)], E-mail: smchen78@ms15.hinet.net

    2008-02-15

    Polynuclear mixed-valent hybrid films of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate (ZnO/ZnHCF-RuOHCF) have been deposited on electrode surfaces from H{sub 2}SO{sub 4} solution containing Zn(NO{sub 3}){sub 2}, RuCl{sub 3} and K{sub 3}[Fe(CN){sub 6}] by potentiodynamic cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. Surface morphology of hybrid film was investigated using scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) data confirm existence of zinc oxide and ruthenium oxide hexacyanoferrate (RuOHCF) in the hybrid film. The effect of type of monovalent cations on the redox behavior of hybrid film was investigated. In pure supporting electrolyte, electrochemical responses of Ru{sup II/III} redox transition occurring at negative potential region resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF-RuOHCF hybrid film was investigated towards oxidation of epinephrine, dopamine and L-cysteine, and reduction of S{sub 2}O{sub 8}{sup 2-} and SO{sub 5}{sup 2-} as well as IO{sub 3}{sup -} using cyclic voltammetry and rotating ring disc electrode (RRDE) techniques.

  10. Synthesis and Defect Structure Analysis of Complex Oxides for Li-Ion Battery Electrodes

    Science.gov (United States)

    Hao, Xiaoguang

    Lithium-ion batteries have attracted increased attention for energy storage development due to the vast demand from portable electronics, (hybrid) electric vehicles and future power grids. The research in this dissertation is focused on the development of oxide electrodes for lithium-ion batteries with high power density and improved stability. One of the promising cathodes for lithium-ion batteries is lithium manganospinel (LiMn2O4). However, this compound suffers from manganese dissolution and a Jahn-Teller distortion due to Mn3+, especially in oxygen deficient LiMn2O4-delta. Hydrothermal based synthesis methods were developed to eliminate oxygen vacancies to enable high power in cathodes composed of nano-sized spinel particles. The relationship between oxygen defects and the capacity fading mechanism was demonstrated, and collapse of the mechanical structure was identified in defect-rich LiMn 2O4-delta. Next, the nickel substituted manganospinel, LiNi0.5Mn 1.5O4 shows unexpected high voltage side reactions. To overcome this drawback, a thin and chemically inert titanate was used as an artificial SEI (solid electrolyte interface) coating to prohibit transition-metal dissolution and parasitic side reactions, which led to a 200% improvement of the capacity retention at 55°C and negligible polarization losses. Finally, the spinel-structured lithium titanate (Li 4Ti5O12) is introduced as an anode material for lithium-ion batteries due to its higher operating potential and excellent structural stability compared to current graphite anodes. However, the poor electronic conductivity and low lithium diffusion coefficient hinder its wide application. Given these advantages, a facile, low-cost solution method is explored to synthesize nano-sized titanates. Rapid charge/ discharge was achieved up to rates of 100 C (36 second charge/ discharge) due to a shorter lithium mean-free path and better contact between the active material and conductive agents.

  11. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2014-12-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  12. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2015-07-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  13. Dye-sensitized solar cells using double-oxide electrodes: a brief review

    Science.gov (United States)

    Suzuki, Yoshikazu; Okamoto, Yuji; Ishii, Natsumi

    2015-04-01

    Dye-sensitized solar cells (DSC or DSSC) have been widely investigated because of their potentially high cost performance compared with Si-based solar cells and of their fascinating appearance. DSC with photoelectric conversion efficiency of >10 % (or even 12 %) have been reported, where porous TiO2 films are generally used as semi-conductor electrodes. Such porous TiO2 films usually have high specific surface area, and thus, they adsorb plenty of dye molecules, resulting in high photocurrent density. Recently, some double oxides have been examined as alternative photoanode materials, mainly in order to improve photovoltage. Here, studies on DSC using double-oxide electrodes, i.e., perovskite, spinel, ilmenite, wolframite, scheelite and pseudobrookite-types, are briefly reviewed.

  14. Three-Dimensional Reduced Graphene Oxide Network on Copper Foam as High-performance Supercapacitor Electrodes

    DEFF Research Database (Denmark)

    Dey, Ramendra Sundar; Chi, Qijin

    - integrated supercapacitor electrode s (3DrGO@Cuf) [1] . The method involves a two - step procedure, self - assembly of graphene oxide (GO) nanosheets on Cuf and electrochemical reduction of GO into rGO. We have systematically characterized as - synthesized materials using AFM, SEM and XRD to reveal......E lectrochemically generated copper foam (Cuf) could serve as an effective template for fabrication of three - dimensional (3D) reduced graphe n e oxide (rGO) network s. Here we present a facile approach to preparation of 3D rGO network supported by Cuf a s binder - free and current collector...... knowledge, we may have achieve d the highest specific capacitance with 3DrGO@Cuf electrodes among reported pure 3D graphene materials to date (i.e. 3D graphene materials without doping additional capacitive species ) [2 , 3 ]...

  15. Voltammetric Determination of Salbutamol Based on Electrochemical Oxidation at Platinum and Glassy Carbon Electrodes

    OpenAIRE

    YILMAZ, Niyazi; Sibel A. Özkan; USLU, Bengi

    1998-01-01

    The oxidative behavior of salbutamol was studied as a function of pH at platinum and activated glassy carbon electrodes. Between pH 1.9 and 12.0, the drug was characterized by a single oxidation step at both electrodes. The process was found to be dependent on the nature and the pH of the supporting elctrolyte. The procedure yielded a linear concentration range of 1 \\times 10-4 to 1 \\times 10-3 M and 2 \\times 10-5 to 1 \\times 10-3 M in 0.2 M sulphuric acid and a phosphate buffer of pH 6, at p...

  16. Graphene-passivated nickel as an oxidation-resistant electrode for spintronics.

    Science.gov (United States)

    Dlubak, Bruno; Martin, Marie-Blandine; Weatherup, Robert S; Yang, Heejun; Deranlot, Cyrile; Blume, Raoul; Schloegl, Robert; Fert, Albert; Anane, Abdelmadjid; Hofmann, Stephan; Seneor, Pierre; Robertson, John

    2012-12-21

    We report on graphene-passivated ferromagnetic electrodes (GPFE) for spin devices. GPFE are shown to act as spin-polarized oxidation-resistant electrodes. The direct coating of nickel with few layer graphene through a readily scalable chemical vapor deposition (CVD) process allows the preservation of an unoxidized nickel surface upon air exposure. Fabrication and measurement of complete reference tunneling spin valve structures demonstrate that the GPFE is maintained as a spin polarizer and also that the presence of the graphene coating leads to a specific sign reversal of the magneto-resistance. Hence, this work highlights a novel oxidation-resistant spin source which further unlocks low cost wet chemistry processes for spintronics devices.

  17. Hydrogen oxidation on gold electrode in perchloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sustersic, M.G.; Almeida, N.V.; Von Mengershausen, A.E. [Facultad de Ingenieria y Ciencias Economico Sociales, Universidad Nacional de San Luis, 25 de Mayo N 384, 5730 Villa Mercedes, San Luis (Argentina)

    2010-06-15

    The aim of this research is to study the interface gold/perchloric acid solution in presence of hydrogen. The reactive is generated by H{sup +} ion reduction and by saturating the electrolyte with the gaseous H{sub 2}. No evidence of H{sub 2} dissociative adsorption is found. In special conditions, a strongly adsorbed layer is formed from the atoms diffusing from inside of the metal. The mass transport occurs in three ways: the diffusion of H atoms inwards, the diffusion of H atoms back to the surface and the dissolved H{sub 2} diffusion from the bulk electrolyte to the surface. When dissolved H{sub 2} reacts, the reaction is kinetically controlled when the H{sub 2} partial pressure is high, and it is diffusionally controlled when the reactive partial pressure is low. Above 0.7 V, (measured vs. RHE), the (100) plane surface reconstruction lifts, and the rate determining step is the H diffusion towards inside of the metal, and the current suddenly falls. The Hydrogen redox reaction on gold shows reversibility with respect to the potential when the reactives are the H diffusing outwards of the metal and the H{sup +} ion present in the electrolyte. However, the absolute current values of oxidation and reduction are different because the reactive sources are different. (author)

  18. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Hadadian, Mahboobeh; Goharshadi, Elaheh K., E-mail: gohari@ferdowsi.um.ac.ir [Ferdowsi University of Mashhad, Department of Chemistry (Iran, Islamic Republic of); Youssefi, Abbas [Par-e-Tavous Research Institute (Iran, Islamic Republic of)

    2014-12-15

    Highly stable graphene oxide (GO)-based nanofluids were simply prepared by dispersing graphite oxide with the average crystallite size of 20 nm, in polar base fluids without using any surfactant. Electrical conductivity, thermal conductivity, and rheological properties of the nanofluids were measured at different mass fractions and various temperatures. An enormous enhancement, 25,678 %, in electrical conductivity of distilled water was observed by loading 0.0006 mass fraction of GO at 25 °C. GO–ethylene glycol nanofluids exhibited a non-Newtonian shear-thinning behavior followed by a shear-independent region. This shear-thinning behavior became more pronounced at higher GO concentrations. The maximum ratio of the viscosity of nanofluid to that of the ethylene glycol as a base fluid was 3.4 for the mass fraction of 0.005 of GO at 20 °C under shear rate of 27.5 s{sup −1}. Thermal conductivity enhancement of 30 % was obtained for GO–ethylene glycol nanofluid for mass fraction of 0.07. The measurement of the transport properties of this new kind of nanofluid showed that it could provide an ideal fluid for heat transfer and electronic applications.

  19. Hydrogen sensing based on proton and electron transport across and along the interface solid oxide electrolyte-platinum electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sakthivel, M; Weppner, W [Chair for Sensors and Solid State Ionics, Faculty of Engineering, Christian Albrechts University, Kaiserstrasse 2, Kiel D-24143 (Germany)

    2007-12-07

    A new class of low temperature proton-conducting-type hydrogen gas sensor was developed using Dion-Jacobson type layered perovskite oxides. A laminated structure with a junction of charge carriers at the interface between a predominantly ionically and predominately electronically conducting material was prepared by using the multistep-impregnation-reduction method for the deposition of Pt on top of a perovskite oxide. The proton conductivity of the layered perovskite materials was studied between room temperature and 250 deg. C. The sensing characteristic was studied by using H{sub 2} concentrations between 1% and 7%. The optimum operating temperature of the sensor was found to be at 45 deg. C. The formation of the galvanic cell voltage is described in terms of reactions at the interfaces and the surface of the electrodes. The experimental results indicate the motion of electrons within the Pt and of protons within the perovskite oxide along the interface. Hence, modelling the system response upon a change in gas concentrations can be beneficial for understanding the individual processes and optimizing the overall performance. (review article)

  20. REVIEW ARTICLE: Hydrogen sensing based on proton and electron transport across and along the interface solid oxide electrolyte platinum electrode

    Science.gov (United States)

    Sakthivel, M.; Weppner, W.

    2007-12-01

    A new class of low temperature proton-conducting-type hydrogen gas sensor was developed using Dion-Jacobson type layered perovskite oxides. A laminated structure with a junction of charge carriers at the interface between a predominantly ionically and predominately electronically conducting material was prepared by using the multistep-impregnation-reduction method for the deposition of Pt on top of a perovskite oxide. The proton conductivity of the layered perovskite materials was studied between room temperature and 250 °C. The sensing characteristic was studied by using H2 concentrations between 1% and 7%. The optimum operating temperature of the sensor was found to be at 45 °C. The formation of the galvanic cell voltage is described in terms of reactions at the interfaces and the surface of the electrodes. The experimental results indicate the motion of electrons within the Pt and of protons within the perovskite oxide along the interface. Hence, modelling the system response upon a change in gas concentrations can be beneficial for understanding the individual processes and optimizing the overall performance.

  1. ELECTROCHEMICAL OXIDATION OF THE HERBICIDE TEBUTHIURON USING DSA (R)-TYPE ELECTRODE

    OpenAIRE

    Alves, Suellen A.; Ferreira,Tanare C. R.; Lanza, Marcos Roberto Vasconcelos

    2013-01-01

    ELECTROCHEMICAL OXIDATION OF THE HERBICIDE TEBUTHIURON USING DSA (R)-TYPE ELECTRODE. Tebuthiuron (TBH) is a herbicide widely used in different cultures and known for its toxic effects. Electrochemical methods are promising for removing pollutants such as pesticides. This study showed the degradation of TBH using a DSA (R) anode operated at current densities of 50 to 200 mA cm(-2). Removal presented pseudo-first order kinetics while high-pressure liquid chromatography (UV detection) showed two...

  2. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.

    Science.gov (United States)

    Fu, Kun; Wang, Yibo; Yan, Chaoyi; Yao, Yonggang; Chen, Yanan; Dai, Jiaqi; Lacey, Steven; Wang, Yanbin; Wan, Jiayu; Li, Tian; Wang, Zhengyang; Xu, Yue; Hu, Liangbing

    2016-04-06

    All-component 3D-printed lithium-ion batteries are fabricated by printing graphene-oxide-based composite inks and solid-state gel polymer electrolyte. An entirely 3D-printed full cell features a high electrode mass loading of 18 mg cm(-2) , which is normalized to the overall area of the battery. This all-component printing can be extended to the fabrication of multidimensional/multiscale complex-structures of more energy-storage devices.

  3. On the activation energy of the formic acid oxidation reaction on platinum electrodes

    OpenAIRE

    Perales-Rondón, Juan V.; Herrero, Enrique; Feliu, Juan M

    2015-01-01

    A temperature dependent study on the formic acid oxidation reaction has been carried out in order to determine the activation energy of this reaction on different platinum single crystal electrodes, namely Pt(1 0 0), Pt(1 1 1), Pt(5 5 4) and Pt(5 4 4) surfaces. The chronoamperometric transients obtained with pulsed voltammetry have been analyzed to determine the current densities through the active intermediate and the CO formation rate. From the temperature dependency of those parameters, th...

  4. Nanoscale Plasmonic and Optical Modulators Based on Transparent Conducting Oxides

    CERN Document Server

    Lu, Zhaolin; Shi, Kaifeng

    2012-01-01

    Recent experiments showed that unity-order index change in a transparent conducting oxide (TCO) can be achieved in a metal-oxide-semiconductor (MOS) structure by accumulation charge. However, the ultrathin (~5nm) accumulation layer and inherent absorption of TCOs impede the practical applications of this effect. Herein, we propose and explore a novel waveguide, namely "TCO-slot waveguide", which combines both the tunable property of a TCO and field enhancement of a slot waveguide. In particular, light absorption can be sharply enhanced when the slot dielectric constant is tuned close to zero. Based on TCO-slot waveguides, efficient electro-absorption modulation can be achieved within 200 nm with small insertion loss.

  5. Dual functional reduced graphene oxide as photoanode and counter electrode in dye-sensitized solar cells and its exceptional efficiency enhancement

    Science.gov (United States)

    Jumeri, F. A.; Lim, H. N.; Zainal, Z.; Huang, N. M.; Pandikumar, A.; Lim, S. P.

    2015-10-01

    The dual functionalities of reduced graphene oxide (rGO) as photoanode and counter electrode in dye-sensitized solar cells (DSSCs) is explored. A titanium dioxide (TiO2) film is deposited on an indium tin oxide (ITO) glass using an in-house aerosol-assisted chemical vapor deposition method. Graphene oxide (GO) is then introduced onto the TiO2-ITO substrate, and the GO layer is successively thermally treated to rGO. The TiO2-rGO film is used as a compact layer for the photoanode of the DSSC. A layer of zinc oxide-silver (ZnO-Ag) is introduced on top of the compact layer as an active material. Its highly porous flower-shaped morphology is advantageous for the adsorption of dye. The in-situ electrochemical polymerization method used for the fabrication of polypyrrole incorporated with rGO and p-toluenesulfonate (pTS) (Ppy-rGO-pTS) on an ITO glass is used as a counter electrode for the DSSC. The DSSC assembled with the Ppy-rGO-1.0pTS counter electrode exhibites an enhanced conversion efficiency of 1.99% under solar illumination, which is better than that using conventional Pt as a counter electrode (0.08%). This is attributed to the increased contact area between the Ppy-rGO-pTS counter electrode and electrolyte, which subsequently improves the conductivity and high electrocatalytic activities of the Ppy-rGO-pTS counter electrode.

  6. High performance diamond-like carbon layers obtained by pulsed laser deposition for conductive electrode applications

    Science.gov (United States)

    Stock, F.; Antoni, F.; Le Normand, F.; Muller, D.; Abdesselam, M.; Boubiche, N.; Komissarov, I.

    2017-09-01

    For the future, one of the biggest challenge faced to the technologies of flat panel display and various optoelectronic and photovoltaic devices is to find an alternative to the use of transparent conducting oxides like ITO. In this new approach, the objective is to grow high conductive thin-layer graphene (TLG) on the top of diamond-like carbon (DLC) layers presenting high performance. DLC prepared by pulsed laser deposition (PLD) have attracted special interest due to a unique combination of their properties, close to those of monocrystalline diamond, like its transparency, hardness and chemical inertia, very low roughness, hydrogen-free and thus high thermal stability up to 1000 K. In our future work, we plane to explore the synthesis of conductive TLG on top of insulating DLC thin films. The feasibility and obtained performances of the multi-layered structure will be explored in great details in the short future to develop an alternative to ITO with comparable performance (conductivity of transparency). To select the best DLC candidate for this purpose, we focus this work on the physicochemical properties of the DLC thin films deposited by PLD from a pure graphite target at two wavelengths (193 and 248 nm) at various laser fluences. A surface graphenization process, as well as the required efficiency of the complete structure (TLG/DLC) will clearly be related to the DLC properties, especially to the initial sp3/sp2 hybridization ratio. Thus, an exhaustive description of the physicochemical properties of the DLC layers is a fundamental step in the research of comparable performance to ITO.

  7. High performance flexible metal oxide/silver nanowire based transparent conductive films by a scalable lamination-assisted solution method

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2017-03-01

    Full Text Available Flexible MoO3/silver nanowire (AgNW/MoO3/TiO2/Epoxy electrodes with comparable performance to ITO were fabricated by a scalable solution-processed method with lamination assistance for transparent and conductive applications. Silver nanoparticle-based electrodes were also prepared for comparison. Using a simple spin-coating and lamination-assisted planarization method, a full solution-based approach allows preparation of AgNW-based composite electrodes at temperatures as low as 140 °C. The resulting flexible AgNW-based electrodes exhibit higher transmittance of 82% at 550 nm and lower sheet resistance about 12–15 Ω sq−1, in comparison with the values of 68% and 22–25 Ω sq−1 separately for AgNP based electrodes. Scanning electron microscopy (SEM and Atomic force microscopy (AFM reveals that the multi-stacked metal-oxide layers embedded with the AgNWs possess lower surface roughness (<15 nm. The AgNW/MoO3 composite network could enhance the charge transport and collection efficiency by broadening the lateral conduction range due to the built of an efficient charge transport network with long-sized nanowire. In consideration of the manufacturing cost, the lamination-assisted solution-processed method is cost-effective and scalable, which is desire for large-area fabrication. While in view of the materials cost and comparable performance, this AgNW-based transparent and conductive electrodes is potential as an alternative to ITO for various optoelectronic applications.

  8. Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors.

    Science.gov (United States)

    Awad, H S; Galwa, N Abo

    2005-12-01

    Electrocatalytic degradation of Acid Blue and Basic Brown dyes from simulated wastewater on lead dioxide anode was investigated in different conductive electrolytes. It was shown that complete degradation of these dyes is dependent primarily on type and concentration of the conductive electrolyte. The highest electrocatalytic activity was achieved in the presence of NaCl (2g/l) and could be attributed to indirect oxidation of the investigated dyes by the electrogenerated hypochlorite ions formed from the chloride oxidation. In addition, contribution from direct oxidation could also be possible via reaction of these organic compounds with the electrogenerated hydroxyl radicals adsorbed on the lead dioxide surface. In the presence of NaOH, the electrocatalytic activity of the employed anode was not comparable to that in NaCl due primarily to the absence of chloride. This indicates that dyes degradation in NaOH occurs exclusively via direct electrochemical process. However, in H2SO4, the electrode performance was poor due partially to the absence of chloride from the conductive solution. The possibility of electrode poisoning as a result of growth of adherent film on the anode surface or production of stable intermediates not easily further oxidized by direct electrolysis in H2SO4 might also be accountable for the poor performance observed in this conductive electrolyte. Optimizing the conditions that ensure effective electrochemical degradation of Acid Blue and Basic Brown dyes on lead dioxide electrode necessitates the control of all the operating factors.

  9. Selective Light-Induced Patterning of Carbon Nanotube/Silver Nanoparticle Composite To Produce Extremely Flexible Conductive Electrodes.

    Science.gov (United States)

    Kim, Inhyuk; Woo, Kyoohee; Zhong, Zhaoyang; Lee, Eonseok; Kang, Dongwoo; Jeong, Sunho; Choi, Young-Man; Jang, Yunseok; Kwon, Sin; Moon, Jooho

    2017-02-22

    Recently, highly flexible conductive features have been widely demanded for the development of various electronic applications, such as foldable displays, deformable lighting, disposable sensors, and flexible batteries. Herein, we report for the first time a selective photonic sintering-derived, highly reliable patterning approach for creating extremely flexible carbon nanotube (CNT)/silver nanoparticle (Ag NP) composite electrodes that can tolerate severe bending (20 000 cycles at a bending radius of 1 mm). The incorporation of CNTs into a Ag NP film can enhance not only the mechanical stability of electrodes but also the photonic-sintering efficiency when the composite is irradiated by intense pulsed light (IPL). Composite electrodes were patterned on various plastic substrates by a three-step process comprising coating, selective IPL irradiation, and wiping. A composite film selectively exposed to IPL could not be easily wiped from the substrate, because interfusion induced strong adhesion to the underlying polymer substrate. In contrast, a nonirradiated film adhered weakly to the substrate and was easily removed, enabling highly flexible patterned electrodes. The potential of our flexible electrode patterns was clearly demonstrated by fabricating a light-emitting diode circuit and a flexible transparent heater with unimpaired functionality under bending, rolling, and folding.

  10. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes

    Science.gov (United States)

    Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S.; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong

    2016-07-01

    This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs.

  11. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    Science.gov (United States)

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.

  12. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    Science.gov (United States)

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38°C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Nitric Oxide Detection with Glassy Carbon Electrodes Coated with Charge-different Polymer Films

    Directory of Open Access Journals (Sweden)

    Jianping Lei

    2005-04-01

    Full Text Available Trace amounts of nitric oxide (NO have been determined in aqueous phosphate buffersolutions (pH=7.4 by using a glassy carbon electrode coated with three charge-different polymerfilms. The glassy carbon electrode was coated first with negatively charged Nafion film containingtetrakis(pentafluorophenylporphyrin iron(III chloride (Fe(IIITPFPP as the NO oxidation catalyst,and then with positively charged poly(acrylamide-co-diallyldimethylammonium chloride (PADDAand with neutral poly(dimethylsiloxane (silicone at the outermost layer. This polymer-coatedelectrode showed an excellent selectivity towards NO against possible concomitants in blood such asnitrite, ascorbic acid, uric acid, and dopamine. All current ratios between each concomitant and NOat the cyclic voltammogram was in 10-3 ~ 10-4. This type of electrode showed a detection limit of80 nM for NO. It was speculated from the electrochemical study in methanol that high-valent oxoiron(IV of Fe(TPFPP participated in the catalytic oxidation of NO.

  14. Investigation of the fabrication parameters of thick film metal oxide-polymer pH electrodes

    CERN Document Server

    Gac, A

    2002-01-01

    This thesis describes a study into the development of an optimum material and fabrication process for the production of thick film pH electrodes. These devices consist of low cost, miniature and rugged pH sensors formed by screen printing a metal oxide bearing paste onto a high temperature (approx 850 deg C) fired metal back contact supported on a standard alumina substrate. The pH sensitive metal oxide layer must be fabricated at relatively low temperatures (<300 deg C) in order to maintain the pH sensitivity of the layer and hence requires the use of a suitably stable low temperature curing binder. Bespoke fabricated inks are derived from a Taguchi style factorial experimental plans in which, different binder types, curing temperatures, hydration level and percentage mixtures of different metal oxides and layer thicknesses were investigated. The pH responses of 18 printed electrodes per batch were assessed in buffer solutions with respect to a commercial reference electrode forming a complete potentiomet...

  15. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode.

    Science.gov (United States)

    Gualandi, Isacco; Scavetta, Erika; Zappoli, Sergio; Tonelli, Domenica

    2011-03-15

    In this paper a study of the electrocatalytic oxidation of salicylic acid (SA) at a Pt electrode coated with a Co/Al hydrotalcite-like compound (Co/Al HTLC coated-Pt) film is presented. The voltammetric behaviour of the modified electrode in 0.1M NaOH shows two different redox couples: Co(II)/Co(III) and Co(III)/Co(IV). The electrocatalysis occurs at the same potential of the latter couple, showing that Co(IV) centers act as the oxidant. The CV investigation demonstrates that the process is controlled both by mass and charge transfer and that the Co(IV) centers involved in the oxidation are two for each SA molecule. The estimated value of the catalytic constant is 4×10(4) M(-1) s(-1). The determination of salicylic acid was performed both by DPV and chronoamperometry. The linearity ranges and the LOD values resulted 1×10(-5) to 5×10(-4), 5×10(-7) to 1×10(-4), 6×10(-6) and 2×10(-7) M, respectively. The Co/Al HTLC electrode has been used for SA determination in BAYER Aspirina® and the obtained results are consistent with an independent HPLC analysis.

  16. Kinetic Model of Hypophosphite Oxidation on a Nickel Electrode in D2O Solution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Kinetic model of hypophosphite oxidation on a nickel electrode was studied in D2Osolution in order to reach a better understanding of the oxidation mechanism. In the model the electrooxidation of hypophosphite undergo a H abstraction of hypophosphite from the P-H bond to form the phosphorus-centered radical PHO2-, which subsequently is electrochemically reacted with water to form the final product, phosphite. The kinetic equations were derived, and the kinetic parameters were obtained from a comparison of experimental results and the kinetic equations. The process of hypophosphite electrooxidation could be well simulated by this model

  17. Electrochemical Oxidation of Fragrances 4-Allyl and 4-Propenylbenzenes on Platinum and Carbon Paste Electrodes

    Directory of Open Access Journals (Sweden)

    Lai-Hao Wang

    2015-03-01

    Full Text Available The electrochemical oxidation behaviors of 4-allylbenzenes (estragole, safrole and eugenol and 4-propenylbenzenes (anethole, asarone and isoeugenol on platinum and carbon paste electrodes were investigated in a Britton-Robinson buffer (pH = 2.93 and 10.93, acetate buffer, phosphate buffer solutions (pH = 2.19 and 6.67, and acetonitrile containing various supporting electrolytes examined lithium perchlorate. Their oxidation potential with Hammett (free-energy relationships and possible reaction mechanisms were discussed.

  18. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures

    Science.gov (United States)

    Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun

    2017-01-01

    Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq−1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq−1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property. PMID:28291229

  19. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures

    Science.gov (United States)

    Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun

    2017-03-01

    Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq‑1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq‑1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property.

  20. Mineralization of bisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD) electrode.

    Science.gov (United States)

    Murugananthan, M; Yoshihara, S; Rakuma, T; Shirakashi, T

    2008-06-15

    Anodic oxidation of bisphenol A (BPA), a representative endocrine disrupting chemical, was carried out using boron-doped diamond (BDD) electrode at galvanostatic mode. The electro-oxidation behavior of BPA at BDD electrode was investigated by means of cyclic voltammetric technique. The extent of degradation and mineralization of BPA were monitored by HPLC and total organic carbon (TOC) value, respectively. The results obtained, indicate that the BPA removal at BDD depends on the applied current density (Iappl), initial concentration of BPA, pH of electrolyte and supporting medium. Galvanostatic electrolysis at BDD anode cause concomitant generation of hydroxyl radical that leads to the BPA destruction. The kinetics for the BPA degradation follows a pseudo-first order reaction with a higher rate constant 12.8x10(-5) s(-1) for higher Iappl value 35.7 mA cm(-2), indicating that the oxidation reaction is limited by Iappl control. Complete mineralization of BPA was achieved regardless of the variables and accordingly the mineralization current efficiency was calculated from the TOC removal measurements. Considering global oxidation process, the effect of supporting electrolytes has been discussed in terms of the electro generated inorganic oxidants. The better performance of BDD anode was proved on a comparative study with Pt and glassy carbon under similar experimental conditions. A possible reaction mechanism for BPA degradation involving three main aromatic intermediates, identified by GC-MS analysis, was proposed.