WorldWideScience

Sample records for conducting carbon ceramic

  1. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  2. Conductive ceramic composition and method of preparation

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-04-16

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  3. Proton-conducting cerate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Coffey, G.W.; Bates, J.L.; Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Single-cell solid oxide fuel cells were constructed using strontium cerate as the electrolyte and their performance tested. Like certain zirconates, hafnates, and tantalates, the cerate perovskites are among a class of solid electrolytes that conduct protons at elevated temperatures. Depending on the temperature and chemical environment, these ceramics also support electronic and oxygen ion currents. A maximum power output of {approx}100 mW per cm{sup 2} electrolyte surface area was obtained at 900{degrees}C using 4% hydrogen as the fuel and air as the oxidant. A series of rare earth/ceria/zirconia were prepared and their electrical properties characterized. Rare earth dopants included ytterbia, yttria, terbia, and europia. Ionic conductivities were highest for rare earth/ceria and rare earth zirconia compositions; a minimum in ionic conductivity for all series were found for equimolar mixtures of ceria and zirconia. Cerium oxysulfide is of interest in fossil energy applications because of its high chemical stability and refractory nature. An alternative synthesis route to preparing cerium oxysulfide powders has been developed using combustion techniques.

  4. Dispersion toughened silicon carbon ceramics

    Science.gov (United States)

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  5. Structure and conductivity of nanostructured YBCO ceramics

    Science.gov (United States)

    Palchayev, D. K.; Gadzhimagomedov, S. Kh; Murlieva, Zh Kh; Rabadanov, M. Kh; Emirov, R. M.

    2017-12-01

    Superconducting nanostructured ceramics based on YBa2Cu3O7-δ were made of nanopowder obtained by burning nitrate-organic precursors. The structure, morphology, electrical resistivity, and density of ceramics were studied. Various porosity values of the ceramics were achieved by preliminary heat treatment of the nanopowder. The features of conductivity and the reason for increase of the of the superconducting transition temperature in these materials are discussed.

  6. Conducting carbonized polyaniline nanotubes

    International Nuclear Information System (INIS)

    Mentus, Slavko; Ciric-Marjanovic, Gordana; Trchova, Miroslava; Stejskal, Jaroslav

    2009-01-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min -1 up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 μm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 μm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm -1 , increased to 0.7 S cm -1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  7. Conducting carbonized polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mentus, Slavko; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.rs

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min{sup -1} up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 {mu}m, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 {mu}m, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm{sup -1}, increased to 0.7 S cm{sup -1} upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  8. All ceramic structure for molten carbonate fuel cell

    Science.gov (United States)

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  9. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Jerry Y.S. Lin; Jun-ichi Ida

    2001-01-01

    This project is aimed at demonstrating technical feasibility for a lithium zirconate based dense ceramic membrane for separation of carbon dioxide from flue gas at high temperature. The research work conducted in this reporting period was focused on several fundamental issues of lithium zirconate important to the development of the dense inorganic membrane. These fundamental issues include material synthesis of lithium zirconate, phases and microstructure of lithium zirconate and structure change of lithium zirconate during sorption/desorption process. The results show difficulty to prepare the dense ceramic membrane from pure lithium zirconate, but indicate a possibility to prepare the dense inorganic membrane for carbon dioxide separation from a composite lithium zirconate

  10. Reduction in thermal conductivity of ceramics due to radiation damage

    International Nuclear Information System (INIS)

    Klemens, P.G.; Hurley, G.F.; Clinard, F.W. Jr.

    1976-01-01

    Ceramics are required for a number of applications in fusion reactors. In several of these applications, the thermal conductivity is an important design parameter as it affects the level of temperature and thermal stress in service. Ceramic insulators are known to suffer substantial reduction in thermal conductivity due to neutron irradiation damage. The present study estimates the reduction in thermal conductivity at high temperature due to radiation induced defects. Point, extended, and extended partly transparent defects are considered

  11. Conductive polymer composites with double percolated architecture of carbon nanoparticles and ceramic microparticles for high heat dissipation and sharp PTC switching

    International Nuclear Information System (INIS)

    Droval, G; Feller, J F; Salagnac, P; Glouannec, P

    2008-01-01

    In classical self-limiting heating devices where conductive polymer composites (CPC) are used, one of the main problems to solve is the stability of properties with time. Different strategies are proposed to stabilize the morphologies during the structuring of these heterogeneous materials. Some of them are well known in the use of co-continuous polymer blends or confinement but the interest of this work is to combine different structuring methods such as volume exclusion, adsorption and multiple percolations to achieve original properties. In fact the CPC developed exhibit enhanced heat dissipation and thermal stability (up to 180 °C), independent adjustability of electrical and thermal conductivity, and a sharp and large amplitude PTC effect. These original results were obtained with a co-continuous structure associating a thermally conductive polymer phase (syndiotactic poly(styrene) (sPS) filled with aluminum oxide (Al 2 O 3 ) or boron nitride (BN)) with an electrically conductive polymer phase (high-density poly(ethylene)) (hdPE) filled with carbon nanoparticles (CNP) in appropriate proportions

  12. Thermal-Conductivity Studies of Macro-porous Polymer-Derived SiOC Ceramics

    Science.gov (United States)

    Qiu, L.; Li, Y. M.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Wu, J. Q.; Xu, C. H.

    2014-01-01

    A three-dimensional reticular macro-porous SiOC ceramics structure, made of spherical agglomerates, has been thermally characterized using a freestanding sensor-based method. The effective thermal conductivity of the macro-porous SiOC ceramics, including the effects of voids, is found to be to at room temperature, comparable with that of alumina aerogel or carbon aerogel. These results suggest that SiOC ceramics hold great promise as a thermal insulation material for use at high temperatures. The measured results further reveal that the effective thermal conductivity is limited by the low solid-phase volume fraction for the SiOC series processed at the same conditions. For SiOC ceramics processed under different pyrolysis temperatures, the contact condition between neighboring particles in the SiOC networks is another key factor influencing the effective thermal conductivity.

  13. Thermal Conductivity Measurement and Analysis of Fully Ceramic Microencapsulated fuel

    International Nuclear Information System (INIS)

    Lee, H. G.; Kim, D. J.; Park, J. Y.; Kim, W. J.; Lee, S. J.

    2015-01-01

    FCM nuclear fuel is composed of tristructural isotropic(TRISO) fuel particle and SiC ceramic matrix. SiC ceramic matrix play an essential part in protecting fission product. In the FCM fuel concept, fission product is doubly protected by TRISO coating layer and SiC ceramic matrix in comparison with the current commercial UO2 fuel system of LWR. In addition to a safety enhancement of FCM fuel, thermal conductivity of SiC ceramic matrix is better than that of UO2 fuel. Because the centerline temperature of FCM fuel is lower than that of the current UO2 fuel due to the difference of thermal conductivity of fuel, an operational release of fission products from the fuel can be reduced. SiC ceramic has attracted for nuclear fuel application due to its high thermal conductivity properties with good radiation tolerant properties, a low neutron absorption cross-section and a high corrosion resistance. Thermal conductivity of ceramic matrix composite depends on the thermal conductivity of each component and the morphology of reinforcement materials such as fibers and particles. There are many results about thermal conductivity of fiber-reinforced composite like as SiCf/SiC composite. Thermal conductivity of SiC ceramics and FCM pellets with the volume fraction of TRISO particles were measured and analyzed by analytical models. Polycrystalline SiC ceramics and FCM pellets with TRISO particles were fabricated by hot press sintering with sintering additives. Thermal conductivity of the FCM pellets with TRISO particles of 0 vol.%, 10 vol.%, 20 vol.%, 30 vol.% and 40 vol.% show 68.4, 52.3, 46.8, 43.0 and 34.5 W/mK, respectively. As the volume fraction of TRISO particles increased, the measured thermal conductivity values closely followed the prediction of Maxwell's equation

  14. Preparation, characterization and application of novel proton conducting ceramics

    Science.gov (United States)

    Wang, Siwei

    Due to the immediate energy shortage and the requirement of environment protection nowadays, the efficient, effective and environmental friendly use of current energy sources is urgent. Energy conversion and storage is thus an important focus both for industry and academia. As one of the hydrogen energy related materials, proton conducting ceramics can be applied in solid oxide fuel cells and steam electrolysers, as well as high temperature hydrogen separation membranes and hydrogen sensors. For most of the practical applications, both high proton conductivity and chemical stability are desirable. However, the state-of-the-art proton conducting ceramics are facing great challenges in simultaneously fulfilling conductivity and stability requirements for practical applications. Consequently, understanding the properties for the proton conducting ceramics and developing novel materials that possess both high proton conductivity and enhanced chemical stability have both scientific and practical significances. The objective of this study is to develop novel proton conducting ceramics, either by evaluating the doping effects on the state-of-the-art simple perovskite structured barium cerates, or by investigating novel complex perovskite structured Ba3Ca1.18Nb1.82O 9-delta based proton conductors as potential proton conducting ceramics with improved proton conductivity and enhanced chemical stability. Different preparation methods were compared, and their influence on the structure, including the bulk and grain boundary environment has been investigated. In addition, the effects of microstructure on the electrical properties of the proton conducting ceramics have also been characterized. The solid oxide fuel cell application for the proton conducting ceramics performed as electrolyte membranes has been demonstrated.

  15. Development of carbon-ceramic composites

    International Nuclear Information System (INIS)

    Raman, V.; Bhatia, G.; Mishra, A.; Sengupta, P.R.; Saha, M.; Rashmi

    2005-01-01

    Carbon-ceramic composites (C-SiC-B 4 C) were developed through in situ formation of silicon carbide by mixing coal-tar based green coke and silicon as silicon carbide (SiC) precursor, boron carbide (B 4 C) and heat-treatment to 2200 deg. C. These composites were characterised for their physical, mechanical and oxidation resistance properties. The formation of protective coatings during oxidation of the composites was confirmed by using X-ray diffraction, energy-dispersive X-ray spectrometry, scanning electron microscopy and porosity measurement. Carbon-ceramic composites, which could withstand oxidation at 800-1200 deg. C for about 10 h in air have been developed

  16. Porous Alumina and Zirconia Ceramics With Tailored Thermal Conductivity

    Czech Academy of Sciences Publication Activity Database

    Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, Jiří

    2012-01-01

    Roč. 395, č. 1 (2012), 012022-012022 ISSN 1742-6588. [European Thermal Sciences Conference (Eurotherm)/6./. Poitiers, 04.09.2012-07.09.2012] Institutional support: RVO:61389021 Keywords : Ceramics * alumina * zirconia * porosity * thermal conductivity * pore-forming agent * oxide ceramics * starch * porosity Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://iopscience.iop.org/1742-6596/395/1/012022/pdf/1742-6596_395_1_012022.pdf

  17. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites

    International Nuclear Information System (INIS)

    Lee, Hyeon-Geun; Kim, Daejong; Lee, Seung Jae; Park, Ji Yeon; Kim, Weon-Ju

    2017-01-01

    Highlights: • Thermal conductivity of SiC ceramics and FCM pellets was measured and discussed. • Thermal conductivity of FCM pellets was analyzed by the Maxwell-Eucken equation. • Effective thermal conductivity of TRISO particles applied in this study was assumed. - Abstract: The thermal conductivity of SiC ceramics and FCM fuel composites, consisting of a SiC matrix and TRISO coated particles, was measured and analyzed. SiC ceramics and FCM pellets were fabricated by hot press sintering with Al_2O_3 and Y_2O_3 sintering additives. Several factors that influence thermal conductivity, specifically the content of sintering additives for SiC ceramics and the volume fraction of TRISO particles and the matrix thermal conductivity of FCM pellets, were investigated. The thermal conductivity values of samples were analyzed on the basis of their microstructure and the arrangement of TRISO particles. The thermal conductivity of the FCM pellets was compared to that predicted by the Maxwell-Eucken equation and the thermal conductivity of TRISO coated particles was calculated. The thermal conductivity of FCM pellets in various sintering conditions was in close agreement to that predicted by the Maxwell-Eucken equation with the fitted thermal conductivity value of TRISO particles.

  18. Electronic Conductivity of Vanadium-Tellurite Glass-Ceramics

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng; Bragatto, Caio B.

    2013-01-01

    In this paper, we investigate the electronic conductivity of 2TeO2-V2O5 glass-ceramics with crystallinity ranging from 0 to 100 wt.%, i.e., from entirely amorphous to completely crystalline. The glass is prepared by the melt quenching technique, and the crystal is prepared by subsequent heat...... spectroscopy. We find similar activation energies for both glass and crystal, implying that they have similar conduction mechanisms, i.e., thermally activated hopping. The electronic conductivity of 2TeO2-V2O5 glass is about one order of magnitude higher than that of the corresponding crystal......, and a percolation phenomenon occurs at a glass fraction of 61 wt.%, increasing from a lower conductivity in the crystal to a higher conductivity in the glass. We explain the behavior of electronic conduction in the 2TeO2-V2O5 glass-ceramics by considering constriction effects between particles as well...

  19. Method of producing a carbon coated ceramic membrane and associated product

    Science.gov (United States)

    Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.

    1993-01-01

    A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.

  20. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  1. Cast Steel Filtration Trials Using Ceramic-Carbon Filters

    Directory of Open Access Journals (Sweden)

    Lipowska B.

    2014-12-01

    Full Text Available Trials of cast steel filtration using two types of newly-developed foam filters in which carbon was the phase binding ceramic particles have been conducted. In one of the filters the source of carbon was flake graphite and coal-tar pitch, while in the other one graphite was replaced by a cheaper carbon precursor. The newly-developed filters are fired at 1000°C, i.e. at a much lower temperature than the currently applied ZrO2-based filters. During filtration trials the filters were subjected to the attack of a flowing metal stream having a temperature of 1650°C for 30 seconds.

  2. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y. S. [Arizona State Univ., Tempe, AZ (United States)

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  3. Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites

    Science.gov (United States)

    Ahmad, Iftikhar; Yazdani, Bahareh; Zhu, Yanqiu

    2015-01-01

    Ceramics suffer the curse of extreme brittleness and demand new design philosophies and novel concepts of manufacturing to overcome such intrinsic drawbacks, in order to take advantage of most of their excellent properties. This has been one of the foremost challenges for ceramic material experts. Tailoring the ceramics structures at nanometre level has been a leading research frontier; whilst upgrading via reinforcing ceramic matrices with nanomaterials including the latest carbon nanotubes (CNTs) and graphene has now become an eminent practice for advanced applications. Most recently, several new strategies have indeed improved the properties of the ceramics/CNT nanocomposites, such as by tuning with dopants, new dispersions routes and modified sintering methods. The utilisation of graphene in ceramic nanocomposites, either as a solo reinforcement or as a hybrid with CNTs, is the newest development. This article will summarise the recent advances, key difficulties and potential applications of the ceramics nanocomposites reinforced with CNTs and graphene. PMID:28347001

  4. In situ measurement of ceramic vacuum chamber conductive coating quality

    International Nuclear Information System (INIS)

    Doose, C.; Harkay, K.; Kim, S.; Milton, S.

    1997-01-01

    A method for measuring the relative surface resistivity and quality of conductive coatings on ceramic vacuum chambers was developed. This method is unique in that it allows one to test the coating even after the ceramic chamber is installed in the accelerator and under vacuum; furthermore, the measurement provides a localized surface reading of the coating conductance. The method uses a magnetic probe is calibrated using the measured DC end-to-end resistance of the tube under test and by comparison to a high quality test surface. The measurement method has also been verified by comparison to high frequency impedance measurements. A detailed description, results, and sensitivity of the technique are given here

  5. Electrochemical study of lithium insertion into carbon-rich polymer-derived silicon carbonitride ceramics

    International Nuclear Information System (INIS)

    Kaspar, Jan; Mera, Gabriela; Nowak, Andrzej P.; Graczyk-Zajac, Magdalena; Riedel, Ralf

    2010-01-01

    This paper presents the lithium insertion into carbon-rich polymer-derived silicon carbonitride (SiCN) ceramic synthesized by the thermal treatment of poly(diphenylsilylcarbodiimide) at three temperatures, namely 1100, 1300, and 1700 o C under 0.1 MPa Ar atmosphere. At lower synthesis temperatures, the material is X-ray amorphous, while at 1700 o C, the SiCN ceramic partially crystallizes. Anode materials prepared from these carbon-rich SiCN ceramics without any fillers and conducting additives were characterized using cyclic voltammetry and chronopotentiometric charging/discharging. We found that the studied silicon carbonitride ceramics demonstrate a promising electrochemical behavior during lithium insertion/extraction in terms of capacity and cycling stability. The sample synthesized at 1300 o C exhibits a reversible capacity of 392 mAh g -1 . Our study confirms that carbon-rich SiCN phases are electrochemically active materials in terms of Li inter- and deintercalation.

  6. Physical meaning of conductivity spectra for ZnO ceramics

    Institute of Scientific and Technical Information of China (English)

    Cheng Peng-Fei; Li Sheng-Tao; Li Jian-Ying; Ding Can; Yang Yan

    2012-01-01

    With the help of broadband dielectric spectroscopy in a wide temperature and frequency range,the conductivity spectra of ZnO polycrystalline ceramics are measured and the direct-current-like (DC-like) conductivity and relaxation polarization conductivity are observed successively along the frequency axis.According to the classical Debye theory and Cole-Cole equation,the physical meanings of the two conductivities are discussed.It is found that the DC-like conductivity corresponds to electron transportation over the Schottky barrier at the grainboundary.The relaxation polarization conductivity corresponds to electronic trap relaxation of intrinsic point defects (zinc interstitial and oxygen vacancy).When in the high frequency region,the relaxation conductivity obeys the universal law with the index n equal to the index α in the Cole-Cole equation as an indictor of disorder degree.

  7. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    International Nuclear Information System (INIS)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto

    2016-01-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  8. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto, E-mail: carlos.couto.sjc@gmail.com [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  9. A novel approach for the fabrication of carbon nanofibre/ceramic porous structures

    KAUST Repository

    Walter, Claudia; Barg, Suelen; Ni, Na; Maher, Robert C.; Garcίa-Tuñ ó n, Esther; Zaiviji Ismail, Muhammad Muzzafar; Babot, Flora; Saiz, Eduardo

    2013-01-01

    This paper describes the fabrication of hybrid ceramic/carbon scaffolds in which carbon nanofibres and multi-walled carbon nanotubes fully cover the internal walls of a microporous ceramic structure that provides mechanical stability. Freeze casting

  10. Development of the mitigation method for carbon steel corrosion with ceramics in PWR secondary system

    International Nuclear Information System (INIS)

    Okamura, Masato; Shibasaki, Osamu; Miyazaki, Toyoaki; Kaneko, Tetsuji

    2012-09-01

    To verify the effect of depositing ceramic (TiO 2 , La 2 O 3 , and Y 2 O 3 ) on carbon steel to mitigate corrosion, corrosion tests were conducted under simulated chemistry conditions in a PWR secondary system. Test specimens (STPT410) were prepared with and without deposited ceramics. The ceramics were deposited on the specimens under high-temperature and high-pressure water conditions. Corrosion tests were conducted under high pH conditions (9.8) with a flow rate of 1.0-4.7 m/s at 185 deg. C for 200 hours. At a flow rate of 1.0 m/s, the amount of corrosion of the specimens with the ceramics was less than half of that of the specimens without the ceramics. As the flow rate increased, the amount of corrosion increased. However, even at a flow rate of 4.7 m/s, the amount of corrosion was reduced by approximately 30% by depositing the ceramics. After the corrosion tests, the surfaces of the specimens were analyzed with SEM and XRD. When the deposited ceramic was TiO 2 , the surface was densely covered with fine particles (less than 1 μm). From XRD analysis, these particles were identified as ilmenite (FeTiO 3 ). We consider that ilmenite may play an important role in mitigating the corrosion of carbon steel. (authors)

  11. The lanthanum gallate-based mixed conducting perovskite ceramics

    Science.gov (United States)

    Politova, E. D.; Stefanovich, S. Yu.; Aleksandrovskii, V. V.; Kaleva, G. M.; Mosunov, A. V.; Avetisov, A. K.; Sung, J. S.; Choo, K. Y.; Kim, T. H.

    2005-01-01

    The structure, microstructure, dielectric, and transport properties of the anion deficient perovskite solid solutions (La,Sr)(Ga,Mg,M)O3- with M=Fe, Ni have been studied. Substitution of iron and nickel for gallium up to about 20 and 40 at.% respectively, leads to the perovskite lattice contraction due to the cation substitutions by the transition elements. The transition from pure ionic to mixed ionic-electronic conductivity was observed for both the systems studied. Both the enhancement of total conductivity and increasing in the thermal expansion coefficient values has been proved to correlate with the increasing amount of weakly bounded oxygen species in the Fe or Ni-doped ceramics. The oxygen ionic conductivity has been estimated from the kinetic experiments using the dc-conductivity and dilatometry methods under the condition of the stepwise change of the atmosphere from nitrogen to oxygen.

  12. Ceramic membranes with mixed conductivity and their application

    International Nuclear Information System (INIS)

    Kozhevnikov, V L; Leonidov, I A; Patrakeev, M V

    2013-01-01

    Data on the catalytic reactors with ceramic membranes possessing mixed oxygen ion and electronic conductivity that make it possible to integrate the processes of oxygen separation and oxidation are analyzed and generalized. The development of this approach is of interest for the design of energy efficient and environmentally friendly processes for processing natural gas and other raw materials. The general issues concerning the primary processing of light alkanes in reactors with oxygen separating membranes are expounded and general demands to the membrane materials are discussed. Particular attention is paid to the process of oxidative conversion of methane to synthesis gas. The bibliography includes 110 references

  13. Carbon glass-ceramics and their radiation resistance

    International Nuclear Information System (INIS)

    Virgil'ev, Yu. S.

    1995-01-01

    Structural carbon materials (SCMs) hold great promise for use in numerous plasma-facing components of fusion reactors. One possible candidate for this use is carbon glass-ceramic. Therefore, it is not surprising that there is considerable interest in studying its properties and their variations upon exposure to different radiations, such as neutrons, high-energy electrons, and light ions (H + , D + , and He + ). Here, the authors summarize data accumulated to date on the structure and properties of commercial carbon glass-ceramics and their behavior under irradiation with neutrons, electrons, and some ions

  14. Effective thermal conductivity of advanced ceramic breeder pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Pupeschi, S., E-mail: simone.pupeschi@kit.edu; Knitter, R.; Kamlah, M.

    2017-03-15

    As the knowledge of the effective thermal conductivity of ceramic breeder pebble beds under fusion relevant conditions is essential for the development of solid breeder blanket concepts, the EU advanced and reference lithium orthosilicate material were investigated with a newly developed experimental setup based on the transient hot wire method. The effective thermal conductivity was investigated in the temperature range RT–700 °C. Experiments were performed in helium and air atmospheres in the pressure range 0.12–0.4 MPa (abs.) under a compressive load up to 6 MPa. Results show a negligible influence of the chemical composition of the solid material on the bed’s effective thermal conductivity. A severe reduction of the effective thermal conductivity was observed in air. In both atmospheres an increase of the effective thermal conductivity with the temperature was detected, while the influence of the compressive load was found to be small. A clear dependence of the effective thermal conductivity on the pressure of the filling gas was observed in helium in contrast to air, where the pressure dependence was drastically reduced.

  15. FDTD simulation of induction heating of conducting ceramic ware

    Energy Technology Data Exchange (ETDEWEB)

    White, M.J.; Iskander, M.F.; Bringhurst, S. [Univ. of Utah, Salt Lake City, UT (United States). Electrical Engineering Dept.

    1996-12-31

    Induction heating for the treatment of metals has been in commercial use since the mid 1960`s. Traditional advantages of induction heating over the convection or radiation processes include speed of heating, possible energy savings, and the ability to customize the coil design to optimize the heating process. In this paper the authors used the Finite-Difference Time-Domain (FDTD) technique to simulate and analyze the induction heating process for highly conducting ceramics. In order to analyze frequency effects, simulations were performed at 300 kHz, 2 MHz, and 25 MHz. It is found that at higher frequencies coils with a pitch of 2 in. or greater became capacitive and generate a large, axial, electric-field component. This new axial electric field, in addition to the normally encountered azimuthal field, causes an improvement in the uniformity of the power deposition in the ceramic sample. If the sample occupies a large portion of the coil, uniformity may also be improved by using a variable-pitch coil, or by extending the length of the coil a few turns beyond the length of the sample. In a production-line arrangement, where multiple samples are placed inside the coil, it is shown that maximum uniformity is achieved when the samples are placed coaxially.

  16. Small polaron conduction in lead modified lanthanum ferrite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bhargav, K.K.; Ram, S.; Majumder, S.B., E-mail: subhasish@matsc.iitkgp.ernet.in

    2015-07-25

    Highlights: • La{sub 0.8}Pb{sub 0.2}FeO{sub 3} (ε{sub r} ∼ 30,000) shows higher dielectric constant than LaFeO{sub 3} (∼14,000). • Lower A-site dopant content, the dielectric maxima shift to higher temperature. • The frequency dependence of ε{sub r} and tan δ vs. temperature exhibit CDC like behavior. • R{sub g} and R{sub gb} of Pb modified LaFeO{sub 3} follow small polaron hopping conduction model. - Abstract: In the present work we have illustrated the physics of the electrical characteristics of nanocrystalline La{sub 1−x}Pb{sub x}FeO{sub 3,} (0 ⩽ x ⩽ 0.2) powder prepared using auto-combustion synthesis. The effect of lead doping on the dielectric, impedance and ac conductivity characteristics of lanthanum ferrite has systematically been investigated. The synthesized powders were phase pure and crystallized into centro-symmetric Pnma space group. As compared to pure LaFeO{sub 3} ceramics (dielectric constant ∼ 14,000), the dielectric constant is grossly increased (∼30,000) in Pb doped LaFeO{sub 3}. The temperature dependence of dielectric constant of 10.0 at.% Pb doped LaFeO{sub 3} exhibits dielectric maxima similar to that observed in ferroelectric ceramics with non-centrosymmetric point group. For La{sub 0.8}Pb{sub 0.2}FeO{sub 3} ceramics, the frequency dependence of the dielectric constant and loss tangent at various temperatures (300–450 K) exhibit typical colossal dielectric constant (CDC) like behavior. From the impedance spectroscopy we have estimated the grain and grain boundary resistance and capacitance of Pb doped LaFeO{sub 3} that follow a small polaron hopping conduction model. Long range movement of the charge carriers govern the CDC behavior.

  17. The lanthanum gallate-based mixed conducting perovskite ceramics

    International Nuclear Information System (INIS)

    Politova, E.D.; Stefanovich, S.Yu.; Aleksandrovskii, V.V.; Kaleva, G.M.; Mosunov, A.V.; Avetisov, A.K.; Sung, J.S.; Choo, K.Y.; Kim, T.H.

    2005-01-01

    The structure, microstructure, dielectric, and transport properties of the anion deficient perovskite solid solutions (La,Sr)(Ga,Mg,M)O 3-δ with M=Fe, Ni have been studied. Substitution of iron and nickel for gallium up to about 20 and 40 at.% respectively, leads to the perovskite lattice contraction due to the cation substitutions by the transition elements. The transition from pure ionic to mixed ionic-electronic conductivity was observed for both the systems studied. Both the enhancement of total conductivity and increasing in the thermal expansion coefficient values has been proved to correlate with the increasing amount of weakly bounded oxygen species in the Fe or Ni-doped ceramics. The oxygen ionic conductivity has been estimated from the kinetic experiments using the dc-conductivity and dilatometry methods under the condition of the stepwise change of the atmosphere from nitrogen to oxygen. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. The lanthanum gallate-based mixed conducting perovskite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Politova, E.D.; Stefanovich, S.Yu.; Aleksandrovskii, V.V.; Kaleva, G.M.; Mosunov, A.V.; Avetisov, A.K. [L.Ya. Karpov Institute of Physical Chemistry, Vorontsovo pole 10, 105064 Moscow (Russian Federation); Sung, J.S.; Choo, K.Y.; Kim, T.H. [Korea Institute of Energy Research, 71-2 Jang-dong Yooseong, Daejeon (Korea)

    2005-01-01

    The structure, microstructure, dielectric, and transport properties of the anion deficient perovskite solid solutions (La,Sr)(Ga,Mg,M)O{sub 3-{delta}} with M=Fe, Ni have been studied. Substitution of iron and nickel for gallium up to about 20 and 40 at.% respectively, leads to the perovskite lattice contraction due to the cation substitutions by the transition elements. The transition from pure ionic to mixed ionic-electronic conductivity was observed for both the systems studied. Both the enhancement of total conductivity and increasing in the thermal expansion coefficient values has been proved to correlate with the increasing amount of weakly bounded oxygen species in the Fe or Ni-doped ceramics. The oxygen ionic conductivity has been estimated from the kinetic experiments using the dc-conductivity and dilatometry methods under the condition of the stepwise change of the atmosphere from nitrogen to oxygen. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  20. Low temperature thermal conductivities of glassy carbons

    International Nuclear Information System (INIS)

    Anderson, A.C.

    1979-01-01

    The thermal conductivity of glassy carbon in the temperature range 0.1 to 100 0 K appears to depend only on the temperature at which the material was pyrolyzed. The thermal conductivity can be related to the microscopic structure of glassy carbon. The reticulated structure is especially useful for thermal isolation at cryogenic temperatures

  1. Fast densification processes for carbon and ceramic composites

    International Nuclear Information System (INIS)

    Delhaes, P.; Robin-Brosse, C.; David, P.

    2006-01-01

    A general introduction of the different vapour infiltration processes developed to prepare carbon-carbon composites is presented. Then a novel method with a liquid precursor, called film boiling or calefaction technique is described and compared with the usual ones. It is shown how this technique is very attractive to prepare carbon and ceramic composites within a short processing time together with a higher carbon yield. Finally the pertinent parameters of this process to evaluate its advantages and drawbacks for a further industrial development are analysed. (authors)

  2. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  3. In situ-growth of silica nanowires in ceramic carbon composites

    Directory of Open Access Journals (Sweden)

    Rahul Kumar

    2017-09-01

    Full Text Available An understanding of the processing and microstructure of ceramic–carbon composites is critical to development of these composites for applications needing electrically conducting, thermal shock resistant ceramic materials. In the present study green compacts of carbon ceramic composites were prepared either by slurry processing or dry powder blending of one or more of the three — clay, glass, alumina and carbon black or graphite. The dried green compacts were sintered at 1400 °C in flowing argon. The ceramic carbon composites except the ones without clay addition showed formation of silica nanowires. The silica nanowire formation was observed in both samples prepared by slip casting and dry powder compaction containing either carbon black or graphite. TEM micrographs showed presence of carbon at the core of the silica nanowires indicating that carbon served the role of a catalyst. Selected area electron diffraction (SAED suggested that the silica nanowires are amorphous. Prior studies have reported formation of silica nanowires from silicon, silica, silicon carbide but this is the first report ever on formation of silica nanowires from clay.

  4. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    Science.gov (United States)

    Kumar, Binod

    2003-12-02

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  5. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  6. The effects of porosity, electrode and barrier materials on the conductivity of piezoelectric ceramics in high humidity and dc electric field

    International Nuclear Information System (INIS)

    Weaver, P M; Cain, M G; Stewart, M; Anson, A; Franks, J; Lipscomb, I P; McBride, J W; Zheng, D; Swingler, J

    2012-01-01

    Prolonged operation of piezoelectric ceramic devices under high dc electric fields promotes leakage currents between the electrodes. This paper investigates the effects of ceramic porosity, edge conduction and electrode materials and geometry in the development of low resistance conduction paths through the ceramic. Localized changes in the ceramic structure and corresponding microscopic breakdown sites are shown to be associated with leakage currents and breakdown processes resulting from prolonged operation in harsh environments. The role of barrier coatings in mitigating the effects of humidity is studied, and results are presented on improved performance using composite diamond-like carbon/polymer coatings. In contrast to the changes in the electrical properties of the ceramic, the measurements of the piezoelectric properties showed no significant effect of humidity. (paper)

  7. Conductive Carbon Coatings for Electrode Materials

    International Nuclear Information System (INIS)

    Doeff, Marca M.; Kostecki, Robert; Wilcox, James; Lau, Grace

    2007-01-01

    A simple method for optimizing the carbon coatings on non-conductive battery cathode material powders has been developed at Lawrence Berkeley National Laboratory. The enhancement of the electronic conductivity of carbon coating enables minimization of the amount of carbon in the composites, allowing improvements in battery rate capability without compromising energy density. The invention is applicable to LiFePO 4 and other cathode materials used in lithium ion or lithium metal batteries for high power applications such as power tools and hybrid or plug-in hybrid electric vehicles. The market for lithium ion batteries in consumer applications is currently $5 billion/year. Additionally, lithium ion battery sales for vehicular applications are projected to capture 5% of the hybrid and electric vehicle market by 2010, and 36% by 2015 (http://www.greencarcongress.com). LiFePO 4 suffers from low intrinsic rate capability, which has been ascribed to the low electronic conductivity (10 -9 S cm -1 ). One of the most promising approaches to overcome this problem is the addition of conductive carbon. Co-synthesis methods are generally the most practical route for carbon coating particles. At the relatively low temperatures ( 4 , however, only poorly conductive disordered carbons are produced from organic precursors. Thus, the carbon content has to be high to produce the desired enhancement in rate capability, which decreases the cathode energy density

  8. Sodium-carbonate co-substituted hydroxyapatite ceramics

    Directory of Open Access Journals (Sweden)

    Zoltan Z. Zyman

    2013-12-01

    Full Text Available Powders of sodium-carbonate co-substituted hydroxyapatite, having sodium content in the range of 0.25–1.5 wt.% with a 0.25 wt.% step, were prepared by a precipitation-solid state reaction route. Compacts of the powders were sintered in a CO2 flow (4 mL/min at 1100 °C for 2 h. The sintered ceramics contained sodium and carbonate ions in the ranges of 0–1.5 wt.% and 1.3–6 wt.%, respectively, which are typical impurity concentrations in biological apatite. A relationship between sodium and carbonate contents and the type of carbonate substitution was found. The total carbonate content progressively increased with the sodium content. The obtained ceramics showed an AB-type carbonate substitution. However, the substitution became more B-type as the sodium content increased. As a result, the carbonation was almost B-type (94 % for the highest sodium content (1.5 wt.%.

  9. Polymer-derived ceramic composite fibers with aligned pristine multiwalled carbon nanotubes.

    Science.gov (United States)

    Sarkar, Sourangsu; Zou, Jianhua; Liu, Jianhua; Xu, Chengying; An, Linan; Zhai, Lei

    2010-04-01

    Polymer-derived ceramic fibers with aligned multiwalled carbon nanotubes (MWCNTs) are fabricated through the electrospinning of polyaluminasilazane solutions with well-dispersed MWCNTs followed by pyrolysis. Poly(3-hexylthiophene)-b-poly (poly (ethylene glycol) methyl ether acrylate) (P3HT-b-PPEGA), a conjugated block copolymer compatible with polyaluminasilazane, is used to functionalize MWCNT surfaces with PPEGA, providing a noninvasive approach to disperse carbon nanotubes in polyaluminasilazane chloroform solutions. The electrospinning of the MWCNT/polyaluminasilazane solutions generates polymer fibers with aligned MWCNTs where MWCNTs are oriented along the electrospun jet by a sink flow. The subsequent pyrolysis of the obtained composite fibers produces ceramic fibers with aligned MWCNTs. The study of the effect of polymer and CNT concentration on the fiber structures shows that the fiber size increases with the increment of polymer concentration, whereas higher CNT content in the polymer solutions leads to thinner fibers attributable to the increased conductivity. Both the SEM and TEM characterization of the polymer and ceramic fibers demonstrates the uniform orientation of CNTs along the fibers, suggesting excellent dispersion of CNTs and efficient CNT alignment via the electrospinning. The electrical conductivity of a ceramic fibers with 1.2% aligned MWCNTs is measured to be 1.58 x 10(-6) S/cm, which is more than 500 times higher than that of bulk ceramic (3.43 x 10(-9) S/cm). Such an approach provides a versatile method to disperse CNTs in preceramic polymer solutions and offers a new approach to integrate aligned CNTs in ceramics.

  10. Pyroelectricity versus conductivity in soft lead zirconate titanate (PZT) ceramics

    NARCIS (Netherlands)

    Kamel, T.M.; With, de G.

    2007-01-01

    The electrical behavior of modified soft lead zirconate titanate (PZT) ceramics has been studied as a function of temperature at different direct current (dc) electric fields and grain sizes. As ferroelectrics, such as PZT, are highly polarizable materials, poling, depolarization, and electric

  11. Application of Hot-wire Method for Measuring Thermal Conductivity of Fine Ceramics

    Directory of Open Access Journals (Sweden)

    Shangxi WANG

    2016-11-01

    Full Text Available Ceramic substrate is preferred in high density packaging due to its high electrical resistivity and moderate expansion coefficient. The thermal conductivity is a key parameter for packaging substrates. There are two common methods to measure the thermal conductivity, which are the hot-wire method and the laser-flash method. Usually, the thermal conductivities of porcelain is low and meet the measurement range of hot-wire method, and the measured value by hot-wire method has little difference with that by laser-flash method. In recent years, with the requirement of high-powered LED lighting, some kinds of ceramic substrates with good thermal conductivity have been developed and their thermal conductivity always measured by the means of laser flash method, which needs expensive instrument. In this paper, in order to detect the thermal conductivity of fine ceramic with convenience and low cost, the feasibility of replacing the laser flash method with hot wire method to measure thermal conductivity of ceramic composites was studied. The experiment results showed that the thermal conductivity value of fine ceramics measured by the hot-wire method is severely lower than that by the laser-flash method. However, there is a positive relationship between them. It is possible to measure the thermal conductivity of fine ceramic workpiece instantly by hot-wire method via a correction formula.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12543

  12. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    Science.gov (United States)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  13. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    Science.gov (United States)

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  14. The effect of irradiation of the thermal conductivity of lithium ceramics

    International Nuclear Information System (INIS)

    Ethridge, J.L.; Baker, D.E.

    1987-01-01

    An apparatus for measuring the thermal conductivity of irradiated lithium ceramics to 900 0 C was designed, fabricated, and tested. Special attention was necessary in order to accommodate tritium released during the high-temperature measurements

  15. Effect of Liquid Phase Content on Thermal Conductivity of Hot-Pressed Silicon Carbide Ceramics

    International Nuclear Information System (INIS)

    Lim, Kwang-Young; Jang, Hun; Lee, Seung-Jae; Kim, Young-Wook

    2015-01-01

    Silicon carbide (SiC) is a promising material for Particle-Based Accident Tolerant (PBAT) fuel, fission, and fusion power applications due to its superior physical and thermal properties such as low specific mass, low neutron cross section, excellent radiation stability, low coefficient of thermal expansion, and high thermal conductivity. Thermal conductivity of PBAT fuel is one of very important factors for plant safety and energy efficiency of nuclear reactors. In the present work, the effect of Y 2 O 3 -Sc 2 O 3 content on the microstructure and thermal properties of the hot pressed SiC ceramics have been investigated. Suppressing the β to α phase transformation of SiC ceramics is beneficial in increasing the thermal conductivity of liquid-phase sintered SiC ceramics. Developed SiC ceramics with Y 2 O 3 -Sc 2 O 3 additives are very useful for thermal conductivity on matrix material of the PBAT fuel

  16. Improved lifetime of new fibrous carbon/ceramic composites

    Science.gov (United States)

    Gumula, Teresa

    2018-03-01

    New carbon/ceramic composites have been synthesized from low-cost phenol-formaldehyde resin and polysiloxane preceram. A reference carbon composite reinforced with carbon fibre (CC composite) is obtained in first place from a carbon fibre roving impregnated with a solution of phenol-formaldehyde resin in isopropyl alcohol. To obtain fibrous carbon/ceramic composites the CC perform is impregnated with polymethylphenylsiloxane polymer and then a thermal treatment in an inert atmosphere is applied. Depending on the temperature of this process, the resulting ceramics can be silicon carbide (SiC) or silicon oxycarbide (SiCO). Three representative samples, named CC/SiCO( a) (obtained at 1000 °C), CC/SiCO( b) (1500 °C) and CC/SiC (1700 °C), have been tested for fatigue behaviour and oxidation resistance. The value of the Young's modulus remains constant in fatigue tests done in flexion mode for the three new composites during a high number of cycles until sudden degradation begins. This is an unusual and advantageous characteristic for this type of materials and results in the absence of delamination during the measurements. In contrast, the CC reference composite shows a progressive degradation of the Young's modulus accompanied by delamination. SEM micrographs revealed that the formation of filaments of submicrometer diameter during the heat treatment can be responsible for the improved behaviour of these composites. The CC/SiC composite shows the best oxidation resistance among the three types of composites, with a 44% mass loss after 100 h of oxidation.

  17. Gas storage carbon with enhanced thermal conductivity

    Science.gov (United States)

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  18. Studies on Enhancing Transverse Thermal Conductivity Carbon/Carbon Composites

    National Research Council Canada - National Science Library

    Manocha, Lalit M; Manocha, Satish M; Roy, Ajit

    2007-01-01

    The structure derived potential properties of Graphite such as high stiffness coupled with high thermal conductivity and low coefficient of thermal expansion have been better achieved in Carbon fibers...

  19. Proton conducting ceramics for potentiometric hydrogen sensors for molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Borland, H.; Llivina, L.; Colominas, S.; Abellà, J., E-mail: jordi.abella@iqs.edu

    2013-10-15

    Highlights: • Synthesis and chemical characterization of proton conductor ceramics. • Qualification of ceramics for hydrogen sensors in molten lithium–lead. • Ceramics have well-defined grains with a wide distribution of sizes. • Good agreement with predictions obtained with BaZrY, BaCeZrY and SrFeCo ceramics. -- Abstract: Tritium monitoring in lithium–lead eutectic (Pb–15.7Li) is of great importance for the performance of liquid blankets in fusion reactors. Also, tritium measurements will be required in order to proof tritium self-sufficiency in liquid metal breeding systems. On-line hydrogen (isotopes) sensors must be design and tested in order to accomplish these goals. Potentiometric hydrogen sensors for molten lithium–lead eutectic have been designed at the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS) at Barcelona and are under development and qualification. The probes are based on the use of solid state electrolytes and works as proton exchange membranes (PEM). In this work the following compounds: BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−α}, Sr(Ce{sub 0.6}-Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−α} and Sr{sub 3}Fe{sub 1.8}Co{sub 2}O{sub 7} have been synthesized in order to be tested as PEM H-probes. Potentiometric measurements of the synthesized ceramic elements at 500 °C have been performed at a fixed hydrogen concentration. The sensors constructed using the proton conductor elements BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} and Sr{sub 3}Fe{sub 1.8}Co{sub 0.2}O{sub 7−δ} exhibited stable output potential and its value was close to the theoretical value calculated with the Nernst equation (deviation around 60 mV). In contrast, the sensor constructed using the proton conductor element Sr(Ce{sub 0.6}–Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−δ} showed a deviation higher than 100 mV between experimental an theoretical data.

  20. Analysis of ionic conductance of carbon nanotubes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Bazant, M.Z.

    2016-01-01

    We use space-charge (SC) theory (also called the capillary pore model) to describe the ionic conductance, G, of charged carbon nanotubes (CNTs). Based on the reversible adsorption of hydroxyl ions to CNT pore walls, we use a Langmuir isotherm for surface ionization and make calculations as a

  1. A Novel Electro-Thermal Laminated Ceramic with Carbon-Based Layer

    Directory of Open Access Journals (Sweden)

    Yi Ji

    2017-06-01

    Full Text Available A novel electro-thermal laminated ceramic composed of ceramic tile, carbon-based layer, dielectric layer, and foaming ceramic layer was designed and prepared by tape casting. The surface temperature achieved at an applied voltage of 10 V by the laminated ceramics was 40.3 °C when the thickness of carbon-based suspension was 1.0 mm and the adhesive strength between ceramic tile and carbon-based layer was 1.02 ± 0.06 MPa. In addition, the thermal aging results at 100 °C up to 192 h confirmed the high thermal stability and reliability of the electro-thermal laminated ceramics. The development of this laminated ceramic with excellent electro-thermal properties and safety provides a new individual heating device which is highly expected to be widely applied in the field of indoor heat supply.

  2. Effect of heat treatment time on microstructure and electrical conductivity in LATP glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sonigra, Dhiren, E-mail: somans@iitb.ac.in, E-mail: ajit.kulkarni@iitb.ac.in; Soman, Swati, E-mail: somans@iitb.ac.in, E-mail: ajit.kulkarni@iitb.ac.in; Kulkarni, Ajit R., E-mail: somans@iitb.ac.in, E-mail: ajit.kulkarni@iitb.ac.in [Dept. of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai-400076 (India)

    2014-04-24

    Glass-ceramic is prepared by heat treatment of melt quenched 14Li{sub 2}O−9Al{sub 2}O{sub 3}−38TiO{sub 2}−39P{sub 2}O{sub 5} glass in the vicinity of crystallization temperature. Growth of ceramic phase is controlled by tuning heat treatment time at fixed temperature. Ceramic phase was identified to be LiTi{sub 2}(PO{sub 4}){sub 3} from X Ray Diffraction analysis. Microstructural evolution of this phase with hold time was observed under high resolution Scanning Electron Microscope. DC conductivity is observed to increase by 4-5 orders of magnitude in this glass-ceramic compared to parent glass. However, formation of pores and cracks with very large heat treatment time seem to hinder further increase of conductivity.

  3. INFRARED IMAGING OF CARBON AND CERAMIC COMPOSITES: DATA REPRODUCIBILITY

    International Nuclear Information System (INIS)

    Knight, B.; Howard, D. R.; Ringermacher, H. I.; Hudson, L. D.

    2010-01-01

    Infrared NDE techniques have proven to be superior for imaging of flaws in ceramic matrix composites (CMC) and carbon silicon carbide composites (C/SiC). Not only can one obtain accurate depth gauging of flaws such as delaminations and layered porosity in complex-shaped components such as airfoils and other aeronautical components, but also excellent reproducibility of image data is obtainable using the STTOF (Synthetic Thermal Time-of-Flight) methodology. The imaging of large complex shapes is fast and reliable. This methodology as applied to large C/SiC flight components at the NASA Dryden Flight Research Center will be described.

  4. Infrared Imaging of Carbon and Ceramic Composites: Data Reproducibility

    Science.gov (United States)

    Knight, B.; Howard, D. R.; Ringermacher, H. I.; Hudson, L. D.

    2010-02-01

    Infrared NDE techniques have proven to be superior for imaging of flaws in ceramic matrix composites (CMC) and carbon silicon carbide composites (C/SiC). Not only can one obtain accurate depth gauging of flaws such as delaminations and layered porosity in complex-shaped components such as airfoils and other aeronautical components, but also excellent reproducibility of image data is obtainable using the STTOF (Synthetic Thermal Time-of-Flight) methodology. The imaging of large complex shapes is fast and reliable. This methodology as applied to large C/SiC flight components at the NASA Dryden Flight Research Center will be described.

  5. Design and characterization of a carbon-nanotube-reinforced adhesive coating for piezoelectric ceramic discs

    International Nuclear Information System (INIS)

    Lanzara, G; Chang, F-K

    2009-01-01

    The silver paste electrode of piezoelectric (PZT) ceramic discs has been shown to produce a weak interface bond between a bare PZT and its paste coating under a peeling force. In this work, an investigation was conducted to reinforce the bond with a high density array of oriented carbon nanotube nano-electrodes (CNTs-NEA), between a bare PZT ceramic and a metal substrate. The ensuing design and fabrication of a carbon-nanotube-coated piezoelectric disc (CPZT) is presented along with a study of the bondline integrity of a CPZT mounted on a hosting structure. The CPZT has its electrode silver paste coating replaced with a high density array of CNTs-NEA. Mechanical tests were performed to characterize the shear strength of the bondline between CPZT discs and the substrate. The test results were compared with shear strengths of the bondlines made of pure non-conductive adhesive and adhesive with randomly mixed CNTs. The comparison showed the oriented CNT coating on PZTs could significantly enhance the interfacial shear strength. Through the microscopic examination, it was evident that the ratio between the CNT length (Lc) and the bond thickness (H) significantly influenced the bond strength of CPZT discs. Three major interface microstructure types and their corresponding failure modes for specific Lc/H values were identified. The study also showed that failure did not occur along the interface between the PZT ceramic element and the CNT coating

  6. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    International Nuclear Information System (INIS)

    Ranganathan, S.; Easton, E.B.

    2009-01-01

    Sol-gel chemistry is becoming more popular for the synthesis of electrode materials. For example, the sol-gel reaction can be performed in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together via the ceramic binder, which can also promote ion transport. Furthermore, the CCE structure has a high active surface area and is chemical and thermally robust. We have investigated CCE materials prepared using 3-aminopropyl trimethoxysilane. Electrochemical experiments (cyclic voltammetry, electrochemical impedance spectroscopy) were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the Cu-Cl thermochemical cycle. Our initial results have shown that CCE-based electrodes vastly outperform a bare carbon electrode, and thus are highly promising and cost-effective electrode material. Subsequent experiments involved the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements will be presented. (author)

  7. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Easton, E.B. [Faculty of Science, Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)], E-mail: ranga@uoit.ca, Brad.Easton@uoit.ca

    2009-07-01

    Sol-gel chemistry is becoming more popular for the synthesis of electrode materials. For example, the sol-gel reaction can be performed in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together via the ceramic binder, which can also promote ion transport. Furthermore, the CCE structure has a high active surface area and is chemical and thermally robust. We have investigated CCE materials prepared using 3-aminopropyl trimethoxysilane. Electrochemical experiments (cyclic voltammetry, electrochemical impedance spectroscopy) were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the Cu-Cl thermochemical cycle. Our initial results have shown that CCE-based electrodes vastly outperform a bare carbon electrode, and thus are highly promising and cost-effective electrode material. Subsequent experiments involved the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements will be presented. (author)

  8. Quantum conductance of carbon nanotube peapods

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Mazzoni, Mario S.C.; Louie, Steven G.

    2003-01-01

    We present a first-principles study of the quantum conductance of hybrid nanotube systems consisting of single-walled carbon nanotubes (SWCNTs) encapsulating either an isolated single C60 molecule or a chain of C60 molecules (nanotube peapods). The calculations show a rather weak bonding interaction between the fullerenes and the SWCNTs. The conductance of a (10,10) SWCNT with a single C60 molecule is virtually unaffected at the Fermi level, but exhibits quantized resonant reductions at the molecular levels. The nanotube peapod arrangement gives rise to high density of states for the fullerene highest occupied molecular orbital and lowest unoccupied molecular orbital bands

  9. In-situ ionic conductivity measurement of lithium ceramics under high energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Nakazawa, Tetsuya; Noda, Kenji; Ishii, Yoshinobu; Ohno, Hideo; Watanabe, Hitoshi; Matsui, Hisayuki.

    1992-01-01

    To obtain fundamental information regarding the radiation damage in some lithium ceramics, e.g. Li 2 O, Li 4 SiO 4 etc., candidate of breeder materials exposed to severe irradiation environment, an in-situ experiment technique for the ionic conductivity measurement, which allows the specimen temperature control and the beam current monitoring, have been developed. This paper describes the features of an apparatus to measure in situ the ionic conductivity under the irradiation environment and presents some results of ionic conductivity measured for typical ceramic breeders using this apparatus. (J.P.N.)

  10. Temperature dependent dielectric relaxation and ac-conductivity of alkali niobate ceramics studied by impedance spectroscopy

    Science.gov (United States)

    Yadav, Abhinav; Mantry, Snigdha Paramita; Fahad, Mohd.; Sarun, P. M.

    2018-05-01

    Sodium niobate (NaNbO3) ceramics is prepared by conventional solid state reaction method at sintering temperature 1150 °C for 4 h. The structural information of the material has been investigated by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM). The XRD analysis of NaNbO3 ceramics shows an orthorhombic structure. The FE-SEM micrograph of NaNbO3 ceramics exhibit grains with grain sizes ranging between 1 μm to 5 μm. The surface coverage and average grain size of NaNbO3 ceramics are found to be 97.6 % and 2.5 μm, respectively. Frequency dependent electrical properties of NaNbO3 is investigated from room temperature to 500 °C in wide frequency range (100 Hz-5 MHz). Dielectric constant, ac-conductivity, impedance, modulus and Nyquist analysis are performed. The observed dielectric constant (1 kHz) at transition temperature (400 °C) are 975. From conductivity analysis, the estimated activation energy of NaNbO3 ceramics is 0.58 eV at 10 kHz. The result of Nyquist plot shows that the electrical behavior of NaNbO3 ceramics is contributed by grain and grain boundary responses. The impedance and modulus spectrum asserts that the negative temperature coefficient of resistance (NTCR) behavior and non-Debye type relaxation in NaNbO3.

  11. Electrically conductive ceramics and new joining technology for applications in HTR engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hille, Carmen, E-mail: carmen.hille@ilkdresden.de [Dresden University of Technology (TU Dresden), Institute of Power Engineering, Chair of Hydrogen Technology and Nuclear Power Engineering, George-Baehr-Str. 3b, D-01062 Dresden (Germany); Lippmann, Wolfgang, E-mail: wolfgang.lippmann@tu-dresden.de [Dresden University of Technology (TU Dresden), Institute of Power Engineering, Chair of Hydrogen Technology and Nuclear Power Engineering, George-Baehr-Str. 3b, D-01062 Dresden (Germany); Hurtado, Antonio, E-mail: antonio.hurtado@tu-dresden.de [Dresden University of Technology (TU Dresden), Institute of Power Engineering, Chair of Hydrogen Technology and Nuclear Power Engineering, George-Baehr-Str. 3b, D-01062 Dresden (Germany)

    2012-10-15

    Ceramic constructional components are quite extensively required for operation of high-temperature nuclear reactors. Functional ceramics, in addition to constructional ceramics, are increasingly coming into the focus of research. Ceramic materials are predestined for use at high temperatures and in corrosive atmospheres. Modification of silicon carbide (SiC) by targeted doping, for instance, produces a suitable material for the production of heating conductors and thermoelectric generators. As a construction material, silicon carbide (SiC) is especially interesting due to its very good thermal, mechanical and radiological properties. SiC, furthermore, performs well when activated by neutron irradiation, with the induced activation subsiding after only a few hours (). This property vector makes it an ideal starting material for use in a wide range of functional elements in high-temperature power engineering, particularly in high-temperature nuclear reactor engineering (e.g. V/HTR) including thermochemical plants for hydrogen generation or Synfuel production. In principle, it is possible to produce all-ceramic assemblies consisting of a thermoelectric generator and a sensor that can provide reliable measurement signals under extreme conditions in the high-temperature range without external power supply. This paper explains the feasibility of laser-joining such modified non-oxide ceramics, how to make electrically conductive joints, and thus, how to design complex assemblies. The parameters required for an optimal laser process to join ceramic materials were determined in extensive preliminary experiments. These investigations focused on the specific electrical resistances and optical properties. Specifically developed brazing fillers were fine-tuned so that the joints of the ceramics improved in terms of their physical interactions, chemical reactions and ability to bond or key chemically and mechanically with the ceramic surfaces. Thereby, the electrical

  12. Electrically conductive ceramics and new joining technology for applications in HTR engineering

    International Nuclear Information System (INIS)

    Hille, Carmen; Lippmann, Wolfgang; Hurtado, Antonio

    2012-01-01

    Ceramic constructional components are quite extensively required for operation of high-temperature nuclear reactors. Functional ceramics, in addition to constructional ceramics, are increasingly coming into the focus of research. Ceramic materials are predestined for use at high temperatures and in corrosive atmospheres. Modification of silicon carbide (SiC) by targeted doping, for instance, produces a suitable material for the production of heating conductors and thermoelectric generators. As a construction material, silicon carbide (SiC) is especially interesting due to its very good thermal, mechanical and radiological properties. SiC, furthermore, performs well when activated by neutron irradiation, with the induced activation subsiding after only a few hours (). This property vector makes it an ideal starting material for use in a wide range of functional elements in high-temperature power engineering, particularly in high-temperature nuclear reactor engineering (e.g. V/HTR) including thermochemical plants for hydrogen generation or Synfuel production. In principle, it is possible to produce all-ceramic assemblies consisting of a thermoelectric generator and a sensor that can provide reliable measurement signals under extreme conditions in the high-temperature range without external power supply. This paper explains the feasibility of laser-joining such modified non-oxide ceramics, how to make electrically conductive joints, and thus, how to design complex assemblies. The parameters required for an optimal laser process to join ceramic materials were determined in extensive preliminary experiments. These investigations focused on the specific electrical resistances and optical properties. Specifically developed brazing fillers were fine-tuned so that the joints of the ceramics improved in terms of their physical interactions, chemical reactions and ability to bond or key chemically and mechanically with the ceramic surfaces. Thereby, the electrical

  13. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  14. The isothermal conductivity improvement in zirconia-based ceramics under 24 GHz microwave heating

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Ayano, Keiko; Teranishi, Takashi; Hayashi, Hidetaka

    2014-01-01

    Abstract Under 24-GHz millimetre-wave irradiation heating ionic conductivity of zirconia base ceramics was up to 20 times higher than that of a conventionally-heated sample at the same temperature of 400 °C. The degree of enhancement could be altered by changing the stabilising atom from Y to Yb. Enhancement of ionic conduction was prominent in the setup condition of larger self-heating ratio and larger MMW absorbing materials. The isothermal improvement of ionic conductivity under MMW irradiation would be ascribed to the non-thermal effect. - Highlights: • Under millimetre-wave irradiation heating ionic conductivity of zirconia ceramics was examined. • It was up to 20 times higher than that of a conventionally heating condition. • The activation process was examined in relation to the non-thermal effects. • The operation temperature could be lowered while maintaining the ionic conductivity

  15. Percolative ionic conduction in the LiAlSiO4 glass-ceramic system

    International Nuclear Information System (INIS)

    Biefeld, R.M.; Pike, G.E.; Johnson, R.T. Jr.

    1977-01-01

    The effect f crystallinity on the lithium ion conductivity in LiAlSiO 4 glass and glass-ceramic solid electrolytes has been determined. The ionic conductivity is thermally activated with an activation energy and pre-exponential factor that change in a marked and nonsimple manner as the volume fraction of crystallinity changes. These results are explained by using a continuum percolation model (effective-medium approximation) which assumes that ionic conduction in the glass-ceramic is almost entirely within the glass phase until the crystalline volume fraction rises above approx. 55%. The LiAlSiO 4 system would seem to be nearly ideal for application of percolation theory since the crystalline phase, β eucryptite, has nearly the same composition as the glass phase. Hence, as the crystallite volume fraction increases in the glass ceramic, the residual glass composition and conductivity remain the same. This is the first application of percolation theory to ionic transport in glass-ceramics and excellent agreement is obtained between theory and experiment for the LiAlSiO 4 system

  16. A novel approach for the fabrication of carbon nanofibre/ceramic porous structures

    KAUST Repository

    Walter, Claudia

    2013-11-01

    This paper describes the fabrication of hybrid ceramic/carbon scaffolds in which carbon nanofibres and multi-walled carbon nanotubes fully cover the internal walls of a microporous ceramic structure that provides mechanical stability. Freeze casting is used to fabricate a porous, lamellar ceramic (Al2O3) structure with aligned pores whose width can be controlled between 10 and 90μm. Subsequently, a two step chemical vapour deposition process that uses iron as a catalyst is used to grow the carbon nanostructures inside the scaffold. This catalyst remains in the scaffold after the growth process. The formation of the alumina scaffold and the influence of its structure on the growth of nanofibres and tubes are investigated. A set of growth conditions is determined to produce a dense covering of the internal walls of the porous ceramic with the carbon nanostructures. The limiting pore size for this process is located around 25μm. © 2013 Elsevier Ltd.

  17. A continuing study of electrically conducting ceramics. Final report, August 9, 1978 - March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    A series of 36 perovskite ceramics based on SrZrO/sub 3/ has been prepared and investigated as potential materials for electrodes for MHD systems using hydrogen as a fuel. All ceramics prepared were found to be relatively dark in color, indicating optical absorptions associated with the existence of conduction electrons. Many were found to be soft and crumbly after firing at 1400/sup 0/ or 1500/sup 0/C, but became hard and often quite shiny when fired at 1650/sup 0/C using a special graphite induction furnace. In most cases, this increase in hardness was also accompanied by a significant density increase. Most ceramics were found to be composed of second perovskite structures, i.e. manganates of Ba, Ca, Sr or La, in addition to the zirconate phase. Their room temperature electrical resistivity was determined by the van der Paaw method. Results show that resistivity falls below 100 ohm-cm (the value acceptable for MHD electrodes) for certain ceramics of the types tested. The resistivity value was found to vary significantly with firing temperature; this can be correlated with the crystal structures and number of phases within the ceramic. Weight loss measurements done at 1440/sup 0/C have enabled three ceramics to be identified as potential materials for thermoelectric converters requiring high temperature structural and chemical stability in oxidizing atmospheres. An appendix reviews the current status of the basis for development of perovskite ceramics and specific materials are discussed on the basis of relevant thermoelectric properties. Also included is a review of semiconductor thermocouples and of materials selection for insulators and electrodes for use in MHD systems. 91 refs., 3 figs., 10 tabs.

  18. Dense ceramic membranes based on ion conducting oxides

    International Nuclear Information System (INIS)

    Fontaine, M.L.; Larring, Y.; Bredesen, R.; Norby, T.; Grande, T.

    2007-01-01

    This chapter reviews the recent progress made in the fields of high temperature oxygen and hydrogen separation membranes. Studies of membranes for oxygen separation are mainly focusing on materials design to improve flux, and to lesser extent, related to stability issues. High oxygen fluxes satisfying industrial requirements can be obtained but, for many materials, the surface exchange rate is limiting the performance. The current status on electrolyte-type and mixed proton and electron conducting membranes is outlined, highlighting materials with improved stability in typical applications as solid oxide fuel cell technology and gas separation. In our presentation more fundamental aspects related to transport properties, chemical and mechanical stability of membrane materials are also treated. It is concluded that a significantly better understanding of the long term effects of operation in chemical gradients is needed for these types of membrane materials. (authors)

  19. Ion-conducting ceramic apparatus, method, fabrication, and applications

    Science.gov (United States)

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2012-03-06

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  20. Impedance and ac conductivity studies of Ba (Pr1/2Nb1/2) O3 ceramic

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Impedance and a.c. conductivity studies of ... Abstract. Impedance and electrical conduction studies of Ba(Pr1/2Nb1/2)O3 ceramic prepared through conventional ceramic fabrication technique are presented. The crystal symmetry, space group and unit cell ...

  1. Enhancement of ionic conductivity in stabilized zirconia ceramics under millimeter-wave irradiation heating

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Ayano, Keiko; Hayashi, Hidetaka

    2011-01-01

    Ionic conductivity in yttria-stabilized zirconia ceramics under millimeter-wave irradiation heating was compared with that obtained using conventional heating. The former was found to result in higher conductivity than the latter. Enhancement of the ionic conductivity and the reduction in activation energy seemed to depend on self-heating resulting from the millimeter-wave irradiation. Millimeter-wave irradiation heating restricted the degradation in conductivity accompanying over-substitution, suggesting the optimum structure that provided the maximum conductivity could be different between the two heating methods.

  2. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  3. Carbon dioxide electrolysis using a ceramic electrolyte. [for space processing

    Science.gov (United States)

    Erstfeld, T. E.; Mullins, O., Jr.; Williams, R. J.

    1979-01-01

    This paper discusses the results of an experimental study of the electrical aspects of carbon dioxide electrolysis using a ceramic electrolyte. The electrolyte compositions used in this study are 8% Y2O3 stabilized ZrO2, 7.5% CaO stabilized ZrO2, and 5% Y2O3 stabilized ThO2. Results indicate that the 8% Y2O3 stabilized ZrO2 is the best material to use for electrolysis, in terms of current as a function of voltage and temperature, and in terms of efficiency of oxide ion flow through it. The poorest results were obtained with the 5% Y2O3 stabilized ThO2 composition. An electrolysis system which might be employed to reclaim oxygen and carbon from effluents of space manufacturing, assuming that an industry would have to electrolyze 258,000 tonnes of CO2 per year, is predicted to require a total cell area of 110,000 sq m of 1 mm thickness and electrical capacity of 441 MW.

  4. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Easton, E.B. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Science

    2009-07-01

    A thermochemical cycle is a process by which water is decomposed into hydrogen and oxygen through a series of chemical reactions. The chemicals that are used in these reactions are regenerated and recycled during the process. Sol-gel chemistry is becoming more common for the synthesis of electrode materials. The sol-gel reaction can be conducted in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together through the ceramic binder, which can also promote ion transport. The CCE structure also has a high active surface area and is chemically and thermally robust. This paper presented an investigation of CCE materials prepared using 3-aminopropyl trimethoxysilane. Several electrochemical experiments including cyclic voltammetry and electrochemical impedance spectroscopy were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the copper-chlorine thermochemical cycle. Subsequent experiments included the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements were also presented. Specifically, the paper presented the experiment with particular reference to the CCE preparation; electrochemical experiments; thermal analysis; and scanning electron microscopy. Results were also provided. These included TGA analysis; scanning electron microscopy analysis; electrochemical characterization; and anodic polarization. Characterization of these CCE material demonstrated that they had good thermal stability, could be used at high temperatures, and were therefore, very promising anode materials. 15 refs., 7 figs.

  5. Electrospinning of Ceramic Solid Electrolyte Nanowires for Lithium-Ion Batteries with Enhanced Ionic Conductivity

    Science.gov (United States)

    Yang, Ting

    Solid electrolytes have great potential to address the safety issues of Li-ion batteries, but better synthesis methods are still required for ceramics electrolytes such as lithium lanthanum titanate (LLTO) and lithium lanthanum zirconate (LLZO). Pellets made from ceramic nanopowders using conventional sintering can be porous due to the agglomeration of nanoparticles (NPs). Electrospinning is a simple and versatile technique for preparing oxide ceramic nanowires (NWs) and was used to prepare electrospun LLTO and LLZO NWs. Pellets prepared from the electrospun LLTO NWs had higher density, less void space, and higher Li+ conductivity compared to those comprised of LLTO prepared with conventional sol-gel methods, which demonstrated the potential that electrospinning can provide towards improving the properties of sol-gel derived ceramics. Cubic phase LLZO was stabilized at room temperature in the form of electrospun NWs without extrinsic dopants. Bulk LLZO with tetragonal structure was transformed to the cubic phase using particle size reduction via ball milling. Heating conditions that promoted particle coalescence and grain growth induced a transformation from the cubic to tetragonal phase in both types of nanostructured LLZO. Composite polymer solid electrolyte was fabricated using LLZO NWs as the filler and showed an improved ionic conductivity at room temperature. Nuclear magnetic resonance studies show that LLZO NWs partially modify the polymer matrix and create preferential pathways for Li+ conduction through the modified polymer regions. Doping did not have significant effect on improving the overall conductivity as the interfaces played a predominant role. By comparing fillers with different morphologies and intrinsic conductivities, it was found that both NW morphology and high intrinsic conductivity are desired.

  6. Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes

    Science.gov (United States)

    Widanarto, W.; Ramdhan, A. M.; Ghoshal, S. K.; Effendi, M.; Cahyanto, W. T.; Warsito

    An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-x)TeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC) frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6), monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10-7 S cm-1 at the frequency of 54 Hz and in the temperature range of 323-473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures.

  7. Enhanced thermal conductance of polymer composites through embeddingaligned carbon nanofibers

    Directory of Open Access Journals (Sweden)

    Dale K. Hensley

    2016-07-01

    Full Text Available The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers.

  8. Changes to Electrical Conductivity in Irradiated Carbon-Nickel Nanocomposites

    Science.gov (United States)

    2010-03-01

    10 Figure 4. Radiation tolerances of some thermoset resins. Light shaded region is moderate damage and dark shaded...for all types of engineering applications include a diverse range of materials from plastics and ceramics to exotic alloys and carbon composites...Figure 4. Radiation tolerances of some thermoset resins. Light shaded region is moderate damage and dark shaded region is severe damage [17]. 18

  9. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  10. Enhanced proton conductivity of yttrium-doped barium zirconate with sinterability in protonic ceramic fuel cells

    International Nuclear Information System (INIS)

    Park, Ka-Young; Seo, Yongho; Kim, Ki Buem; Song, Sun-Ju; Park, Byoungnam; Park, Jun-Young

    2015-01-01

    Highlights: • Report effects of ceramic processing methods on the electrical conductivity of BZY. • Present effects of sintering aids on the conductivity and density of BZY. • CuO is the most effective sintering aid for the BZY. • Polymer gelation is the most effective method in terms of conductivity of BZY. • Grain boundary conductivity of the polymer gelation BZY is higher than others. - Abstract: In this study, we report the effects of various ceramic processing methods with different sintering aids on the relative density, crystallinity, microstructure, and electrical conductivity of proton conducting BaZr 0.85 Y 0.15 O 3−δ (BZY) pellets in details. First, the BZY ceramic pellets are fabricated by the solid-state reactive sintering by adding diverse sintering aids including CuO, NiO, ZnO, SnO, MgO, and Al 2 O 3 . Among these, CuO is found to be the most effective sintering aid in terms of the sintering temperature and total conductivity. However, transition metals as sintering aids have detrimental effects on the electrical conductivity of the BZY electrolytes. Second, the BZY electrolytes have been synthesized by four different methods: the solid-state, combustion, hydrothermal, and polymer gelation methods. The BZY pellets synthesized by the polymer gelation method exhibit dense microstructure with a high relative density of 95.3%. Moreover, the electrical conductivity of the BZY pellets synthesized by the polymer gelation method is higher than those prepared by the solid-state methods under the same test conditions: 1.28 × 10 −2 S cm −1 (by the polymer gelation method) vs. 0.53 × 10 −2 S cm −1 by the solid-state method at 600 °C in wet 5% H 2 in Ar

  11. Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes

    Directory of Open Access Journals (Sweden)

    W. Widanarto

    Full Text Available An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-xTeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6, monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10−7 S cm−1 at the frequency of 54 Hz and in the temperature range of 323–473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures. Keywords: Zinc-tellurite, Glass-ceramics, X-ray diffraction, Ionic conductivity, Lithium oxide

  12. Interpreting equilibrium-conductivity and conductivity-relaxation measurements to establish thermodynamic and transport properties for multiple charged defect conducting ceramics.

    Science.gov (United States)

    Zhu, Huayang; Ricote, Sandrine; Coors, W Grover; Kee, Robert J

    2015-01-01

    A model-based interpretation of measured equilibrium conductivity and conductivity relaxation is developed to establish thermodynamic, transport, and kinetics parameters for multiple charged defect conducting (MCDC) ceramic materials. The present study focuses on 10% yttrium-doped barium zirconate (BZY10). In principle, using the Nernst-Einstein relationship, equilibrium conductivity measurements are sufficient to establish thermodynamic and transport properties. However, in practice it is difficult to establish unique sets of properties using equilibrium conductivity alone. Combining equilibrium and conductivity-relaxation measurements serves to significantly improve the quantitative fidelity of the derived material properties. The models are developed using a Nernst-Planck-Poisson (NPP) formulation, which enables the quantitative representation of conductivity relaxations caused by very large changes in oxygen partial pressure.

  13. Flyweight, Superelastic, Electrically Conductive, and Flame-Retardant 3D Multi-Nanolayer Graphene/Ceramic Metamaterial.

    Science.gov (United States)

    Zhang, Qiangqiang; Lin, Dong; Deng, Biwei; Xu, Xiang; Nian, Qiong; Jin, Shengyu; Leedy, Kevin D; Li, Hui; Cheng, Gary J

    2017-07-01

    A ceramic/graphene metamaterial (GCM) with microstructure-derived superelasticity and structural robustness is achieved by designing hierarchical honeycomb microstructures, which are composited with two brittle constituents (graphene and ceramic) assembled in multi-nanolayer cellular walls. Attributed to the designed microstructure, well-interconnected scaffolds, chemically bonded interface, and coupled strengthening effect between the graphene framework and the nanolayers of the Al 2 O 3 ceramic (NAC), the GCM demonstrates a sequence of multifunctional properties simultaneously that have not been reported for ceramics and ceramics-matrix-composite structures, such as flyweight density, 80% reversible compressibility, high fatigue resistance, high electrical conductivity, and excellent thermal-insulation/flame-retardant performance simultaneously. The 3D well-ordered graphene aerogel templates are strongly coupled with the NAC by the chemically bonded interface, exhibiting mutual strengthening, compatible deformability, and a linearly dependent relationship between the density and Young's modulus. Considerable size effects of the ceramic nanolayers on the mechanical properties are revealed in these ceramic-based metamaterials. The designed hierarchical honeycomb graphene with a fourth dimensional control of the ceramic nanolayers on new ways to scalable fabrication of advanced multifunctional ceramic composites with controllable design suggest a great potential in applications of flexible conductors, shock/vibration absorbers, thermal shock barriers, thermal insulation/flame-retardant skins, and porous microwave-absorbing coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation and mechanical properties of carbon nanotube-silicon nitride nano-ceramic matrix composites

    Science.gov (United States)

    Tian, C. Y.; Jiang, H.

    2018-01-01

    Carbon nanotube-silicon nitride nano-ceramic matrix composites were fabricated by hot-pressing nano-sized Si3N4 powders and carbon nanotubes. The effect of CNTs on the mechanical properties of silicon nitride was researched. The phase compositions and the microstructure characteristics of the samples as well as the distribution of carbon nanotube in the silicon nitride ceramic were analyzed by X-ray diffraction and scanning electron microscope. The results show that the microstructure of composites consists mainly of α-Si3N4, β-Si3N4, Si2N2O and carbon natubes. The addition of proper amount of carbon nanotubes can improve the fracture toughness and the flexural strength, and the optimal amount of carbon nanotube are both 3wt.%. However the Vickers hardness values decrease with the increase of carbon nanotubes content.

  15. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  16. The electronic conduction of glass and glass ceramics containing various transition metal oxides

    International Nuclear Information System (INIS)

    Yoshida, T.; Matsuno, Y.

    1980-01-01

    Nb 2 O 5 -V 2 O 5 -P 2 O 5 glasses containing only Group Va oxides have been investigated to elucidate their electronic conduction and structure, as compared with other glasses obtained by the addition of various transition metal oxides to vanadium phosphate. The P 2 O 5 introduction for Nb 2 O 5 in this glass with the same amount of V 2 O 5 increased the conductivity about two times. Glass ceramics having high conductivity increased by two orders of magnitude and the activation energy for conduction decreased from about 0.5 to 0.2 eV. The crystals were confirmed to be (V,Nb) 2 O 5 and Nb phosphate, one of which was highly conductive and developed a pillar-like shape with a length of more than 20 μm. (orig.)

  17. Thermal conductivity of aluminum nitride ceramics. Waermeleitfaehigkeit von Aluminiumnitrid-Keramik

    Energy Technology Data Exchange (ETDEWEB)

    Ruessel, C.; Hofmann, T.; Limmer, G. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Werkstoffwissenschaften 3)

    Aluminium nitride ceramics made by the authors, as well as others produced commercially, mostly using yttrium oxide as an additive, were characterized with respect to their phase and chemical composition, their microstructure, and their thermal conductivity. It was shown that conventional ideas, especially with regard to the correlations between thermal conductivity and the oxygen content and the microstructure, could not withstand a critical examination. Instead, a connection can be seen between the oxygen not bound up in yttrium-aluminum garnet and thermal conductivity. Relatively low thermal conductivities were always observed when yttrium-aluminum garnet was present as a grain-boundary phase; in contrast, high values of thermal conductivity were seen when the yttrium-aluminum garnet was present in the form of isolated grains. (orig.).

  18. Conductive polymers for carbon dioxide sensing

    NARCIS (Netherlands)

    Doan, T.C.D.

    2012-01-01

    Augmented levels of carbon dioxide (CO2) in greenhouses stimulate plant growth through photosynthesis. Wireless sensor networks monitoring CO2 levels in greenhouses covering large areas require preferably low power sensors to minimize energy consumption. Therefore, the main

  19. Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes

    Science.gov (United States)

    Jäckel, N.; Weingarth, D.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V.

    2014-12-01

    This study investigates carbon onions (∼400 m2 g-1) as a conductive additive for supercapacitor electrodes of activated carbon and compares their performance with carbon black with high or low internal surface area. We provide a study of the electrical conductivity and electrochemical behavior between 2.5 and 20 mass% addition of each of these three additives to activated carbon. Structural characterization shows that the density of the resulting film electrodes depends on the degree of agglomeration and the amount of additive. Addition of low surface area carbon black (∼80 m2 g-1) enhances the power handling of carbon electrodes but significantly lowers the specific capacitance even when adding small amounts of carbon black. A much lower decrease in specific capacitance is observed for carbon onions and the best values are seen for carbon black with a high surface area (∼1390 m2 g-1). The overall performance benefits from the addition of any of the studied additives only at either high scan rates and/or electrolytes with high ion mobility. Normalization to the volume shows a severe decrease in volumetric capacitance and only at high current densities nearing 10 A g-1 we can see an improvement of the electrode capacitance.

  20. Thermal conductivity and thermal rectification in unzipped carbon nanotubes

    International Nuclear Information System (INIS)

    Ni Xiaoxi; Li Baowen; Zhang Gang

    2011-01-01

    We study the thermal transport in completely unzipped carbon nanotubes, which are called graphene nanoribbons, partially unzipped carbon nanotubes, which can be seen as carbon-nanotube-graphene-nanoribbon junctions, and carbon nanotubes by using molecular dynamics simulations. It is found that the thermal conductivity of a graphene nanoribbon is much less than that of its perfect carbon nanotube counterparts because of the localized phonon modes at the boundary. A partially unzipped carbon nanotube has the lowest thermal conductivity due to additional localized modes at the junction region. More strikingly, a significant thermal rectification effect is observed in both partially unzipped armchair and zigzag carbon nanotubes. Our results suggest that carbon-nanotube-graphene-nanoribbon junctions can be used in thermal energy control.

  1. Thermal conductivity of carbon nanotube cross-bar structures

    International Nuclear Information System (INIS)

    Evans, William J; Keblinski, Pawel

    2010-01-01

    We use non-equilibrium molecular dynamics (NEMD) to compute the thermal conductivity (κ) of orthogonally ordered cross-bar structures of single-walled carbon nanotubes. Such structures exhibit extremely low thermal conductivity in the range of 0.02-0.07 W m -1 K -1 . These values are five orders of magnitude smaller than the axial thermal conductivity of individual carbon nanotubes, and are comparable to the thermal conductivity of still air.

  2. Application of proton-conducting ceramics and polymer permeable membranes for gaseous tritium recovery

    International Nuclear Information System (INIS)

    Asakura, Yamato; Sugiyama, Takahiko; Kawano, Takao; Uda, Tatsuhiko; Tanaka, Masahiro; Tsuji, Naruhito; Katahira, Koji; Iwahara, Hiroyasu

    2004-01-01

    In order to carry out deuterium plasma experiments on the Large Helical Device (LHD), the National Institute for Fusion Science (NIFS) is planning to install a system for the recovery of tritium from exhaust gas and effluent liquid. As well as adopting proven conventional tritium recovery systems, NIFS is planning to apply the latest technologies such as proton-conducting ceramics and membrane-type dehumidifiers in an overall strategy to ensure minimal risk in the tritium recovery process. Application of these new technologies to the tritium recovery system for the LHD deuterium plasma experiment is evaluated quantitatively using recent experimental data. (author)

  3. Thermal conductivity measurements of PTFE and Al2O3 ceramic at sub-Kelvin temperatures

    Science.gov (United States)

    Drobizhev, Alexey; Reiten, Jared; Singh, Vivek; Kolomensky, Yury G.

    2017-07-01

    The design of low temperature bolometric detectors for rare event searches necessitates careful selection and characterization of structural materials based on their thermal properties. We measure the thermal conductivities of polytetrafluoroethylene (PTFE) and Al2O3 ceramic (alumina) in the temperature ranges of 0.17-0.43 K and 0.1-1.3 K, respectively. For the former, we observe a quadratic temperature dependence across the entire measured range. For the latter, we see a cubic dependence on temperature above 0.3 K, with a linear contribution below that temperature. This paper presents our measurement techniques, results, and theoretical discussions.

  4. On the possibility of producing alumina ceramic with a slight electrical conductivity

    CERN Document Server

    Caspers, Fritz

    1989-01-01

    Antistatic alumina ceramic is desirable for certain particle accelerator applications. In general, highly insulating surface close to a charged particle beam must be avoided in order to prevent the formation of ion pockets and other unwanted electrical effects. For the AA vacuum chamber (UHV), an antistatic ferrite has been produced and successfully installed. The fabrication of antistatic alumina might be possible in a similar way. By using certain metal oxides in the cement, which holds the alumina particles together, a slight conductivity could be obtained after the firing and sintering process, without deteriorating the mechanical and outgassing properties of the alumina compound.

  5. Ceramic/Metal Composites with Positive Temperature Dependence of Thermal Conductivity

    International Nuclear Information System (INIS)

    Li Jianhui; Yu Qi; Sun Wei; Zhang Rui; Wang Ke; Li Jingfeng; Ichigozaki, Daisuke

    2013-01-01

    Most materials show decreasing thermal conductivity with increasing temperature, but an opposite temperature dependence of thermal conductivity is required for some industrial applications. The present work was conducted with a motivation to develop composite materials with a positive temperature dependence of thermal conductivity. ZrO 2 / stainless steel powders (304L) composite, with 3% stearic acid, was prepared by normal sintering under the protecting of Ar after mixing by mechanical ball milling technique. With the 304L content increasing from 10% to 20%, the thermal conductivity values increased. For all samples, the thermal conductivity in the temperature range of room temperature to 700 °C decreased with temperature below 300 °C, and then began to increase. The increasing thermal conductivity of the composites (within the high temperature range was attributed to the difference of the thermal conductivity and thermal expansion coefficient between ZrO 2 ceramic and 304L stainless steel powders. Two simple models were also used to estimate the thermal conductivity of the composites, which were in good agreement with the experiment results.

  6. Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology

    International Nuclear Information System (INIS)

    Pantea, Dana; Darmstadt, Hans; Kaliaguine, Serge; Roy, Christian

    2003-01-01

    Conductive carbon blacks from different manufacturers were studied in order to obtain some insight into the relation between their electrical conductivity and their surface properties. The surface chemistry was studied by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS), whereas the topology of the carbon black surface was investigated using low-pressure nitrogen adsorption. All these techniques yield information on the graphitic character of the surface. In general, the electrical conductivity of the conductive blacks increases with the graphitic character of the surface. For low surface area conductive blacks, the electrical conductivity correlates well with the surface chemistry. In the case of the XPS and SIMS data, this correlation is also valid when other types of carbon blacks such as thermal and furnace blacks are included, confirming the determining influence of the carbon black surface chemistry on the electrical conductivity

  7. Two-step sintering of ultrafine-grained barium cerate proton conducting ceramics

    International Nuclear Information System (INIS)

    Wang, Siwei; Zhang, Lei; Zhang, Lingling; Brinkman, Kyle; Chen, Fanglin

    2013-01-01

    Ultra-fine grained dense BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3−δ (BZCYYb) ceramics have been successfully prepared via a two-step sintering method. Co-precipitation method has been adopted to prepare nano-sized BZCYYb precursors with an average particle size of 30 nm. By controlling the sintering profile, an average grain size of 184 nm was obtained for dense BZCYYb ceramics via the two-step sintering method, compared to 445 nm for the conventional sintered samples. The two-step sintered BZCYYb samples showed less impurity and an enhanced electrical conductivity compared with the conventional sintered ones. Further, the two-step sintering method was applied to fabricate anode supported solid oxide fuel cells (SOFCs) using BZCYYb as the electrolyte, resulting in dense ultrafine-grained electrolyte membranes and porous anode substrates with fine particles. Due to the reduced ohmic as well as polarization resistances, the maximum power output of the cells fabricated from the two-step sintering method reached 349 mW m −2 at 700 °C, significantly improved from 172 mW cm −2 for the conventional sintered cells, suggesting that two-step sintering method is very promising for optimizing the microstructure and thus enhancing the electrochemical performances for barium cerate based proton-conducting SOFCs.

  8. Development of a mixed-conductive ceramic membrane for syngas production

    International Nuclear Information System (INIS)

    Etchegoyen, G.

    2005-10-01

    Natural gas conversion into syngas (H 2 +CO) is very attractive for hydrogen and clean fuel production via GTL technology by providing an alternative to oil products and reducing greenhouse gas emission. Syngas production, using a mixed ionic-electronic conducting ceramic membrane, is thought to be particularly promising. The purpose of this PhD thesis was to develop this type of membrane. Mixed-conducting oxide was synthesized, characterized and then, shaped via tape casting and co-sintered in order to obtain multilayer membranes with controlled architectures and microstructures. Oxygen permeation fluxes were measured with a specific device to evaluate membrane performances. As a result, the optimisation of architecture and microstructure made it possible to increase oxygen permeation flux by a factor 30. Additional researches were focused on the oxide composition in order to achieve higher dimensional stability. (author)

  9. Fast densification processes for carbon and ceramic composites; Densification rapide par calefaction de materiaux composites carbones et ceramiques

    Energy Technology Data Exchange (ETDEWEB)

    Delhaes, P. [Bordeaux-1 Univ., Centre de Recherche Paul Pascal, 33 (France); Robin-Brosse, C. [Societe Nationale d' Etude et de Construction de Moteurs d' Aviation (SNECMA), Lab. des Composites Thermo-Structuraux, 33 - Pessac (France); David, P. [CEA Centre d' Etudes du Ripault, Dept. Materiaux, 37 - Tours (France)

    2006-03-15

    A general introduction of the different vapour infiltration processes developed to prepare carbon-carbon composites is presented. Then a novel method with a liquid precursor, called film boiling or calefaction technique is described and compared with the usual ones. It is shown how this technique is very attractive to prepare carbon and ceramic composites within a short processing time together with a higher carbon yield. Finally the pertinent parameters of this process to evaluate its advantages and drawbacks for a further industrial development are analysed. (authors)

  10. Fabrication of low specific resistance ceramic carbon composites by ...

    Indian Academy of Sciences (India)

    2017-09-07

    Sep 7, 2017 ... many applications such as discrete resistors used in electronic circuits, pressure sensors used in ... A dispersant, sodium polyacrylate (NaPAA) (1 ml/100 g of ceramic powder) and an anti-foaming agent, n-octanol (100 μl/100 ...

  11. Electrical conductivity of short carbon fibers and carbon black-reinforced chloroprene rubber

    International Nuclear Information System (INIS)

    Khoshniat, A. R.; MirAli, M.; Hemmati, M.; Afshar Taromi, F.; Katbab, A.

    2002-01-01

    Elastomers and plastics are intrinsically insulating materials, but by addition of some conductive particles such as conductive carbon black, carbon fibers and metals, they can change to conductive form. Conductivity of these composites are due to formation of the lattices of conductive filler particles in polymer chains. In this report, conductivity of chloroprene rubber filled with carbon black and carbon fibers as a function of temperature and pressure are studied. Electrical conductivity of chloroprene in a function of temperature and pressure are studied. Electrical conductivity of chloroprene in the presence of carbon black with proper mixing conditions increases to the conductivity level of semiconductors and even in the presence of carbon fibers it increases to the level of a conductor material. Meanwhile, the sensitivity of this compound to heat and pressure rises. Thus these composites have found various applications in the manufacture of heat and pressure sensitive sensors

  12. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weijing [School of Civil Engineering, The University of Sydney, Sydney (Australia); Pupeschi, Simone [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Hanaor, Dorian [School of Civil Engineering, The University of Sydney, Sydney (Australia); Institute for Materials Science and Technologies, Technical University of Berlin (Germany); Gan, Yixiang, E-mail: yixiang.gan@sydney.edu.au [School of Civil Engineering, The University of Sydney, Sydney (Australia)

    2017-05-15

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  13. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    International Nuclear Information System (INIS)

    Dai, Weijing; Pupeschi, Simone; Hanaor, Dorian; Gan, Yixiang

    2017-01-01

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  14. Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers.

    Science.gov (United States)

    Xiang, Changsheng; Lu, Wei; Zhu, Yu; Sun, Zhengzong; Yan, Zheng; Hwang, Chi-Chau; Tour, James M

    2012-01-01

    Conductive carbon material-coated Kevlar fibers were fabricated through layer-by-layer spray coating. Polyurethane was used as the interlayer between the Kevlar fiber and carbon materials to bind the carbon materials to the Kevlar fiber. Strongly adhering single-walled carbon nanotube coatings yielded a durable conductivity of 65 S/cm without significant mechanical degradation. In addition, the properties remained stable after bending or water washing cycles. The coated fibers were analyzed using scanning electron microcopy and a knot test. The as-produced fiber had a knot efficiency of 23%, which is more than four times higher than that of carbon fibers. The spray-coating of graphene nanoribbons onto Kevlar fibers was also investigated. These flexible coated-Kevlar fibers have the potential to be used for conductive wires in wearable electronics and battery-heated armors. © 2011 American Chemical Society

  15. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic

    International Nuclear Information System (INIS)

    He, Fupo; Ren, Weiwei; Tian, Xiumei; Liu, Wei; Wu, Shanghua; Chen, Xiaoming

    2016-01-01

    In a previous study, robust calcium carbonate composite ceramics (CC/PG) were prepared by using phosphate-based glass (PG) as an additive, which showed good cell response. In the present study the in vivo response of porous CC/PG was compared to that of porous biphasic calcium phosphate ceramics (BCP), using a rabbit femoral critical-size grafting model. The materials degradation and bone formation processes were evaluated by general observation, X-ray radiography, micro-computed tomography, and histological examination. The results demonstrated excellent biocompatibility and osteoconductivity, and progressive degradation of CC/PG and BCP. Although the in vitro degradation rate of CC/PG was distinctly faster than that of BCP, at 4 week post-implantation, the bone generation and material degradation of CC/PG were less than those of BCP. Nevertheless, at postoperative week 8, the increment of bone formation and material degradation of CC/PG was pronouncedly larger than that of BCP. These results show that CC/PG is a potential resorbable bone graft aside from the traditional synthetic ones. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vivo response of CC/PG and biphasic calcium phosphate (BCP) was compared. • CC/PG showed faster in vitro degradation rate compared to BCP. • CC/PG showed less in vivo degradation and bone formation than BCP at week 4. • CC/PG had larger increment of degradation and bone formation than BCP at week 8.

  16. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic

    Energy Technology Data Exchange (ETDEWEB)

    He, Fupo, E-mail: fphebm@126.com [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Ren, Weiwei [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Tian, Xiumei [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Liu, Wei; Wu, Shanghua [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Chen, Xiaoming, E-mail: xmchenw@126.com [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China)

    2016-07-01

    In a previous study, robust calcium carbonate composite ceramics (CC/PG) were prepared by using phosphate-based glass (PG) as an additive, which showed good cell response. In the present study the in vivo response of porous CC/PG was compared to that of porous biphasic calcium phosphate ceramics (BCP), using a rabbit femoral critical-size grafting model. The materials degradation and bone formation processes were evaluated by general observation, X-ray radiography, micro-computed tomography, and histological examination. The results demonstrated excellent biocompatibility and osteoconductivity, and progressive degradation of CC/PG and BCP. Although the in vitro degradation rate of CC/PG was distinctly faster than that of BCP, at 4 week post-implantation, the bone generation and material degradation of CC/PG were less than those of BCP. Nevertheless, at postoperative week 8, the increment of bone formation and material degradation of CC/PG was pronouncedly larger than that of BCP. These results show that CC/PG is a potential resorbable bone graft aside from the traditional synthetic ones. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vivo response of CC/PG and biphasic calcium phosphate (BCP) was compared. • CC/PG showed faster in vitro degradation rate compared to BCP. • CC/PG showed less in vivo degradation and bone formation than BCP at week 4. • CC/PG had larger increment of degradation and bone formation than BCP at week 8.

  17. Thermal Conductivity of Ceramic Thermal Barrier and Environmental Barrier Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Bansal, Narottam P.; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Thermal barrier and environmental barrier coatings (TBC's and EBC's) have been developed to protect metallic and Si-based ceramic components in gas turbine engines from high temperature attack. Zirconia-yttria based oxides and (Ba,Sr)Al2Si2O8(BSAS)/mullite based silicates have been used as the coating materials. In this study, thermal conductivity values of zirconia-yttria- and BSAS/mullite-based coating materials were determined at high temperatures using a steady-state laser heat flux technique. During the laser conductivity test, the specimen surface was heated by delivering uniformly distributed heat flux from a high power laser. One-dimensional steady-state heating was achieved by using thin disk specimen configuration (25.4 mm diam and 2 to 4 mm thickness) and the appropriate backside air-cooling. The temperature gradient across the specimen thickness was carefully measured by two surface and backside pyrometers. The thermal conductivity values were thus determined as a function of temperature based on the 1-D heat transfer equation. The radiation heat loss and laser absorption corrections of the materials were considered in the conductivity measurements. The effects of specimen porosity and sintering on measured conductivity values were also evaluated.

  18. Carbon nanotubes-porous ceramic composite by in situ CCVD growth of CNTs

    International Nuclear Information System (INIS)

    Mazumder, Sangram; Sarkar, Naboneeta; Park, Jung Gyu; Han, In Sub; Kim, Ik Jin

    2016-01-01

    A novel approach towards the formation of Carbon nanotubes-porous alumina ceramic composite was attempted by the application of three different reaction techniques. Porous alumina ceramics having micrometer pore dimensions were developed using the direct foaming technique. NaA zeolites were simultaneously synthesized and coated within the porous ceramics by an in situ hydrothermal process and were subjected to a simple ion exchange reaction for preparing the suitable catalyst material for Carbon nanotubes (CNTs) synthesis. The catalytic chemical vapour deposition (CCVD) technique was used to grow CNTs within the porous ceramics and the effect of growth time on the synthesized CNTs were investigated. Phase compositions of the samples were analysed by X-ray diffractometer (XRD). Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) were used for morphology, surface quality and structural analysis. Crystallinity, defects and yield were studied by Raman spectroscopy and thermogravimetric analysis (TGA). - Highlights: • Novel processing route of MWCNTs grown on Cobalt-zeolites-porous ceramics by CCVD. • CCVD time of 120 min produced MWCNTs with most prominent tube-like structure. • 120 min produced highest yield (19.46%) of CNTs with an I_D/I_G ratio of 0.88.

  19. Carbon nanotubes-porous ceramic composite by in situ CCVD growth of CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Sangram; Sarkar, Naboneeta; Park, Jung Gyu [Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University, #360 Daegok-ri, Haemi-myeon, Seosan-si, Chungnam, 356-706 (Korea, Republic of); Han, In Sub [Korea Institute of Energy Research (KIER), #152 Gajeong-gu, Daejeon 305-343 (Korea, Republic of); Kim, Ik Jin, E-mail: ijkim@hanseo.ac.kr [Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University, #360 Daegok-ri, Haemi-myeon, Seosan-si, Chungnam, 356-706 (Korea, Republic of)

    2016-03-01

    A novel approach towards the formation of Carbon nanotubes-porous alumina ceramic composite was attempted by the application of three different reaction techniques. Porous alumina ceramics having micrometer pore dimensions were developed using the direct foaming technique. NaA zeolites were simultaneously synthesized and coated within the porous ceramics by an in situ hydrothermal process and were subjected to a simple ion exchange reaction for preparing the suitable catalyst material for Carbon nanotubes (CNTs) synthesis. The catalytic chemical vapour deposition (CCVD) technique was used to grow CNTs within the porous ceramics and the effect of growth time on the synthesized CNTs were investigated. Phase compositions of the samples were analysed by X-ray diffractometer (XRD). Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) were used for morphology, surface quality and structural analysis. Crystallinity, defects and yield were studied by Raman spectroscopy and thermogravimetric analysis (TGA). - Highlights: • Novel processing route of MWCNTs grown on Cobalt-zeolites-porous ceramics by CCVD. • CCVD time of 120 min produced MWCNTs with most prominent tube-like structure. • 120 min produced highest yield (19.46%) of CNTs with an I{sub D}/I{sub G} ratio of 0.88.

  20. Thermal Conductivity of Carbon Nanotubes Embedded in Solids

    Institute of Scientific and Technical Information of China (English)

    CAO Bing-Yang; HOU Quan-Wen

    2008-01-01

    @@ A carbon-nanotube-atom fixed and activated scheme of non-equilibrium molecular dynamics simulations is put forward to extract the thermal conductivity of carbon nanotubes (CNTs) embedded in solid argon. Though a 6.5% volume fraction of CNTs increases the composite thermal conductivity to about twice as much as that of the pure basal material, the thermal conductivity of CNTs embedded in solids is found to be decreased by 1/8-1/5with reference to that of pure ones. The decrease of the intrinsic thermal conductivity of the solid-embedded CNTs and the thermal interface resistance are demonstrated to be responsible for the results.

  1. Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter

    Directory of Open Access Journals (Sweden)

    Ileana Wald

    2012-01-01

    Full Text Available In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head. We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of calculus to find optimal specifications for the filter. This work is related to the research conducted in Dr. James R. Mihelcic's Civil and Environmental Engineering Lab at USF.

  2. Synthesis, Mechanical Behavior, and Multi-Scale Tribological Performance of Carbon Nanoparticle Reinforced Ceramic Composites

    Science.gov (United States)

    Nieto, Andy

    This dissertation investigates the effects of carbon nanoparticles on the synthesis, mechanical behavior, and tribological performance of ceramic based composites. Specifically graphene Nanoplatelet (GNP) reinforced Al 2O3 and nanodiamond (ND) reinforced WC-Co systems are investigated. Carbon based nanoparticles such as GNPs and NDs are ideal reinforcements for ceramic based composites because of their unique functional and mechanical properties. GNPs have exceptional mechanical properties such as yield strength and elastic modulus, along with superb functional properties such as thermal conductivity and electrical conductivity. NDs possess the highest hardness of any materials, very high elastic modulus, and have a very high thermal conductivity. GNPs are demonstrated to affect the sintering of Al2O 3 matrix composites by wrapping around grains, inhibiting diffusion, and thereby suppressing grain growth. High applied pressures (90 MPa) during sintering are observed to exacerbate grain growth suppression, while promoting attainment of fully dense ceramic composites. Higher applied pressures facilitate the wrapping of GNPs around grains, which promotes the onset of GNP induced grain growth suppression. Grain growth suppression compensates for the decreased hardness induced by low strength of the GNPs phase along the c-axis direction. GNPs enhanced the toughness and wear resistance of the nanocomposites by 21% and 39%, respectively, due to the intrinsic energy dissipating mechanisms such as GNP sheet kinking and sliding and GNP induced phenomena such as micro-cracking and crack bridging. The addition of ND affects the deposition of thermally sprayed coatings. Porosity increased in samples deposited by high velocity oxyacetylene flame spray (HVOF) and decreased in samples deposited by air plasma spray (APS). NDs are believed to inhibit solid state diffusion during splat impact, in the low thermal energy and high kinetic energy HVOF process. The high thermal

  3. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics

    International Nuclear Information System (INIS)

    Senor, D.J.; Youngblood, G.E.; Moore, C.E.; Trimble, D.J.; Woods, J.J.

    1996-06-01

    A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation of irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD β-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination

  4. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics

    International Nuclear Information System (INIS)

    Senor, D.J.; Youngblood, G.E.; Moore, C.E.; Trimble, D.J.; Woods, J.J.

    1997-05-01

    A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation after irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD β-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination

  5. Deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates

    International Nuclear Information System (INIS)

    Eryilmaz, O L; Johnson, J A; Ajayi, O O; Erdemir, A

    2006-01-01

    As an element, carbon is rather unique and offers a range of rare opportunities for the design and fabrication of zero-, one-, two-, and three-dimensional nanostructured novel materials and coatings such as fullerenes, nanotubes, thin films, and free-standing nano-to-macroscale structures. Among these, carbon-based two-dimensional thin films (such as diamond and diamond-like carbon (DLC)) have attracted an overwhelming interest in recent years, mainly because of their exceptional physical, chemical, mechanical, electrical, and tribological properties. In particular, certain DLC films were found to provide extremely low friction and wear coefficients to sliding metallic and ceramic surfaces. Since the early 1990s, carbon has been used at Argonne National Laboratory to synthesize a class of novel DLC films that now provide friction and wear coefficients as low as 0.001 and 10 -11 -10 -10 mm 3 N -1 m -1 , respectively, when tested in inert or vacuum test environments. Over the years, we have optimized these films and applied them successfully to all kinds of metallic and ceramic substrates and evaluated their friction and wear properties under a wide range of sliding conditions. In this paper, we will provide details of our recent work on the deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates. We will also provide chemical and structural information about these films and describe the fundamental tribological mechanisms that control their unusual friction and wear behaviour

  6. Analysis of energy consumption and carbon dioxide emissions in ceramic tile manufacture

    International Nuclear Information System (INIS)

    Monfort, E.; Mezquita, A.; Granel, R.; Vaquer, E.; Escrig, A.; Miralles, A.; Zaera, V.

    2010-01-01

    The ceramic tile manufacturing process is energy intensive since it contains several stages in which the product is subject to thermal treatment. The thermal energy used in the process is usually obtained by combustion of natural gas, which is a fossil fuel whose oxidation produces emissions of carbon dioxide, a greenhouse gas. Energy costs account for 15% of the average direct manufacturing costs, and are strongly influenced by the price of natural gas, which has increased significantly in the last few years. Carbon dioxide emissions are internationally monitored and controlled in the frame of the Kyoto Protocol. Applicable Spanish law is based on the European Directive on emissions trading, and the assignment of emissions rights is based on historical values in the sectors involved. Legislation is scheduled to change in 2013, and the resulting changes will directly affect the Spanish ceramic tile manufacturing industry, since many facilities will become part of the emissions trading system. The purpose of this study is to determine current thermal energy consumption and carbon dioxide emissions in the ceramic tile manufacturing process. A comprehensive sectoral study has been carried out for this purpose on several levels: the first analyses energy consumption and carbon dioxide emissions in the entire industry; the second determines energy consumption and carbon dioxide emissions in industrial facilities over a long period of time (several months); while the third level breaks down these values, determining energy consumption and emissions in terms of the product made and the manufacturing stage. (Author) 8 refs.

  7. Quantum conductance of carbon nanotubes in a wide energy range

    International Nuclear Information System (INIS)

    Zhang, Yong

    2015-01-01

    The differential conductance of armchair and zigzag carbon nanotubes (CNTs) in a wide energy range has been numerically calculated by using the tight-binding model and the Green’s function method. The effects of the contact coupling between CNTs and electrodes on conductance have been explored. The ballistic conductance is proportional to the band numbers and has a ladder-like feature. As the increase of the contact coupling, the conductance oscillations appear and they are robust against the coupling. More importantly, on the first step of the conductance ladder, the armchair CNTs have two quasi-periodic conductance oscillations, i.e. a rapid conductance oscillation superimposed on a slow fluctuation background; while the zigzag CNTs have only one conductance oscillation. But on the second conductance step, all CNTs have two quasi-periodic conductance oscillations. The physical origin of the conductance oscillations has been revealed

  8. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2017-10-17

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  9. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Science.gov (United States)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  10. Ambient effects on the electrical conductivity of carbon nanotubes

    DEFF Research Database (Denmark)

    Roch, Aljoscha; Greifzu, Moritz; Roch Talens, Esther

    2015-01-01

    We show that the electrical conductivity of single walled carbon nanotubes (SWCNT) networks is affected by oxygen and air humidity under ambient conditions by more than a magnitude. Later, we intentionally modified the electrical conductivity by functionalization with iodine and investigated...

  11. Tritium Sequestration in Gen IV NGNP Gas Stream via Proton Conducting Ceramic Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fanglin Frank [Univ. of South Carolina, Columbia, SC (United States); Adams, Thad M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States)

    2011-09-30

    Several types of high-temperature proton conductors based on SrCeO3 and BaCeO3 have been systematically investigated in this project for tritium separation in NGNP applications. One obstacle for the field application is the chemical stability issues in the presence of steam and CO2 for these proton conductors. Several strategies to overcome such issues have been evaluated, including A site doping and B site co-doping method for perovskite-structured proton conductors. Novel zirconium-free proton conductors have also been developed with improved electrical conductivity and enhanced chemical stability. Novel catalytic materials for the proton-conducting separation membranes have been investigated. A tubular geometry proton-conducting membrane has been developed for the proton separation membranes. Total dose rate estimated from tritium decay (beta emission) under realistic membrane operating conditions, combined with electron irradiation experiments, indicates that proton ceramic materials possess the appropriate radiation stability for this application.

  12. Injection molding of ceramic filled polypropylene: The effect of thermal conductivity and cooling rate on crystallinity

    International Nuclear Information System (INIS)

    Suplicz, A.; Szabo, F.; Kovacs, J.G.

    2013-01-01

    Highlights: • BN, talc and TiO 2 in 30 vol% were compounded with polypropylene matrix. • According to the DSC measurements, the fillers are good nucleating agents. • The thermal conductivity of the fillers influences the cooling rate of the melt. • The higher the cooling rate is, the lower the crystallinity in the polymer matrix. - Abstract: Three different nano- and micro-sized ceramic powders (boron-nitride (BN), talc and titanium-dioxide (TiO 2 )) in 30 vol% have been compounded with a polypropylene (PP) matrix. Scanning electron microscopy (SEM) shows that the particles are dispersed smoothly in the matrix and larger aggregates cannot be discovered. The cooling gradients and the cooling rate in the injection-molded samples were estimated with numerical simulations and finite element analysis software. It was proved with differential scanning calorimetry (DSC) measurements that the cooling rate has significant influence on the crystallinity of the compounds. At a low cooling rate BN works as a nucleating agent so the crystallinity of the compound is higher than that of unfilled PP. On the other hand, at a high cooling rate, the crystallinity of the compound is lower than that of unfilled PP because of its higher thermal conductivity. The higher the thermal conductivity is, the higher the real cooling rate in the material, which influences the crystallization kinetics significantly

  13. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    Samarium (Sm 3+) doped BiFeO 3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopted a rapid heating as well as cooling during the sintering process. The pyroelectric coefficient increased from 93 to 137 μC/m 2 K as the Sm 3+ doping level increased from 1 mol% to 8 mol%. Temperature dependence of the pyroelectric coefficient showed an abrupt decrease above 80 °C in all samples, which was associated with the increase of electrical conductivity with temperature. This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased with increasing Sm 3+ doping level. On the basis of our results, the effects of Sm doping level on the pyroelectric and electrical properties of the BFO were revealed. © 2011 Elsevier Ltd. All rights reserved.

  14. Thermal Conductivity and Water Vapor Stability of Ceramic HfO2-Based Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    HfO2-Y2O3 and La2Zr2O7 are candidate thermal/environmental barrier coating materials for gas turbine ceramic matrix composite (CMC) combustor liner applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature phase stability of plasma-sprayed coatings and/or hot-pressed HfO2-5mol%Y2O3, HfO2-15mol%Y2O3 and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC Hexoloy or CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications will also be discussed.

  15. Durable, High Thermal Conductivity Melt Infiltrated Ceramic Composites for Turbine Engine Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Durable, creep-resistant ceramic composites are necessary to meet the increased operating temperatures targeted for advanced turbine engines. Higher operating...

  16. Effects of cation contaminants in conductive TiO2 ceramics

    Science.gov (United States)

    Yan, M. F.; Rhodes, W. W.

    1982-12-01

    Ten cation contaminants, namely Al, Ga, Co, Fe, Mg, Zn, Zr, Ca, Sr, and Ba were investigated for their effects on the electrical properties, microstructures, and discoloration of conductive TiO2 ceramics. It was found that Al, Ga, Co, Fe, and Mg cause discoloration and increase the electrical resistivity by a factor of 104 to 106 in Nb-doped TiO2 ceramics. The other dopants do not introduce such changes in TiO2. The electrical properties, microstructures, and discoloration were measured in specimens of AlxNb0.007Ti0.993-xO2 with 0≤x≤0.01. When the Al content exceeds a critical value, ranging from 0.48% at 1400 °C to 0.25% at 1200 °C, the electrical resistivities and grain size increase rapidly, and the specimen is discolored from the original black to an ivory white color. Color boundary migration induced by Al diffusion in Nb-doped TiO2 was quantitatively measured. From the kinetics of the boundary migration, the Al diffusivity (D) was calculated to be D=2.67 exp(-53.3 kcal/mole/RT) cm2/s in the temperature range of 1200 to 1400 °C. The rapid diffusion of the small cations, namely Al, Ga, Co, Fe, and Mg, results from an interstitial diffusion mechanism. However, other cations, having a radius larger than the interstitial channel (˜0.77 Å radius), cannot diffuse by this mechanism. Defect reactions are proposed to explain the increase in the electrical resistivity and microstructural changes due to Al diffusion. These defect reactions also show that the problem of acceptor contamination cannot be avoided by adding an excess quantity of donor dopant if the solubility of the donor is much less than that of the acceptor contaminant.

  17. Advanced Material-Ordered Nanotubular Ceramic Membranes Covalently Capped with Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Samer Al-Gharabli

    2018-05-01

    Full Text Available Advanced ceramic materials with a well-defined nano-architecture of their surfaces were formed by applying a two-step procedure. Firstly, a primary amine was docked on the ordered nanotubular ceramic surface via a silanization process. Subsequently, single-wall carbon nanotubes (SWCNTs were covalently grafted onto the surface via an amide building block. Physicochemical (e.g., hydrophobicity, and surface free energy (SFE, mechanical, and tribological properties of the developed membranes were improved significantly. The design, preparation, and extended characterization of the developed membranes are presented. Tools such as high-resolution transmission electron microscopy (HR-TEM, single-area electron diffraction (SAED analysis, microscopy, tribology, nano-indentation, and Raman spectroscopy, among other techniques, were utilized in the characterization of the developed membranes. As an effect of hydrophobization, the contact angles (CAs changed from 38° to 110° and from 51° to 95° for the silanization of ceramic membranes 20 (CM20 and CM100, respectively. SWCNT functionalization reduced the CAs to 72° and 66° for ceramic membranes carbon nanotubes 20 (CM-CNT-20 and CM-CNT-100, respectively. The mechanical properties of the developed membranes improved significantly. From the nanotribological study, Young’s modulus increased from 3 to 39 GPa for CM-CNT-20 and from 43 to 48 GPa for pristine CM-CNT-100. Furthermore, the nanohardness increased by about 80% after the attachment of CNTs for both types of ceramics. The proposed protocol within this work for the development of functionalized ceramic membranes is both simple and efficient.

  18. Separation of Hydrogen from Carbon Dioxide through Porous Ceramics

    Directory of Open Access Journals (Sweden)

    Taro Shimonosono

    2016-11-01

    Full Text Available The gas permeability of α-alumina, yttria-stabilized zirconia (YSZ, and silicon carbide porous ceramics toward H2, CO2, and H2–CO2 mixtures were investigated at room temperature. The permeation of H2 and CO2 single gases occurred above a critical pressure gradient, which was smaller for H2 gas than for CO2 gas. When the Knudsen number (λ/r ratio, λ: molecular mean free path, r: pore radius of a single gas was larger than unity, Knudsen flow became the dominant gas transportation process. The H2 fraction for the mixed gas of (20%–80% H2–(80%–20% CO2 through porous Al2O3, YSZ, and SiC approached unity with decreasing pressure gradient. The high fraction of H2 gas was closely related to the difference in the critical pressure gradient values of H2 and CO2 single gas, the inlet mixed gas composition, and the gas flow mechanism of the mixed gas. Moisture in the atmosphere adsorbed easily on the porous ceramics and affected the critical pressure gradient, leading to the increased selectivity of H2 gas.

  19. Improvement of thermal conductivity of ceramic matrix composites for 4. generation nuclear reactors

    International Nuclear Information System (INIS)

    Cabrero, J.

    2009-11-01

    This study deals with thermal conductivity improvement of SiCf/SiC ceramic matrix composites materials to be used as cladding material in 4. generation nuclear reactor. The purpose of the study is to develop a composite for which both the temperature and irradiation effect is less pronounced on thermal conductivity of material than for SiC. This material will be used as matrix in CMC with SiC fibers. Some TiC-SiC composites with different SiC volume contents were prepared by spark plasma sintering (SPS). The sintering process enables to fabricate specimens very fast, with a very fine microstructure and without any sintering aids. Neutron irradiation has been simulated using heavy ions, at room temperature and at 500 C. Evolution of the thermal properties of irradiated materials is measured using modulated photothermal IR radiometry experiment and was related to structural evolution as function of dose and temperature. It appears that such approach is reliable to evaluate TiC potentiality as matrix in CMC. Finally, CMC with TiC matrix and SiC fibers were fabricated and both mechanical and thermal properties were measured and compare to SiCf/SiC CMC. (author)

  20. Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder

    NARCIS (Netherlands)

    Marinho, B.; Gomes Ghislandi, M.; Tkalya, E.; Koning, C.E.; With, de G.

    2012-01-01

    The electrical conductivity of different carbon materials (multi-walled carbon nanotubes, graphene, carbon black and graphite), widely used as fillers in polymeric matrices, was studied using compacts produced by a paper preparation process and by powder compression. Powder pressing assays show that

  1. Synthesis and characterization of electrical conducting nanoporous carbon structures

    International Nuclear Information System (INIS)

    El Mir, L.; Kraiem, S.; Bengagi, M.; Elaloui, E.; Ouederni, A.; Alaya, S.

    2007-01-01

    Nanoporous organic xerogel compounds were prepared by sol-gel method from pyrogallol-formaldehyde (PF) mixtures in water using perchloric acid as catalyst. The preparation conditions of electrical conducting carbon (ECC) structures were explored by changing the pyrolysis temperature. The effect of this preparation parameters on the structural and electrical properties of the obtained ECCs were studied, respectively, by thermogravimetric analysis (TGA), nitrogen adsorption isotherms, IR spectroscopy and electrical conductivity measurements. The analysis of the obtained results revealed that, the polymeric insulating phase was transformed progressively with pyrolysis temperature into carbon conducting phase; this means the formation of long continuous conducting path for charge carriers when the carbon microparticles inside the structure agglomerated with thermal treatment and the samples exhibited tangible percolation behaviour where the percolation threshold can be determined by pyrolysis temperature. The temperature-dependent conductivity and the I(V) characteristics of the obtained ECC structures show a non-ohmic behaviour. The results obtained from TGA and differential thermal analyser (DTA) thermograms, scanning electron microscope (SEM) and transmission electron microscope (TEM) micrographs, IR spectroscopy and X-ray diffraction revealed that, the obtained ECC structures consist of amorphous and nanoporous electrical conducting carbon materials

  2. Thermally Stable and Electrically Conductive, Vertically Aligned Carbon Nanotube/Silicon Infiltrated Composite Structures for High-Temperature Electrodes.

    Science.gov (United States)

    Zou, Qi Ming; Deng, Lei Min; Li, Da Wei; Zhou, Yun Shen; Golgir, Hossein Rabiee; Keramatnejad, Kamran; Fan, Li Sha; Jiang, Lan; Silvain, Jean-Francois; Lu, Yong Feng

    2017-10-25

    Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm -1 at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.

  3. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION

    International Nuclear Information System (INIS)

    Ida, Jun-ichi; Yang, Zhaohui; Lin, Jerry Y.S.

    2002-01-01

    A new CO 2 semi-permeable dense inorganic membrane consisting of a porous metal phase and molten carbonate was proposed. A simple direct infiltration method was used to synthesize the metal-carbonate dual-phase membrane. Hermetic (gas-tight) dual phase membrane was successfully obtained. Permeation data showed that nitrogen or helium is not permeable through the membrane (only CO 2 , with O 2 can permeate through the membrane based on transport mechanism)

  4. Specific-heat measurement of single metallic, carbon, and ceramic fibers at very high temperature

    International Nuclear Information System (INIS)

    Pradere, C.; Goyheneche, J.M.; Batsale, J.C.; Dilhaire, S.; Pailler, R.

    2005-01-01

    The main objective of this work is to present a method for measuring the specific heat of single metallic, carbon, and ceramic fibers at very high temperature. The difficulty of the measurement is due to the microscale of the fiber (≅10 μm) and the important range of temperature (700-2700 K). An experimental device, a modelization of the thermal behavior, and an analytic model have been developed. A discussion on the measurement accuracy yields a global uncertainty lower than 10%. The characterization of a tungsten filament with thermal properties identical to those of the bulk allows the validation of the device and the thermal estimation method. Finally, measurements on carbon and ceramic fibers have been done at very high temperature

  5. An optical method for characterizing carbon content in ceramic pot filters.

    Science.gov (United States)

    Goodwin, J Y; Elmore, A C; Salvinelli, C; Reidmeyer, Mary R

    2017-08-01

    Ceramic pot filter (CPF) technology is a relatively common means of household water treatment in developing areas, and performance characteristics of CPFs have been characterized using production CPFs, experimental CPFs fabricated in research laboratories, and ceramic disks intended to be CPF surrogates. There is evidence that CPF manufacturers do not always fire their products according to best practices and the result is incomplete combustion of the pore forming material and the creation of a carbon core in the final CPFs. Researchers seldom acknowledge the existence of potential existence of carbon cores, and at least one CPF producer has postulated that the carbon may be beneficial in terms of final water quality because of the presence of activated carbon in consumer filters marketed in the Western world. An initial step in characterizing the presence and impact of carbon cores is the characterization of those cores. An optical method which may be more viable to producers relative to off-site laboratory analysis of carbon content has been developed and verified. The use of the optical method is demonstrated via preliminary disinfection and flowrate studies, and the results of these studies indicate that the method may be of use in studying production kiln operation.

  6. Poly(borosiloxanes as precursors for carbon fiber ceramic matrix composites

    Directory of Open Access Journals (Sweden)

    Renato Luiz Siqueira

    2007-06-01

    Full Text Available Ceramic matrix composites (CMCs, constituted of a silicon boron oxycarbide (SiBCO matrix and unidirectional carbon fiber rods as a reinforcement phase, were prepared by pyrolysis of carbon fiber rods wrapped in polysiloxane (PS or poly(borosiloxane (PBS matrices. The preparation of the polymeric precursors involved hydrolysis/condensation reactions of alkoxysilanes in the presence and absence of boric acid, with B/Si atomic ratios of 0.2 and 0.5. Infrared spectra of PBS showed evidence of Si-O-B bonds at 880 cm-1, due to the incorporation of the crosslinker trigonal units of BO3 in the polymeric network. X ray diffraction analyses exhibited an amorphous character of the resulting polymer-derived ceramics obtained by pyrolysis up to 1000 °C under inert atmosphere. The C/SiBCO composites showed better thermal stability than the C/SiOC materials. In addition, good adhesion between the carbon fiber and the ceramic phase was observed by SEM microscopy

  7. Investigation of thermal conductivity and oxidation behaviour of reaction bonded aluminum nitride (RBAN) ceramics

    International Nuclear Information System (INIS)

    Salahi, E; Moztarzadeh, F.; Margoosian, V.; Heinrich, J. G.

    2003-01-01

    AlN samples have been produced by reaction bonding process using AlN and aluminum powders as starting materials. Different aluminum nitride and aluminum powders ratios were mixed in ethanol media, dried, isostatically and nitrided in (N 2 )atmosphere. Results showed that conversion of to AlN depends strongly on the amount of aluminum starting powder and decreased with increasing after a maximum at 25 Al wt %. Changing the particle size and morphology of the aluminum starting powder leads to change in the conversion ratio and microstructure of RBAN ceramics. Typical scanning electron micrographs of RBAN sample indicating primary and secondary aluminum nitride morphology and pore structure. The oxidation behavior of RABN samples showed the weight gain depends on the average particle size, morphology and amount of Al in starting mixture and pore structure. Samples have been manufactured with equi-axed morphology of Al starting powder have thermal conductivity higher than the samples have been manufactured with flake-like morphology. These differences were directly related to the different microstructure of RBAN samples

  8. Tough ceramic coatings: Carbon nanotube reinforced silica sol-gel

    Science.gov (United States)

    López, A. J.; Rico, A.; Rodríguez, J.; Rams, J.

    2010-08-01

    Silica coatings reinforced with carbon nanotubes were produced via sol-gel route using two mixing techniques of the sol-gel precursors, mechanical and ultrasonic mixing, and dip-coating as deposition process on magnesium alloy substrates. Effective incorporation and distribution of 0.1 wt.% of carbon nanotubes in the amorphous silica matrix of the coatings were achieved using both techniques. Fabrication procedure determines the morphological aspects of the coating. Only mechanical mixing process produced coatings dense and free of defects. Nanoindentation technique was used to examine the influence of the fabrication process in the mechanical features of the final coatings, i.e. indentation fracture toughness, Young's modulus and hardness. A maximum toughening effect of about 24% was achieved in silica coatings reinforced with carbon nanotubes produced by the mechanical mixing route. Scanning electron microscopy investigation revealed that the toughening of these reinforced coatings was mainly due to bridging effect of the reinforcement.

  9. Carbon nanotube yarns as strong flexible conductive capacitive electrodes

    NARCIS (Netherlands)

    Liu, F.; Wagterveld, R.M.; Gebben, B.; Otto, M.J.; Biesheuvel, P.M.; Hamelers, H.V.M.

    2015-01-01

    Carbon nanotube (CNT) yarn, consisting of 23 µm diameter CNT filaments, can be used as capacitive electrodes that are long, flexible, conductive and strong, for applications in energy and electrochemical water treatment. We measure the charge storage capacity as function of salt concentration, and

  10. Stretchable transistors with buckled carbon nanotube films as conducting channels

    Science.gov (United States)

    Arnold, Michael S; Xu, Feng

    2015-03-24

    Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.

  11. Research on Durability of Recycled Ceramic Powder Concrete

    Science.gov (United States)

    Chen, M. C.; Fang, W.; Xu, K. C.; Xie, L.

    2017-06-01

    Ceramic was ground into powder with 325 mesh and used to prepare for concrete. Basic mechanical properties, carbonation and chloride ion penetration of the concrete tests were conducted. In addition, 6-hour electric fluxes of recycled ceramic powder concrete were measured under loading. The results showed that the age strength of ceramics powder concrete is higher than that of the ordinary concrete and the fly ash concrete. The ceramic powder used as admixture would reduce the strength of concrete under no consideration of its impact factor; under consideration of the impact factor for ceramic powder as admixture, the carbonation resistance of ceramic powder concrete was significantly improved, and the 28 day carbonation depth of the ceramic powder concrete was only 31.5% of ordinary concrete. The anti-chloride-permeability of recycled ceramic powder concrete was excellent.

  12. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    International Nuclear Information System (INIS)

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  13. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites.

    Science.gov (United States)

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  14. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    Science.gov (United States)

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  15. Ceramic pore channels with inducted carbon nanotubes for removing oil from water.

    Science.gov (United States)

    Chen, Xinwei; Hong, Liang; Xu, Yanfang; Ong, Zheng Wei

    2012-04-01

    Water contaminated with tiny oil emulsions is costly and difficult to treat because of the colloidal stability and deformable nature of emulsified oil. This work utilizes carbon nanotubes (CNTs) in macro/mesopore channels of ceramic membrane to remove tiny oil droplets from water. The CNTs were implanted into the porous ceramic channels by means of chemical vapor deposition. Being hydrophobic in nature and possessing an interfacial curvature at nanoscale, CNTs enabled tiny oil emulsion in submicrometer and nano scales to be entrapped while permeating through the CNTs implanted pore channels. Optimizing the growth condition of the CNTs resulted in a uniform distribution of CNT grids, which allowed the development of lipophilic layers during filtration. These lipo-layers drastically enhanced the separation performance. The filtration capability of CNT-ceramic membrane was assessed by the purification of a dilute oil-in-water (o/w) emulsion containing ca. 210 ppm mineral oil 1600 ppm emulsifier, and a trace amount of dye, a proxy polluted water source. The best CNT-tailored ceramic membrane, prepared under the optimized CNT growth condition, claimed 100% oil rejection rate and a permeation flux of 0.6 L m(-2) min(-1), driven by a pressure drop of ca. 1 bar for 3 days on the basis of UV measurement. The CNT-sustained adsorption complements the size-exclusion mechanism in removing soluble oil.

  16. Electrically conductive carbon nanofiber/paraffin wax composites for electric thermal storage

    International Nuclear Information System (INIS)

    Zhang Kun; Han Baoguo; Yu Xun

    2012-01-01

    Highlights: ► Carbon nanofiber (CNF)/paraffin wax composite is found to be a promising electric thermal storage material. ► The thermal storage capacity of CNF/paraffin wax composite is five times of traditional electric thermal storage material. ► CNF is shown to be an effective conductive filler for the composite. - Abstract: The research of electric thermal storage (ETS) has attracted a lot of attention recently, which converts off-peak electrical energy into thermal energy and release it later at peak hours. In this study, new electric thermal storage composites are developed by employing paraffin wax as thermal storage media and carbon nanofiber (CNF) as conductive fillers. Electric heating and thermal energy release performances of the CNF/paraffin wax composites are experimentally investigated. Experimental results show that, when the composites are heated to about 70 °C, the developed electrically conductive CNF/paraffin wax composites present a thermal storage capacity of about 280 kJ/kg, which is five times of that of traditional thermal storage medium such as ceramic bricks (54 kJ/kg). The CNF/paraffin wax composites can also effectively store the thermal energy and release the thermal energy in later hours.

  17. Thermography Used to Test Conductivity of Carbon Based Cloth

    Science.gov (United States)

    Craven, Paul

    2012-01-01

    Testing of the ability of carbon fiber to radiatively cool a heat source. The carbon fibers are attached to a heat source. The heat conducts into the fiber than along the fiber away from the heat source. The test are done in a vacuum chamber (10-5 Torr typical). The IR camera is viewing the fiber through a ZnSe window. A thermocouple (TC) in contact with the fiber is at the top right hand side of the area of interest and one is near the bottom. Thin shielding fins, seen edge on, are just above the top thermocouple.

  18. Thermal Protection of Carbon Fiber-Reinforced Composites by Ceramic Particles

    Directory of Open Access Journals (Sweden)

    Baljinder Kandola

    2016-06-01

    Full Text Available The thermal barrier efficiency of two types of ceramic particle, glass flakes and aluminum titanate, dispersed on the surface of carbon-fiber epoxy composites, has been evaluated using a cone calorimeter at 35 and 50 kW/m2, in addition to temperature gradients through the samples’ thicknesses, measured by inserting thermocouples on the exposed and back surfaces during the cone tests. Two techniques of dispersing ceramic particles on the surface have been employed, one where particles were dispersed on semi-cured laminate and the other where their dispersion in a phenolic resin was applied on the laminate surface, using the same method as used previously for glass fiber composites. The morphology and durability of the coatings to water absorption, peeling, impact and flexural tension were also studied and compared with those previously reported for glass-fiber epoxy composites. With both methods, uniform coatings could be achieved, which were durable to peeling or water absorption with a minimal adverse effect on the mechanical properties of composites. While all these properties were comparable to those previously observed for glass fiber composites, the ceramic particles have seen to be more effective on this less flammable, carbon fiber composite substrate.

  19. Thermal conductive epoxy enhanced by nanodiamond-coated carbon nanotubes

    Science.gov (United States)

    Zhao, Bo; Jiang, Guohua

    2017-11-01

    Nanodiamond (ND) particles were coated on the surface of carbon nanotubes (CNTs) by chemical reactions. Reliable bonding was formed by the combination of acyl chloride on NDs and amine group on CNTs. ND coated CNTs (CNT-ND) were dispersed into epoxy to fabricate thermal conductive resins. The results show that the surface energy of CNTs is decreased by the coated NDs, which is contributed to the excellent dispersion of CNT-NDs in the epoxy matrix. The heat-transfer channels were built by the venous CNTs cooperating with the coated NDs, which not only plays an effective role of heat conduction for CNTs and NDs, but also avoids the electrical leakage by the protection of NDs surrounding outside of CNTs. Electrical and thermal conductance measurements demonstrate that the influence of the CNT-ND incorporation on the electrical conductance is minor, however, the thermal conductivity is improved significantly for the epoxy filled with CNT-ND.[Figure not available: see fulltext.

  20. Mixed conduction protonic/electronic ceramic for high temperature electrolysis anode

    International Nuclear Information System (INIS)

    Goupil, Gregory

    2011-01-01

    This thesis validates the concept of mixed electron/proton ceramic conductors to be used as anode materials for intermediate temperature steam electrolyzer. The materials developed are based on cobaltites of alkaline-earth metals and rare earth elements commonly used for their high electronic conductivity in the temperature range of 300-600 C. The stability of each material has been assessed during 350 h in air and moist air. After checking the chemical compatibility with the BaZr 0.9 Y 0.1 O 3 electrolyte material, eight compositions have been selected: BaCoO 3 , LaCoO 3 , Sr 0.5 La 0.5 CoO 3 , Ba 0.5 La 0.5 CoO 3 , GdBaCo 2 O 5 , NdBaCo 2 O 5 , SmBaCo 2 O 5 and PrBaCo 2 O 5 . The thermal evolution of the oxygen stoichiometry of each material was determined by coupling iodo-metric titration and TGA in dry air. TGA in moist air has allowed determining the optimum temperature range for which proton incorporation is possible and maximized. Proton incorporation profiles have been determined on two cobaltites using SIMS and nuclear microanalysis in the ERDA configuration. Deuterium diffusion coefficients have been determined confirming the proton mobility in these materials. Under moist air, NdBaCo 2 O 5 is shown to incorporate rapidly a significant number of protons that spread homogeneously within the material bulk. Anode microstructure optimization has allowed reaching at 450 C and 600 C total resistance values on symmetrical cell highly promising. (author) [fr

  1. Laser Processing of Carbon Nanotube Transparent Conducting Films

    Science.gov (United States)

    Mann, Andrew

    Transparent conducting films, or TCFs, are 2D electrical conductors with the ability to transmit light. Because of this, they are used in many popular electronics including smart phones, tablets, solar panels, and televisions. The most common material used as a TCF is indium tin oxide, or ITO. Although ITO has great electrical and optical characteristics, it is expensive, brittle, and difficult to pattern. These limitations have led researchers toward other materials for the next generation of displays and touch panels. The most promising material for next generation TCFs is carbon nanotubes, or CNTs. CNTs are cylindrical tubes of carbon no more than a few atoms thick. They have different electrical and optical properties depending on their atomic structure, and are extremely strong. As an electrode, they conduct electricity through an array of randomly dispersed tubes. The array is highly transparent because of gaps between the tubes, and size and optical properties of the CNTs. Many research groups have tried making CNT TCFs with opto-electric properties similar to ITO but have difficultly achieving high conductivity. This is partly attributed to impurities from fabrication and a mix of different tube types, but is mainly caused by low junction conductivity. In functionalized nanotubes, junction conductivity is impaired by covalently bonded molecules added to the sidewalls of the tubes. The addition of this molecule, known as functionalization, is designed to facilitate CNT dispersion in a solvent by adding properties of the molecule to the CNTs. While necessary for a good solution, functionalization decreases the conductivity in the CNT array by creating defects in the tube's structures and preventing direct inter-carbon bonding. This research investigates removing the functional coating (after tube deposition) by laser processing. Laser light is able to preferentially heat the CNTs because of their optical and electrical properties. Through local conduction

  2. Bioelectrocatalytic mediatorless dioxygen reduction at carbon ceramic electrodes modified with bilirubin oxidase

    International Nuclear Information System (INIS)

    Nogala, Wojciech; Celebanska, Anna; Szot, Katarzyna; Wittstock, Gunther; Opallo, Marcin

    2010-01-01

    Carbon ceramic electrodes were prepared by sol-gel processing of a hydrophobic precursor - methyltrimethoxysilane (MTMOS) - together with dispersed graphite microparticles according to a literature procedure. Bilirubin oxidase (BOx) was adsorbed on this electrode from buffer solution and this process was followed by atomic force microscopy (AFM). The electrodes exhibited efficient mediatorless electrocatalytic activity towards dioxygen reduction. The activity depends on the time of adsorption of the enzyme and the pH. The electrode remains active in neutral solution. The bioelectrocatalytic activity is further increased when a fraction of the carbon microparticles is replaced by sulfonated carbon nanoparticles (CNPs). This additive enhances the electrical communication between the enzyme and the electronic conductor. At pH 7 the carbon ceramic electrode modified with bilirubin oxidase retains ca. half of its highest activity. The role of the modified nanoparticles is confirmed by experiments in which a film embedded in a hydrophobic silicate matrix also exhibited efficient mediatorless biocatalytic dioxygen reduction. Scanning electrochemical microscopy (SECM) of the studied electrodes indicated a rather even distribution of the catalytic activity over the electrode surface.

  3. Thermally Conductive Metal-Tube/Carbon-Composite Joints

    Science.gov (United States)

    Copeland, Robert J.

    2004-01-01

    An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.

  4. Phosphorus and nitrogen-containing carbons obtained by the carbonization of conducting polyaniline complex with phosphites

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Trchová, Miroslava; Morávková, Zuzana; Kovářová, Jana; Vulić, I.; Gavrilov, N.; Pašti, I. A.; Stejskal, Jaroslav

    2017-01-01

    Roč. 246, 20 August (2017), s. 443-450 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : carbonization * conducting polymer * nitrogen-containing carbon Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.798, year: 2016

  5. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    Science.gov (United States)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  6. Coating of carbon short fibers with thin ceramic layers by chemical vapor deposition

    International Nuclear Information System (INIS)

    Hackl, Gerrit; Gerhard, Helmut; Popovska, Nadejda

    2006-01-01

    Carbon short fiber bundles with a length of 6 mm were uniformly coated using specially designed, continuous chemical vapor deposition (CVD) equipment. Thin layers of titanium nitride, silicon nitride (SiC) and pyrolytic carbon (pyC) were deposited onto several kilograms of short fibers in this large scale CVD reactor. Thermo-gravimetric analyses and scanning electron microscopy investigations revealed layer thicknesses between 20 and 100 nm on the fibers. Raman spectra of pyC coated fibers show a change of structural order depending on the CVD process parameters. For the fibers coated with SiC, Raman investigations showed a deposition of amorphous SiC. The coated carbon short fibers will be applied as reinforcing material in composites with ceramic and metallic matrices

  7. Electrically conducting nanobiocomposites using carbon nanotubes and collagen waste fibers

    International Nuclear Information System (INIS)

    Meiyazhagan, Ashokkumar; Thangavel, Saravanamoorthy; Hashim, Daniel P.; Ajayan, Pulickel M.; Palanisamy, Thanikaivelan

    2015-01-01

    Electrically conducting hybrid biocomposite films were prepared using a simple and cost-effective method by incorporating different types of carbon nanotubes (XCNTs) viz., few walled carbon nanotube (FWCNT) and boron doped carbon nanotube (BCNT) into biopolymers. Collagen extracted from animal skin wastes was blended with guar gum and XCNTs in varying proportions to form flexible and electrically conducting hybrid films. We found that the electrical conductivity of both types of hybrid films increases radically as the XCNT loading increases. BCNT incorporated hybrid films show better electrical conductivity (3.0 × 10 −1 S/cm) than their FWCNT loaded counter parts (4.8 × 10 −4 S/cm) at a dosage of 2 wt.%. On the other hand, mechanical and other physical properties such as transparency, flexibility and surface smoothness of the developed hybrid films were affected as a function of XCNT concentration. We also demonstrated that the developed hybrid films lit up a LED lamp when inserted between batteries and the brightness of the emitted light depended on the XCNT loading. These results suggest a new way to transform an industrial biowaste into innovative advanced materials for applications in fields related to biomedicine, biosensors and electronics. - Highlights: • Hybrid nanobiocomposite films prepared using collagen, guar gum and CNTs. • Examined the effect of CNT doping on the properties of hybrid biocomposite films. • Higher CNT loading improved the conductivity radically, especially for BCNT. • The ability of developed hybrid films to lit up a LED lamp was demonstrated. • The results suggest a new way to transform biowaste into advanced materials

  8. Dielectric response and electric conductivity of ceramics obtained from BiFeO{sub 3} synthesized by microwave hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Chybczyńska, K.; Markiewicz, E., E-mail: ewamar@ifmpan.poznan.pl; Błaszyk, M.; Hilczer, B.; Andrzejewski, B.

    2016-06-25

    BiFeO{sub 3} powder which formed ball-like structures resembling flowers was obtained by microwave hydrothermal synthesis. The flowers were of a dozen or so μm in diameter and the thickness of the crystallites forming petals could be controlled. The material was characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectric response of ceramics obtained from the powder contained three extrinsic contributions, which could be correlated with the differences in temperature variation of the ac conductivity. The dielectric relaxation between 150 K and 300 K was related to reorientations of Fe{sup 3+}–Fe{sup 2+} dipoles and characterized by an activation energy of 0.4 eV, which was independent of the petal thickness. The dielectric and electric response in the range 300 K ÷ 450 K usually ascribed to the grain boundary and interfacial polarization effect was diffused and could not be characterized. Above 450 K the activation energy of dc conductivity was 1.73 eV and 1.52 eV for ceramics consisting of crystallites of mean thickness of 160 nm and 260 nm, respectively. The energies, which are considerably higher than those reported earlier for BFO nanoceramics, were discussed considering the interactions between oxygen vacancies and size scaled ferroelectric domain walls, which in BiFeO{sub 3} are associated with electrostatic potential steps. - Highlights: • BiFeO{sub 3} with controllable thickness of crystallites was synthesized hydrothermally. • The powder and ceramics obtained were characterized by XRD, SEM and XPS methods. • Dielectric response of the ceramics is correlated with the ac conductivity. • Size-scaled ferroelectric domains and oxygen vacancies interact above 450 K.

  9. Conduction in Carbon Nanotubes Through Metastable Resonant States

    Science.gov (United States)

    Zhang, Zhengfan; Chandrasekhar, Venkat; Dikin, Dmitriy A.; Ruoff, Rodney S.

    2004-03-01

    We have made transport measurements on individual multi-walled carbon nanotubes [1]. The measurements show that the presence or movement of impurities or defects in the carbon nanotube can radically change its low temperature transport characteristics. The low temperature conductance can either decrease monotonically with decreasing temperature, or show a sudden increase at very low temperatures, sometimes in the same sample. This unusual behavior of the temperature dependence of the conductance is correlated with large variations in the differential conductance as a function of the dc voltage across the wire. The effect is well described as arising from quantum interference of conduction channels corresponding to direct transmission through the nanotube and resonant transmission through a discrete electron state, the so-called Fano resonance. We thank the group of R. P. H. Chang for providing us the nanotubes used in these experiments. Funding for this work was provided by a NASA/MSFC Phase II SBIR, Contract No. NAS8-02102, through a subcontract from Lytec, LLC. [1] Z. Zhang et al., cond-mat/0311360.

  10. Ionic conductivity in BC3 type boron carbon nanolayers

    Directory of Open Access Journals (Sweden)

    Irina V. Zaporotskova

    2017-06-01

    Full Text Available Studies of ionic conductivity and structuresf in which it can be achieved are of great importance for the development of modern batteries. The use of new materials will allow avoiding such typical disadvantages of batteries as short service life, low capacity and leaks. In this article we present the results of our study of the ionic conductivity in boron carbon nanolayers. We have simulated three types of boron carbon nanolayers containing different amounts of boron. The studies have been carried out using the MNDO method within the framework of the molecular cluster model and the DFT method with the B3LYP functional and the 6–31G basis. To study the ion conduction process we have simulated vacancy formation for each type of the nanolayers and studied the energy and electronic characteristics of these processes. We show that 25% boron substitution is the most energetically favorable for vacancy formation. We have also simulated vacancy migration and determined the thermal conductivity as a function of temperature.

  11. Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media.

    Science.gov (United States)

    Qiu, Liping; Zhang, Shoubin; Wang, Guangwei; Du, Mao'an

    2010-10-01

    The performance and nitrification properties of three BAFs, with ceramic, zeolite and carbonate media, respectively, were investigated to evaluate the feasibility of employing these materials as biological aerated filter media. All three BAFs shown a promising COD and SS removal performance, while influent pH was 6.5-8.1, air-liquid ratio was 5:1 and HRT was 1.25-2.5 h, respectively. Ammonia removal in BAFs was inhibited when organic and ammonia nitrogen loading were increased, but promoted effectively with the increase pH value. Zeolite and carbonate were more suitable for nitrification than ceramic particle when influent pH below 6.5. It is feasible to employ these media in BAF and adequate bed volume has to be supplied to satisfy the requirement of removal COD, SS and ammonia nitrogen simultaneously in a biofilter. The carbonate with a strong buffer capacity is more suitable to treat the wastewater with variable or lower pH. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  13. Study on the efficiency of ceramic coating for avoiding oxidation in carbon refractories

    International Nuclear Information System (INIS)

    Santos, I.M.G.; Cruz Junior, F.; Paskocimas, C.A.; Leite, E.R.; Longo, Elson; Varela, J.A.

    1997-01-01

    A ceramic coating made of sodium phosphossilicate and clay was developed to the protection of refractories against carbon oxidation during the pre-heating of siderurgical equipment. This search has the objective of comparing the refractory behaviour with and without coating, according to temperature, time and atmosphere. The results show that the coating is more efficient at higher temperatures. An important point is that the efficiency is smaller after long thermal is that the efficiency is smaller after long thermal treatments and at very aggressive conditions. In spite of this the oxidation is still smaller than in refractory without coating. (author)

  14. Hydraulic conductivities of fractures and matrix in Slovenian carbonate aquifers

    Directory of Open Access Journals (Sweden)

    Timotej Verbovšek

    2008-12-01

    Full Text Available Hydraulic conductivities and specific storage coefficients of fractures and matrix in Slovenian carbonate aquifers were determined by Barker’s method for pumping test analysis, based on fractional flow dimension. Values are presented for limestones and mainly for dolomites, and additionally for separate aquifers, divided by age andlithology in several groups. Data was obtained from hydrogeological reports for 397 water wells, and among these, 79 pumping tests were reinterpreted. Hydraulic conductivities of fractures are higher than the hydraulic conductivities of matrix, and the differences are highly statistically significant. Likewise, differences are significant for specific storage, and the values of these coefficients are higher in the matrix. Values of all coefficients vary in separate aquifers, and the differences can be explained by diagenetic effects, crystal size, degree of fracturing, andcarbonate purity. Comparison of the methods, used in the reports, and the Barker’s method (being more suitable for karstic and fractured aquifers, shows that the latter fits real data better.

  15. High electron thermal conductivity of chiral carbon nanotubes

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Nkrumah, George; Mensah, N.G.

    2003-11-01

    Solving the Boltzmann kinetic equation with energy dispersion relation obtained in the tight binding approximation, the carrier thermal conductivity κ e of a chiral carbon nanotube (CCNT) was determined. The dependence of κ e on temperature T, chiral geometric angle φ h and overlap integrals Δ z and Δ s were obtained. The results were numerically analysed. Unusually high values of κ e were observed suggesting that ne is nontrivial in the calculation of the thermal conductivity κ of CCNT. More interestingly we noted also that at 104 K and for Δ z and Δ s values of 0.020 eV and 0.0150 eV respectively the κ e value is about 41000 W/mK as reported for a 99.9% pure 12 C crystal. We predict that the electron thermal conductivity of CCNT should exceed 200,000 W/mK at ∼ 80 K. (author)

  16. Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes

    International Nuclear Information System (INIS)

    Bao, W S; Meguid, S A; Zhu, Z H; Meguid, M J

    2011-01-01

    We have developed an improved three-dimensional (3D) percolation model to investigate the effect of the alignment of carbon nanotubes (CNTs) on the electrical conductivity of nanocomposites. In this model, both intrinsic and contact resistances are considered, and a new method of resistor network recognition that employs periodically connective paths is developed. This method leads to a reduction in the size effect of the representative cuboid in our Monte Carlo simulations. With this new technique, we were able to effectively analyze the effects of the CNT alignment upon the electrical conductivity of nanocomposites. Our model predicted that the peak value of the conductivity occurs for partially aligned rather than perfectly aligned CNTs. It has also identified the value of the peak and the corresponding alignment for different volume fractions of CNTs. Our model works well for both multi-wall CNTs (MWCNTs) and single-wall CNTs (SWCNTs), and the numerical results show a quantitative agreement with existing experimental observations.

  17. Thermal Conductivity and Thermal Gradient Cyclic Behavior of Refractory Silicate Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Plasma-sprayed mullite and BSAS coatings have been developed to protect SiC/SiC ceramic matrix composites from high temperature environmental attack. In this study, thermal conductivity and thermal barrier functions of these coating systems are evaluated using a laser high-heat-flux test rig. The effects of water vapor on coating thermal conductivity and durability are studied by using alternating furnace and laser thermal gradient cyclic tests. The influence of laser high thermal-gradient cycling on coating failure modes is also investigated.

  18. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    Science.gov (United States)

    Yu, Anthony S.

    Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two

  19. Electrical conductance of carbon nanotubes with misaligned ends

    Energy Technology Data Exchange (ETDEWEB)

    Pantano, Antonio, E-mail: antonio.pantano@unipa.it; Muratore, Giuseppe; Montinaro, Nicola [Universita degli Studi di Palermo, Dipartimento di Ingegneria Chimica, Gestionale, Informatica e Meccanica (Italy)

    2013-09-15

    During a manufacturing process, when a straight carbon nanotube is placed on a substrate, e.g., production of transistors, its two ends are often misaligned. In this study, we investigate the effects of multiwall carbon nanotubes' (MWCNTs) outer diameter and chirality on the change in conductance due to misalignment of the two ends. The length of the studied MWCNTs was 120 nm, while the diameters ranged between 4 and 7 nm. A mixed finite element-tight-binding approach was carefully designed to realize reduction in computational time by orders of magnitude in calculating the deformation-induced changes in the electrical transport properties of the nanotubes. Numerical results suggest that armchair MWCNTs of small diameter should work better if used as conductors, while zigzag MWCNTs of large diameter are more suitable for building sensors.Graphical Abstract.

  20. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Brian L. [Univ. of Texas, Dallas, TX (United States); Martinez, Patricia [Univ. of Texas, Dallas, TX (United States); Zakhidov, Anvar A. [Univ. of Texas, Dallas, TX (United States); Shaner, Eric A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Mark [Univ. of Texas, Dallas, TX (United States)

    2015-07-06

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, the microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. Finally, this is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.

  1. Local thermal conductivity of polycrystalline AlN ceramics measured by scanning thermal microscopy and complementary scanning electron microscopy techniques

    International Nuclear Information System (INIS)

    Zhang Yue-Fei; Wang Li; Wei Bin; Ji Yuan; Han Xiao-Dong; Zhang Ze; Heiderhoff, R.; Geinzer, A. K.; Balk, L. J.

    2012-01-01

    The local thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based techniques at room temperature. The quantitative thermal conductivity for the AlN sample is gained by using a SThM with a spatial resolution of sub-micrometer scale through using the 3ω method. A thermal conductivity of 308 W/m·K within grains corresponding to that of high-purity single crystal AlN is obtained. The slight differences in thermal conduction between the adjacent grains are found to result from crystallographic misorientations, as demonstrated in the electron backscattered diffraction. A much lower thermal conductivity at the grain boundary is due to impurities and defects enriched in these sites, as indicated by energy dispersive X-ray spectroscopy. (condensed matter: structural, mechanical, and thermal properties)

  2. Processable Conducting Polyaniline, Carbon Nanotubes, Graphene and Their Composites

    Science.gov (United States)

    Wang, Kan

    Good processability is often required for applications of conducting materials like polyaniline (PANI), carbon nanotubes (CNTs) and graphene. This can be achieved by either physical stabilization or chemical functionalization. Functionalization usually expands the possible applications for the conducting materials depending on the properties of the functional groups. Processable conducting materials can also be combined with other co-dissolving materials to prepare composites with desired chemical and physical properties. Polyanilines (PANI) doped with dodecylbenzenesulfonic acid (DBSA) are soluble in many organic solvents such as chloroform and toluene. Single wall carbon nanotubes (SWCNTs) can be dispersed into PANI/DBSA to form homogeneous solutions. PANI/DBSA functions as a conducting surfactant for SWCNTs. The mixture can be combined with two-parts polyurethanes that co-dissolve in the organic solvent to produce conducting polymer composites. The composite mixtures can be applied onto various substrates by simple spray-on methods to obtain transparent and conducting coatings. Graphene, a single layer of graphite, has drawn intense interest for its unique properties. Processable graphene has been produced in N-methyl-2-pyrrolidone (NMP) by a one-step solvothermal reduction of graphite oxide without the aid of any reducing reagent and/or surfactant. The as-synthesized graphene disperses well in a variety of organic solvents such as dimethylsulfoxide (DMSO), ethanol and tetrahydrogenfuran (THF). The conductivity of solvothermal reduced graphite oxide is comparable to hydrazine reduced graphite oxide. Attempts were made to create intrinsically conducting glue comparable to mussel adhesive protiens using polyaniline and graphene. Mussels can attach to a variety of substrates under water. Catechol residue in 3,4-dihydroxyphenylalanine (L-DOPA) is the key to the wet adhesion. Tyrosine and phosphoserine with primary alkyl amine groups also participate in adhesion. A

  3. Applicability study on a ceramic filter with hot-test conducted in a BWR plant

    International Nuclear Information System (INIS)

    Yamada, K.; Shirai, T.; Wada, M.; Nakamizo, H.

    1991-01-01

    Radioactive crud removal and filtration performance recovery by backwashing were examined with a BWR plant pool water using a ceramic filter element, 0.1 micron in nominal pore size and 0.2m 2 in filtration area. Totally 1114 hours filter operation were accumulated. Ten backwashings were accomplished during the test period. The following results were obtained. (1) Radioactive crud concentration in the filter effluent remained below 10 5 Bq/m 3 . (2) Both pressure loss through the filter and dose rate at the filter vessel surface were recovered to the initial level by each backwashing. The surface dose rate after backwashing was approximately 0.01mSv/h. According to these test results, it is confirmed that the ceramic filter is appropriate for the treatment of highly crud concentrated radioactive liquid, which is generated in nuclear facilities, such as spent fuel reprocessing plants. (author)

  4. New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    Science.gov (United States)

    Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.

    2004-01-01

    lubrication task because of their potential for superior friction and wearf properties in air and in an ultrahigh vacuum, spacelike environment. At the NASA Glenn Research Center, two-phase oxide ceramic eutectics, Al2O3/ZrO2(Y2O3), were directionally solidified using the laser-float-zone process, and carbon nanotubes were synthesized within a high-temperature tube furnace at 800 C. Physical vapor deposition was used to coat all quartz substrates with 5-nm-thick iron as catalyst and bondcoat, which formed iron islands resembling droplets and serving as catalyst particles on the quartz. A series of scanning electron micrographs showing multiwalled carbon nanotubes directionally grown as aligned "nanograss" on quartz is presented. Unidirectional sliding friction eperiments were conducted at Glenn with the two-layered CNT coatings in contact with the two-phase Al2O3/ZrO2(Y2O3) eutectics in air and in ultrachigh vacuum. The main criteria for judging the performance of the materials couple for solid lubrication and antistick applications in a space environment were the coefficient of friction and the wear resistance (reciprocal of wear rate), which had to be less than 0.2 and greater than 10(exp 5) N(raised dot)/cubic millimetes, respectively, in ultrahigh vacuum. In air, the coefficient of friction for the CNT coatings in contact with Al2O3/ZrO2 (Y2O3) eutectics was 0.04, one-fourth of that for quartz. In an ultrahigh vacuum, the coefficient of friction for CNT coatings in contact with Al2O3/ZrO2 (Y2O3) was one-third of that for quartz. The two-phase Al2O3/ZrO2 (Y2O3) eutectic coupled with the two-layered CNT coating met the coefficient of friction and wear resistance criteria both in air and in an ultrahigh vacuum, spacelike environment. This material's couple can dramatically improve the stiction (or adhesion), friction, and wear resistance of the contacting surfaces, which are major issues for microdevices and micromachines.

  5. Structural deformation and intertube conductance of crossed carbon nanotube

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Mazzoni, Mario S.C.; Choi, Hyoung J.; Ihm, Jisoon; Louie, Steven G.

    2000-01-01

    We present a first-principles study of the structure and quantum electronic conductance of junctions consisting of two crossed (5,5) single-walled carbon nanotubes. The structures are determined by constrained minimization of total energy at a given force between the two tubes, simulating the effects of substrate-tube attraction or an applied force. We find that the intertube contact distance is very sensitive to the applied force in the range of 0-10 nN. The intertube conductance is sizable for realistic deformation expected from substrate interaction. The results explain the recent transport data on crossed nanotubes and show that these systems may be potentially useful as electromechanical devices

  6. Structural Deformation and Intertube Conductance of Crossed Carbon Nanotube Junctions

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Mazzoni, Mario S. C.; Choi, Hyoung Joon; Ihm, Jisoon; Louie, Steven G.

    2001-01-01

    We present a first-principles study of the structure and quantum electronic conductance of junctions consisting of two crossed (5,5) single-walled carbon nanotubes. The structures are determined by constrained minimization of total energy at a given force between the two tubes, simulating the effects of substrate-tube attraction or an applied force. We find that the intertube contact distance is very sensitive to the applied force in the range of 0--10nN. The intertube conductance is sizable for realistic deformation expected from substrate interaction. The results explain the recent transport data on crossed nanotubes and show that these systems may be potentially useful as electromechanical devices

  7. Fabrication of highly conductive carbon nanotube fibers for electrical application

    International Nuclear Information System (INIS)

    Guo, Fengmei; Li, Can; Wei, Jinquan; Xu, Ruiqiao; Zhang, Zelin; Cui, Xian; Wang, Kunlin; Wu, Dehai

    2015-01-01

    Carbon nanotubes (CNTs) have great potential for use as electrical wires because of their outstanding electrical and mechanical properties. Here, we fabricate lightweight CNT fibers with electrical conductivity as high as that of stainless steel from macroscopic CNT films by drawing them through diamond wire-drawing dies. The entangled CNT bundles are straightened by suffering tension, which improves the alignment of the fibers. The loose fibers are squeezed by the diamond wire-drawing dies, which reduces the intertube space and contact resistance. The CNT fibers prepared by drawing have an electrical conductivity as high as 1.6 × 10 6 s m −1 . The fibers are very stable when kept in the air and under cyclic tensile test. A prototype of CNT motor is demonstrated by replacing the copper wires with the CNT fibers. (paper)

  8. Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites

    Science.gov (United States)

    Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.

    2010-01-01

    Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity

  9. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites

    International Nuclear Information System (INIS)

    Xia, Z.; Riester, L.; Curtin, W.A.; Li, H.; Sheldon, B.W.; Liang, J.; Chang, B.; Xu, J.M.

    2004-01-01

    The excellent mechanical properties of carbon nanotubes (CNTS) are driving research into the creation of new strong, tough nanocomposite systems. Here, the first evidence of toughening mechanisms operating in carbon-nanotube-reinforced ceramic composites is presented. A highly ordered array of parallel multiwall CNTs in an alumina matrix was fabricated. Nanoindentation introduced controlled cracks and the damage was examined by scanning electron microscopy. These nanocomposites exhibit the three hallmarks of toughening found in micron-scale fiber composites: crack deflection at the CNT/matrix interface; crack bridging by CNTs; and CNT pullout on the fracture surfaces. Interface debonding and sliding can thus occur in materials with microstructures approaching the atomic scale. Furthermore, for certain geometries a new mechanism of nanotube collapse in 'shear bands' occurs, rather than crack formation, suggesting that these materials can have multiaxial damage tolerance. The quantitative indentation data and computational models are used to determine the multiwall CNT axial Young's modulus as 200-570 GPa, depending on the nanotube geometry and quality. Three-dimensional FEM analysis indicates that matrix residual stresses on the order of 300 MPa are sustained in these materials without spontaneous cracking, suggesting that residual stress can be used to engineer enhanced performance. These nanoscale ceramic composites thus have potential for toughening and damage tolerance at submicron scales, and so are excellent candidates for wear-resistant coatings

  10. Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process.

    Science.gov (United States)

    Guo, Jianning; Hu, Jiangyong; Tao, Yi; Zhu, Jia; Zhang, Xihui

    2014-04-01

    Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-01-01

    Herein, we report for the first time, conducting polymer (polyaniline (PANI) and polypyrrole (PPY)) coated carbon nanocoils (CNCs) as efficient binder-free electrode materials for supercapacitors. CNCs act as a perfect backbone for the uniform distribution of the conducting polymers in the composites. In two electrode configuration, the samples exhibited high specific capacitance with the values reaching up to 360 and 202 F g -1 for PANI/CNCs and PPY/CNCs respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be comparable to one of the best reported values for polymer coated multi-walled carbon nanotubes. In addition, the fabricated PANI/CNC based supercapacitors exhibited a high value of 44.61 Wh kg -1 for maximum storage energy per unit mass. Although the devices exhibit an initial capacitance loss due to the instability of the polymer, the specific capacitance stabilizes at a fixed value after 500 charge-discharge cycles. © 2012 The Royal Society of Chemistry.

  12. Design of carbon nanofiber embedded conducting epoxy resin

    International Nuclear Information System (INIS)

    Gantayat, Subhra; Sarkar, Niladri; Rout, Dibyaranjan; Swain, Sarat K.

    2017-01-01

    Acid treated carbon nanofiber (t-CNF) reinforced epoxy nanocomposites were fabricated by hand lay-up method with various wt % of t-CNF loadings. Pristine or unmodified carbon nano fibers (u-CNFs) were made compatible with epoxy matrix by means of mixed acid treatment. Fabricated nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) study, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Mechanical and thermal properties of the nanocomposites were measured as a function of t-CNF content. Effect of acid treated CNFs on to the mechanical properties of epoxy nanocomposites was justified by comparing the mechanical properties of epoxy/t-CNF and epoxy/u-CNF nanocomposites with same loading level. The electrical conductivity was achieved by epoxy resin with a threshold at 1 wt % of t-CNF. Substantial improvement in thermal, mechanical and electrical properties of the synthesized epoxy/t-CNF nanocomposites may be suitable for fabricating electronic devices. - Highlights: • Epoxy/t-CNF nanocomposites are characterized by XRD, FTIR, SEM, AFM and TEM. • Electrical conductivity was achieved by epoxy with a threshold at 1 wt% of t-CNF. • Tensile strength is enhanced by 40% due to dispersion of t-CNF. • Synthesized nanocomposites are suitable for fabricating electronic devises.

  13. Design of carbon nanofiber embedded conducting epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Gantayat, Subhra [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India); School of Applied Sciences, KIIT University, Bhubaneswar 751024, Odisha (India); Sarkar, Niladri [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India); Rout, Dibyaranjan [School of Applied Sciences, KIIT University, Bhubaneswar 751024, Odisha (India); Swain, Sarat K., E-mail: swainsk2@yahoo.co.in [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India)

    2017-01-15

    Acid treated carbon nanofiber (t-CNF) reinforced epoxy nanocomposites were fabricated by hand lay-up method with various wt % of t-CNF loadings. Pristine or unmodified carbon nano fibers (u-CNFs) were made compatible with epoxy matrix by means of mixed acid treatment. Fabricated nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) study, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Mechanical and thermal properties of the nanocomposites were measured as a function of t-CNF content. Effect of acid treated CNFs on to the mechanical properties of epoxy nanocomposites was justified by comparing the mechanical properties of epoxy/t-CNF and epoxy/u-CNF nanocomposites with same loading level. The electrical conductivity was achieved by epoxy resin with a threshold at 1 wt % of t-CNF. Substantial improvement in thermal, mechanical and electrical properties of the synthesized epoxy/t-CNF nanocomposites may be suitable for fabricating electronic devices. - Highlights: • Epoxy/t-CNF nanocomposites are characterized by XRD, FTIR, SEM, AFM and TEM. • Electrical conductivity was achieved by epoxy with a threshold at 1 wt% of t-CNF. • Tensile strength is enhanced by 40% due to dispersion of t-CNF. • Synthesized nanocomposites are suitable for fabricating electronic devises.

  14. Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity

    Science.gov (United States)

    De Groh, Henry C., III

    2016-01-01

    NASA is currently working on developing motors for hybrid electric propulsion applications in aviation. To make electric power more feasible in airplanes higher power to weight ratios are sought for electric motors. One facet to these efforts is to improve (increase) the conductivity and (lower) density of the magnet wire used in motors. Carbon nanotubes (CNT) and composites containing CNT are being explored as a possible way to increase wire conductivity and lower density. Presented here are measurements of the current carrying capacity (ampacity) of a composite made from CNT and copper. The ability of CNT to improve the conductivity of such composites is hindered by the presence of semiconductive CNT (s-CNT) that exist in CNT supplies naturally, and currently, unavoidably. To solve this problem, and avoid s-CNT, various preferential growth and sorting methods are being explored. A supply of sorted 95 metallic CNT (m-CNT) was acquired in the form of thick film Buckypaper (BP) as part of this work and characterized using Raman spectroscopy, resistivity, and density measurements. The ampacity (Acm2) of the Cu-5volCNT composite was 3.8 lower than the same gauge pure Cu wire similarly tested. The lower ampacity in the composite wire is believed to be due to the presence of s-CNT in the composite and the relatively low (proper) level of longitudinal cooling employed in the test method. Although Raman spectroscopy can be used to characterize CNT, a strong relation between the ratios of the primary peaks GGand the relative amounts of m-CNT and s-CNT was not observed. The average effective conductivity of the CNT in the sorted, 95 m-CNT BP was 2.5 times higher than the CNT in the similar but un-sorted BP. This is an indication that improvements in the conductivity of CNT composites can be made by the use of sorted, highly conductive m-CNT.

  15. Development of composite ceramic materials with improved thermal conductivity and plasticity based on garnet-type oxides

    Science.gov (United States)

    Golovkina, L. S.; Orlova, A. I.; Boldin, M. S.; Sakharov, N. V.; Chuvil'deev, V. N.; Nokhrin, A. V.; Konings, R.; Staicu, D.

    2017-06-01

    Powders based on the complex garnet-type oxide Y2.5Nd0.5Al5O12 - x wt. % Ni (x = 0, 10, 20) were prepared using wet chemistry methods. Ceramics based on these compounds were obtained by Spark Plasma Sintering (SPS) with a relative densities: 99%. 4% (TD = 4.77 g/cm3 (0%)), 97.6% (TD = 4.88 g/cm3 (10%)), 94.4% (TD = 5.06 g/cm3 (20%)). The influence of nickel concentration on the mechanical (fracture toughness, microhardness) and thermophysical (thermal conductivity) properties of the composites was studied.

  16. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Inda, Yasushi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Katoh, Takashi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Baba, Mamoru [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)

    2007-12-06

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10{sup -3} S cm{sup -1} or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO{sub 2} positive electrode, a Li{sub 4}Ti{sub 5}O{sub 12} negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic. (author)

  17. Thermal Conductivity and High-Frequency Dielectric Properties of Pressureless Sintered SiC-AlN Multiphase Ceramics

    Directory of Open Access Journals (Sweden)

    Jialin Gu

    2018-06-01

    Full Text Available SiC-AlN multiphase ceramics with 10 wt. %Y2O3-BaO-SiO2 additives were fabricated by pressureless sintering in a nitrogen atmosphere. The effects of SiC contents and sintering temperatures on the sinterability, microstructure, thermal conductivity and high-frequency dielectric properties were characterized. In addition to 6H-SiC and AlN, the samples also contained Y3Al5O12 and Y4Al2O9. SiC-AlN ceramics sintered with 50 wt. % SiC at 2173 K exhibited the best thermal diffusivity and thermal conductivity (26.21 mm2·s−1 and 61.02 W·m−1·K−1, respectively. The dielectric constant and dielectric loss of the sample sintered with 50 wt. % SiC and 2123 K were 33–37 and 0.4–0.5 at 12.4–18 GHz. The dielectric constant and dielectric loss of the samples decreased as the frequency of electromagnetic waves increased from 12.4–18 GHz. The dielectric thermal conductivity properties of the SiC-AlN samples are discussed.

  18. Impact of ozonation and biological activated carbon filtration on ceramic membrane fouling.

    Science.gov (United States)

    Ibn Abdul Hamid, Khaled; Sanciolo, Peter; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2017-12-01

    Ozone pre-treatment (ozonation, ozonisation) and biological activated carbon (BAC) filtration pre-treatment for the ceramic microfiltration (CMF) treatment of secondary effluent (SE) were studied. Ozone pre-treatment was found to result in higher overall removal of UV absorbance (UVA 254 ) and colour, and higher permeability than BAC pre-treatment or the combined use of ozone and BAC (O3+BAC) pre-treatment. The overall removal of colour and UVA 254 by ceramic filtration of the ozone pre-treated water was 97% and 63% respectively, compared to 86% and 48% respectively for BAC pre-treatment and 29% and 6% respectively for the untreated water. Ozone pre-treatment, however, was not effective in removal of dissolved organic carbon (DOC). The permeability of the ozone pre-treated water through the ceramic membrane was found to decrease to 50% of the original value after 200 min of operation, compared to approximately 10% of the original value for the BAC pre-treated, O3+BAC pre-treated water and the untreated water. The higher permeability of the ozone pre-treated water was attributed to the excellent removal of biopolymer particles (100%) and high removal of humic substances (84%). The inclusion of a BAC stage between ozone pre-treatment and ceramic filtration was detrimental. The O3+BAC+CMF process was found to yield higher biopolymer removal (96%), lower humic substance (HS) component removal (66%) and lower normalized permeability (0.1) after 200 min of operation than the O3+CMF process (86%, 84% and 0.5 respectively). This was tentatively attributed to the chemical oxidation effect of ozone on the BAC biofilm and adsorbed components, leading to the generation of foulants that are not generated in the O3+CMF process. This study demonstrated the potential of ozone pre-treatment for reducing organic fouling and thus improving flux for the CMF of SE compared to O3+BAC pre-treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthesis and characterization of ceramic/carbon nanotubes composite adsorptive membrane for copper ion removal from water

    Energy Technology Data Exchange (ETDEWEB)

    Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj [Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of)

    2015-02-15

    We prepared a novel adsorptive membrane by implanting carbon nanotubes (CNTs) in pore channels of ceramic (α-alumina) support via chemical vapor deposition (CVD) method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. Optimization of CNTs growth conditions resulted in uniform distribution of the CNTs in the pore channels of the support. The optimized CNTs-ceramic membrane was oxidized with concentrated nitric acid, and chitosan was employed for filling intertube-CNT gaps. The modified CNTs-ceramic membrane was used for copper ion removal from water, and the effects of the modification steps (oxidation and filling intertube-CNT gaps with chitosan) and pH on permeation flux and rejection of the prepared adsorptive membrane were investigated. Moreover, static adsorption was also investigated and Langmuir and Freundlich isotherms and two kinetics models were used to describe adsorption behavior of copper ions by the prepared adsorptive membrane.

  20. Synthesis of polymer-derived ceramic Si(B)CN-carbon nanotube composite by microwave-induced interfacial polarization.

    Science.gov (United States)

    Bhandavat, R; Kuhn, W; Mansfield, E; Lehman, J; Singh, G

    2012-01-01

    We demonstrate synthesis of a polymer-derived ceramic (PDC)-multiwall carbon nanotube (MWCNT) composite using microwave irradiation at 2.45 GHz. The process takes about 10 min of microwave irradiation for the polymer-to-ceramic conversion. The successful conversion of polymer coated carbon nanotubes to ceramic composite is chemically ascertained by Fourier transform-infrared and X-ray photoelectron spectroscopy and physically by thermogravimetric analysis and transmission electron microscopy characterization. Frequency dependent dielectric measurements in the S-Band (300 MHz to 3 GHz) were studied to quantify the extent of microwave-CNT interaction and the degree of selective heating available at the MWCNT-polymer interface. Experimentally obtained return loss of the incident microwaves in the specimen explains the reason for heat generation. The temperature-dependent permittivity of polar molecules further strengthens the argument of internal heat generation. © 2011 American Chemical Society

  1. Method to remove ammonia using a proton-conducting ceramic membrane

    Science.gov (United States)

    Balachandran, Uthamalinga; Bose, Arun C

    2003-10-07

    An apparatus and method for decomposing NH.sub.3. A fluid containing NH.sub.3 is passed in contact with a tubular membrane that is a homogeneous mixture of a ceramic and a first metal, with the ceramic being selected from one or more of a cerate having the formula of M'Ce.sub.1-x M".sub.3-.delta., zirconates having the formula M'Zr.sub.1-x M"O.sub.3-.delta., stannates having the formula M'Sn.sub.1-x M'O.sub.3-.delta., where M' is a group IIA metal, M" is a dopant metal of one or more of Ca, Y, Yb, In, Nd, Gd or mixtures thereof and .delta. is a variable depending on the concentration of dopant and is in the range of from 0.001 to 0.5, the first metal is a group VIII or group IB element selected from the group consisting of Pt, Ag, Pd, Fe, Co, Cr, Mn, V, Ni, Au, Cu, Rh, Ru and mixtures thereof. The tubular membrane has a catalytic metal on the side thereof in contact with the fluid containing NH.sub.3 which is effective to cause NH.sub.3 to decompose to N.sub.2 and H.sub.2. When the H.sub.2 contacts the membrane H.sup.+ ions are formed which pass through the membrane driving the NH.sub.3 decomposition toward completion.

  2. High frequency conductivity of hot electrons in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Amekpewu, M., E-mail: mamek219@gmail.com [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  3. Conductive Cotton Textile from Safely Functionalized Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mohammad Jellur Rahman

    2015-01-01

    Full Text Available Electroconductive cotton textile has been prepared by a simple dipping-drying coating technique using safely functionalized multiwalled carbon nanotubes (f-MWCNTs. Owing to the surface functional groups, the f-MWCNTs become strongly attached with the cotton fibers forming network armors on their surfaces. As a result, the textile exhibits enhanced electrical properties with improved thermal conductivity and therefore is demonstrated as a flexible electrothermal heating element. The fabricated f-MWCNTs/cotton textile can be heated uniformly from room temperature to ca. 100°C within few minutes depending on the applied voltage. The textile shows good thermal stability and repeatability during a long-term heating test.

  4. Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes

    Directory of Open Access Journals (Sweden)

    Andrew J Stapleton, Rakesh A Afre, Amanda V Ellis, Joe G Shapter, Gunther G Andersson, Jamie S Quinton and David A Lewis

    2013-01-01

    Full Text Available Electrodes fabricated using commercially available silver nanowires (AgNWs and single walled carbon nanotubes (SWCNTs produced sheet resistances in the range 4–24 Ω squ−1 with specular transparencies up to 82 %. Increasing the aqueous dispersibility of SWCNTs decreased the bundle size present in the film resulting in improved SWCNT surface dispersion in the films without compromising transparency or sheet resistance. In addition to providing conduction pathways between the AgNW network, the SWCNTs also provide structural support, creating stable self-supporting films. Entanglement of the AgNWs and SWCNTs was demonstrated to occur in solution prior to deposition by monitoring the transverse plasmon resonance mode of the AgNWs during processing. The interwoven AgNW/SWCNT structures show potential for use in optoelectronic applications as transparent electrodes and as an ITO replacement.

  5. APPLICATION OF THE THERMAL CONDUCTIVITY CRITERION IN THE DESIGN OF FOAM-CERAMIC CONCRETES BASED ON THE OPAL-CRYSTOBALITE ROCK

    Directory of Open Access Journals (Sweden)

    Korolev Evgeniy Valerevich

    2012-10-01

    Full Text Available Design method of the foam-ceramic concrete with the pre-set value of thermal conductivity is proposed. Computed dependencies between the thermal conductivity, strength and generalized structural criterion - porosity - are presented. As a result of the research, it was identified that local input materials are ecological and easy to extract, and that they may be used as the mineral basis for the manufacturing of effective foam-glass ceramic materials that demonstrate their porous structure, similar to the one of the foam-ceramic concrete. The employment of the proposed approach to the design of the composition of foam-glass ceramic materials may substantially improve the most important properties of this material, namely, it may reduce the sorption capacity and improve the strength, if compared with the benchmark composition.

  6. Magnetoresponsive conductive colloidal suspensions with magnetized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Ahmed M. [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Abdel Fattah, Abdel Rahman [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Ghosh, Suvojit [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Puri, Ishwar K., E-mail: ikpuri@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2017-01-01

    We synthesize a novel and hitherto unreported class of colloidal suspensions for which the dispersed phase, which consists of multiwall carbon nanotubes (MWNTs) decorated with magnetic nanoparticles (MNPs), is both magnetoresponsive and electrically conductive. Synthesis of the dispersed phase merges processes for producing ferrofluids and magnetic MWNTs (mMWNTs). We explore means to tune the properties of these magnetic conductive colloids (MCCs) by varying the (1) MNP material composition, and (2) MNP:MWNT (w/w) magnetization weight ratio (γ). The mMWNTs are examined using XRD, TEM, EDX and SQUID and MCCs are by measuring their zeta potential and electric conductivity. Magnetite (Fe{sub 3}O{sub 4}) MNPs, which possess a high Curie temperature, produce mMWNTs with high saturation magnetization that respond relatively weakly to temperature variations. Mn{sub 0.2}Cu{sub 0.2}Zn{sub 0.6}Fe{sub 2}O{sub 4} and Cu{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4} MNPs with lower Curie temperatures are more sensitive to changing temperature. Increasing the MNP Cu content improves the electric conductivity of the corresponding MCC while increasing γ enhances its magnetic response. After γ is raised above a threshold value, mMWNT decoration on the CNT surface becomes nonuniform since the MNPs now agglomerate perpendicular to the nanotube surface. These colloidal suspensions are a promising new class of material that can be manipulated with a magnetic field to tune their electrical conductivity. - Highlights: ●We synthesize a novel and hitherto unreported class of colloidal suspensions. ●These colloidal suspensions are both magnetoresponsive and electrically conductive. ●The dispersed phase consists of MWNTs decorated with different magnetic nanoparticles. ●These colloids have enhanced magnetic response and electric conductivity (up to 169.5 mS cm{sup −1}). ●It is a promising new class of material that can be manipulated with a magnetic field.

  7. Formulation and screen printing of water based conductive flake silver pastes onto green ceramic tapes for electronic applications

    International Nuclear Information System (INIS)

    Faddoul, Rita; Reverdy-Bruas, Nadège; Blayo, Anne

    2012-01-01

    Highlights: ► Formulation of water-based pastes. ► Viscosity, yield stress, elastic and viscous modulus determination. ► Screen printing onto green ceramic tapes. ► Rheology effect on line dimensions and electrical properties. ► Resistivity ∼18–33 nΩ m. Minimum width ∼60 μm after sintering. - Abstract: Environmentally friendly, water-based silver pastes, adapted for screen printing, were formulated with different silver contents (67–75%). These pastes allowed screen printing onto low temperature co-fired ceramic (LTCC) of narrow conductive tracks with a 60 μm line width and a 3 × 10 −8 Ω m electrical resistivity. Inks were formulated with a mixture of spherical and flake shape silver particles with 2–4 μm mean diameter. Rheological behaviour of pastes was studied in order to determine its effect on printed lines properties. Prepared inks were then screen printed and sintered under normal atmosphere at 875 °C. As expected, electrical properties depended on silver content. Resistivity values varying from 1.6 × 10 −8 to 3.3 × 10 −8 Ω m were calculated over 36.3 cm line length. These values are very close to bulk silver resistivity (1.6 × 10 −8 Ω m). Compared to previous research and commercial pastes, the newly formulated pastes reached equivalent or even better conductivities with lower silver content (70% by weight).

  8. Development of composite ceramic materials with improved thermal conductivity and plasticity based on garnet-type oxides

    Energy Technology Data Exchange (ETDEWEB)

    Golovkina, L.S., E-mail: golovkina_lyudmila@mail.ru [Lobachevsky State University of Nizhni Novgorod, 603950 Nizhni Novgorod (Russian Federation); Orlova, A.I.; Boldin, M.S.; Sakharov, N.V.; Chuvil' deev, V.N.; Nokhrin, A.V. [Lobachevsky State University of Nizhni Novgorod, 603950 Nizhni Novgorod (Russian Federation); Konings, R.; Staicu, D. [European Commission, Joint Research Centre, Directorate G – Nuclear Safety and Security, 76125 Karlsruhe (Germany)

    2017-06-15

    Powders based on the complex garnet-type oxide Y{sub 2.5}Nd{sub 0.5}Al{sub 5}O{sub 12} - x wt. % Ni (x = 0, 10, 20) were prepared using wet chemistry methods. Ceramics based on these compounds were obtained by Spark Plasma Sintering (SPS) with a relative densities: 99%. 4% (TD = 4.77 g/cm{sup 3} (0%)), 97.6% (TD = 4.88 g/cm{sup 3} (10%)), 94.4% (TD = 5.06 g/cm{sup 3} (20%)). The influence of nickel concentration on the mechanical (fracture toughness, microhardness) and thermophysical (thermal conductivity) properties of the composites was studied. - Highlights: •Powders were prepared using wet chemistry methods. •Ceramics were sintering by SPS method (ρ{sub rel} ∼ 99%); t{sub shrinkage} < 10 min. •By increasing Ni concentration in composites, their fracture toughness was enhanced. •Thermal conductivity increases with elevated concentration of Ni.

  9. Study on lithium/air secondary batteries - Stability of NASICON-type lithium ion conducting glass-ceramics with water

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Satoshi; Imanishi, Nobuyuki; Zhang, Tao; Xie, Jian; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan)

    2009-04-01

    The water stability of the fast lithium ion conducting glass-ceramic electrolyte, Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATP), has been examined in distilled water, and aqueous solutions of LiNO{sub 3}, LiCl, LiOH, and HCl. This glass-ceramics are stable in aqueous LiNO{sub 3} and aqueous LiCl, and unstable in aqueous 0.1 M HCl and 1 M LiOH. In distilled water, the electrical conductivity slightly increases as a function of immersion time in water. The Li-Al/Li{sub 3-x}PO{sub 4-y}N{sub y}/LATP/aqueous 1 M LiCl/Pt cell, where lithium phosphors oxynitrides Li{sub 3-x}PO{sub 4-y}N{sub y} (LiPON) are used to protect the direct reaction of Li and LATP, shows a stable open circuit voltage (OCV) of 3.64 V at 25 C, and no cell resistance change for 1 week. Lithium phosphors oxynitride is effectively used as a protective layer to suppress the reaction between the LATP and Li metal. The water-stable Li/LiPON/LATP system can be used in Li/air secondary batteries with the air electrode containing water. (author)

  10. Investigations on d.c. conductivity behaviour of milled carbon fibre ...

    Indian Academy of Sciences (India)

    This paper reports the d.c. conductivity behaviour of milled carbon fibre reinforced polysulphide modified epoxy gradient composites. Milled carbon fibre reinforced composites having 3 vol. % of milled carbon fibre and poly sulphide modified epoxy resin have been developed. D.C. conductivity measurements are conducted ...

  11. Temperature dependence of the thermal conductivity in chiral carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mensah, N.G. [Department of Mathematics, University of Cape Coast, Cape Coast (Ghana); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Nkrumah, G. [Department of Physics, University of Ghana, Legon, Accra (Ghana) and Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: geon@ug.edu.gh; Mensah, S.Y. [Department of Physics, Laser and Fibre Optics Centre, University of Cape Coast, Cape Coast (Ghana); Allotey, F.K.A. [Institute of Mathematical Sciences, Accra (Ghana)

    2004-08-30

    The thermal conductivity of a chiral carbon nanotube (CCNT) is calculated using a tractable analytical approach. This is based on solving the Boltzmann kinetic equation with energy dispersion relation obtained in the tight binding approximation. The results obtained are numerically analysed. Unusually high electron thermal conductivity {chi}{sub ez} is observed along the tubular axis. The dependence of {chi}{sub ez} against temperature T was plotted for varying {delta}{sub z} and a given {delta}{sub s} ({delta}{sub z} and {delta}{sub s} are the overlapping integrals (exchange energy) for the jumps along the tubular axis and the base helix, respectively). It is noted that {chi}{sub ez} shows a peaking behaviour before falling off at higher temperature. As {delta}{sub z} varies from 0.010 eV to 0.048 eV for a given {delta}{sub s}=0.0150 eV, the peak values of {chi}{sub ez} shift from 40000 W/m K at 100 K to 55000 W/m K at about 300 K. Interestingly our results at 104 K which is 41000 W/m K and occurred at {delta}{sub z}=0.023 eV compares very well with that reported for a 99.9% isotopically enriched {sup 12}C diamond crystal. Another interesting result obtained is the fact that the circumferential electron thermal conductivity {chi}{sub ec} appears to be very small. The ratio of {chi}{sub ez} to {chi}{sub ec} is of the order of 2.

  12. Twin carbons: The carbonization of cellulose or carbonized cellulose coated with a conducting polymer, polyaniline

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Kovářová, Jana; Pfleger, Jiří; Stejskal, Jaroslav; Trchová, Miroslava; Novák, I.; Berek, D.

    2016-01-01

    Roč. 109, November (2016), s. 836-842 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : cellulose * carbon * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.337, year: 2016

  13. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    Science.gov (United States)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  14. Effect of pyrolysis atmospheres on the morphology of polymer-derived silicon oxynitrocarbide ceramic films coated aluminum nitride surface and the thermal conductivity of silicone rubber composites

    Science.gov (United States)

    Chiu, Hsien T.; Sukachonmakul, Tanapon; Wang, Chen H.; Wattanakul, Karnthidaporn; Kuo, Ming T.; Wang, Yu H.

    2014-02-01

    Amorphous silicon oxycarbide (SiOC) and silicon oxynitrocarbide (SiONC) ceramic films coated aluminum nitride (AlN) were prepared by using preceramic-polysilazane (PSZ) with dip-coating method, followed by pyrolysis at 700 °C in different (air, Ar, N2 and NH3) atmospheres to converted PSZ into SiOCair and SiONC(Ar,N2andNH3) ceramic. The existence of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface was characterized by FTIR, XRD and XPS. The interfacial adhesion between silicone rubber and AlN was significantly improved after the introduction of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. It can be observed from AFM that the pyrolysis of PSZ at different atmosphere strongly affected to films morphology on AlN surface as SiOCair and SiONCNH3 ceramic films were more flat and smooth than SiONCN2 and SiONCAr ceramic films. Besides, the enhancement of the thermal conductivity of silicone rubber composites was found to be related to the decrease in the surface roughness of SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. This present work provided an alternative surface modification of thermally conductive fillers to improve the thermal conductivity of silicon rubber composites by coating with amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films.

  15. Electrical conductivity of metal–carbon nanotube structures: Effect of ...

    Indian Academy of Sciences (India)

    Administrator

    The electrical properties of asymmetric metal–carbon nanotube (CNT) structures have been studied using ... The models with asymmetric metal contacts and carbon nanotube bear resemblance to experimental ... ordinary mechanical strength.

  16. Integration of Computer Tomography and Simulation Analysis in Evaluation of Quality of Ceramic-Carbon Bonded Foam Filter

    Directory of Open Access Journals (Sweden)

    Karwiński A.

    2013-12-01

    Full Text Available Filtration of liquid casting alloys is used in casting technologies for long time. The large quantity of available casting filters allows using them depending on casting technology, dimensions of casting and used alloys. Technological progress of material science allows of using new materials in production of ceramic filters. In this article the Computed Tomography (CT technique was use in order to evaluate the thickness of branch in cross section of 20ppi ceramic-carbon bonded foam filter. Than the 3D image of foam filter was used in computer simulation of flow of liquid metal thru the running system.

  17. Microstructure and texture dependence of the dielectric anomalies and dc conductivity of Bi3TiNbO9 ferroelectric ceramics

    International Nuclear Information System (INIS)

    Moure, A.; Pardo, L.

    2005-01-01

    Ceramics of composition Bi 3 TiNbO 9 (BTN) and perovskite-layered structure (Aurivillius type) [B. Aurivillius, Ark. Kemi 1, 463 (1949)] were processed by natural sintering and hot pressing from amorphous precursors. Precursors were obtained by mechanochemical activation of stoichiometric mixtures of oxides. These materials are in general interesting for their use as high-temperature piezoelectrics. Among them, BTN possesses the highest ferroparaelectric phase-transition temperature (>900 deg. C). The transition temperature establishes the working limit of the ceramic and the electric properties, especially the dc conductivity, affect on its polarizability. In this work, dielectric studies of BTN ceramics with controlled texture and microstructure have been made at 1, 100 KHz, and 1 MHZ and in the temperature range from 200 deg. C up to the ferroparaelectric transition temperature. Values of ε ' ∼250 at 200 deg. C are achieved in ceramics hot pressed at temperatures as low as 700 deg. C for 1 h

  18. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.

    Science.gov (United States)

    Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin

    2015-07-07

    Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.

  19. Water electrolysis with a conducting carbon cloth: subthreshold hydrogen generation and superthreshold carbon quantum dot formation.

    Science.gov (United States)

    Biswal, Mandakini; Deshpande, Aparna; Kelkar, Sarika; Ogale, Satishchandra

    2014-03-01

    A conducting carbon cloth, which has an interesting turbostratic microstructure and functional groups that are distinctly different from other ordered forms of carbon, such as graphite, graphene, and carbon nanotubes, was synthesized by a simple one-step pyrolysis of cellulose fabric. This turbostratic disorder and surface chemical functionalities had interesting consequences for water splitting and hydrogen generation when such a cloth was used as an electrode in the alkaline electrolysis process. Importantly, this work also gives a new twist to carbon-assisted electrolysis. During electrolysis, the active sites in the carbon cloth allow slow oxidation of its surface to transform the surface groups from COH to COOH and so forth at a voltage as low as 0.2 V in a two-electrode system, along with platinum as the cathode, instead of 1.23 V (plus overpotential), which is required for platinum, steel, or even graphite anodes. The quantity of subthreshold hydrogen evolved was 24 mL cm(-2)  h(-1) at 1 V. Interestingly, at a superthreshold potential (>1.23 V+overpotential), another remarkable phenomenon was found. At such voltages, along with the high rate and quantity of hydrogen evolution, rapid exfoliation of the tiny nanoscale (5-7 nm) units of carbon quantum dots (CQDs) are found in copious amounts due to an enhanced oxidation rate. These CQDs show bright-blue fluorescence under UV light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. DC electrical conductivity of silicon carbide ceramics and composites for flow channel insert applications

    International Nuclear Information System (INIS)

    Katoh, Y.; Kondo, S.; Snead, L.L.

    2009-01-01

    High purity chemically vapor-deposited silicon carbide (SiC) and 2D continuous SiC fiber, chemically vapor-infiltrated SiC matrix composites with pyrocarbon interphases were examined. Specifically, temperature dependent (RT to 800 deg. C) electrical conductivity and the influence of neutron irradiation were measured. The influence of neutron irradiation on electrical properties appeared very strong for the SiC of this study, typically resulting in orders lower ambient conductivity and steeper temperature dependency of this conductivity. For the 2D composites, through-thickness (normal to the fiber axis') electrical conductivity was dominated by bypass conduction via interphase network at relatively low temperatures, whereas conduction through SiC constituents dominated at higher temperatures. Through-thickness electrical conductivity of neutron-irradiated 2D SiC composites with thin PyC interphase, currently envisioned for flow channel insert application, will likely in the order of 10 S/m at the appropriate operating temperature. Mechanisms of electrical conduction in the composites and irradiation-induced modification of electrical conductivity of the composites and their constituents are discussed.

  1. On the addition of conducting ceramic nanoparticles in solvent-free ionic liquid electrolyte for dye-sensitized solar cells

    KAUST Repository

    Lee, Chuan-Pei

    2009-08-01

    Titanium carbide (TiC) is an extremely hard conducting ceramic material often used as a coating for titanium alloys as well as steel and aluminum components to improve their surface properties. In this study, conducting ceramic nanoparticles (CCNPs) have been used, for the first time, in dye-sensitized solar cells (DSSCs), and the incorporation of TiC nanoparticles in a binary ionic liquid electrolyte on the cell performance has been investigated. Cell conversion efficiency with 0.6 wt% TiC reached 1.68%, which was higher than that without adding TiC (1.18%); however, cell efficiency decreased when the TiC content reached 1.0 wt%. The electrochemical impedance spectroscopy (EIS) technique was employed to analyze the interfacial resistance in DSSCs, and it was found that the resistance of the charge-transfer process at the Pt counter electrode (Rct1) decreased when up to 1.0 wt% TiC was added. Presumably, this was due to the formation of the extended electron transfer surface (EETS) which facilitates electron transfer to the bulk electrolyte, resulting in a decrease of the dark current, whereby the open-circuit potential (VOC) could be improved. Furthermore, a significant increase in the fill factor (FF) for all TiC additions was related to the decrease in the series resistance (RS) of the DSSCs. However, at 1.0 wt% TiC, the largest charge-transfer resistance at the TiO2/dye/electrolyte interface was observed and resulted from the poor penetration of the electrolyte into the porous TiO2. The long-term stability of DSSCs with a binary ionic liquid electrolyte, which is superior to that of an organic solvent-based electrolyte, was also studied. © 2009 Elsevier B.V. All rights reserved.

  2. Li dynamics in carbon-rich polymer-derived SiCN ceramics probed by NMR

    Science.gov (United States)

    Baek, Seung-Ho; Reinold, Lukas; Graczyk-Zajac, Magdalena; Riedel, Ralf; Hammerath, Franziska; Buechner, Bernd; Grafe, Hajo

    2014-03-01

    We report 7Li, 29Si, and 13C NMR studies of two different carbon-rich SiCN ceramics SiCN-1 and SiCN-3 derived from the preceramic polymers polyphenylvinylsilylcarbodiimide and polyphenylvinylsilazane, respectively. From the spectral analysis of the three nuclei at room temperature, we find that only the 13C spectrum is strongly influenced by Li insertion/extraction, suggesting that carbon phases are the major electrochemically active sites for Li storage. Temperature and Larmor frequency (ωL) dependences of the 7Li linewidth and spin-lattice relaxation rates T1-1 are described by an activated law with the activation energy EA of 0.31 eV and the correlation time τ0 in the high temperature limit of 1.3 ps. The 3 / 2 power law dependence of T1-1 on ωL which deviates from the standard Bloembergen, Purcell, and Pound (BPP) model implies that the Li motion on the μs timescale is governed by continuum diffusion mechanism rather than jump diffusion. On the other hand, the rotating frame relaxation rate T1ρ-1 results suggest that the slow motion of Li on the ms timescale may be affected by complex diffusion and/or non-diffusion processes.

  3. Electrical Conduction of Ba(Ti0.99Fe0.01)O3-δ Ceramic at High Temperatures

    Science.gov (United States)

    Yu, Zi-De; Chen, Xiao-Ming

    2018-03-01

    BaTiO3 and Ba(Ti0.99Fe0.01)O3-δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3-δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3-δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3-δ , the electrical modulus curve versus frequency displayed two peaks.

  4. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang; Liu, Wenchao; Mak, C. L.

    2012-01-01

    . This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased

  5. Electrical conductivity of metal–carbon nanotube structures

    Indian Academy of Sciences (India)

    The electrical properties of asymmetric metal–carbon nanotube (CNT) structures have been studied using density functional theory and non-equilibrium Green's function method with Atomistix tool kit. The models with asymmetric metal contacts and carbon nanotube bear resemblance to experimental set-ups. The study ...

  6. Synthesis, characterization and electroanalytical application of a new SiO2/SnO2 carbon ceramic electrode

    International Nuclear Information System (INIS)

    Arguello, Jacqueline; Magosso, Herica A.; Landers, Richard; Pimentel, Vinicius L.; Gushikem, Yoshitaka

    2010-01-01

    A new SiO 2 /SnO 2 carbon ceramic composite was prepared by the sol-gel method, and its potential application in electrochemistry as a novel electrode material has been studied. The prepared xerogel was structurally and electrochemically characterized by scanning electron microscopy coupled to energy dispersive spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and cyclic voltammetry. The composite was pressed in a rigid disk-shape and used as a conductive substrate to immobilize a water-soluble organic-inorganic hybrid polymer, 3-n-propyl-4-picolinium chloride silsesquioxane. The oxidation of nitrite was studied on this polymer film coated electrode in aqueous solution using cyclic voltammetry and differential pulse voltammetry. This modified electrode exhibited a better defined voltammetric peak shifted negatively about 60 mV. The linear detection limit found for nitrite was from 1.3 x 10 -5 to 1.3 x 10 -3 mol l -1 and the detection limit was 3.3 x 10 -6 mol l -1 .

  7. Studies on Preparation and Characterization of Aluminum Nitride-Coated Carbon Fibers and Thermal Conductivity of Epoxy Matrix Composites

    Directory of Open Access Journals (Sweden)

    Hyeon-Hye Kim

    2017-08-01

    Full Text Available In this work; the effects of an aluminum nitride (AlN ceramic coating on the thermal conductivity of carbon fiber-reinforced composites were studied. AlN were synthesized by a wet-thermal treatment (WTT method in the presence of copper catalysts. The WTT method was carried out in a horizontal tube furnace at above 1500 °C under an ammonia (NH3 gas atmosphere balanced by a nitrogen using aluminum chloride as a precursor. Copper catalysts pre-doped enhance the interfacial bonding of the AlN with the carbon fiber surfaces. They also help to introduce AlN bonds by interrupting aluminum oxide (Al2O3 formation in combination with oxygen. Scanning electron microscopy (SEM; Transmission electron microscopy (TEM; and X-ray diffraction (XRD were used to analyze the carbon fiber surfaces and structures at each step (copper-coating step and AlN formation step. In conclusion; we have demonstrated a synthesis route for preparing an AlN coating on the carbon fiber surfaces in the presence of a metallic catalyst.

  8. Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube

    Science.gov (United States)

    Zhang, Zhiqiang [Lexington, KY; Lockwood, Frances E [Georgetown, KY

    2008-03-25

    A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.

  9. Electrical conductivity of molten carbonate and carbonate-chloride systems coexisting with aluminium oxide powder

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, Elena V. [Institute of High Temperature Electrochemistry, Yekaterinburg (Russian Federation); Ural Federal Univ., Yekaterinburg (Russian Federation); Ural State Economic Univ., Yekaterinburg (Russian Federation); Bovet, Andrey L.; Zakiryanova, Irina D. [Institute of High Temperature Electrochemistry, Yekaterinburg (Russian Federation); Ural Federal Univ., Yekaterinburg (Russian Federation)

    2018-04-01

    The electrical properties of composite electrolytes (suspensions) composed of α-Al{sub 2}O{sub 3} powder and molten carbonate eutectic (Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3}-K{sub 2}CO{sub 3}){sub eut} or molten carbonate-chloride mixture 0.72(Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3}-K{sub 2}CO{sub 3}){sub eut}-0.28NaCl have been investigated by AC impedance method. This system shows a dependence of the electrical conductivity upon the temperature and the α-Al{sub 2}O{sub 3} content. The specific electrical conductivity of the α-Al{sub 2}O{sub 3}/(Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3}-K{sub 2}CO{sub 3}){sub eut} system can be adequately described by the Maxwell equation for two-phase heterogeneous materials. The regression equation for the dependence of the specific conductivity of the α-Al{sub 2}O{sub 3}/(Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3}-K{sub 2}CO{sub 3}){sub eut} composite on the aluminium oxide concentration and temperature was obtained.

  10. Reinforcement of Multiwalled Carbon Nanotube in Nitrile Rubber: In Comparison with Carbon Black, Conductive Carbon Black, and Precipitated Silica

    Directory of Open Access Journals (Sweden)

    Atip Boonbumrung

    2016-01-01

    Full Text Available The properties of nitrile rubber (NBR reinforced by multiwalled carbon nanotube (MWCNT, conductive carbon black (CCB, carbon black (CB, and precipitated silica (PSi were investigated via viscoelastic behavior, bound rubber content, electrical properties, cross-link density, and mechanical properties. The filler content was varied from 0 to 15 phr. MWCNT shows the greatest magnitude of reinforcement considered in terms of tensile strength, modulus, hardness, and abrasion resistance followed by CCB, CB, and PSi. The MWCNT filled system also exhibits extremely high levels of filler network and trapped rubber even at relatively low loading (5 phr leading to high electrical properties and poor dynamic mechanical properties. Although CCB possesses the highest specific surface area, it gives lower level of filler network than MWCNT and also gives the highest elongation at break among all fillers. Both CB and PSi show comparable degree of reinforcement which is considerably lower than CCB and MWCNT.

  11. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires

    Science.gov (United States)

    Liu, Wei; Lee, Seok Woo; Lin, Dingchang; Shi, Feifei; Wang, Shuang; Sendek, Austin D.; Cui, Yi

    2017-04-01

    In contrast to conventional organic liquid electrolytes that have leakage, flammability and chemical stability issues, solid electrolytes are widely considered as a promising candidate for the development of next-generation safe lithium-ion batteries. In solid polymer electrolytes that contain polymers and lithium salts, inorganic nanoparticles are often used as fillers to improve electrochemical performance, structure stability, and mechanical strength. However, such composite polymer electrolytes generally have low ionic conductivity. Here we report that a composite polymer electrolyte with well-aligned inorganic Li+-conductive nanowires exhibits an ionic conductivity of 6.05 × 10-5 S cm-1 at 30 ∘C, which is one order of magnitude higher than previous polymer electrolytes with randomly aligned nanowires. The large conductivity enhancement is ascribed to a fast ion-conducting pathway without crossing junctions on the surfaces of the aligned nanowires. Moreover, the long-term structural stability of the polymer electrolyte is also improved by the use of nanowires.

  12. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials

    International Nuclear Information System (INIS)

    He, Fupo; Zhang, Jing; Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei; Chen, Xiaoming

    2015-01-01

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vitro degradation and cell response of CC/PG were compared to 4 materials. • The CC/PG showed moderate degradation rate. • The CC/PG exhibited good cell response. • The CC/PG was free of obvious drawback compared to other materials

  13. The glass-like thermal conductivity in ZrO2-Dy3TaO7 ceramic for promising thermal barrier coating application

    Science.gov (United States)

    Wu, Peng; Hu, Ming Yu; Chong, Xiao Yu; Feng, Jing

    2018-03-01

    Using the solid-state reaction method, the (ZrO2)x-(Dy3TaO7)1-x (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.1) ceramics are synthesized in this work. The identification of the crystal structures indicates that the (ZrO2)x-(Dy3TaO7)1-x ceramics belong to the orthorhombic system, and the space group is C2221 in spite of the value of x increasing to 0.1. The thermal conductivities of the (ZrO2)x-(Dy3TaO7)1-x ceramics range from 1.3 W/(m K) to 1.8 W/(m K), and this value is much lower than that of 7-8 YSZ (yttria-stabilized zirconia). Besides, the (ZrO2)x-(Dy3TaO7)1-x ceramics possess the glass-like thermal conductivity caused by intrinsic oxygen vacancies existing in the lattice of Dy3TaO7. Moreover, the results of thermal expansion rates demonstrate that the (ZrO2)x-(Dy3TaO7)1-x ceramics possess excellent high temperature phase stability, and the thermal expansion coefficients [(9.7-11) × 10-6 K-1] are comparable to that of 7-8 YSZ.

  14. Boride ceramics covalent functionalization and its effect on the thermal conductivity of epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhi-Qiang, E-mail: yuzhiqiang@fudan.edu.cn [Department of Materials Science, Fudan University, 200433 Shanghai (China); Wu, Yicheng [Department of Materials Science, Fudan University, 200433 Shanghai (China); Wei, Bin; Baier, Horst [Institute of Lightweight Structures, Technical University Munich (TUM), Boltzmannstr. 15, D-85747 Garching (Germany)

    2015-08-15

    Zirconium diboride/aluminium oxide (ZrB{sub 2}/Al{sub 2}O{sub 3}) composite particles were functionalized with epoxide functionalized γ-glycidoxypropyltrimethoxysilane by the covalent bonding approach to improve the interfacial compatibility of composite particles in epoxy matrix. The composites of epoxy resin filled with functionalized ZrB{sub 2}/Al{sub 2}O{sub 3} were prepared by in situ bulk condensation polymerization of bisphenol A and epichlorohydrin in the presence of ZrB{sub 2}/Al{sub 2}O{sub 3}. The heat-conducting properties of composites were investigated by the finite element method (FEM) and the thermal conductivity test. The finite-element program ANSYS was used for this numerical analysis, and three-dimensional spheres-in-cube lattice array models were built to simulate the microstructure of composite materials for different filler contents. The thermal conductivity of composites was determined by laser flash method (LFA447 Nanoflash), using the measured heat capacity and thermal diffusivity, with separately entered density data. The results show that the effective chemical bonds are formed between ZrB{sub 2}/Al{sub 2}O{sub 3} and γ-glycidoxypropyltrimethoxysilane after the surface functionalization. The interfacial compatibility and bonding of modified particles with the epoxy matrix are improved. The thermal conductivities of functionalized composites with 3 vol% and 5 vol% loading are increased by 8.3% and 12.5% relative to the unmodified composites, respectively. Comparison of experimental values and calculated values of the thermal conductivity, the average relative differences are under 5%. The predictive values of thermal conductivity of epoxy composites are in reasonable agreement with the experimental values. - Highlights: • The surfaces of ZrB{sub 2}/Al{sub 2}O{sub 3} were functionalized by silane coupling agents. • The thermal conductivity (TC) of modified epoxy composites is improved significantly. • The FEM values of TC are in

  15. The Measurement of Thermal Conductivities of Silica and Carbon Black Powders at Different pressures by Thermal COnductivity Probe

    Institute of Scientific and Technical Information of China (English)

    X.G.Liang; X.S.Ge; 等

    1992-01-01

    This investigation was done to study the gas filled powder insulation and thermal conductivity probe for the measurent of thermal conductivity of powders.The mathematical analysis showed that the heat capacity of the probe itself and the thermal rsistance between the probe and powder must be considered .The authors developed a slender probe and measured the effective thermal conductivity of sillca and carbon black powders under a variety of conditions.

  16. Impedance spectroscopy of PZT ceramics--measuring diffusion coefficients, mixed conduction, and Pb loss.

    Science.gov (United States)

    Donnelly, Niall J; Randall, Clive A

    2012-09-01

    Sintering of lead zirconate titanate (PZT) at high temperatures results in loss of Pb unless an ambient Pb activity is maintained. The tell-tale sign of Pb loss is an increased conductivity, usually manifested in unacceptably high values of tanδ. The conductivity is caused by oxygen vacancies and/or electron holes which are a byproduct of Pb evaporation. In the first part of this paper, it is shown how impedance spectroscopy can be used to separate ionic and electronic conductivity in a properly designed sample by selection of appropriate boundary conditions. Subsequently, impedance is used to probe defect concentrations in PZT during prolonged annealing at 700°C. It is found that oxygen vacancies are generated during annealing in air but the rate of generation actually decreases upon lowering the ambient pO(2). These results are explained by a model of Pb evaporation which, in this case, leads predominantly to oxygen vacancy generation. In principle, this effect could be used to generate a specific vacancy concentration in similar Pb-based oxides.

  17. Ionic conductivity of co-doped Sc2O3-ZrO2 ceramics

    DEFF Research Database (Denmark)

    Omar, Shobit; bin Najib, Waqas; Chen, Weiwu

    2012-01-01

    The oxide ionic conductivity of Sc0.18Zr0.82O1.91 doped with 0.5 mol.% of both Yb2O3 and In2O3 is evaluated at various temperatures in air. Among various co-doped compositions, In0.02Sc0.18Zr0.80O1.90 exhibits the highest grain ionic conductivity followed by Yb0.02Sc0.18Zr0.80O1.90 at 500°C....... However, it also possesses phase transformation from c- to β-phase at 475°C on cooling. In the present work, an attempt is made to completely stabilize the cphase in In0.02Sc0.18Zr0.80O1.90 by substituting 0.5 mol.% of In2O3 with Yb2O3, which can enhance the ionic conductivity in co-doped compositions....

  18. Tuning the conductance of carbon nanotubes with encapsulated molecules

    International Nuclear Information System (INIS)

    Meunier, Vincent; Sumpter, Bobby G

    2007-01-01

    It was recently shown that a molecule encapsulated inside a carbon nanotube can be used to devise a novel type of non-volatile memory element. At the heart of the mechanism for storing and reading information is the new concept of a molecular gate where the molecule acts as a passive gate that hinders the flow of electrons for a given position relative to the nanotube host. By systematically exploring the effects of encapsulation of an acceptor molecule in a series of carbon nanotubes, we show that the reliability of the memory mechanism is very sensitive to the interaction between the nanotube host and the molecule guest

  19. Fundamental study on target plate model with high thermal conductive ceramics for fusion power plants

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro

    2004-01-01

    Target plate model (35 mm x 25 mm x 100 mm) of divertor device for fusion reactor was fabricated using low activated and light material, Si/xSiC Metal Matrix Composite (MMC) and high strength and thermal conductive SiC. This model has bonding structure of armor tile (25 mm x 25 mm x 10 mmt) of Hot Pressed (HP) and Hot Isostatic Pressed (HIP) Si/SiC (10 wt%)-MMC and substrate (25 mm x 25 mm x 100 mm) of SiC/BeO (1 wt%) with water cooling channel (φ15 mm). Armor tile material, Si/10SiC-MMC shows high thermal conductive and low resistivity with over 200 MPa peak bending strength at high temperature. This material behaves super plasticity over peak temperature corresponding to peak bending strength and low temperature brittleness of this material was improved to degrade DBTT to 673 K by optimization of Hot Press (HP) and Hot Isostatic Press (HIP) conditions. Substrate body material, SiC/1BeO behaves major characteristics of high bending strength over 500 MPa, high density of 3.2 g/cm 3 and high thermal conductivity of 270 W/m·K at room temperature. Target plate model with water cooling by 293 K and 2 MPa pressurized water at 1 m/s was exposed under 5 MW/m 2 x 30 s high heat flux H + ion beam and showed very good cooling performance and no damage was found after this test. (author)

  20. Electrically conductive, black thermal control coatings for spacecraft applications. III - Plasma-deposited ceramic matrix

    Science.gov (United States)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1987-01-01

    Five black, electrically-conductive thermal control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consist of both organic and inorganic systems applied on titanium, aluminum, and glass/epoxy composite surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation, convective and combustive heating, and cryogenic conditions over a temperature range between -196 C and 538 C. Mechanical, physical, thermal, electrical, and thermooptical properties are presented for one of these coatings. This paper describes the preparation, characteristics, and spraying of iron titanate on titanium and aluminum, and presents performance results.

  1. Liquid spreading on ceramic-coated carbon nanotube films and patterned microstructures

    Science.gov (United States)

    Zhao, Hangbo; Hart, A. John

    2015-11-01

    We study the capillary-driven liquid spreading behavior on films and microstructures of ceramic-coated vertically aligned carbon nanotubes (CNTs) fabricated on quartz substrates. The nanoscale porosity and micro-scale dimensions of the CNT structures, which can be precisely varied by the fabrication process, enable quantitative measurements that can be related to analytical models of the spreading behavior. Moreover, the conformal alumina coating by atomic layer deposition (ALD) prevents capillary-induced deformation of the CNTs upon meniscus recession, which has complicated previous studies of this topic. Washburn-like liquid spreading behavior is observed on non-patterned CNT surfaces, and is explained using a scaling model based on the balance of capillary driving force and the viscous drag force. Using these insights, we design patterned surfaces with controllable spreading rates and study the contact line pinning-depinning behavior. The nanoscale porosity, controllable surface chemistry, and mechanical stability of coated CNTs provide significantly enhanced liquid-solid interfacial area compared to solid microstructures. As a result, these surface designs may be useful for applications such as phase-change heat transfer and electrochemical energy storage. Funding for this project is provided by the National Institutes of Health and the MIT Center for Clean Water and Clean Energy supported by the King Fahd University of Petroleum and Minerals.

  2. Full Polymer Dielectric Elastomeric Actuators (DEA Functionalised with Carbon Nanotubes and High-K Ceramics

    Directory of Open Access Journals (Sweden)

    Tilo Köckritz

    2016-09-01

    Full Text Available Dielectric elastomer actuators (DEA are special devices which have a simple working and construction principle and outstanding actuation properties. The DEAs consist of a combination of different materials for the dielectric and electrode layers. The combination of these layers causes incompatibilities in their interconnections. Dramatic differences in the mechanical properties and bad adhesion of the layers are the principal causes for the reduction of the actuation displacement and strong reduction of lifetime. Common DEAs achieve actuation displacements of 2% and a durability of some million cycles. The following investigations represent a new approach to solving the problems of common systems. The investigated DEA consists of only one basic raw polymer, which was modified according to the required demands of each layer. The basic raw polymer was modified with single-walled carbon nanotubes or high-k ceramics, for example, lead magnesium niobate-lead titanate. The development of the full polymer DEA comprised the development of materials and technologies to realise a reproducible layer composition. It was proven that the full polymer actuator worked according to the theoretical rules. The investigated system achieved actuation displacements above 20% regarding thickness, outstanding interconnections at each layer without any failures, and durability above 3 million cycles without any indication of an impending malfunction.

  3. In situ formation of low friction ceramic coatings on carbon steel by plasma electrolytic oxidation in two types of electrolytes

    International Nuclear Information System (INIS)

    Wang Yunlong; Jiang Zhaohua

    2009-01-01

    In situ formation of ceramic coatings on Q235 carbon steel was achieved by plasma electrolytic oxidation (PEO) in carbonate electrolyte and silicate electrolyte, respectively. The surface and cross-section morphology, phase and elemental composition of PEO coatings were examined by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The bond strength of the coating was determined using a direct pull-off test. The hardness as well as tribological properties of the ceramic coating was primarily studied. The results indicated that the coating obtained in carbonate electrolyte was Fe 3 O 4 , while the coating achieved from silicate electrolyte was proved to be amorphous. Both kinds of coatings showed coarse and porous surface. The Fe 3 O 4 coatings obtained in carbonate electrolyte showed a high bonding strength to the substrate up to 20 ± 2 MPa and the value was 15 ± 2 MPa for the amorphous coatings obtained in carbonate electrolyte. The micro hardness of the amorphous coating and the Fe 3 O 4 coating was 1001 Hv and 1413 Hv, respectively, which was more than two and three times as that of the Q235 alloy substrate (415 Hv). The friction coefficient exhibited by amorphous coating and Fe 3 O 4 coating was 0.13 and 0.11, respectively, both lower than the uncoated Q235 substrate which ranged from 0.17 to 0.35.

  4. Ceramic Membrane combined with Powdered Activated Carbon (PAC) or Coagulation for Treatment of Impaired Quality Waters

    KAUST Repository

    Hamad, Juma Z.

    2013-08-29

    Ceramic membranes (CM) are robust membranes attributed with high production, long life span and stability against critical conditions. While capital costs are high, these are partially offset by lower operation and maintenance costs compared to polymeric membranes. Like any other low-pressure membrane (LPM), CM faces problems of fouling, low removal of organic matter and poor removal of trace organic compounds (TOrCs). Current pretreatment approaches that are mainly based on coagulation and adsorption can remove some organic matter but with a low removal of the biopolymers component which is responsible for fouling. Powdered activated carbon (PAC) accompanied with a LPM maintains good removal of TOrCs. However, enhanced removal of TOrCs to higher level is required. Submicron powdered activated carbon (SPAC), obtained after crushing commercial activated carbon into very fine particle, and novel activated carbon (KCU 6) which is characterized with larger pores and high surface area were employed. A pre-coating approach, which provides intimated contact between PAC and contaminants, was adopted for wastewater and (high DOC) surface water treatment. For seawater, in-line coagulation with iron III chloride was adopted. Both SPAC and KCU 6 showed good removal of biopolymers at a dose of 30 mg/L with > 85 % and 90 %, respectively. A dose of 40 mg/L of SPAC and 30 mg/L KCU 6 pre-coats were successful used in controlling membrane fouling. SPAC is suggested to remove biopolymers by physical means and adsorption while KCU 6 removed biopolymers through adsorption. Both KCU 6 and SPAC attained high removal of TOrCs whereas KCU 6 showed outstanding performance. Out of 29 TOrCs investigated, KCU 6 showed > 87 % TOrCs rejection for 28 compounds. In seawater pretreatment, transparent exopolymer particles (TEP) were found to be an important foulant. TEP promoted both reversible and irreversible fouling. TEP are highly electronegative while alumina CM is positively charged which

  5. Application of Conductive Carbon Nanotube Fibers and Composites: Gas Sensor

    Science.gov (United States)

    2013-05-01

    changes in Raman spectroscopy data when single wall carbon nanotubes (SWNT) are immersed in various liquids, including common organics (12). In...Resistance -- (82) 2007 Su H2O MWNT PMMA, KOH Gas Impedance -- (83) 2011 Tang H2O MWNT PI Gas Resistance -- (84) 2003 Wang H2O2, NADH SWNT

  6. Ion conducting fluoropolymer carbonates for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Balsara, Nitash P.; Thelen, Jacob; Devaux, Didier

    2017-09-05

    Liquid or solid electrolyte compositions are described that comprise a homogeneous solvent system and an alkali metal salt dissolved in said solvent system. The solvent system may comprise a fluoropolymer, having one or two terminal carbonate groups covalently coupled thereto. Batteries containing such electrolyte compositions are also described.

  7. Tritium Sequestration in Gen IV NGNP Gas Stream via Proton Conducting Ceramic Pumps

    International Nuclear Information System (INIS)

    Chen, Franglin Frank; Adams, Thad M.; Brinkman, Kyle; Reifsnider, Kenneth

    2011-01-01

    Several perovskite structured proton conductors based on SrCeO 3 and BaCeO 3 have been investigated in the project. The solid solutions for SrCeO 3 and BaCeO 3 were first investigated. The morphological and electrical properties of Ba 1-x Sr x Ce 0.8 Y 0.2 O 3-δ with x varying from 0 to 1 prepared by a modified Pechini method were investigated as potential high temperature proton conductors. Dense microstructures were achieved for all the samples upon sintering at 1500ees)C for 5 h. The phase structure analysis indicated that perovskite phase was formed for 0≤x≤0.2, while for x larger than 0.5, impurity phases of Sr 2 CeO 4 and Y 2 O 3 appeared. The stability tests indicated that the resistance to boiling water for Ba 1-x Sr x Ce 0.8 Y 0.2 O 3-δ was between that of BaCe 0.8 Y 0.2 O 3-δ and SrCe 0.8 Y 0.2 O 3-δ Due to the tendency of the reaction with CO 2 for both BaCe 0.8 Y 0.2 O 3-δ and SrCe 0.8 Y 0.2 O 3-δ , it was not surprising that Ba 1-x Sr x Ce 0.8 Y 0.2 O 3-δ was also not stable in CO 2 containing atmospheres. The conductivity tests indicated that Ba 1-x Sr x Ce 0.8 Y 0.2 O 3-δ possessed the electrical conductivity between BaCe 0.8 Y 0.2 O 3-δ and SrCe 0.8 Y 0.2 O 3-δ . The conductivity decreased and the activation energy increased with the increase in Sr content in Ba 1-x Sr x Ce 0.8 Y 0.2 O 3-δ .

  8. Crystallisation behavior and electronic conductivity of vanadium tellurite glass-ceramics

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng; Rodrigues, A.C.M.

    2012-01-01

    is synthesized via the melt quenching technique, and crystalline 2TeO2-V2O5 is obtained by further heat-treatment of the quenched glass. Both states are confirmed by x-ray diffraction, scanning electron microscopy and differential scanning calorimetry. The redox state of vanadium is controlled via the melting...... and the ability to intercalate lithium-ions, it is a candidate for usage as cathode material. In the present work, we optimize the electronic conductivity of the congruent 2TeO2-V2O5 composition by tuning both the redox state of the vanadium and the overall degree of crystallinity. Amorphous 2TeO2-V2O5...

  9. Synthesis and Thermal Conductivity of Exfoliated Hexagonal Boron Nitride/Alumina Ceramic Composite

    Science.gov (United States)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Lizcano, Maricela; Kelly, Marisabel

    2017-01-01

    Exfoliated hexagonal boron nitride (hBN)/alumina composite can be fabricated by following the process of (1) heating a mixture of hBN, AlCl3, and NaF in nitrogen for intercalation; (2) heating the intercalated product in air for exfoliation and at the same time converting the intercalate (AlCl3) into Al2O3, (3) rinsing the oxidized product, (4) coating individual exfoliated hBN platelets that contain Al2O3 with new layers of aluminum oxide, and finally, (5) hot pressing the product into the composite. The composite thus obtained has a composition of approximately 60 percent by weight hBN and 40 percent by weight alumina. Its in-plane and through-plane thermal conductivity were measured to be 86 and 18 watts per meter Kelvin, respectively, at room temperature.

  10. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    Science.gov (United States)

    Brown, Jesse; Hirschfeld, Deidre; Liu, Dean-Mo; Yang, Yaping; Li, Tingkai; Swanson, Robert E.; Van Aken, Steven; Kim, Jin-Min

    1992-01-01

    Compositions having the general formula (Ca.sub.x Mg.sub.1-x)Zr.sub.4 (PO.sub.4).sub.6 where x is between 0.5 and 0.99 are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850.degree. C. for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200.degree. C. to 1350.degree. C. to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used.

  11. Conductive polymer composites with carbonic fillers: Shear induced electrical behaviour

    Czech Academy of Sciences Publication Activity Database

    Starý, Zdeněk; Krückel, J.

    2018-01-01

    Roč. 139, 14 March (2018), s. 52-59 ISSN 0032-3861 R&D Projects: GA ČR(CZ) GA17-05654S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer-matrix composites * carbon fibres * electrical properties Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer sci ence Impact factor: 3.684, year: 2016

  12. Comparison of two modified coal ash ferric-carbon micro-electrolysis ceramic media for pretreatment of tetracycline wastewater.

    Science.gov (United States)

    Yang, Kunlun; Jin, Yang; Yue, Qinyan; Zhao, Pin; Gao, Yuan; Wu, Suqing; Gao, Baoyu

    2017-05-01

    Application of modified sintering ferric-carbon ceramics (SFC) and sintering-free ferric-carbon ceramics (SFFC) based on coal ash and scrap iron for pretreatment of tetracycline (TET) wastewater was investigated in this article. Physical property, morphological character, toxic metal leaching content, and crystal component were studied to explore the application possibility of novel ceramics in micro-electrolysis reactors. The influences of operating conditions including influent pH, hydraulic retention time (HRT), and air-water ratio (A/W) on the removal of tetracycline were studied. The results showed that SFC and SFFC were suitable for application in micro-electrolysis reactors. The optimum conditions of SFC reactor were pH of 3, HRT of 7 h, and A/W of 10. For SFFC reactor, the optimum conditions were pH of 2, HRT of 7 h, and A/W of 15. In general, the TET removal efficiency of SFC reactor was better than that of SFFC reactor. However, the harden resistance of SFFC was better than that of SFC. Furthermore, the biodegradability of TET wastewater was improved greatly after micro-electrolysis pretreatment for both SFC and SFFC reactors.

  13. Double perovskite cathodes for proton-conducting ceramic fuel cells: are they triple mixed ionic electronic conductors?

    Science.gov (United States)

    Téllez Lozano, Helena; Druce, John; Cooper, Samuel J; Kilner, John A

    2017-01-01

    18 O and 2 H diffusion has been investigated at a temperature of 300 °C in the double perovskite material PrBaCo 2 O 5+ δ (PBCO) in flowing air containing 200 mbar of 2 H 2 16 O. Secondary ion mass spectrometry (SIMS) depth profiling of exchanged ceramics has shown PBCO still retains significant oxygen diffusivity (~1.3 × 10 -11 cm 2 s -1 ) at this temperature and that the presence of water ( 2 H 2 16 O), gives rise to an enhancement of the surface exchange rate over that in pure oxygen by a factor of ~3. The 2 H distribution, as inferred from the 2 H 2 16 O - SIMS signal, shows an apparent depth profile which could be interpreted as 2 H diffusion. However, examination of the 3-D distribution of the signal shows it to be nonhomogeneous and probably related to the presence of hydrated layers in the interior walls of pores and is not due to proton diffusion. This suggests that PBCO acts mainly as an oxygen ion mixed conductor when used in PCFC devices, although the presence of a small amount of protonic conductivity cannot be discounted in these materials.

  14. Double perovskite cathodes for proton-conducting ceramic fuel cells: are they triple mixed ionic electronic conductors?

    Science.gov (United States)

    Téllez Lozano, Helena; Druce, John; Cooper, Samuel J.; Kilner, John A.

    2017-12-01

    18O and 2H diffusion has been investigated at a temperature of 300 °C in the double perovskite material PrBaCo2O5+δ (PBCO) in flowing air containing 200 mbar of 2H216O. Secondary ion mass spectrometry (SIMS) depth profiling of exchanged ceramics has shown PBCO still retains significant oxygen diffusivity ( 1.3 × 10-11 cm2s-1) at this temperature and that the presence of water (2H216O), gives rise to an enhancement of the surface exchange rate over that in pure oxygen by a factor of 3. The 2H distribution, as inferred from the 2H216O- SIMS signal, shows an apparent depth profile which could be interpreted as 2H diffusion. However, examination of the 3-D distribution of the signal shows it to be nonhomogeneous and probably related to the presence of hydrated layers in the interior walls of pores and is not due to proton diffusion. This suggests that PBCO acts mainly as an oxygen ion mixed conductor when used in PCFC devices, although the presence of a small amount of protonic conductivity cannot be discounted in these materials.

  15. Graphene and Carbon Nanotubes Synergistically Improved the Thermal Conductivity of Phenolic Resin

    OpenAIRE

    Wang Han

    2017-01-01

    People discover the synergistic effect of graphene and carbon nanotubes on heat conduction in graphene carbon nanotubes / epoxy resin hybrid composites. In this article we added them into the phenolic resin and test the thermal conductivity. We found the thermal conductivity was increased by 6.5% in the phenolic resin by adding 0.45wt% graphene and 0.15wt% single wall carbon nanotubes (maintain the mass ratio 3:1). So if graphene and carbon nanotubes are added in proportion, thermal conductiv...

  16. A comparative study of different processing methods and microwave surface conductivity of 1-2-3 superconducting ceramics

    International Nuclear Information System (INIS)

    Sundar, H.G.K.; Wilson, C.; Horzog, D.

    1988-01-01

    Superconducting YBa/sub 2/Cu/sub 3/O/sub 6+x/ samples were made from powders prepared by different routes: solid state reaction, amorphous citrate and Pechini method. The powders produced by solid state reaction were milled to different degrees, calcined and sintered. Samples were also hot pressed at 875 C and subsequently annealed at different temperatures to regain the superconducting phase. In order to compare the amount of residual carbonate in the final materials prepared by solid state and liquid mix methods, XPS spectra were taken on as calcined powder and on material sintered at different temperatures. To our surprise, the amount of carbonate was quite small in both the methods, but this amount increased with sintering temperature. The microwave surface conductivity of 1-2-3 superconducting material was measured in a disk resonator configuration. At liquid nitrogen temperatures the microwave conductivity was comparable to that of gold and improved with decreasing temperature. At --10K the conductivity was two orders of magnitude greater than that of gold at the same temperature. The surface conductivity of samples obtained by Pechini method was much better than that obtained by solid state method

  17. Chemical stability of conductive ceramic anodes in LiCl–Li{sub 2}O molten salt for electrolytic reduction in pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Wook; Kang, Hyun Woo; Jeon, Min Ku; Lee, Sang Kwon; Choi, Eun Young; Park, Woo Shin; Hong, Sun Seok; Oh, Seung Chul; Hur, Jin Mok [Nuclear Fuel Cycle Process Development Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    Conductive ceramics are being developed to replace current Pt anodes in the electrolytic reduction of spent oxide fuels in pyroprocessing. While several conductive ceramics have shown promising electrochemical properties in small-scale experiments, their long-term stabilities have not yet been investigated. In this study, the chemical stability of conductive La{sub 0.33}Sr{sub 0.67}MnO{sub 3} in LiCl–Li{sub 2}O molten salt at 650°C was investigated to examine its feasibility as an anode material. Dissolution of Sr at the anode surface led to structural collapse, thereby indicating that the lifetime of the La{sub 0.33}Sr{sub 0.67}MnO{sub 3} anode is limited. The dissolution rate of Sr is likely to be influenced by the local environment around Sr in the perovskite framework.

  18. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

    KAUST Repository

    Ventura, Isaac Aguilar

    2015-12-16

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations.

  19. AC Conductivity and Impedance Properties of 0.65Pb(Mg1/3Nb2/3O3-0.35PbTiO3 Ceramics

    Directory of Open Access Journals (Sweden)

    Banarji Behera

    2009-01-01

    impedance spectroscopy technique. The impedance and electric permittivity were strongly temperature and frequency dependent. The activation energy, calculated from the temperature dependence of AC conductivity of the ceramics was found to be ∼0.5 eV. The relaxation process in the ceramics was found to be of non-Debye type. The nature of Cole-Cole diagram reveals the contribution of grain (bulk and grain boundary permittivity in the ceramics.

  20. Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters

    Science.gov (United States)

    Kiseleva, E. A.; Zhurilova, M. A.; Kochanova, S. A.; Shkolnikov, E. J.; Tarasenko, A. B.; Zaitseva, O. V.; Uryupina, O. V.; Valyano, G. V.

    2018-01-01

    Electrochemical double-layer capacitors (EDLC) offer energy storage technology, highly demanded for rapid transition processes in transport and stationary applications, concerned with fast power fluctuations. Rough structure of activated carbon, widely used as electrode material because of its high specific area, leads to poor electrode conductivity. Therefore there is the need for conductive additive to decrease internal resistance and to achieve high specific power and high specific energy. Usually carbon blacks are widely used as conductive additive. In this paper electrodes with different conductive additives—two types of carbon blacks and single-walled carbon nanotubes—were prepared and characterized in organic electrolyte-based EDLC cells. Electrodes are based on original wood derived activated carbon produced by potassium hydroxide high-temperature activation at Joint Institute for High Temperatures RAS. Electrodes were prepared from slurry by cold-rolling. For electrode characterization cyclic voltammetry, impedance spectra analysis, equivalent series resistance measurements and galvanostatic charge-discharge were used.

  1. Microstructure and texture dependence of the dielectric anomalies and dc conductivity of Bi3TiNbO9 ferroelectric ceramics

    Science.gov (United States)

    Moure, A.; Pardo, L.

    2005-04-01

    Ceramics of composition Bi3TiNbO9 (BTN) and perovskite-layered structure (Aurivillius type) [B. Aurivillius, Ark. Kemi 1, 463 (1949)] were processed by natural sintering and hot pressing from amorphous precursors. Precursors were obtained by mechanochemical activation of stoichiometric mixtures of oxides. These materials are in general interesting for their use as high-temperature piezoelectrics. Among them, BTN possesses the highest ferroparaelectric phase-transition temperature (>900°C). The transition temperature establishes the working limit of the ceramic and the electric properties, especially the dc conductivity, affect on its polarizability. In this work, dielectric studies of BTN ceramics with controlled texture and microstructure have been made at 1, 100KHz, and 1MHZ and in the temperature range from 200°C up to the ferroparaelectric transition temperature. Values of ɛ'˜250 at 200°C are achieved in ceramics hot pressed at temperatures as low as 700°C for 1h.

  2. Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon.

    Science.gov (United States)

    Bertin, Lorenzo; Lampis, Silvia; Todaro, Daniela; Scoma, Alberto; Vallini, Giovanni; Marchetti, Leonardo; Majone, Mauro; Fava, Fabio

    2010-08-01

    Four identically configured anaerobic packed bed biofilm reactors were developed and employed in the continuous acidogenic digestion of olive mill wastewaters to produce volatile fatty acids (VFAs), which can be exploited in the biotechnological production of polyhydroxyalkanoates. Ceramic porous cubes or granular activated carbon were used as biofilm supports. Aside packing material, the role of temperature and organic loading rate (OLR) on VFA production yield and mixture composition were also studied. The process was monitored through a chemical, microbiological and molecular biology integrated procedure. The highest wastewater acidification yield was achieved with the ceramic-based technology at 25 degrees C, with an inlet COD and an OLR of about 17 g/L and 13 g/L/day, respectively. Under these conditions, about the 66% of the influent COD (not including its VFA content) was converted into VFAs, whose final amount represented more than 82% of the influent COD. In particular, acetic, propionic and butyric acids were the main VFAs by composing the 55.7, 21.5 and 14.4%, respectively, of the whole VFA mixture. Importantly, the relative concentrations of acetate and propionate were affected by the OLR parameter. The nature of the packing material remarkable influenced the process performances, by greatly affecting the biofilm bacterial community structure. In particular, ceramic cubes favoured the immobilization of Firmicutes of the genera Bacillus, Paenibacillus and Clostridium, which were probably involved in the VFA producing process. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Effect of silica concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites

    International Nuclear Information System (INIS)

    Zhang Wei; Blackburn, Richard S.; Dehghani-Sanij, Abbas A.

    2007-01-01

    Electrical properties of nanocomposites are determined by the conductive paths of carbon black and influenced by a 'network' of silica. With increasing content of silica, carbon black (CB) particles are optimally dispersed, contributing to the generation of a conductive network between CB particles via direct particle contact and a tunneling effect; maximum conductivity for the epoxy resin-CB-silica nanocomposite described herein occurs at a ratio of 0.6:1.0 (SiO 2 :CB). As a non-conductive component, excessive silica will prevent electron flow, giving rise to low conductivity

  4. Synthesis of inorganic materials in a supercritical carbon dioxide medium. Application to ceramic cross-flow filtration membranes preparation

    International Nuclear Information System (INIS)

    Papet, Sebastien

    2000-01-01

    Membrane separations, using cross-flow mineral ceramic membranes, allows fractionation of aqueous solutions due to the molecular sieve effect and electrostatic charges. To obtain a high selectivity, preparation of new selective ceramic membranes is necessary. We propose in this document two different routes to prepare such cross-flow tubular mineral membranes. In the first exposed method, a ceramic material is used, titanium dioxide, synthesized in supercritical carbon dioxide by the hydrolysis of an organometallic precursor of the oxide. The influence of operating parameters is similar to what is observed during a liquid-phase synthesis (sol-gel process), and leads us to control the size and texture of the prepared particles. This material is then used to prepare mineral membrane with a compressed layer process. The particles are mixed with organic components to form a liquid suspension. A layer is then deposited on the internal surface of a tubular porous support by slip-casting. The layer is then dried and compressed on the support before sintering. The obtained membranes arc in the ultrafiltration range. A second process has been developed in this work. It consists on the hydrolysis, in a supercritical CO 2 medium, of a precursor of titanium dioxide infiltrated into the support. The obtained material is then both deposited on the support but also infiltrated into the porosity. This new method leads to obtain ultrafiltration membranes that retain molecules which molecular weight is round 4000 g.mol -1 . Furthermore, we studied mass transfer mechanisms in cross-flow filtration of aqueous solutions. An electrostatic model, based on generalized Nernst-Planck equation that takes into account electrostatic interactions between solutes and the ceramic material, lead us to obtain a good correlation between experimental results and the numerical simulation. (author) [fr

  5. Metallic conductivity transition of carbon nanotube yarns coated with silver particles

    International Nuclear Information System (INIS)

    Zhang, Daohong; Zhang, Yunhe; Miao, Menghe

    2014-01-01

    Dry spun carbon nanotube yarns made from vertically aligned multiwalled carbon nanotube forests possess high mechanical strength and behave like semiconductors with electrical conductivity of the order of 4 × 10 4 S m −1 . Coating a submicron-thick film of silver particle-filled polymer on the surface increased the electrical conductivity of the carbon nanotube yarn by 60-fold without significantly sacrificing its mechanical strength. The transitional characteristics of the silver-coated carbon nanotube yarn were investigated by varying the take-up ratio of the silver coating. A step change in conductivity was observed when the silver content in the coated yarn was between 7 and 10 wt% as a result of the formation of connected silver particle networks on the carbon nanotube yarn surface. (papers)

  6. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma

    2017-06-01

    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  7. TXRF study of electrochemical deposition of metals on glass-ceramic carbon electrode surfaces

    International Nuclear Information System (INIS)

    Alov, N.; Oskolok, K.; Wittershagen, A.; Mertens, M.; Rittmeyer, C.; Kolbesen, B.O.

    2000-01-01

    Nowadays the methods of solid surface analysis are widely used to study the thermodynamic and kinetic aspects of joint electrochemical deposition of metals on solid substrates. In this work the surfaces of some binary and ternary metal electrodeposits on disc glass-ceramic carbon electrodes were studied by total-reflection x-ray fluorescence spectroscopy (TXRF). Metal alloys were obtained as a result of electrochemical co-deposition of copper, cadmium and lead from n x 10 -4 M (Cu, Cd, Pb)(NO 3 ) 2 + 0.01 M HNO 3 solutions under mixing. TXRF measurements were performed with an ATOMIKA EXTRA II A spectrometer using Mo K α and W (Brems) primary excitation. The serious advantage of TXRF as a method of near-surface analysis is very high element sensitivity. Apart from main elements (Cu, Cd, Pb) we have detected trace elements (Cl, Ag, Pt, Hg) which are present in working solution and has an effect to the electrodeposit formation. The comparison of TXRF data with information obtained by X-ray photoelectron spectroscopy and electron-probe x-ray microanalysis permits to realize depth profiling electrochemical alloys. In particular it was found that in binary systems Cu-Pb and Cu-Cd the relative lead and cadmium content on the electrodeposit surface is considerably greater than in the bulk. These phenomena are due to the features of metal nucleation and growth mechanisms. High sensitivity of TXRF to surface morphology and the correlation of TXRF and scanning electron microscopy data allow to determine the area of prevailing location of metal in the heterogeneous alloy surface. So we have established that in Cu-Pb and Cu-Cd-Pb systems solid solution of copper and lead is formed: significant part of lead is deposited not only in specific 3D-clusters but also in copper thin film. It was demonstrated that the near-surface TXRF analysis of metal electrodeposits on solid electrodes is highly effective to study the mechanisms of metal nucleation, metal cluster and thin film

  8. Aligned Carbon Nanotube to Enhance Through Thickness Thermal Conductivity in Adhesive Joints (Preprint)

    National Research Council Canada - National Science Library

    Ganguli, Sabyasachi; Roy, Ajit K; Dai, Liming; Qu, Liangti

    2006-01-01

    .... Carbon nanotubes theoretically have an extremely high thermal conductivity along the longitudinal axis and according to molecular dynamics simulations the value can be as high as 3500 W/mK at room...

  9. Thermal conductivity and stability of nano size carbon black filled PDMS: Fuel cell perspective

    CSIR Research Space (South Africa)

    Chen, H

    2011-01-01

    Full Text Available Carbon black filled Polydimethylsiloxane (PDMS) was considered as a prospective bipolar plate material candidate for a Fuel Cell. In this perspective, thermal conductivity and stability of the composites were investigated. Samples with filler weight...

  10. High performance ceramic carbon electrode-based anodes for use in the Cu-Cl thermochemical cycle for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Santhanam; Easton, E. Bradley [Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada)

    2010-02-15

    A high performance ceramic carbon electrode (CCE) was fabricated by the sol-gel method to study the CuCl electrolysis in Cu-Cl thermochemical cycle. The electrochemical behavior and stability of the CCE was investigated by polarization experiments at different concentrations of CuCl/HCl system. The CCE displayed excellent anodic performance and vastly outperformed the bare carbon fiber paper (CFP) even at high concentrations of CuCl (0.5 M) and HCl (6 M), which is explained in terms of increased active area and enhanced anion transport properties. Further enhancement of activity was achieved by coating the CCE layer onto both sides of the CFP substrate. (author)

  11. Conduction noise absorption by fiber-reinforced epoxy composites with carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Ok Hyoung; Kim, Sung-Soo; Lim, Yun-Soo

    2011-01-01

    Nearly all electronic equipment is susceptible to malfunction as a result of electromagnetic interference. In this study, glass fiber, and carbon fiber as a type reinforcement and epoxy as a matrix material were used to fabricate composite materials. In an attempt to increase the conduction noise absorption, carbon nanotubes were grown on the surface of glass fibers and carbon fibers. A microstrip line with characteristic impedance of 50 Ω in connection with network analyzer was used to measure the conduction noise absorption. In comparing a glass fiber/epoxy composite with a GF-CNT/Ep composite, it was demonstrated that the CNTs significantly influence the noise absorption property mainly due to increase in electric conductivity. In the carbon fiber composites, however, the effectiveness of CNTs on the degree of electric conductivity is negligible, resulting in a small change in reflection and transmission of an electromagnetic wave. - Research Highlights: → In this study, glass fiber and carbon fiber as a type reinforcement and epoxy as a matrix material were used to fabricate composite materials. In an attempt to increase the conduction noise absorption, carbon nanotubes (CNTs) were grown on the surface of glass fibers and carbon fibers. A microstrip line with characteristic impedance of 50 Ω in connection with network analyzer was used to measure the conduction noise absorption. → In comparing a glass fiber/epoxy composite with a GF-CNT/Ep composite, it was demonstrated that the CNTs significantly influence the noise absorption property mainly due to increase in electric conductivity. In the carbon fiber composites, however, the effectiveness of CNTs on the degree of electric conductivity is negligible, resulting in a small change in reflection and transmission of an electromagnetic wave.

  12. Substrate Effect on Carbon/Ceramic Mixed Matrix Membrane Prepared by a Vacuum-Assisted Method for Desalination

    Directory of Open Access Journals (Sweden)

    Yingjun Song

    2018-05-01

    Full Text Available This work investigates the effect of various membrane substrates and coating conditions on the formation of carbon/ceramic mixed matrix membranes for desalination application. The substrates were impregnated with phenolic resin via a vacuum-assisted method followed by carbonization under an inert gas. Substrates with pore sizes of 100 nm required a single impregnation step only, where short vacuum times (<120 s resulted in low quality membranes with defects. For vacuum times of ≥120 s, high quality membranes with homogeneous impregnation were prepared leading to high salt rejection (>90% and high water fluxes (up to 25 L m−2 h−1. The increase in water flux as a function of the vacuum time confirms the vacuum etching effect resulting from the vacuum-assisted method. Substrates with pore sizes of 140 nm required two impregnation steps. These pores were too large for the ceramic inter-particle space to be filled with phenolic resin via a single step. In the second impregnation step, increasing the concentration of the phenolic resin resulted in membranes with lower water fluxes. These results indicate that thicker films were formed by increasing the phenolic resin concentration. In the case of substrates with pores of 600 nm, these pores were too large and inter-particle space filling with phenolic resin was not attained.

  13. Carbon nanotube: nanodiamond Li-ion battery cathodes with increased thermal conductivity

    Science.gov (United States)

    Salgado, Ruben; Lee, Eungiee; Shevchenko, Elena V.; Balandin, Alexander A.

    2016-10-01

    Prevention of excess heat accumulation within the Li-ion battery cells is a critical design consideration for electronic and photonic device applications. Many existing approaches for heat removal from batteries increase substantially the complexity and overall weight of the battery. Some of us have previously shown a possibility of effective passive thermal management of Li-ion batteries via improvement of thermal conductivity of cathode and anode material1. In this presentation, we report the results of our investigation of the thermal conductivity of various Li-ion cathodes with incorporated carbon nanotubes and nanodiamonds in different layered structures. The cathodes were synthesized using the filtration method, which can be utilized for synthesis of commercial electrode-active materials. The thermal measurements were conducted with the "laser flash" technique. It has been established that the cathode with the carbon nanotubes-LiCo2 and carbon nanotube layered structure possesses the highest in-plane thermal conductivity of 206 W/mK at room temperature. The cathode containing nanodiamonds on carbon nanotubes structure revealed one of the highest cross-plane thermal conductivity values. The in-plane thermal conductivity is up to two orders-of-magnitude greater than that in conventional cathodes based on amorphous carbon. The obtained results demonstrate a potential of carbon nanotube incorporation in cathode materials for the effective thermal management of Li-ion high-powered density batteries.

  14. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    A. T. Wieg

    2016-12-01

    Full Text Available We introduce high thermal conductivity aluminum nitride (AlN as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l’Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.

  15. Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites

    KAUST Repository

    Patole, Archana S.

    2015-01-01

    We proposed a strategy to enhance the conductivity of polycarbonate by using three-phase hybrid metallic/non-metallic fillers. Ethylene diamine (EDA) functionalized multiwalled carbon nanotubes (MWCNT-EDA) are first decorated with silver nanoparticles. These Ag/ MWCNT-EDA fillers are then coated with a conductive layer of ethylene glycol treated PEDOT: PSS (poly [3,4-ethylenedioxythiophene]: poly [styrenesulfonate]) (EP). In such an approach, the MWCNT backbone is covered by a highly conductive coating made of Ag nanoparticles surrounded by EP. To understand how Ag and EP form a highly conductive coating, the effect of different wt% of Ag nanoparticles on EP was studied. Ag nanoparticles around the size of 128 ± 28 nmeffectively lowered the volume resistivity of bulk EP, resulting in a highly conducting Ag/EP blend. We found that in the final Ag/MWCNT-EDA/EP assembly, the EP coating enhances the electrical conductivity in two ways: (1) it is an efficient dispersing agent that helps in achieving a uniform dispersion of the Ag/MWCNT-EDA and (2) it acts as a conductive bridge between particles (Ag and MWCNT-EDA), reducing the particle to particle resistivity. When inserted into polycarbonate, this three-phase blend successfully reduced the volume resistivity of the polymer by two orders of magnitude compared with previous approaches.

  16. Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte

    Science.gov (United States)

    Li, Yong; Wong, Lai Mun; Xie, Hanlin; Wang, Shijie; Su, Pei-Chen

    2017-02-01

    In this work, we demonstrate the operation of micro-solid oxide fuel cells (μ-SOFCs) with nanoscale proton-conducting Y-BaZrO3 (BZY) electrolyte to avoid the fuel crossover problem for direct ethanol fuel cells (DEFCs). The μ-SOFCs are operated with the direct utilisation of ethanol vapour as a fuel and Pd as anode at the temperature range of 300-400 °C. The nanoporous Pd anode is achieved by DC sputtering at high Ar pressure of 80 mTorr. The Pd-anode/BYZ-electrolyte/Pt-cathode cell show peak power densities of 72.4 mW/cm2 using hydrogen and 15.3 mW/cm2 using ethanol at 400 °C. No obvious carbon deposition is seen from XPS analysis after fuel cell test with ethanol fuel.

  17. Effect of micro-cracking on the thermal conductivity and thermal expansion of tialite (Al2TiO5 ceramics

    Directory of Open Access Journals (Sweden)

    Ramanathan Papitha

    2013-09-01

    Full Text Available The pure and magnesium silicate (Mg2+/Si4+ doped tialite ceramics were prepared from the homogenized mixture of alumina and titania by uniaxial pressing and pressure-less sintering at 1550 °C in air. Thermal conductivity and thermal expansion of the doped and undoped tialite ceramics were measured from 30 to 700 °C. The identical trend in the behaviour of these thermal properties most probably is influenced by the population, size and shape of microcracks present throughout the grain and grain boundaries as complemented by the microstructural observations. The observed decrease in thermal properties of the doped in comparison to the pure tialite can be attributed to the substitutional Mg2+ and Si4+ at Al3+ site in Al2TiO5 which promotes the phonon scattering and causes modifications in micro-crack density and the morphology of the cracks.

  18. Morphology and Electrical Conductivity of Carbon Nanocoatings Prepared from Pyrolysed Polymers

    Directory of Open Access Journals (Sweden)

    Marcin Molenda

    2014-01-01

    Full Text Available Conductive carbon nanocoatings (conductive carbon layers—CCL were formed on α-Al2O3 model support using three different polymer precursors and deposition methods. This was done in an effort to improve electrical conductivity of the material through creating the appropriate morphology of the carbon layers. The best electrical properties were obtained with use of a precursor that consisted of poly-N-vinylformamide modified with pyromellitic acid (PMA. We demonstrate that these properties originate from a specific morphology of this layer that showed nanopores (3-4 nm capable of assuring easy pathways for ion transport in real electrode materials. The proposed, water mediated, method of carbon coating of powdered supports combines coating from solution and solid phase and is easy to scale up process. The optimal polymer carbon precursor composition was used to prepare conductive carbon nanocoatings on LiFePO4 cathode material. Charge-discharge tests clearly show that C/LiFePO4 composites obtained using poly-N-vinylformamide modified with pyromellitic acid exhibit higher rechargeable capacity and longer working time in a battery cell than standard carbon/lithium iron phosphate composites.

  19. Studies Conducted of Sodium Carbonate Contaminant Found on the Wing Leading Edge and the Nose Cap of the Space Shuttle Orbiter

    Science.gov (United States)

    Jacobson, Nathan S.; Palou, Jaime J.

    2003-01-01

    approach and was used by the NASA Kennedy Space Center when the deposits were first observed. The effect of case 2 is minimal and would actually restore the the Type A glass to its composition before carbonate formation. However, the problem with allowing the carbonate to remain leads to the third scenario, the deposit flowing onto other parts. A series of tests were conducted on unprotected SiC, and minimal effects were found in the short-term, but other ceramic and metal parts could be damaged by the molten sodium carbonate and would require close monitoring.

  20. Conduction properties of thin films from a water soluble carbon nanotube/hemicellulose complex

    Science.gov (United States)

    Shao, Dongkai; Yotprayoonsak, Peerapong; Saunajoki, Ville; Ahlskog, Markus; Virtanen, Jorma; Kangas, Veijo; Volodin, Alexander; Van Haesendonck, Chris; Burdanova, Maria; Mosley, Connor D. W.; Lloyd-Hughes, James

    2018-04-01

    We have examined the conductive properties of carbon nanotube based thin films, which were prepared via dispersion in water by non-covalent functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements of low temperature conductivity, Kelvin probe force microscopy, and high frequency (THz) conductivity elucidated the intra-tube and inter-tube charge transport processes in this material. The measurements show excellent conductive properties of the as prepared thin films, with bulk conductivity up to 2000 S cm-1. The transport results demonstrate that the hemicellulose does not seriously interfere with the inter-tube conductance.

  1. A self-setting particle-stabilized porous ceramic panel prepared from commercial cement and loaded with carbon for potential radar'absorbing applications

    Directory of Open Access Journals (Sweden)

    Jang-Hoon Ha

    2018-03-01

    Full Text Available Porous ceramic materials are in a current research focus because of their outstanding thermal stability, chemical stability and lightweight. Recent research has widened the range of applications to radar absorption to utilize the advantages of porous ceramic materials. There has been long-standing interest in the development of lightweight radar-absorbing materials for military applications such as camouflaging ground-based facilities against airborne radar detection. Therefore, in this study, a novel lightweight radar-absorbing material for X-band frequencies was developed using a self-setting particle-stabilized porous ceramic panel composited with carbon. The panel was prepared using a commercial calcium aluminate cement (as a self-setting matrix, zeolite 13X particles with propyl gallate (as a particle-stabilized pore former and carbon (as a radar-absorbing material. The panel contained macropores approximately 200 to 400 µm in size formed by zeolite 13X particles that are irreversibly adsorbed at liquid-gas interfaces. The self-setting particle-stabilized porous ceramic panels were characterized by scanning electron microscopy, mercury porosimetry, physisorption analysis, capillary flow porosimetry and network analysis. When 0.2 wt.% carbon was added to a self-setting particle-stabilized porous ceramic panel to fabricate a composite 7 mm thick, the maximum reflection loss was −11.16 dB at 12.4 GHz. The effects of the amount of added carbon and the thickness variation of a self-setting particle-stabilized porous ceramic panel on the radar-absorbing properties remain important issues for further research.

  2. Microwave-induced combustion synthesis and electrical conductivity of Ce1-xGd xO2-1/2x ceramics

    International Nuclear Information System (INIS)

    Fu, Y.-P.; Chang, Y.-S.; Wen, S.-B.

    2006-01-01

    Ce 1-x Gd x O 2-1/2x nanopowder were successfully synthesized by microwave-induced combustion process. For the preparation, cerium nitrate, gadolinium nitrate hexahydrate, and urea were used for the microwave-induced combustion process. The process took only 30 min to obtain Ce 1-x Gd x O 2-1/2x powders. The exo-endo temperature, phase identification, and morphology of resultant powders were investigated by TG/DTA, XRD, and SEM. The as-received Ce 1-x Gd x O 2-1/2x powders showed that the average particle size ranged from 18 to 50 nm, crystallite dimension varied from 11 to 20 nm, and the specific surface area was distribution from 16 to 46 m 2 /g. As for Ce 1-x Gd x O 2-1/2x ceramics sintered at 1450 deg. C for 3 h, the bulk density of Ce 1-x Gd x O 2-1/2x ceramics were over 91% of the theoretical density, the maximum electrical conductivity, σ 700deg.C = 0.017 S/cm with minimum activation energy, E a = 0.869 eV was found at Ce 0.80 Gd 0.20 O 1.90 ceramic

  3. Carbon doped PDMS: conductance stability over time and implications for additive manufacturing of stretchable electronics

    International Nuclear Information System (INIS)

    Tavakoli, Mahmoud; Rocha, Rui; Osorio, Luis; Almeida, Miguel; De Almeida, Anibal; Ramachandran, Vivek; Tabatabai, Arya; Lu, Tong; Majidi, Carmel

    2017-01-01

    Carbon doped PDMS (cPDMS), has been used as a conductive polymer for stretchable electronics. Compared to liquid metals, cPDMS is low cost and is easier to process or to print with an additive manufacturing process. However, changes on the conductance of the carbon based conductive PDMS (cPDMS) were observed over time, in particular after integration of cPDMS and the insulating polymer. In this article we investigate the process parameters that lead to improved stability over conductance of the cPDMS over time. Slight modifications to the fabrication process parameters were conducted and changes on the conductance of the samples for each method were monitored. Results suggested that change of the conductance happens mostly after integration of a pre-polymer over a cured cPDMS, and not after integration of the cPDMS over a cured insulating polymer. We show that such changes can be eliminated by adjusting the integration priority between the conductive and insulating polymers, by selecting the right curing temperature, changing the concentration of the carbon particles and the thickness of the conductive traces, and when possible by changing the insulating polymer material. In this way, we obtained important conclusions regarding the effect of these parameters on the change of the conductance over time, that should be considered for additive manufacturing of soft electronics. Also, we show that these changes can be possibly due to the diffusion from PDMS into cPDMS. (paper)

  4. Dielectric-Spectroscopic and ac Conductivity Investigations on Manganese Doped Layered Na1.9Li0.1Ti3O7 Ceramics

    International Nuclear Information System (INIS)

    Pal, Dharmendra; Pandey, J. L.; Pal, Shri

    2009-01-01

    The dielectric-spectroscopic and ac conductivity studies firstly carried out on layered manganese doped Sodium Lithium Trititanates (Na 1.9 Li 0.1 Ti 3 O 7 ). The dependence of loss tangent (Tanδ), relative permittivity (ε r ) and ac conductivity (σ ac ) in temperature range 373-723K and frequency range 100Hz-1MHz studied on doped derivatives. Various conduction mechanisms are involved during temperature range of study like electronic hopping conduction in lowest temperature region, for MSLT-1 and MSLT-2. The hindered interlayer ionic conduction exists with electronic hopping conduction for MSLT-3. The associated interlayer ionic conduction exists in mid temperature region for all doped derivatives. In highest temperature region modified interlayer ionic conduction along with the polaronic conduction, exist for MSLT-1, MSLT-2, and only modified interlayer ionic conduction for MSLT-3. The loss tangent (Tanδ) in manganese-doped derivatives of layered Na 1.9 Li 0.1 Ti 3 O 7 ceramic may be due to contribution of electric conduction, dipole orientation, and space charge polarization. The corresponding increase in the values of relative permittivity may be due to increase in number of dipoles in the interlayer space while the corresponding decrease in the values of relative permittivity may be due to the increase in the leakage current due to the higher doping

  5. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...... in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have positioned...... MWNTs to bridge the gap between two electrodes, and formed soldering bonds between the tube and each of the electrodes. All nanotube bridges showed ohmic resistances in the range 10-30 kΩ. We observed no increase in resistance after exposing the MWNT bridge to air for days....

  6. PREPARATION OF ACTIVATED CARBON FROM SILK COTTON WOOD AND COCONUT SHELL BY PYROLISIS WITH CERAMIC FURNACE

    Directory of Open Access Journals (Sweden)

    Winarto Haryadi

    2010-06-01

    Full Text Available Preparation of activated carbon from silk cotton wood and coconut shell has been done. Carbon was made by pyrolysis process in the Muchalal furnace with 3000 watt electric power. The electric power was increased gradually from 1000, 2000 and then 3000 watt with interval 2 hours during 7 hours. Carbon was activated in Muchalal furnace with 4000 watt electric power during 2 hours and flowed with nitrogen gas. Product of the activated carbon was compared to standart product with several analysis including the surface area, acetic acid adsorption, iod adsorption and vapour adsorption. The results of analysis showed that surface area for silk cotton wood carbon, coconut shell carbon, and E.Merck product were 288.8072 m2/g, 222.9387 m2/g and 610.5543 m2/g, respectively. Acetic acid adsorption for silk cotton wood carbon, coconut shell carbon, and standart product were 157.391 mg/g, 132.791 mg/g, and 186.911 mg/g, respectively. Iodine adsorption for cotton wood carbon, coconut shell carbon, and standart product were 251.685 mg/g, 207.270 mg/g and 310.905 mg/g, respectively. Vapour adsorption for cotton wood carbon, coconut shell carbon and standart product were 12%, 4%,and 14%., respectively Key words : Activated carbon, pyrolysis, Muchalal furnace

  7. Industrial ceramics

    International Nuclear Information System (INIS)

    Mengelle, Ch.

    1999-04-01

    After having given the definition of the term 'ceramics', the author describes the different manufacturing processes of these compounds. These materials are particularly used in the fields of 1)petroleum industry (in primary and secondary reforming units, in carbon black reactors and ethylene furnaces). 2)nuclear industry (for instance UO 2 and PuO 2 as fuels; SiC for encapsulation; boron carbides for control systems..)

  8. Small polaron hopping conduction in samples of ceramic La1.4Sr1.6Mn2O7.06

    International Nuclear Information System (INIS)

    Nakatsugawa, H.; Iguchi, E.; Jung, W.H.; Munakata, F.

    1999-01-01

    The ceramic sample of La 1.4 Sr 1.6 Mn 2 O 7.06 exhibits the metal-insulator transition and a negative magnetoresistance in the vicinity of the Curie temperature (T C ∼ 100 K). The dc magnetic susceptibility between 100 K and 280 K is nearly constant and decreases gradually with increasing temperature above 280 K. The measurements of dc resistivity and the thermoelectric power indicate that small polaron hopping conduction takes place at T > 280 K. The spin ordering due to the two-dimensional d x 2 -y 2 state occurring at T > 280 K is directly related to the hopping conduction above 280 K, although the spin ordering due to the one-dimensional d 3z 2 -r 2 state takes place at T > T C . The two-dimensional d x 2 -y 2 state extending within the MnO 2 sheets starts to narrow and leads to the carrier localisation at 280 K. The effective number of holes in this sample estimated from the thermoelectric power is considerably smaller than the nominal value. This indicates that the small polaron hopping conduction takes place predominantly within the in-plane MnO 2 sheets. A discussion is given of the experimental results of the ceramic sample of La 2/3 Ca 1/3 MnO 2.98 . Copyright (1999) CSIRO Australia

  9. Surface modification of aluminum nitride by polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic for the enhancement of thermal conductivity in silicone rubber composite

    Science.gov (United States)

    Chiu, Hsien Tang; Sukachonmakul, Tanapon; Kuo, Ming Tai; Wang, Yu Hsiang; Wattanakul, Karnthidaporn

    2014-02-01

    Polysilazane (PSZ) and its polymer-derived amorphous silicon oxycarbide (SiOC) ceramic were coated on aluminum nitride (AlN) by using a dip-coating method to allow moisture-crosslinking of PSZ on AlN, followed by heat treatment at 700 °C in air to convert PSZ into SiOC on AlN. The results from FTIR, XPS and SEM indicated that the surface of AlN was successfully coated by PSZ and SiOC film. It was found that the introduction of PSZ and SiOC film help improve in the interfacial adhesion between the modified AlN (PSZ/AlN and SiOC/AlN) and silicone rubber lead to the increase in the thermal conductivity of the composites since the thermal boundary resistance at the filler-matrix interface was decreased. However, the introduction of SiOC as an intermediate layer between AlN and silicone rubber could help increase the thermal energy transport at the filler-matrix interface rather than using PSZ. This result was due to the decrease in the surface roughness and thickness of SiOC film after heat treatment at 700 °C in air. Thus, in the present work, a SiOC ceramic coating could provide a new surface modification for the improvement of the interfacial adhesion between the thermally conductive filler and the matrix in which can enhance the thermal conductivity of the composites.

  10. Highest recorded electrical conductivity and microstructure in polypropylene-carbon nanotubes composites and the effect of carbon nanofibers addition

    Science.gov (United States)

    Ramírez-Herrera, C. A.; Pérez-González, J.; Solorza-Feria, O.; Romero-Partida, N.; Flores-Vela, A.; Cabañas-Moreno, J. G.

    2018-04-01

    In the last decade, numerous investigations have been devoted to the preparation of polypropylene-multiwalled carbon nanotubes (PP/MWCNT) nanocomposites having enhanced properties, and in particular, high electrical conductivities (> 1 S cm-1). The present work establishes that the highest electrical conductivity in PP/MWCNT nanocomposites is limited by the amount of nanofiller content which can be incorporated in the polymer matrix, namely, about 20 wt%. This concentration of MWCNT in PP leads to a maximum electrical conductivity slightly lower than 8 S cm-1, but only by assuring an adequate combination of dispersion and spatial distribution of the carbon nanotubes. The realization of such an optimal microstructure depends on the characteristics of the production process of the PP/MWCNT nanocomposites; in our experiments, involving composite fabrication by melt mixing and hot pressing, a second re-processing cycle is shown to increase the electrical conductivity values by up to two orders of magnitude, depending on the MWCNT content of the nanocomposite. A modest increase of the highest electrical conductivity obtained in nanocomposites with 21.5 wt% MWCNT content has been produced by the combined use of carbon nanofibers (CNF) and MWCNT, so that the total nanofiller content was increased to 30 wt% in the nanocomposite with PP—15 wt% MWCNT—15 wt%CNF.

  11. Sol-gel derived multiwalled carbon nanotubes ceramic electrode modified with molecularly imprinted polymer for ultra trace sensing of dopamine in real samples

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Bhim Bali, E-mail: prof.bbpd@yahoo.com [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005 (India); Kumar, Deepak; Madhuri, Rashmi; Tiwari, Mahavir Prasad [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005 (India)

    2011-08-01

    Highlights: > MWCNTs-CE was prepared by silane acrylate which provides a nanometer thin MIP film. > The sensor was modified by iniferter and MIP using 'surface grafting-from approach'. > A comparative study was performed between differentially designed ceramic electrodes. > The sensor can detect dopamine in real samples with LODs (0.143-0.154 ng mL{sup -1}). - Abstract: A new class of composite electrodes made of sol-gel derived ceramic-multiwalled carbon nanotubes is used for the growth of a nanometer thin film adopting 'surface grafting-from approach'. For this the multiwalled carbon nanotubes-ceramic electrode surface is first modified with an iniferter (benzyl N,N-diethyldithiocarbamate) and then dopamine imprinted polymer, under UV irradiation, for differential pulse anodic stripping voltammetric sensing of dopamine in aqueous, blood serum, cerebrospinal fluid, and pharmaceutical samples (detection limit 0.143-0.154 ng mL{sup -1}, 3{sigma}), without any cross reactivity, interferences and false-positive contributions. Such composite electrodes offer higher stability, electron kinetics, and renewable porous surface of larger electroactive area (with insignificant capacitance) than carbon ceramic electrodes. Additional cyclic voltammetry (stripping mode) and chronocoulometry experiments were performed to explore electrodics and kinetics of electro-oxidation of dopamine.

  12. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  13. On the interplay of morphology and electronic conductivity of rotationally spun carbon fiber mats

    Science.gov (United States)

    Opitz, Martin; Go, Dennis; Lott, Philipp; Müller, Sandra; Stollenwerk, Jochen; Kuehne, Alexander J. C.; Roling, Bernhard

    2017-09-01

    Carbon-based materials are used as electrode materials in a wide range of electrochemical applications, e.g., in batteries, supercapacitors, and fuel cells. For these applications, the electronic conductivity of the materials plays an important role. Currently, porous carbon materials with complex morphologies and hierarchical pore structures are in the focus of research. The complex morphologies influence the electronic transport and may lead to an anisotropic electronic conductivity. In this paper, we unravel the influence of the morphology of rotationally spun carbon fiber mats on their electronic conductivity. By combining experiments with finite-element simulations, we compare and evaluate different electrode setups for conductivity measurements. While the "bar-type method" with two parallel electrodes on the same face of the sample yields information about the intrinsic conductivity of the carbon fibers, the "parallel-plate method" with two electrodes on opposite faces gives information about the electronic transport orthogonal to the faces. Results obtained for the van-der-Pauw method suggest that this method is not well suited for understanding morphology-transport relations in these materials.

  14. Active pore space utilization in nanoporous carbon-based supercapacitors: Effects of conductivity and pore accessibility

    Science.gov (United States)

    Seredych, Mykola; Koscinski, Mikolaj; Sliwinska-Bartkowiak, Malgorzata; Bandosz, Teresa J.

    2012-12-01

    Composites of commercial graphene and nanoporous sodium-salt-polymer-derived carbons were prepared with 5 or 20 weight% graphene. The materials were characterized using the adsorption of nitrogen, SEM/EDX, thermal analysis, Raman spectroscopy and potentiometric titration. The samples' conductivity was also measured. The performance of the carbon composites in energy storage was linked to their porosity and electronic conductivity. The small pores (<0.7) were found as very active for double layer capacitance. It was demonstrated that when double layer capacitance is a predominant mechanism of charge storage, the degree of the pore space utilization for that storage can be increased by increasing the conductivity of the carbons. That active pore space utilization is defined as gravimetric capacitance per unit pore volume in pores smaller than 0.7 nm. Its magnitude is affected by conductivity of the carbon materials. The functional groups, besides pseudocapacitive contribution, increased the wettability and thus the degree of the pore space utilization. Graphene phase, owing to its conductivity, also took part in an insitu increase of the small pore accessibility and thus the capacitance of the composites via enhancing an electron transfer to small pores and thus imposing the reduction of groups blocking the pores for electrolyte ions.

  15. Growth of carbon nanotubes in arc plasma treated graphite disc: microstructural characterization and electrical conductivity study

    Science.gov (United States)

    Nayak, B. B.; Sahu, R. K.; Dash, T.; Pradhan, S.

    2018-03-01

    Circular graphite discs were treated in arc plasma by varying arcing time. Analysis of the plasma treated discs by field emission scanning electron microscope revealed globular grain morphologies on the surfaces, but when the same were observed at higher magnification and higher resolution under transmission electron microscope, growth of multiwall carbon nanotubes of around 2 nm diameter was clearly seen. In situ growth of carbon nanotube bundles/bunches consisting of around 0.7 nm tube diameter was marked in the case of 6 min treated disc surface. Both the untreated and the plasma treated graphite discs were characterized by X-ray diffraction, energy dispersive spectra of X-ray, X-ray photoelectron spectroscopy, transmission electron microscopy, micro Raman spectroscopy and BET surface area measurement. From Raman spectra, BET surface area and microstructure observed in transmission electron microscope, growth of several layers of graphene was identified. Four-point probe measurements for electrical resistivity/conductivity of the graphite discs treated under different plasma conditions showed significant increase in conductivity values over that of untreated graphite conductivity value and the best result, i.e., around eightfold increase in conductivity, was observed in the case of 6 min plasma treated sample exhibiting carbon nanotube bundles/bunches grown on disc surface. By comparing the microstructures of the untreated and plasma treated graphite discs, the electrical conductivity increase in graphite disc is attributed to carbon nanotubes (including bundles/bunches) growth on disc surface by plasma treatment.

  16. Use of sodium carbonate as a binder in ceramic tile compositions; Uso del carbonato sodico como ligante en composiciones de baldosas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Quereda, F.; Sanchez, E.; Garcia-Ten, J.; Gozalbo, A.; Beltran, V.; Sanchez, J.; Sales, J.

    2010-07-01

    This study analyses, first, the influence of sodium carbonate content on the behaviour of the ceramic tile body composition during the different manufacturing process stages (preparation of the suspension, pressing, and firing), as well as on unfired tile mechanical strength. It has been verified that sodium carbonate can be used as a binder in ceramic tile compositions, since small percentages considerably enhance dry tile mechanical strength. It has furthermore been determined that for each composition there is an optimum addition content, with high increased mechanical strength (up to 70%), without this noticeably affecting the rheological behaviour of the suspension to be spray dried. These results are currently being patented (patent application P200930148). Once the binding effect of sodium carbonate had been verified, it was sought to establish its action mechanism. For this purpose, drops of mixtures of a standard ceramic composition and increasing quantities of sodium carbonate were prepared. The drops were rapidly dried and the granules were characterised by scanning electron microscopy. It was thus verified that the most likely sodium carbonate action mechanism was formation of solid bridges by crystallisation. (Author)

  17. Enhanced durability of carbon nanotube grafted hierarchical ceramic microfiber-reinforced epoxy composites.

    Science.gov (United States)

    Krishnamurthy, Ajay; Hunston, Donald L; Forster, Amanda L; Natarajan, Bharath; Liotta, Andrew H; Wicks, Sunny S; Stutzman, Paul E; Wardle, Brian L; Liddle, J Alexander; Forster, Aaron M

    2017-12-01

    As carbon nanotube (CNT) infused hybrid composites are increasingly identified as next-generation aerospace materials, it is vital to evaluate their long-term structural performance under aging environments. In this work, the durability of hierarchical, aligned CNT grafted aluminoborosilicate microfiber-epoxy composites (CNT composites) are compared against baseline aluminoborosilicate composites (baseline composites), before and after immersion in water at 25 °C (hydro) and 60 °C (hydrothermal), for extended durations (90 d and 180 d). The addition of CNTs is found to reduce water diffusivities by approximately 1.5 times. The mechanical properties (bending strength and modulus) and the damage sensing capabilities (DC conductivity) of CNT composites remain intact regardless of exposure conditions. The baseline composites show significant loss of strength (44 %) after only 15 d of hydrothermal aging. This loss of mechanical strength is attributed to fiber-polymer interfacial debonding caused by accumulation of water at high temperatures. In situ acoustic and DC electrical measurements of hydrothermally aged CNT composites identify extensive stress-relieving micro-cracking and crack deflections that are absent in the aged baseline composites. These observations are supported by SEM images of the failed composite cross-sections that highlight secondary matrix toughening mechanisms in the form of CNT pullouts and fractures which enhance the service life of composites and maintain their properties under accelerated aging environments.

  18. High conductivity carbon nanotube wires from radial densification and ionic doping

    Science.gov (United States)

    Alvarenga, Jack; Jarosz, Paul R.; Schauerman, Chris M.; Moses, Brian T.; Landi, Brian J.; Cress, Cory D.; Raffaelle, Ryne P.

    2010-11-01

    Application of drawing dies to radially densify sheets of carbon nanotubes (CNTs) into bulk wires has shown the ability to control electrical conductivity and wire density. Simultaneous use of KAuBr4 doping solution, during wire drawing, has led to an electrical conductivity in the CNT wire of 1.3×106 S/m. Temperature-dependent electrical measurements show that conduction is dominated by fluctuation-assisted tunneling, and introduction of KAuBr4 significantly reduces the tunneling barrier between individual nanotubes. Ultimately, the concomitant doping and densification process leads to closer packed CNTs and a reduced charge transfer barrier, resulting in enhanced bulk electrical conductivity.

  19. A practical dimensionless equation for the thermal conductivity of carbon nanotubes and CNT arrays

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2014-05-01

    Full Text Available Experimental results reported in the last decade on the thermal conductivity of carbon nanotubes (CNTs have shown a fairly divergent behavior. An underlying intrinsic consistency was believed to exist in spite of the divergence in the thermal conductivity data of various CNTs. A dimenisonless equation that describes the temperature dependence of thermal conductivity was derived by introducing reduced forms relative to a chosen reference point. This equation can serve as a practical approximation to characterize the conductivity of individual CNT with different structural parameters as well as bulk CNT arrays with different bundle configurations. Comparison of predictions by the equation and historical measurements showed good agreements within their uncertainties.

  20. Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology

    Science.gov (United States)

    Roberson, Luke; Williams, Martha; Tate, LaNetra; Fortier, Craig; Smith, David; Davia, Kyle; Gibson, Tracy; Snyder, Sarah

    2013-01-01

    Inkjet printing is a common commercial process. In addition to the familiar use in printing documents from computers, it is also used in some industrial applications. For example, wire manufacturers are required by law to print the wire type, gauge, and safety information on the exterior of each foot of manufactured wire, and this is typically done with inkjet or laser printers. The goal of this work was the creation of conductive inks that can be applied to a wire or flexible substrates via inkjet printing methods. The use of inkjet printing technology to print conductive inks has been in testing for several years. While researchers have been able to get the printing system to mechanically work, the application of conductive inks on substrates has not consistently produced adequate low resistances in the kilohm range. Conductive materials can be applied using a printer in single or multiple passes onto a substrate including textiles, polymer films, and paper. The conductive materials are composed of electrical conductors such as carbon nanotubes (including functionalized carbon nanotubes and metal-coated carbon nanotubes); graphene, a polycyclic aromatic hydrocarbon (e.g., pentacene and bisperipentacene); metal nanoparticles; inherently conductive polymers (ICP); and combinations thereof. Once the conductive materials are applied, the materials are dried and sintered to form adherent conductive materials on the substrate. For certain formulations, increased conductivity can be achieved by printing on substrates supported by low levels of magnetic field alignment. The adherent conductive materials can be used in applications such as damage detection, dust particle removal, smart coating systems, and flexible electronic circuitry. By applying alternating layers of different electrical conductors to form a layered composite material, a single homogeneous layer can be produced with improved electrical properties. It is believed that patterning alternate layers of

  1. Development of thermal scanning probe microscopy for the determination of thin films thermal conductivity: application to ceramic materials for nuclear industry

    International Nuclear Information System (INIS)

    David, L.

    2006-10-01

    Since the 1980's, various thermal metrologies have been developed to understand and characterize the phenomena of transport of thermal energy at microscopic and submicroscopic scales. Thermal Scanning Probe Microscopy (SThM) is promising. Based on the analysis of the thermal interaction between an heated probe and a sample, it permits to probe the matter at the level of micrometric size in volumes. Performed in the framework of the development of this technique, this work more particularly relates to the study of thin films thermal conductivity. We propose a new modelling of the prediction of measurement with SThM. This model allows not only the calibration of the method for the measurement of bulk material thermal conductivity but also to specify and to better describe the probe - sample thermal coupling and to estimate, from its inversion, thin films thermal conductivity. This new approach of measurement has allowed the determination of the thermal conductivity of micrometric and sub-micrometric thicknesses of meso-porous silicon thin film in particular. Our estimates for the micrometric thicknesses are in agreement with those obtained by the use of Raman spectrometry. For the lower thicknesses of film, we give new data. Our model has, moreover, allowed a better definition of the in-depth resolution of the apparatus. This one is strongly linked to the sensitivity of SThM and strongly depends on the probe-sample thermal coupling area and on the geometry of the probe used. We also developed the technique by the vacuum setting of SThM. Our first results under this environment of measurement are encouraging and validate the description of the coupling used in our model. Our method was applied to the study of ceramics (SiC, TiN, TiC and ZrC) under consideration in the composition of future nuclear fuels. Because of the limitations of SThM in terms of sensitivity to thermal conductivity and in-depth resolution, measurements were also undertaken with a modulated thermo

  2. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles

    Science.gov (United States)

    Simaite, Aiva; Delagarde, Aude; Tondu, Bertrand; Souères, Philippe; Flahaut, Emmanuel; Bergaud, Christian

    2017-01-01

    During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest using spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate a conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to a significantly improved lifetime performance during cycling actuation. To our knowledge, it is the first time a simple solution to an actuator creeping problem has been suggested.

  3. Oxygen- and hydrogen-permeation measurements on-mixed conducting SrFeCo{sub 0.5}O{sub y} ceramic membrane material

    Energy Technology Data Exchange (ETDEWEB)

    Serra, E.; Casagrande, E.; La Barbera, A. [ENEA UTS MAT, CR Casaccia, 00060 S.M. di Galeria, Roma (Italy); Alvisi, M. [ENEA UTS MAT, CR Brindisi, 72100 Brindisi (Italy); Bezzi, G.; Mingazzini, C. [ENEA UTS MAT, CR Faenza, 48018 Faenza (Italy)

    2008-02-15

    The SrFeCo{sub 0.5}O{sub y} system combines high electronic/ionic conductivity with appreciable oxygen permeability at elevated temperatures. This system has potential use in high-temperature electrochemical applications such as solid oxide fuel cells, batteries, sensors, and oxygen separation membranes. Dense ceramic membranes of SrFeCo{sub 0.5}O{sub y} are prepared by pressing a ceramic powder prepared by using a sol-gel combustion technique. Oxygen and hydrogen permeation at high temperature on this material are studied. Measurements are conducted using a time-dependent permeation method at the temperature in the range of 1073-1273 K with oxygen- and hydrogen-driving pressures in the range (3 x 10{sup 2})-(1 x 10{sup 5}) Pa (300-1000 mbar). The maximum oxygen-permeated flux at 1273 K is 6.5 x 10{sup -3} mol m{sup -2} s{sup -1}. The activation energies for the O{sub 2}-permeation fluxes and diffusivities are 240 and 194 kJ/mol, respectively. Due to the high fragility, the high temperature for the measurements and the high oxygen permeation through such material, a special membrane holder, and compression sealing system have been designed and realized for the permeation apparatus. (author)

  4. Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography

    International Nuclear Information System (INIS)

    Tallman, T N; Wang, K W; Gungor, S; Bakis, C E

    2014-01-01

    Utilizing electrically conductive nanocomposites for integrated self-sensing and health monitoring is a promising area of structural health monitoring (SHM) research wherein local changes in conductivity coincide with damage. In this research we conduct proof of concept investigations using electrical impedance tomography (EIT) for damage detection by identifying conductivity changes and by imaging conductivity evolution in a carbon nanofiber (CNF) filled epoxy composite. CNF/epoxy is examined because fibrous composites can be manufactured with a CNF/epoxy matrix thereby enabling the entire matrix to become self-sensing. We also study the mechanisms of conductivity evolution in CNF/epoxy through electrical impedance spectroscopy (EIS) testing. The results of these tests indicate that thermal expansion is responsible for conductivity evolution in a CNF/epoxy composite. (paper)

  5. Effect of Dimethyl Carbonate Plasticizer on Ionic Conductivity of Methyl Cellulose-Based Polymer Electrolytes

    International Nuclear Information System (INIS)

    Mustafa, M.F.; Ridwan, N.I.M.; Hatta, F.F.; Yahya, M.Z.A.

    2012-01-01

    Influences of dimethyl carbonate (DMC) plasticizer on ionic conductivity, dielectric permittivity and electrical modulus formalism of methyl cellulose (MC)-based polymer electrolytes have been studied. The room temperature electrical conductivity as measured by impedance spectroscopy shows that a methyl cellulose film has a conductivity of ∼10 -10 S cm -1 . In this study, other than KOH ionic dopant, DMC plasticizer is also added to the polymer with the aim of enhancing the electrical conductivity of the polymer. The highest room temperature conductivity of the plasticised sample is ∼10 -5 S cm -1 . The plot of log σ versus 10 3 / T for the highest conducting sample obeys Arrhenius rule indicating that the conductivity occurs by thermally activated mechanism. (author)

  6. Reduce the Sensitivity of CL-20 by Improving Thermal Conductivity Through Carbon Nanomaterials.

    Science.gov (United States)

    Wang, Shuang; An, Chongwei; Wang, Jingyu; Ye, Baoyun

    2018-03-27

    The graphene (rGO) and carbon nanotube (CNT) were adopted to enhance the thermal conductivity of CL-20-based composites as conductive fillers. The microstructure features were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and tested the properties by differential scanning calorimeter (DSC), static electricity accumulation, special height, thermal conductivity, and detonation velocity. The results showed that the mixture of rGO and CNT had better effect in thermal conductivity than rGO or CNT alone under the same loading (1 wt%) and it formed a three-dimensional heat-conducting network structure to improve the heat property of the system. Besides, the linear fit proved that the thermal conductivity of the CL-20-based composites were negatively correlated with the impact sensitivity, which also explained that the impact sensitivity was significantly reduced after the thermal conductivity increased and the explosive still maintained better energy.

  7. Reduce the Sensitivity of CL-20 by Improving Thermal Conductivity Through Carbon Nanomaterials

    Science.gov (United States)

    Wang, Shuang; An, Chongwei; Wang, Jingyu; Ye, Baoyun

    2018-03-01

    The graphene (rGO) and carbon nanotube (CNT) were adopted to enhance the thermal conductivity of CL-20-based composites as conductive fillers. The microstructure features were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and tested the properties by differential scanning calorimeter (DSC), static electricity accumulation, special height, thermal conductivity, and detonation velocity. The results showed that the mixture of rGO and CNT had better effect in thermal conductivity than rGO or CNT alone under the same loading (1 wt%) and it formed a three-dimensional heat-conducting network structure to improve the heat property of the system. Besides, the linear fit proved that the thermal conductivity of the CL-20-based composites were negatively correlated with the impact sensitivity, which also explained that the impact sensitivity was significantly reduced after the thermal conductivity increased and the explosive still maintained better energy.

  8. Method of making improved gas storage carbon with enhanced thermal conductivity

    Science.gov (United States)

    Burchell, Timothy D [Oak Ridge, TN; Rogers, Michael R [Knoxville, TN

    2002-11-05

    A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).

  9. Conductivity and Ambient Stability of Halogen-Doped Carbon Nanotube Fibers

    Science.gov (United States)

    Gaier, J. R.; Chirino, C. M.; Chen, M.; Waters, D. L.; Tran, Mai Kim; Headrick, R.; Young, C. C.; Tsentalovich, D.; Whiting, B.; Pasquali, M.; hide

    2014-01-01

    Carbon nanotube fibers were fabricated using a variety of spinning conditions and post-spinning processing with the goal of creating a high-conductivity yet environmentally stable fiber. These fiber variants were then doped with bromine, iodine, iodine chloride, or iodine bromide and their electrical and microstructural properties were characterized. Environmentally stable compounds were synthesized with electrical conductivity greater than 50,000 Scm.

  10. Interaction forces and conduction properties between multi wall carbon nanotube tips and Au(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Luna, M.; Pablo, P.J. de; Colchero, J.; Gomez-Herrero, J.; Baro, A.M.; Tokumoto, H.; Jarvis, S.P

    2003-07-15

    We have studied the interaction forces and electrical conduction properties arising between multiwall carbon nanotube tips and the Au(1 1 1) surface in air, by means of amplitude modulation scanning force microscopy, also called intermittent contact. We have centered our work on tips with metallic electronic structure and for the specific parameters used we have found a preliminary interaction range where there is no contact between tip and surface. Stable imaging in this non-contact range is possible with multiwall carbon nanotube tips. These tips have also been used to obtain simultaneous topographic and current maps of the surface. They show excellent properties as tips due to their high aspect ratio and durability, as a result of their elastic and non-reactive properties. Correspondingly, multiwall carbon nanotube tips allow high resolution local analysis of electrical conductivity on a nanometer scale.

  11. Electrical machining method of insulating ceramics

    International Nuclear Information System (INIS)

    Fukuzawa, Y.; Mohri, N.; Tani, T.

    1999-01-01

    This paper describes a new electrical discharge machining method for insulating ceramics using an assisting electrode with either a sinking electrical discharge machine or a wire electrical discharge machine. In this method, the metal sheet or mesh is attached to the ceramic surface as an assisting material for the discharge generation around the insulator surface. When the machining condition changes from the attached material to the workpiece, a cracked carbon layer is formed on the workpiece surface. As this layer has an electrical conductivity, electrical discharge occurs in working oil between the tool electrode and the surface of the workpiece. The carbon is formed from the working oil during this electrical discharge. Even after the material is machined, an electrical discharge occurs in the gap region between the tool electrode and the ceramic because an electrically conductive layer is generated continuously. Insulating ceramics can be machined by the electrical discharge machining method using the above mentioned surface modification phenomenon. In this paper the authors show a machined example demonstrating that the proposed method is available for machining a complex shape on insulating ceramics. Copyright (1999) AD-TECH - International Foundation for the Advancement of Technology Ltd

  12. Compressive stress-electrical conductivity characteristics of multiwall carbon nanotube networks

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Lengálová, A.; Sáha, P.

    2011-01-01

    Roč. 46, č. 9 (2011), s. 3186-3190 ISSN 0022-2461 R&D Projects: GA AV ČR IAA200600803 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * compression * electrical conductivity * stress sensor Subject RIV: BK - Fluid Dynamics Impact factor: 2.015, year: 2011

  13. High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers

    NARCIS (Netherlands)

    Grossiord, N.; Loos, J.; Laake, van L.C.; Maugey, M.; Zakri, C.; Koning, C.E.; Hart, A.J.

    2008-01-01

    We present a detailed study of the influence of carbon nanotube (CNT) characteristics on the electrical conductivity of polystyrene nanocomposites produced using a latex-based approach. We processed both industrially-produced multi-wall CNT (MWCNT) powders and MWCNTs from vertically-aligned films

  14. Conductance of Sidewall-Functionalized Carbon Nanotubes: Universal Dependence on Adsorption Sites

    DEFF Research Database (Denmark)

    García-Lastra, J.M.; Thygesen, Kristian Sommer; Strange, Mikkel

    2008-01-01

    We use density functional theory to study the effect of molecular adsorbates on the conductance of metallic carbon nanotubes (CNT). The five molecules considered (NO2, NH2, H, COOH, OH) lead to very similar scattering of the electrons. The adsorption of a single molecule suppresses one of the two...

  15. Frequency and temperature dependence behaviour of impedance, modulus and conductivity of BaBi4Ti4O15 Aurivillius ceramic

    Directory of Open Access Journals (Sweden)

    Tanmaya Badapanda

    2014-09-01

    Full Text Available In this work, we report the dielectric, impedance, modulus and conductivity study of BaBi4Ti4O15 ceramic synthesized by solid state reaction. X-ray diffraction (XRD pattern showed orthorhombic structure with space group A21am confirming it to be an m = 4 member of the Aurivillius oxide. The frequency dependence dielectric study shows that the value of dielectric constant is high at lower frequencies and decreases with increase in frequency. Impedance spectroscopy analyses reveal a non-Debye relaxation phenomenon since relaxation frequency moves towards the positive side with increase in temperature. The shift in impedance peaks towards higher frequency side indicates conduction in material and favouring of the long rangemotion of mobile charge carriers. The Nyquist plot from complex impedance spectrum shows only one semicircular arc representing the grain effect in the electrical conduction. The modulus mechanism indicates the non-Debye type of conductivity relaxation in the material, which is supported by impedance data. Relaxation times extracted using imaginary part of complex impedance (Z′′ and modulus (M′′ were also found to follow Arrhenius law. The frequency dependent AC conductivity at different temperatures indicates that the conduction process is thermally activated. The variation of DC conductivity exhibits a negative temperature coefficient of resistance behaviour.

  16. Experimentqal and analytical study on thermocracking of alumina ceramic ring in a mechanical seal

    Science.gov (United States)

    Komiya, M.; Matsuda, K.; Kaneta, M.

    1994-04-01

    A mechanism of thermocracking, which occurs in an alumina ceramic ring of a mechanical face seal, is proposed based on experimental and analytical results. Methods for its prevention are also discussed. The experiments were conducted using an external type mechanical face seal composed of a carbon ring and three kinds of alumina ceramic rings, with distilled water as the liquid to be sealed. By using a layer of gold vacuum deposited onto the surface of the ceramic ring as a part of a DC circuit, the moment of crack initiation was identified. The thermal stresses produced in the ceramic ring by frictional heating were calculated using finite element analysis.

  17. Development of a mixed-conductive ceramic membrane for syngas production; Developpement d'une membrane ceramique conductrice mixte pour la production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Etchegoyen, G

    2005-10-15

    Natural gas conversion into syngas (H{sub 2}+CO) is very attractive for hydrogen and clean fuel production via GTL technology by providing an alternative to oil products and reducing greenhouse gas emission. Syngas production, using a mixed ionic-electronic conducting ceramic membrane, is thought to be particularly promising. The purpose of this PhD thesis was to develop this type of membrane. Mixed-conducting oxide was synthesized, characterized and then, shaped via tape casting and co-sintered in order to obtain multilayer membranes with controlled architectures and microstructures. Oxygen permeation fluxes were measured with a specific device to evaluate membrane performances. As a result, the optimisation of architecture and microstructure made it possible to increase oxygen permeation flux by a factor 30. Additional researches were focused on the oxide composition in order to achieve higher dimensional stability. (author)

  18. Low-cost shape-control synthesis of porous carbon film on β″-alumina ceramics for Na-based battery application

    Science.gov (United States)

    Hu, Yingying; Wen, Zhaoyin; Wu, Xiangwei; Jin, Jun

    2012-12-01

    Porous carbon films with tunable pore structure to modify the β″-alumina electrolyte surface are fabricated through a low-cost and direct wet chemistry method with glucose and poly(methyl-methacrylate) (PMMA) as precursors. FTIR analysis confirms the effective connection between the carbohydrate and the pore-forming agent PMMA through hydrogen bonds. The experimental results indicate that the structural parameters of the porous carbon films, including mean pore size and film thickness, can be tuned simply by adjusting the amount of PMMA in the glucose/PMMA composite. This soft-template-assisted method could be readily extended to modify any other ceramic surfaces. The porous carbon films are demonstrated to greatly improve the wettability of the β″-alumina ceramics by molten sodium. Na/β″-alumina/Na cells are used to investigate the interfacial properties between sodium and the β″-alumina electrolyte. The results obtained at 350 °C reveal that the polarization behavior of the cell is alleviated by the porous coating. This work represents a successful method to coat ceramics with porous carbon and offers a promising solution to overcome the polarization problems of the sodium/β″-alumina interface in Na-based batteries.

  19. Graphite nanoplatelets and carbon nanotubes based polyethylene composites: Electrical conductivity and morphology

    International Nuclear Information System (INIS)

    Haznedar, Galip; Cravanzola, Sara; Zanetti, Marco; Scarano, Domenica; Zecchina, Adriano; Cesano, Federico

    2013-01-01

    Graphite nanoplatelets (GNPs) and/or multiwalled-carbon nanotubes (MWCNTs)/low density polyethylene (LDPE) composites have been obtained either via melt-mixing or solvent assisted methods. Electrical properties of samples obtained through the above mentioned methods are compared and the conductance values as function of filler fraction are discussed. The corresponding percolation thresholds are evaluated. Conductivity maps images are acquired under low-potentials scanning electron microscopy (0.3 KV) and the relationship between the obtained conductivity images and electric properties is highlighted. The synergistic role of CNTs (1D) and GNPs (2D) in improving the conductive properties of the polymer composites has been shown. - Highlights: • Graphite nanoplatelets (GNPs) and GNPs/MWCNT LDPE composites. • Low potential SEM conductivity maps. • Conducting paths between 1D and 2D C-structures (synergistic effect) are obtained. • Composites based on hybrid 1D/2D combinations show lower percolation thresholds

  20. Lithium dynamics in carbon-rich polymer-derived SiCN ceramics probed by nuclear magnetic resonance

    Science.gov (United States)

    Baek, Seung-Ho; Reinold, Lukas Mirko; Graczyk-Zajac, Magdalena; Riedel, Ralf; Hammerath, Franziska; Büchner, Bernd; Grafe, Hans-Joachim

    2014-05-01

    We report 7Li, 29Si, and 13C NMR studies of two different carbon-rich SiCN ceramics SiCN-1 and SiCN-3 derived from the preceramic polymers polyphenylvinylsilylcarbodiimide and polyphenylvinylsilazane, respectively. From the spectral analysis of the three nuclei, we find that only the 13C spectrum is strongly influenced by Li insertion/extraction, suggesting that carbon phases are the major electrochemically active sites for Li storage. Temperature (T) and Larmor frequency (ωL) dependences of the 7Li linewidth and spin-lattice relaxation rates T1-1 are described by an activated law with the activation energy EA of 0.31 eV and the correlation time τ0 in the high temperature limit of 1.3 ps. The 3 / 2 power law dependence of T1-1 on ωL which deviates from the standard Bloembergen, Purcell, and Pound (BPP) model implies that the Li motion on the μs timescale is governed by continuum diffusion mechanism rather than jump diffusion. On the other hand, the rotating frame relaxation rate T1ρ-1 results suggest that the slow motion of Li on the ms timescale may be affected by complex diffusion and/or non-diffusion processes.

  1. The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Lau, Cher Hon; Cervini, Raoul; Clarke, Stephen R.; Markovic, Milena Ginic; Matisons, Janis G.; Hawkins, Stephen C.; Huynh, Chi P.; Simon, George P.

    2008-01-01

    Carbon nanotubes (CNTs) are of interest in many areas of nanotechnology and used in a number of novel applications. However effective dispersion remains a problem and one solution is to functionalize the nanotubes. Any functionalization that is undertaken must preferably not influence other key properties such as strength and electrical conductivity. In this work, multi-walled CNTs are functionalized for comparison, using a range of oxidative techniques, including thermal treatment, acid reflux, and dry UV-ozonolysis. The effects of these treatments on the multi-walled carbon nanotubes (MWCNTs) and their electrical properties were characterized using a range of surface and compositional techniques. The electrical conductivity of MWCNTs was found to increase with functionalization in all cases, and dry UV-ozonolysis was shown to be the treatment technique which best increased conductivity, whilst at the same time maintaining the structural integrity of the nanotubes, even though the level of modification was less than by the other treatment methods.

  2. Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Electrical conductivity of 150–200 µm thick polysulfone films loaded with 0.05–0.75% w/w multiwall carbon nanotubes was systematically investigated for two types of dispersion states, uniformly dispersed and agglomerated at the micro-scale. The percolation threshold was found at 0.11% and 0.068% w/w for the uniformly dispersed and agglomerated films, respectively. Overall, the conductivity of the films with agglomerated nanotubes was higher than that of the uniformly dispersed ones, with marked differences of 2 to 4 orders of magnitude for carbon nanotubes loadings in the upper vicinity of the percolation threshold (0.1–0.3% w/w. The increased conductivity of the agglomerated state is explained by the increased nanotube-to-nanotube contact after the percolating network has formed, which facilitates electron transfer.

  3. Characterization of electrical conductivity of carbon fiber reinforced plastic using surface potential distribution

    Science.gov (United States)

    Kikunaga, Kazuya; Terasaki, Nao

    2018-04-01

    A new method of evaluating electrical conductivity in a structural material such as carbon fiber reinforced plastic (CFRP) using surface potential is proposed. After the CFRP was charged by corona discharge, the surface potential distribution was measured by scanning a vibrating linear array sensor along the object surface with a high spatial resolution over a short duration. A correlation between the weave pattern of the CFRP and the surface potential distribution was observed. This result indicates that it is possible to evaluate the electrical conductivity of a material comprising conducting and insulating regions.

  4. Temperature Dependence on Structural, Tribological, and Electrical Properties of Sputtered Conductive Carbon Thin Films

    International Nuclear Information System (INIS)

    Park, Yong Seob; Hong, Byung You; Cho, Sang Jin; Boo, Jin Hyo

    2011-01-01

    Conductive carbon films were prepared at room temperature by unbalanced magnetron sputtering (UBMS) on silicon substrates using argon (Ar) gas, and the effects of post-annealing temperature on the structural, tribological, and electrical properties of carbon films were investigated. Films were annealed at temperatures ranging from 400 .deg. C to 700 .deg. C in increments of 100 .deg. C using a rapid thermal annealing method by vacuum furnace in vacuum ambient. The increase of annealing temperature contributed to the increase of the ordering and formation of aromatic rings in the carbon film. Consequently, with increasing annealing temperature the tribological properties of sputtered carbon films are deteriorated while the resistivity of carbon films significantly decreased from 4.5 x 10 -3 to 1.0 x 10 -6 Ω-cm and carrier concentration as well as mobility increased, respectively. This behavior can be explained by the increase of sp 2 bonding fraction and ordering sp 2 clusters in the carbon networks caused by increasing annealing temperature

  5. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques

  6. Process modeling of conductivity in nanocomposites based on reticulated polymers and carbon nanotubes

    International Nuclear Information System (INIS)

    Dolgoshej, V.B.; Korskanov, V.V.; Karpova, I.L.; Bardash, L.V.

    2012-01-01

    The dependences of electric conductivities of thermosetting polymer nanocomposites based on epoxy polymer and polycyanurate filled by carbon nanotubes were investigated. Low values of percolation threshold at volume fraction of carbon nanotubes from 0.001 to 0.002 were observed for all samples.Absolute values of the percolation threshold are in good agreement with the results of mathematical modeling. It is established that electrical properties of thermosetting polymer nanocomposites can be characterized in the frame of the same theoretical model despite difference in polymers properties

  7. Synthesis and Physical Characterization of Carbon Nano tubes Coated by Conducting Poly pyrrole

    International Nuclear Information System (INIS)

    Talib, A.B.Z.A.; Wan Mahmood Mat Yunus; Kasar Behzad; Nayereh Soltani

    2011-01-01

    This study describes the preparation of poly pyrrole multi walled carbon nano tube (PPy/ MWNT) composites by in situ chemical oxidative polymerization. Various ratios of functionalized MWNTs are dispersed in the water, and PPy are then synthesized via in-situ chemical oxidative polymerization on the surface of the carbon nano tubes. The morphology of the resulting complex nano tubes (MWNT-PPY) was characterized by scanning electron microscopy (SEM). The conductivity of each composite showed a maximum in the temperature scale of 120- 160 degree Celsius and then decreased dramatically with the increase of temperature. (author)

  8. Dielectric and AC-conductivity studies of Dy2O3 doped (K0.5Na0.5NbO3 ceramics

    Directory of Open Access Journals (Sweden)

    Mahesh Peddigari

    2014-08-01

    Full Text Available (K0.5Na0.5NbO3 + x wt.% Dy2O3 (x = 0–1.5 ferroelectric ceramics were prepared by conventional solid state reaction method. XRD patterns revealed that orthorhombic symmetry has transformed into psuedocubic symmetry with increasing the substitution of Dy3+ in the Na+ site. Temperature and frequency dependences of relative dielectric permittivity maximum conforms the transformation from normal ferroelectric to relaxor ferroelectric behaviour. Frequency dependence of the relative dielectric permittivity maximum temperature observed for the samples with x ≥ 1.0 and satisfied the Vogel–Fulcher law. The diffuseness exponent γ (1.27–1.95 estimated from the high temperature slopes of the diffused dielectric permittivity data reveals that the degree of relaxor behavior increases with increasing the amount of Dy2O3. The temperature dependence of AC-conductivity σAC (T analysis in the range 310 K < T < 470 K reveals the existence of variable range hopping of charge carriers with average hopping length RH and hopping energy EH are in the range 8.5–27 Å and 48–153 meV, respectively. Voltage dependent dielectric constant measurements confirm the ferroelectric nature of KNN+ x wt% Dy2O3 ceramics.

  9. Stable proton-conducting Ca-doped LaNbO4 thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing

    International Nuclear Information System (INIS)

    Lin Bin; Wang Songlin; Liu Xingqin; Meng Guangyao

    2009-01-01

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs), a stable proton-conducting La 0.99 Ca 0.01 NbO 4 (LCN) thin electrolyte was fabricated on a porous NiO-La 0.5 Ce 0.5 O 1.75 (NiO-LDC) anode by in situ screen printing. The key part of this process is to directly print well-mixed ink of La 2 O 3 , CaCO 3 and Nb 2 O 5 instead of pre-synthesized LCN ceramic powder on the anode substrate. After sintering at 1400 deg. C for 5 h, the full dense electrolyte membrane in the thickness of 20 μm was obtained. A single cell was assembled with (La 0.8 Sr 0.2 ) 0.9 MnO 3-δ -La 0.5 Ce 0.5 O 1.75 (LSM-LDC) as cathode and tested with humidified hydrogen as fuel and static air as oxidant. The open circuit voltage (OCV) and maximum power density respectively reached 0.98 V and 65 mW cm -2 at 800 deg. C. Interface resistance of cell under open circuit condition was also investigated.

  10. Stable proton-conducting Ca-doped LaNbO{sub 4} thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing

    Energy Technology Data Exchange (ETDEWEB)

    Lin Bin [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China)], E-mail: bin@mail.ustc.edu.cn; Wang Songlin; Liu Xingqin [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China); Meng Guangyao [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China)], E-mail: mgym@ustc.edu.cn

    2009-06-10

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs), a stable proton-conducting La{sub 0.99}Ca{sub 0.01}NbO{sub 4} (LCN) thin electrolyte was fabricated on a porous NiO-La{sub 0.5}Ce{sub 0.5}O{sub 1.75} (NiO-LDC) anode by in situ screen printing. The key part of this process is to directly print well-mixed ink of La{sub 2}O{sub 3}, CaCO{sub 3} and Nb{sub 2}O{sub 5} instead of pre-synthesized LCN ceramic powder on the anode substrate. After sintering at 1400 deg. C for 5 h, the full dense electrolyte membrane in the thickness of 20 {mu}m was obtained. A single cell was assembled with (La{sub 0.8}Sr{sub 0.2}){sub 0.9}MnO{sub 3-{delta}}-La{sub 0.5}Ce{sub 0.5}O{sub 1.75} (LSM-LDC) as cathode and tested with humidified hydrogen as fuel and static air as oxidant. The open circuit voltage (OCV) and maximum power density respectively reached 0.98 V and 65 mW cm{sup -2} at 800 deg. C. Interface resistance of cell under open circuit condition was also investigated.

  11. Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Prasanth; Zhao Xiaohui; Kim, Jae-Kwang; Manuel, James; Chauhan, Ghanshyam S. [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of)], E-mail: jhahn@gnu.ac.kr; Nah, Changwoon [Department of Polymer-Nano Science and Technology, Chonbuk National University, 664-14 Duckjin-dong, Jeonju 561-756 (Korea, Republic of)

    2008-12-30

    A series of nanocomposite polymer electrolytes (NCPEs) comprising nanoparticles of BaTiO{sub 3}, Al{sub 2}O{sub 3} or SiO{sub 2} were prepared by electrospinning technique. The nano-sized ceramic fillers were incorporated into poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HEP)] membranes during the electrospinning process. The resultant porous membranes are good absorbent of the liquid electrolyte and exhibit high electrolyte retention capacity. The presence of the ceramic nanoparticles has positive effect on the mechanical properties of the membranes. The ionic conductivity and the electrochemical stability window of the electrospun P(VdF-HFP)-based polymer are enhanced by the presence of the fillers. The cell Li/LiFePO{sub 4} based on the NCPE containing BaTiO{sub 3} delivers a discharge capacity of 164 mAh/g, which corresponds to 96.5% utilization of the active material. In comparison, the performance of Li/LiFePO{sub 4} cells with NCPEs containing Al{sub 2}O{sub 3} and SiO{sub 2} was observed to be lower with respective discharge capacities of 153 and 156 mAh/g. The enhanced performance of the BaTiO{sub 3}-based-NCPE is attributed mainly to its better interaction with the host polymer and compatibility with lithium metal.

  12. CHARACTERIZATION OF CARBON NANOFIBERS/ ZrO 2 CERAMIC MATRIX COMPOSITE

    Czech Academy of Sciences Publication Activity Database

    Duszová, A.; Morgiel, J.; Bastl, Zdeněk; Mihály, J.; Dusza, J.

    2013-01-01

    Roč. 58, č. 2 (2013), s. 459-463 ISSN 1733-3490 Institutional support: RVO:61388955 Keywords : carbon nanofibers * nanocomposites * transmission electron microscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.763, year: 2013

  13. Electrically conductive carbon fibre-reinforced composite for aircraft lightning strike protection

    Science.gov (United States)

    Katunin, Andrzej; Krukiewicz, Katarzyna; Turczyn, Roman; Sul, Przemysław; Bilewicz, Marcin

    2017-05-01

    Aircraft elements, especially elements of exterior fuselage, are subjected to damage caused by lightning strikes. Due to the fact that these elements are manufactured from polymeric composites in modern aircraft, and thus, they cannot conduct electrical charges, the lightning strikes cause burnouts in composite structures. Therefore, the effective lightning strike protection for such structures is highly desired. The solution presented in this paper is based on application of organic conductive fillers in the form of intrinsically conducting polymers and carbon fabric in order to ensure electrical conductivity of whole composite and simultaneously retain superior mechanical properties. The presented studies cover synthesis and manufacturing of the electrically conductive composite as well as its characterization with respect to mechanical and electrical properties. The performed studies indicate that the proposed material can be potentially considered as a constructional material for aircraft industry, which characterizes by good operational properties and low cost of manufacturing with respect to current lightning strike protection materials solutions.

  14. Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; An, Hua; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    2018-05-01

    Compared with isolated single-walled carbon nanotubes (SWNTs), thermal conductivity is greatly impeded in SWNT bundles; however, the measurement of the bundle size effect is difficult. In this study, the number of SWNTs in a bundle was determined based on the transferred horizontally aligned SWNTs on a suspended micro-thermometer to quantitatively study the effect of the bundle size on thermal conductivity. Increasing the bundle size significantly degraded the thermal conductivity. For isolated SWNTs, thermal conductivity was approximately 5000 ± 1000 W m-1 K-1 at room temperature, three times larger than that of the four-SWNT bundle. The logarithmical deterioration of thermal conductivity resulting from the increased bundle size can be attributed to the increased scattering rate with neighboring SWNTs based on the kinetic theory.

  15. Thermal conductivity of carbon foams. Measurements and interpretation; Conductivite thermique de mousses de carbone. Mesures et interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Bourret, F.; Fort, C.; Duffa, G. [CEA CESTA, 33 - Le Barp (France)

    1996-12-31

    This paper describes thermal diffusivity measurements performed with the flash method on carbon foams with open porosity at ambient and higher temperatures. The influence of gas inclusions in the pores has been studied too. In this type of highly insulating material, radiant heat transfer plays a major role. The experiments carried out are interpreted in terms of equivalent thermal conductivity and show the difficulties encountered, in particular the dependence with sample thickness. An interpretation based on a direct simulation with an equivalent periodical material is given with an estimation of the gaseous conductivity based on the kinetics theory of gases. This study demonstrates that the notion of equivalent thermal conductivity is not applicable to all experiments. (J.S.) 10 refs.

  16. Synthesis of Porous and Mechanically Compliant Carbon Aerogels Using Conductive and Structural Additives

    Directory of Open Access Journals (Sweden)

    Carlos Macias

    2016-01-01

    Full Text Available We report the synthesis of conductive and mechanically compliant monolithic carbon aerogels prepared by sol-gel polycondensation of melamine-resorcinol-formaldehyde (MRF mixtures by incorporating diatomite and carbon black additives. The resulting aerogels composites displayed a well-developed porous structure, confirming that the polymerization of the precursors is not impeded in the presence of either additive. The aerogels retained the porous structure after etching off the siliceous additive, indicating adequate cross-linking of the MRF reactants. However, the presence of diatomite caused a significant fall in the pore volumes, accompanied by coarsening of the average pore size (predominance of large mesopores and macropores. The diatomite also prevented structural shrinkage and deformation of the as-prepared monoliths upon densification by carbonization, even after removal of the siliceous framework. The rigid pristine aerogels became more flexible upon incorporation of the diatomite, favoring implementation of binderless monolithic aerogel electrodes.

  17. Comparative evaluation of electrical conductivity of hydroxyapatite ceramics densified through ramp and hold, spark plasma and post sinter Hot Isostatic Pressing routes

    Energy Technology Data Exchange (ETDEWEB)

    Buchi Suresh, M., E-mail: suresh@arci.res.in; Biswas, P.; Mahender, V.; Johnson, Roy, E-mail: royjohnson@arci.res.in

    2017-01-01

    Hydroxyapatite ceramics synthesized through sonochemical route were processed and densified through ramp & hold (R&H) and Spark Plasma Sintering (SPS) routes. The effect of processing route on the relative density and electrical conductivity were studied. Further, the samples were Hot Isostatically Pressed (HIP) under argon pressure at elevated temperature to further densify the sample. All these samples processed under different conditions were characterized by X-ray diffraction, Scanning Electron Microscopy and AC Conductivity. The samples have exhibited hydroxyapatite phase; however, microstructures exhibited distinctly different grain morphologies and grain sizes. AC impedance spectroscopic measurement was carried out on hydroxyapatite samples processed through different routes and the corresponding spectra were analyzed by the analogy to equivalent circuit involving resistors and capacitors. SPS sintered sample after HIPing has exhibited the highest conductivity. This can be attributed to the higher density in combination with finer grain sizes. Activation energy based on Arrhenius equation is calculated and the prominent conduction mechanism is proposed. - Highlights: • Hot Isostatic Pressing (HIP) of SPS and R&H processed samples has resulted into densities near to theoretical densities • No change in the crystal structure is observed in SPS and R&H samples before and after HIP treatment • SPS processed and HIP treated samples resulted into higher conductivities with smaller grain sizes and grain boundary area.

  18. Numerical estimation of the effective electrical conductivity in carbon paper diffusion media

    International Nuclear Information System (INIS)

    Zamel, Nada; Li, Xianguo; Shen, Jun

    2012-01-01

    Highlights: ► Anisotropic effective electrical conductivity of the GDL is estimated numerically. ► The electrical conductivity is a key component in understanding the structure of the GDL. ► Expressions for evaluating the electrical conductivity were proposed. ► The tortuosity factor was evaluated as 1.7 and 3.4 in the in- and through-plane directions, respectively. - Abstract: The transport of electrons through the gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells has a significant impact on the optimal design and operation of PEM fuel cells and is directly affected by the anisotropic nature of the carbon paper material. In this study, a three-dimensional reconstruction of the GDL is used to numerically estimate the directional dependent effective electrical conductivity of the layer for various porosity values. The distribution of the fibers in the through-plane direction results in high electrical resistivity; hence, decreasing the overall effective electrical conductivity in this direction. This finding is in agreement with measured experimental data. Further, using the numerical results of this study, two mathematical expressions were proposed for the calculation of the effective electrical conductivity of the carbon paper GDL. Finally, the tortuosity factor was evaluated as 1.7 and 3.4 in the in- and through-plane directions, respectively.

  19. Thermal conduction mechanisms in isotope-disordered boron nitride and carbon nanotubes

    Science.gov (United States)

    Savic, Ivana; Mingo, Natalio; Stewart, Derek

    2009-03-01

    We present first principles studies which determine dominant effects limiting the heat conduction in isotope-disordered boron nitride and carbon nanotubes [1]. Using an ab initio atomistic Green's function approach, we demonstrate that localization cannot be observed in the thermal conductivity measurements [1], and that diffusive scattering is the dominant mechanism which reduces the thermal conductivity [2]. We also give concrete predictions of the magnitude of the isotope effect on the thermal conductivities of carbon and boron nitride single-walled nanotubes [2]. We furthermore show that intershell scattering is not the main limiting mechanism for the heat flow through multi-walled boron nitride nanotubes [1], and that heat conduction restricted to a few shells leads to the low thermal conductivities experimentally measured [1]. We consequently successfully compare the results of our calculations [3] with the experimental measurements [1]. [1] C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 2006, 97, 085901. [2] I. Savic, N. Mingo, D. A. Stewart, Phys. Rev. Lett. 2008, 101, 165502. [3] I. Savic, D. A. Stewart, N. Mingo, to be published.

  20. Steady- and transient-state analyses of fully ceramic microencapsulated fuel loaded reactor core via two-temperature homogenized thermal-conductivity model

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Cho, Nam Zin

    2015-01-01

    Highlights: • Fully ceramic microencapsulated fuel-loaded core is analyzed via a two-temperature homogenized thermal-conductivity model. • The model is compared to harmonic- and volumetric-average thermal conductivity models. • The three thermal analysis models show ∼100 pcm differences in the k eff eigenvalue. • The three thermal analysis models show more than 70 K differences in the maximum temperature. • There occur more than 3 times differences in the maximum power for a control rod ejection accident. - Abstract: Fully ceramic microencapsulated (FCM) fuel, a type of accident-tolerant fuel (ATF), consists of TRISO particles randomly dispersed in a SiC matrix. In this study, for a thermal analysis of the FCM fuel with such a high heterogeneity, a two-temperature homogenized thermal-conductivity model was applied by the authors. This model provides separate temperatures for the fuel-kernels and the SiC matrix. It also provides more realistic temperature profiles than those of harmonic- and volumetric-average thermal conductivity models, which are used for thermal analysis of a fuel element in VHTRs having a composition similar to the FCM fuel, because such models are unable to provide the fuel-kernel and graphite matrix temperatures separately. In this study, coupled with a neutron diffusion model, a FCM fuel-loaded reactor core is analyzed via a two-temperature homogenized thermal-conductivity model at steady- and transient-states. The results are compared to those from harmonic- and volumetric-average thermal conductivity models, i.e., we compare k eff eigenvalues, power distributions, and temperature profiles in the hottest single-channel at steady-state. At transient-state, we compare total powers, reactivity, and maximum temperatures in the hottest single-channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized thermal-conductivity

  1. The influence of conductive additives and inter-particle voids in carbon EDLC electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pandolfo, A.G.; Wilson, G.J.; Huynh, T.D.; Hollenkamp, A.F. [CSIRO - Energy Technology, Bayview Avenue, Clayton, Vic 3168 (Australia)

    2010-10-15

    Through the interpretation of porosity and intrusion data, and correlation to the electrochemical response, this study has confirmed that are not only carbon blacks (CBs) very effective in improving the electrical connectivity of a carbon electrode coating, but they also significantly modify the porosity of the electrode coating and thereby also influence ionic diffusion. CBs are more effective conductive fillers than graphites in EDLC electrodes. The highly branched structure of CBs allows multiple electrical contact points and results in a lower electrode electronic resistance. CBs can decrease inter-particle porosity (both volume and size) and introduce additional porosity that is characteristic of the type of carbon employed. It is observed that electrode coatings prepared from a carbon slurry have a highly macroporous structure and that electrolyte accessibility to individual activated carbon particles is unlikely to be the limiting factor to accessing capacitance. Electrochemical testing has confirmed the strong relationship between bulk electrode resistance and the accessibility of capacitance at different rates. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    Science.gov (United States)

    Barzegar, Farshad; Dangbegnon, Julien K.; Bello, Abdulhakeem; Momodu, Damilola Y.; Johnson, A. T. Charlie; Manyala, Ncholu

    2015-09-01

    This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA) based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg-1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  3. Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study

    Science.gov (United States)

    Shaikh, S.; Lafdi, K.; Ponnappan, R.

    2007-03-01

    The present work involves a study on the thermal conductivity of nanoparticle-oil suspensions for three types of nanoparticles, namely, carbon nanotubes (CNTs), exfoliated graphite (EXG), and heat treated nanofibers (HTT) with PAO oil as the base fluid. To accomplish the above task, an experimental analysis is performed using a modern light flash technique (LFA 447) for measuring the thermal conductivity of the three types of nanofluids, for different loading of nanoparticles. The experimental results show a similar trend as observed in literature for nanofluids with a maximum enhancement of approximately 161% obtained for the CNT-PAO oil suspension. The overall percent enhancements for different volume fractions of the nanoparticles are highest for the CNT-based nanofluid, followed by the EXG and the HTT. The findings from this study for the three different types of carbon nanoparticles can have great potential in the field of thermal management.

  4. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    Directory of Open Access Journals (Sweden)

    Farshad Barzegar

    2015-09-01

    Full Text Available This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg−1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  5. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    International Nuclear Information System (INIS)

    Fernandes, J.P.; Duarte, G.W.; Caldart, C.; Kniess, C.T.; Montedo, O.R.K.; Rocha, M.R.; Riella, H.G.; Fiori, M.A.

    2015-01-01

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound

  6. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.P. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Duarte, G.W. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Research Group in Technology and Information, Centro Universitário Barriga Verde (UNIBAVE), Santa Catarina, SC (Brazil); Caldart, C. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Kniess, C.T. [Post-Graduate Program in Professional Master in Management, Universidade Nove de Julho, São Paulo, SP (Brazil); Montedo, O.R.K.; Rocha, M.R. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Riella, H.G. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Fiori, M.A., E-mail: fiori@unochapeco.edu.br [Post-Graduate Program in Environmental Science, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil); Post-Graduate Program in Technology and Management of the Innovation, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil)

    2015-11-15

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound.

  7. Comparative VOCs sensing performance for conducting polymer and porphyrin functionalized carbon nanotubes based sensors

    Science.gov (United States)

    Datta, Kunal; Rushi, Arti; Ghosh, Prasanta; Shirsat, Mahendra

    2018-05-01

    We report sensors for detection of ethyl alcohol, a prominent volatile organic compound (VOC). Single walled carbon nanotubes were selected as main sensing backbone. As efficiency of sensor is dependent upon the choice of sensing materials, the performances of conducting polymer and porphyrin based sensors were compared. Chemiresistive sensing modality was adopted to observe the performance of sensors. It has been found that porphyrin based sensor shows higher affinity towards ethyl alcohol.

  8. Bias-dependent amino-acid-induced conductance changes in short semi-metallic carbon nanotubes

    International Nuclear Information System (INIS)

    Abadir, G B; Walus, K; Pulfrey, D L

    2010-01-01

    We study the interaction between short semi-metallic carbon nanotubes and different amino acids using molecular dynamics and ab initio (density functional theory/non-equilibrium Green's function) simulations. We identify two different mechanisms of nanotube conductance change upon adsorption of amino acids: one due to the change of the coordinates of the nanotube arising from van der Waals forces of interaction with the adsorbed amino acid; and one due to electrostatic interactions, which appear only in the case of charged amino acids. We also find that the transport mechanism and the changes in the conductance of the tube upon amino acid adsorption are bias dependent.

  9. Transparent and conductive polyethylene oxide film by the introduction of individualized single-walled carbon nanotubes.

    Science.gov (United States)

    Jung, Yong Chae; Muramatsu, Hiroyuki; Park, Ki Chul; Shimamoto, Daisuke; Kim, Jin Hee; Hayashi, Takuya; Song, Sung Moo; Kim, Yoong Ahm; Endo, Morinobu; Dresselhaus, Mildred S

    2009-12-16

    It is demonstrated that an optically transparent and electrically conductive polyethylene oxide (PEO) film is fabricated by the introduction of individualized single-walled carbon nanotubes (SWNTs). The incorporated SWNTs in the PEO film sustain their intrinsic electronic and optical properties and, in addition, the intrinsic properties of the polymer matrix are retained. The individualized SWNTs with smaller diameter provide high transmittance as well as good electrical conductivity in PEO films. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  11. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets.

    Science.gov (United States)

    Hsieh, Chien-Te; Lee, Cheng-En; Chen, Yu-Fu; Chang, Jeng-Kuei; Teng, Hsi-sheng

    2015-11-28

    The in-plane (kip) and through-plane (ktp) thermal conductivities of heat sinks using carbon nanotubes (CNTs), graphene nanosheets (GNs), and CNT/GN composites are extracted from two experimental setups within the 323-373 K temperature range. Hierarchical three-dimensional CNT/GN frameworks display higher kip and ktp values, as compared to the CNT- and GN-based heat sinks. The kip and ktp values of the CNT/GN-based heat sink reach as high as 1991 and 76 W m(-1) K(-1) at 323 K, respectively. This improved thermal conductivity is attributed to the fact that the hierarchical heat sink offers a stereo thermal conductive network that combines point, line, and plane contact, leading to better heat transport. Furthermore, the compression treatment provided an efficient route to increase both kip and ktp values. This result reveals that the hierarchical carbon structures become denser, inducing more thermal conductive area and less thermal resistivity, i.e., a reduced possibility of phonon-boundary scattering. The correlation between thermal and electrical conductivity (ε) can be well described by two empirical equations: kip = 567 ln(ε) + 1120 and ktp = 20.6 ln(ε) + 36.1. The experimental results are obtained within the temperature range of 323-373 K, suitably complementing the thermal management of chips for consumer electronics.

  12. Conductivity-Dependent Strain Response of Carbon Nanotube Treated Bacterial Nanocellulose

    Directory of Open Access Journals (Sweden)

    S. Farjana

    2013-01-01

    Full Text Available This paper reports the strain sensitivity of flexible, electrically conductive, and nanostructured cellulose which was prepared by modification of bacterial cellulose with double-walled carbon nanotubes (DWCNTs and multiwalled carbon nanotubes (MWCNTs. The electrical conductivity depends on the modifying agent and its dispersion process. The conductivity of the samples obtained from bacterial cellulose (BNC pellicles modified with DWCNT was in the range from 0.034 S·cm−1 to 0.39 S·cm−1, and for BNC pellicles modified with MWCNTs it was from 0.12 S·cm−1 to 1.6 S·cm−1. The strain-induced electromechanical response, resistance versus strain, was monitored during the application of tensile force in order to study the sensitivity of the modified nanocellulose. A maximum gauge factor of 252 was found from the highest conductive sample treated by MWCNT. It has been observed that the sensitivity of the sample depends on the conductivity of the modified cellulose.

  13. Facile Preparation of Carbon-Nanotube-based 3-Dimensional Transparent Conducting Networks for Flexible Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2016-01-01

    Here, we report the controllable fabrication of transparent conductive films (TCFs) for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks of single-walled carbon nanotube (SWCNT)/poly(3

  14. Residual stress analysis in carbon fiber-reinforced SiC ceramics

    International Nuclear Information System (INIS)

    Broda, M.

    1998-01-01

    Systematic residual stress analyses are reported, carried out in long-fiber reinforced SiC ceramics. The laminated C fiber /SiC matrix specimens used were prepared by polymer pyrolysis, and the structural component specimens used are industrial products. Various diffraction methods have been applied for non-destructive evaluation of residual stress fields, so as to completely detect the residual stresses and their distribution in the specimens. The residual stress fields at the surface (μm) have been measured using characteristic X-radiation and applying the sin 2 ψ method as well as the scatter vector method. For residual stress field analysis in the mass volume (cm), neutron diffraction has been applied. The stress fields in the fiber layers (approx. 250μm) have been measured as a function of their location within the laminated composite by using an energy-dispersive method and synchrotron radiation. By means of the systematic, process-accompanying residual stress and phase analyses, conclusions can be drawn as to possible approaches for optimization of fabrication parameters. (orig./CB) [de

  15. Effects of silicon carbide on the phase developments in mullite-carbon ceramic composite

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2017-12-01

    Full Text Available The effects of the addition of silicon carbide and sintering temperatures on the phases developed, in sintered ceramic composite produced from kaolin and graphite was investigated. The kaolin and graphite of known mineralogical composition were thoroughly blended with 4 and 8 vol % silicon carbide. From the homogeneous mixture of kaolin, graphite and silicon carbide, standard samples were prepared via uniaxial compaction. The test samples produced were subjected to firing (sintering at 1300°C, 1400°C and 1500°C. The sintered samples were characterized for the developed phases using x‐ray diffractometry analysis, microstructural morphology using ultra‐high resolution field emission scanning electron microscope (UHRFEGSEM. It was observed that microstructural morphology of the samples revealed the evolution of mullite, cristobalite and microcline. The kaolinite content of the raw kaolin undergoes transformation into mullite and excess silica, the mullite and the silica phases contents increased with increased sintering temperature. It is also generally observed that the graphite content progressively reduced linearly with increased sintering temperature. It is concluded that silicon carbide acts as anti-oxidant for the graphite, this anti-oxidant effect was more effective at 4 vol % silicon carbide.

  16. Machining of insulation ZrO2 ceramics by EDM using graphite electrode

    International Nuclear Information System (INIS)

    Tani, T.; Okada, M.; Fukuzawa, Y.; Mohri, N.

    1998-01-01

    As we proposed and reported before, insulating ceramics may be made into machinable materials with electrical discharge machining method by using an assisting electrode method. The machining properties depend on the formation mechanism of carbonization layer which has electrical conductivity on the ceramics surface during discharge. A big difference in machinability occurs between oxide and non-oxide ceramics. When ZrO 2 ceramics are machined with a copper tool electrode which was used for a machining of the non-oxide ceramics Si 3 N 4 , the electrical conductive layer is not formed on the machined surface uniformly. In this paper, in order to activate a carbonization reaction on the ceramics surface during discharge, the use of a porous graphite tool electrode is described. As a result of that, carbonized reaction occurs actively on the discharge gap and the uniform carbonized layer adheres to the machined surface. The surface roughness is much improved compared with previous machining conditions. Copyright (1998) Australasian Ceramic Society

  17. Carbon-coated ceramic membrane reactor for production of hydrogen via aqueous phase reforming of sorbitol

    NARCIS (Netherlands)

    Neira d'Angelo, M.F.; Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2014-01-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of

  18. Growth behaviour of twisted ribbons of barium carbonate/silica self-assembled ceramics

    International Nuclear Information System (INIS)

    Garcia-Ruiz, J.M.; Moreno, A.

    1997-01-01

    Twisted ribbons of self-assembled crystal aggregates of barium carbonate, in the presence of silicate ions at pH 9.5 grow at constant rate between 20 and 50 mu m/min. The morphological behaviour depends on temperature, while it was demonstrated to be independent of the viscosity of the growth environment. (Author) 7 refs

  19. Ceramic Membrane combined with Powdered Activated Carbon (PAC) or Coagulation for Treatment of Impaired Quality Waters

    KAUST Repository

    Hamad, Juma Z.

    2013-01-01

    and adsorption can remove some organic matter but with a low removal of the biopolymers component which is responsible for fouling. Powdered activated carbon (PAC) accompanied with a LPM maintains good removal of TOrCs. However, enhanced removal of TOr

  20. First assessment of Li2O-Bi2O3 ceramic oxides for high temperature carbon dioxide capture

    Institute of Scientific and Technical Information of China (English)

    E.M.Briz-López; M.J.Ramírez-Moreno; I.C.Romero-Ibarra; C.Gómez-Yá(n)ez; H.Pfeiffer; J.Ortiz-Landeros

    2016-01-01

    The capacity to capture CO2 was determined in several stoichiometric compositions in the Li2O-Bi2O3 system.The compounds (Li7BiO6,Li5BiOs,Li3BiO4 and LiBiO2 phases) were synthesized via solid-state reaction and characterized by X-ray diffraction,scanning electron microscopy and N2 adsorption techniques.The samples were heat-treated at temperatures from 40 to 750 ℃ under the CO2 atmosphere to evaluate the carbonate formation,which is indicative of the capacity of CO2 capture.Moreover,Li7BiO6 shows an excellent CO2 capture capacity of 7.1 mmol/g,which is considerably higher than those of other previously reported ceramics.Li7BiO6 is able to react with CO2 from 240 ℃ to approximately 660 ℃ showing a high kinetic reaction even at CO2 partial pressure values as low as 0.05.

  1. First assessment of Li2O–Bi2O3 ceramic oxides for high temperature carbon dioxide capture简

    Institute of Scientific and Technical Information of China (English)

    E.M.Briz-López; M.J.Ramírez-Moreno; I.C.Romero-Ibarra; C.Gómez-Yá?ez; H.Pfeiffer; J.Ortiz-Landeros

    2016-01-01

    The capacity to capture CO2 was determined in several stoichiometric compositions in the Li2O–Bi2O3 system. The compounds(Li7BiO6, Li5BiO5, Li3BiO4 and LiBiO2 phases) were synthesized via solid-state reaction and characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption techniques.The samples were heat-treated at temperatures from 40 to 750 °C under the CO2 atmosphere to evaluate the carbonate formation, which is indicative of the capacity of CO2 capture. Moreover, Li7BiO6 shows an excellent CO2 capture capacity of 7.1 mmol/g, which is considerably higher than those of other previously reported ceramics. Li7BiO6 is able to react with CO2 from 240 °C to approximately 660 °C showing a high kinetic reaction even at CO2 partial pressure values as low as 0.05.

  2. Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for L-cysteine.

    Science.gov (United States)

    Razmi, H; Heidari, H

    2009-05-01

    This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO](3-)/[Fe(CN)5NO](2-) and Pb(IV)/Pb(II) redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of L-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of L-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with L-cysteine concentration in the range of 1 x 10(-6) to 6.72 x 10(-5)mol L(-1) with a detection limit (signal/noise ratio [S/N]=3) of 0.46 microM. The sensor sensitivity was 0.17 microA (microM)(-1), and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of L-cysteine were achieved.

  3. Carbon-coated ceramic membrane reactor for the production of hydrogen by aqueous-phase reforming of sorbitol.

    Science.gov (United States)

    Neira D'Angelo, M F; Ordomsky, V; Schouten, J C; van der Schaaf, J; Nijhuis, T A

    2014-07-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of the membrane serves to avoid water loss and to minimize the interaction between the ceramic support and water, thus reducing the risks of membrane degradation upon operation. The permeation of hydrogen is dominated by the diffusivity of the hydrogen in water. Thus, higher operation temperatures result in an increase of the flux of hydrogen. The differential pressure has a negative effect on the flux of hydrogen due to the presence of liquid in the larger pores. The membrane was suitable for use in APR, and yielded 2.5 times more hydrogen than a reference reactor (with no membrane). Removal of hydrogen through the membrane assists in the reaction by preventing its consumption in undesired reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Application of Pre-coated Microfiltration Ceramic Membrane with Powdered Activated Carbon for Natural Organic Matter Removal from Secondary Wastewater Effluent

    KAUST Repository

    Kurniasari, Novita

    2012-12-01

    Ceramic membranes offer more advantageous performances than conventional polymeric membranes. However, membrane fouling caused by Natural Organic Matters (NOM) contained in the feed water is still become a major problem for operational efficiency. A new method of ceramic membrane pre-coating with Powdered Activated Carbon (PAC), which allows extremely contact time for adsorbing aquatic contaminants, has been studied as a pre-treatment prior to ceramic microfiltration membrane. This bench scale study evaluated five different types of PAC (SA Super, G 60, KCU 6, KCU 8 and KCU 12,). The results showed that KCU 6 with larger pore size was performed better compared to other PAC when pre-coated on membrane surface. PAC pre-coating on the ceramic membrane with KCU 6 was significantly enhance NOM removal, reduced membrane fouling and improved membrane performance. Increase of total membrane resistance was suppressed to 96%. The removal of NOM components up to 92%, 58% and 56% for biopolymers, humic substances and building blocks, respectively was achieved at pre-coating dose of 30 mg/l. Adsorption was found to be the major removal mechanism of NOM. Results obtained showed that biopolymers removal are potentially correlated with enhanced membrane performance.

  5. Analysis of neutron irradiation effects on thermal conductivity of SiC-based composites and monolithic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Senor, D.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    After irradiation of a variety of SiC-based materials to 33 or 43 dpa-SiC at 1000{degrees}C, their thermal conductivity values were degraded and became relatively temperature independent, which indicates that the thermal resistivity was dominated by point defect scattering. The magnitude of irradiation-induced conductivity degradation was greater at lower temperatures and typically was larger for materials with higher unirradiated conductivity. From these data, a K{sub irr}/K{sub unirr} ratio map which predicts the expected equilibrium thermal conductivity for most SiC-based materials as a function of irradiation temperature was derived. Due to a short-term EOC irradiation at 575{degrees} {+-} 60{degrees}C, a duplex irradiation defect structure was established. Based on an analysis of the conductivity and swelling recovery after post-irradiation anneals for these materials with the duplex defect structure, several consequences for irradiating SiC at temperatures of 1000{degrees}C or above are given. In particular, the thermal conductivity degradation in the fusion relevant 800{degrees}-1000{degrees}C temperature range may be more severe than inferred from SiC swelling behavior.

  6. Analysis of neutron irradiation effects on thermal conductivity of SiC-based composites and monolithic ceramics

    International Nuclear Information System (INIS)

    Youngblood, G.E.; Senor, D.J.

    1997-01-01

    After irradiation of a variety of SiC-based materials to 33 or 43 dpa-SiC at 1000 degrees C, their thermal conductivity values were degraded and became relatively temperature independent, which indicates that the thermal resistivity was dominated by point defect scattering. The magnitude of irradiation-induced conductivity degradation was greater at lower temperatures and typically was larger for materials with higher unirradiated conductivity. From these data, a K irr /K unirr ratio map which predicts the expected equilibrium thermal conductivity for most SiC-based materials as a function of irradiation temperature was derived. Due to a short-term EOC irradiation at 575 degrees ± 60 degrees C, a duplex irradiation defect structure was established. Based on an analysis of the conductivity and swelling recovery after post-irradiation anneals for these materials with the duplex defect structure, several consequences for irradiating SiC at temperatures of 1000 degrees C or above are given. In particular, the thermal conductivity degradation in the fusion relevant 800 degrees-1000 degrees C temperature range may be more severe than inferred from SiC swelling behavior

  7. Thermal conductivity and retention characteristics of composites made of boron carbide and carbon fibers with extremely high thermal conductivity for first wall armour

    Science.gov (United States)

    Jimbou, R.; Kodama, K.; Saidoh, M.; Suzuki, Y.; Nakagawa, M.; Morita, K.; Tsuchiya, B.

    1997-02-01

    The thermal conductivity of the composite hot-pressed at 2100°C including B 4C and carbon fibers with a thermal conductivity of 1100 W/ m· K was nearly the same as that of the composite including carbon fibers with a thermal conductivity of 600 W/ m· K. This resulted from the higher amount of B diffused into the carbon fibers through the larger interface. The B 4C content in the composite can be reduced from 35 to 20 vol% which resulted from the more uniform distribution of B 4C by stacking the flat cloth woven of carbon fibers (carbon fiber plain fabrics) than in the composite with 35 vol% B 4C including curled carbon fiber plain fabrics. The decrease in the B 4C content does not result in the degradation of D (deuterium)-retention characteristics or D-recycling property, but will bring about the decreased amount of the surface layer to be melted under the bombardment of high energy hydrogen ions such as disruptions because of higher thermal conduction of the composite.

  8. Electrical conductivity of activated carbon-metal oxide nanocomposites under compression: a comparison study.

    Science.gov (United States)

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Macías-García, A; Gómez-Serrano, V

    2014-12-07

    From a granular commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites were prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in an inert atmosphere. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The DC electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays suggest that the mechanical properties of the nanocomposites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density were relatively small and only significant at pressures lower than 100 kPa for AC and most nanocomposites. In contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the intrinsic conductivity, mean crystallite size, content and chemical nature of the supported phases, which ultimately depend on the metal oxide precursor and heat treatment temperature. The supported nanoparticles may be considered to act as electrical switches either hindering or favouring the effective electron transport between the AC cores of neighbouring composite particles in contact under compression. Conductivity values as a rule were lower for the nanocomposites than for the raw AC, all of them falling in the range of semiconductor materials. With the increase in heat treatment temperature, the trend is toward the improvement of conductivity due to the increase in the crystallite size and, in some cases, to the formation of metals in the elemental state and even metal carbides. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure

  9. Preparation and Application of Conductive Textile Coatings Filled with Honeycomb Structured Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Filip Govaert

    2014-01-01

    Full Text Available Electrical conductive textile coatings with variable amounts of carbon nanotubes (CNTs are presented. Formulations of textile coatings were prepared with up to 15 wt % of CNT, based on the solid weight of the binder. The binders are water based polyacrylate dispersions. The CNTs were mixed into the binder dispersion starting from a commercially available aqueous CNT dispersion that is compatible with the binder dispersion. Coating formulations with variable CNT concentrations were applied on polyester and cotton woven and knitted fabrics by different textile coating techniques: direct coating, transfer coating, and screen printing. The coatings showed increasing electrical conductivity with increasing CNT concentration. The coatings can be regarded to be electrically conductive (sheet resistivity<103 Ohm/sq starting at 3 wt% CNT. The degree of dispersion of the carbon nanotubes particles inside the coating was visualized by scanning electron microscopy. The CNT particles form honeycomb structured networks in the coatings, proving a high degree of dispersion. This honeycomb structure of CNT particles is forming a conductive network in the coating leading to low resistivity values.

  10. Effect of conducting polypyrrole on the transport properties of carbon nanotube yarn

    International Nuclear Information System (INIS)

    Foroughi, Javad; Kimiaghalam, Bahram; Ghorbani, Shaban Reza; Safaei, Farzad; Abolhasan, Mehran

    2012-01-01

    Experiments were conducted to measure the electrical conductivity in three types of pristine and carbon nanotube-polypyrrole (CNT-PPy) composite yarns and its dependence on over a wide temperature range. The experimental results fit well with the analytical models developed. The effective energy separation between localized states of the pristine CNT yarn is larger than that for both the electrochemically and chemically prepared CNT-PPy yarns. It was found that all samples are in the critical regime in the insulator–metal transition, or close to the metallic regime at low temperature. The electrical conductivity results are in good agreement with a Three Dimensional Variable Range Hopping model at low temperatures, which provides a strong indication that electron hopping is the main means of current transfer in CNT yarns at T < 100 K. We found that the two shell model accurately describes the electronic properties of CNT and CNT-PPy composite yarns in the temperature range of 5–350 K. - Highlights: ► We developed hybrid carbon nanotube conducting polypyrrole composite yarns. ► The main current transfer scheme in yarn is via three dimensional electrons hopping. ► Two shell model describes well electronic properties of yarns in range of 5-350 K.

  11. Relaxation dynamics of the conductive processes for PbNb2O6 ferroelectric ceramics in the frequency and time domain

    International Nuclear Information System (INIS)

    Gonzalez, R L; Leyet, Y; Guerrero, F; Guerra, J de Los S; Venet, M; Eiras, J A

    2007-01-01

    The relaxation dynamics of the conductive process present in PbNb 2 O 6 piezoelectric ceramics was investigated. A relaxation function in the time domain, Φ(t), was found from the frequency dependence of the dielectric modulus (imaginary component, M'') by using a relaxation function in the frequency domain, F*(ω). The best relaxation function, F*(ω), was found to be a Cole-Cole distribution function, in which relaxation characteristic parameters, such as α and τ CC , are involved. On the other hand, the relaxation function, Φ(t), obtained by the time domain method, was found to be a Kohlrausch-Williams-Watts (KWW) function type. The thermal evolution of the characteristics parameters of the KWW function (β and τ*) was analysed. The values of the activation energy (E a ), obtained in the whole investigated temperature interval, suggest the existence of a relaxation mechanism (a conductive process), which may be interpreted by an ion hopping between neighbouring sites within the crystalline lattice. The results are corroborated with the formalism of the AC conductivity

  12. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  13. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking.

    Science.gov (United States)

    Chen, I-Wen Peter; Liang, Richard; Zhao, Haibo; Wang, Ben; Zhang, Chuck

    2011-12-02

    Carbon nanotube (CNT) sheets or buckypapers have demonstrated promising electrical conductivity and mechanical performance. However, their electrical conductivity is still far below the requirements for engineering applications, such as using as a substitute for copper mesh, which is currently used in composite aircraft structures for lightning strike protection. In this study, different CNT buckypapers were stretched to increase their alignment, and then subjected to conjugational cross-linking via chemical functionalization. The conjugationally cross-linked buckypapers (CCL-BPs) demonstrated higher electrical conductivity of up to 6200 S cm( - 1), which is more than one order increase compared to the pristine buckypapers. The CCL-BPs also showed excellent doping stability in over 300 h in atmosphere and were resistant to degradation at elevated temperatures. The tensile strength of the stretched CCL-BPs reached 220 MPa, which is about three times that of pristine buckypapers. We attribute these property improvements to the effective and stable conjugational cross-links of CNTs, which can simultaneously improve the electrical conductivity, doping stability and mechanical properties. Specifically, the electrical conductivity increase resulted from improving the CNT alignment and inter-tube electron transport capability. The conjugational cross-links provide effective 3D conductive paths to increase the mobility of electrons among individual nanotubes. The stable covalent bonding also enhances the thermal stability and load transfer. The significant electrical and mechanical property improvement renders buckypaper a multifunctional material for various applications, such as conducting composites, battery electrodes, capacitors, etc.

  14. Simplified Calculation of the Electrical Conductivity of Composites with Carbon Nanotubes

    Science.gov (United States)

    Ivanov, S. G.; Aniskevich, A.; Kulakov, V.

    2018-03-01

    The electrical conductivity of two groups of polymer nanocomposites filled with the same NC7000 carbon nanotubes (CNTs) beyond the percolation threshold is described with the help of simple formulas. Different manufacturing process of the nanocomposites led to different CNT network structures, and, as a consequence, their electrical conductivity, at the same CNT volume, differed by two orders of magnitude. The relation between the electrical conductivity and the volume content of CNTs of the first group of composites (with a higher electrical conductivity) is described assuming that the CNT network structure is close to a statistically homogeneous one. The formula for this case, derived on the basis of a self-consistent model, includes only two parameters: the effective longitudinal electrical conductivity of CNT and the percolation threshold (the critical value of CNT volume content). These parameters were determined from two experimental points of electrical conductivity as a function of the volume fraction of CNTs. The second group of nanocomposites had a pronounced agglomerative structure, which was confirmed by microscopy data. To describe the low electrical conductivity of this group of nanocomposites, a formula based on known models of micromechanics is proposed. Two parameters of this formula were determined from experimental data of the first group, but the other two — of the second group of nanocomposites. A comparison of calculation and experimental relations confirmed the practical expediency of using the approach described.

  15. Ceramic carbon electrode-based anodes for use in the Cu-Cl thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Santhanam; Easton, E. Bradley [Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-05-15

    We have investigated CCE materials prepared using 3-aminopropyl trimethoxysilane. Electrochemical experiments were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the Cu-Cl thermochemical cycle. CCE-based electrodes vastly outperform a bare carbon electrode. Optimization of the organosilicate loading revealed maximum electrode performance was achieved with 36 wt% and was explained in terms of the optimal balance of active area and anion transport properties. (author)

  16. Thermal Conductivity of Ethylene Vinyl Acetate Copolymer/Carbon Nanofiller Blends

    Science.gov (United States)

    Ghose, S.; Watson, K. A.; Working, D. C.; Connell, J. W.; Smith, J. G., Jr.; Lin, Y.; Sun, Y. P.

    2007-01-01

    To reduce weight and increase the mobility, comfort, and performance of future spacesuits, flexible, thermally conductive fabrics and plastic tubes are needed for the Liquid Cooling and Ventilation Garment. Such improvements would allow astronauts to operate more efficiently and safely for extended extravehicular activities. As an approach to raise the thermal conductivity (TC) of an ethylene vinyl acetate copolymer (Elvax 260), it was compounded with three types of carbon based nanofillers: multi-walled carbon nanotubes (MWCNTs), vapor grown carbon nanofibers (CNFs), and expanded graphite (EG). In addition, other nanofillers including metallized CNFs, nickel nanostrands, boron nitride, and powdered aluminum were also compounded with Elvax 260 in the melt at various loading levels. In an attempt to improve compatibility between Elvax 260 and the nanofillers, MWCNTs and EG were modified by surface coating and through noncovalent and covalent attachment of organic molecules containing alkyl groups. Ribbons of the nanocomposites were extruded to form samples in which the nanofillers were aligned in the direction of flow. Samples were also fabricated by compression molding to yield nanocomposites in which the nanofillers were randomly oriented. Mechanical properties of the aligned samples were determined by tensile testing while the degree of dispersion and alignment of nanoparticles were investigated using high-resolution scanning electron microscopy. TC measurements were performed using a laser flash (Nanoflash ) technique. TC of the samples was measured in the direction of, and perpendicular to, the alignment direction. Additionally, tubing was also extruded from select nanocomposite compositions and the TC and mechanical flexibility measured.

  17. Highly conductive, transparent flexible films based on open rings of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Ko, Wen-Yin; Su, Jun-Wei; Guo, Chian-Hua; Fu, Shu-Juan; Hsu, Chuen-Yuan; Lin, Kuan-Jiuh

    2011-01-01

    Open rings of multi-walled carbon nanotubes were stacked to form porous networks on a poly(ethylene terephthalate) substrate to form a flexible conducting film (MWCNT-PET) with good electrical conductivity and transparency by a combination of ultrasonic atomization and spin-coating technique. To enhance the electric flexibility, we spin-coated a cast film of poly(vinyl alcohol) onto the MWCNT-PET substrate, which then underwent a thermo-compression process. Field-emission scanning electron microscopy of the cross-sectional morphology illustrates that the film has a robust network with a thickness of ∼ 175 nm, and it remarkably exhibits a sheet resistance of approximately 370 Ω/sq with ∼ 77% transmittance at 550 nm even after 500 bending cycles. This electrical conductivity is much superior to that of other MWCNT-based transparent flexible films.

  18. Possible explanation for the conductance of a single quantum unit in metallic carbon nanotubes

    International Nuclear Information System (INIS)

    Choi, Hyoung Joon; Ihm, Jisoon; Yoon, Young-Gui; Louie, Steven G.

    1999-01-01

    The quantum conductance of a metallic carbon nanotube with one end immersed in a jellium metal is studied. We find that the incident π * -band electrons, having a very high angular momentum with respect to the tube axis, go through the tube without being scattered by the free electrons in surrounding metal and contribute a quantum unit (2e 2 /h) to the conductance. On the other hand, the incident π-band electrons, with the p z atomic orbitals in phase along the tube circumference, experience strong resonant back-scattering because the low-angular-momentum states at the Fermi level have a dominantly metallic character in the nanotube-jellium metal coexistence region. These results provide a possible explanation for the experimentally observed conductance of one quantum unit instead of two for nanotubes with one end dipped into liquid metal such as mercury. (c) 1999 The American Physical Society

  19. The Use of Innovative Ceramic-Carbon Bonded Filters Used for Filtration of Liquid Alloys and Evaluation of the Filtration Efficiency

    Directory of Open Access Journals (Sweden)

    Karwiński A.

    2014-08-01

    Full Text Available Extremely intense development of civilization requires from foundry casting technologies very high quality and not expensive castings. In the foundries, there are many treatments that allow increasing of the final properties of produced castings such as refining, modification, heat treatment, etc. One of the methods of increasing the quality of the casting by removing inclusions from the liquid alloy is filtration. The use of ceramic-carbon foam filters in filtration process is still analysed phenomenon that allows improving the final properties of castings. A modern method of research, testing and synthesis of innovative chemical compositions allows improving the properties of such filters. In the paper the evaluation of application properties of developed ceramic-carbon bonded foam filters is presented. The quality of the foam filters is evaluated by Computer Tomography and foundry trials in pouring of liquid metal in test molds. Additionally computer simulations were made to visualize the flow characteristics in the foam filter. The analysed filters are the result of the research work of Foundry Research Institute and the Institute of Ceramics and Building Materials, Refractory Materials Department in Gliwice.

  20. Active metal brazing of titanium to high-conductivity carbon-based sandwich structures

    International Nuclear Information System (INIS)

    Singh, M.; Morscher, Gregory N.; Shpargel, Tarah P.; Asthana, Rajiv

    2008-01-01

    Reactive brazing technology was developed and processing parameters were optimized for the bonding of titanium tubes, graphite foam, and high-conductivity carbon-carbon composite face sheets using the active braze Cusil-ABA paste and foils. The microstructure and composition of the joints, examined using scanning electron microscopy coupled with energy-dispersive spectroscopy, showed good bonding and braze penetration in all systems when braze paste was used. The hardness values of the brazed joints were consistent for the different specimen stacking configurations. Mechanical testing of Ti tube/foam/C-C composite structures both in tension and shear showed that failure always occurred in the foam material demonstrating that the brazed joint was sufficient for these types of sandwich structures

  1. Conducting pyrolysed carbon scaffolds for cell replacement therapy and energy applications

    DEFF Research Database (Denmark)

    Bunea, Ada-Ioana

    of SU-8 has been shown to enhance stem cell differentiation into dopaminergic neurons. Due to these properties, carbon was chosen as the conductive material for the development of optoelectrical devices. Quartz is transparent in the UV and visible range. It is thermally resistant up to 1600°C......, chemically inert, hard, durable and non-porous. These properties make it ideal as the transparent component in the development of optoelectrical devices. The aim of this work is to contribute to the development of optoelectrical devices for applications in two different fields: 1) the treatment of Parkinson...... at applications in biophotovoltaics has explored energy harvesting from thylakoid membranes as photosynthetic systems residing on patterned carbon electrodes for generating electrical power....

  2. Low temperature hall effect investigation of conducting polymer-carbon nanotubes composite network.

    Science.gov (United States)

    Bahrami, Afarin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat; Behzad, Kasra; M Abdi, Mahnaz; Din, Fasih Ud

    2012-11-14

    Polypyrrole (PPy) and polypyrrole-carboxylic functionalized multi wall carbon nanotube composites (PPy/f-MWCNT) were synthesized by in situ chemical oxidative polymerization of pyrrole on the carbon nanotubes (CNTs). The structure of the resulting complex nanotubes was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The effects of f-MWCNT concentration on the electrical properties of the resulting composites were studied at temperatures between 100 K and 300 K. The Hall mobility and Hall coefficient of PPy and PPy/f-MWCNT composite samples with different concentrations of f-MWCNT were measured using the van der Pauw technique. The mobility decreased slightly with increasing temperature, while the conductivity was dominated by the gradually increasing carrier density.

  3. Reinforced carbon nanotubes as electrically conducting and flexible films for space applications.

    Science.gov (United States)

    Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Hanein, Yael

    2014-11-26

    Chemical vapor deposition (CVD)-grown entangled carbon nanotube (CNT) sheets are characterized by high electrical conductivity and durability to bending and folding. However, since freestanding CNT sheets are mechanically weak, they cannot be used as stand-alone flexible films. In this work, polyimide (PI) infiltration into entangled cup-stacked CNT (CSCNT) sheets was studied to form electrically conducting, robust, and flexible films for space applications. The infiltration process preserved CNTs' advantageous properties (i.e., conductivity and flexibility), prevented CNT agglomeration, and enabled CNT patterning. In particular, the CNT-PI films exhibited ohmic electrical conductance in both the lateral and vertical directions, with a sheet resistivity as low as 122 Ω/□, similar to that of as-grown CNT sheets, with minimal effect of the insulating matrix. Moreover, this high conductivity was preserved under mechanical and thermal manipulations. These properties make the reported CNT-PI films excellent candidates for applications where flexibility, thermal stability, and electrical conductivity are required. Particularly, the developed CNT-PI films were found to be durable in space environment hazards such as high vacuum, thermal cycling, and ionizing radiation, and hence they are suggested as an alternative for the electrostatic discharge (ESD) protection layer in spacecraft thermal blankets.

  4. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Ali E; Lima, Marcio H; Baughman, Ray H [Alan G MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Silverman, Edward M, E-mail: Ali.Aliev@utdallas.edu [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States)

    2010-01-22

    The extremely high thermal conductivity of individual carbon nanotubes, predicted theoretically and observed experimentally, has not yet been achieved for large nanotube assemblies. Resistances at tube-tube interconnections and tube-electrode interfaces have been considered the main obstacles for effective electronic and heat transport. Here we show that, even for infinitely long and perfect nanotubes with well-designed tube-electrode interfaces, excessive radial heat radiation from nanotube surfaces and quenching of phonon modes in large bundles are additional processes that substantially reduce thermal transport along nanotubes. Equivalent circuit simulations and an experimental self-heating 3{omega} technique were used to determine the peculiarities of anisotropic heat flow and thermal conductivity of single MWNTs, bundled MWNTs and aligned, free-standing MWNT sheets. The thermal conductivity of individual MWNTs grown by chemical vapor deposition and normalized to the density of graphite is much lower ({kappa}{sub MWNT} = 600 {+-} 100 W m{sup -1} K{sup -1}) than theoretically predicted. Coupling within MWNT bundles decreases this thermal conductivity to 150 W m{sup -1} K{sup -1}. Further decrease of the effective thermal conductivity in MWNT sheets to 50 W m{sup -1} K{sup -1} comes from tube-tube interconnections and sheet imperfections like dangling fiber ends, loops and misalignment of nanotubes. Optimal structures for enhancing thermal conductivity are discussed.

  5. Electrical conductivity of metal (hydr)oxide–activated carbon composites under compression. A comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Barroso-Bogeat, A., E-mail: adrianbogeat@unex.es [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Alexandre-Franco, M.; Fernández-González, C. [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Sánchez-González, J. [Department of Mechanical, Energetic and Materials Engineering, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Gómez-Serrano, V. [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain)

    2015-02-15

    From a granular commercial activated carbon (AC) and six metal (hydr)oxide precursors, including Al(NO{sub 3}){sub 3}, Fe(NO{sub 3}){sub 3}, SnCl{sub 2}, TiO{sub 2}, Na{sub 2}WO{sub 4} and Zn(NO{sub 3}){sub 2}, a broadly varied series of metal (hydr)oxide–AC composites were prepared by wet impregnation and subsequent oven-drying at 120 °C. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The dc electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays show that the mechanical properties of the composites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density under compression were very small and only significant at pressures lower than 100 kPa for AC and most composites. By contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the nature, content and intrinsic conductivity of the supported metal phases, which act as insulating thin layers thereby hindering the effective electron transport between AC cores of neighbouring sample particles in contact under compression. Conductivity values for the composites were lower than for the raw AC, all of them falling in the range of typical semiconductor materials. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure effects rather than the volume ones. - Highlights: • Pressure-dependent conductivity is studied for metal (hydr)oxide–AC composites. • Mechanical properties of the composites are essentially determined by AC. • Supported metal (hydr)oxides determine the bulk conductivity of the composites. • Metal (hydr)oxides act as insulating thin layers hindering the

  6. Computational modeling of electrically conductive networks formed by graphene nanoplatelet-carbon nanotube hybrid particles

    KAUST Repository

    Mora Cordova, Angel

    2018-01-30

    One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite\\'s conductivity based on these parameters.

  7. Surface-conduction electron-emitter characteristics and fabrication based on vertically aligned carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Yi-Ting [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Li, Kuan-Wei [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Honda, Shin-ichi [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Lin, Pao-Hung; Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China)

    2017-06-01

    Graphical abstract: The pattern design provides a new structure of surface-conduction electron-emitter display (SED). Delta-star shaped vertically aligned CNT (VACNT) arrays with 20o tips can simultaneously provide three emitters to bombard the sides of equilateral triangles pattern of VACNT, which produces numerous secondary electrons and enhance the SED efficiency. - Highlights: • The carbon nanotube (CNT) has replaced palladium oxide (PdO) as the electrode material for surface-conduction electron-emitter (SCE) applications. • The vertically aligned CNT (VACNT) arrays with 20° tips of the delta-star arrangement are used as cathodes that easily emit electrons. The cathode pattern simultaneously provides three emitters to bombard the sides of equilateral triangles pattern of VACNT. • The VACNT arrays were covered with magnesium oxide (MgO) nanostructures to promote the surface-conduction electron-emitter display (SED) efficiency (η). • The η was stably maintained in the 75–85% range. The proposed design provides a facile new method for developing SED applications. - Abstract: The carbon nanotube (CNT) has replaced palladium oxide (PdO) as the electrode material for surface-conduction electron-emitter (SCE) applications. Vertically aligned CNT arrays with a delta-star arrangement were patterned and synthesized onto a quartz substrate using photolithography and thermal chemical vapor deposition. Delta-star shaped VACNT arrays with 20° tips are used as cathodes that easily emit electrons because of their high electrical field gradient. In order to improve the field emission and secondary electrons (SEs) in SCE applications, magnesium oxide (MgO) nanostructures were coated onto the VACNT arrays to promote the surface-conduction electron-emitter display (SED) efficiency (η). According to the definition of η in SCE applications, in this study, the η was stably maintained in the 75–85% range. The proposed design provides a facile new method for

  8. Computational modeling of electrically conductive networks formed by graphene nanoplatelet-carbon nanotube hybrid particles

    Science.gov (United States)

    Mora, A.; Han, F.; Lubineau, G.

    2018-04-01

    One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in the remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite’s conductivity based on these parameters.

  9. Computational modeling of electrically conductive networks formed by graphene nanoplatelet-carbon nanotube hybrid particles

    KAUST Repository

    Mora Cordova, Angel; Han, Fei; Lubineau, Gilles

    2018-01-01

    One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite's conductivity based on these parameters.

  10. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  11. Multiscale Modeling of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2: Application to Lattice Thermal Conductivity

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  12. Synthesis of carbon nanotubes by CVD method using iron and molybdenum-based catalysts supported on ceramic matrices

    International Nuclear Information System (INIS)

    Teixeira, Ana Paula de Carvalho

    2010-01-01

    Molybdenum is known for its synergistic effect in the synthesis of carbon nanotubes (CNs) by chemical vapor deposition (CVD method). When added to typical catalysts like iron, nickel, and cobalt, even in small quantities, it is increases the yield of these nanostructures. The presence of Mo also has an influence on the type and number of CN walls formed. Although this effect is widely documented in the literature, there is not yet a consensus about the mechanism of action of molybdenum in catalytic systems. The objective of the present work is to study the influence of molybdenum on the catalytic activity of iron nanoparticle-based catalysts supported on magnesium oxide (Fe/MgO system) in the synthesis of carbon nanotubes by the CVD method. The Mo concentration was systematically varied from null to molar ratio values four times greater than the quantity of Fe, and the obtained material (catalysts and carbon nanotubes) were broadly characterized by different techniques. In order to also study the influence of the preparation method on the final composition of the catalytic system phases, the catalytic systems (Fe/MgO e FeMo x /MgO) were synthesized by two different methods: co-precipitation and impregnation. The greatest CN yields were observed for the catalysts prepared by coprecipitation. The difference was attributed to better dispersion of the Fe and Mo phases in the catalyst ceramic matrix. In the precipitation stage, it was observed the formation of layered double hydroxides whose concentration increased with the Mo content up to the ratio of Mo/Fe equal to 0.2. This phase is related to a better distribution of Fe and Mo in this concentration range. Another important characteristic observed is that the ceramic matrix is not inert. It can react both with Fe and Mo and form the iron solid solution in the magnesium oxide and the phases magnesium-ferrite (MgFe 2 0 4 ) and magnesium molybdate (MgMo0 4 ). The MgFe 2 0 4 phase is observed in all catalytic systems

  13. Improving the conductivity of single-walled carbon nanotubes films by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiaping [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Sun Jing, E-mail: jingsun@mail.sic.ac.c [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Gao Lian, E-mail: liangaoc@online.sh.c [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Liu Yangqiao; Wang Yan; Zhang Jing [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Kajiura, Hisashi; Li Yongming; Noda, Kazuhiro [Advanced Materials Laboratories, Sony Corporation, Atsugi Tec. No. 2, 4-16-1 Okata Atsugi, Kanagawa 243-0021 (Japan)

    2009-10-19

    A simple heat treatment method was applied to remove surfactants remaining in the single-walled carbon nanotubes (SWNTs) films at 300 deg. C for 5 h in air. Scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and reflected light interference microscope (RLIM) were employed to verify the elimination of surfactants. The comprehensive performance, especially the conductivity, could be improved by more than one order after heat treatment. For example, using SDBS as dispersant, the sheet resistance decreased from 782,600 OMEGA/square to 40,460 OMEGA/square with the transmittance of about 99.5% at 550 nm.

  14. Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites

    Science.gov (United States)

    Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN

    2010-07-27

    Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.

  15. Tribological improvements of carbon-carbon composites by infiltration of atomic layer deposited lubricious nanostructured ceramic oxides

    Science.gov (United States)

    Mohseni, Hamidreza

    A number of investigators have reported enhancement in oxidation and wear resistant of carbon-carbon composites (CCC) in the presence of protective coating layers. However, application of a surface and subsurface coating system that can preserve its oxidation and wear resistance along with maintaining lubricity at high temperature remains unsolved. To this end, thermodynamically stable protective oxides (ZnO/Al2O3/ZrO2) have been deposited by atomic layer deposition (ALD) to infiltrate porous CCC and graphite foams in order to improve the thermal stability and wear resistance in low and high speed sliding contacts. Characterization of microstructural evolution was achieved by using energy dispersive x-ray spectroscopy (EDS) mapping in scanning electron microscope (SEM) coupled with focused ion beam (FIB), x-ray tomography, high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) and X-ray diffraction (XRD). Evaluation of the tribological properties of CCC coated with abovementioned ALD thin films were performed by employing low speed pure sliding tribometer and a high speed/frequency reciprocating rig to simulate the fretting wear behavior at ambient temperature and elevated temperatures of 400°C. It was determined with x-ray tomography imaging and EDS mapping that ALD ZnO/Al2O3/ZrO2 nanolaminates and baseline ZrO2 coatings exhibited excellent conformality and pore-filling capabilities down to ˜100 microm and 1.5 mm in the porous CCC and graphite foam, respectively, which were dependent on the exposure time of the ALD precursors. XRD and HRTEM determined the crystalline phases of {0002} textured ZnO (wurtzite), amorphous Al2O3, and {101}-tetragonal ZrO2. Significant improvements up to ˜65% in the sliding and fretting wear factors were determined for the nanolaminates in comparison to the uncoated CCC. A tribochemical sliding-induced mechanically mixed layer (MML) was found to be responsible for these improvements

  16. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

    KAUST Repository

    Ventura, Isaac Aguilar; Zhou, Jian; Lubineau, Gilles

    2015-01-01

    such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs

  17. Conductive additive content balance in Li-ion battery cathodes: Commercial carbon blacks vs. in situ carbon from LiFePO{sub 4}/C composites

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, Veronica; Goni, Aintzane; Muro, Izaskun Gil de; Rojo, Teofilo [Departamento de Quimica Inorganica, Universidad del Pais Vasco UPV/EHU, P.O. Box. 644, 48080, Bilbao (Spain); de Meatza, Iratxe; Bengoechea, Miguel [Energy Department, CIDETEC-IK4, P Miramon 196, Parque Tecnologico de San Sebastian, 20009, San Sebastian (Spain); Cantero, Igor [Departamento I+D+i Nuevas Tecnologias, CEGASA, Artapadura, 11, 01013 Vitoria-Gasteiz (Spain)

    2010-11-15

    Two samples of commercial conducting carbon black and the carbon generated in situ during LiFePO{sub 4}/C composite synthesis from citric acid are studied, with the aim of finding out whether carbon from the composite can fulfil the same function as carbon black in the electrode blend for a Li-ion battery. For this purpose, the carbon samples are analyzed by several techniques, such as X-ray diffraction, Raman spectroscopy, transmission electron microscopy, granulometry, BET specific area and conductivity measurements. Different cathode compositions and component proportions are tested for pellet and cast electrodes. Electrochemical results show that a moderate reduction of commercial carbon black content in both kinds of cathodes, by adding more LiFePO{sub 4}/C composite, enhanced the electrochemical behaviour by around 10%. In situ generated carbon can partially replace commercial conducting carbon black because its high specific surface probably enhances electrolyte penetration into the cathode, but it is always necessary to maintain a minimum amount of carbon black that provides better conductivity in order to obtain a good electrochemical response. (author)

  18. Thermal conductivity of high performance carbon nanotube yarn-like fibers

    Energy Technology Data Exchange (ETDEWEB)

    Mayhew, Eric; Prakash, Vikas, E-mail: vikas.prakash@case.edu [Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7222 (United States)

    2014-05-07

    In the present paper, we present results of thermal conductivity measurements in free standing carbon nanotube (CNT) yarn-like fibers. The measurements are made using a T-type experimental configuration utilizing a Wollaston-wire hot probe inside a scanning electron microscope. In this technique, a suspended platinum wire is used both as a heater and a thermal sensor. A low frequency alternating current source is used to heat the probe wire while the third harmonic voltage across the wire is measured by a lock-in amplifier. The conductivity is deduced from an analytical model that relates the drop in the spatially averaged temperature of the wire to that of the sample. The average thermal conductivity of the neat CNT fibers and the CNT –polymer composite fibers is found to be 448 W/m-K and 225 W/m-K, respectively. These values for conductivity are amongst the highest measured for CNT yarn-like fibers fabricated using a dry spinning process from vertically aligned CNT arrays. The enhancement in thermal conductivity is understood to be due to an increase in the CNT fiber elastic stiffness during the draw and twist operations, lower CNT thermal contact resistance due to increase in CNT contact area, and better alignment of the CNT fibrils along the length of the fiber.

  19. Highly transparent and conductive thin films fabricated with nano-silver/double-walled carbon nanotube composites.

    Science.gov (United States)

    Lee, Shie-Heng; Teng, Chih-Chun; Ma, Chen-Chi M; Wang, Ikai

    2011-12-01

    This study develops a technique for enhancing the electrical conductivity and optical transmittance of transparent double-walled carbon nanotube (DWNT) film. Silver nanoparticles were modified with a NH(2)(CH(2))(2)SH self-assembled monolayer terminated by amino groups and subsequent surface condensation that reacted with functionalized DWNTs. Ag nanoparticles were grafted on the surface of the DWNTs. The low sheet resistance of the resulting thin conductive film on a polyethylene terephthalate (PET) substrate was due to the increased contact areas between DWNTs and work function by grafting Ag nanoparticles on the DWNT surfaces. Increasing the contact area between DWNTs and work function improved the conductivity of the DWNT-Ag thin films. The prepared DWNT-Ag thin films had a sheet resistance of 53.4 Ω/sq with 90.5% optical transmittance at a 550 nm wavelength. After treatment with HNO(3) and annealing at 150 °C for 30 min, a lower sheet resistance of 45.8 Ω/sq and a higher transmittance of 90.4% could be attained. The value of the DC conductivity to optical conductivity (σ(DC)/σ(OP)) ratio is 121.3. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. In Situ Monitoring of Dispersion Dynamics of Carbon Nanotubes during Sonication Using Electrical Conductivity Measurements

    Directory of Open Access Journals (Sweden)

    Syed Sadiq Ali

    2015-01-01

    Full Text Available The main challenge in the fabrication of carbon nanotube- (CNT- based composite materials is the optimization of the sonication time in order to obtain homogenous and uniform dispersion of CNTs. Past studies mostly relied on postprocessing characterization techniques to address this issue. In the present, however, in situ monitoring of dispersion dynamics of CNTs in distilled water is carried out using instantaneous conductivity measurements. Using a computer controlled data acquisition system, the time evolution of the solution conductivity was carefully recorded. The data were then used to evaluate the intensity of turbulent fluctuations, which clearly highlighted the existence of three distinct sonication phases. During the first phase, the conductivity fluctuations initially increased attaining ultimately a maximum, thus indicating the occurrence of large agglomerates of CNTs. During the second phase of sonication, the solution conductivity showed a rather steep increase while fluctuations steadily declined. This phenomenon can be attributed to the breakdown of large CNT agglomerates, resulting in greater dispersion homogeneity of CNTs. During the third phase, after almost 650 kJ/L of sonication energy, the conductivity increase was almost negligible. The fluctuation intensity also remained constant during this phase signifying that the further sonication was no longer required.

  1. Effective electrical conductivity of carbon nanotube-polymer composites: a simplified model and its validation

    International Nuclear Information System (INIS)

    Jang, Sung-Hwan; Yin, Huiming

    2015-01-01

    A simplified model is presented to predict the effective electrical conductivity of carbon nanotube(CNT)-polymer composite with different material proportions, which is validated by the experiments of multi-walled CNT/polydimethylsiloxane (PDMS) composites. CNTs are well dispersed in a PDMS matrix, and the mixture is then cured and cast into thin films for electrical characterization. The CNTs are assumed to be statistically uniformly distributed in the PDMS matrix with the three-dimensional (3D) waviness. As the proportion of CNTs increases to a certain level, namely the percolation threshold, the discrete CNTs start to connect with each other, forming a 3D network which exhibits a significant increase of effective electrical conductivity. The eight-chain model has been used to predict the effective electrical conductivity of the composite, in which the contact resistance between CNTs has been considered through the Simmons’ equation. The eight-chain network features can be significantly changed with the modification to mixing process, CNT length and diameter, and CNT clustering and curling. A Gaussian statistics-based formulation is used to calculate the effective length of a single CNT well dispersed in the matrix. The modeling results of effective electrical conductivity agree with the experiments very well, which are highly dependent on a contact resistance between CNTs and the waviness of the CNTs. The effect of inner-nanotube distance and diameter of CNTs on the effective electrical conductivity of the CNT/PDMS composite is also discussed. (paper)

  2. A nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J; Kang, Y [Department of Mechanical Engineering Kyung Hee University, 1, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Kleinstreuer, C [Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, 3211 Broughton Hall, Raleigh, NC 27695-7910 (United States)], E-mail: jmkoo@khu.ac.kr

    2008-09-17

    It has been experimentally demonstrated that suspensions of carbon nanotubes (CNTs) and nanofibers (CNFs) significantly increase the thermal conductivity of nanofluids; however, a physically sound theory of the underlying phenomenon is still missing. In this study, the nonlinear nature of the effective thermal conductivity enhancement with the particle concentration of CNT and CNF nanofluids is explained physically using the excluded volume concept. Specifically, the number of contacting CNTs and CNFs could be calculated by using the excluded volume concept, where the distance for heat to travel in a cylinder between the contacting cylinders in the thermal network of percolating CNTs and CNFs increased with the excluded volume. In contrast to the effective thermal conductivity model of Sastry et al (2008 Nanotechnology 19 055704) the present revised model could reproduce the nonlinear increase of the thermal conductivity with particle concentration, as well as the dependence on the diameter and aspect ratio of the CNTs and CNFs. It was found that the alignment of CNTs and CNFs due to the long range repulsion force decreases the excluded volume, leading to both the convex and concave nonlinear as well as linear increase of the thermal conductivity with particle concentration. The difference between various carrier fluids of the suspensions could be explained as the result of the change in the excluded volume in different base fluids.

  3. Thermal conductivity of a film of single walled carbon nanotubes measured with infrared thermal imager

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    Heat dissipation has restricted the modern miniaturization trend with the development of electronic devices. Theoretically proven to be with high axial thermal conductivity, single walled carbon nanotubes (SWNT) have long been expected to cool down the nanoscale world. Even though the tube-tube contact resistance limits the capability of heat transfer of the bulk film, the high intrinsic thermal conductivity of SWNT still glorify the application of films of SWNT network as a thermal interface material. In this work, we proposed a new method to straightly measure the thermal conductivity of SWNT film. We bridged two cantilevered Si thin plate with SWNT film, and kept a steady state heat flow in between. With the infrared camera to record the temperature distribution, the Si plates with known thermal conductivity can work as a reference to calculate the heat flux going through the SWNT film. Further, the thermal conductivity of the SWNT film can be obtained through Fourier's law after deducting the effect of thermal radiation. The sizes of the structure, the heating temperature, the vacuum degree and other crucial impact factors are carefully considered and analyzed. The author Y. F. was supported through the Advanced Integration Science Innovation Education and Research Consortium Program by the Ministry of Education, Culture, Sport, Science and Technology.

  4. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    International Nuclear Information System (INIS)

    Chen, Y.L.; Liu, B.; Hwang, K.C.; Chen, Y.L.; Huang, Y.

    2011-01-01

    Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT-) reinforced hard matrix composites is carried out on the basis of shear-lag theory and fracture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  5. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    Directory of Open Access Journals (Sweden)

    Y. L. Chen

    2011-01-01

    Full Text Available Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT- reinforced hard matrix composites is carried out on the basis of shear-lag theory and facture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  6. Thermal conductivity of vertically aligned carbon nanotube arrays: Growth conditions and tube inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Matthew L.; Pham, Quang N.; Saltonstall, Christopher B.; Norris, Pamela M. [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904-4746 (United States)

    2014-10-13

    The thermal conductivity of vertically aligned carbon nanotube arrays (VACNTAs) grown on silicon dioxide substrates via chemical vapor deposition is measured using a 3ω technique. For each sample, the VACNTA layer and substrate are pressed to a heating line at varying pressures to extract the sample's thermophysical properties. The nanotubes' structure is observed via transmission electron microscopy and Raman spectroscopy. The presence of hydrogen and water vapor in the fabrication process is tuned to observe the effect on measured thermal properties. The presence of iron catalyst particles within the individual nanotubes prevents the array from achieving the overall thermal conductivity anticipated based on reported measurements of individual nanotubes and the packing density.

  7. Improvement of carbon nanotubes films conductivity for use in biomedical application

    Science.gov (United States)

    Dybowska-Sarapuk, Łucja; Janczak, Daniel; Krzemiński, Jakub; Lepak, Sandra; Łekawa-Raus, Agnieszka; MłoŻniak, Anna; Jakubowska, Małgorzata

    2017-08-01

    Carbon nanotube (CNT) yarns and sheets due to their biocompatibility, very good mechanical strength and flexibility can find wide range of applications in nanomedicine, inter alia as mechanical actuators for artificial muscles or electrodes used for deep brain stimulation. However, because of CNT film behavior in liquid environment, before their using in biological applications, they should be coated with a special protective layer. The purpose of created coatings is not only to protect the films, but also to increase their conductivity. The aim of the research was to test various methods of achieving such coatings on CNT films and to evaluate quality and flexibility of coated CNT films. The coatings were made using various suspensions containing polymer materials such methyl polymethacrylate and conductive silver flakes. The methods tested in this study were: dipping, painting and flooding of the CNT yarns.

  8. Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ci Lijie

    2009-01-01

    Full Text Available Abstract Electrical transport properties of individual metallic double-walled carbon nanotubes (DWCNTs were measured down to liquid helium temperature, and multi-stable conductance states were found in DWCNTs. At a certain temperature, DWCNTs can switch continuously between two or more electronic states, but below certain temperature, DWCNTs are stable only at one of them. The temperature for switching is always different from tube to tube, and even different from thermal cycle to cycle for the same tube. In addition to thermal activation, gate voltage scanning can also realize such switching among different electronic states. The multi-stable conductance states in metallic DWCNTs can be attributed to different Fermi level or occasional scattering centers induced by different configurations between their inner and outer tubes.

  9. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    Naslain , R.

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  10. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    International Nuclear Information System (INIS)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-01

    Graphical abstract: The GO hybrid CNTs to fabricate TCFs could dramatically enhance the conductivity, adhesion, flatness, and wettability of the films, all these improvements are advantageous for optoelectronic applications. - Highlights: • TCFs were fabricated using GO/CNT hybrid inks by a simple spray method. • Conductivity of TCFs was improved through the hybrid of GO/CNT, sheet resistance of TCFs was 146 Ω/sq at the transmittance of 86.0% when the ratio of GO/CNT got 1.5:1.0. • The flatness and wettability of TCFs were improved dramatically, which is advantageous for the solution-based processing of organic electronics for spraying and printing. • The adhesion of the TCFs increased dramatically with the raise of the ratio GO/CNT hybrid. - Abstract: Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  11. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang, E-mail: genghz@tjpu.edu.cn; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-15

    Graphical abstract: The GO hybrid CNTs to fabricate TCFs could dramatically enhance the conductivity, adhesion, flatness, and wettability of the films, all these improvements are advantageous for optoelectronic applications. - Highlights: • TCFs were fabricated using GO/CNT hybrid inks by a simple spray method. • Conductivity of TCFs was improved through the hybrid of GO/CNT, sheet resistance of TCFs was 146 Ω/sq at the transmittance of 86.0% when the ratio of GO/CNT got 1.5:1.0. • The flatness and wettability of TCFs were improved dramatically, which is advantageous for the solution-based processing of organic electronics for spraying and printing. • The adhesion of the TCFs increased dramatically with the raise of the ratio GO/CNT hybrid. - Abstract: Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  12. Influence of nanosized carbon particles on the formation of the structure and properties of microarc ceramic coatings based on aluminum alloys

    International Nuclear Information System (INIS)

    Vityaz', P.A.; Komarov, A.I.; Komarova, V.I.

    2013-01-01

    A carbon-composite material based on a ceramic coating formed on aluminum alloys due to microarc oxidation and nanostructured carbon synthesized by the electric breakdown of liquid hydrocarbon (cyclohexane) is developed. The highest concentration of carbon nanoparticles is recorded in the coating surface coating 30-50 (μm in depth and also near the interface coating - base. It is shown that the nanocarbon introduced in electrolytes enhances the content of high-temperature modifications of aluminum oxide α-Al 2 O 3 by a factor of 3, as compared to the coating resulting in a solution without additives. The latter achieves higher tribomechanical properties - the 1.6-fold increase of microhardness, the multiple growth of wear resistance in the high pressure range (45,60 MPa) with a simultaneous reduction of the coefficient 2-9 times. (authors)

  13. Formation of electrically conducting, transparent films using silver nanoparticles connected by carbon nanotubes

    International Nuclear Information System (INIS)

    Hwang, Sunna; Noh, Sun Young; Kim, Heesuk; Park, Min; Lee, Hyunjung

    2014-01-01

    To achieve both optical transparency and electrical conductivity simultaneously, we fabricated a single-walled carbon nanotube (SWNT)/silver fiber-based transparent conductive film using silver fibers produced by the electrospinning method. Electrospun silver fibers provided a segregated structure with the silver nanoparticles within the fibrous microstructures as a framework. Additional deposition of SWNT/poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) layers resulted in a remarkable decrease in the surface resistance from very high value (> 3000 kΩ/sq) for the films of electrospun silver fibers, without affecting the optical transmittance at 550 nm. The surface resistance of the SWNT/silver film after the deposition of three layers decreased to 17 Ω/sq with 80% transmittance. Successive depositions of SWNT/PEDOT:PSS layers reduced the surface resistance to 2 Ω/sq without severe loss in optical transmittance (ca. 65%). The transparent conductive films exhibited a performance comparable to that of commercial indium tin oxide films. The individual silver nanoparticles within the electrospun fibers on the substrate were interconnected with SWNTs, which resulted in the efficient activation of a conductive network by bridging the gaps among separate silver nanoparticles. Such a construction of microscopically conductive networks with the minimum use of electrically conductive nanomaterials produced superior electrical conductivity, while maintaining the optical transparency. - Highlights: • Silver fibrous structures were produced by electrospinning method. • SWNTs/PEDOT:PSS was deposited on silver fibrous structures. • These films exhibited a low sheet resistance (∼ 17 Ω/sq) at ∼ 80% optical transparency. • Successive depositions of SWNT/PEDOT:PSS layers reduced the surface resistance to 2 Ω/sq

  14. Highly conductive porous Na-embedded carbon nanowalls for high-performance capacitive deionization

    Science.gov (United States)

    Chang, Liang; Hu, Yun Hang

    2018-05-01

    Highly conductive porous Na-embedded carbon nanowalls (Na@C), which were recently invented, have exhibited excellent performance for dye-sensitized solar cells and electric double-layer capacitors. In this work, Na@C was demonstrated as an excellent electrode material for capacitive deionization (CDI). In a three-electrode configuration system, the specific capacity of the Na@C electrodes can achieve 306.4 F/g at current density of 0.2 A/g in 1 M NaCl, which is higher than that (235.2 F/g) of activated carbon (AC) electrodes. Furthermore, a high electrosorption capacity of 8.75 mg g-1 in 100 mg/L NaCl was obtained with the Na@C electrodes in a batch-mode capacitive deionization cell. It exceeds the electrosorption capacity (4.08 mg g-1) of AC electrodes. The Na@C electrode also showed a promising cycle stability. The excellent performance of Na@C electrode for capacitive deionization (CDI) can be attributed to its high electrical conductivity and large accessible surface area.

  15. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-05-31

    Multiwalled carbon nanotube-enriched epoxy polymers were prepared by solvent evaporation based on a commercially available epoxy system and functionalized multiwalled carbon nanotubes (COOH-MWCNTs). Three weight ratio configurations (0.05, 0.5, and 1.0 wt %) of COOH-MWCNTs were considered and compared with neat epoxy and ethanol-treated epoxy to investigate the effects of nano enrichment and processing. Here, the thermal properties of the epoxy polymers, including curing kinetics, thermal conductivity, and degradation kinetics were studied. Introducing the MWCNTs increased the curing activation energy as revealed by differential scanning calorimetry. The final thermal conductivity of the 0.5 and 1.0 wt % MWCNT-enriched epoxy samples measured by laser flash technique increased by up to 15% compared with the neat material. The activation energy of the degradation process, investigated by thermogravimetric analysis, was found to increase with increasing CNT content, suggesting that the addition of MWCNTs improved the thermal stability of the epoxy polymers. © 2013 Wiley Periodicals, Inc.

  16. Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Suriani, E-mail: sue_83@um.edu.my [Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ahmad, Roslina; Johan, Mohd Rafie [Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2012-01-15

    Solid polymer electrolyte films based on Poly(ethylene oxide) (PEO) complexed with lithium hexafluorophosphate (LiPF{sub 6}), ethylene carbonate (EC) and amorphous carbon nanotube ({alpha}CNTs) were prepared by the solution cast technique. The conductivity increases from 10{sup -10} to 10{sup -5} Scm{sup -1} upon the addition of salt. The incorporation of EC and {alpha}CNTs to the salted polymer enhances the conductivity significantly to 10{sup -4} and 10{sup -3} Scm{sup -1}. The complexation of doping materials with polymer were confirmed by X-ray diffraction and infrared studies. Optical properties like direct band gap and indirect band gap were investigated for pure and doped polymer films in the wavelength range 200-400 nm. It was found that the energy gaps and band edge values shifted to lower energies on doping. - Highlights: > Optical band gap values show the decreasing trend with an increasing dopant concentration. > It is also observed that the absorption edge shifted to longer wavelength on doping. > Results of the optical measurements indicate the presence of a well-defined {pi}{yields}{pi}* transition associated with the formation of a conjugated C=O and/or C=O electronic structure.

  17. Final Technical Report CONDUCTIVE COATINGS FOR SOLAR CELLS USING CARBON NANOTUBES

    Energy Technology Data Exchange (ETDEWEB)

    Paul J Glatkowski; Jorma Peltola; Christopher Weeks; Mike Trottier; David Britz

    2007-09-30

    US Department of Energy (DOE) awarded a grant for Eikos Inc. to investigate the feasibility of developing and utilizing Transparent Conducting Coatings (TCCs) based on carbon nanotubes (CNT) for solar cell applications. Conventional solar cells today employ metal oxide based TCCs with both Electrical Resistivity (R) and Optical Transparency (T), commonly referred to as optoelectronic (RT) performance significantly higher than with those possible with CNT based TCCs available today. Transparent metal oxide based coatings are also inherently brittle requiring high temperature in vacuum processing and are thus expensive to manufacture. One such material is indium tin oxide (ITO). Global demand for indium has recently increased rapidly while supply has diminished causing substantial spikes in raw material cost and availability. In contrast, the raw material, carbon, needed for CNT fabrication is abundantly available. Transparent Conducting Coatings based on CNTs can overcome not only cost and availability constraints while also offering the ability to be applied by existing, low cost process technologies under ambient conditions. Processes thus can readily be designed both for rigid and flexible PV technology platforms based on mature spray or dip coatings for silicon based solar cells and continuous roll to roll coating processes for polymer solar applications.

  18. Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube

    International Nuclear Information System (INIS)

    Ibrahim, Suriani; Ahmad, Roslina; Johan, Mohd Rafie

    2012-01-01

    Solid polymer electrolyte films based on Poly(ethylene oxide) (PEO) complexed with lithium hexafluorophosphate (LiPF 6 ), ethylene carbonate (EC) and amorphous carbon nanotube (αCNTs) were prepared by the solution cast technique. The conductivity increases from 10 -10 to 10 -5 Scm -1 upon the addition of salt. The incorporation of EC and αCNTs to the salted polymer enhances the conductivity significantly to 10 -4 and 10 -3 Scm -1 . The complexation of doping materials with polymer were confirmed by X-ray diffraction and infrared studies. Optical properties like direct band gap and indirect band gap were investigated for pure and doped polymer films in the wavelength range 200-400 nm. It was found that the energy gaps and band edge values shifted to lower energies on doping. - Highlights: → Optical band gap values show the decreasing trend with an increasing dopant concentration. → It is also observed that the absorption edge shifted to longer wavelength on doping. → Results of the optical measurements indicate the presence of a well-defined π→π* transition associated with the formation of a conjugated C=O and/or C=O electronic structure.

  19. TiN-conductive carbon black composite as counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Li, G.R.; Wang, F.; Song, J.; Xiong, F.Y.; Gao, X.P.

    2012-01-01

    Highlights: ► The TiN nanoparticles are highly dispersed on conductive carbon black matrix (CCB). ► The well dispersion of TiN nanoparticles can improve electrochemical performance. ► The TiN/CCB shows a high photovoltaic performance with high conversion efficiency. - Abstract: TiN-conductive carbon black (CCB)/Ti electrodes are prepared by the nitridation of TiO 2 –CCB mixtures filmed on metallic Ti substrate in ammonia atmosphere. It is demonstrated from X-ray diffraction (XRD) and scanning electron microscopy (SEM) that TiN nanoparticles are highly dispersed on the CCB matrix in the composites. TiN–CCB/Ti electrodes show outstanding electrochemical performances as compared to individual TiN/Ti and CCB/Ti electrodes. In particular, the dye-sensitized solar cell (DSSC) using TiN–CCB (1:1, mass ratio)/Ti electrode presents an energy conversion efficiency of 7.92%, which is higher than that (6.59%) of the device using Pt/FTO (fluorine doped tin oxide) electrode measured under the same test conditions. Based on the analysis of cyclic voltammetry (CV) and electrochemical impedance spectra (EIS), the enhancements for the electrochemical and photochemical performance of TiN–CCB/Ti electrodes are attributed to the fact that the dispersed TiN nanoparticles in the CCB matrix provide an improved electrocatalytic activity and a facilitated diffusion for triiodine ions. This work shows a facile approach to develop metal nitrides–carbon composites as counter electrodes for DSSCs. High energy conversion efficiency and low lost will make the composites have significant potential for replacing the conventional Pt/FTO electrodes in DSSCs.

  20. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes

    Science.gov (United States)

    2014-01-01

    Recently, there has been considerable interest in the use of nanofluids for enhancing thermal performance. It has been shown that carbon nanotubes (CNTs) are capable of enhancing the thermal performance of conventional working liquids. Although much work has been devoted on the impact of CNT concentrations on the thermo-physical properties of nanofluids, the effects of preparation methods on the stability, thermal conductivity and viscosity of CNT suspensions are not well understood. This study is focused on providing experimental data on the effects of ultrasonication, temperature and surfactant on the thermo-physical properties of multi-walled carbon nanotube (MWCNT) nanofluids. Three types of surfactants were used in the experiments, namely, gum arabic (GA), sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS). The thermal conductivity and viscosity of the nanofluid suspensions were measured at various temperatures. The results showed that the use of GA in the nanofluid leads to superior thermal conductivity compared to the use of SDBS and SDS. With distilled water as the base liquid, the samples were prepared with 0.5 wt.% MWCNTs and 0.25% GA and sonicated at various times. The results showed that the sonication time influences the thermal conductivity, viscosity and dispersion of nanofluids. The thermal conductivity of nanofluids was typically enhanced with an increase in temperature and sonication time. In the present study, the maximum thermal conductivity enhancement was found to be 22.31% (the ratio of 1.22) at temperature of 45°C and sonication time of 40 min. The viscosity of nanofluids exhibited non-Newtonian shear-thinning behaviour. It was found that the viscosity of MWCNT nanofluids increases to a maximum value at a sonication time of 7 min and subsequently decreases with a further increase in sonication time. The presented data clearly indicated that the viscosity and thermal conductivity of nanofluids are influenced by the

  1. Transparent Conducting Films with Multilayered Structures Formed by Carbon Nanotubes and Reduced Graphene Oxides

    International Nuclear Information System (INIS)

    Kang, Jie Hun; Jang, Hyun Chul; Choi, Jung Mi; Hyeon, Jae Young; Sok, Jung Hyun

    2014-01-01

    The replacement for indium tin oxide (ITO) in electronic displays should have comparable optical transmittance and electrical conductivity while being easy to source and manufacture. However, novel materials such as single walled carbon nanotubes (SWCNTs) and reduced graphene oxides (RGOs) are incapable of addressing these challenges. We demonstrate a simple method to fabricate good transparent conductive films (TCFs) by combining and leveraging the superior optical transparency of RGOs and the excellent electrical conductivity of SWCNTs. This method affords thin multilayers of SWCNTs and RGOs with excellent optical and electrical properties because these properties are correlated with spraying time and the amount of SWCNTs or RGOs. In general, transmittance is advantageous to RGO as conductance is to CNTs. With a view to finding good TCFs with reduced sheet resistance, but with little sacrifice of transmittance, it is natural to explore the combination of CNT and RGO. The sandwiched multilayer of SWCNTs and RGOs exhibited a low sheet resistance of 214.2 Ω/sq, which was comparable to that of SWCNTs, and a transmittance of 60% at a wavelength of 550 nm. To further reduce the sheet resistance and improve the transparency of the multilayer TCFs, Au doping was carried out. The doping, in combination with controlled spraying of the amount of SWCNTs and RGOs, led to multilayers with resistance/transmittance combinations of 141.3 Ω/sq and 70% and 371.5 Ω/sq and 83%. These properties meet the requisite criteria for an ITO replacement.

  2. Electrical conductivity and piezoresistive response of 3D printed thermoplastic polyurethane/multiwalled carbon nanotube composites

    Science.gov (United States)

    Hohimer, Cameron J.; Petrossian, Gayaneh; Ameli, Amir; Mo, Changki; Pötschke, Petra

    2018-03-01

    Additive manufacturing (AM) is an emerging field experiencing rapid growth. This paper presents a feasibility study of using fused-deposition modeling (FDM) techniques with smart materials to fabricate objects with sensing and actuating capabilities. The fabrication of objects with sensing typically requires the integration and assembly of multiple components. Incorporating sensing elements into a single FDM process has the potential to significantly simplify manufacturing. The integration of multiple materials, especially smart materials and those with multi-functional properties, into the FDM process is challenging and still requires further development. Previous works by the authors have demonstrated a good printability of thermoplastic polyurethane/multiwall carbon nanotubes (TPU/MWCNT) while maintaining conductivity and piezoresistive response. This research explores the effects of layer height, nozzle temperature, and bed temperature on the electrical conductivity and piezoresistive response of printed TPU/MWCNT nanocomposites. An impedance analyzer was used to determine the conductivity of printed samples under different printing conditions from 5Hz-13MHz. The samples were then tested under compression loads to measure the piezoresistive response. Results show the conductivity and piezoresistive response are only slightly affected by the print parameters and they can be largely considered independent of the print conditions within the examined ranges of print parameters. This behavior simplifies the printing process design for TPU/MWCNT complex structures. This work demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics, flexible electronics, and health monitoring.

  3. Improved thermal conductivity of Ag decorated carbon nanotubes water based nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Farbod, Mansoor, E-mail: farbod_m@scu.ac.ir; Ahangarpour, Ameneh

    2016-12-16

    The effect of Ag decoration of carbon nanotubes on thermal conductivity enhancement of Ag decorated MWCNTs water based nanofluids has been investigated. The pristine and functionalized MWCNTs were decorated with Ag nanoparticles by mass ratios of 1%, 2% and 4% and used to prepare water based nanofluids with 0.1 vol.%. An enhancement of 1–20.4 percent in thermal conductivity was observed. It was found that the decoration of functionalized MWCNTs can increase the thermal conductivity about 0.16–8.02 percent compared to the undecorated ones. The maximum enhancement of 20.4% was measured for the sample containing 4 wt.% Ag at 40 °C. - Highlights: • MWCNTs were decorated with Ag nanoparticles by the mass ratios of 1, 2 and 4%. • The decorated CNTs were used to prepare water based nanofluids with 0.1 Vol.%. • 1–20.4% increase was observed in thermal conductivity (TC) compared to pure water. • Ag decorated CNTs increased TC of nanofluid up to 8% compared to CNTs nanofluid.

  4. Carbon nanotube-coated silicone as a flexible and electrically conductive biomedical material

    International Nuclear Information System (INIS)

    Matsuoka, Makoto; Akasaka, Tsukasa; Totsuka, Yasunori; Watari, Fumio

    2012-01-01

    Artificial cell scaffolds that support cell adhesion, growth, and organization need to be fabricated for various purposes. Recently, there have been increasing reports of cell patterning using electrical fields. We fabricated scaffolds consisting of silicone sheets coated with single-walled (SW) or multi-walled (MW) carbon nanotubes (CNTs) and evaluated their electrical properties and biocompatibility. We also performed cell alignment with dielectrophoresis using CNT-coated sheets as electrodes. Silicone coated with 10 μg/cm 2 SWCNTs exhibited the least sheet resistance (0.8 kΩ/sq); its conductivity was maintained even after 100 stretching cycles. CNT coating also improved cell adhesion and proliferation. When an electric field was applied to the cell suspension introduced on the CNT-coated scaffold, the cells became aligned in a pearl-chain pattern. These results indicate that CNT coating not only provides electro-conductivity but also promotes cell adhesion to the silicone scaffold; cells seeded on the scaffold can be organized using electricity. These findings demonstrate that CNT-coated silicone can be useful as a biocompatible scaffold. - Highlights: ► We fabricated a CNT-coated silicone which has conductivity and biocompatibility. ► The conductivity was maintained after 100 cycles of stretching. ► CNT coatings enabled C2C12 cells adhere to the silicone surface. ► Cells were aligned with dielectrophoresis between CNT-coated silicone surfaces.

  5. Stable iodide doping induced by photonic curing for carbon nanotube transparent conductive films

    Science.gov (United States)

    Wachi, Atsushi; Nishikawa, Hiroyuki; Zhou, Ying; Azumi, Reiko

    2018-06-01

    Doping has become crucial for achieving stable and high-performance conductive transparent carbon nanotube (CNT) films. In this study, we systematically investigate the doping effects of a few materials including alkali metal iodides, nonmetal iodide, and metals. We demonstrate that photonic curing can enhance the doping effects, and correspondingly improve the conductivity of CNT films, and that such iodides have better doping effects than metals. In particular, doping with a nonmetal compound (NH4I) shows the largest potential to improve the conductivity of CNT films. Typically, doping with metal iodides reduces the sheet resistance (R S) of CNT films with 70–80% optical transmittances at λ = 550 nm from 600–2400 to 250–440 Ω/square, whereas doping with NH4I reduces R S to 57 and 84 Ω/square at 74 and 84% optical transmittances, respectively. Interestingly, such a doped CNT film exhibits only a slight increase in sheet resistance under an extreme environment of high temperature (85 °C) and high relative humidity (85%) for 350 h. The results suggest that photonic-curing-induced iodide doping is a promising approach to producing high-performance conductive transparent CNT films.

  6. Carbon black reinforced C8 ether linked bismaleimide toughened electrically conducting epoxy nanocomposites

    International Nuclear Information System (INIS)

    Mandhakini, M.; Chandramohan, A.; Jayanthi, K.; Alagar, M.

    2014-01-01

    Highlight: • The toughness of the epoxy is improved with C8e-BMI. • Conduction through ohmic contact chain takes the leading mechanism for electrical conduction instead of tunneling with 5 wt% CB. • The phase segregation between epoxy/C8 e-BMI improves the toughness of the nanocomposite. • Both toughening and flexibilization effect is responsible for improvement in impact strength. • The largest challenge of appropriate balance between the electrical conductivity and mechanical behavior is attained in a cost effective manner. - Abstract: The present work deals with the toughening of brittle epoxy matrix with C8 ether linked bismaleimide (C8 e-BMI) and then study the reinforcing effect of carbon black (CB) in enhancing the conducting properties of insulating epoxy matrix. The Fourier transform infrared spectroscopy (FTIR) and Raman analysis indicate the formation of strong covalent bonds between CB and C8 e-BMI/epoxy matrix. The X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) analysis indicate the event of phase separation in 5 wt% CB loaded epoxy C8 e-BMI nanocomposites. The impact strength increased up to 5 wt% of CB loading with particle pull and crack deflection to be driving mechanism for enhancing the toughness of the nanocomposite and beyond 5 wt% the impact strength started to decrease due to aggregation of CB. The dynamic mechanical analysis (DMA) also indicates the toughness of the nanocomposites was improved with 5 wt% of CB loading due to the phase segregation between epoxy and C8 e-BMI in the presence of CB. The electrical conductivity was also increased with 5 wt% of CB due to classical conduction by ohmic chain contact

  7. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio; Huggins, Robert A.; Cui, Yi

    2012-01-01

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon

  8. Electrochemical behaviour of ceramic yttria stabilized zirconia on carbon steel synthesized via sol-gel process

    International Nuclear Information System (INIS)

    Crespo, M.A. Dominguez; Murillo, A. Garcia; Torres-Huerta, A.M.; Yanez-Zamora, C.; Carrillo-Romo, F. de J

    2009-01-01

    Chromate conversion coatings have been widely applied for the corrosion of different metallic substrates. However, the waste containing Cr 6+ has many limitations due to the environmental consideration and health hazards. An interesting alternative seems to be the deposition on metallic surface of thin layers of yttria or zirconia or both by the sol-gel process. In this study, Ytttria and Yttria stabilized zirconia (YSZ, 8% Y 2 O 3 ) thin films were used for coating commercial carbon steel substrates by sol-gel method and the dip-coating process. The evolution of organic compounds up to crystallization process as a function of heat treatments was study by FT-IR spectroscopy. The structure and morphology of the coatings were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The anticorrosion performance of the coatings has been evaluated by using electrochemical techniques in an aggressive media (3.5 wt.% NaCl). The corrosion behaviour of sol-gel method was compared with traditional chromate conversion coatings. Differences in the electrochemical behaviour of YSZ coatings are related to the development of microcracks during the sintering process and to the presence of organic compounds during growth film. Electrochemical results showed that sol-gel YSZ and Y 2 O 3 coatings can act as protective barriers against wet corrosion; however yttria films displayed low adhesion to substrate. The corrosion parameters provide an explanation of the role of each film and show a considerable increase in the corrosion resistance for coated samples in comparison to the bare steel samples.

  9. Electrochemical behaviour of ceramic yttria stabilized zirconia on carbon steel synthesized via sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, M.A. Dominguez, E-mail: mdominguezc@ipn.m [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira (CICATA-IPN) km 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Murillo, A. Garcia; Torres-Huerta, A.M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira (CICATA-IPN) km 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Yanez-Zamora, C. [Estudiante del postgrado en Tecnologia Avanzada del CICATA-IPN, Unidad Altamira, km 14.5, Carr. Tampico-Puerto Industrial. C.P. 89600, Altamira, Tamaulipas (Mexico); Carrillo-Romo, F. de J [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira (CICATA-IPN) km 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico)

    2009-08-26

    Chromate conversion coatings have been widely applied for the corrosion of different metallic substrates. However, the waste containing Cr{sup 6+} has many limitations due to the environmental consideration and health hazards. An interesting alternative seems to be the deposition on metallic surface of thin layers of yttria or zirconia or both by the sol-gel process. In this study, Ytttria and Yttria stabilized zirconia (YSZ, 8% Y{sub 2}O{sub 3}) thin films were used for coating commercial carbon steel substrates by sol-gel method and the dip-coating process. The evolution of organic compounds up to crystallization process as a function of heat treatments was study by FT-IR spectroscopy. The structure and morphology of the coatings were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The anticorrosion performance of the coatings has been evaluated by using electrochemical techniques in an aggressive media (3.5 wt.% NaCl). The corrosion behaviour of sol-gel method was compared with traditional chromate conversion coatings. Differences in the electrochemical behaviour of YSZ coatings are related to the development of microcracks during the sintering process and to the presence of organic compounds during growth film. Electrochemical results showed that sol-gel YSZ and Y{sub 2}O{sub 3} coatings can act as protective barriers against wet corrosion; however yttria films displayed low adhesion to substrate. The corrosion parameters provide an explanation of the role of each film and show a considerable increase in the corrosion resistance for coated samples in comparison to the bare steel samples.

  10. Internal friction and microplasticity of carbon-fiber-reinforced SiC ceramics; Tanso sen`i kyoka SiC ceramics no hakai zenku katei ni okeru naibu masatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H.; Nishino, Y.; Asano, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1995-08-20

    Mechanical responses of carbon-fiber-reinforced SiC ceramics before fracture were measured in the strain range below 2 {times} 10{sup {minus}3} by two experimental methods: mechanical hysteresis and internal friction. Load-deflection curves were obtained by the three-point bending deformation in loading-unloading cycles. A little permanent strain was found after the first cycle even in the range where fracture never occurred. A closed hysteresis loop was observed after several cycles and stabilized with a symmetrical shape after more than twenty cycles. Such a stabilized hysteresis loop is attributed to the steady-state microplastic deformation and may cause the amplitude-dependent internal friction. Internal friction was measured in the fundamental mode of free-free resonant vibration as a function of strain amplitude. With increasing the amount of prestrain in the bending deformation, internal friction increased and became sensitive to the strain amplitude. The amplitude-dependent internal friction in the composites is considered to originate from fiber pull-out or microcrack propagation. The internal friction data were analyzed on the basis of the microplasticity theory and converted into the plastic strain expressed as a function of stress. Therefore, it becomes possible to non-destructively study the forerunning process of fracture of the fiber-reinforced ceramics. 23 refs., 6 figs.

  11. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  12. A morphological investigation of conductive networks in polymers loaded with carbon nanotubes

    KAUST Repository

    Lubineau, Gilles

    2017-01-13

    Loading polymers with conductive nanoparticles, such as carbon nanotubes, is a popular approach toward improving their electrical properties. Resultant materials are typically described by the weight or volume fractions of their nanoparticles. Because these conductive particles are only capable of charge transfer over a very short range, most do not interact with the percolated paths nor do they participate to the electrical transfer. Understanding how these particles are arranged is necessary to increase their efficiency. It is of special interest to understand how these particles participate in creating percolated clusters, either in a specific or in all directions, and non-percolated clusters. For this, we present a computational modeling strategy based on a full morphological analysis of a network to systematically analyse conductive networks and show how particles are arranged. This study provides useful information for designing these types of materials and examples suitable for characterizing important features, such as representative volume element, the role of nanotube tortuosity and the role of tunneling cutoff distance.

  13. Synthesis and characterization of polyaniline/activated carbon composites and preparation of conductive films

    International Nuclear Information System (INIS)

    Zengin, Huseyin; Kalayci, Guellue

    2010-01-01

    Polyaniline was synthesized via polyaniline/activated carbon (PANI/AC) composites by in situ polymerization and ex situ solution mixing. PANI and PANI/AC composite films were prepared by drop-by-drop and spin coating methods. The electrical conductivities of HCl doped PANI film and PANI/AC composite films were measured according to the standard four-point-probe technique. The composite films exhibited an increase in electrical conductivity over neat PANI. PANI and PANI/AC composites were investigated by spectroscopic methods including UV-vis, FTIR and photoluminescence. UV-vis and FTIR studies showed that AC particles affect the quinoid units along the polymer backbone and indicate strong interactions between AC particles and quinoidal sites of PANI. The photoluminescence properties of PANI and PANI/AC composites were studied and the photoluminescence intensity of PANI/AC composites was higher than that of neat PANI. The increase of conductivity of PANI/AC composites may be partially due to the doping or impurity effect of AC, where the AC competes with chloride ions. The amount of weight loss and the thermostability of PANI and PANI/AC composites were determined from thermogravimetric analysis. The morphology of particles and films were examined by a scanning electron microscope (SEM). SEM measurements indicated that the AC particles were well dispersed and isolated in composite films.

  14. A morphological investigation of conductive networks in polymers loaded with carbon nanotubes

    KAUST Repository

    Lubineau, Gilles; Mora Cordova, Angel; Han, Fei; Odeh, I.N.; Yaldiz, R.

    2017-01-01

    Loading polymers with conductive nanoparticles, such as carbon nanotubes, is a popular approach toward improving their electrical properties. Resultant materials are typically described by the weight or volume fractions of their nanoparticles. Because these conductive particles are only capable of charge transfer over a very short range, most do not interact with the percolated paths nor do they participate to the electrical transfer. Understanding how these particles are arranged is necessary to increase their efficiency. It is of special interest to understand how these particles participate in creating percolated clusters, either in a specific or in all directions, and non-percolated clusters. For this, we present a computational modeling strategy based on a full morphological analysis of a network to systematically analyse conductive networks and show how particles are arranged. This study provides useful information for designing these types of materials and examples suitable for characterizing important features, such as representative volume element, the role of nanotube tortuosity and the role of tunneling cutoff distance.

  15. Silver/carbon nanotube hybrids: A novel conductive network for high-rate lithium ion batteries

    International Nuclear Information System (INIS)

    Zhou, Fangdong; Qiu, Kehui; Peng, Gongchang; Xia, Li

    2015-01-01

    LiNi 1/3 Co 1/3 Mn 1/3 O 2 /Ag composite cathodes are synthesized by a thermal decomposition method and multi-walled carbon nanotubes are uniformly introduced into the composites through ball mixing. A composite electrically conductive network consisting of CNTs and Ag is obtained to improve the conductivity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material. By comparing with the pure LiNi 1/3 Co 1/3 Mn 1/3 O 2 and cathode modified by CNTs or Ag, the as-obtained LiNi 1/3 Co 1/3 Mn 1/3 O 2 –CNT/Ag electrode exhibits the best rate capability (120.6 mAh/g at 5C) and cycle performance (134.2 mAh/g at 1C with a capacity retention of 94.4% over 100 cycles). With the construction of 3D spatial conductive network, the novel hybrid CNT/Ag demonstrates itself a promising strategy to improve Li storage performance for lithium ion batteries

  16. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration

    Science.gov (United States)

    Lee, Se-Jun; Zhu, Wei; Nowicki, Margaret; Lee, Grace; Nyoung Heo, Dong; Kim, Junghoon; Zuo, Yi Y.; Zhang, Lijie Grace

    2018-02-01

    Objective. Nanomaterials, such as carbon nanotubes (CNTs), have been introduced to modify the surface properties of scaffolds, thus enhancing the interaction between the neural cells and biomaterials. In addition to superior electrical conductivity, CNTs can provide nanoscale structures similar to those present in the natural neural environment. The primary objective of this study is to investigate the proliferative capability and differential potential of neural stem cells (NSCs) seeded on a CNT incorporated scaffold. Approach. Amine functionalized multi-walled carbon nanotubes (MWCNTs) were incorporated with a PEGDA polymer to provide enhanced electrical properties as well as nanofeatures on the surface of the scaffold. A stereolithography 3D printer was employed to fabricate a well-dispersed MWCNT-hydrogel composite neural scaffold with a tunable porous structure. 3D printing allows easy fabrication of complex 3D scaffolds with extremely intricate microarchitectures and controlled porosity. Main results. Our results showed that MWCNT-incorporated scaffolds promoted neural stem cell proliferation and early neuronal differentiation when compared to those scaffolds without the MWCNTs. Furthermore, biphasic pulse stimulation with 500 µA current promoted neuronal maturity quantified through protein expression analysis by quantitative polymerase chain reaction. Significance. Results of this study demonstrated that an electroconductive MWCNT scaffold, coupled with electrical stimulation, may have a synergistic effect on promoting neurite outgrowth for therapeutic application in nerve regeneration.

  17. Conducting polymer film-based immunosensors using carbon nanotube/antibodies doped polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Phuong Dinh, E-mail: phuongdinhtam@gmail.com [Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (Viet Nam); Hieu, Nguyen Van [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (Viet Nam)

    2011-09-15

    Carbon nanotube/polypyrrole/antibodies polymer films were synthesized successfully on microelectrodes by electrochemical deposition. Electropolymerization was performed at optimal range between -0.8 and +0.8 V at a scan rate of 50 mV s{sup -1} in an electrochemical mini-cell containing monomer pyrroles, carbon nanotubes, and goat IgGs. The conducting polymer films were characterized by Fourier transform infrared spectrometry, Raman spectra, and Field emission scanning electron microscopy. And then, it was prepared for immunosensor application to determine anti-goat IgGs. The results show that a linear range between 0.05 and 0.7 {mu}g ml{sup -1} for anti-goat IgGs detection was observed for immunosensor, a detection limit as low as 0.05 {mu}g ml{sup -1} and a response time of 1 min. The effect parameters of electropolymerization process on immunosensor response are also studied. It found that the immunosensor well active in 1.5 mg ml{sup -1} CNT concentration, 2.5 mM pyrrole, 10 {mu}g ml{sup -1} goat IgGs.

  18. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports

    International Nuclear Information System (INIS)

    Sugime, Hisashi; Esconjauregui, Santiago; Yang, Junwei; D'Arsié, Lorenzo; Robertson, John; Oliver, Rachel A.; Bhardwaj, Sunil; Cepek, Cinzia

    2013-01-01

    We grow ultra-high mass density carbon nanotube forests at 450 °C on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 μm and a mass density of 1.6 g cm −3 . This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ∼22 kΩ), suggesting Co-Mo is useful for applications requiring forest growth on conductors

  19. Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing

    Directory of Open Access Journals (Sweden)

    Oscar Galao

    2016-04-01

    Full Text Available This paper aims to study the feasibility of highly conductive carbon fiber reinforced concrete (CFRC as a self-heating material for ice formation prevention and curing in pavements. Tests were carried out in lab ambient conditions at different fixed voltages and then introduced in a freezer at −15 °C. The specimens inside the freezer were exposed to different fixed voltages when reaching +5 °C for prevention of icing and when reaching the temperature inside the freezer, i.e., −15 °C, for curing of icing. Results show that this concrete could act as a heating element in pavements with risk of ice formation, consuming a reasonable amount of energy for both anti-icing (prevention and deicing (curing, which could turn into an environmentally friendly and cost-effective deicing method.

  20. Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing.

    Science.gov (United States)

    Galao, Oscar; Bañón, Luis; Baeza, Francisco Javier; Carmona, Jesús; Garcés, Pedro

    2016-04-12

    This paper aims to study the feasibility of highly conductive carbon fiber reinforced concrete (CFRC) as a self-heating material for ice formation prevention and curing in pavements. Tests were carried out in lab ambient conditions at different fixed voltages and then introduced in a freezer at -15 °C. The specimens inside the freezer were exposed to different fixed voltages when reaching +5 °C for prevention of icing and when reaching the temperature inside the freezer, i.e. , -15 °C, for curing of icing. Results show that this concrete could act as a heating element in pavements with risk of ice formation, consuming a reasonable amount of energy for both anti-icing (prevention) and deicing (curing), which could turn into an environmentally friendly and cost-effective deicing method.

  1. Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination.

    Science.gov (United States)

    Barbour, Margaret M; Warren, Charles R; Farquhar, Graham D; Forrester, Guy; Brown, Hamish

    2010-07-01

    Leaf internal, or mesophyll, conductance to CO(2) (g(m)) is a significant and variable limitation of photosynthesis that also affects leaf transpiration efficiency (TE). Genotypic variation in g(m) and the effect of g(m) on TE were assessed in six barley genotypes (four Hordeum vulgare and two H. bulbosum). Significant variation in g(m) was found between genotypes, and was correlated with photosynthetic rate. The genotype with the highest g(m) also had the highest TE and the lowest carbon isotope discrimination as recorded in leaf tissue (Delta(p)). These results suggest g(m) has unexplored potential to provide TE improvement within crop breeding programmes.

  2. Synthesis and characterization of conducting composites of polyaniline and carbon black with high thermal stability

    Directory of Open Access Journals (Sweden)

    Fabio R. Simões

    2009-01-01

    Full Text Available In this work, a detailed chemical route to prepare thermally stable polyaniline (PANI/carbon black (CB composites is described. The syntheses were performed by chemical polymerization of aniline over CB particles, using different PANI/CB mass ratios. The thermal and electrical properties were characterized. Composites with mass ratio up to 65:35 (PANI:CB showed excellent thermal stability maintaining their conducting properties when thermally treated at 230 °C for two hours, which is adequate to process these materials. Moreover, the results showed an important reduction in the surface area of the composites which have a good relationship with the improvement of the rheological properties in melt processing.

  3. Vibration electrospinning of Polyamide-66/Multiwall Carbon Nanotube Nanocomposite: introducing electrically conductive, ultraviolet blocking and antibacterial properties

    Directory of Open Access Journals (Sweden)

    Zohoori Salar

    2017-09-01

    Full Text Available Fabrication of electro-conductive fiber is a novel process. Nanocomposites of multiwall carbon nanotube/polyamide66 were produced by electrospinning with different amounts of multiwall carbon nanotube. Field emission scanning electron microscope and Fourier transform infrared spectroscopy of samples proved the existence of multiwall carbon nanotube distribution in polyamide 66 nanofibers. Results showed that electro conductivity of electrospun multiwall carbon nanotube/polyamide 66 nano fiber has increased in comparison with electrospun polyamide 66. Moreover, UV blocking of samples was investigated which has shown that using multiwall carbon nanotube in polyamide 66 increases UV blocking of fibers. Furthermore, anti-bacterial activity of nanocomposite showed that these nanocomposites have antibacterial property against both Staphylococcus Aureus and Escherichia Coli bacteria according to AATCC test method.

  4. Flexible and conductive waste tire-derived carbon/polymer composite paper as pseudocapacitive electrode

    Science.gov (United States)

    Naskar, Amit K.; Paranthaman, Mariappan Parans; Boota, Muhammad; Gogotsi, Yury

    2018-04-10

    A method of making a supercapacitor from waste tires, includes the steps of providing rubber pieces and contacting the rubber pieces with a sulfonation bath to produce sulfonated rubber; pyrolyzing the sulfonated rubber to produce a tire-derived carbon composite comprising carbon black embedded in rubber-derived carbon matrix comprising graphitized interface portions; activating the tire-derived carbon composite by contacting the tire-derived carbon composite with a specific surface area-increasing composition to increase the specific surface area of the carbon composite to provide an activated tire-derived carbon composite; and, mixing the activated tire-derived carbon composite with a monomer and polymerizing the monomer to produce a redox-active polymer coated, activated tire-derived carbon composite. The redox-active polymer coated, activated tire-derived carbon composite can be formed into a film. An electrode and a supercapacitor are also disclosed.

  5. Structural, nanomechanical and variable range hopping conduction behavior of nanocrystalline carbon thin films deposited by the ambient environment assisted filtered cathodic jet carbon arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Rawal, Ishpal; Tripathi, R.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Srivastava, A.K. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Kumar, Mahesh [Ultrafast Opto-Electronics and Tetrahertz Photonics Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India)

    2015-04-15

    Highlights: • Nanocrystalline carbon thin films are grown by filtered cathodic jet carbon arc process. • Effect of gaseous environment on the properties of carbon films has been studied. • The structural and nanomechanical properties of carbon thin films have been studied. • The VRH conduction behavior in nanocrystalline carbon thin films has been studied. - Abstract: This paper reports the deposition and characterization of nanocrystalline carbon thin films by filtered cathodic jet carbon arc technique assisted with three different gaseous environments of helium, nitrogen and hydrogen. All the films are nanocrystalline in nature as observed from the high resolution transmission electron microscopic (HRTEM) measurements, which suggests that the nanocrystallites of size ∼10–50 nm are embedded though out the amorphous matrix. X-ray photoelectron spectroscopic studies suggest that the film deposited under the nitrogen gaseous environment has the highest sp{sup 3}/sp{sup 2} ratio accompanied with the highest hardness of ∼18.34 GPa observed from the nanoindentation technique. The film deposited under the helium gaseous environment has the highest ratio of the area under the Raman D peak to G peak (A{sub D}/A{sub G}) and the highest conductivity (∼2.23 S/cm) at room temperature, whereas, the film deposited under the hydrogen environment has the lowest conductivity value (2.27 × 10{sup −7} S/cm). The temperature dependent dc conduction behavior of all the nanocrystalline carbon thin films has been analyzed in the light of Mott’s variable range hopping (VRH) conduction mechanism and observed that all the films obey three dimension VRH conduction mechanism for the charge transport.

  6. Thermal energy consumption and carbon dioxide emissions in ceramic tile manufacture - Analysis of the Spanish and Brazilian industries

    International Nuclear Information System (INIS)

    Monfort, E.; Mezquita, A.; Vaquer, E.; Mallol, G.; Alves, H. J.; Boschi, A. O.

    2012-01-01

    Spain and Brazil are two of the world's biggest ceramic tile producers. The tile manufacturing process consumes a great quantity of thermal energy that, in these two countries, is mainly obtained from natural gas combustion, which entails CO 2 emission, a greenhouse gas. This study presents a comparative analysis of the thermal energy consumption and CO 2 emissions in the ceramic tile manufacturing process in Spain and Brazil, in terms of the different production technologies and different products made. The energy consumption and CO 2 emissions in ceramic tile manufacture by the wet process are very similar in both countries. In the dry process used in Brazil, less thermal energy is consumed and less CO 2 is emitted than in the wet process, but it is a process that is only used in manufacturing one particular type of product, which exhibits certain technical limitations. While in Spain the use of cogeneration systems in spray-dryers improves significantly the global energy efficiency. The average energy consumption in the different process stages, in both countries, lies within the range indicated in the Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry (BREF of the Ceramic Manufacturing Industry) of the European Union. (Author) 14 refs.

  7. High performance diamond-like carbon layers obtained by pulsed laser deposition for conductive electrode applications

    Science.gov (United States)

    Stock, F.; Antoni, F.; Le Normand, F.; Muller, D.; Abdesselam, M.; Boubiche, N.; Komissarov, I.

    2017-09-01

    For the future, one of the biggest challenge faced to the technologies of flat panel display and various optoelectronic and photovoltaic devices is to find an alternative to the use of transparent conducting oxides like ITO. In this new approach, the objective is to grow high conductive thin-layer graphene (TLG) on the top of diamond-like carbon (DLC) layers presenting high performance. DLC prepared by pulsed laser deposition (PLD) have attracted special interest due to a unique combination of their properties, close to those of monocrystalline diamond, like its transparency, hardness and chemical inertia, very low roughness, hydrogen-free and thus high thermal stability up to 1000 K. In our future work, we plane to explore the synthesis of conductive TLG on top of insulating DLC thin films. The feasibility and obtained performances of the multi-layered structure will be explored in great details in the short future to develop an alternative to ITO with comparable performance (conductivity of transparency). To select the best DLC candidate for this purpose, we focus this work on the physicochemical properties of the DLC thin films deposited by PLD from a pure graphite target at two wavelengths (193 and 248 nm) at various laser fluences. A surface graphenization process, as well as the required efficiency of the complete structure (TLG/DLC) will clearly be related to the DLC properties, especially to the initial sp3/sp2 hybridization ratio. Thus, an exhaustive description of the physicochemical properties of the DLC layers is a fundamental step in the research of comparable performance to ITO.

  8. Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites

    KAUST Repository

    Patole, Archana S.; Lubineau, Gilles

    2015-01-01

    in achieving a uniform dispersion of the Ag/MWCNT-EDA and (2) it acts as a conductive bridge between particles (Ag and MWCNT-EDA), reducing the particle to particle resistivity. When inserted into polycarbonate, this three-phase blend successfully reduced

  9. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication.

    Science.gov (United States)

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali

    2014-03-19

    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.

  10. Carbon Nanotube Networks Reinforced by Silver Nanowires with Improved Optical Transparency and Conductivity

    Science.gov (United States)

    Martine, Patricia; Fakhimi, Azin; Lin, Ling; Jurewicz, Izabela; Dalton, Alan; Zakhidov, Anvar A.; Baughman, Ray H.

    2015-03-01

    We have fabricated highly transparent and conductive free-standing nanocomposite thin film electrodes by adding silver nanowires (AgNWs) to dry-spun Multiwall Carbon Nanotube (MWNT) aerogels. This nanocomposite exhibits desirable properties such as high optical transmittance, excellent flexibility and enhanced electrical conductivity. The incorporation of the AgNWs to the MWNT aerogels was accomplished by using a spray coating method. The optical transparency and sheet resistance of the nanocomposite was tuned by adjusting the concentration of AgNWs, back pressure and nozzle distance of the spray gun to the MWNT aerogel during deposition. As the solvent evaporated, the aerogel MWNT bundles densified via surface tension which caused the MWNT bundles to collapse. This adjustable process was responsible in forming well defined apertures that increased the nanocomposite's transmittance up to 90 percent. Via AgNWs percolation and random interconnections between separate MWNT bundles in the aerogel matrix, the sheet resistance decreased from 1 K ohm/sq to less than 100 ohm/sq. Alan G. MacDiarmid NanoTech Institute

  11. Dielectric properties and conductivity of carbon nanofiber/semi-crystalline polymer composites

    International Nuclear Information System (INIS)

    Sui, G.; Jana, S.; Zhong, W.H.; Fuqua, M.A.; Ulven, C.A.

    2008-01-01

    The properties of semi-crystalline polymer nanocomposites are affected by the nanofillers directly and indirectly, as two phases, i.e., crystalline and amorphous, exist in the polymer. The effects of nanofillers on the two phases could be competitive. The dielectric properties and conductivity of carbon nanofibers (CNF)/semi-crystalline polymer nanocomposites are studied in this paper. CNF/polypropylene (PP) nanocomposites are prepared in experiment by melt blending. The resulting morphology and crystalline structure are characterized by means of differential scanning calorimetry, wide angle X-ray diffraction and scanning electron microscopy. The PP nanocomposite containing 5 wt.% CNF exhibits a surprisingly high dielectric constant under wide sweep frequencies attended by low dielectric loss. Its dielectric constant is >600 under lower frequency, and remains >200 at a frequency of 4000 Hz. The electrical and thermal conductivities of the nanocomposites are studied, and enhancements are seen with increased CNF content. Theoretical analyses on the physical properties are carried out by applying the existing models. Research results indicate that a common commercial plastic with good comprehensive performance, which exhibited the potential for applications in advanced electronics, was obtained by a simple industry benign technique

  12. Microencapsulation of phase change materials with carbon nanotubes reinforced shell for enhancement of thermal conductivity

    Science.gov (United States)

    Cui, Weiwei; Xia, Yongpeng; Zhang, Huanzhi; Xu, Fen; Zou, Yongjin; Xiang, Cuili; Chu, Hailiang; Qiu, Shujun; Sun, Lixian

    2017-03-01

    Novel microencapsulated phase change materials (micro-PCMs) were synthesized via in-situ polymerization with modified carbon nanotubes(CNTs) reinforced melamine-formaldehyde resin as shell material and CNTs reinforced n-octadecane as PCMs core. DSC results confirm that the micro-PCMs possess good phase change behavior and excellent thermal cycling stability. Melting enthalpy of the micro-PCMs can achieve 133.1 J/g and has slight changes after 20 times of thermal cyclings. And the incorporation of CNTs supplies the micro-PCMs with fast thermal response rate which increases the crystallization temperature of the micro-PCMs. Moreover, the thermal conductivity of the micro-PCMs has been significantly enhanced by introducing CNTs into their shell and core materials. And the thermal conductivity of micro-PCMs with 1.67 wt.% CNTs can increase by 25%. These results exhibit that the obtained micro-PCMs have a good prospect in thermal energy storage applications.

  13. Theoretical and Experimental Studies of Functionalized Carbon Nanotubes for Improved Thermal Conductivity

    Science.gov (United States)

    Kerr, Alexander; Burt, Timothy; Mullen, Kieran; Glatzhofer, Daniel; Houck, Matthew; Huang, Paul

    The use of carbon nanotubes (CNTs) to improve the thermal conductivity of composite materials is thwarted by their large thermal boundary resistance. We study how to overcome this Kapitza resistance by functionalizing CNTs with mixed molecular chains. Certain configurations of chains improve the transmission of thermal vibrations through our systems by decreasing phonon mismatch between the CNTs and their surrounding matrix. Through the calculation of vibrational normal modes and Green's functions, we develop a variety of computational metrics to compare the thermal conductivity (κ) of our systems. We show how different configurations of attached chains affect the samples' κ values by varying chain identity, chain length, number of chains, and heat driver behavior. We vary the parameters to maximize κ. To validate and optimize these metrics, we perform molecular dynamics simulations for comparison. We also present experimental results of composites enhanced with CNTs and make comparisons to the theory. We observe that some composites are thermally improved with the inclusion of CNTs, while others are scarcely changed, in agreement with theoretical models. This work was supported by NSF Grant DMR-1310407.

  14. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films

    International Nuclear Information System (INIS)

    Li Yong; Chen Changxin; Zhang Song; Ni Yuwei; Huang Jie

    2008-01-01

    Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in pure acrylic emulsion by ultrasonication to prepare MWCNT/polyacrylate composites applied on building interior wall for electromagnetic interference (EMI) shielding applications. The structure and surface morphology of the MWCNTs and MWCNT/polyacrylate composites were studied by field emission scanning microscopy (FESEM) and transmission electron microscopy (TEM). The electrical conductivity at room temperature and EMI shielding effectiveness (SE) of the composite films on concrete substrate with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in two different frequency ranges of 100-1000 MHz (radio frequency range) and 8.2-12.4 GHz (X-band). The experimental results show that a low mass concentration of MWCNTs could achieve a high conductivity and the EMI SE of the MWCNT/polyacrylate composite films has a strong dependence on MWCNTs content in both two frequency ranges. The SE is higher in X-band than that in radio frequency range. For the composite films with 10 wt.% MWCNTs, the EMI SE of experiment agrees well with that of theoretical prediction in far field

  15. Modified resistivity-strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes

    NARCIS (Netherlands)

    Lin, L.; Deng, H.; Gao, X.; Zhang, S.M.; Bilotti, E.; Peijs, A.A.J.M.; Fu, Q.

    2013-01-01

    Eutectic metal particles and carbon nanotubes are incorporated into a thermoplastic polyurethane matrix through a simple but efficient method, melt compounding, to tune the resistivity-strain behavior of conductive polymer composite (CPC) fibers. Such a combination of conductive fillers is rarely

  16. Experimental heat transfer to supercritical carbon dioxide flowing upward vertical tube with highly conducting surroundings

    International Nuclear Information System (INIS)

    Son, Hyung M.; Suh, Kune Y.

    2012-01-01

    Highlights: ► Performed experiment for the upward SCO 2 flow surrounded by highly conducting metal. ► Selected dimensionless groups representing the property variations and buoyancy. ► Developed the heat transfer correlation for the mixed thermal boundary condition. ► Wrote a finite element heat transfer code to find the appropriate correlation. ► Coupled the 1D convection and 2D heat conduction via heat transfer coefficient. - Abstract: This paper presents heat transfer characteristics of supercritical carbon dioxide flow inside vertical circular pipe surrounded by highly conducting material, and develops an adequate tool to test the performance of available heat transfer correlations with. The possible situations are illustrated for the nuclear power plant to which the above-mentioned geometric configuration might be applicable. An experimental loop with vertical circular geometry is designed and constructed to test the upward flow in supercritical state when the axial heat transfer is enhanced by the surrounding metals, resulting in a wall boundary condition between the constant heat flux and temperature. The set of correlations and important findings are critically reviewed from extensive literature survey. Incorporating nondimensional groups resorting to past insights from the available literature, a convective heat transfer correlation is proposed. The optimization procedure is described which utilizes a random walk method along with the in-house finite element heat transfer code to determine the coefficients of the proposed heat transfer correlation. The proposed methodology can be applied to evaluation of heat transfer when the heat transfer coefficient data cannot directly be determined from the experiment.

  17. Non-conductive ferromagnetic carbon-coated (Co, Ni) metal/polystyrene nanocomposites films

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, H., E-mail: helene.takacs@gmail.com [CEA, LETI, MINATEC Campus, Grenoble 38054 (France); LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054 (France); Viala, B.; Hermán, V. [CEA, LETI, MINATEC Campus, Grenoble 38054 (France); Tortai, J.-H. [LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054 (France); Duclairoir, F. [Université Grenoble Alpes, INAC, Grenoble 38054 (France); CEA, INAC, Grenoble 38054 (France)

    2016-03-07

    This article reports non-conductive ferromagnetic properties of metal/polymer nanocomposite films intended to be used for RF applications. The nanocomposite arrangement is unique showing a core double-shell structure of metal-carbon-polystyrene: M/C//P{sub 1}/P{sub 2}, where M = Co, Ni is the core material, C = graphene or carbon is the first shell acting as a protective layer against oxidation, P{sub 1} = pyrene-terminated polystyrene is the second shell for electrical insulation, and P{sub 2} = polystyrene is a supporting matrix (// indicates actual grafting). The nanocomposite formulation is briefly described, and the film deposition by spin-coating is detailed. Original spin-curves are reported and analyzed. One key outcome is the achievement of uniform and cohesive films at the wafer scale. Structural properties of films are thoroughly detailed, and weight and volume fractions of M/C are considered. Then, a comprehensive overview of DC magnetic and electrical properties is reported. A discussion follows on the magnetic softness of the nanocomposites vs. that of a single particle (theoretical) and the raw powder (experimental). Finally, unprecedented achievement of high magnetization (∼0.6 T) and ultra-high resistivity (∼10{sup 10 }μΩ cm) is shown. High magnetization comes from the preservation of the existing protective shell C, with no significant degradation on the particle net-moment, and high electrical insulation is ensured by adequate grafting of the secondary shell P{sub 1}. To conclude, the metal/polymer nanocomposites are situated in the landscape of soft ferromagnetic materials for RF applications (i.e., inductors and antennas), by means of two phase-diagrams, where they play a crucial role.

  18. Thermal conductivity and stability of a three-phase blend of carbon nanotubes, conductive polymer, and silver nanoparticles incorporated into polycarbonate nanocomposites

    KAUST Repository

    Patole, Archana

    2015-04-16

    Metallic and non-metallic nanofillers can be used together in the design of polycarbonate (PC) nanocomposites with improved electrical properties. Here, the preparation of three-phase blend (carbon nanotubes (CNT), silver nanoparticles, and conductive polymer) in a two-step process before incorporation in the PC is reported. First, ethylene diamine functionalized multiwall carbon nanotubes (MWCNT-EDA) were decorated with Ag nanoparticles. Next, the Ag-decorated CNTs were coated with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Due to the high thermal conductivity instrinsic to both metallic and non-metallic phases, it is expected that the thermal properties of the resulting nanocomposite would largely differ from those of pristine PC. We thus investigated in detail how this hybrid conductive blend affected properties such as the glass transition temperature, the thermal stability, and the thermal conductivity of the nanocomposite. It was found that this strategy results in improved thermal conductivity and thermal stability of the material. © 2015 Wiley Periodicals, Inc.

  19. Thermal conductivity and stability of a three-phase blend of carbon nanotubes, conductive polymer, and silver nanoparticles incorporated into polycarbonate nanocomposites

    KAUST Repository

    Patole, Archana; Ventura, Isaac Aguilar; Lubineau, Gilles

    2015-01-01

    Metallic and non-metallic nanofillers can be used together in the design of polycarbonate (PC) nanocomposites with improved electrical properties. Here, the preparation of three-phase blend (carbon nanotubes (CNT), silver nanoparticles, and conductive polymer) in a two-step process before incorporation in the PC is reported. First, ethylene diamine functionalized multiwall carbon nanotubes (MWCNT-EDA) were decorated with Ag nanoparticles. Next, the Ag-decorated CNTs were coated with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Due to the high thermal conductivity instrinsic to both metallic and non-metallic phases, it is expected that the thermal properties of the resulting nanocomposite would largely differ from those of pristine PC. We thus investigated in detail how this hybrid conductive blend affected properties such as the glass transition temperature, the thermal stability, and the thermal conductivity of the nanocomposite. It was found that this strategy results in improved thermal conductivity and thermal stability of the material. © 2015 Wiley Periodicals, Inc.

  20. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  1. Spatial interpolation of soil organic carbon using apparent electrical conductivity as secondary information

    Science.gov (United States)

    Martinez, G.; Vanderlinden, K.; Ordóñez, R.; Muriel, J. L.

    2009-04-01

    Soil organic carbon (SOC) spatial characterization is necessary to evaluate under what circumstances soil acts as a source or sink of carbon dioxide. However, at the field or catchment scale it is hard to accurately characterize its spatial distribution since large numbers of soil samples are necessary. As an alternative, near-surface geophysical sensor-based information can improve the spatial estimation of soil properties at these scales. Electromagnetic induction (EMI) sensors provide non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa), which depends under non-saline conditions on clay content, water content or SOC, among other properties that determine the electromagnetic behavior of the soil. This study deals with the possible use of ECa-derived maps to improve SOC spatial estimation by Simple Kriging with varying local means (SKlm). Field work was carried out in a vertisol in SW Spain. The field is part of a long-term tillage experiment set up in 1982 with three replicates of conventional tillage (CT) and Direct Drilling (DD) plots with unitary dimensions of 15x65m. Shallow and deep (up to 0.8m depth) apparent electrical conductivity (ECas and ECad, respectively) was measured using the EM38-DD EMI sensor. Soil samples were taken from the upper horizont and analyzed for their SOC content. Correlation coefficients of ECas and ECad with SOC were low (0.331 and 0.175) due to the small range of SOC values and possibly also to the different support of the ECa and SOC data. Especially the ECas values were higher in the DD plots. The normalized ECa difference (ΔECa), calculated as the difference between the normalized ECas and ECad values, distinguished clearly the CT and DD plots, with the DD plots showing positive ΔECa values and CT plots ΔECa negative values. The field was stratified using fuzzy k-means (FKM) classification of ΔECa (FKM1), and ECas and ECad (FKM2). The FKM1 map mainly showed the difference between

  2. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks

    Science.gov (United States)

    Schulze-Makuch, Dirk; Cherkauer, Douglas S.

    Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par

  3. Preparation, structural characterization, and enhanced electrical conductivity of pyrochlore-type (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Xia, X.L. [Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin (China); Institute of Oceanography Instruments, Shandong Academy of Science, Chinese National Engineering Research Center for Marine Monitoring Equipment, Qingdao (China); Liu, Z.G.; Ouyang, J.H. [Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin (China); Zheng, Y. [Institute of Oceanography Instruments, Shandong Academy of Science, Chinese National Engineering Research Center for Marine Monitoring Equipment, Qingdao (China)

    2012-08-15

    (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} (0 {<=} x {<=} 1.0) samples are prepared by solid state reaction method using Sm{sub 2}O{sub 3}, Eu{sub 2}O{sub 3}, and ZrO{sub 2} as starting materials. The phase composition and microstructure of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics are investigated by X-ray diffraction (XRD), scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM) coupled with selected area electron diffraction and Raman spectroscopy. XRD and TEM show that all the samples exhibit a single pyrochlore-type structure. HRTEM observation indicates that the whole grain interior of Sm{sub 2}Zr{sub 2}O{sub 7} ceramic is a perfect crystal free of any dislocation. Raman spectroscopy reveals that the degree of structural disorder of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics increases gradually with increasing Eu content. The electrical conductivity of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics is investigated by impedance spectroscopy in the air and hydrogen atmospheres, respectively. The electrical conductivity of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics increases with increasing Eu content at identical temperature levels. Both the activation energy E{sub g} and the pre-exponential factor {sigma}{sub 0g} for the grain conductivity gradually increase with increasing Eu content. As the ionic conductivity shows no obvious change in both air and hydrogen atmospheres, the conduction of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} is purely ionic with negligible electronic conduction. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Conducting polymers, buckminsterfullerenes, and carbon nanotubes: optoelectronic materials based on architectural diversity of the π-conjugated structure

    International Nuclear Information System (INIS)

    Dai, L.

    2001-01-01

    Recent discovery of superconductivity in self assembled poly(3-hexylthiophene) two-dimensional conjugated sheets indicates the possible applications of plastics even in superconducting optoelectronic devices. Just as the discovery of C 60 has created an entirely new branch of carbon chemistry, the subsequent discovery of carbon nanotubes by lijima in 1991 opened up a new era in material science and nanotechnology. These elongated nanotubes consist of carbon hexagons arranged in a concentric manner with both ends normally capped by fullerene-like structures containing pentagons. Having a conjugated all-carbon structure with unusual molecular symmetries, fullerenes and carbon nanotubes also show interesting electronic, photonic, magnetic and mechanical properties, attractive for various applications, including optical limiters, photovoltaic cells and field emitting displays. For most of the above applications, it is highly desirable to prepare ordered/micropatterned conducting polymers, fullerenes, and carbon nanotubes. Although the microfabrication of conducting polymers has been an active research area for some years, it is a very recent development for fullerenes and carbon nanotubes. Recently, we doped polyaniline (PANI) with a hydrogensulfated fullerenol derivative containing multiple -OSO 3 H groups (i.e. C 60 (OH) 6 (OSO 3 H) 6 ) to produce three-dimensional PANI conductors with a room-temperature conductivity of up to 100 S cm -1 . This value of conductivity is about six orders of magnitude higher than the typical value for C 60 doped conducting polymers. Later, in collaboration with Wan's group at the Chinese Academy of Sciences, we have also synthesized PANI nanotubes via a self assembled C 60 (OH) 6 (OSO 3 H) 6 supramolecular template using (NH 4 ) 2 S 2 O 8 as an oxidant. These results, together with the more recent discovery of a hollow sphere, self assembled by the potassium salt of pentaphenyl fullerene (Ph 5 C 60 K) in water, clearly indicate that

  5. Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-02-01

    Full Text Available We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  6. Ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-02-15

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  7. Highly Conductive Aromatic Functionalized Multi-Walled Carbon Nanotube for Inkjet Printable High Performance Supercapacitor Electrodes.

    Directory of Open Access Journals (Sweden)

    Sanjeev K Ujjain

    Full Text Available We report the functionalization of multiwalled carbon nanotubes (MWCNT via the 1,3-dipolar [3+2] cycloaddition of aromatic azides, which resulted in a detangled CNT as shown by transmission electron microscopy (TEM. Carboxylic moieties (-COOH on aromatic azide result in highly stable aqueous dispersion (max. conc. ~ 10 mg/mL H2O, making the suitable for inkjet printing. Printed patterns on polyethylene terephthalate (PET flexible substrate exhibit low sheet resistivity ~65 Ω. cm, which is attributed to enhanced conductivity. Fabricated Supercapacitors (SC assembled using these printed substrates exhibit good electrochemical performance in organic as well as aqueous electrolytes. High energy and power density (57.8 Wh/kg and 0.85 kW/kg in 1M H2SO4 aqueous electrolyte demonstrate the excellent performance of the proposed supercapacitor. Capacitive retention varies from ~85-94% with columbic efficiency ~95% after 1000 charge/discharge cycles in different electrolytes, demonstrating the excellent potential of the device for futuristic power applications.

  8. Electrochemical studies of ferrocene in a lithium ion conducting organic carbonate electrolyte

    International Nuclear Information System (INIS)

    Laoire, Cormac O.; Plichta, Edward; Hendrickson, Mary; Mukerjee, Sanjeev; Abraham, K.M.

    2009-01-01

    We carried out a detailed study of the kinetics of oxidation of ferrocene (Fc) to ferrocenium ion (Fc + ) in the non-aqueous lithium ion conducting electrolyte composed of a solution of 1 M LiPF 6 in 1:1 EC:EMC solvent mixture. This study using cyclic (CV) and rotating disk electrode (RDE) voltammetry showed that the Fc 0 /Fc + redox couple is reversible in this highly concentrated electrolyte. The ferrocene and ferrocenium ion diffusion coefficients (D) were calculated from these results. In addition, the electron transfer rate constant (k 0 ) and the exchange current density for the oxidation of ferrocene were determined. A comparison of the kinetic data obtained from the two electrochemical techniques appears to show that the data from the RDE experiments are more reliable because they are collected under strict mass transport control. A Tafel slope of c.a. 79 mV/decade and a transfer coefficient α of 0.3 obtained from analysis of the RDE data for ferrocene oxidation suggest that the structure of the activated complex is closer to that of the oxidized specie due to strong interactions with the carbonate solvents. The experiments reported here are relevant to the study of redox reagents for the chemical overcharge protection of Li-ion batteries.

  9. Carbon nanotubes length optimization for preparation of improved transparent and conducting thin film substrates

    Directory of Open Access Journals (Sweden)

    Mansoor Farbod

    2017-03-01

    Full Text Available Transparent and conductive thin films of multiwalled carbon nanotubes (MWCNTs with different lengths were prepared on glass substrates by the spin coating method. In order to reduce the MWCNTs length, they were functionalized. The initial length of MWCNTs (10–15 μm was reduced to 1200, 205 and 168 nm after 30, 60 and 120 min refluxing time, respectively. After post annealing at 285 °C for 24 h, the electrical and optical properties were greatly improved for functionalized MWCNT thin films. They strongly depend on the length of CNTs. The optical transmittance of the film prepared using 30 min reflux CNTs was 2.6% and 6.6% higher than that of the 60 min and 120 min refluxed samples respectively. The sheet resistance of this film showed reductions of 45% and 80% as well. The film also exhibited the least roughness. The percolative figure of merit, which is proportional to the transparency and disproportional to the sheet resistance, was found to be higher for the sample with 30 min refluxed MWCNTs.

  10. Upcycling: converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres.

    Science.gov (United States)

    Pol, Vilas Ganpat

    2010-06-15

    The recent tremendous increase in the volume of waste plastics (WP) will have a harmful environmental impact on the health of living beings. Hundreds of years are required to degrade WP in atmospheric conditions. Hence, in coming years, in addition to traditional recycling services, innovative "upcycling" processes are necessary. This article presents an environmentally benign, solvent-free autogenic process that converts various WP [low density polyethylene (LDPE), high density polyethylene (HDPE), polyethylene terephthalate (PET), polystyrene (PS), or their mixtures] into carbon microspheres (CMSs), an industrially significant, value-added product. The thermal dissociation of these individual or mixed WP in a closed reactor under autogenic pressure ( approximately 1000 psi) produced dry, pure powder of CMSs. In this paper, the optimization of process parameters such as the effect of mixing of WP with other materials, and the role of reaction temperature and time are reported. Employing advanced analytical techniques, the atomic structure, composition, and morphology of as-obtained CMSs were analyzed. The room-temperature paramagnetism in CMSs prepared from waste LDPE, HDPE, and PS was further studied by electron paramagnetic resonance (EPR). The conducting and paramagnetic nature of CMSs holds promise for their potential applications in toners, printers, paints, batteries, lubricants, and tires.

  11. Method and apparatus for producing a carbon based foam article having a desired thermal-conductivity gradient

    Science.gov (United States)

    Klett, James W [Knoxville, TN; Cameron, Christopher Stan [Sanford, NC

    2010-03-02

    A carbon based foam article is made by heating the surface of a carbon foam block to a temperature above its graphitizing temperature, which is the temperature sufficient to graphitize the carbon foam. In one embodiment, the surface is heated with infrared pulses until heat is transferred from the surface into the core of the foam article such that the graphitizing temperature penetrates into the core to a desired depth below the surface. The graphitizing temperature is maintained for a time sufficient to substantially entirely graphitize the portion of the foam article from the surface to the desired depth below the surface. Thus, the foam article is an integral monolithic material that has a desired conductivity gradient with a relatively high thermal conductivity in the portion of the core that was graphitized and a relatively low thermal conductivity in the remaining portion of the foam article.

  12. The effect of low temperature neutron irradiation and annealing on the thermal conductivity of advanced carbon-based materials

    International Nuclear Information System (INIS)

    Barabash, V.; Mazul, I.; Latypov, R.; Pokrovsky, A.; Wu, C.H.

    2002-01-01

    Several carbon-based materials (carbon fibre composites NB 31, NS 31 and UAM-92, doped graphite RGTi-91), were irradiated at about 90 deg. C in the damage dose range 0.0021-0.13 dpa. Significant reduction of the thermal conductivity of all materials was observed (e.g. at damage dose of ∼0.13 dpa the thermal conductivity degraded up to level of ∼2-3% of the initial values). However, saturation of this effect was observed starting at a dose of ∼0.06 dpa. The effect of annealing at 250 and 350 deg. C on the recovery of thermal conductivity of NB 31 and NS 31 was studied and it was shown this annealing can significantly improve thermal conductivity (∼2.5-3 times). The data on the degradation of the thermal conductivity after additional irradiation after annealing is also reported

  13. Study on the improvement of high temperature mechanical properties of carbon fiber reinforced ceramics composites through texture and interface controls; Tanso sen`i kyoka ceramics fukugo zairyo no soshiki kaimen seigyo ni yoru koon rikigaku tokusei kaizen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    To improve the tenacity and reliability of ceramics, the fiber reinforced ceramics composites compounding high strength long fibers and ceramics have been investigated. In this study, carbon fibers were selected as reinforcement fibers. The hexagonal boron nitride (hBN) was selected as a matrix having the plastic deformation performance. To intend to control the composition of the fiber/matrix interface, composites were created by adding polysilazane which was an organic Si (Si3N4) source. Relationships between the condition of interface of each phase and the high temperature mechanical properties were examined by changing the fabrication condition, to grasp the technical problems, such as the optimization of fabrication condition. Knowledge on the fabrication of long fiber reinforced ceramics composites was obtained including the arbitrary control technology of interface consistency of ceramics composites for super high temperature structures. The carbon fiber reinforced hBN composites developed in this study have excellent strength up to 1,500 centigrade and fracture energy, and they are new prospective materials as well as C/C composites. 4 refs., 37 figs., 13 tabs.

  14. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio

    2012-11-21

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon additive, the irreversible capacity during galvanostatic cycling between 2.75 and 5.25 V versus Li/Li+ could be as high as 700 mAh g-1 (of carbon). In the potential region below 5 V versus Li/Li+, high surface carbon additives also showed irreversible plateaus at about 4.1-4.2 and 4.6 V versus Li/Li+. These plateaus disappeared after thermal treatments at or above 150 °C in inert gas. The influence of the irreversible capacity of carbon additives on the overall performances of positive electrodes was discussed. © 2012 Springer Science+Business Media Dordrecht.

  15. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  16. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Taer, E.; Awitdrus,; Farma, R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Mathematics and Natural Sciences, University of Riau, 28293 Pekanbaru, Riau (Indonesia); Deraman, M., E-mail: madra@ukm.my; Talib, I. A.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Kanwal, S. [ICCBS, H.E.J. Research Institute of Chemistry, University of Karachi, 75270 Karachi (Pakistan)

    2015-04-16

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  17. The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites

    NARCIS (Netherlands)

    Tkalya, E.; Ghislandi, M.G.; With, de G.; Koning, C.E.

    2012-01-01

    Applications of composites based on carbon nanotubes and graphene require their exfoliation and dispersion in a polymer matrix. One of the main approaches to disperse and exfoliate carbon nanotubes and graphene is based on the use of surfactants. Here we review the surfactants utilized for

  18. Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity

    International Nuclear Information System (INIS)

    Xu Bin; Wu Feng; Su Yuefeng; Cao Gaoping; Chen Shi; Zhou Zhiming; Yang Yusheng

    2008-01-01

    This work is focused on the competitive effects on the performance of the electric double layer capacitors (EDLCs) between porosity increase and simultaneous conductivity decrease for KOH-activated carbon nanotubes (CNTs). A series of the CNTs have been activated with KOH to enhance their surface areas for application in EDLCs. The microstructure of the activated carbon nanotubes (ACNTs) is characterized with N 2 adsorption, transmission electron microscopy (TEM) observation and electric conductivity measurement. Their electrochemical performances are evaluated in aqueous KOH electrolyte with galvanostatic charge/discharge, cyclic voltammetry, and ac impedance spectroscopy. It is found that the KOH activation enhances the specific surface area of the CNTs and its specific capacitance but decreases its electric conductivity and the rate performance in EDLC. By controlling the activation of the CNTs to balance the porosity and conductivity, ACNTs with both high capacitance and good rate performance are obtained

  19. Effects of hydrogenation on thermal conductivity of ultrananocrystalline diamond/amorphous carbon composite films prepared via coaxial arc plasma deposition

    Science.gov (United States)

    Takeichi, Satoshi; Nishiyama, Takashi; Tabara, Mitsuru; Kawawaki, Shuichi; Kohno, Masamichi; Takahashi, Koji; Yoshitake, Tsuyoshi

    2018-06-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite (UNCD/a-C:H) and UNCD/non-hydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were prepared via coaxial arc plasma deposition, and their thermal conductivity and interfacial conductance in grain boundaries were measured using a time-domain thermoreflectance method. The interfacial conductance was estimated to be 1,010 and 4,892 MW/(m2·K) for UNCD/a-C:H and UNCD/a-C films, respectively. The reasons for the hydrogenated film having lower interfacial conductance than the non-hydrogenated film are 1) the reduced number of carriers that contribute to heat transport and 2) the hydrogen atoms, which are preferentially located at the grain boundaries and enhance phonon scattering.

  20. First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes

    KAUST Repository

    Chen, X.

    2012-03-26

    Rapid and cost-effective DNA sequencing at the single nucleotide level might be achieved by measuring a transverse electronic current as single-stranded DNA is pulled through a nanometer-sized pore. In order to enhance the electronic coupling between the nucleotides and the electrodes and hence the current signals, we employ a pair of single-walled close-ended (6,6) carbon nanotubes (CNTs) as electrodes. We then investigate the electron transport properties of nucleotides sandwiched between such electrodes by using first-principles quantum transport theory. In particular, we consider the extreme case where the separation between the electrodes is the smallest possible that still allows the DNA translocation. The benzene-like ring at the end cap of the CNT can strongly couple with the nucleobases and therefore it can both reduce conformational fluctuations and significantly improve the conductance. As such, when the electrodes are closely spaced, the nucleobases can pass through only with their base plane parallel to the plane of CNT end caps. The optimal molecular configurations, at which the nucleotides strongly couple to the CNTs, and which yield the largest transmission, are first identified. These correspond approximately to the lowest energy configurations. Then the electronic structures and the electron transport of these optimal configurations are analyzed. The typical tunneling currents are of the order of 50 nA for voltages up to 1 V. At higher bias, where resonant transport through the molecular states is possible, the current is of the order of several μA. Below 1 V, the currents associated to the different nucleotides are consistently distinguishable, with adenine having the largest current, guanine the second largest, cytosine the third and, finally, thymine the smallest. We further calculate the transmission coefficient profiles as the nucleotides are dragged along the DNA translocation path and investigate the effects of configurational variations

  1. Effects of Fe{sub 2}O{sub 3} content on ionic conductivity of Li{sub 2}O-TiO{sub 2}-P{sub 2}O{sub 5} glasses and glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Mohaghegh, E., E-mail: elnaz.mohaghegh@gmail.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran, 11155-9466 (Iran, Islamic Republic of); Nemati, A. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran, 11155-9466 (Iran, Islamic Republic of); Eftekhari Yekta, B. [Ceramic Division, School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, 16846-13114 (Iran, Islamic Republic of); Banijamali, S. [Ceramic Division, Materials & Energy Research Center, Alborz, 31787-316 (Iran, Islamic Republic of)

    2017-04-01

    In this study, Li{sub 2}O-TiO{sub 2}-P{sub 2}O{sub 5}-x(Fe{sub 2}O{sub 3}) (x = 0, 2.5, 5 and 7.5 weight part) glass and glass-ceramics were synthesized through conventional melt-quenching method and subsequently heat treatment. Glass samples were studied by UV–visible spectroscopy and crystallized samples were characterized by differential thermal analysis, X-ray diffractometry and field emission scanning electron microscopy. Besides, electrical properties were examined according to the electrochemical impedance spectroscopy techniques. Experimental optical spectra of the Fe{sub 2}O{sub 3}-doped glasses revealed strong UV absorption band in the range of 330–370 nm, which were attributed to the presence of Fe{sup 3+} ions. The major crystalline phase of the fabricated glass-ceramics was LiTi{sub 2}(PO{sub 4}){sub 3}. However, Li{sub 3}PO{sub 4} was also identified as the minor one. Considering the impedance spectroscopy studies, ionic conductivity of Fe{sub 2}O{sub 3} containing glasses was higher than that of the base glass. Additionally, the maximum bulk ionic conductivity of 1.38 × 10{sup −3} S/cm was achieved as well as activation energy as low as 0.26 eV at room temperature for x = 5. - Highlights: • Bulk and total ionic conductivity was extracted by using impedance spectroscopy. • Ionic conductivity of the studied glasses and glass-ceramics increased with increasing Fe{sub 2}O{sub 3} content. • The highest bulk ionic conductivity at room temperature was found to be 1.38 × 10{sup −3} S/cm for GC{sub 5}.

  2. UV cross-linkable graphene/poly(trimethylene carbonate) composites for 3D printing of electrically conductive scaffolds

    NARCIS (Netherlands)

    Sayyar, S.; Bjorninen, M.; Haimi, Suvi; Miettinen, S.; Gilmore, K.; Grijpma, Dirk W.; Wallace, G.

    2016-01-01

    Conductive, flexible graphene/poly(trimethylene carbonate) (PTMC) composites were prepared. Addition of just 3 wt % graphene to PTMC oligomers functionalized with methacrylate end-groups followed by UV cross-linking resulted in more than 100% improvement in tensile strength and enhanced electrical

  3. UV Cross-Linkable Graphene/Poly(trimethylene Carbonate) Composites for 3D Printing of Electrically Conductive Scaffolds

    NARCIS (Netherlands)

    Sayyar, Sepidar; Bjorninen, Miina; Haimi, Suvi; Miettinen, Susanna; Gilmore, Kerry; Grijpma, Dirk; Wallace, Gordon

    2016-01-01

    Conductive, flexible graphene/poly(trimethylene carbonate) (PTMC) composites were prepared. Addition of just 3 wt graphene to PTMC oligomers functionalized with methacrylate end-groups followed by UV cross-linking resulted in more than 100% improvement in tensile strength and enhanced electrical

  4. Chemical and morphological changes during production of conducting carbons from ferrocene-poly (furfuryl alcohol)

    International Nuclear Information System (INIS)

    Ozaki, J.; Cashion, J.D.; Brown, L.J.

    1996-01-01

    Carbons are obtained by heating organic substances up to 1000 deg C under inert atmosphere. The electronic properties of carbons change dramatically during this carbonisation process. By controlled preparation, it is possible to obtain electronically functional materials. The addition of iron to the organic starting material has a strong modifying effect and, in particular, carbonising a ferrocene-poly(furfuryl alcohol) (PFA) mixture at 700 deg C produces a carbon with a comparable electron transfer rate to platinum. 57 Moessbauer spectra showed that the first transformation of the ferrocene is to magnetite, at 200-300 deg C. At 600 deg C, the magnetite is converted to wustite, while at 650 deg C α-iron starts to appear. The final products at 800 deg C were α-iron, γ-iron and cementite, Fe 3 C. Morphological changes were studied by SEM. The tentative explanation for these results is that the iron promotes the elimination of oxygen from the initial PFA structure to produce magnetite. At 600-650 deg C , the magnetite is carbothermically reduced to wustite and α-iron, forming glassy carbon. Above 700 deg C, the iron dissolves carbon atoms to make a solid solution. On cooling, some of this fractionates into graphitic carbon, cementite and γ-iron stabilised by the carbon atoms. We believe that the furry surface is produced in this cooling process

  5. Chemical and morphological changes during production of conducting carbons from ferrocene-poly (furfuryl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, J [Tohoku University, Sendai, Japan (Japan). Institute of Chemical Reaction Science; Cashion, J D; Brown, L J [Monash Univ., Clayton, VIC (Australia). Dept. of Physics

    1997-12-31

    Carbons are obtained by heating organic substances up to 1000 deg C under inert atmosphere. The electronic properties of carbons change dramatically during this carbonisation process. By controlled preparation, it is possible to obtain electronically functional materials. The addition of iron to the organic starting material has a strong modifying effect and, in particular, carbonising a ferrocene-poly(furfuryl alcohol) (PFA) mixture at 700 deg C produces a carbon with a comparable electron transfer rate to platinum. {sup 57} Moessbauer spectra showed that the first transformation of the ferrocene is to magnetite, at 200-300 deg C. At 600 deg C, the magnetite is converted to wustite, while at 650 deg C {alpha}-iron starts to appear. The final products at 800 deg C were {alpha}-iron, {gamma}-iron and cementite, Fe{sub 3}C. Morphological changes were studied by SEM. The tentative explanation for these results is that the iron promotes the elimination of oxygen from the initial PFA structure to produce magnetite. At 600-650 deg C , the magnetite is carbothermically reduced to wustite and {alpha}-iron, forming glassy carbon. Above 700 deg C, the iron dissolves carbon atoms to make a solid solution. On cooling, some of this fractionates into graphitic carbon, cementite and {gamma}-iron stabilised by the carbon atoms. We believe that the furry surface is produced in this cooling process

  6. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  7. Ceramic substrate including thin film multilayer surface conductor

    Science.gov (United States)

    Wolf, Joseph Ambrose; Peterson, Kenneth A.

    2017-05-09

    A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on an upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.

  8. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  9. Effect of helium gas pressure on dc conduction mechanism and EMI shielding properties of nanocrystalline carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rawal, Ishpal, E-mail: rawalishpal@gmail.com [Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007 (India); Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Tripathi, R.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Singh, Avanish Pratap; Dhawan, S.K. [Polymeric and Soft Materials Group, Physics Engineering of Carbon, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Srivastava, A.K. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2015-05-05

    This paper reports the effect of helium partial pressures ∼1.2 × 10{sup −5} (base pressure), 1.4 × 10{sup −4}, 8.6 × 10{sup −3} and 0.1 mbar on the variable range hopping conduction in nanocrystalline carbon thin films deposited by filtered cathodic jet carbon arc technique. High resolution transmission electron microscopy studies suggest the random distribution of nanocrystallites (∼3–7 nm) in the amorphous matrix. The DC conduction behavior of the deposited nanocrystalline films has been studied in the light of Mott's variable range hopping (VRH) model and found to obey three dimensional VRH conduction. The randomly distributed nanocrystallites in amorphous matrix may lead to change in the distribution of density of states near Fermi level and hence, the conduction behavior. The enhanced electrical conductivity of the deposited films due to the helium environment makes them suitable for electromagnetic interference shielding applications. The sample deposited at a helium partial pressure of 0.1 mbar has a value of shielding effectiveness ∼7.84 dB at 18 GHz frequency. - Highlights: • Nanocrystalline carbon thin films (NCTF) has been deposited by FCJCA technique. • Effect of helium gas pressure has been studied on the properties of NCTF. • Investigation of EMI shielding properties of NCTF has been carried out.

  10. A novel conductivity mechanism of highly disordered carbon systems based on an investigation of graph zeta function

    Science.gov (United States)

    Matsutani, Shigeki; Sato, Iwao

    2017-09-01

    In the previous report (Matsutani and Suzuki, 2000 [21]), by proposing the mechanism under which electric conductivity is caused by the activational hopping conduction with the Wigner surmise of the level statistics, the temperature-dependent of electronic conductivity of a highly disordered carbon system was evaluated including apparent metal-insulator transition. Since the system consists of small pieces of graphite, it was assumed that the reason why the level statistics appears is due to the behavior of the quantum chaos in each granular graphite. In this article, we revise the assumption and show another origin of the Wigner surmise, which is more natural for the carbon system based on a recent investigation of graph zeta function in graph theory. Our method can be applied to the statistical treatment of the electronic properties of the randomized molecular system in general.

  11. Mussel-Inspired Dopamine and Carbon Nanotube Leading to a Biocompatible Self-Rolling Conductive Hydrogel Film.

    Science.gov (United States)

    Jiang, Junzi; Huang, Yong; Wang, Yitian; Xu, Hui; Xing, Malcolm; Zhong, Wen

    2017-08-18

    We report a novel self-rolling, conductive, and biocompatible multiwall carbon nanotube (MWCNT)-dopamine-polyethylene glycol (PEG) hydrogel film. The gel can self-fold into a thin tube when it is transferred from a glass slide to an aqueous environment, regardless of the concentrations of the MWCNT. The film presents a highly organized pattern, which results from the self-assembly of hydrophilic dopamine and hydrophobic carbon nanotubes. By exploring the biomedical potential, we found that MWCNT-included rolled film is nontoxic and can promote cell growth. For further functional verification by qPCR (quantitative polymerase chain reaction), bone marrow derived mesenchymal cells present higher levels of osteogenic differentiations in response to a higher concentration of CNTs. The results suggest that the self-rolling, conductive CNT-dopamine-PEG hydrogel could have multiple potentials, including biomedical usage and as a conductive biosensor.

  12. AC-conductance and capacitance measurements for ethanol vapor detection using carbon nanotube-polyvinyl alcohol composite based devices.

    Science.gov (United States)

    Greenshields, Márcia W C C; Meruvia, Michelle S; Hümmelgen, Ivo A; Coville, Neil J; Mhlanga, Sabelo D; Ceragioli, Helder J; Quispe, Jose C Rojas; Baranauskas, Vitor

    2011-03-01

    We report the preparation of inexpensive ethanol sensor devices using multiwalled carbon nanotube-polyvinyl alcohol composite films deposited onto interdigitated electrodes patterned on phenolite substrates. We investigate the frequency dependent response of the device conductance and capacitance showing that higher sensitivity is obtained at higher frequency if the conductance is used as sensing parameter. In the case of capacitance measurements, higher sensitivity is obtained at low frequency. Ethanol detection at a concentration of 300 ppm in air is demonstrated. More than 80% of the sensor conductance and capacitance variation response occurs in less than 20 s.

  13. Ceramic Matrix Composite (CMC) Materials Characterization

    Science.gov (United States)

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  14. Ceramic Matrix Composite (CMC) Materials Development

    Science.gov (United States)

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  15. Effects of A-site nonstoichiometry on oxide ion conduction in 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Sasiporn Prasertpalichat

    2016-06-01

    Full Text Available Lead free 0.94(Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics were prepared by conventional solid-state mixed oxide route with the A-site stoichiometry modified to incorporate donor-doping (through Bi-excess and acceptor-doping (through Na-excess. Both stoichiometric and nonstoichiometric ceramics exhibited a single perovskite phase with pseudo-cubic symmetry. A significant improvement in the dielectric properties was observed in Bi-excess compositions and a deterioration in the dielectric properties was observed in Na-excess compositions. Impedance spectroscopy was utilized to analyze the effects of A-site nonstoichiometry on conduction mechanisms. Compositions with Bi-excess resulted in an electrically homogeneous microstructure with an increase in resistivity by ∼3–4 orders of magnitude and an associated activation energy of 1.57eV which was close to half of the optical bandgap. In contrast, an electrically heterogeneous microstructure was observed in both the stoichiometric and Na-excess compositions. In addition, the Na-excess compositions exhibited low resistivities (ρ∼103Ω-cm with characteristic peaks in the impedance data comparable to the recent observations of oxide ion conduction in (Bi0.5Na0.5TiO3. Long term annealing studies were also conducted at 800∘C to identify changes in crystal structure and electrical properties. The results of this study demonstrates that the dielectric and electrical properties of 0.94(Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics are very sensitive to Bi/Na stoichiometry.

  16. Transparent and Electrically Conductive Carbon Nanotube-Polymer Nanocomposite Materials for Electrostatic Charge Dissipation

    Science.gov (United States)

    Dervishi, E.; Biris, A. S.; Biris, A. R.; Lupu, D.; Trigwell, S.; Miller, D. W.; Schmitt, T.; Buzatu, D. A.; Wilkes, J. G.

    2006-01-01

    In recent years, nanocomposite materials have been extensively studied because of their superior electrical, magnetic, and optical properties and large number of possible applications that range from nano-electronics, specialty coatings, electromagnetic shielding, and drug delivery. The aim of the present work is to study the electrical and optical properties of carbon nanotube(CNT)-polymer nanocomposite materials for electrostatic charge dissipation. Single and multi-wall carbon nanotubes were grown by catalytic chemical vapor deposition (CCVD) on metal/metal oxide catalytic systems using acetylene or other hydrocarbon feedstocks. After the purification process, in which amorphous carbon and non-carbon impurities were removed, the nanotubes were functionalized with carboxylic acid groups in order to achieve a good dispersion in water and various other solvents. The carbon nanostructures were analyzed, both before and after functionalization by several analytical techniques, including microscopy, Raman spectroscopy, and X-Ray photoelectron spectroscopy. Solvent dispersed nanotubes were mixed (1 to 7 wt %) into acrylic polymers by sonication and allowed to dry into 25 micron thick films. The electrical and optical properties of the films were analyzed as a function of the nanotubes' concentration. A reduction in electrical resistivity, up to six orders of magnitude, was measured as the nanotubes' concentration in the polymeric films increased, while optical transparency remained 85 % or higher relative to acrylic films without nanotubes.

  17. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics

    KAUST Repository

    Ventura, Isaac Aguilar; Rahaman, Ariful; Lubineau, Gilles

    2013-01-01

    conductivity, and degradation kinetics were studied. Introducing the MWCNTs increased the curing activation energy as revealed by differential scanning calorimetry. The final thermal conductivity of the 0.5 and 1.0 wt % MWCNT-enriched epoxy samples measured

  18. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  19. A conductance study of guanidinium chloride, thiocyanate, sulfate, and carbonate in dilute aqueous solutions: ion-association and carbonate hydrolysis effects.

    Science.gov (United States)

    Hunger, Johannes; Neueder, Roland; Buchner, Richard; Apelblat, Alexander

    2013-01-17

    We study the conductance of dilute aqueous solutions for a series of guandinium salts at 298.15 K. The experimental molar conductivities were analyzed within the framework of the Quint-Viallard theory in combination with Debye-Hückel activity coefficients. From this analysis, we find no evidence for significant ion association in aqueous solutions of guanidinium chloride (GdmCl) and guanidinium thiocyanate (GdmSCN), and the molar conductivity of these electrolytes can be modeled assuming a complete dissociation. The limiting ionic conductivity of the guanidinium ion (Gdm(+)) is accurately determined to λ(Gdm(+)) = 51.45 ± 0.10 S cm(2) mol(-1). For the bivalent salts guanidinium sulfate (Gdm(2)SO(4)) and guanidinium carbonate (Gdm(2)CO(3)), the molar conductivities show small deviations from ideal (fully dissociated electrolyte) behavior, which are related to weak ion association in solution. Furthermore, for solutions of Gdm(2)CO(3), the hydrolysis of the carbonate anion leads to distinctively increased molar conductivities at high dilutions. The observed ion association is rather weak for all studied electrolytes and cannot explain the different protein denaturing activities of the studied guanidinium salts, as has been proposed previously.

  20. Fabrication, characterization and screen printing of conductive ink based on carbon@Ag core-shell nanoparticles.

    Science.gov (United States)

    Wu, Wei; Yang, Shuanglei; Zhang, Shaofeng; Zhang, Hongbo; Jiang, Changzhong

    2014-08-01

    The large-scale synthesis and characterization of carbon-core/Ag-shell (C@Ag) nanoparticles by the successive reduction of silver ammonia are described. The resultant C@Ag nanoparticles had a mean core diameter of 360 nm and a controllable shell thickness from 10 to 40 nm by simple adjustments of repeat coating times. Various analysis techniques confirmed that the carbon cores were fully covered by Ag nanoshells. The results also show that C/Ag composite nanomaterials-based conductive inks, which can be easily produced on a large scale and possess outstanding electronic properties, have great potential for the convenient fabrication of flexible and low-cost carbon-based electronic devices and replace the traditional pure silver paste, by using a simple screen printing technique. Copyright © 2013 Elsevier Inc. All rights reserved.