WorldWideScience

Sample records for concrete structures contributions

  1. Concrete structures

    CERN Document Server

    Setareh, Mehdi

    2017-01-01

    This revised, fully updated second edition covers the analysis, design, and construction of reinforced concrete structures from a real-world perspective. It examines different reinforced concrete elements such as slabs, beams, columns, foundations, basement and retaining walls and pre-stressed concrete incorporating the most up-to-date edition of the American Concrete Institute Code (ACI 318-14) requirements for the design of concrete structures. It includes a chapter on metric system in reinforced concrete design and construction. A new chapter on the design of formworks has been added which is of great value to students in the construction engineering programs along with practicing engineers and architects. This second edition also includes a new appendix with color images illustrating various concrete construction practices, and well-designed buildings. The ACI 318-14 constitutes the most extensive reorganization of the code in the past 40 years. References to the various sections of the ACI 318-14 are pro...

  2. Structural Precast Concrete Handbook

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly....

  3. Structural Precast Concrete Handbook

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly.......Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly....

  4. Experimental Investigation on Contribution of CFRP Attachment to Durability of Reinforced Concrete Structure Subjected to Chloride Attack

    Institute of Scientific and Technical Information of China (English)

    Chen Fengshan; Zhao Guofan; Pan Deqiang

    2006-01-01

    The function of externally-bonded carbon fiber reinforced polymer (CFRP) in preventing chloride from entering into concrete is verified by experiment. The results show that externally-bonded CFRP can be considered as a part of corrosion prevention system of strengthened concrete structures subjected to chloride ingress, and the contribution of CFRP should be considered in evaluation of durability of reinforced concrete structures with externally-bonded CFRP. With the effective shielding function of CFRP considered, an equation for residual lifetime prediction of concrete structures with externally-bonded CFRP is derived from Ficks dispersion law. CFRP has two functions for coastal concrete structures, including strengthening and increasing durability as part of corrosion prevention system.

  5. Contributions to reinforced concrete structures numerical simulations; Contributions a la simulation numerique de structures en beton arme

    Energy Technology Data Exchange (ETDEWEB)

    Badel, P.B

    2001-07-15

    In order to be able to carry out simulations of reinforced concrete structures, it is necessary to know two aspects: the behaviour laws have to reflect the complex behaviour of concrete and a numerical environment has to be developed in order to avoid to the user difficulties due to the softening nature of the behaviour. This work deals with these two subjects. After an accurate estimation of two behaviour models (micro-plan and mesoscopic models), two damage models (the first one using a scalar variable, the other one a tensorial damage of the 2 order) are proposed. These two models belong to the framework of generalized standard materials, which renders their numerical integration easy and efficient. A method of load control is developed in order to make easier the convergence of the calculations. At last, simulations of industrial structures illustrate the efficiency of the method. (O.M.)

  6. Infilled masonry walls contribution in mitigating progressive collapse of multistory reinforced concrete structures according to UFC guidelines

    Science.gov (United States)

    Helmy, Huda; Hadhoud, Hamed; Mourad, Sherif

    2015-09-01

    A structure is subjected to progressive collapse when an element fails, resulting in failure of adjoining structural elements which, in their turn, cause further structural failure leading eventually to partial or total collapse. The failure of a primary vertical support might occur due to extreme loadings such as bomb explosion in a terrorist attack, gas explosion and huge impact of a car in the parking area. Different guidelines such as the General Services Administration (GSA 2003) and the Unified Facilities Criteria (UFC 2009) addressed the structural progressive collapse due to the sudden loss of a main vertical support. In the current study, a progressive collapse assessment according to the UFC guidelines is carried out for a typical ten-story reinforced concrete framed structure designed according to codes [(ACI 318-08) and (ASCE 7-10)] for minimum design loads for buildings and other structures. Fully nonlinear dynamic analysis for the structure was carried out using Applied Element Method (AEM). The investigated cases included the removal of a corner column, an edge column, an edge shear wall, internal columns and internal shear wall. The numerical analysis showed that simplification of the problem into 3D bare frames would lead to uneconomical design. It was found for the studied case that, the infilled masonry walls have a valuable contribution in mitigating progressive collapse of the reinforced concrete framed structures. Neglecting these walls would lead to uneconomical design.

  7. Teaching concrete structures

    DEFF Research Database (Denmark)

    Goltermann, Per

    2014-01-01

    The teaching of concrete structures has been revised and a number of new approaches have been developed, implemented and evaluated. Inductive teaching, E-learning and “patches” have been found to be improvements and may be an inspiration and help for others development of the teaching and learning...

  8. Deterioration of Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Chloride ingress is a common cause of deterioration of reinforced concrete bridges. Concrete may be exposed to chloride by seawater or de-icing salts. The chloride initiates corrosion of the reinforcement, which through expansion disrupts the concrete. In addition, the corrosion reduces the cross...

  9. Deterioration of Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Chloride ingress is a common cause of deterioration of reinforced concrete bridges. Concrete may be exposed to chloride by seawater or de-icing salts. The chloride initiates corrosion of the reinforcement, which through expansion disrupts the concrete. In addition, the corrosion reduces the cross...

  10. Basic principles of concrete structures

    CERN Document Server

    Gu, Xianglin; Zhou, Yong

    2016-01-01

    Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compa...

  11. Porous Structure of Road Concrete

    OpenAIRE

    2016-01-01

    Having a great number of concrete structure classifications it is recommended to specify the following three principal types: microstructure – cement stone structure; mesostructure – structure of cement-sand mortar in concrete; macrostucture – two-component system that consists of mortar and coarse aggregate. Every mentioned-above structure has its own specific features which are related to the conditions of their formation. Thus, microstructure of cement stone can be characterized by such st...

  12. Structural concrete and sustainability

    CSIR Research Space (South Africa)

    Grieve, G

    2010-04-01

    Full Text Available the typical specific CO2 per ton of cementitious binder is about 765 kg. However, the effect of this is significantly diluted by the addition of aggregates (around 80% of the mass of a cubic meter of concrete) and cement extenders, of which many are industrial...

  13. Concrete structures under projectile impact

    CERN Document Server

    Fang, Qin

    2017-01-01

    In this book, the authors present their theoretical, experimental and numerical investigations into concrete structures subjected to projectile and aircraft impacts in recent years. Innovative approaches to analyze the rigid, mass abrasive and eroding projectile penetration and perforation are proposed. Damage and failure analyses of nuclear power plant containments impacted by large commercial aircrafts are numerically and experimentally analyzed. Ultra-high performance concrete materials and structures against the projectile impact are developed and their capacities of resisting projectile impact are evaluated. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.

  14. Dynamic Response of Concrete and Concrete Structures.

    Science.gov (United States)

    1986-05-30

    Strain Rate Effects on Fracture (ed. S. Mindess and S. P. Shah), Symposium ’- S, Boston, Dec. 1985, Materials Research Society Symp. Proceedings, ". Vol...Reinforced Concrete Subjected to Impact Loading," in Cement-Based Composites: Strain-Rate Effects on Fracture (ed. S. Mindess and S.P. Shah) Materials

  15. Critical Study of Corrosion Damaged Concrete Structures

    OpenAIRE

    Sallehuddin Shah Ayop; John Cairns

    2013-01-01

    Corrosion of steel reinforcement in concrete is one of the major problems with respect to the durability of reinforced concrete structures. The degradation of the structure strength due to reinforcement corrosion decreases its design life. This paper presents the literature study on the influence of the corrosion on concrete structure starting from the mechanism of the corrosion until the deterioration stage and the structural effects of corrosion on concrete structures.

  16. Design of ultra-lightweight concrete: towards monolithic concrete structures

    Directory of Open Access Journals (Sweden)

    Yu Qing Liang

    2014-04-01

    Full Text Available This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K; and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm . This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.

  17. Topology optimization of reinforced concrete structures

    DEFF Research Database (Denmark)

    Amir, Oded

    Recent advances regarding topology optimization procedures of reinforced concrete structures are presented. We discuss several approaches to the challenging problem of optimizing the distribution of concrete and steel reinforcement. In particular, the consideration of complex nonlinear constitutive...

  18. Concrete structures protection, repair and rehabilitation

    CERN Document Server

    Woodson, R Dodge

    2009-01-01

    The success of a repair or rehabilitation project depends on the specific plans designed for it. Concrete Structures: Protection, Repair and Rehabilitation provides guidance on evaluating the condition of the concrete in a structure, relating the condition of the concrete to the underlying cause or causes of that condition, selecting an appropriate repair material and method for any deficiency found, and using the selected materials and methods to repair or rehabilitate the structure. Guidance is also provided for engineers focused on maintaining concrete and preparing concrete investigation r

  19. Steel and concrete bond stress: a contribution to the study of APULOT tests using concrete with rubber addition

    Directory of Open Access Journals (Sweden)

    A. E. P. G. De Avila Jacintho

    Full Text Available The bond stress between steel and concrete is the essential condition to the good behaviour of reinforced concrete structures. To preview the use of concrete with waste incorporation for structural aims, the verification of its quality control is necessary, whether of compression strength and bond. This paper presents the study results about the viability use of APULOT tests, that is a bond tests, to prevent the compression strength of concrete with rubber addition. The purpose of APULOT tests become study in many laboratories in France and Brazil, where is to estimate the compression strength using the bond stress obtained in tests execute inside of building construction. Also the use of concrete with rubber addition to structural use has been made with safe because this kind of addition makes the concrete compression strength decrease. To study its compression strength behavior is also make part of this research. This work aims to contribute with standardization of APULOT tests, and also give conditions to use the concrete with rubber addition in structural elements with more safe.

  20. VISCOELASTIC STRUCTURAL MODEL OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    V. Bogomolov

    2016-06-01

    Full Text Available The viscoelastic rheological model of asphalt concrete based on the generalized Kelvin model is offered. The mathematical model of asphalt concrete viscoelastic behavior that can be used for calculation of asphalt concrete upper layers of non-rigid pavements for strength and rutting has been developed. It has been proved that the structural model of Burgers does not fully meet all the requirements of the asphalt-concrete.

  1. Durability of cracked fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1998-01-01

    Durability studies are carried out at BKM as part of the research project "Design Methods for Fibre Reinforced Concrete" (FRC) involving BKM, The Concrete Research Center at DTI, Building Technology at Aalborg University, Rambøll, 4K-Beton and Rasmussen & Schiøtz. Concrete beams with or without...... structure are made on specimens drilled or sawed from beams after unloading (mechanical load). The pore structure of the concretes will be studied by microscopy, sorption and suction curves. The test programme involves three different concrete qualities (water-cement ratios). Both steel fibres (ZP...

  2. Recent advances on green concrete for structural purposes the contribution of the EU-FP7 project EnCoRe

    CERN Document Server

    Ferrara, Liberato; Martinelli, Enzo

    2017-01-01

    This book is mainly based on the results of the EU-funded UE-FP7 Project EnCoRe, which aimed to characterize the key physical and mechanical properties of a novel class of advanced cement-based materials incorporating recycled powders and aggregates and/or natural ingredients in order to allow partial or even total replacement of conventional constituents. More specifically, the project objectives were to predict the physical and mechanical performance of concrete with recycled aggregates; to understand the potential contribution of recycled fibers as a dispersed reinforcement in concrete matrices; and to demonstrate the feasibility and possible applications of natural fibers as a reinforcement in cementitious composites. All of these aspects are fully covered in the book. The opening chapters explain the material concept and design and discuss the experimental characterization of the physical, chemical, and mechanical properties of the recycled raw constituents, as well as of the cementitious composite incor...

  3. Contribution to assessing the stiffness reduction of structural elements in the global stability analysis of precast concrete multi-storey buildings

    Directory of Open Access Journals (Sweden)

    M. C. Marin

    Full Text Available This study deals with the reduction of the stiffness in precast concrete structural elements of multi-storey buildings to analyze global stability. Having reviewed the technical literature, this paper present indications of stiffness reduction in different codes, standards, and recommendations and compare these to the values found in the present study. The structural model analyzed in this study was constructed with finite elements using ANSYS® software. Physical Non-Linearity (PNL was considered in relation to the diagrams M x N x 1/r, and Geometric Non-Linearity (GNL was calculated following the Newton-Raphson method. Using a typical precast concrete structure with multiple floors and a semi-rigid beam-to-column connection, expressions for a stiffness reduction coefficient are presented. The main conclusions of the study are as follows: the reduction coefficients obtained from the diagram M x N x 1/r differ from standards that use a simplified consideration of PNL; the stiffness reduction coefficient for columns in the arrangements analyzed were approximately 0.5 to 0.6; and the variation of values found for stiffness reduction coefficient in concrete beams, which were subjected to the effects of creep with linear coefficients from 0 to 3, ranged from 0.45 to 0.2 for positive bending moments and 0.3 to 0.2 for negative bending moments.

  4. STRUCTURAL AND THERMOPHYSICAL PROPERTIES OF HARDENING CONCRETE

    Directory of Open Access Journals (Sweden)

    L. Krasulina

    2012-01-01

    Full Text Available Structural and thermophysical properties of thermally treated concrete have been studied in the paper. The paper demonstrates regularities of changes in structural and thermophysical properties of concrete during heat treatment process. It is established that stabilization of coefficient values for heat- and temperature conductivity of concrete corresponds to completion of the process pertaining to intensive formation of the material pore structure and indicates the possibility of transition from the stage of isothermal extraction to the stage of temperature decrease. The obtained results are confirmed by studies of strength growth kinetics of concrete samples.

  5. Modelling of Deterioration Effects on Concrete Structures

    Directory of Open Access Journals (Sweden)

    B. Teplý

    2002-01-01

    Full Text Available In order to predict the service life of concrete structures models for deterioration effects are needed. This paper has the form of a survey, listing and describing such analytical models, namely carbonation of concrete, ingress of chlorides, corrosion of reinforcing steel and prestressing tendons. The probabilistic approach is applied.

  6. STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS.

    Energy Technology Data Exchange (ETDEWEB)

    Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

    2001-03-22

    This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits.

  7. Autoclave foam concrete: Structure and properties

    Science.gov (United States)

    Mestnikov, Alexei; Semenov, Semen; Strokova, Valeria; Nelubova, Viktoria

    2016-01-01

    This paper describes the technology and properties of autoclaved foam concrete taking into account practical experience and laboratory studies. The results of study of raw materials and analysis of structure and properties of foam-concrete before and after autoclave treatment are basic in this work. Experimental studies of structure and properties of foam concrete are carried out according to up-to-date methods and equipment on the base of the shared knowledge centers. Results of experimental studies give a deep understanding of properties of raw materials, possible changes and new formations in inner layers of porous material providing the improvement of constructional and operational properties of autoclaved foam concrete. Principal directions of technology enhancement as well as developing of production of autoclave foam concretes under cold-weather conditions in Russia climate are justified.

  8. Nondestructive evaluation of thick concrete structures

    Science.gov (United States)

    Clayton, Dwight A.

    2015-03-01

    Concrete has been used in the construction of nuclear power plants (NPPs) due to three primary properties: its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of Light Water Reactor (LWR) plants include the containment building, spent fuel pool, and cooling towers. Use in these structures has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending LWR operating period to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. New mechanisms of materials degradation are also possible. This creates the need to be able to nondestructively evaluate the current subsurface concrete condition of aging concrete material in NPP structures. The size and complexity of NPP containment structures and heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular nondestructive evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Representative large heavily reinforced concrete specimens would allow for comparative testing to evaluate the state-of-the-art NDE in this area and to identify additional developments necessary to address the challenges potentially found in NPPs.

  9. Seismic retrofitting of reinforced concrete frame structures using GFRP-tube-confined-concrete composite braces

    Science.gov (United States)

    Moghaddasi B., Nasim S.; Zhang, Yunfeng; Hu, Xiaobin

    2012-03-01

    This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program — OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.

  10. Fibre Optic Protection System for Concrete Structures

    Institute of Scientific and Technical Information of China (English)

    J.S.Leng; A.Hameed; D.Winter; R.A.Barnes; G.C.Mays; G.F.Fernando

    2006-01-01

    The design concepts, modelling and implementation of various fibre optic sensor protection systems for development in concrete structures were investigated. Design concepts and on-site requirements for surface-mounted and embedded optical fibre sensor in concrete were addressed. Finite element (FE) modelling of selected sensor protection systems in strain-transfer efficiency from the structure to the sensing region was also studied. And experimental validation of specified sensor protection system was reported. Results obtained indicate that the protection system for the sensors performs adequately in concrete environment and there is very good correlation between results obtained by the protected fibre optic sensors and conventional electrical resistance strain gauges.

  11. Doubling the Life of Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Pesic, Batric [Univ. of Idaho, Moscow, ID (United States); Raja, Krishnan [Univ. of Idaho, Moscow, ID (United States); Xi, Yumping [Univ. of Colorado, Boulder, CO (United States); Jun, Jiheon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-24

    Overall objective of the project was to study the fundamental properties of concrete (with and without steel reinforcement) with respect to chemical and physical parameters that can influence its structural integrity.

  12. Microbially influenced degradation of concrete structures

    Science.gov (United States)

    Rogers, Robert D.; Hamilton, Melinda A.; Nelson, Lee O.

    1998-03-01

    Steel reinforced concrete is the most widely used construction material in the world. The economic costs of repair or replacement of environmentally damaged concrete structures is astronomical. For example, half of the concrete bridges in the Federal Department of Transportation highway system are in need of major repairs. Microbially influenced degradation of concrete (MID) is one of the recognized degradative processes known to adversely affect concrete integrity. It is not possible to assign a specific percent of effect to any of these processes. However, MID has been shown to be as aggressive as any of the physical/chemical phenomena. In addition, the possibility exists that there is a synergism which results in cumulative effects from all the processes. Three groups of bacteria are known to promote MID. Of these, sulfur-oxidizing bacteria (SOB) are the most aggressive. Much is known about the nutritional needs of these bacteria. However, there has not been a biological linkage established between the presence of environmental, polluting sulfur sources and the degradation of concrete structures. It has been shown that the environmental pollutants sulfur dioxide and sulfite can be utilized by active SOB for the biological production of sulfuric acid. Therefore, it is not a reach of reality to assume that SOB exposed to these pollutants could have a major impact on the degradation of concrete structures. But, until the environment sulfur loop is closed it will not be possible to calculate how important SOB activity is in initiating and promoting damage.

  13. Recycled Concrete as Aggregate for Structural Concrete Production

    Directory of Open Access Journals (Sweden)

    Mirjana Malešev

    2010-04-01

    Full Text Available A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC as a control concrete and two types of concrete made with natural fine and recycled coarse aggregate (50% and 100% replacement of coarse recycled aggregate. Ninety-nine specimens were made for the testing of the basic properties of hardened concrete. Load testing of reinforced concrete beams made of the investigated concrete types is also presented in the paper. Regardless of the replacement ratio, recycled aggregate concrete (RAC had a satisfactory performance, which did not differ significantly from the performance of control concrete in this experimental research. However, for this to be fulfilled, it is necessary to use quality recycled concrete coarse aggregate and to follow the specific rules for design and production of this new concrete type.

  14. Monitoring of Concrete Structures Using Ofdr Technique

    Science.gov (United States)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  15. CONCRETE MIX DESIGN FOR STRUCTURES SUBJECTED TO EXPOSURE CLASS XC1 DEPENDING ON CONCRETE COVER

    Directory of Open Access Journals (Sweden)

    O. Yu. Cherniakevich

    2016-01-01

    Full Text Available The reinforced steel corrosion which is the most important problem of reinforced concrete structures durability is generally stipulated for carbonization of concrete surrounding it. Concrete cover calculation at the design stage is predicated one because of the differences in manufacturing conditions and use of constructions. The applying of the probabilistic approaches to the carbonation process modeling allows to get predicated grade of the depth of carbonization of concrete and, thus, to settle minimum concrete cover thickness for a given projected service life of a construction. The procedures for concrete mix design for different strength classes of concrete are described in the article. Current recommendations on assignment of concrete strength class as well as concrete cover are presented. The European Standard EN 206:2013 defines the content requirements for the concrete structures operated in the exposure class XC1, including the minimum values of water-cement ratio, minimum cement content, and minimum strength class of concrete. Since the standard does not include any basis or explanations of the requirements, we made an effort to develop a scientific justification for the mentioned requirements. We developed the probabilistic models for the process of carbonation of concrete based on the concrete mix which was designed using the software VTK-Korroziya. The reinforced concrete structures with concrete cover 20–35 mm operated in the most unfavorable conditions within the exposure class XC1 were analyzed. The corresponding probabilistic calculations of the depth of carbonated concrete are described in the article. 

  16. Contribution to a probabilistic safety analysis for the dismantling of slender reinforced-concrete structures; Ein Beitrag zur probabilistischen Sicherheitsanalyse von Abbruchvorgaengen turmartiger Bauwerke aus Stahlbeton

    Energy Technology Data Exchange (ETDEWEB)

    Lehnen, D.J.

    1997-12-31

    In the present work a concept of probabilistic safety-analysis for the dismantling of slender concrete-structures by tilting is developed. Based on requirements, that define a regular dismantling process, models describing characteristic limit-states of the building are derived. The connection of these limit-states allows rating the whole process. Uncertainties in the model-input are caught by using stochastic variables. Uncertainties in the model itself are caught by using inferior and superior modelling. With the help of two concluding examples it is shown, how the obtained probability of failure can be used to enhance objectiveness of safety-considerations. The numeric simulation is based on a Monte-Carlo method. (orig.) [Deutsch] In der vorliegenden Arbeit wird ein Konzept zur probabilistischen Sicherheitsanalyse des Fallrichtungsabbruchs turmartiger Bauwerke aus Stahlbeton entwickelt. Ausgehend von einem definierten Anforderungsprofil an den ordnungsgemaessen Ablauf eines Fallrichtungsabbruchs werden Modellvorstellungen herausgearbeitet, die einzelne Bauwerksgrenzzustaende abbilden, welche sich zur Beurteilung des Gesamtvorgangs eignen. Unsicherheiten in den Eingangsgroessen werden durch deren Auffassung als Wahrschlichkeitsdichten erfasst. Unsicherheiten in den Modellbildungen werden durch den jeweiligen Einsatz unterschaetzender und ueberschaetzender Betrachtungen, sogenannter Minoranten und Majoranten, beruecksichtigt. Anhand zweier Beispiele wird abschliessend demonstriert, wie die erhaltene operative Versagenswahrscheinlichkeit zur Objektivierung von Sicherheitsbetrachtungen herangezogen werden kann. Dabei beruht die numerische Umsetzung auf einer Monte-Carlo Simulation. (orig.)

  17. Design Of A Laboratory Set-up For Evaluating Structural Strength Of Deteriorated Concrete Sewer Pipes

    NARCIS (Netherlands)

    Stanic, N.; Salet, T.; Langeveld, J.G.; Clemens, F.H.L.R.

    2014-01-01

    The principle of structural behaviour of buried concrete pipes is fairly understood, except for how material deterioration affects structural behaviour and performance. Consequently, information on the structural behaviour of deteriorated sewer pipes will contribute to better understanding of the ch

  18. Shear Strength of Concrete I-Beams - Contributions of Flanges

    DEFF Research Database (Denmark)

    Teoh, B. K.; Hoang, Cao Linh; Nielsen, Mogens Peter

    1999-01-01

    The contribution of flanges to the shear strength of reinforced concrete beams has up to now either been neglected or evaluated by very simple empirical formulas. However, the contribution may sometimes be large, up to 20-30%. In this paper the flange contribution for shear reinforced I-beams has...... been calculated using a simple upper bound approach according to the theory of plasticity. The upper bound mechanism consists of a frame action, where the frame is supposed to be composed by the flanges and parts of the web. The results of the calculation have been compared with tests covering a wide...

  19. structural behavior of metakaolin infused concrete structure

    African Journals Online (AJOL)

    user

    Alumina. These oxides combine with slake slime Ca(OH)2 in the presence of water (moisture) to form compounds that are .... and steel cylindrical moulds of size 150 mm diameter by. 300 mm depth ..... Cement Concrete Composites. 23: 441-.

  20. Concrete

    OpenAIRE

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities.Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion as an opportunity to connect th...

  1. Optimal Planning of Maintenance of Concrete Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    1997-01-01

    Chloride ingress and progress of the carbonation front into concrete are considered. Probabilistic models are formulated and it is shown how the parameters in the models can be estimated on the basis of measurements using Bayesian statistics. The stochastic model is used to estimate the probability...... of initiation of cerrosion in reinforced concrete structures as function of time. Further clifferent strategies for maintenance and repairs are formulated and it is shown how the probabilistic models can be used to estimate the expected costs for different strategies and how to select the optimal strategy....

  2. Optimal Planning of Maintenance of Concrete Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    1997-01-01

    of initiation of cerrosion in reinforced concrete structures as function of time. Further clifferent strategies for maintenance and repairs are formulated and it is shown how the probabilistic models can be used to estimate the expected costs for different strategies and how to select the optimal strategy....

  3. Durability Environmental Regionalization for Concrete Structures

    Directory of Open Access Journals (Sweden)

    Daming Luo

    2013-01-01

    Full Text Available Environment is the external factor that affects the durability of concrete structures. Buildings in different regions with different climates will respond to durability deterioration in different ways. For macroenvironmental regionalization, the dominant factor analysis method of the climatic zonation was applied into the environmental regionalization in this paper. Based on the environmental characteristics in China and the effect of environmental factor on the durability of concrete structure, the proper regionalization indexes are chosen, and the environmental regionalization is made. For microenvironmental regionalization, fuzzy set and rough set theories were used in date mining on discrete measured data, and the weight determination of various factors affecting durability was transformed into evaluation of the significance of attributes among rough sets. The method of durability environmental regionalization is established by analyzing the degree of influence that various factors have on the durability of concrete structures. The result of durability environmental regionalization for concrete structures in Shenzhen city shows that the proposed approach is reasonable.

  4. Duracrete: Service life design for concrete structures

    NARCIS (Netherlands)

    Siemes, A.J.M.; Edvardsen, C.

    1999-01-01

    In the past decades much effort has been put into the improvement of the durability of concrete structures. This has resulted in a reasonable understanding of the main degradation processes or in experience with measures to prevent degradation. The results of this effort can be found in the present

  5. Mimicking Bone Healing Process to Self Repair Concrete Structure Novel Approach Using Porous Network Concrete

    NARCIS (Netherlands)

    Sangadji, S.; Schlangen, H.E.J.G.

    2013-01-01

    To repair concrete cracks in difficult or dangerous conditions such as underground structures or hazardous liquid containers, self healing mechanism is a promising alternative method. This research aims to imitate the bone self healing process by putting porous concrete internally in the concrete

  6. Mimicking Bone Healing Process to Self Repair Concrete Structure Novel Approach Using Porous Network Concrete

    NARCIS (Netherlands)

    Sangadji, S.; Schlangen, H.E.J.G.

    2013-01-01

    To repair concrete cracks in difficult or dangerous conditions such as underground structures or hazardous liquid containers, self healing mechanism is a promising alternative method. This research aims to imitate the bone self healing process by putting porous concrete internally in the concrete st

  7. Structural Concrete Prepared with Coarse Recycled Concrete Aggregate: From Investigation to Design

    Directory of Open Access Journals (Sweden)

    Valeria Corinaldesi

    2011-01-01

    Full Text Available An investigation of mechanical behaviour and elastic properties of recycled aggregate concrete (RAC is presented. RACs were prepared by using a coarse aggregate fraction made of recycled concrete coming from a recycling plant in which rubble from concrete structure demolition is collected and suitably treated. Several concrete mixtures were prepared by using either the only virgin aggregates (as reference or 30% coarse recycled aggregate replacing gravel and by using two different kinds of cement. Different water-to-cement ratios were adopted ranging from 0.40 to 0.60. Concrete workability was always in the range 190–200 mm. Concrete compressive strength, elastic modulus, and drying shrinkage were evaluated. Results obtained showed that structural concrete up to C32/40 strength class can be manufactured with RAC. Moreover, results obtained from experimentation were discussed in order to obtain useful information for RAC structure design, particularly in terms of elastic modulus and drying shrinkage prediction.

  8. Electrical resistance tomography for imaging concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, M.; Ramirez, A.; Daily, W.

    1995-11-08

    Electrical Resistance Tomography (ERT) has been used to non-destructively examine the interior of reinforced concrete pillars in the laboratory during a water infiltration experiment. ERT is a technique for determining the electrical resistivity distribution within a volume from measurement of injected currents and the resulting electrical potential distribution on the surface. The transfer resistance (ratio of potential to injected current) data are inverted using an algorithm based on a finite element forward solution which is iteratively adjusted in a least squares sense until the measured and calculated transfer resistances agree to within some predetermined value. Laboratory specimens of concrete pillars, 61.0 cm (24 in) in length and 20.3 cm (8 in) on a side, were prepared with various combinations of steel reinforcing bars and voids (1.27 cm diameter) which ran along the length of the pillars. An array of electrodes was placed around the pillar to allow for injecting current and measuring the resulting potentials. After the baseline resistivity distribution was determined, water was added to a void near one comer of the pillar. ERT was used to determine the resistivity distribution of the pillar at regular time intervals as water was added. The ERT images show very clearly that the water was gradually imbibed into the concrete pillar during the course of the experiment. The resistivity decreased by nearly an order of magnitude near the point of water addition in the first hour, and by nearly two orders of magnitude by the end of the experiment. Other applications for this technology include monitoring of curing in concrete structures, detecting cracks in concrete structures, detecting rebar location and corrosion state, monitoring slope stability and the stability of footings, detecting and monitoring leaks from storage tanks, monitoring thermal processes during environmental remediation, and for detecting and monitoring contaminants in soil and groundwater.

  9. Recycled Concrete as Aggregate for Structural Concrete Production

    National Research Council Canada - National Science Library

    Malešev, Mirjana; Radonjanin, Vlastimir; Marinković, Snežana

    2010-01-01

    A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper...

  10. Analyses of concrete microcosmic structure in multi-media environment

    Institute of Scientific and Technical Information of China (English)

    闫波; 姜安玺; 王幼青; 刘丽艳; 徐桂芹

    2004-01-01

    The structure of concrete generally serves in multi-media environments; various environments act differently on concrete. The compound action of some severe environments will threaten the duration of concrete and decrease the service life of a concrete structure if improperly handled. In this paper the microstructure of concrete is observed by using Scanned Electric Microscope (SEM) through contrasting experiments in media of acid, alkali and salt with that of freezing-thawing in the same medium environment. This study is to supply a certain basis for changing traditional thinking of mechanical design and to combine construction reliability design with durability of concrete design.

  11. Nondestructive Evaluation of Thick Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL

    2015-01-01

    Materials issues are a key concern for the existing nuclear reactor fleet in the United States as material degradation can lead to increased maintenance, increased downtime, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of both known and new forms of degradation. A multitude of concrete-based structures are typically part of a light water reactor plant to provide foundation, support, shielding, and containment functions. The size and complexity of nuclear power plant containment structures and the heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. This paper examines the benefits of using time-frequency analysis with Synthetic Aperture Focusing Technique (SAFT). By using wavelet packet decomposition, the original ultrasound signals are decomposed into various frequency bands that facilitates highly selective analysis of the signal’s frequency content and can be visualized using the familiar SAFT image reconstruction algorithm.

  12. Limit analysis of solid reinforced concrete structures

    DEFF Research Database (Denmark)

    Larsen, Kasper Paaske

    2009-01-01

    element for lower bound analysis of reinforced concrete structures is presented. The method defines the stress state at a point within the solid as a combination of concrete- and reinforcement stresses and yield criterions are applied to the stress components separately. This method allows for orthotropic......Recent studies have shown that Semidefinite Programming (SDP) can be used effectively for limit analysis of isotropic cohesive-frictional continuums using the classical Mohr-Coulomb yield criterion. In this paper we expand on this previous research by adding reinforcement to the model and a solid...... reinforcement and it is therefore possible to analyze structures with complex reinforcement layouts. Tests are conducted to validate the method against well-known analytical solutions....

  13. Repairs to Concrete Port and Harbor Structures

    Science.gov (United States)

    1991-11-18

    bars reduce stirrup congestion. F. Cathodic protection of adjacent steel structures should I be limited to the use of sacrificial anodes. 8...detailed ooservation. Marine Fouling. De- bris, Scouring , Con- crete spalling/ rurt linq pacnetic faqnet.: -.rface cracks, laps. Easy to interpret...from the State of Florida Bridge Repair Manual and provide additional summaries of concrete encasement methods and procedures. Note that throughout the

  14. Comparative testing of nondestructive examination techniques for concrete structures

    Science.gov (United States)

    Clayton, Dwight A.; Smith, Cyrus M.

    2014-03-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide foundation, support, shielding, and containment functions. Concrete has been used in the construction of nuclear power plants (NPPs) because of three primary properties, its inexpensiveness, its structural strength, and its ability to shield radiation. Examples of concrete structures important to the safety of LWR plants include containment building, spent fuel pool, and cooling towers. Comparative testing of the various NDE concrete measurement techniques requires concrete samples with known material properties, voids, internal microstructure flaws, and reinforcement locations. These samples can be artificially created under laboratory conditions where the various properties can be controlled. Other than NPPs, there are not many applications where critical concrete structures are as thick and reinforced. Therefore, there are not many industries other than the nuclear power plant or power plant industry that are interested in performing NDE on thick and reinforced concrete structures. This leads to the lack of readily available samples of thick and heavily reinforced concrete for performing NDE evaluations, research, and training. The industry that typically performs the most NDE on concrete structures is the bridge and roadway industry. While bridge and roadway structures are thinner and less reinforced, they have a good base of NDE research to support their field NDE programs to detect, identify, and repair concrete failures. This paper will summarize the initial comparative testing of two concrete samples with an emphasis on how these techniques could perform on NPP concrete structures.

  15. Contributions to the numerical modeling of concrete structures cracking with creep and estimation of the permeability; Contributions a la modelisation numerique de la fissuration des structures en beton avec prise en compte du fluage et estimation de la permeabilite

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, F

    2007-12-15

    The industrial context of this research work is to study the durability of the internal barriers of nuclear power plants. This paper is divided in two parts, the first part is relative to the crack-damage state and the second part to the creep consequences on the rupture properties of concrete. In the first part, the analysis of the experimental results, (carried out on a compression cylinder on which the radial permeability has been measured), shows that the permeability decreases until a deformation of half of those at the force peak, by re-closure of the preexisting microcracks in the material; then the permeability strongly increases until after the force peak by initiation, connexion and opening of the crack, and at last it increases less rapidly until the rupture because only the opening of the macro-cracks increases. In order to simulate these phenomena, two original methods are presented, in post-treatment phase, for estimating the leaks from a mechanical computing based on finite element methods. With the first method, it is possible to measure the permeability from the damage field and from a relation between the permeability and the damage which bind the Poiseuille law to an empirical law established for weak damages. The second method is on the deformations field from which the position and opening of the crack are calculated. The Poiseuille relation is then applied along the crack to estimate the leaks rates. The relation between the concrete creep and its mechanical characteristics is analyzed in the second part. In particular, are studied the creep consequences on the long term mechanical properties. After having given the experimental results which show essentially an embrittlement of the material after creep, a qualitative analysis by the bifurcations study is proposed, and then by a discrete numerical method to find again the same influence of the visco-elasticity on the rupture embrittlement experimentally observed. At last, the first results of

  16. Bond strength between stell-concrete and between concretes with different ages in structural rehabilitation

    Directory of Open Access Journals (Sweden)

    M. R. DORIA

    Full Text Available ABSTRACTIn inspections of buildings, it is common to find structures that, well before reaching its useful life longer require repairs and reinforcements. This study examined the bond strength between concrete of different ages and between steel and concrete, focusing on the recovery of reinforced concrete structures. To analyze the bond between concrete of different ages, trials with specimens receiving three different types of treatments at the interface between the concrete were performed: brushing; brushing and mortar equal to concrete of substrate and brushing and epoxy layer. Indirect tensile tests and oblique and vertical shear tests at the interface were made . The bond stress between steel and concrete was evaluated by pull out test under the conditions of the bar inserted in the still fresh concrete and when inserted in the hardened concrete with epoxy. Results showed increased bond strength by indirect tensile stress of 15% and 37%; 4% and 12% for the adherence test by oblique shear, and 108% and 178%, for the testing of vertical shear, respectively, for the specimens whose interfaces have received, in addition to brushing, layer of mortar and epoxy bridge, compared to those who received only brushing. Insignificant loss (about 0.52% of bond stress was noticed for pull out test of steel bar when compared with test results of the specimens that had steel bar inserted in the concrete in the hardened state with epoxy adhesion bridge, with those who had inserted steel bar in fresh concrete.

  17. Electrical resistance tomography of concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Daily, W.; Ramirez, A. [Lawrence Livermore National Lab., CA (United States); Binley, A.; Henry-Poulter, S. [Lancaster Univ. (United Kingdom). Dept. of Environmental Sciences

    1993-10-01

    The purpose of this work is to determine the feasibility of using Electrical resistance tomography (ERT) to nondestructively examine the interior of concrete structures such as bridge pillars and roadways. We report the results of experiments wherein ERT is used to image the two concrete specimens in the laboratory. Each specimen is 5 inches square and 12 inches long and contained steel reinforcing rods along its length. Twenty electrodes were placed on each sample and an-image of electrical resistivity distribution was generated from current and voltage measurements. We found that the images show the general location of the reinforcing steel and, what`s more important, delineate the absence of the steel. The method may therefore be useful for determining if such steel has been destroyed by corrosion, however to make it useful, the technique must have better resolution so that individual reinforcing steel units are resolved.

  18. Random Time Dependent Resistance Analysis on Reinforced Concrete Structures

    Institute of Scientific and Technical Information of China (English)

    GUAN Chang-sheng; WU Ling

    2002-01-01

    The analysis method on random time dependence of reinforced concrete material is introduced,the effect mechanism on reinforced concrete are discussed, and the random time dependence resistance of reinforced concrete is studied. Furthermore, the corrosion of steel bar in reinforced concrete structures is analyzed. A practical statistical method of evaluating the random time dependent resistance, which includes material, structural size and calculation influence, is also established. In addition, an example of predicting random time dependent resistance of reinforced concrete structural element is given.

  19. Monitoring corrosion in reinforced concrete structures

    Science.gov (United States)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  20. Strength of concrete structures under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kumpyak, O. G., E-mail: ogkumpyak@yandex.ru; Galyautdinov, Z. R., E-mail: gazr@yandex.ru; Kokorin, D. N., E-mail: kokorindenn@yandex.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    The use of elastic supports is one the efficient methods of decreasing the dynamic loading. The paper describes the influence of elastic supports on the stress-strain state of steel concrete structures exposed to one-time dynamic loading resulting in failure. Oblique bending beams on elastic supports and their elastic, elastoplastic, and elastoplastic consolidation behavior are considered in this paper. For numerical calculations the developed computer program is used based on the finite element method. Research findings prove high efficiency of elastic supports under dynamic loading conditions. The most effective behavior of elastic supports is demonstrated at the elastoplastic stage. A good agreement is observed between the theoretical and experimental results.

  1. Corrosion of reinforcement bars in steel ibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe

    Steel fibres have been known as an alternative to traditional reinforcement bars for special applications of structural concrete for decades and the use of steel fibre reinforced concrete (SFRC) has gradually increased in recent years. Steel fibres lead to reduced crack widths in concrete formed......, among other reasons, due to shrinkage and/or mechanical loading. Steel fibres are nowadays also used in combination with traditional reinforcement for structural concrete, where the role of the fibres is to minimize the crack widths whereas the traditional reinforcement bars are used for structural....... The aim of the work presented in this Ph.D. thesis was to quantify the influence of steel fibres on corrosion of traditional reinforcement bars embedded in uncracked concrete as well as cracked concrete. Focus of the work was set on the impact of steel fibres on corrosion propagation in uncracked concrete...

  2. Highly Deformable Energy-Dissipating Reinforced Concrete Elements in Seismic Design of Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Momoh Emmanuel Owoichoechi

    2017-06-01

    Full Text Available Incorporating scrap tyre rubber particles as partial replacement for aggregates has been found to produce concrete with improved ductility, deformability and damping which are desired characteristics of a viable material for enhancing structural response to earthquake vibrations. An analytical study using Drain-2dX was carried out to investigate the response of 4-storey, 3-bay reinforced concrete frames on innovative rubberised concrete deformable foundation models to simulated earthquake scaled to 5 different peak ground accelerations. Stress-strain properties of 3-layers aramid fibre-reinforced polymer (FRP-confinement for concrete incorporating waste rubber from scrap vehicle tyres were used to model the elements of this foundation models. With a partial decoupling of the superstructure from the direct earthquake force, the models showed up to 70% reduction in base shear, an improved overall q-factor of 7.1, and an estimated frame acceleration of 0.11g for an earthquake peak ground acceleration of 0.44g. This implies that a non-seismically designed reinforced concrete frame on the proposed rubberised concrete deformable foundation system would provide a simple, affordable and equally efficient alternative to the conventional and usually expensive earthquake resistant concrete frames. A supplementary Arrest System (SAS was proposed to anchor the frame from the resulting soft storey at the rubberised concrete foundation. A further research is recommended for the design of concrete hinges with rubberised concrete as used in the model with the most impressive response.

  3. Designing and rehabilitating concrete structures - probabilistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Edvardsen, C.; Mohr, L. [COWI Consulting Engineers and Planners AS, Lyngby (Denmark)

    2000-07-01

    Four examples dealing with corrosion of steel reinforcement in concrete due to chloride ingress are described, using a probabilistic approach which was developed in the recently published DuraCrete Report. The first example illustrates the difference in the required concrete cover dictated by environmental considerations. The second example concerns the update of the service life of the Great Belt Link in Denmark on the basis of measurements made five years after construction. The third example provides some design details of a tunnel in the Netherlands, while the fourth one concerns design of a column taking into account the initiation of corrosion both by means of a partial safety factor and by a probabilistic analysis. Differences in using the probabilistic approach in designing a new structure where the service life and reliability are pre-determined, and rehabilitating an existing structure where an analysis may give the answer to an estimate of the remaining service life and reliability level, are demonstrated. 9 refs., 8 tabs., 6 figs.

  4. Modelling localised fracture of reinforced concrete structures

    OpenAIRE

    Liao, F; Huang, Z.

    2015-01-01

    This paper presents a robust finite element procedure for simulating the localised fracture of reinforced concrete members. In this new model the concrete member is modelled as an assembly of plain concrete, reinforcing steel bar and bond-link elements. The 4-node quadrilateral elements are used for 2D modelling of plain concrete elements, in which the extended finite element method is adopted to simulate the formation and growth of individual cracks. The reinforcing steel bars are modelled b...

  5. Porous Network Concrete: a bio-inspired building component to make concrete structures self-healing

    NARCIS (Netherlands)

    Sangadji, S.

    2015-01-01

    The high energy consumption, its corresponding emission of CO2 and financial losses due to premature failure are the pressing sustainability issues which must be tackled by the concrete infrastructure industry. Enhancement of concrete materials and durability of structures (designing new infrastruct

  6. Porous Network Concrete: a bio-inspired building component to make concrete structures self-healing

    NARCIS (Netherlands)

    Sangadji, S.

    2015-01-01

    The high energy consumption, its corresponding emission of CO2 and financial losses due to premature failure are the pressing sustainability issues which must be tackled by the concrete infrastructure industry. Enhancement of concrete materials and durability of structures (designing new

  7. Study on Micro-Structure and Durability of Fiber Concrete

    Directory of Open Access Journals (Sweden)

    Huijun Wu

    2013-01-01

    Full Text Available In this study, we compare micro-structure characteristics of alkali-resistant glass fiber reinforced concrete, polypropylene fiber reinforced concrete, basalt fiber reinforced concrete and common concrete. Moreover, they were tested and analyzed micro-structure characteristics of fiber reinforced concretes by mercury injection, mainly analyzed the size of pore distribution, studied the influence on improving pore structure. In addition, the internal structure of fiber reinforced concrete was researched by scanning electron microscope analysis. Then the influence of fiber on the internal structure was described. Durability of the fiber reinforced concrete was tested. Durability mainly contains the frost-resistance and permeability. The permeability experiment has water-penetration and chloride penetration test study then characterize the permeability of fiber reinforced concrete through the seepage height and chloride ions diffusion coefficient. Through the result of freeze-thaw cycle 100 times we can analyze the frost resistance of fiber reinforced concrete. Finally, some fiber concrete durability is analyzed and compared.

  8. Injection technologies for the repair of damaged concrete structures

    CERN Document Server

    Panasyuk, V V; Sylovanyuk, V P

    2014-01-01

    This book analyzes the most important achievements in science and engineering practice concerning operational factors that cause damage to concrete and reinforced concrete structures. It includes methods for assessing their strength and service life, especially those that are based on modern concepts of the fracture mechanics of materials. It also includes basic approaches to the prediction of the remaining service life for long-term operational structures. Much attention is paid to injection technologies for restoring the serviceability of damaged concrete and reinforced concrete structures. In particular, technologies for remedying holes, cracks, corrosion damages etc. The books contains sample cases in which the above technologies have been used to restore structural integrity and extend the reliable service life of concrete and reinforced concrete constructions, especially NPPs, underground railways, bridges, seaports and historical relics.

  9. Numerical Limit Analysis of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Larsen, Kasper Paaske

    methods provide engineers with valuable tools for limit sta- te analysis, their application becomes difficult with increased structural complexity. The main challenge is to solve the optimization problem posed by the extremum principles. This thesis is a study of how numerical methods can be used to solve...... limit state analysis problems. The work focuses on determination of the load bearing capacity of reinforced concrete structures by employing the lower bound theorem and a finite element method using equilibrium elements is developed. The recent year’s development within the field of convex optimization...... is developed for improved perfor- mance. An example is given in which an inverse T-beam is analyzed and the numerical results are compared to laboratory tests. The third and final element is a plane shell element capable of modeling membrane and plate bending behavior. The element employs a layered disk...

  10. Seismic fragility of a reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Kurmann, Davide [Axpo Power AG, Baden (Switzerland); Proske, Dirk [Axpo Power AG, Doettingen (Switzerland); Cervenka, Jan [Cervenka Consulting, Prague (Czech Republic)

    2013-05-15

    Structures can be exposed to seismic loading. For structures of major importance, extreme seismic loadings have to be considered. The proof of safety for such loadings requires sophisticated analysis. This paper introduces an analysis method which of course still includes simplifications, but yields to a far more realistic estimation of the seismic load bearing capacity of reinforced concrete structures compared to common methods. It is based on the development of pushover curves and the application of time-histories for the dynamic model to a representative harmonic oscillator. Dynamic parameters of the oscillator, such as modal mass and damping are computed using a soil-structure-interaction analysis. Based on the pushover-curve nonlinear force-deformation-capacities are applied to the oscillator including hysteresis behaviour characteristics. The oscillator is then exposed to time-histories of several earthquakes. Based on this computation the ductility is computed. The ductility can be scaled based upon the scaling of the time-histories. Since both, the uncertainty of the earthquake by using different timehistories and the uncertainty of the structure by using characteristic and mean material values, are considered, the uncertainty of the structure under seismic loading can be explicitly represented by a fragility. (orig.)

  11. Evaluating the strength of concrete structure on terrace houses

    Science.gov (United States)

    Hasbullah, Mohd. Amran; Yusof, Rohana; Rahman, Mohd Nazaruddin Yusoff @ Abdul

    2016-08-01

    The concrete structure is the main component to support the structure of the building, but when concrete has been used for an extended period hence, it needs to be evaluated to determine the current strength, durability and how long it can last. The poor quality of concrete structures will cause discomfort to the user and, the safety will be affected due to lack of concrete strength. If these issues are not monitored or not precisely known performance, and no further action done then, the concrete structure will fail and eventually it will collapse. Five units of terrace houses that are built less than 10 years old with extension or renovations and have cracks at Taman Samar Indah, Samarahan, Sarawak have been selected for this study. The instrument used in this research is Ultrasonic Pulse Velocity (UPV), with the objective to determine the current strength and investigate the velocity of a pulse at the concrete cracks. The data showed that the average velocity of the pulse is less than 3.0 km/s and has shown that the quality of the concrete in the houses too weak scale / doubt in the strength of concrete. It also indicates that these houses need to have an immediate repair in order to remain secure other concrete structures.

  12. Innovating a classic course in concrete structures

    DEFF Research Database (Denmark)

    Goltermann, Per

    2016-01-01

    A large number of changes, new activities and approaches have been tested at DTU in the teaching of concrete structures: Use of mandatory assignments, handing out solutions before or after exercises, detailed or summary solutions, brush-up teaching materials, strengthened consistency in solutions...... impact on the students learning – what worked very well and what had no effect. The author will also identify which of these activities, that can be implemented easily and have the largest effect - eventually with the inclusion of the students......., videolectures recorded from lectures or produced from Powerpoint, electroic examples, inductive approach, repetition for reexams with or without lectures or supervisor or E-learning material, instruction videos for lab testing and many other things. The author will present his approaches and the resulting...

  13. Conceptual Design Tool for Concrete Shell Structures

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2011-01-01

    This paper focuses on conceptual tools for concrete shell structures when working within the span of performance-based design and computational morphogenesis. The designer, referred to as the Architect-Engineer, works through several iterations parallel with aesthetic, functional and technical...... requirements in the three phases of the design process; sketching, evaluation and modification. The engineering analysis is not a time consuming process, as they are at a conceptual level corresponding to the design stage. By this approach the aesthetic, functional and technical requirement are developed...... together through a process of several iterations that includes sketching, evaluation and modification. Based on this procedure a design model is proposed as a generative design model relating the engineering profession and architectural profession as a design model for conceptual architectural design....

  14. Conceptual Design Tool for Concrete Shell Structures

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2011-01-01

    requirements in the three phases of the design process; sketching, evaluation and modification. The engineering analysis is not a time consuming process, as they are at a conceptual level corresponding to the design stage. By this approach the aesthetic, functional and technical requirement are developed...... together through a process of several iterations that includes sketching, evaluation and modification. Based on this procedure a design model is proposed as a generative design model relating the engineering profession and architectural profession as a design model for conceptual architectural design.......This paper focuses on conceptual tools for concrete shell structures when working within the span of performance-based design and computational morphogenesis. The designer, referred to as the Architect-Engineer, works through several iterations parallel with aesthetic, functional and technical...

  15. Deflection determination of concrete structures considering nonlinearity based on long-gauge strain sensors

    Science.gov (United States)

    Hong, Wan; Lv, Kui; Li, Bing; Jiang, Yuchen; Hu, Xiamin; Qu, Qizhong

    2017-10-01

    Deflection determination of concrete structures using distributed long-gauge strain sensors is investigated in this paper. Firstly, the relationship between deflection and distributed long-gauge strain of concrete beams is presented, and the method is independent of external load and takes account of structural nonlinearity. The deflection distribution along the span of a beam-like structure can be predicted from strain response for the whole process of loading (elastic stage, concrete cracking stage and steel yielding stage). Secondly, experiment of a reinforced concrete beam has been conducted to verify the accuracy of the method. Experimental results show that the relative error between the estimated and actual deflection can be controlled within about 5% while the error can reach up to about 70% if structural nonlinearity is not considered. Finally, the influence of error of material parameters and sensor gauge length on deflection estimation has been analyzed. The error of concrete compression strength has a limited influence on deflection prediction while the contribution of tensile concrete should be considered before concrete cracking. The error of area of tensile bars will affect the deflection accuracy after concrete cracking.

  16. Analysis of crack propagation in concrete structures with structural information entropy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The propagation of cracks in concrete structures causes energy dissipation and release, and also causes energy redistribution in the structures. Entropy can characterize the energy redistribution. To investigate the relation between the propagation of cracks and the entropy in concrete structures, cracked concrete structures are treated as dissipative structures. Structural information entropy is defined for concrete structures. A compact tension test is conducted. Meanwhile, numerical simulations are also carried out. Both the test and numerical simulation results show that the structural information entropy in the structures can characterize the propagation of cracks in concrete structures.

  17. Performance based analysis of hidden beams in reinforced concrete structures

    Directory of Open Access Journals (Sweden)

    Helou Samir H.

    2014-01-01

    Full Text Available Local and perhaps regional vernacular reinforced concrete building construction leans heavily against designing slabs with imbedded hidden beams for flooring systems in most structures including major edifices. The practice is distinctive in both framed and in shear wall structures. Hidden beams are favoured structural elements due to their many inherent features that characterize them; they save on floor height clearance; they also save on formwork, labour and material cost. Moreover, hidden beams form an acceptable aesthetic appearance that does not hinder efficient interior space partitioning. Such beams have the added advantage of clearing the way for horizontal electromechanical ductwork. However, seismic considerations, in all likelihood, are seldom seriously addressed. The mentioned structural system of shallow beams is adopted in ribbed slabs, waffle slabs and at times with solid slabs. Ribbed slabs and waffle slabs are more prone to hidden beam inclusion due to the added effective height of the concrete section. Due to the presence of a relatively high reinforcement ratio at the joints the sections at such location tend to become less ductile with unreliable contribution to spandrel force resistance. In the following study the structural influence of hidden beams within slabs is investigated. With the primary focus on a performance based analysis of such elements within a structure. This is investigated with due attention to shear wall contribution to the overall behaviour of such structures. Numerical results point in the direction that the function of hidden beams is not as adequate as desired. Therefore it is strongly believed that they are generally superfluous and maybe eliminated altogether. Conversely, shallow beams seem to render the overall seismic capacity of the structure unreliable. Since such an argument is rarely manifested within the linear analysis domain; a pushover analysis exercise is thus mandatory for behaviour

  18. On the Degradation of Concrete in Marine Structures

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Hofman Frisch, P.; Freisleben, P.;

    1985-01-01

    practice and inherent problems are dealt with. Some recommendations on concrete specifications and production technique are also presented. The second part of the paper presents conventional concrete problems as observed in quaywall structures in harbour basins. On the background of the first two parts......Concrete is a cheap and extremely handy material and as such used extensively also in marine structures. Everybody dealing with this material knows examples of concrete apparently of almost infinite durability but also examples where serious degradation started shortly after completion...... of the structure. It is a fact that despite the tremendous amount of research and despite the material having been used for generations, the difference between success and failure is still small. The paper is in three parts. In the first part, which deals with concrete in breakwater structures, the conventional...

  19. Degradation of Waterfront Reinforced Concrete Structures

    African Journals Online (AJOL)

    Key words: Degradation, reinforced concrete, Dar es Salaam port. Abstract—One of the .... Plate 2. Typical cracks on concrete piers found on berth. 4 through 8. Plate 3. Exposed .... Rubaratuka, I. A. and Mulungu, D., 1999: Defects in reinforced ...

  20. Analyses of Concrete Structures Exposed to Fire

    DEFF Research Database (Denmark)

    Hertz, Kristian

    The text book contains the data and methods necessary for fire safety design of concrete constructions. The methods relate to standard fire as well as to any time of any other fire course.Material data are presented for concretes exposed to fire, and calculation methods are given for the ultimate...

  1. Frost resistance of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1999-01-01

    Frost resistance of fibre reinforced concrete with 2.5-4.2% air and 6-9% air (% by volume in fresh concrete) casted in the laboratory and in-situ is compared. Steel fibres with hooked ends (ZP, length 30 mm) and polypropylene fibres (PP, CS, length 12 mm) are applied. It is shown that· addition...... of 0.4-1% by volume of fibres cannot replace air entrainment in order to secure a frost resistant concrete; the minimum amount of air needed to make the concrete frost resistant is not changed when adding fibres· the amount of air entrainment must be increased when fibres are added to establish...... the same amount of air pores as in the corresponding concrete without fibres...

  2. DAMAGE LOCATION DUE TO CORROSION IN REINFORCED CONCRETE STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    WUJin; ChengJi-xin; LUMing-sheng

    2004-01-01

    An investigation on damage location due to the corrosion in reinforced concrete structures is conducted. The frequency change square ratio is used as a parameter for the damage. It is theoretically verified that the parameter is a function of the damage location. Experimental results of the corrosion in reinforced concrete structures show that the predicted damage location is in agreement with the real damage location. The modal parameters are used to detect the damages in structural concrete elements, and so they are useful for structural appraisal.

  3. Response of structural concrete elements to severe impulsive loads

    Science.gov (United States)

    Krauthammer, T.; Shanaa, H. M.; Assadi, A.

    1994-10-01

    The behavior and response of structural concrete elements under severe short duration dynamic loads was investigated numerically. The analytical approach utilized the Timoshenko beam theory for the analysis of reinforced concrete beams and one-way slabs. Nonlinear material models were used to derive the flexural and shear resistances, and the differential equations of the Timoshenko beam theory were solved numerically by applying the finite difference technique. A simplified approach was developed for estimating the strain rate in structural concrete members, and the corresponding strain rate effects on the strength of the steel and concrete were incorporated into the analysis. Detailed failure criteria were established for predicting the collapse of structural concrete members. Five cases subjected to localized impact loads and eleven cases subjected to distributed explosive loads were analyzed, and the results were compared to experimental data obtained by other investigators.

  4. Geopolymer concrete for structural use: Recent findings and limitations

    Science.gov (United States)

    Nuruddin, M. F.; Malkawi, A. B.; Fauzi, A.; Mohammed, B. S.; Almattarneh, H. M.

    2016-06-01

    Geopolymer binders offer a possible solution for several problems that facing the current cement industry. These binders exhibit similar or better engineering properties compared to cement and can utilize several types of waste materials. This paper presents the recent research progress regarding the structural behaviour of reinforced geopolymer concrete members including beams, columns and slabs. The reported results showed that the structural behaviour of the reinforced geopolymer concrete members is similar to the known behaviour of the ordinary reinforced concrete members. In addition, the currently available standards have been conservatively used for analysis and designing of reinforced geopolymer concrete structures. On the other hand, the main hurdles facing the spread of geopolymer concrete was the absence of standards and the concerns about the long-term properties. Other issues included the safety, cost and liability.

  5. Early stage beneficial effects of cathodic protection in concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Neeft, E.A.C.; Stoop, B.T.J.

    2010-01-01

    Over the last 25 years, cathodic protection (CP) of reinforced concrete structures suffering from chloride induced reinforcement corrosion has shown to be successful and durable. CP current causes steel polarisation, electrochemical reactions and ion transport in the concrete. CP systems are designe

  6. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    Science.gov (United States)

    Winkel, B. V.

    1995-03-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/sq in mix and a 4.5 kip/sq in mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/sq in. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  7. Frost resistance of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1999-01-01

    of 0.4-1% by volume of fibres cannot replace air entrainment in order to secure a frost resistant concrete; the minimum amount of air needed to make the concrete frost resistant is not changed when adding fibres· the amount of air entrainment must be increased when fibres are added to establish......Frost resistance of fibre reinforced concrete with 2.5-4.2% air and 6-9% air (% by volume in fresh concrete) casted in the laboratory and in-situ is compared. Steel fibres with hooked ends (ZP, length 30 mm) and polypropylene fibres (PP, CS, length 12 mm) are applied. It is shown that· addition...

  8. Modelling Tension Stiffening in Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter

    1997-01-01

    flexure.In the first model, the yield zone model, it is assumed that the mean crack distance is a descending function of the reinforcement stress in a crack. Furthermore it is assumed that in certain zones between the cracks the concrete is carrying its full effective tensile strength, i.e. the concrete...... with deformations in reinforced concrete disks subjected to pure shear.A physical model for the shear stress-shear strain behaviour of disks, including tension stiffening, is proposed.In the disk model it is assumed that the tensile principal stress in the concrete decreases linearly from the initiation of cracking...... until a certain load level. At any load level the model can predict the shear strains of the disk and the inclination of the crack system. When regarding tension stiffening this latter parameter will be a function of the load level.The model is compared with experimental data, and in the light...

  9. Fire's effect on chloride ingress related durability of concrete structure

    Institute of Scientific and Technical Information of China (English)

    JIN Wei-liang; ZHANG Yi

    2007-01-01

    This paper describes the effects of fire on durability of reinforced concrete structures, and points out that fire not only damages the chemical composition and physical structure of concrete by high temperature, but also leads to an additional risk due to the generation of polyvinyl chloride (PVC)combustion gases. A mathematical model is proposed to calculate chloride ingress profiles in fire damaged concrete, so as to explore the service life prediction of the structure. Rapid Chloride Migration (RCM) test was carried out to determine the chloride diffusion coefficients for the application of the mathematical model. Finally, the detected results of a reported case testified to the validity of the mathematical model.

  10. Structural concrete elements subjected to air blast loading

    OpenAIRE

    Magnusson, Johan

    2007-01-01

    In the design of structures to resist the effects of air blast loading or other severe dynamic loads it is vital to have large energy absorbing capabilities, and structural elements with large plastic deformation capacities are therefore desirable. Structures need to be designed for ductile response in order to prevent partial or total collapse due to locally failed elements. The research in this thesis considers experimental and theoretical studies on concrete beams of varying concrete stren...

  11. Influence of Binder Composition and Concrete Pore Structure on Chloride Diffusion Coefficient in Concrete

    Institute of Scientific and Technical Information of China (English)

    LI Pengping; SU Dagen; WANG Shengnian; FAN Zhihong

    2011-01-01

    The influence of binder composition and pore structure of concrete on chloride diffusion coefficient in concrete were investigated by the natural immersion test, MIP test, SEM and EDS test, respectively. The experimental results showed that the effect of binder composition on chloride diffusion coefficient was the comprehensive result of concrete pore structure and binder hydration products, and the porosity and pore size distribution were the main factors that influence the changes of diffusion coefficient. The chloride diffusion coefficient decreased with increasing the curing temperature and the relative humidity. The hydration degree were promoted by improving curing temperatures, and then the porosity of concrete decreased and the proportion of gel pore and transitional pore increased, respectively. But the water evaporation decreased with increasing the relative humidity and then decreased porosity and increased the proportion of gel pore and transitional pore. Additionally, The chloride diffusion coefficient of concrete got the lower value when the appropriate replacement of fly ash in the ranges of 10%-20%, when the double-adding fly ash and slag content was 50%. The porosity increased and the ratio of C/S in C-S-H decreased with further increasing the fly ash content, which led to increase the chloride diffusion coefficient in concrete.

  12. A New Type Anticorrosion Coating for Ocean Reinforced Concrete Structures

    Institute of Scientific and Technical Information of China (English)

    CHENG Qi; GENG Guisheng; LUO Feng; WU Sanyu; ZHAO Dalin

    2000-01-01

    Corrosion of reinforced concrete structures is a serious problem in ocean engineering. As an orientation of study, anticorrosion coating technique is developed and widely applied, but many problems need to be solved. LSW-2 type anticorrosion coating for maritime reinforced concrete structures is charac lerized by sea water resistance, salt fog resistance, moisture and heat resistance as well as impermeability to chlorions. The new type coating can be applied to wet concrete surface by conventional construction lechnique. It is a breakthrough in solving the above-mentioned problem. The paper mainly introduces the test results, the property indices, coating procedure, construction technique and economic benefit of the coating.

  13. PS buildings : reinforced concrete structure for shielding "bridge" pillar

    CERN Document Server

    CERN PhotoLab

    1956-01-01

    The PS ring traverses the region between the experimental halls South and North (buildings Nos 150 and 151) under massive bridge-shaped concrete beams. This pillar stands at the S-W end of the structure.

  14. The Compatibility in Optic Fiber Smart Concrete and Structure

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The compatibility between a fiber optical sensor and concrete structure in the optic fiber smart concrete is studied.The methods of improving the compatibility are proposed based on theory analysing, and a novel fiber optical sensor was developed. The experimental results show that the novel structure of fiber optical sensor and the scheme of the protecting layer of epoxy resin bed composite not only enable the sensor to be applied in strict environment, but also can monitor the beginning propagation and breaking of concrete cracks. The results also indicate that the sensor will maintain its properties in the case of large deformation and that it has the high compatibility with concrete structure and can meet special needs of the intelligent materials and structure.

  15. Mechanical interaction between concrete and structural reinforcement in the tension stiffening process

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2011-01-01

    investigated using an image-based deformation measurement and analysis system. This allowed for detailed view of surface deformations and the implications on the resulting response of the member in tension. In this study, conventional concrete and a ductile, strain hardening cement composite, known......The interaction between structural reinforcement and the surrounding concrete matrix in tension is a governing mechanism in the structural response of reinforced concrete members. The tension stiffening process, defined as the concrete ´s contribution to tensile response of the composite, has been...... as Engineered Cementitious Composite (ECC), have been combined with steel and glass fiber reinforced polymer (GFRP) reinforcement to contrast the effects of brittle and ductile cement matrices as well as elastic/plastic and elastic reinforcement on the tension stiffening process. Particular focus...

  16. Coating concrete secondary containment structures exposed to agrichemicals

    Energy Technology Data Exchange (ETDEWEB)

    Broder, M.F.; Nguyen, D.T.

    1995-06-01

    Concrete has traditionally been the material of choice for building secondary containment structures because it is relatively inexpensive and has structural properties which make it ideal for supporting the loads of vehicles and large tanks. However, concrete`s chemical properties make it susceptible to corrosion by some common fertilizers. Though fairly impervious to water movement, concrete is easily penetrated by vapors and solvents. It is also prone to cracking. For these reasons, the Environmental Protection Agency (EPA) believes that concrete alone may not provide an effective barrier to pesticide movement and has proposed that concrete in pesticide secondary containment structures be sealed or coated to reduce its permeability. Some state secondary containment regulations require that concrete exposed to fertilizers and pesticides be sealed or protected with a coating. Lacking guidelines, some retailers have used penetrating sealants to satisfy the law, even though these products provide little protection from chemical attack nor do they prevent pesticide egress. Other retailers who have applied thick film coatings which were properly selected have had disastrous results because the application was poorly done. Consequently, much skepticism exists regarding the performance and benefit of protective coatings.

  17. Application of electromagnetic waves in damage detection of concrete structures

    Science.gov (United States)

    Feng, Maria Q.; De Flaviis, Franco; Kim, Yoo J.; Diaz, Rodolfo E.

    2000-04-01

    Jacketing technology using fiber reinforced polymer (FRP) composites is being applied for seismic retrofit of reinforced concrete (RC) columns designed and constructed under older specifications. In this study, the authors develop an electromagnetic (EM) imaging technology for detecting voids and debonding between the jacket and the column, which may significantly weaken the structural performance of the column otherwise attainable by jacketing. This technology is based on the reflection analysis of a continuous EM wave sent toward and reflected from layered FRP-adhesive-concrete medium: Poor bonding conditions including voids and debonding will generate air gaps which produce additional reflections of the EM wave. In this study, dielectric properties of various materials involved in the FRP-jacketed RC column were first measured. Second, the measured properties were used for a computer simulation of the proposed EM imaging technology. The simulation demonstrated the difficulty in detecting imperfect bonding conditions by using plane waves, as the scattering contribution from the voids and debonding is very small compared to that from the jacketed column. Third, in order to alleviate this difficulty, a special dielectric lens was designed and fabricated to focus the EM wave on the bonding interface. Furthermore, the time gating technique is used in order to reduce the noise resulting from various uncertainties associated with the jacketed columns. Finally, three concrete columns were constructed and wrapped with glass-FRP jackets with various voids and debonding condition artificially introduced in the bonding interface. Using the proposed EM imaging technology with the lens especially designed and installed, these voids and debonding condition were successfully detected.

  18. Composite timber-concrete road bridge structure

    Directory of Open Access Journals (Sweden)

    Stojić Dragoslav

    2007-01-01

    Full Text Available This work presents preliminary design of the road bridge made of laminated timber. The supporting system of the main bearing elements is made of the laminated timber in the system of arch with three joints; the bridge slab is designed as continuous slab, made of nine equal fields; each pair is made as composite timber-concrete beam, where the road slab is made of concrete and the needle pieces are made of timber. Fundament is based on HW piles. All the elements are designed to Eurocode.

  19. Lattice Modeling of Early-Age Behavior of Structural Concrete

    Science.gov (United States)

    Pan, Yaming; Prado, Armando; Porras, Rocío; Hafez, Omar M.; Bolander, John E.

    2017-01-01

    The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based approach that utilizes a model of cementitious materials hydration to control the development of concrete properties, including stiffness, strength, and creep resistance. The approach is validated and used to simulate early-age cracking in concrete bridge decks. Structural configuration plays a key role in determining the magnitude and distribution of stresses caused by volume instabilities of the concrete material. Under restrained conditions, both thermal and hygral effects are found to be primary contributors to cracking potential. PMID:28772590

  20. Dynamic behavior of reinforced concrete frame structure during construction

    Institute of Scientific and Technical Information of China (English)

    TIAN Ming-ge; YI Wei-jian

    2008-01-01

    The effects of concrete's time-variant elastic modulus, casting structural components, assembling temporary shoring framework system, and shock by operating construction equipment on dynamic behavior of the reinforced concrete frame structure during construction were investigated. The dynamic tests of an eight-storey reinforced concrete frame structure during full-scaled stages of the sixth storey construction cycle were carried out by ambient vibration. Natural frequencies, corresponding mode shapes and damping ratio were determined by power spectrum processing the tested signal data in frequency domain. The changes of frequencies, mode shapes and damping ratios at different construction stages were given. The results show that natural frequencies and modal damping ratios reach the maximum at stage of casting fresh concrete, especially for higher modes. Modal damping ratios at each construction stage are less than 5% of those during usage.

  1. Modeling of fracture of protective concrete structures under impact loads

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, P. A., E-mail: radchenko@live.ru; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S. [Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation)

    2015-10-27

    This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.

  2. Substantiation of concrete core rational parameters for bending composite structures

    Directory of Open Access Journals (Sweden)

    Vatulia Glib

    2017-01-01

    Full Text Available In order to provide bending structures rationalization for reducing the materials consumption, labor and power inputs, construction or renovation terms, the authors considered the possibility of utilizing the structures with external steel sheet reinforcement and concrete layer made from fibers of different types. Experimental researches of various authors, both domestic and overseas, have been analyzed during the preliminary investigations. As a result, the steel and basalt fibers were selected for further inquiry, proved their rational sizes, percentage to concrete mass in structures worked under thermal and force impacts. It was developed the algorithm and software, helps to determine the stress-strain state and carrying capacity of composite floor slabs with different end and load conditions. It was concluded the necessity of physical-mechanical and thermal physic properties clarification of heated fibrous concrete. The experiment planning was performed to obtain the temperature dependences of strength and modulus of deformation, thermal conductivity and specific heat capacity of fibrous concrete mix.

  3. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.

  4. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  5. Monitoring of concrete structures using the ultrasonic pulse velocity method

    Science.gov (United States)

    Karaiskos, G.; Deraemaeker, A.; Aggelis, D. G.; Van Hemelrijck, D.

    2015-11-01

    Concrete is the material most produced by humanity. Its popularity is mainly based on its low production cost and great structural design flexibility. Its operational and ambient loadings including environmental effects have a great impact in the performance and overall cost of concrete structures. Thus, the quality control, the structural assessment, the maintenance and the reliable prolongation of the operational service life of the existing concrete structures have become a major issue. In the recent years, non-destructive testing (NDT) is becoming increasingly essential for reliable and affordable quality control and integrity assessment not only during the construction of new concrete structures, but also for the existing ones. Choosing the right inspection technique is always followed by a compromise between its performance and cost. In the present paper, the ultrasonic pulse velocity (UPV) method, which is the most well known and widely accepted ultrasonic concrete NDT method, is thoroughly reviewed and compared with other well-established NDT approaches. Their principles, inherent limitations and reliability are reviewed. In addition, while the majority of the current UPV techniques are based on the use of piezoelectric transducers held on the surface of the concrete, special attention is paid to a very promising technique using low-cost and aggregate-size piezoelectric transducers embedded in the material. That technique has been evaluated based on a series of parameters, such as the ease of use, cost, reliability and performance.

  6. Ceramic ware waste as coarse aggregate for structural concrete production.

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  7. Prestressed concrete containment structural element test

    Energy Technology Data Exchange (ETDEWEB)

    Chung, W. K.; Lee, K. J.; Cho, N. H.; Kang, H. C. [Dong Ah Construction Industrial Co. Ltd., Seoul (Korea)

    2000-12-01

    This research investigates the behavior of reinforced concrete members subjected to tension through uniaxial and biaxial tests. The review of technical papers on the uniaxial and biaxial tests is included in the research. The uniaxial tension tests are done for verifying several parameters used in the biaxial direct tension tests of containment wall panels. The strength of concrete, strength of reinforcing steel, and diameter of the steel are selected as uniaxial test parameters. The tension stiffening effect of reinforced concrete members is verified by uniaxial direct tension tests. Basic data on the test parameters and test methods for biaxial direct tension tests are obtained through the uniaxial direct tension test result and concrete property test data. The reaction frame used for the biaxial direct tension test of containment wall panel are designed with consideration of construction and transportation conditions. The test parameters of preliminary test specimen for the biaxial direct tension tests are selected and dimensions of the test specimen are determined. 14 refs., 59 figs., 11 tabs. (Author)

  8. Durability of cracked fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Nielsen, Laila

    1997-01-01

    (capillary water uptake) is used, involving an in-situ method and a laboratory method. Three different concrete qualities as well as steel fibres (ZP) and polypropylene fibres (PP) are used. Results of the durability tests on cracked FRC-beams are compared to results for uncracked FRC-beams and beams without...

  9. Report on aging of nuclear power plant reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  10. THE FORMATION OF THE MODIFIED CONCRETE STRUCTURE FOR PIPE COLLECTORS

    Directory of Open Access Journals (Sweden)

    V. M. Pylypenko

    2009-03-01

    Full Text Available In the article main points of developed technology of vibroimpact-pulse compaction of concrete mix for producing the pipes of sewage collectors are stated. It is shown that using the offered technology ensures the intensive growth of concrete strength at an initial period of hardening, the reduction of duration of heat treatment or its absolute avoidance, the manufacture of products with the stability and longevity of structures.

  11. Ductility of Reinforced Concrete Structures in Flexure

    DEFF Research Database (Denmark)

    Hestbech, Lars

    2013-01-01

    In this thesis, a rotational capacity model for flexural reinforced concrete elements is presented. The model is based on the general assumption, that any other failure mode than bending is prevented by proper design. This includes failure due to shear, anchorage, concentrated loads etc. Likewise......, beams governed by failure described by Kani’s Valley are not covered by the presented model. Hence, the model is delimited to shear reinforced elements failing in flexure. The rotational capacity model is divided into the following calculation procedures. 1. A cross sectional analysis of the critical...... are not necessarily so. An example shows the applicability of the model and a parametric study shows the advantages of the model compared with code provisions. Finally, improvements of the compression zone modelling is performed in order to include a better performance when concrete crushing is the failure criterion...

  12. Fastening elements in concrete structures - numerical simulations

    OpenAIRE

    Ozbolt, Josko; Eligehausen, Rolf

    1993-01-01

    Anchoring elements such as headed and expansion studs and grouted or undercut anchors, are often used for local transfer of loads into concrete members. In order to better understand the failure mechanism, a large number of experiments have been carried out in the past. However, due to the complicated three-dimensional load transfer a very few or no numerical studies have been performed for a number of different fastening situations i.e. influence of the embedment depth, crack-width inftuence...

  13. Forensic Building: Deterioration and Defect in Concrete Structures

    Directory of Open Access Journals (Sweden)

    Jamaluddin N.

    2017-01-01

    Full Text Available Forensic building is needed to examine the affected building structure components to assess the structural integrity. This paper highlights some of the studies involved on affected concrete structures in various building types where the non-destructive test (NDT and destructive tests. The structural integrity can be evaluated based on the extent of deterioration from the experimental results for instance the cause of the corrode reinforcements was due to inadequate concrete cover, whereas the failure of the concrete wall was due to structures’ under design which leads to the collapse of the wall. The condition of the floor slab that experience vibration was assessed from the Laser Doppler Vibrator test (LDV. Based on the test results the peak acceleration of the particular floor slab is higher.

  14. Contribution to the study of corrosion in cementitious media for the phenomenological modelling of the long-term behaviour of reinforced concrete structures; Contribution a l'etude de la corrosion en milieu cimentaire pour la modelisation phenomenologique du comportement a long terme des ouvrages en beton arme

    Energy Technology Data Exchange (ETDEWEB)

    L' hostis, V.

    2010-12-15

    Many of the facilities and structures involved in the nuclear industry call for reinforced concrete (RC) in their construction. The corrosion of rebars is the main ageing pathology that those RC structures will meet during their service life (leading to concrete cracking and structural bearing capacity decrease). Concrete carbonation and chloride ingress in concrete are both at the origin of the active corrosion state. Passive corrosion has also to be considered in a context of very long lifetime (waste management). It is of primary importance to dispose of accurate and validated tools in order to predict where and how damages will appear. In 2002, the Commissariat a l Energie atomique decided to develop an intensive research programme dedicated to predicting the long-term behaviour of RC structures affected by steel corrosion (CIMETAL Project). This document aims at synthesize the main outputs coming from the project and exposes the scientific strategy was drawn and applied in order to predict the long-term behaviour of RCs that were mainly exposed to carbonation conditions. That strategy includes experiments for the characterisation of 'short-term' and 'long-term' corrosion layouts and processes, as well as modelling stages, with a view not only to predicting the behaviour of RC, but also to pointing out phenomena that are further verified experimentally. (author)

  15. Maintenance Planning for Chloride Initiated Corrosion in Concrete Structures

    DEFF Research Database (Denmark)

    Engelund, S.; Sørensen, John Dalsgaard

    1998-01-01

    Corrosion of the reinforcement in concrete structures can be initiated when the chloride concentration around the reinforcement exceeds a threshold value. In order to prevent the corrosion from reaching a stage where the load-bearing capacity of a given structure suffers a substantial decrease...

  16. Durability of marine concrete structures - field investigations and modelling

    NARCIS (Netherlands)

    Polder, R.B.; Rooij, M.R. de

    2006-01-01

    This article presents a series of investigations on six concrete structures along the North Sea coast in The Netherlands. They had ages between 18 and 41 years and most of them were made using Blast Furnace Slag cement. Visual inspections showed corrosion damage in only one structure, related to rel

  17. Durability of marine concrete structures - field investigations and modelling

    NARCIS (Netherlands)

    Polder, R.B.; Rooij, M.R. de

    2005-01-01

    This article presents a series of investigations on six concrete structures along the North Sea coast in The Netherlands. They had ages between 18 and 41 years and most of them were made using Blast Furnace Slag cement. Visual inspections showed corrosion damage in only one structure, related to rel

  18. Corrosion inhibiting repair and rehabilitation treatment process for reinforced concrete structures

    OpenAIRE

    1994-01-01

    A repair and rehabilitation treatment process for reinforced concrete structures involves the removal of concrete from above rebar or other metal reinforcement material in the concrete structure. After removal of concrete, the metal reinforcement materials are saturated with corrosion inhibiting agents. Saturation is best achieved by multiple spray applications of the corrosion inhibitor. The cavity in the concrete structure with the treated rebar or other metal reinforcement materials is the...

  19. Offshore concrete structures; Estructuras Offshore (mar adentro) de Hormigon

    Energy Technology Data Exchange (ETDEWEB)

    Lamas Pardo, M.; Carral Couce, L. M.

    2011-07-01

    In the offshore industry there are two possible materials for the construction of the hull of a structure; the steel and concrete, with the first one widely used until now, as in the rest of the shipbuilding industry of merchant ships, warships, etc. Materials such as aluminum, GRP or timber areused in small units with lengths lower than 100 m, and in less adverse conditions than in the offshore industry. Nevertheless, some ships/barges have been built of concrete in the past, but have been rather isolated cases which have not changed the practice in the industry. In the First and Second World War were built by the scarcity of materials, while the series of barges by Alfred A. Yee was a rare exception. Other units were also made in concrete, but almost anecdotal. Still, the behaviour of these concrete structures, especially in terms of maintenance, has been excellent. Therefore, the fact that the concrete has not had an adequate reception so far in shipbuilding, does not mean that in will not be the material best suited for the offshore industry in the future. The extra displacement and associated fuel costs in concrete ships have been found prohibitive in the past. But the loss of mobility of a concrete hull in relation to a steel hull can be perfectly offset by the advantages offered by the concrete, as the shipping and offshore industry have very different priorities. One of the main differences in these priorities is in terms of maintenance and resistance to fatigue, precisely where the concrete performs better. ships can easily be dry docked for maintenance and repair, while in the offshore platforms these works have to be done in situ so maintenance and fatigue are crucial to them. Besides these, the concrete has other advantages according to findings of several studies. And although they are interested in the conclusions that the makes as they came from people in the concrete industry, the fact that in recent years concrete offshore unit shave been built

  20. Stochastic modeling of reinforced concrete structures exposed to chloride attack

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Frier, Christian

    2004-01-01

    the reinforcement exceeds a critical threshold value. In the present paper a stochastic model is described by which the chloride content in a reinforced concrete structure can be estimated. The chloride ingress is modeled by a 2-dimensional diffusion process and the diffusion coefficient, surface chloride......For many reinforced concrete structures corrosion of reinforcement is an important problem since it can result in expensive maintenance and repair actions. Further, a significant reduction of the load-bearing capacity can occur. One mode of corrosion initiation is that the chloride content around...

  1. Cathodic protection of reinforced concrete structures in the Netherlands - Experience and developments: Cathodic protection of concrete - 10 years experience

    NARCIS (Netherlands)

    Polder, R.B.

    1998-01-01

    Cathodic protection (CP) of reinforcing steel in concrete structures has been used successfully for over 20 years. CP is able to stop corrosion in a reliable and economical way where chloride contamination has caused reinforcement corrosion and subsequent concrete damage. To new structures where cor

  2. Cathodic protection of reinforced concrete structures in the Netherlands - Experience and developments: Cathodic protection of concrete - 10 years experience

    NARCIS (Netherlands)

    Polder, R.B.

    1998-01-01

    Cathodic protection (CP) of reinforcing steel in concrete structures has been used successfully for over 20 years. CP is able to stop corrosion in a reliable and economical way where chloride contamination has caused reinforcement corrosion and subsequent concrete damage. To new structures where

  3. A method for the realization of complex concrete gridshell structures in pre-cast concrete

    DEFF Research Database (Denmark)

    Larsen, Niels Martin; Egholm Pedersen, Ole; Pigram, Dave

    2012-01-01

    This paper describes a method for the design and fabrication of complex funicular structures from discrete precast concrete elements. The research proposes that through the integration of digital form finding techniques, computational file-to-fabrication workflows and innovative sustainable...... concrete casting techniques, complex funicular structures can be constructed using prefabricated elements in a practical, affordable and materially efficient manner. A recent case study is examined, in which the methodology has been used to construct a pavilion. Custom written dynamic relaxation software...... in collaboration between the Aarhus School of Architecture and the University of Technology, Sydney (UTS). Basic research in casting techniques defined the framework for the design process, and a custom written dynamic relaxation software application became the primary form-generating tool in the design process...

  4. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bru Brea, Jose Maria [Idaho National Lab. (INL), Idaho Falls, ID (United States); Koester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  5. Design optimization of embedded ultrasonic transducers for concrete structures assessment.

    Science.gov (United States)

    Dumoulin, Cédric; Deraemaeker, Arnaud

    2017-08-01

    In the last decades, the field of structural health monitoring and damage detection has been intensively explored. Active vibration techniques allow to excite structures at high frequency vibrations which are sensitive to small damage. Piezoelectric PZT transducers are perfect candidates for such testing due to their small size, low cost and large bandwidth. Current ultrasonic systems are based on external piezoelectric transducers which need to be placed on two faces of the concrete specimen. The limited accessibility of in-service structures makes such an arrangement often impractical. An alternative is to embed permanently low-cost transducers inside the structure. Such types of transducers have been applied successfully for the in-situ estimation of the P-wave velocity in fresh concrete, and for crack monitoring. Up to now, the design of such transducers was essentially based on trial and error, or in a few cases, on the limitation of the acoustic impedance mismatch between the PZT and concrete. In the present study, we explore the working principles of embedded piezoelectric transducers which are found to be significantly different from external transducers. One of the major challenges concerning embedded transducers is to produce very low cost transducers. We show that a practical way to achieve this imperative is to consider the radial mode of actuation of bulk PZT elements. This is done by developing a simple finite element model of a piezoelectric transducer embedded in an infinite medium. The model is coupled with a multi-objective genetic algorithm which is used to design specific ultrasonic embedded transducers both for hard and fresh concrete monitoring. The results show the efficiency of the approach and a few designs are proposed which are optimal for hard concrete, fresh concrete, or both, in a given frequency band of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Study on Fractal Characteristics of Cracks and Pore Structure of Concrete based on Digital Image Technology

    OpenAIRE

    Xianyu Jin; Bei Li; Ye Tian; Nanguo Jin; An Duan

    2013-01-01

    Based on the fractal theory, this study presents a numerical analysis on the fractal characteristics of cracks and pore structure of concrete with the help of digital image technology. The results show that concrete cracks and the micro pore distribution of concrete are of fractal characteristics and the fractal dimension ranges from 1 to 2. The fractal characteristics of pores in cracked concrete and un-cracked concrete is similar and the former fractal dimension of the micro pore structure ...

  7. Inspection of reinforcement concrete structures with active infrared thermography

    Science.gov (United States)

    Szymanik, Barbara; Chady, Tomasz; Frankowski, Paweł

    2017-02-01

    In this article the reinforced concrete non-destructive evaluation using active thermography is discussed. There are several aspects of possible non-destructive testing of mentioned structures. One of them is the detection and assessment of the reinforcement itself. In case of active thermography, the external energy source has to be used to induce the thermal response of the inspected specimen. Here, authors propose two different techniques: microwave heating and induction heating. In this article authors will present several experimental results which will allow to compare mentioned two techniques of heating. suitability of each one to assess the reinforced concrete by using the active thermography will be discussed.

  8. Conservation of concrete structures in fib model code 2010

    NARCIS (Netherlands)

    Matthews, S.L.; Ueda, T.; Bigaj-van Vliet, A.

    2012-01-01

    Chapter 9: Conservation of concrete structures forms part of fib Model Code 2010, the first draft of which was published for comment as fib Bulletins 55 and 56 (fib 2010). Numerous comments were received and considered by fib Special Activity Group 5 responsible for the preparation of fib Model Code

  9. What Happens with Reinforced Concrete Structures when the Reinforcement Corrodes

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper, corrosion of reinforced concrete structures is discussed from the point of view of corrosion products. The different types of corrosion products are presented and a detailed study of the important diffusion coefficient is performed. Stochastic modelling of corrosion initiated...

  10. Conservation of concrete structures in fib model code 2010

    NARCIS (Netherlands)

    Matthews, S.L.; Ueda, T.; Bigaj-van Vliet, A.

    2012-01-01

    Chapter 9: Conservation of concrete structures forms part of fib Model Code 2010, the first draft of which was published for comment as fib Bulletins 55 and 56 (fib 2010). Numerous comments were received and considered by fib Special Activity Group 5 responsible for the preparation of fib Model Code

  11. FEM-models of cathodic protection systems for concrete structures

    NARCIS (Netherlands)

    Bertolini, L.; Lollini, F.; Redaelli, E.; Polder, R.B.; Peelen, W.H.A.

    2008-01-01

    A significant number of reinforced concrete structures shows deterioration due to the reinforcement corrosion and requires interventions to guarantee their residual service life. A wide range of maintenance options is available, among which cathodic protection (CP) has been found to be a successful

  12. Advanced numerical design for economical cathodic protection for concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.

    2008-01-01

    Concrete structures under aggressive load may suffer chloride induced reinforcement corrosion, in particular with increasing age. Due to high monetary and societal cost (non-availability), replacement is often undesirable. Durable repair is necessary, e.g. by Cathodic Protection (CP). CP involves an

  13. Probabilistic inspection and maintenance for concrete bridge structures

    NARCIS (Netherlands)

    Li, Y.; Vrouwenvelder, A.C.W.M.

    2002-01-01

    Due to a variety of physical and chemical processes, concrete bridges as well as other civil engineering structures deteriorate and may reach, after some time, a minimum acceptable level of performance. At that point in time maintenance (including inspection, repair and replacement) has to be carrie

  14. Applicability Problem in Optimum Reinforced Concrete Structures Design

    Directory of Open Access Journals (Sweden)

    Ashara Assedeq

    2016-01-01

    Full Text Available Optimum reinforced concrete structures design is very complex problem, not only considering exactness of calculus but also because of questionable applicability of existing methods in practice. This paper presents the main theoretical mathematical and physical features of the problem formulation as well as the review and analysis of existing methods and solutions considering their exactness and applicability.

  15. Design, Analysis And Realization Of Topology Optimized Concrete Structures

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Dombernowsky, Per

    2012-01-01

    This paper proposes the application of topology optimisation as a constitutive design tool for design and form-finding of architectural concrete structures, and realisation of these designs using large scale CNCmilling of polystyrene form-work for in situ casting....

  16. Condition Indicators for Inspection Planning of Concrete Structures

    DEFF Research Database (Denmark)

    Faber, M.H.; Sørensen, John Dalsgaard

    2002-01-01

    Based on previous work by the authors a Bayesian formulation of condition indicators is developed further whereby in conjunction with a systems modelling of concrete structures the experience and expertise of the inspection personnel may be fully utilized. It is shown how the predicted evolution...

  17. Indicators for Inspection and Maintenance Planning of Concrete Structures

    DEFF Research Database (Denmark)

    Faber, M.H.; Sørensen, John Dalsgaard

    2002-01-01

    utilized and consistently updated as frequentistic information is collected. The approach is illustrated on an example considering a concrete structure subject to corrosion. It is shown how half-cell potential measurements may be utilized to update the probability of excessive repair after 50 years...

  18. Rigid-plastic seismic design of reinforced concrete structures

    DEFF Research Database (Denmark)

    Costa, Joao Domingues; Bento, R.; Levtchitch, V.

    2007-01-01

    In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...

  19. Structural Lightweight Concrete Production by Using Oil Palm Shell

    Directory of Open Access Journals (Sweden)

    Habibur Rahman Sobuz

    2014-01-01

    Full Text Available Conventional building materials are widely used in a developing country like Malaysia. This type of material is costly. Oil palm shell (OPS is a type of farming solid waste in the tropical region. This paper aims to investigate strength characteristics and cost analysis of concrete produced using the gradation of OPS 0–50% on conventional coarse aggregate with the mix proportions 1 : 1.65 : 2.45, 1 : 2.5 : 3.3, and 1 : 3.3 : 4.2 by the weight of ordinary Portland cement, river sand, crushed stone, and OPS as a substitution for coarse aggregate. The corresponding w/c ratios were used: 0.45, 0.6, and 0.75, respectively, for the defined mix proportions. Test results indicate that compressive strength of concrete decreased as the percentage of the OPS increased in each mix ratio. Other properties of OPS concrete, namely, modulus of rupture, modulus of elasticity, splitting tensile strength, and density, were also determined and compared to the corresponding properties of conventional concrete. Economic analysis also indicates possible cost reduction of up to 15% due to the use of OPS as coarse aggregate. Finally, it is concluded that the use of OPS has great potential in the production of structural lightweight concrete.

  20. Treatment Prevents Corrosion in Steel and Concrete Structures

    Science.gov (United States)

    2007-01-01

    In the mid-1990s, to protect rebar from corrosion, NASA developed an electromigration technique that sends corrosion-inhibiting ions into rebar to prevent rust, corrosion, and separation from the surrounding concrete. Kennedy Space Center worked with Surtreat Holding LLC, of Pittsburgh, Pennsylvania, a company that had developed a chemical option to fight structural corrosion, combining Surtreat's TPS-II anti-corrosive solution and electromigration. Kennedy's materials scientists reviewed the applicability of the chemical treatment to the electromigration process and determined that it was an effective and environmentally friendly match. Ten years later, NASA is still using this approach to fight concrete corrosion, and it has also developed a new technology that will further advance these efforts-a liquid galvanic coating applied to the outer surface of reinforced concrete to protect the embedded rebar from corrosion. Surtreat licensed this new coating technology and put it to use at the U.S. Army Naha Port, in Okinawa, Japan. The new coating prevents corrosion of steel in concrete in several applications, including highway and bridge infrastructures, piers and docks, concrete balconies and ceilings, parking garages, cooling towers, and pipelines. A natural compliment to the new coating, Surtreat's Total Performance System provides diagnostic testing and site analysis to identify the scope of problems for each project, manufactures and prescribes site-specific solutions, controls material application, and verifies performance through follow-up testing and analysis.

  1. Durability and Micro-structure of Reactive Powder Concrete

    Institute of Scientific and Technical Information of China (English)

    LIU Juanhong; SONG Shaomin; WANG Lin

    2009-01-01

    Durability of traditional reactive powder concrete(RPC)with rich cement and high volume of fly-ash reactive powder concrete(FRPC)were studied.The X-diffraction and scanning electron microscope(SEM)measurement was imployed to analyze the microstructure.The results show that both types of RPC have higher compressive strength,less volume shrinkage ratio and better carbonation-,chloride-,freezing-resistances than the conventional concrete.The results of X-diffraction indicate that they basically have C-S-H as the main composition without Ca(OH)_2 crystal and ettringite.SEM results show that hydration products of FRPC is mainlyⅢ-C-S-H which is piled up closely like densely arranged stone body and it has very compacted structure,in addition,Ca/Si ratio of C-S-H gel is lower than 1.5.

  2. Effect of calcifying bacteria on permeation properties of concrete structures.

    Science.gov (United States)

    Achal, V; Mukherjee, A; Reddy, M S

    2011-09-01

    Microbially enhanced calcite precipitation on concrete or mortar has become an important area of research regarding construction materials. This study examined the effect of calcite precipitation induced by Sporosarcina pasteurii (Bp M-3) on parameters affecting the durability of concrete or mortar. An inexpensive industrial waste, corn steep liquor (CSL), from starch industry was used as nutrient source for the growth of bacteria and calcite production, and the results obtained with CSL were compared with those of the standard commercial medium. Bacterial deposition of a layer of calcite on the surface of the specimens resulted in substantial decrease of water uptake, permeability, and chloride penetration compared with control specimens without bacteria. The results obtained with CSL medium were comparable to those obtained with standard medium, indicating the economization of the biocalcification process. The results suggest that calcifying bacteria play an important role in enhancing the durability of concrete structures.

  3. Interfacial chemistry of zinc anodes for reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.; Holcomb, G.R. [Dept. of Energy, Albany, OR (United States). Albany Research Center; McGill, G.E.; Cryer, C.B. [Oregon Dept. of Transportation, Salem, OR (United States); Stoneman, A. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Carter, R.R. [California Dept. of Transportation, Sacramento, CA (United States)

    1997-12-01

    Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 to 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.

  4. Comparison between Ribbed Slab Structure using Lightweight Foam Concrete and Solid Slab Structure using Normal Concrete

    Directory of Open Access Journals (Sweden)

    Mohd Zailan Sulieman

    2010-03-01

    Full Text Available

    The aim of this study is to demonstrate that one-way ribbed slab with lightweight foam concrete can be used to reduce the dead load on slab concrete structure. This would allow the structural designer to reduce the size of column, footing and other load

  5. Mixed Consolidation Solution for a Reinforced Concrete Structure

    Science.gov (United States)

    Lute, M.

    2016-06-01

    During the last years, reinforced concrete structures become subject for rehabilitation due to two factors: their long life span and large change in norms that leaded to a large increase of seismic loads in Eastern Europe. These lead to a necessity for rehabilitation of existing building stock in order to use them during their entire life span at the maximum potential. The present paper proposes a solution for rehabilitation for three reinforced concrete building of a hospital, that consumed a half of their life span and do not correspond anymore to present norms. The chosen solution is a combination between CFRP rehabilitation and increase of structural elements cross section in order to achieve the stiffness balance in the structure nodes that is required by present norms. As a further matter, correction in stiffness of local elements diminished the lateral drifts of the structure and improved the global seismic response of the building.

  6. Contributions and mechanisms of action of graphite nanomaterials in ultra high performance concrete

    Science.gov (United States)

    Sbia, Libya Ahmed

    Ultra-high performance concrete (UHPC) reaches high strength and impermeability levels by using a relatively large volume fraction of a dense binder with fine microstructure in combination with high-quality aggregates of relatively small particle size, and reinforcing fibers. The dense microstructure of the cementitions binder is achieved by raising the packing density of the particulate matter, which covers sizes ranging from few hundred nanometers to few millimeters. The fine microstructure of binder in UHPC is realized by effective use of pozzolans to largely eliminate the coarse crystalline particles which exist among cement hydrates. UHPC incorporates (steel) fibers to overcome the brittleness of its dense, finely structured cementitious binder. The main thrust of this research is to evaluate the benefits of nanmaterials in UHPC. The dense, finely structure cementitious binder as well as the large volume fraction of the binder in UHPC benefit the dispersion of nanomaterials, and their interfacial interactions. The relatively close spacing of nanomaterials within the cementitious binder of UHPC enables them to render local reinforcement effects in critically stressed regions such as those in the vicinity of steel reinforcement and prestressing strands as well as fibers. Nanomaterials can also raise the density of the binder in UHPC by extending the particle size distribution down to the few nanometers range. Comprehensive experimental studies supported by theoretical investigations were undertake in order to optimize the use of nanomaterials in UHPC, identity the UHPC (mechanical) properties which benefit from the introduction of nanomaterials, and define the mechanisms of action of nanomaterials in UHPC. Carbon nanofiber was the primary nanomaterial used in this investigation. Some work was also conducted with graphite nanoplates. The key hypotheses of the project were as follows: (i) nanomaterials can make important contributions to the packing density of the

  7. Probabilistic Nonlinear Analysis of Reinforced Concrete Bubbler Tower Structure Failure

    Directory of Open Access Journals (Sweden)

    Králik Juraj

    2014-06-01

    Full Text Available This paper describes the reliability analysis of concrete bubbler tower structure of nuclear power plant with the reactor WWER 440 under high internal overpressure. There is showed summary of calculation models and calculation methods for the probability analysis of the structural integrity considering degradation effects and high internal overpressure. The uncertainties of the resistance and the calculation model were taking in the account in the RSM method.

  8. Electro-chemical methods of corrosion monitoring for marine concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Page, C.L.; Cunningham, P.J. [Aston Univ., Birmingham (United Kingdom)

    1988-12-31

    Corrosion potential mapping and concrete resistivity measurements have been used for several years for the assessment of reinforced concrete structures. These techniques have also been used to characterise the corrosion state of reinforcing steel used in marine concrete structures. The object of the research was to examine the effectiveness of these electrochemical methods of corrosion monitoring and to assess their reliability, reproducibility and sensitivity when applied to marine concrete structures. (author)

  9. Application of the self-diagnosis composite into concrete structure

    Science.gov (United States)

    Matsubara, Hideaki; Shin, Soon-Gi; Okuhara, Yoshiki; Nomura, Hiroshi; Yanagida, Hiroaki

    2001-04-01

    The function and performance of the self-diagnosis composites embedded in mortar/concrete blocks and concrete piles were investigated by bending tests and electrical resistance measurements. Carbon powder (CP) and carbon fiber (CF) were introduced in glass fiber reinforced plastics composites to obtain electrical conductivity. The CP composite has commonly good performances in various bending tests of block and pile specimens, comparing to the CF composite. The electrical resistance of the CP composite increases in a small strain to response remarkably micro-crack formation at about 200 (mu) strain and to detect well to smaller deformations before the crack formation. The CP composite possesses a continuous resistance change up to a large strain level near the final fracture of concrete structures reinforced by steel bars. The cyclic bending tests showed that the micro crack closed at unloading state was able to be evaluated from the measurement of residual resistance. It has been concluded that the self- diagnosis composite is fairly useful for the measurement of damage and fracture in concrete blocks and piles.

  10. Performance and working life of cathodic protection systems for concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Worm, D.; Courage, W.; Leegwater, G.

    2012-01-01

    Corrosion of reinforcing steel in concrete structures causes concrete cracking and steel diameter reduction, eventually resulting in loss of safety. Conventional repair means heavy, labour intensive and costly work and the required quality level is under economic pressure. Consequently, conventional

  11. Performance and working life of cathodic protection systems for concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Worm, D.; Courage, W.; Leegwater, G.

    2012-01-01

    Corrosion of reinforcing steel in concrete structures causes concrete cracking and steel diameter reduction, eventually resulting in loss of safety. Conventional repair means heavy, labour intensive and costly work and the required quality level is under economic pressure. Consequently, conventional

  12. Study of the performance of four repairing material systems for hydraulic structures of concrete dams

    Directory of Open Access Journals (Sweden)

    Kormann A. C. M.

    2003-01-01

    Full Text Available Four types of repairing materials are studied as function of either a conventional concrete or a reference-concrete (RefC, these are: polymer-modified cement mortar (PMor, steel fiber concrete (SFco, epoxy mortar (EMor and silica fume mortar (SFmo, to be applied in hydraulic structures surfaces subjected to a high velocity water flow. Besides the mechanical requests and wearing resistance of hydraulic concrete dam structures, especially the spillway surfaces, the high solar radiation, the environmental temperature and wet and dry cycles, contribute significantly to the reduction of their lifespan. RefC and the SFco were developed based on a usual concrete mixture used in slabs of spillways. The average RefC mixture used was 1: 1.61: 2.99: 0.376, with Pozzolan-modified Portland cement consumption of 425 kg/m³. EMor and PMor mixtures followed the information given by the manufacturers and lab experience. Tests on concrete samples were carried out in laboratory simulating normally found environmental situations in order to control the mechanical resistance and the aging imposed conditions, such as solar radiation and humidity. Also, physicochemical characterizing tests were made for all used materials. From the analyzed results, two of them presented a higher performance: the EMor and SFmo. SFco presented good adherence to the RefC and good mechanical performance. However, it also presented apparent metal corrosion in humidity tests, being indicated for use, with caution, as an intermediate layer in underwater repairs. In a general classification, considering all tests, including their field applications, the better performance material systems were EMor- SFmo> SFco> PMor.

  13. Nondestructive evaluation of dissipative behavior of reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Luong, M.P. [Ecole Polytechnique, LMS, CNRS, 91 - Palaiseau (France)

    2001-07-01

    Current technological developments tend toward increased exploitation of materials strengths and toward tackling extreme loads and environmental actions such as offshore structures subject to wind and wave loading, or buildings in seismic area. Concrete is widely used as a construction material because of its high strength-cost ratio in many applications. Experience of earthquakes and laboratory tests has shown that well designed and detailed reinforced concrete is suitable for earthquake resistant structures. The most severe likely earthquake can be survived if the members are sufficiently ductile to absorb and dissipate seismic energy by inelastic deformation. This requires a designer to assess realistically the acceptable levels of strength and to ensure adequate dissipation. This paper proposes the use of infrared thermography as a nondestructive, noncontact and real-time technique to examine diverse mechanisms of dissipation and to illustrate the onset of damage process, stress concentration and heat dissipation localization in loaded zone. In addition, this technique can be used as a nondestructive method for evaluating the fatigue limit of concrete structure subject to repeated loading.

  14. Prediction of Chloride Diffusion in Concrete Structure Using Meshless Methods

    Directory of Open Access Journals (Sweden)

    Ling Yao

    2016-01-01

    Full Text Available Degradation of RC structures due to chloride penetration followed by reinforcement corrosion is a serious problem in civil engineering. The numerical simulation methods at present mainly involve finite element methods (FEM, which are based on mesh generation. In this study, element-free Galerkin (EFG and meshless weighted least squares (MWLS methods are used to solve the problem of simulation of chloride diffusion in concrete. The range of a scaling parameter is presented using numerical examples based on meshless methods. One- and two-dimensional numerical examples validated the effectiveness and accuracy of the two meshless methods by comparing results obtained by MWLS with results computed by EFG and FEM and results calculated by an analytical method. A good agreement is obtained among MWLS and EFG numerical simulations and the experimental data obtained from an existing marine concrete structure. These results indicate that MWLS and EFG are reliable meshless methods that can be used for the prediction of chloride ingress in concrete structures.

  15. Novel approach to make concrete structures self-healing using porous network concrete

    NARCIS (Netherlands)

    Sangadji, S.; Schlangen, E.

    2012-01-01

    Many researchers proposed self healing mechanism using hollow fibres and or microcapsule containing a modifying agent dispersed in the concrete to prolong its service life and make it more durable. A novel self healing concrete concept is proposed in this paper by using porous network concrete

  16. Novel approach to make concrete structures self-healing using porous network concrete

    NARCIS (Netherlands)

    Sangadji, S.; Schlangen, E.

    2012-01-01

    Many researchers proposed self healing mechanism using hollow fibres and or microcapsule containing a modifying agent dispersed in the concrete to prolong its service life and make it more durable. A novel self healing concrete concept is proposed in this paper by using porous network concrete compo

  17. Novel approach to make concrete structures self-healing using porous network concrete

    NARCIS (Netherlands)

    Sangadji, S.; Schlangen, E.

    2012-01-01

    Many researchers proposed self healing mechanism using hollow fibres and or microcapsule containing a modifying agent dispersed in the concrete to prolong its service life and make it more durable. A novel self healing concrete concept is proposed in this paper by using porous network concrete compo

  18. Condition Indicators for Inspection Planning of Concrete Structures

    DEFF Research Database (Denmark)

    Faber, M.H.; Sørensen, John Dalsgaard

    2002-01-01

    Based on previous work by the authors a Bayesian formulation of condition indicators is developed further whereby in conjunction with a systems modelling of concrete structures the experience and expertise of the inspection personnel may be fully utilized. It is shown how the predicted evolution...... of the deterioration of the structure may be consistently updated based on inspection results. This facilitates that inspection results may be used in the long term planning of inspection and maintenance of structures. The approach is illustrated on an example considering half-cell measurement inspections...

  19. Strengthening of Concrete Structures with cement based bonded composites

    DEFF Research Database (Denmark)

    Täljsten, Björn; Blanksvärd, Thomas

    2008-01-01

    Polymers). The method is very efficient and has achieved world wide attention. However, there are some drawbacks with the use of epoxy, e.g. working environment, compatibility and permeability. Substituting the epoxy adherent with a cement based bonding agent will render a strengthening system...... with improved working environment and better compatibility to the base concrete structure. This study gives an overview of different cement based systems, all with very promising results for structural upgrading. Studied parameters are structural retrofit for bending, shear and confinement. It is concluded...

  20. The Effect of Elevated Temperature on Concrete Materials and Structures - a Literature Review.

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2006-03-01

    The objective of this limited study was to provide an overview of the effects of elevated temperature on the behavior of concrete materials and structures. In meeting this objective the effects of elevated temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The effects of elevated temperature on high-strength concrete materials are noted and their performance compared to normal strength concretes. A review of concrete materials for elevated-temperature service is presented. Nuclear power plant and general civil engineering design codes are described. Design considerations and analytical techniques for evaluating the response of reinforced concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures are described.

  1. The Study on the Durability of Submerged Structure Displacement due to Concrete Failure

    Science.gov (United States)

    Mohd, M.; Zainon, O.; Rasib, A. W.; Majid, Z.

    2016-09-01

    Concrete structures that exposed to marine environments are subjected to multiple deterioration mechanisms. An overview of the existing technology for submerged concrete, pressure resistant, concrete structures which related such as cracks, debonds, and delamination are discussed. Basic knowledge related to drowning durability such as submerged concrete structures in the maritime environment are the durability of a concrete and the ability to resist to weathering, chemical attack, abrasion or other deterioration processes. The measuring techniques and instrumentation for geometrical monitoring of submerged structural displacements have traditionally been categorized into two groups according to the two main groups, namely as geodetic surveying and geotechnical structural measurements of local displacements. This paper aims to study the durability of submerged concrete displacement and harmful effects of submerged concrete structures.

  2. Relationship between pore structure and compressive strength of concrete: Experiments and statistical modeling

    Indian Academy of Sciences (India)

    J BU; Z TIAN

    2016-03-01

    Properties of concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the pore structure-compressive strength relationship in concrete. Several concrete mixtures with different pore structures are proportioned and subjected to static compressive tests. The pore structure features such as porosity, pore size distribution are extracted using mercury intrusion porosimetry technique. A statistical model is developed to relate thecompressive strength to relevant pore structure features.

  3. Push-Over Analysis for Concrete Structures of Tall Building

    Institute of Scientific and Technical Information of China (English)

    朱杰江; 张佩军; 吕西林; 容柏生

    2004-01-01

    In this paper, push-over analysis for tall concrete structures was made and a corresponding computer program was given.Several kinds of elements in the program were considered to meet the demand of tall buildings with complex structural type. These elements included beam-column element for beams and columns, single slice wall element and three vertical line element for walls, and tube-wall element for tubes. Computational example for verifying the models indicates that the result obtained by this method is identical with a well-known test result and the program can be used to search for the full process of structural reaction, even the softening stage of the structure. With this push-over analysis method, an actual tall building with complex structural type was analyzed, and the result has been put into practice of the structural design of the building.

  4. Advanced Design of Composite Steel-Concrete Structural element

    Directory of Open Access Journals (Sweden)

    Dr. D. R. Panchal

    2014-07-01

    Full Text Available Composite framing system consisting of steel beams acting interactively with metal deck-concrete slab and concrete encased composite columns, has been as a viable alternative to the conventional steel or reinforced concrete system in the high-rise construction. However, in Indian context, it is comparatively new and no appropriate design codes are available for the same. Complications in the analysis and design of composite structures have led numerous researchers to develop simplified methods so as to eliminate a number of large scale tests needed for the design. In the present work, a simplified method of composite slabs, beams and columns design is used and software is developed with pre- and post- processing facilities in VB.NET. All principal design checks are incorporated in the software. The full and partial shear connection and the requirement for transverse reinforcement are also considered. To facilitate direct selection of steel section, a database is prepared and is available at the back end with the properties of all standard steel sections. Screen shots are included in the paper to illustrate the method employed for selecting the appropriate section and shear connectors and thus to verify the design adequacy.

  5. Modificatin of ITZ Structure and Properties of Regenerated Concrete

    Institute of Scientific and Technical Information of China (English)

    WAN Huiwen; YANG Liyuan; SHUI Zhonghe

    2006-01-01

    By means of reducing the ratio of water to cement (w/c), incorporating a proper amount of fly ash and superplasticizer, and processing the surface of recycled aggregate (RA), this paper aims at improving the interfacial transition zone (ITZ) submicro-structure of the regenerated concrete (RC). The experimental results of mercury intrusion pressure (MIP) show that RA pretreated by PVA polymer solution and lyophobic active agent can jam its surface pore and hole, thus the porosity of RA is decreased. When reducing w/c ratio, incorporating 20% of fly ash (FA) and 2.5% of superplasticizer (to cement) in the RC, the width of ITZ is effectively narrowed, the structure of ITZ is combined much more compact and the compressive strength of RC is enhanced. Under the same conditions, using RA pretreated by 1% PVA polymer solution, the fluidity of fresh RC can be enhanced and the compressive strength of hardened RC can also be enhanced lightly. Whereas using RA pretreated by lyophobic active agent, the fluidity of fresh RC can be enhanced, but it impairs the adhesion of fresh cement paste and the surface of old concrete, and hinders the strength development of RC. In the ITZ structure of ordinary concrete (prepared with natural coarse and fine aggregate), there are much Ca(OH)2, in plank-and sheet-like, distributing with priority tropism, whereas in the RC structure, Ca(OH)2 with a coarse size is not found in ITZ; the main reason is that the surface of coarse aggregate does not have a layer of water film.

  6. Analysis of steel-concrete composite structure with overlap slab of Xingguang bridge

    Institute of Scientific and Technical Information of China (English)

    YE Mei-xin; HUANG Qiong; WU Qin-qin

    2007-01-01

    Finire element modeling methods of steel-concrete composire structure with overlap slab were investigated.A two-step finite element method wag presented.It was applied to analyze an extra long span composite bridge.The conversion of structure system and the mechanical behavior of the bridge were analyzed with two different construction methods.The stresses of steel beams, precast slabs and in-situ-place concrete under the total load were compared. The results show that steel-concrete composite structure with overlap slab has many advantages, the construction method that the top in-situ concrete and the concrete in construction joints are cast respectively is rather reasonable than the one that the top in-situ concrete and the concrete in construction joints are cast at the same time, and the two-step finite element method is affective to such large-scale structures.

  7. Behaviour of a Blast Loaded Laced Reinforced Concrete Structure

    Directory of Open Access Journals (Sweden)

    N. Anandavalli

    2012-09-01

    Full Text Available Normal 0 MicrosoftInternetExplorer4 According to existing provisions, large separation distance has to be maintained between two conventional explosive storage structures to prevent sympathetic detonation. In this paper, reduction of the separation distance with the use of earth covered laced reinforced concrete (LRC storage structure is demonstrated, which will result in saving of land cost. Details of blast resistant design of 75T (NEC storage structure based on unit risk principle are presented. Performance of the storage structure is evaluated in an actual blast trial. Strain and deflection profiles are obtained from the trial. Based on these, the storage structure is found to be re-usable after the blast trial.Defence Science Journal, 2012, 62(5, pp.284-289, DOI:http://dx.doi.org/10.14429/dsj.62.820

  8. M-FILE FOR MIX DESIGN OF STRUCTURAL LIGHTWEIGHT CONCRETE USING DEVELOPED MODELS

    Directory of Open Access Journals (Sweden)

    M. ABDULLAHI

    2011-08-01

    Full Text Available An m-file for mix design of structural lightweight concrete is presented. Mix design of structural lightweight concrete is conducted using guide in the standards. This may be tasking involving reading and understanding of the relevant standards. This renders the process inefficient and liable to errors in computations. A computer approach to mix design will alleviate this problem. An m-file was developed in MATLAB environment for the concrete mix design. The m-file has been tested and has proved to be efficient in computing the mix composition for the first trial batch of lightweight concrete mixes. It can also perform concrete mixture proportioning adjustment.

  9. Stochastic Modeling of Reinforced Concrete Structures Exposed to Chloride Attack

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Frier, Christian

    2003-01-01

    concentration and reinforcement cover depth are modeled by stochastic fields. The paper contains a description of the parameters to be included in a stochastic model and a proposal for the information needed to obtain values for the parameters in order to be ab le to perform reliability investigations...... the reinforcement exceeds a critical threshold value. In the present paper a stochastic model is described by which the chloride content in a reinforced concrete structure can be estimated. The chloride ingress is modeled by a 2-dimensional diffusion process and the diffusion coefficient, surface chloride...

  10. Detection of Cracks in Concrete Structure Using Microwave Imaging Technique

    Directory of Open Access Journals (Sweden)

    E. A. Jiya

    2016-01-01

    Full Text Available Cracks in concrete or cement based materials present a great threat to any civil structures; they are very dangerous and have caused a lot of destruction and damage. Even small cracks that look insignificant can grow and may eventually lead to severe structural failure. Besides manual inspection that is ineffective and time-consuming, several nondestructive evaluation techniques have been used for crack detection such as ultrasonic technique, vibration technique, and strain-based technique; however, some of the sensors used are either too large in size or limited in resolution. A high resolution microwave imaging technique with ultrawideband signal for crack detection in concrete structures is proposed. A combination of the delay-and-sum beamformer with full-view mounted antennas constitutes the image reconstruction algorithm. Various anomaly scenarios in cement bricks were simulated using FDTD, constructed, and measured in the lab. The reconstructed images showed a high similarity between the simulation and the experiment with a resolution of λ/14 which enables a detection of cracks as small as 5 mm in size.

  11. Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jensen, Ole Mejlhede; Laustsen, Sara

    2013-01-01

    the difference between poor and satisfactory frost-resistance. Furthermore, the results indicate that voids created directly by SAP protect concrete against frost deterioration just like other air voids; if the concrete contains enough SAP voids, these alone can provide sufficient frost resistance. © 2013 RILEM....

  12. Structural Behaviour of Precast Lightweight Foamed Concrete Sandwich Panel under Axial Load: An Overview

    Directory of Open Access Journals (Sweden)

    Suryani Samsudin

    2013-02-01

    Full Text Available The development of precast sandwich concrete has gained acceptance worldwide in conjunction with the Industrial Building System (IBS.  The advancement and improvement of using wall panel has gone through a lot of achievements through the last decade. The usage of precast lightweight sandwich panel has become the alternative to conventional construction using brick wall. The usage of this panel system contributes to a sustainable and environmental friendly construction.  This paper presents an overview of the latest development in precast concrete sandwich panel as an IBS. The purpose of this paper is to provide comprehensive information on latest research development of sandwich panel for building construction purposes. The information on sandwich panel’s composition, material, properties, strength, availability, and its usage as structural element are reported.  An innovative concept used in the design of these systems and the use of lightweight materials is also discussed.

  13. Residual strength evaluation of concrete structural components under fatigue loading

    Indian Academy of Sciences (India)

    A Rama Chandra Murthy; G S Palani; Nagesh R Iyer; Smitha Gopinath; B K Raghu Prasad

    2012-02-01

    This paper presents methodologies for residual strength evaluation of concrete structural components using linear elastic and nonlinear fracture mechanics principles. The effect of cohesive forces due to aggregate bridging has been represented mathematically by employing tension softening models. Various tension softening models such as linear, bilinear, trilinear, exponential and power curve have been described with appropriate expressions. These models have been validated by predicting the remaining life of concrete structural components and comparing with the corresponding experimental values available in the literature. It is observed that the predicted remaining life by using power model and modified bi-linear model is in good agreement with the corresponding experimental values. Residual strength has also been predicted using these tension softening models and observed that the predicted residual strength is in good agreement with the corresponding analytical values in the literature. In general, it is observed that the variation of predicted residual moment with the chosen tension softening model follows the similar trend as in the case of remaining life. Linear model predicts large residual moments followed by trilinear, bilinear and power models.

  14. Structural Properties of Concrete Materials Containing RoadCem

    Directory of Open Access Journals (Sweden)

    Niall Holmes

    2015-01-01

    Full Text Available This paper presents findings from a preliminary study to assess the structural and material properties of a nonstandard, concrete type mix containing RoadCem, a traditional soil stabilising additive. Two different mixes determined the effect of adding RoadCem in terms of compressive and flexural strengths, breaking strain, thermal expansion and contraction behaviour, permeability using a falling head, and Young’s modulus. RoadCem is a fine powder containing alkali metals and synthetic zeolites which are complemented with a complex activator. RoadCem modifies the dynamics and chemistry of cement hydration by enhancing the crystallisation process and forming longer needle crystalline structures. It reduces the heat of hydration with an early strength development. Varying the volume in the mix varies the viscosity and alters curing times while maintaining the water cement ratio. The results from this study have shown a modest increase in compressive strength and Young’s modulus with improvements in thermal performance, particularly at low temperatures. The flexural strength of the two mixes was similar with a much reduced permeability in the RoadCem mix. The results demonstrate the improved performance of concrete incorporating RoadCem but further improvements are possible by using a better graded aggregate and controlling the maximum dry density and moisture contents.

  15. Effect of Thermal Cycling on the Strength and Texture of Concrete for Nuclear Safety Structures

    Directory of Open Access Journals (Sweden)

    Š. Hošková

    2001-01-01

    Full Text Available The effect of thermal cycling (freezing and thawing on the texture and strength of two types of concrete is studied: 1. Concrete used for a containment structure at NPP Temelín (Czech Republic - so-called TEMELÍN concrete.2. Highly resistant PENLY concrete, which was used as a standard because of its high quality, proved by the research carried out in a European Commission project. The results for the two samples of concrete are compared.

  16. Proposal of a new indicator to define ductility applied to corroded steel reinforcement on concrete structures

    OpenAIRE

    Cobo Escamilla, Alfonso; Moreno Fernandez, Maria Esther; Fernández Cánovas, Manuel

    2010-01-01

    The carbonation of concrete or the chlorides ingress in such quantity to reach the level of bars is triggers of reinforcement corrosion. One of the most significant effects of reinforcing steel corrosion on reinforced concrete structures is the decline in the ductility-related properties of the steel. Reinforcement ductility has a decisive effect on the overall ductility of reinforced concrete structures. Different Codes classify the type of steel depending on their ductility defined by...

  17. INVESTIGATION OF CONDITIONS FOR SIMPLE INSULATION CURING CORRESPONDING TO TEMPERATURE HISTORY OF CONCRETE STRUCTURE

    OpenAIRE

    劉, 宏涛; 濱, 幸雄; 友澤, 史紀; 桑原, 隆司

    2002-01-01

    In this paper, conditions of simple insulation curing of test specimens were studied, for purposes of strength control of concrete structures in cold weather. The temperature histories of the specimens in the simple insulation curing boxes corresponding to those of the concrete structures were researched by means of concrete experiments and temperature analysis by finite element method. Based on the result of the experiments and the analysis, the conditions of simple insulation curing of test...

  18. On the Durability of Sealable Circular Concrete Structures under Chloride Environment

    Directory of Open Access Journals (Sweden)

    Changwen Mi

    2015-01-01

    Full Text Available Reinforcement corrosion resulting from chloride attack is one major mechanism that compromises concrete durability. Numerical methods were commonly used for tackling Fick’s diffusion equations. In this paper, we developed a Crank-Nicolson based finite difference scheme suitable for circular concrete structures. Both a time-dependent surface chloride model and diffusivity were considered. The impact of an ideal sealer on chloride redistribution was further investigated. Results suggested that the chloride threshold depth in a concrete structure is greatly affected by the radius of curvature, environment severity, and diffusivity. For sealable concrete structures, both the sealer application timing and location are of great importance.

  19. Integrated sensor network for monitoring steel corrosion in concrete structures

    Directory of Open Access Journals (Sweden)

    José Enrique Ramón

    2016-06-01

    Full Text Available Corrosion is one of the main triggering factors affecting the service life and durability of structures. Several methods are used for corrosion studies but electrochemical techniques are the most commonly applied. Corrosion processes monitoring and control by means of non-destructive techniques, such as the implementation of embedded sensors, has been the target of many works.  It is possible to obtain relevant information of structural corrosion processes in real time. This document describes a system including specific equipment and which allows obtaining relevant information about these corrosion processes. This system is formed by a sensor network. There are several types of electrodes, which are distributed throughout the structure under study and a specific equipment developed by the research group, which is used to determine pertinent parameters such as the corrosion potential (Ecorr and the corrosion density (icorr by applying sequences of potentiostatic pulses. The system allows to reliably determine the corrosion rate in different areas of the structure. The sensor, due to its configuration, provides information of a specific area of the structure, but on the other hand it is involved in the galvanic events that can occur along the structure by differential aeration, galvanic cells, etc. because the sensor is not isolated from the structure.  This system also procures information of buried and submerged elements. Besides, it is possible to obtain information related to temperature, concrete resistance. The system includes specific potentiometric sensors to monitor chloride access and carbonatation processes.

  20. Dynamic response of concrete pavement structure with asphalt isolating layer under moving loads

    Directory of Open Access Journals (Sweden)

    Jianmin Wu

    2014-12-01

    Full Text Available A three-dimensional finite element model (3D FEM is built using ABAQUS to analyze the dynamic response of a concrete pavement structure with an asphalt isolating layer under moving loads. The 3D model is prepared and validated in the state of no asphalt isolating layer. Stress and deflection at the critical load position are calculated by changing thickness, modulus of isolating layer and the combination between the isolating layer and concrete slab. Analysis result shows that the stress and deflection of the concrete slab increase with the increase of thickness. The stress and deflection of the concrete slab decrease with the increase of combination between the isolating layer and concrete slab. The influence of changing the isolating layer modulus to the stress and deflection of the concrete slab is not significant. From the results, asphalt isolating layer design is suggested in concrete pavement.

  1. Damage and deterioration mechanism and curing technique of concrete structure in main coal cleaning plants

    Institute of Scientific and Technical Information of China (English)

    LV Heng-lin; ZHAO Cheng-ming; SONG Lei; MA Ying; XU Chun-hua

    2009-01-01

    Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Da-tun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian mine of the Xuzhou Mining Group Co. Ltd. In these projects, the operating environment and reliability of concrete structures in the main plants of the three companies were investigated and the safety of the structures inspected. Qualitative and quantitative analyses were made on the spe-cial natural, technological and mechanical environments around the structures. On the basis of these analyses, we discuss the long-term, combined actions of the harsh natural (corrosive gases, liquids and solids) and mechanical environments on concrete structures and further investigated the damage and deteriorating mechanisms and curing techniques of concrete structures in the main coal cleaning plants. Our study can provide a theoretical basis for ensuring the reliability of concrete structures in main coal cleaning plants.

  2. Tomographic diagnosis of defects in hydraulic concrete structure

    Institute of Scientific and Technical Information of China (English)

    Mingjie ZHAO; Xibin XU

    2008-01-01

    The ultrasonic tomographic technology is applied to diagnose the defects in hydraulic concrete structure. In order to improve the precision of diagnoses, the wavelet transformation is used in the processing of ultrasonic signals. The influences of water, scale and ori-entation of defect, processing methods and theoretical model on image resolution are investigated. The experi-mental results indicate that the result of the tomographic diagnosis of a single defect is sensitive and the boundary can be clearly determined. However, the image resolution of multiple defects is not satisfactory. The water content and scale of a defect may significantly affect the imaging resolution. Defects with the orientation perpendicular to the direction of the diagnosis may have higher precision in diagnosing. The wavelet transformation technology can elevate the imaging resolution. The applied calculation model plays a very important role in improving the accu-racy of detection.

  3. Shear Strengthening of Concrete Structures with the use of mineral based composites

    DEFF Research Database (Denmark)

    Blanksvärd, Thomas; Täljsten, Björn; Carolin, Anders

    2009-01-01

    Rehabilitation and strengthening of concrete structures have become more common during the last 10-15 years, partly due to a large stock of old structures and partly due to concrete deterioration. Also factors such as lack of understanding and the consequences of chloride attack affect the need f...

  4. Durability improvement assessment in different high strength bacterial structural concrete grades against different types of acids

    Indian Academy of Sciences (India)

    Ramin Andalib; M Zaimi Abd Majid; A Keyvanfar; Amirreza Talaiekhozan; Mohd Warid Hussin; A Shafaghat; Rosli Mohd Zin; Chew Tin Lee; Mohammad Ali Fulazzaky; Hasrul Haidar Ismail

    2014-12-01

    This paper provides an insight into a new biotechnological method based on calcite precipitation for achieving high strength bio-concrete durability. It is very clear that mineral precipitation has the potential to enhance construction material resistance towards degradation procedures. The appropriate microbial cell concentration (30 * 105 cells/ml) was introduced onto different structural concrete grades (40, 45 and 50 MPa) by mixing water. In order to study the durability of structural concrete against aggressive agents, specimens were immersed in different types of acids solution (5% H2SO4 and HCl) to compare their effects on 60th, 90th and 120th day. In general, sulphuric acid and hydrochloric acid are known to be the most aggressive natural threats from industrial waters which can penetrate concrete to transfer the soluble calcium salts away from the cement matrix. The experimental results demonstrated that bio-concrete has less weight and strength losses when compared to the ordinary Portland cement concrete without microorganism. It was also found that maximum compressive strength and weight loss occurred during H2SO4 acid immersion as compared to HCl immersion. The density and uniformity of bio-concrete were examined using ultrasonic pulse velocity (UPV) test. Microstructure chemical analysis was also quantified by energy dispersive spectrometer (EDS) to justify the durability improvement in bacterial concrete. It was observed that less sulphur and chloride were noticed in bacterial concrete against H2SO4 and HCl, respectively in comparison to the ordinary Portland cement concrete due to calcite deposition.

  5. Cracking in reinforced concrete structures due to imposed deformations

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, A.

    1997-04-01

    This thesis is concerned with modeling of the cracking process in reinforced concrete due to imposed deformations. Cracking is investigated both at early ages, during hydration, and at mature age when the final properties of the concrete are reached. One of the most important material characteristics of the concrete at early ages, the Young`s modulus is determined by means of a dynamic method called the resonance frequency method. 40 refs

  6. Efficiency of fiber reinforced concrete application in structures subjected to dynamic effects

    Directory of Open Access Journals (Sweden)

    Morozov Valeriy Ivanovich

    2014-03-01

    Full Text Available Fiber reinforced concretes possess high strength under dynamic loadings, which include impact loads, thanks to their high structural viscosity. This is the reason for using them in difficult operating conditions, where increasing the performance characteristics and the structure durability is of prime importance, and the issues of the cost become less significant. Applying methods of disperse reinforcement is most challenging in case of subtle high-porous materials on mineral binders, for example foamed concrete. At the same time, the experiments conducted in Russia and abroad show, that also in other cases the concrete strength resistance several times increases as a result of disperse reinforcement. This doesn't depend on average density of the concrete and type of fiber used. In the article the fibre reinforced concrete impact resistance is analysed. Recommendations are given in regard to fibre concrete application in manufacture of monolithic floor units for industrial buildings and precast piles.

  7. Analysis of time-dependent reliability of degenerated reinforced concrete structure

    Directory of Open Access Journals (Sweden)

    Zhang Hongping

    2016-07-01

    Full Text Available Durability deterioration of structure is a highly random process. The maintenance of degenerated structure involves the calculation of the reliability of time-dependent structure. This study introduced reinforced concrete structure resistance decrease model and related statistical parameters of uncertainty, analyzed resistance decrease rules of corroded bending element of reinforced concrete structure, and finally calculated timedependent reliability of the corroded bending element of reinforced concrete structure, aiming to provide a specific theoretical basis for the application of time-dependent reliability theory.

  8. Embrittlement and decrease of apparent strength in large-sized concrete structures

    Indian Academy of Sciences (India)

    Alberto Carpinteri; Bernardino Chiaia

    2002-08-01

    The problem of scale-effects on the performances of concrete structures is discussed. Experimentally observed decrease of nominal tensile strength, accompanied by structural embrittlement, occurring in large structures is of crucial importance in modern concrete engineering. Most of the previous approaches to the problem are restricted to notched structures and they often fail to predict mechanical behaviour in real situations. The physical approach put forward by us takes into adequate account the effects of microstructural disorder and seems to be valid in the whole size range, at least for unnotched structures. Thereby, reliable predictions can be made of the material properties in large-sized concrete structures.

  9. Contrastive Numerical Investigations on Thermo-Structural Behaviors in Mass Concrete with Various Cements

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2016-05-01

    Full Text Available This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention.

  10. A study on the effects of seawater on the durable life of concrete structures(II)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan; Jang, Bong Suk; Jang, Seung Yeop; Jeon, Se Jin; Yu, Yeong; Park, Dae Gyun; Hyeong, Sang Soo [Seoul National Univ., Seoul (Korea, Republic of)

    1999-02-15

    Recently, large scale concrete structures such as nuclear power plants and offshore structures are actively being built in this country. These structures are subject to heavy attack due to seawater environment. A reasonable consideration for corrosion has not been paid to the structures in the past decades due to insufficient research data and guidelines. The durability is emerging as one of the most important factors. In the design and construction of concrete structures. The purpose of the present study is, therefore, to explore the corrosion mechanism and penetration mechanism of chloride ion, and to establish the evaluation procedure of durability life of concrete structures. In this study, the chloride ion concentration of seawater around our country have been analyzed and the deterioration mechanism of concrete structures have been also analyzed. The penetration mechanism of seawater into the concrete has been also studied. To this end, a comprehensive experimental program has been setup. The major test variables include the type of cement and the type of mineral admixture. The strength test as well as corrosion test have been conducted to explore the effects of chloride ion penetration on the properties of concrete. The corrosion mechanism and the penetration of chloride ion into concrete structures have been studied. These results will allow the estimation of durable life of concrete structures in nuclear power plants. The experimental results and the developed theory in the present study can be efficiently used to analyze the chloride ion penetration and to estimate the durability of concrete structures In nuclear power plants. The present study may also provide strong basis to evaluate the remaining service life of concrete structures in nuclear power plants.

  11. POROSIMETRY BY RANDOM NODE STRUCTURING IN VIRTUAL CONCRETE

    Directory of Open Access Journals (Sweden)

    Piet Stroeven

    2012-05-01

    Full Text Available Two different porosimetry methods are presented in two successive papers. Inspiration for the development came from the rapidly-exploring random tree (RRT approach used in robotics. The novel methods are applied to virtual cementitious materials produced by a modern concurrent algorithm-based discrete element modeling system, HADES. This would render possible realistically simulating all aspects of particulate matter that influence structure-sensitive features of the pore network structure in maturing concrete, namely size, shape and dispersion of the aggregate and cement particles. Pore space is a complex tortuous entity. Practical methods conventionally applied for assessment of pore size distribution may fail or present biased information. Among them, mercury intrusion porosimetry and 2D quantitative image analysis are popular. The mathematical morphology operator “opening” can be applied to sections and even provide 3D information on pore size distribution, provided isotropy is guaranteed. However, aggregate grain surfaces lead to anisotropy in porosity. The presented methods allow exploration of pore space in the virtual material, after which pore size distribution is derived from star volume measurements. In addition to size of pores their continuity is of crucial importance for durability estimation. Double-random multiple tree structuring (DRaMuTS, introduced earlier in IA&S (Stroeven et al., 2011b and random node structuring (RaNoS provide such information.

  12. Behavior of CFRP Plate in Simulated ICCP System of Concrete Structures

    OpenAIRE

    Zhu, Jihua; Zhu, Miaochang; Han, Ningxu; Xing, Feng; LIU Wei; Bertolini, Luca

    2014-01-01

    An innovative effort was made to utilize carbon fiber reinforced polymer (CFRP) plate as an anode in impressed current cathodic protection (ICCP) of reinforced concrete structure. The feasibility was explored by bonding CFRP strips to concrete and then applying protection current through CFRP strips to steel rebar in concrete. Service life and performance of CFRP plate were investigated in simulated ICCP systems with various configurations. Steel potential results confirmed that the steel reb...

  13. STUDY ON THE DAMAGE MECHANISM OF PORE STRUCTURE IN CONCRETE SUBJECTED TO FREEZE-THAW CYCLES

    OpenAIRE

    Ben Li; Kaiyuan Wang; Jize Mao; Qingyong Guo

    2015-01-01

    It is well know that freeze-thaw cycles play the most significant role in the durability evolution in concrete structures, freeze-thaw cycles have been accounted as one of the major factors on the damage and demolition of concrete. Microscopic parameters have been used for describing the characterizations of damage in concrete under freeze-thaw actions by researchers. However, their models could not provide specific damage factors or parameters. In this paper, a new damage model and equation ...

  14. The strut-and-tie models in reinforced concrete structures analysed by a numerical technique

    Directory of Open Access Journals (Sweden)

    V. S. Almeida

    Full Text Available The strut-and-tie models are appropriate to design and to detail certain types of structural elements in reinforced concrete and in regions of stress concentrations, called "D" regions. This is a good model representation of the structural behavior and mechanism. The numerical techniques presented herein are used to identify stress regions which represent the strut-and-tie elements and to quantify their respective efforts. Elastic linear plane problems are analyzed using strut-and-tie models by coupling the classical evolutionary structural optimization, ESO, and a new variant called SESO - Smoothing ESO, for finite element formulation. The SESO method is based on the procedure of gradual reduction of stiffness contribution of the inefficient elements at lower stress until it no longer has any influence. Optimal topologies of strut-and-tie models are presented in several instances with good settings comparing with other pioneer works allowing the design of reinforcement for structural elements.

  15. Maintenance and Preservation of Concrete Structures. Report 3. Abrasion-Erosion Resistance of Concrete.

    Science.gov (United States)

    1980-07-01

    the length of service that may be expected from a specific concrete. It can be used to determine the relative resistance of a material to the abrasive... CONTRAT 5) ATA CMNTFC IIICU 385 I E.p....s e - F.u 5 IA# RIEIE5, ROOF? *Fpa*RSt ftaE A, --EtI PA.. ,.md II, CRD-C 9. ANA .REdF. IA.. ... 1.(2,. TIB...intended to provide a quantitative measurement of the length of service that may be expected from a specific concrete. Note: Other test methods for

  16. On-site investigations on concrete resistivity - a parameter of durability calculation of reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Buetefuehr, M.; Fischer, C.; Gehlen, C.; Menzel, K.; Nuernberger, U. [MPA Materialpruefungsanstalt Universitaet Stuttgart, (Otto-Graf-Institut (FMPA)), Pfaffenwaldring 4, 70569 Stuttgart (Germany)

    2006-12-15

    For determination the electrolytic resistivity of concrete, resistances of realistic designed probes are measured during a one and two year period, respectively. Measurements are made with a commercially available instrument normally used for measuring earth resistances. Comparison to other usually applied methods show not only that the used method GEOHM is qualified for measuring the electrolytic resistance of concrete but also that the magnitude of measured values is realistic. To obtain electrolytic resistivities from these measurements the individual cell constant for the investigated system was derived from experimental research. First results of the in-situ stored specimens are presented, intended future activities are sketched. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  17. Bond-slip detection of concrete-encased composite structure using electro-mechanical impedance technique

    Science.gov (United States)

    Liang, Yabin; Li, Dongsheng; Parvasi, Seyed Mohammad; Kong, Qingzhao; Lim, Ing; Song, Gangbing

    2016-09-01

    Concrete-encased composite structure is a type of structure that takes the advantages of both steel and concrete materials, showing improved strength, ductility, and fire resistance compared to traditional reinforced concrete structures. The interface between concrete and steel profiles governs the interaction between these two materials under loading, however, debonding damage between these two materials may lead to severe degradation of the load transferring capacity which will affect the structural performance significantly. In this paper, the electro-mechanical impedance (EMI) technique using piezoceramic transducers was experimentally investigated to detect the bond-slip occurrence of the concrete-encased composite structure. The root-mean-square deviation is used to quantify the variations of the impedance signatures due to the presence of the bond-slip damage. In order to verify the validity of the proposed method, finite element model analysis was performed to simulate the behavior of concrete-steel debonding based on a 3D finite element concrete-steel bond model. The computed impedance signatures from the numerical results are compared with the results obtained from the experimental study, and both the numerical and experimental studies verify the proposed EMI method to detect bond slip of a concrete-encased composite structure.

  18. An attempt to validate the ultra-accelerated microbar and the concrete performance test with the degree of AAR-induced damage observed in concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, Andreas, E-mail: andreas.leemann@empa.ch [Empa, Dübendorf (Switzerland); Merz, Christine [Holcim (Schweiz) AG, Würenlingen (Switzerland)

    2013-07-15

    There is little knowledge about the relation between AAR-induced damage observed in structures and the expansion potential obtained with accelerated tests. In this study, aggregates used in structures damaged by AAR were tested with the microbar test (MBT/AFNOR XP 18-594) and the concrete performance test (CPT/AFNOR P18-454). After the tests, the samples were examined using optical and scanning electron microscopy. Based on the results, the significance of the microbar test has to be examined very critically. The agreement of measured expansion, reacted rock types and the composition of the reaction products between the on-site concrete and the reproduced concrete subjected to the CPT clearly indicates that the reaction mechanisms in the structure and in the concrete performance test are comparable. As such, the concrete performance test seems to be an appropriate tool to test the potential reactivity of specific concrete mixtures.

  19. History of service life design of concrete structures

    NARCIS (Netherlands)

    Siemes, A.J.M.

    1999-01-01

    After the introduction of reinforced concrete it was believed that the material was extremely durable. Soon it was found that reinforced concrete could have serious durability problems and that special care should be taken to avoid them. Durability became a design issue. Based on experience from

  20. Guide for Visual Inspection of Structural Concrete Building Components.

    Science.gov (United States)

    1991-07-01

    Formalin Aqueous solution of formaldehyde disintegrates concrete Fruit juices Most fruit juices have little, if any, effect as tartaric acid and citric...causes slow disintegration Sal soda None Saltpeter None Sauerkraut Little, if any, effect Silage Attacks concrete slowly Sugar Dry sugar has no effect on

  1. Risk based management of concrete structures using advanced corrosion monitoring

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.

    2006-01-01

    Reinlorced concrete is a very cost elfective construction material, used for a large part of the world's physícal ínfrastructure. The durable collaboration between steel and concrele is essential for its safe and serviceable funclioning. Normally, the physícal and chemÍcal nature of concrete protect

  2. Connecting to concrete: wireless monitoring of chloride ions in concrete structures

    NARCIS (Netherlands)

    Abbas, Yawar; Have, ten Bas; Hoekstra, Gerrit I.; Douma, Arjan; Bruijn, de Douwe; Olthuis, Wouter; Berg, van den Albert

    2015-01-01

    For the first time, chloride ions are measured wirelessly in concrete. The half-cell potential of a silver/silver chloride (Ag/AgCl) electrode, which corresponds to the concentration of chloride ions, is measured wirelessly. The sensor system (the Ag/AgCl and a reference electrode) is embedded in co

  3. Explosive Spalling of Fire Exposed Resource Saving Concrete Structures

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Hertz, Kristian Dahl; Kristiansen, Finn Harken

    2003-01-01

    , Hertz, Sørensen [1]. The main idea was to establish a test method by means of which it should be possible to assess whether a particular concrete has an increased risk of spalling compared to traditional concretes as defined in Hertz [2] and only using ordinary standard cylinders as test specimens......The paper describes briefly a new test facility, which has been developed within the project “Resource Saving Concrete Structures”, also called “Green Concrete” and some test results from the project. A full report is available from the home page of the Department of Civil Engineering Kristiansen....... The method has been applied on the green concretes of the project and later also as a first indicator in other projects. The method appears to be a valuable tool for the first investigation of new concretes...

  4. Development of high performance and high strength heavy concrete for radiation shielding structures

    Science.gov (United States)

    Peng, Yu-Chu; Hwang, Chao-Lung

    2011-02-01

    Heavy concrete currently used for construction contains special materials that are expensive and difficult to work with. This study replaced natural aggregate (stones) in concrete with round steel balls, which are inexpensive and easily obtainable. The diameters of the steel balls were 0.5 and 1 cm, and their density was 7.8 kg/m3. Dense packing mixture methods were used to produce heavy concrete with densities of 3500 and 5000 kg/m3. The various properties of this concrete were tested according to the standards of the American Society for Testing and Materials (ASTM). The results indicated that the construction slump of the concrete could reach 260-280 mm and its slump flow could reach 610-710 mm. More important, its compressive strength could reach 8848 MPa. These results will significantly alter traditional construction methods that use heavy concrete and enhance innovative ideas for structural design.

  5. Nonlocal Peridynamic Modeling and Simulation on Crack Propagation in Concrete Structures

    Directory of Open Access Journals (Sweden)

    Dan Huang

    2015-01-01

    Full Text Available An extended peridynamic approach for crack propagation analysis in concrete structures was proposed. In the peridynamic constitutive model, concrete material was described as a series of interacting particles, and the short-range repulsive force and anisotropic behavior of concrete were taken into account in the expression of the interactive bonding force, which was given in terms of classical elastic constants and peridynamic horizon. The damage of material was defined locally at the level of pairwise bond, and the critical stretch of material bond was described as a function of fracture strength in the classical concrete failure theory. The efficiency and accuracy of the proposed model and algorithms were validated by simulating the propagation of mode I and I-II mixed mode cracks in concrete slabs. Furthermore, crack propagation in a double-edge notched concrete beam subjected to four-point load was simulated, in which the experimental observations are captured naturally as a consequence of the solution.

  6. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete

    Directory of Open Access Journals (Sweden)

    Antonio López-Uceda

    2016-02-01

    Full Text Available This research aims to produce non-structural concrete with mixed recycled aggregates (MRA in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%, using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors’ knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  7. Effect Of Age And Concrete Cover Thickness On Steel Reinforcement Corrosion At Splash Zone In Reinforced Concrete Hydraulic Structures

    Directory of Open Access Journals (Sweden)

    Nada M. Al- Galawi

    2015-08-01

    Full Text Available Corrosion of reinforcing steel bars in reinforced concrete is considered as one of the biggest problems that face countries overlooking to the Arabian Gulf including Iraq. The research aims to study the effect of the corrosion of steel bars in concrete structures that are exposed to wetting and drying via waves. Reinforced concrete samples were exposed to marine simulated environment for 90 days using prepared system for this purpose. At the end of exposure period polarization test was implemented to measure the actual corrosion rate in each sample. After that the corrosion process was accelerated using impressed current technique by applying a constant electric current DC to the reinforcing bars. Depending on the corrosion current in natural conditions which was measured in polarization test periods of exposing samples to accelerated corrosion current so as to maintain virtual exposure ages of 5 and 25 years of exposure to natural corrosion were calculated. The results showed a remarkable increase in the corrosion current of steel bars in samples that had lower concrete cover thickness. The increase in the cover thickness from 20mm to 40 and 65 mm had a significant effect on reducing the corrosion current at the age of 90 days to about 70 of its original value in both cases. At the virtual exposure age of 5 years the reduction percentage in the corrosion current resulted from increasing cover thickness from 20mm to 40 and 65 mm were 43 and 79 respectively.

  8. Structural Response to Blast Loading: The Effects of Corrosion on Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Hakan Yalciner

    2014-01-01

    Full Text Available Structural blast design has become a necessary part of the design with increasing terrorist attacks. Terrorist attacks are not the one to make the structures important against blast loading where other explosions such as high gas explosions also take an important place in structural safety. The main objective of this study was to verify the structural performance levels under the impact of different blast loading scenarios. The blast loads were represented by using triangular pulse for single degree of freedom system. The effect of blast load on both corroded and uncorroded reinforced concrete buildings was examined for different explosion distances. Modified plastic hinge properties were used to ensure the effects of corrosion. The results indicated that explosion distance and concrete strength were key parameters to define the performance of the structures against blast loading.

  9. Review on hidden trouble detection and health diagnosis of hydraulic concrete structures

    Institute of Scientific and Technical Information of China (English)

    WU; ZhongRu; LI; Ji; GU; ChongShi; SU; HuaiZhi

    2007-01-01

    A large number of hydraulic concrete structures have hidden defects such as cracks,erosion,freeze and thaw,thermal fatigue,carbonization.These hidden defects seriously affect the strength,stability and durability of structures.These problems are studied mainly by single monitoring or diagnosis methods at present.The integration of multiple monitoring and diagnosis methods is not applied widely.Besides,the analysis theory on these problems is not developed very well.The systemic study on the aging mechanism of hydraulic concrete structures,timevariation model and health diagnosis is still not enough.The support for engineering practice is limited.Aimed at these major scientific and technological problems and combined with specific projects,study on detection of hidden defects and health diagnosis of hydraulic concrete structure has been carried out.This study includes the following content: field non-destructive examination of hidden defects of hydraulic concrete structures,seepage detection,the construction of in-situ sensing system,the combination of field detection and in-situ monitoring,the mechanism of crack,freeze and thaw,erosion and carbonization of hydraulic concrete structure,mechanism of combination aging; time-variation model of hydraulic concrete structure,theories and methods for health diagnosis of hydraulic concrete structures.

  10. Study of Concrete Quality Assessment of Structural Elements Using Rebound Hammer Test

    Directory of Open Access Journals (Sweden)

    Tarun Gehlot

    2016-08-01

    Full Text Available Structures are assemblies of load carrying members capable of safely transferring the superimposed loads to the foundations. Their main and most looked after property is the strength of the material that they are made of. Concrete, as we all know, is an integral material used for construction purposes. The concept of nondestructive testing (NDT is to obtain material properties of in place specimens without the destruction of neither the specimen nor the structure from which it is taken. However, one problem that has been prevalent within the concrete industry for years is that the true properties of an in-place specimen have never been tested without leaving a certain degree of damage on the structure. . The investigation reported here is to present study of Calibration Graphs for Non Destructive Testing Equipment, the Rebound Hammer and to study the quality of the concrete in existing structures. These Rebound Hammer Test were then used to test the quality of the concrete of the various structural elements (columns & beams of single storied newly under constructed building of TPO office of MBM Engineering College Jodhpur. The use of this method produces results that lie close to the true values when compared with other methods A correlation between rebound number and strength of concrete structure is established, which can be used as well for strength estimation of concrete structures. The method can be extended to test existing structures by taking direct measurements on concrete elements

  11. Active tendon control of reinforced concrete frame structures subjected to near-fault effects

    Science.gov (United States)

    Nigdeli, Sinan Melih; Boduroǧlu, M. Hasan

    2013-10-01

    A reinforced concrete (RC) frame structure was controlled with active tendons under the excitation of near-fault ground motions. Proportional Integral Derivative (PID) type controllers were used and the controller was tuned by using a numerical algorithm. In order to prevent brittle fracture of the structure, the aim of the control is to reduce maximum base shear force. The RC structure was investigated for different characteristic strengths of concrete and the approach is applicable for the structure with 14 MPa concrete strength or higher.

  12. Aftershock collapse vulnerability assessment of reinforced concrete frame structures

    Science.gov (United States)

    Raghunandan, Meera; Liel, Abbie B.; Luco, Nicolas

    2015-01-01

    In a seismically active region, structures may be subjected to multiple earthquakes, due to mainshock–aftershock phenomena or other sequences, leaving no time for repair or retrofit between the events. This study quantifies the aftershock vulnerability of four modern ductile reinforced concrete (RC) framed buildings in California by conducting incremental dynamic analysis of nonlinear MDOF analytical models. Based on the nonlinear dynamic analysis results, collapse and damage fragility curves are generated for intact and damaged buildings. If the building is not severely damaged in the mainshock, its collapse capacity is unaffected in the aftershock. However, if the building is extensively damaged in the mainshock, there is a significant reduction in its collapse capacity in the aftershock. For example, if an RC frame experiences 4% or more interstory drift in the mainshock, the median capacity to resist aftershock shaking is reduced by about 40%. The study also evaluates the effectiveness of different measures of physical damage observed in the mainshock-damaged buildings for predicting the reduction in collapse capacity of the damaged building in subsequent aftershocks. These physical damage indicators for the building are chosen such that they quantify the qualitative red tagging (unsafe for occupation) criteria employed in post-earthquake evaluation of RC frames. The results indicated that damage indicators related to the drift experienced by the damaged building best predicted the reduced aftershock collapse capacities for these ductile structures.

  13. Prediction of the Residual Strength for Durability Failure of Concrete Structure in Acidic Environments

    Institute of Scientific and Technical Information of China (English)

    LI Beixing; CAI Laohu; WANG Kai; ZHANG Yaming

    2016-01-01

    According to the results of accelerated tests of acidiifcation corrosion depth and compressive strength of concretes subjected to sulfuric acid environments, the acidiifcation depth laws of concretes were predicted based on the grey system theory. Thus, the remaining compressive strength was calculated when the acidiifcation depth reached the protection layer thickness of concrete structures, which indicates that the limit state of durability failure can be deifned based on strength degradation, and the calculation process was illustrated by an example. The calculated results show that the remaining compressive strength values in the durability failure limit state for the concrete structures exposed to pH=2 and 3 sulfuric acid water environments and wet-dry cyclic sulfuric acid environment with pH=2 are 74%, 72%, and 80% of initial strength, respectively. The method provides references for the durability evaluation of concrete structure design under the acidic environments.

  14. Design of concrete structures for durability. Example: Chloride penetration in the lining of a bored tunnel

    NARCIS (Netherlands)

    Siemes, A.J.M.

    1998-01-01

    The present design method for durability of concrete is based on a set of rules that give no objective in-sight in the service life to expect from the concrete structure. An objective comparison between different durability measures is therefor not possible. Especially if the lack of durability can

  15. Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete.

    Science.gov (United States)

    Liu, Jun; Qiu, Qiwen; Xing, Feng; Pan, Dong

    2014-05-30

    This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively) were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride transport, apparent water permeability and pore structure. The results demonstrate that incorporation of fly ash, for the early test period, promotes the chloride ingress at the surface layer of concrete but substituting proportions of fly ash may have little impact on it. With the process of chloride immersion, the chloride concentration at the surface layer of concrete with or without fly ash was found to be nearly the same. In addition, it is suggested that the water permeability at the concrete surface area is closely related to the fly ash contents as well as the chloride exposure time. Pore structure was characterized by means of mercury intrusion porosimetry (MIP) test and the scanning electron microscopy (SEM) images. The modification of pore structure of concrete submersed in distilled water is determined by the pozzolanic reaction of fly ash and the calcium leaching effect. The pozzolanic reaction was more dominant at the immersion time of 180 days while the calcium leaching effect became more evident after 270 days.

  16. Realisation of complex precast concrete structures through the integration of algorithmic design and novel fabrication techniques

    DEFF Research Database (Denmark)

    Larsen, Niels Martin; Egholm Pedersen, Ole; Pigram, Dave

    2012-01-01

    This paper describes a novel method for constructing complex concrete structures from small-scale individualized elements. The method was developed through the investigation of laser cutting, folding and concrete casting in PETG plastic sheets and funicular grid shell simulations as a generator...

  17. Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-05-01

    Full Text Available This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride transport, apparent water permeability and pore structure. The results demonstrate that incorporation of fly ash, for the early test period, promotes the chloride ingress at the surface layer of concrete but substituting proportions of fly ash may have little impact on it. With the process of chloride immersion, the chloride concentration at the surface layer of concrete with or without fly ash was found to be nearly the same. In addition, it is suggested that the water permeability at the concrete surface area is closely related to the fly ash contents as well as the chloride exposure time. Pore structure was characterized by means of mercury intrusion porosimetry (MIP test and the scanning electron microscopy (SEM images. The modification of pore structure of concrete submersed in distilled water is determined by the pozzolanic reaction of fly ash and the calcium leaching effect. The pozzolanic reaction was more dominant at the immersion time of 180 days while the calcium leaching effect became more evident after 270 days.

  18. The fatigue process of concrete and its structural influence

    Directory of Open Access Journals (Sweden)

    Zanuy, Carlos

    2011-09-01

    Full Text Available Fatigue of concrete is a microcracking process leading to the change of the macroscopic material properties. In particular, progressive stiffness decrease and increase of total and residual strains are developed as a function of the number of cycles and the stress level. The influence of the fatigue process on the behaviour of structural members is complex, because a cyclic redistribution of stresses develops within the structure. Owing to this fact, the employ of S-N curves to estimate the fatigue life usually leads to extremely conservative results. In this paper, a fatigue model for concrete is presented accounting for the evolution of the material properties. The model is able to obtain the fatigue life and the evolution of stresses and strains. The results are compared with other available design rules and a modification is proposed to estimate the number of cycles to failure in a simple way for the engineering practice.

    La fatiga del hormigón está gobernada por un proceso de microfisuración interna que tiene como resultado macroscópico la modificación de las propiedades mecánicas, en particular, la reducción de la rigidez y el crecimiento de las deformaciones totales y residuales en función del nivel de la tensión. La influencia de este proceso en el comportamiento de elementos estructurales es compleja, porque éstos desarrollan una progresiva redistribución interna de tensiones. Por ello, el uso directo de las curvas S-N lleva normalmente a resultados excesivamente conservadores. En este artículo se presenta un modelo de fatiga del hormigón que incluye el cambio de las propiedades del material y es capaz de obtener tanto la vida a fatiga como la evolución de tensiones y deformaciones. Este modelo se compara con otros modelos normativos existentes y se propone una modificación en los mismos para calcular el número de ciclos resistentes de una forma simple y práctica.

  19. Handbook for Design of Undersea, Pressure-Resistant Concrete Structures

    Science.gov (United States)

    1986-10-01

    21. S. Mindess and J.F. Young. Concrete. Prentice-Hall, Englewood Cliffs, N.J., 1981, pp 422-424. 22. Naval Civil Engineering Laboratory. Technical...Hellawell, "The solidification of cement," Scientific American, vol 237, no. 1, Jul 1977 , pp 82-90. 25. T.C. Powers, "The nature of concrete," Special...H.H. Haynes. Port Hueneme, Calif., Nov 1977 . 40. Technical Memorandum M-44-77-08: Data from hydrostatic test of concrete sphere AY-l1, by H.H. Haynes

  20. Durability of cracked fibre reinforced concrete structures exposed to chlorides

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Ekman, Tom; Hansen, Kurt Kielsgaard

    1999-01-01

    is used as environmental load. The chloride penetration is characterized both qualitatively (UV-test) and quantitatively (chloride profile) and by microscopy. The test programme involves three different concrete qualities. Both steel fibres and polypropylene fibres are used in the concrete beams as well......Durability studies are carried out by subjecting FRC-beams to combined mechanical and environmental load. Mechanical load is obtained by exposing beams to 4-point bending until a predefined crack width is reached, using a newly developed test setup. Exposure to a concentrated chloride solution...... as main reinforcement. The effect of the cracks, the fibres and the concrete quality on the chloride penetration is studied....

  1. Study on Seismic Behavior of Recycled Concrete Energy-efficient Homes Structure Wall

    Directory of Open Access Journals (Sweden)

    Dong Lan

    2016-01-01

    Full Text Available The main point is to study the seismic behavior of the lattice type recycled concrete energy saving wall under low-cyclic loading,to provide the basis for the seismic performance of application of recycled concrete lattice wall in energy-saving residential structure. Design two walls with the same structure measures, include Lattice type recycled concrete wall and natural concrete wall, they are tested under low-cycle repetitive loading, compared failure mode and seismic performance in different reinforcement conditions of side column. The bearing capacity and ductility of recycled aggregate concrete are better than natural aggregate concrete, The stiffness degradation curves and the skeleton curves of the walls are basically the same, both of them have better seismic energy dissipation capacity. Lattice type concrete wall is good at seismic performance, recycled aggregate concrete is good at plastic deformation ability, it is advantageous to seismic energy dissipation of wall, it can be applied in energy efficient residential structure wall.

  2. EXPERIMENTAL RESEARCH OF THE THREE-DIMENSIONAL PERFORMANCE OF COMPOSITE STEEL AND CONCRETE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Zamaliev Farit Sakhapovich

    2012-12-01

    steel-concrete slabs limits their use in the construction of residential housing. This article describes the composition, geometry, reinforcement, and anchors to enable the use of concrete slabs and steel beams. The article contains photographs that illustrate the load distribution model. Methods of testing of fiber strains of concrete slabs and steel profiles, deflections of beams, shear stresses in the layers of the "steel-to-concrete" contact area that may involve slab cracking are analyzed. Dynamics of fiber deformations of concrete slabs, steel beams, and layers of the "steel-to-concrete" contact areas, deflection development patterns, initial cracking and crack development to destruction are analyzed. The author also describes the fracture behavior of the floor model. Results of experimental studies of the three-dimensional overlapping of structural elements are compared to the test data of individual composite beams. Peculiarities of the stress-strain state of composite steel and concrete slabs, graphs of strains and stresses developing in sections of middle and external steel-and-concrete beams, deflection graphs depending on the loading intensity are provided. The findings of the experimental studies of the three-dimensional performance of composite steel-and-concrete slabs are provided, as well.

  3. Reliability-based service life prediction of existing concrete structures under marine environment

    Institute of Scientific and Technical Information of China (English)

    吴灵杰; 周拥军; 寇新建; 蒋萌

    2015-01-01

    Chloride-induced corrosion of the reinforcement is considered as one of the major mechanisms resulting in the reduction of structural resistance of reinforced concrete structural elements located in marine and other aggressive environments. A study of reinforced concrete structures located at the Fangcheng dock in the Beibu Gulf port, China, was present. The result from field survey indicates that the concrete cover depth and chloride diffusion coefficient fit best normal distribution and lognormal distribution, respectively. The service life of structure is about 55 a, while initiation time is 45 a. Sensitivity analysis indicates that the most influential factor of the structure service life prediction is concrete cover, followed by diffusion coefficient, diffusion decay index, critical chloride concentration, surface chloride concentration, current density and localized pitting corrosion. Finally, the effects of diffusion decay index and critical chloride concentration on structure service life prediction are discussed.

  4. Study on the Analytical Behaviour of Concrete Structure Against Local Impact of Hard Missile

    Directory of Open Access Journals (Sweden)

    Ahmad Mujahid Ahmad Zaidi

    2011-07-01

    Full Text Available Concrete is basic construction material used for almost all kind of structure. However, in the majority essential structures such as nuclear plants, Power plants, Weapon Industries, weapons storage places, water retaining structures like dams, highways barriers, bridges, & etc., concrete structures have to be designed as self-protective structure which can afford any disaster or consciously engendered unpleasant incidents such as incident occurs in nuclear plants, incident in any essential industry, terrorist attack, Natural disasters like tsunami and etc missile attack, and local impact damage generated by kinetic missiles dynamic loading (steel rods, steel pipes, turbine blades, etc.. This paper inquisitively is paying attention on verdict of the recent development in formulating analytical behavior of concrete and reinforced concrete structures against local impact effect generated by hard missile with and without the influence of dimensional analysis based on dominant non-dimensional parameters, various nose shape factors at normal and certain inclined oblique angles. The paper comprises the analytical models and methods for predicting penetration, and perforation of concrete and reinforced concrete. The fallout conquer from this study can be used for making design counsel and design procedures for seminal the dynamic retort of the concrete targets to foil local impact damage.

  5. Overview of ORNL/NRC programs addressing durability of concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B.

    1994-06-01

    The role of reinforced concrete relative to its applications as either safety-related structures in nuclear power or engineered barriers of low-level radioactive waste disposal facilities is described. Factors that can affect the long-term durability of reinforced concrete are identified. Overviews are presented of the Structural Aging Program, which is addressing the aging management of safety-related concrete structures in nuclear power plants, and the Permeability Test Methods and Data Program, which is identifying pertinent data and information for use in performance assessments of engineered barriers for low-level radioactive waste disposal.

  6. Structural-functional integrated concrete with macro-encapsulated inorganic PCM

    Science.gov (United States)

    Mohseni, Ehsan; Tang, Waiching; Wang, Zhiyu

    2017-09-01

    Over the last few years the application of thermal energy storage system incorporating phase change materials (PCMs) to foster productivity and efficiency of buildings energy has grown rapidly. In this study, a structural-functional integrated concrete was developed using macro-encapsulated PCM-lightweight aggregate (LWA) as partial replacement (25 and 50% by volume) of coarse aggregate in control concrete. The PCM-LWA was prepared by incorporation of an inorganic PCM into porous LWAs through vacuum impregnation. The mechanical and thermal performance of PCM-LWA concrete were studied. The test results revealed that though the compressive strength of concrete with PCM-LWA was lower than the control concrete, but ranged from 22.02 MPa to 42.88 MPa which above the minimum strength requirement for structural application. The thermal performance test indicated that macro-encapsulated PCM-LWA has underwent the phase change transition reducing the indoor temperature.

  7. Non-contact Evaluation of Concrete Structures Using Air-coupled Sensing Technique

    Institute of Scientific and Technical Information of China (English)

    ZHU Jinying

    2011-01-01

    Elastic wave-based non-destructive testing (NDT) methods are effective for flaw detection in concrete structures and pavements. However, the test speed of elastic wave-based methods is severely limited by the physical coupling between sensors and concrete surface. The air-coupled sensing method is proposed as a solution to develop rapid NDT techniques for concrete infrastructure. This paper reviews the development of air-coupled sensing technique for concrete structures in civil engineering applications. It presents four stages of the research: 1 ) feasibility study through theoretical analysis; 2 ) air-coupled surface wave velocity measurement; 3) air-coupled surface wave transmission measurement to determine crack depth; 4) air-coupled impact-echo test to locate delaminations and voids in concrete.

  8. Investigation of Concrete Structures in Serviceability Limit State Using Energy Principles

    DEFF Research Database (Denmark)

    Hagsten, Lars German; Fisker, Jakob

    2013-01-01

    In this paper, a method concerning analysis of reinforced concrete structures in the serviceability limit state (SLS) is discussed. The method is based on elastic energy principles, combined with simple assumptions with respect to concrete mechanics. This approach allows for a direct implementati...... the choices made regarding the ULS and the state of stress in the SLS is compared with tests on reinforced concrete disks and beams, respectively. Fairly good agreement between theory and tests is achieved.......In this paper, a method concerning analysis of reinforced concrete structures in the serviceability limit state (SLS) is discussed. The method is based on elastic energy principles, combined with simple assumptions with respect to concrete mechanics. This approach allows for a direct implementation...

  9. Crack monitoring capability of plastic optical fibers for concrete structures

    Science.gov (United States)

    Zhao, Jinlei; Bao, Tengfei; Chen, Rui

    2015-08-01

    Optical fibers have been widely used in structural health monitoring. Traditional silica fibers are easy to break in field applications due to their brittleness. Thus, silica fibers are proposed to be replaced by plastic optical fibers (POFs) in crack monitoring in this study. Moreover, considering the uncertainty of crack propagation direction in composite materials, the influence of the angles between fibers and cracks on the monitoring capability of plastic optical fibers is studied. A POF sensing device was designed and the relationship between light intensity loss and crack width under different fiber/crack angles was first measured through the device. Then, three-point bend tests were conducted on concrete beams. POFs were glued to the bottom surfaces of the beams and light intensity loss with crack width was measured. Experimental results showed that light intensity loss in plastic optical fibers increased with crack width increase. Therefore, application of plastic optical fibers in crack monitoring is feasible. Moreover, the results also showed that the sensitivity of the POF crack sensor decreased with the increase of angles between fibers and cracks.

  10. Formwork pressure of self-consolidating concrete: Influence of flocculation mechanisms, structural rebuilding, thixotropy and rheology

    Science.gov (United States)

    Ferron, Raissa Patricia Douglas

    While self-consolidating concrete (SCC) may no longer be considered a "new concrete", there are still significant challenges to overcome before there is broader acceptance of SCC. One of these challenges concerns the formwork pressure exerted by SCC. A major advantage of SCC is the accelerated casting process due to the elimination of external vibration. However, faster casting rates may induce higher formwork pressure; this is a major concern for cast-in place applications, especially when casting tall elements. It has been reported that the formwork pressure of SCC can be less than hydrostatic pressure. This is due to the build-up of a three-dimensional structure when the concrete is left at rest. The development of this structure and the mechanisms behind it are of particular interest to users of SCC. The research presented in this manuscript was carried out at the Center for Advanced Cement-Based Materials at Northwestern University and the Universidad Complutense de Madrid. This dissertation focuses on the structural rebuilding SCC and its implications for formwork pressure. Special emphasis was given to the influence of flocculation mechanisms and the impact of material constituents. A rheological protocol to characterize structural rebuilding was developed. This protocol can be used to assess the contributions from irreversible structural build-up from hydration and reversible structural rebuilding from thixotropic effects. The impact of various mixture ingredients, including cement type, mineral admixtures, chemical admixtures and clays, on the structural rebuilding was examined. The results showed that the rheological properties of the paste matrix and its evolution over time can be used as an indication of the formwork pressure behavior. Formwork pressure is highly impacted by the structural rebuilding that occurs in the paste matrix, and the results showed that formwork pressure is related to the rate at which structural rebuilding occurs and the total

  11. Superplasticizer effect on cement paste structure and concrete freeze-thaw resistance

    Science.gov (United States)

    Shuldyakov, Kirill; Kramar, Lyudmila; Trofimov, Boris; Ivanov, Ilya

    2016-01-01

    Article presents the results of studies of various types of superplasticizer additives and their influence on concrete structure and resistance under cyclic freezing-thawing. Glenium ACE 430 was taken as a polycarboxylate superplasticizer, and SP-1 - as a naphthalene-formaldehyde superplasticizer. It is revealed that at identical structure, W/C and fluidity of concrete mix, application of the polycarboxylate superplasticizer, Glenium AC 430, in comparison to the naphthalene-formaldehyde one SP-1, facilitates the increase of the concrete grade in freeze and thaw resistance from F2300 to F2400, concrete freeze and thaw resistance can be possible even higher if the gravel with higher freeze and thaw resistance is applied. To assess the superplasticizers influence on cement paste structure tests of the phase composition of the cement paste of the studied concrete were conducted. It is established that the use of polycarboxylate superplasticizer together with silica fume facilitates formation of cement plaster structure from tobermorite gel. This gel has increased basicity and is resistant to crystallization due to cyclic freezing. It is shown that in the presence of SP-1+SF in the cement paste of concrete during hydration the structure of hydrosilicate phases preferably comprises of C-S-H(I) and C-S-H(II) phases which actively crystallize while cyclic freezing and thawing and reduce freeze-thaw resistance of concrete.

  12. Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2007-02-01

    The objective of this study was to provide a primer on the environmental effects that can affect the durability of nuclear power plant concrete structures. As concrete ages, changes in its properties will occur as a result of continuing microstructural changes (i.e., slow hydration, crystallization of amorphous constituents, and reactions between cement paste and aggregates), as well as environmental influences. These changes do not have to be detrimental to the point that concrete will not be able to meet its performance requirements. Concrete, however, can suffer undesirable changes with time because of improper specifications, a violation of specifications, or adverse performance of its cement paste matrix or aggregate constituents under either physical or chemical attack. Contained in this report is a discussion on concrete durability and the relationship between durability and performance, a review of the historical perspective related to concrete and longevity, a description of the basic materials that comprise reinforced concrete, and information on the environmental factors that can affect the performance of nuclear power plant concrete structures. Commentary is provided on the importance of an aging management program.

  13. Estimation of Concrete Carbonation Depth Considering Multiple Influencing Factors on the Deterioration of Durability for Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Hae-Chang Cho

    2016-01-01

    Full Text Available While the durability of concrete structures is greatly influenced by many factors, previous studies typically considered only a single durability deterioration factor. In addition, these studies mostly conducted their experiments inside the laboratory, and it is extremely hard to find any case in which data were obtained from field inspection. Accordingly, this study proposed an Adaptive Neurofuzzy Inference System (ANFIS algorithm that can estimate the carbonation depth of a reinforced concrete member, in which combined deterioration has been reflected based on the data obtained from field inspections of 9 buildings. The proposed ANFIS algorithm closely estimated the carbonation depths, and it is considered that, with further inspection data, a higher accuracy would be achieved. Thus, it is expected to be used very effectively for durability estimation of a building of which the inspection is performed periodically.

  14. Bond slip detection of concrete-encased composite structure using shear wave based active sensing approach

    Science.gov (United States)

    Zeng, Lei; Parvasi, Seyed Mohammad; Kong, Qingzhao; Huo, Linsheng; Lim, Ing; Li, Mo; Song, Gangbing

    2015-12-01

    Concrete-encased composite structure exhibits improved strength, ductility and fire resistance compared to traditional reinforced concrete, by incorporating the advantages of both steel and concrete materials. A major drawback of this type of structure is the bond slip introduced between steel and concrete, which directly reduces the load capacity of the structure. In this paper, an active sensing approach using shear waves to provide monitoring and early warning of the development of bond slip in the concrete-encased composite structure is proposed. A specimen of concrete-encased composite structure was investigated. In this active sensing approach, shear mode smart aggregates (SAs) embedded in the concrete act as actuators and generate desired shear stress waves. Distributed piezoceramic transducers installed in the cavities of steel plates act as sensors and detect the wave response from shear mode SAs. Bond slip acts as a form of stress relief and attenuates the wave propagation energy. Experimental results from the time domain analysis clearly indicate that the amplitudes of received signal by lead zirconate titanate sensors decreased when bond slip occurred. In addition, a wavelet packet-based analysis was developed to compute the received signal energy values, which can be used to determine the initiation and development of bond slip in concrete-encased composite structure. In order to establish the validity of the proposed method, a 3D finite element analysis of the concrete-steel bond model is further performed with the aid of the commercial finite element package, Abaqus, and the numerical results are compared with the results obtained in experimental study.

  15. THEORETICAL ASPECTS, EXPERIMENTAL INVESTIGATIONS AND EFFICIENCY IN USAGE OF HIGH-STRENGTH CONCRETE FOR BRIDGE STRUCTURES

    Directory of Open Access Journals (Sweden)

    G. D. Liakhevich

    2014-01-01

    Full Text Available In Belarus concrete with strength up to 60 MPA is used for construction. At the same time high strength concrete with compressive strength above 60 MPA is widely used in all industrially developed countries. High- strength concrete is included in regulatory documents of the European Union and that fact has laid a solid foundation for its application. High strength concrete is produced using highly dispersed silica additives, such as micro-silica and plasticizers (super-plasticizers with a water/cement (w/c ratio not greater than 0.4.Theoretical aspects of high-strength concrete for bridge structures have been studied in the paper. The paper shows a positive impact of highly dispersed additives on structure and physico-mechanical properties of cement compositions, namely: reduction of total porosity of a cement stone in concrete while increasing volumetric concentration and dispersion of a filler; binding of calcium hydroxide with the help of amorphised micro-silica; increased activity of mineral additives during their thin shredding; acceleration of the initial stage of chemical hardening of cement compositions with highly dispersed particle additives that serve as centers of crystallization; “binder-additive” cluster formation due to high surface energy of highly dispersed additive particles; hardening of surface area between a cement stone and aggregates in concrete; high-strength concretes are gaining strength much faster than conventional concretes.Technology of preparation and composition of high-strength concrete using highly dispersed mineral additives and super-plasticizer has been developed in the paper. This concrete will ensure a higher density, wa- ter-and gas tightness, increased resistance to aggressive environment, reduced consumption of concrete and reinforcement, reduced transport and installation weight, increased initial strength, early easing of shutters and preliminary compression, increased length of bridge spans

  16. Long-term prediction of reinforced concrete structures - Use of thermodynamic data to assess steel corrosion in carbonated concrete

    Energy Technology Data Exchange (ETDEWEB)

    Huet, Bruno [Laboratoire d' Etude du Comportement des Betons et Argiles, DEN/DPC/SCCME/LECBA, Bat. 158, CEA Saclay, 91191 Gif sur Yvette cedex (France)]|[Laboratoire de Physico-Chimie Industrielle, LPCI, INSA de Lyon, Bat. Leonard de Vinci, 20 av. Albert Einstein, 69621 Villeurbanne cedex (France); L' Hostis, Valerie; Le Bescop, Patrick [Laboratoire d' Etude du Comportement des Betons et Argiles, DEN/DPC/SCCME/LECBA, Bat. 158, CEA Saclay, 91191 Gif sur Yvette cedex (France); Idrissi, Hassane [Laboratoire de Physico-Chimie Industrielle, LPCI, INSA de Lyon, Bat. Leonard de Vinci, 20 av. Albert Einstein, 69621 Villeurbanne cedex (France)

    2004-07-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of the steels have to be assessed and modelled. When nuclear wastes are embedded in reinforced concrete containers, the chemical environment of the reinforcement is progressively modified, due to the diffusion of the carbonation front inside the concrete matrix. This modification leads to the variation of the properties of the iron oxides formed at the steel/concrete interface, and the active corrosion can be initiated. In order to understand and modelled the mechanisms of steel corrosion in concrete, the equilibrium of two main systems must be separately described with the help of thermodynamic data issued from the literature: - The mineral phases, lime and calcium silicate hydrate (C-S-H), in equilibrium with the pore solution during the propagation of the carbonation front; - The iron oxides in equilibrium with the aqueous solution. For this purpose, the nature of aqueous species present in the pore solution was calculated in the whole range of pH encountered during the cement paste degradation by carbonation. As a matter of fact, as the pH decreases, calcium concentration decreases and silicates concentration increases due to the calcium carbonate formation and C-S-H dissolution. The pH of a carbonated concrete ranges between 8.3 and 10, depending on the partial pressure of carbon dioxide in the porosity and the conversion degree of carbonation. In this pH range, the iron oxides equilibria were analysed as a function of the redox potential and aqueous species (carbonates and sulphates present in the solution) present inside the solution. In a reductive solution and in presence of carbonates, the high solubility of iron oxides may prevent passivation or generate the dissolution of the passive film. Moreover, the relevance of thermodynamics calculations has been confirmed by corrosion tests of mild steel

  17. Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization

    DEFF Research Database (Denmark)

    Amir, Oded; Sigmund, Ole

    2013-01-01

    This article presents a new procedure for the layout design of reinforcement in concrete structures. Concrete is represented by a gradient-enhanced continuum damage model with strain-softening and reinforcement is modeled as elastic bars that are embedded into the concrete domain. Adjoint...... sensitivity analysis is derived in complete consistency with respect to path-dependency and the nonlocal model. Classical truss topology optimization based on the ground structure approach is applied to determine the optimal topology and cross-sections of the reinforcement bars. This approach facilitates...

  18. Evaluation of Tensile Strength of Unresin Continuous Carbon Fiber Cables as Tensile Reinforcement for Concrete Structures

    OpenAIRE

    Ohta, Toshiaki; Djamaluddin, rudy; Seo, SungTag; Sajima, Takao; Harada, Koji

    2002-01-01

    As a tensile reinforcement of a concrete structure member, tensile strength of Unresin Continuous Carbon Fiber (UCCF) cables should be stated clearly. It has been reported that, through direct tensile test, tensile capacity of UCCF cables ranged from 30%

  19. Particulate structure and microstructure evolution of concrete investigated by DEM: Part 1: Aggregate and binder packing

    NARCIS (Netherlands)

    He, H.; Le, N.L.B.; Stroeven, P.

    2012-01-01

    Experimental approaches in concrete technology are time-consuming, laborious and thus expensive. Developments in computer facilities render possible nowadays realistically simulating the particulate structure and microstructure of cementitious materials. For that purpose, discrete element methods (D

  20. Particulate structure and microstructure evolution of concrete investigated by DEM: Part 2: Porosimetry in hydrating binders

    NARCIS (Netherlands)

    Huan He, H.; Le, N.L.B.; Stroeven, P.

    2012-01-01

    Durability of concrete in engineering structures is becoming more and more of a major problem. Research into such problems is complicated and expensive, however. Developments in computer technology make it possible nowadays realistically simulating cementitious materials and studying its pore

  1. Particulate structure and microstructure evolution of concrete investigated by DEM: Part 1: Aggregate and binder packing

    NARCIS (Netherlands)

    He, H.; Le, N.L.B.; Stroeven, P.

    2012-01-01

    Experimental approaches in concrete technology are time-consuming, laborious and thus expensive. Developments in computer facilities render possible nowadays realistically simulating the particulate structure and microstructure of cementitious materials. For that purpose, discrete element methods (D

  2. Remote sensing of voids in large concrete structures: runways, taxiways, bridges, and building walls and roofs

    Science.gov (United States)

    Weil, Gary J.

    1998-10-01

    Maintenance of our world's infrastructure presents many unique challenges. Engineering and maintenance personnel must maintain around the clock service to millions of people each year while maintaining millions of cubic meters of concrete distributed throughout facilities. This infrastructure includes runways, taxiways, roadways, walkways, bridges, building walls and roofs. Presently only a limited number of accurate and economical techniques exist to test this myriad of concrete structures for integrity and safety as well as insure that they meet original design specifications. Remote sensing, non-destructive testing techniques, such as Infrared Thermography, Ground Penetrating Radar, Magnetometer and Pachometer, measure physical properties affected by the various materials and conditions found within, and under, concrete infrastructure. These techniques have established reputations for accurate investigations of concrete anomalies. This paper will review the applications of different non- destructive testing techniques on many concrete infrastructure components.

  3. Properties of Structural Lightweight Concrete Filled with Palm-Based Polyurethane

    Directory of Open Access Journals (Sweden)

    Kamarul Aini Mohd Sari

    2014-09-01

    Full Text Available Four experiments were conducted to characterize the properties of palm-based polyurethane (PU foam in lightweight concrete. The PU foam was synthesized from palm kernel oil-based polyol reacted with 2, 4-methylene diphenyl diisocyanate. Polyurethane as lightweight aggregate was mixed with ordinary cement, sand, and water to form lightweight concrete. The microstructure of PU aggregate can be accessed from optical micrographs. Density, compressive strength, distribution of fine aggregate, and the interfacial zone were also investigated. The result showed that palm-based lightweight concrete has excellent compressive strength (17.5 MPa, and fulfilled the minimum strength requirement for structural concrete. Palm-based lightweight concrete with 0.6 w/c ratio and 3% w/w PU system achieved 1770 kg/m3 presented uniform dispersion of aggregate and excellent mechanical bonding.

  4. nD modelling in the development of cast in place concrete structures

    OpenAIRE

    Jongeling, Rogier; Emborg, Mats; Olofsson, Thomas

    2005-01-01

      The Swedish IT-stomme (IT-structure) project is a two year research project, which is aimed at applying product models in practice and developing modelling tools for cast in place concrete structures. Implementations and applications discussed in this paper are mainly driven by the interests from a ready mixed concrete supplier who identified product modelling as a threat and as an opportunity for its business process. A number of product model dimensions is discussed that result from co...

  5. Pore Structure and Influence of Recycled Aggregate Concrete on Drying Shrinkage

    OpenAIRE

    Yuanchen Guo; Jueshi Qian; Xue Wang

    2013-01-01

    Pore structure plays an important role in the drying shrinkage of recycled aggregate concrete (RAC). High-precision mercury intrusion and water evaporation were utilized to study the pore structure of RAC, which has a different replacement rate of recycled concrete aggregate (RCA), and to analyze its influence on drying shrinkage. Finally, a fractal-dimension calculation model was established based on the principles of mercury intrusion and fractal-geometry theory. Calculations were performed...

  6. Experimental Investigation on Pore Structure Characterization of Concrete Exposed to Water and Chlorides

    OpenAIRE

    LIU Jun; Tang, Kaifeng; Qiu, Qiwen; Pan, Dong; Lei, Zongru; Xing, Feng

    2014-01-01

    In this paper, the pore structure characterization of concrete exposed to deionised water and 5% NaCl solution was evaluated using mercury intrusion porosity (MIP), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of calcium leaching, fly ash incorporation, and chloride ions on the evolution of pore structure characteristics were investigated. The results demonstrate that: (i) in ordinary concrete without any fly ash, the leaching effect of the cement products is mo...

  7. Detection of sulfur in the reinforced concrete structures using a dual pulsed LIBS system

    Science.gov (United States)

    Gondal, M. A.; Dastageer, A.; Maslehuddin, M.; Alnehmi, A. J.; Al-Amoudi, O. S. B.

    2012-04-01

    In concrete structures, an excessive amount of sulfate ions can cause severe damage to the strength and the stability of the building structures and hence a sensitive and reliable technique for sulfate ion detection in concrete is highly desirable. Laser-induced breakdown spectroscopy (LIBS) is one of the most reliable and sensitive techniques to identify the presence of potentially dangerous sulfur in the concrete structure. The atomic emission lines of sulfur lying in the 200-900 nm region are mostly singly ionized states and hence inherently very weak. In order to enhance the sensitivity of the conventional LIBS system, we employed a dual pulsed LIBS system for detection of weak spectral line of sulfur in concrete using the S II peak at 545.38 nm as a marker for quantifying sulfur content in the concrete. The 1064 nm fundamental and 266 nm fourth harmonic of the Nd:YAG laser in conjunction with Spectrograph/gated ICCD camera are the core factors in improvement of sensitivity. Furthermore, the dual pulsed LIBS system and the fine maneuvering of the gate parameters and interpulse delay yielded improvement in the sensitivity, and resulted in a systematic correlation of the LIBS signal with the concentration of sulfur in the concrete sample. In order to quantify the sulfur content in concrete, a calibration curve was also drawn by recording the LIBS spectra of sample having sulfur in various concentrations. The limit of detection achieved with our dual pulsed LIBS system is approximately 38 μg/g.

  8. The Condition of Corps of Engineers Civil Works Concrete Structures

    Science.gov (United States)

    1985-04-01

    Institute Committee 116 report " Cement and Concrete Terminology." The deficiencies observed are defined in Appendix B. Since the terminology used in the...staining 127 0 109 14 0 0 183 Exudation 6 0 4 2 0 0 184 Efflorescence 546 2 447 94 3 0 185 Incrustation 10 2 7 1 0 0 -- -- Total 2,048 43 1563 387 53 2...Unclassified Good Fair Poor Failed 500 Unspecified Total 204 65 81 9 15 34 510 Concrete (unspecified) 109 24 36 18 6 25 511 Conventional (portland cement ) 25

  9. Concreteness of positive word contributions to affective priming: an ERP study.

    Science.gov (United States)

    Yao, Zhao; Wang, Zhenhong

    2014-09-01

    Recent behavioral data suggest that the concreteness of positive words modulates subsequent cognitive processing; however, the underlying physiological processes of this influence are not well understood. To explore this process, positive-abstract words or positive-concrete words were used as primes when participants performed a lexical decision task during the measurement of event-related potentials (ERPs). The behavioral data revealed a significant affective priming effect (i.e., incongruent>congruent) only for abstract word pairs. The N400 amplitude was larger for affectively incongruent pairs compared to affectively congruent pairs, independent of the prime concreteness. The amplitude of the late positive component (LPC) was modulated by prime concreteness. The processing of positive-abstract targets was facilitated by previous exposure to a congruent prime, as reflected by the reduced LPC, which has been thought to reflect attentional and memory processes. However, no differences in the LPC amplitude were found between congruent and incongruent-concrete pairs. These findings suggest that the influence of the concreteness of positive words mainly occurs during the decision-making processing and memory-related stages.

  10. Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment.

    Science.gov (United States)

    Bansal, Roohi; Dhami, Navdeep Kaur; Mukherjee, Abhijit; Reddy, M Sudhakara

    2016-11-01

    Microbial carbonate precipitation has emerged as a promising technology for remediation and restoration of concrete structures. Deterioration of reinforced concrete structures in marine environments is a major concern due to chloride-induced corrosion. In the current study, halophilic bacteria Exiguobacterium mexicanum was isolated from sea water and tested for biomineralization potential under different salt stress conditions. The growth, urease and carbonic anhydrase production significantly increased under salt stress conditions. Maximum calcium carbonate precipitation was recorded at 5 % NaCl concentration. Application of E. mexicanum on concrete specimens significantly increased the compressive strength (23.5 %) and reduced water absorption about five times under 5 % salt stress conditions compared to control specimens. SEM and XRD analysis of bacterial-treated concrete specimens confirmed the precipitation of calcite. The present study results support the potential of this technology for improving the strength and durability properties of building structures in marine environments.

  11. Review of Carbon Fiber Reinforced Polymer Reinforced Material in Concrete Structure

    Directory of Open Access Journals (Sweden)

    Ayuddin Ayuddin

    2016-05-01

    Full Text Available Carbon Fiber Reinforced Polymer (FRP is a material that is lightweight, strong, anti-magnetic and corrosion resistant. This material can be used as an option to replace the steel material in concrete construction or as material to improve the strength of existing construction. CFRP is quite easy to be attached to the concrete structure and proved economically used as a material for repairing damaged structures and increase the resilience of structural beams, columns, bridges and other parts of the structure against earthquakes. CFRP materials can be shaped sheet to be attached to the concrete surface. Another reason is due to the use of CFRP has a higher ultimate strength and lower weight compared to steel reinforcement so that the handling is significantly easier. Through this paper suggests that CFRP materials can be applied to concrete structures, especially on concrete columns. Through the results of experiments conducted proved that the concrete columns externally wrapped with CFRP materials can increase the strength. This treatment is obtained after testing experiments on 130 mm diameter column with a height of 700 mm with concentric loading method to collapse. The experimental results indicate that a column is wrapped externally with CFRP materials can achieve a load capacity of 250 kN compared to the concrete columns externally without CFRP material which only reached 150 kN. If the column is given internally reinforcing steel and given externally CFRP materials can reach 270 kN. It shows that CFRP materials can be used for concrete structures can even replace reinforcing steel that has been widely used in building construction in Indonesia.

  12. Development of Modeling and Signal Processing Techniques for Nondestructive Testing of Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Woo, S.K.; Song, Y.C. [Korea Electric Power Research Institute, Taejeon (Korea); Rhim, H.C. [Yonsei University, Seoul (Korea)

    2001-07-01

    Radar method has a potential of being a powerful and effective tool for nondestructive testing(NDT) of concrete structures, roadways, tunnels and airport pavements. Yet, not all of the available features of the method have been fully developed. The advancement of the method can be achieved through the study of electromagnetic properties of concrete, development of computer simulation techniques for radar measurements, application of appropriate radar hardware systems for specific problem areas, and implementation of proper imaging algorithms for the processing of radar measurement data. In this paper, a numerical modeling technique of finite difference-time domain (FD-TD) method has been applied to simulate radar measurements of concrete structures for NDT. The modeling work is found to be useful in predicting radar measurement signal for thickness detection, rebar detection and the detection of delamination inside concrete. Also, an imaging scheme has been developed and proposed for the use of radar in detecting steel reinforcing bars embedded inside concrete. The scheme utilizes the measured data of electromagnetic properties of concrete and impedance mismatch between concrete and the steel bar. The results have shown improved output of the radar measurement compared to commercially available processing methods. (author). 8 refs., 15 figs.

  13. Experimental Investigation on Pore Structure Characterization of Concrete Exposed to Water and Chlorides

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-09-01

    Full Text Available In this paper, the pore structure characterization of concrete exposed to deionised water and 5% NaCl solution was evaluated using mercury intrusion porosity (MIP, scanning electron microscopy (SEM and X-ray diffraction (XRD. The effects of calcium leaching, fly ash incorporation, and chloride ions on the evolution of pore structure characteristics were investigated. The results demonstrate that: (i in ordinary concrete without any fly ash, the leaching effect of the cement products is more evident than the cement hydration effect. From the experimental data, Ca(OH2 is leached considerably with the increase in immersion time. The pore structure of concrete can also be affected by the formation of an oriented structure of water in concrete materials; (ii incorporation of fly ash makes a difference for the performance of concrete submersed in solutions as the total porosity and the pore connectivity can be lower. Especially when the dosage of fly ash is up to 30%, the pores with the diameter of larger than 100 nm show significant decrease. It demonstrates that the pore properties are improved by fly ash, which enhances the resistance against the calcium leaching; (iii chlorides have a significant impact on microstructure of concrete materials because of the chemical interactions between the chlorides and cement hydrates.

  14. Effect of Water-Cement Ratio on Pore Structure and Strength of Foam Concrete

    Directory of Open Access Journals (Sweden)

    Zhongwei Liu

    2016-01-01

    Full Text Available Foam concrete with different dry densities (400, 500, 600, 700, and 800 kg/m3 was prepared from ordinary Portland cement (P.O.42.5R and vegetable protein foaming agent by adjusting the water-cement ratio through the physical foaming method. The performance of the cement paste adopted, as well as the structure and distribution of air pores, was characterized by a rheometer, scanning electron microscope, vacuum water saturation instrument, and image analysis software. Effects of the water-cement ratio on the relative viscosity of the cement paste, as well as pore structure and strength of the hardened foam concrete, were discussed. Results showed that water-cement ratio can influence the size, distribution, and connectivity of pores in foam concrete. The compressive strength of the foam concrete showed an inverted V-shaped variation law with the increase in water-cement ratio.

  15. Effectiveness of concrete to protect steel reinforcement from corrosion in marine structures

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    A laboratory evaluation of how variations in cover design and properties determine its effectiveness in controlling corrosion in reinforced concretes in marine structures is described. The effect of concrete type and composition on chloride ingress and corrosion rate was studied for four simulated marine environments. Contrary to expectation, significant corrosion did not take place in reinforcement placed at 30 mm cover after 30 months exposure, even in concretes of lower strengths and higher water/cement ratios than mixes employed in the North Sea. Unexpected crevice corrosion let to the exclusion of electrochemical data and restricted the opportunity of correlating the properties of the cover with the onset and rate of corrosion of reinforcement. The project did, however, provide valuable data on in situ strength, moisture content, permeability, resistivity, carbonation and rate of chloride ingress. Limited data is also available on the pore structure of the cover and its oxygen diffusion characteristics. It is emphasised that all results refer to uncracked concrete. (author).

  16. Inspection of the lids of shallowly buried concrete structures based on the propagation of surface waves

    Science.gov (United States)

    Tremblay, Simon-Pierre; Karray, Mourad; Chekired, Mohamed; Bessette, Carole; Jinga, Livius

    2017-01-01

    The inspection of underground concrete utility structures can be a challenging task due to their inaccessibility. This article presents a nondestructive inspection technique for the lids of such structures based on the propagation of elastic waves where the variation in soil vertical acceleration following an impact is recorded along a given line at the surface of the soil. The structures investigated are made of reinforced concrete and are located below a shallow homogeneous soil layer which is covered by a pavement. It is shown through finite difference numerical modeling that elastic waves are affected by the state of degradation of the underground concrete structure. It is also shown that the difference in dynamic properties between the soil and the concrete structure causes the latter to act as a waveguide that affects the variation of the vertical acceleration measured at the surface of the model. The propagation of elastic waves within different underground profiles is studied in terms of the variation of their energy and of their group and phase velocity. Theoretical models, computed using the propagator matrix technique, are presented in the appendix to demonstrate the importance of the waveguide effects, caused by the presence of the concrete structure, on the group and phase velocity dispersion curves of Rayleigh waves. Finally, some of the results obtained from the inspection of two different real underground structures are also presented. These results show that the proposed inspection technique, developed based on 1D and 2D numerical testing, is also effective for real structures.

  17. A study on the effect of crack in concrete structure in the point of radiation shielding

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Min; Lee, Yoon-Hee; Lee, Kun-Jai [KAIST, Daejeon (Korea, Republic of); Cho, Cheon-Hyung; Choi, Byung-Il; Lee, Heung-Young [Nuclear Environment Technology Institute, Daejeon (Korea, Republic of)

    2005-11-15

    The saturation of South Korea's at-reactor (AR) spent fuel storage pools has created a necessity for additional spent fuel storage capacity. Because the South Korean government has a plan to increase the number of nuclear power plants to 27 units by 2016, the increase of spent nuclear fuel generation will be accelerated. Because there is no concrete plan for spent unclear fuel permanent disposal, the Korea hydraulic nuclear power company is planning to construct dry storage facility. Spent nuclear fuel from CANDU type nuclear power plant will be stored in MACSTOR-400 composed by reinforced concrete. Because it is new model, it has to be licensed. Life time estimation is needed for licensing. Deterioration of reinforced concrete structure is currently of great concern for life time estimation. The most significant form of deterioration is reinforcement corrosion that gives rise to crack the concrete structure. In this study, in order to estimate the life time of MACSTOR, the tendency of crack creation, propagation and the effect of crack in concrete structure against radiation shielding are investigated. Crack creation and propagation depends on concrete cover thickness and c/d ratio. The surface dose rate at the concrete shield in MACSTOR is simulated by MCNP code about several cases. Generally in the case of point source, surface dose rate depends on shape, width and length of crack. In the case of MACSTOR-400, It is estimated that crack is not dominant factor in the point of radiation shielding in less than 0.4mm of crack width. Above results will be helpful to estimate the life time of concrete structure as radiation shield.

  18. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years......, the research in concrete hinges has not evolved significantly in that period. But introducing a new state-of-the-art concrete arch bridge solution (Pearl-Chain arches invented at the Technical University of Denmark) creates a necessity of a concrete hinge research based on modern standards. Back when research...... in concrete hinges was more common different designs were proposed for the geometry and reinforcement. Previous research focused on fatigue, multi-axial stresses around the hinge throat, and the relation between rotation- and moment. But many different test-setups were proposed by different researchers...

  19. A study on the effects of seawater on the durable life of concrete structures(I)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan; Chang, Bong Seok; Chang, Seung Yeob; Cheon, Se Jin; Cheong, Sang Hwa; Yu, Yeong; Shin, Yong Seok; Shin, Myeong Su; Hyeong, Sang Su [Seoul Nationl Univ., Seoul (Korea, Republic of)

    1998-06-15

    Recently, large scale concrete structures such as Nuclear Power Plants and offshore structures are actively being built in this country. These structures are subject to heavy attack due to seawater environment. A reasonable consideration for corrosion has not been paid to the structures in the past decades due to insufficient research data and guidelines. The durability os emerging as one of the most important factors in the design and construction of concrete structures. The purpose of the present study is, therefore, to explore the corrosion mechanism and penetration mechanism of chloride ion, and to establish the evaluation procedure of durability life of concrete structures. A comprehensive experimental program has been set up and severe the types and amount of cement and mineral admixtures. The test results on the corrosion and strength characteristics of various concrete with be reported in the second-year report since the corrosion tests need long time. The results can be used in the design and construction of concrete structures in the future.

  20. A study on the effects of seawater on the durable life of concrete structures(I)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan; Chang, Bong Seok; Chang, Seung Yeob; Cheon, Se Jin; Cheong, Sang Hwa; Yu, Yeong; Shin, Yong Seok; Shin, Myeong Su; Hyeong, Sang Su [Seoul Nationl Univ., Seoul (Korea, Republic of)

    1998-06-15

    Recently, large scale concrete structures such as Nuclear Power Plants and offshore structures are actively being built in this country. These structures are subject to heavy attack due to seawater environment. A reasonable consideration for corrosion has not been paid to the structures in the past decades due to insufficient research data and guidelines. The durability os emerging as one of the most important factors in the design and construction of concrete structures. The purpose of the present study is, therefore, to explore the corrosion mechanism and penetration mechanism of chloride ion, and to establish the evaluation procedure of durability life of concrete structures. A comprehensive experimental program has been set up and severe the types and amount of cement and mineral admixtures. The test results on the corrosion and strength characteristics of various concrete with be reported in the second-year report since the corrosion tests need long time. The results can be used in the design and construction of concrete structures in the future.

  1. Methodology for Assessing the Probability of Corrosion in Concrete Structures on the Basis of Half-Cell Potential and Concrete Resistivity Measurements

    Directory of Open Access Journals (Sweden)

    Lukasz Sadowski

    2013-01-01

    Full Text Available In recent years, the corrosion of steel reinforcement has become a major problem in the construction industry. Therefore, much attention has been given to developing methods of predicting the service life of reinforced concrete structures. The progress of corrosion cannot be visually assessed until a crack or a delamination appears. The corrosion process can be tracked using several electrochemical techniques. Most commonly the half-cell potential measurement technique is used for this purpose. However, it is generally accepted that it should be supplemented with other techniques. Hence, a methodology for assessing the probability of corrosion in concrete slabs by means of a combination of two methods, that is, the half-cell potential method and the concrete resistivity method, is proposed. An assessment of the probability of corrosion in reinforced concrete structures carried out using the proposed methodology is presented. 200 mm thick 750 mm  ×  750 mm reinforced concrete slab specimens were investigated. Potential Ecorr and concrete resistivity ρ in each point of the applied grid were measured. The experimental results indicate that the proposed methodology can be successfully used to assess the probability of corrosion in concrete structures.

  2. Methodology for assessing the probability of corrosion in concrete structures on the basis of half-cell potential and concrete resistivity measurements.

    Science.gov (United States)

    Sadowski, Lukasz

    2013-01-01

    In recent years, the corrosion of steel reinforcement has become a major problem in the construction industry. Therefore, much attention has been given to developing methods of predicting the service life of reinforced concrete structures. The progress of corrosion cannot be visually assessed until a crack or a delamination appears. The corrosion process can be tracked using several electrochemical techniques. Most commonly the half-cell potential measurement technique is used for this purpose. However, it is generally accepted that it should be supplemented with other techniques. Hence, a methodology for assessing the probability of corrosion in concrete slabs by means of a combination of two methods, that is, the half-cell potential method and the concrete resistivity method, is proposed. An assessment of the probability of corrosion in reinforced concrete structures carried out using the proposed methodology is presented. 200 mm thick 750 mm  ×  750 mm reinforced concrete slab specimens were investigated. Potential E corr and concrete resistivity ρ in each point of the applied grid were measured. The experimental results indicate that the proposed methodology can be successfully used to assess the probability of corrosion in concrete structures.

  3. Cool barnacles: Do common biogenic structures enhance or retard rates of deterioration of intertidal rocks and concrete?

    Science.gov (United States)

    Coombes, Martin A; Viles, Heather A; Naylor, Larissa A; La Marca, Emanuela Claudia

    2017-02-15

    Sedentary and mobile organisms grow profusely on hard substrates within the coastal zone and contribute to the deterioration of coastal engineering structures and the geomorphic evolution of rocky shores by both enhancing and retarding weathering and erosion. There is a lack of quantitative evidence for the direction and magnitude of these effects. This study assesses the influence of globally-abundant intertidal organisms, barnacles, by measuring the response of limestone, granite and marine-grade concrete colonised with varying percentage covers of Chthamalus spp. under simulated, temperate intertidal conditions. Temperature regimes at 5 and 10mm below the surface of each material demonstrated a consistent and statistically significant negative relationship between barnacle abundance and indicators of thermal breakdown. With a 95% cover of barnacles, subsurface peak temperatures were reduced by 1.59°C for limestone, 5.54°C for concrete and 5.97°C for granite in comparison to no barnacle cover. The amplitudes of short-term (15-30min) thermal fluctuations conducive to breakdown via 'fatigue' effects were also buffered by 0.70°C in limestone, 1.50°C in concrete and 1.63°C in granite. Furthermore, concentrations of potentially damaging salt ions were consistently lower under barnacles in limestone and concrete. These results indicate that barnacles do not enhance, but likely reduce rates of mechanical breakdown on rock and concrete by buffering near-surface thermal cycling and reducing salt ion ingress. In these ways, we highlight the potential role of barnacles as agents of bioprotection. These findings support growing international efforts to enhance the ecological value of hard coastal structures by facilitating their colonisation (where appropriate) through design interventions.

  4. Research on steel-fibber polymer concrete machine tool structure

    Institute of Scientific and Technical Information of China (English)

    XU Ping; YU Ying-hua

    2008-01-01

    Researched on the design and manufacturing of machine tool bed made by Steel-fibber Polymer Concrete(SFPC),which analyzed the static,dynamic and thermal performances of the bed.The results of study prove that machine tool bed made with SFPC is much more superiority than made in cast iron in dynamic and thermal performances,and is more superiority then made in Polymer Concrete (PC) in static performances.It can be concluded that the static,dynamic and thermal properties of machine tool can be improved by manufacturing machine tool bed with SFPC.Also SFPC machine tool bed posses some other advantages in the following: short development time,simple production process,reducing cost cost,saving energy,iron and steel.

  5. Durability of concrete structures strengthened with FRP laminates

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the fast freeze-thaw cycling test, the alkaline immersion test, the water immersion test and the wet-thermal exposure test, the influence of aggressive environments on mechanical behavior of FRP was studied. CFRP specimens subjected to aggressive environments showed good durability with no significant degradation in tensile strength and modulus; however, GFRP specimens exhibited a little decrease in mechanical property after aggressive environments exposure. Based on the fast freeze-thaw cycling test and the wet-thermal exposure test, the influence of aggressive environments on the bond behavior between FRP and concrete, mechanical behavior of concrete beams and columns strengthened with FRP laminates was studied. The results showed that the bond strength had a significant decrease compared with those specimens kept at room temperature, and the specimens strengthened with FRP exhibited good durability.

  6. Research on steel-fibber polymer concrete machine tool structure

    Institute of Scientific and Technical Information of China (English)

    XU Ping; YU Ying-hua

    2008-01-01

    Researched on the design and manufacturing of machine tool bed made by Steel-fibber Polymer Concrete(SFPC), which analyzed the static, dynamic and thermal performances of the bed. The results of study prove that machine tool bed made with SFPC is much more superiority than made in cast iron in dynamic and thermal perform-ances, and is more superiority then made in Polymer Concrete (PC) in static perform-ances. It can be concluded that the static, dynamic and thermal properties of machine tool can be improved by manufacturing machine tool bed with SFPC. Also SFPC machine tool bed posses some other advantages in the following: short development time, simple pro-duction process, reducing cost cost, saving energy, iron and steel.

  7. Ozone Resistance, Water Permeability, and Concrete Adhesion of Metallic Films Sprayed on a Concrete Structure for Advanced Water Purification

    Directory of Open Access Journals (Sweden)

    Jin-Ho Park

    2017-03-01

    Full Text Available We evaluated the applicability of metal spray coating as a waterproofing/corrosion protection method for a concrete structure used for water purification. We carried out an ozone resistance test on four metal sprays and evaluated the water permeability and bond strength of the metals with superior ozone resistance, depending on the surface treatment method. In the ozone resistance test, four metal sprays and an existing ozone-proof paint were considered. In the experiment on the water permeability and bond strength depending on the surface treatment method, the methods of no treatment, surface polishing, and two types of pore sealing agents were considered. The results showed that the sprayed titanium had the best ozone resistance. Applying a pore sealing agent provided the best adhesion performance, of about 3.2 MPa. Applying a pore sealing agent also provided the best waterproofing performance. Scanning electron microscope analysis showed that applying a pore sealing agent resulted in an excellent waterproofing performance because a coating film formed on top of the metal spray coating. Thus, when using a metal spray as waterproofing/corrosion protection for a water treatment concrete structure, applying a pore sealing agent on top of a film formed by spraying titanium was concluded to be the most appropriate method.

  8. Modeling the Time-to Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures

    OpenAIRE

    Liu, Youping

    1996-01-01

    Significant factors on steel corrosion in chloride contaminated reinforced concrete and time-to-corrosion cracking were investigated in this study. Sixty specimens were designed with seven admixed chloride contents, three concrete cover depths, two reinforcing steel bar diameters, two exposure conditions, and a typical concrete with water to cement ratio of 0.45. Corrosion current density (corrosion rate), corrosion potential, ohmic resistance of concrete and temperature were measured monthly...

  9. Endochronic theory for inelasticity and failure analysis of concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Bazant, Z.P.; Bhat, P.D.; Shieh, C.L.

    1976-12-01

    A gradual accumulation of inelastic strain can be most conveniently described in terms of the so-called intrinsic time, whose increment depends on the time increment as well as the strain increments. This approach, which gives a particularly simple description of irreversibility of strain at unloading and cyclic loading, was previously developed for metals and is extended herein to concrete by introducing the hydrostatic pressure sensitivity of inelastic strain, the inelastic dilatancy produced by deviator strains, and the strain-softening tendency at high stress. Failure envelopes are obtained as a collection of the peaks of stress-strain diagrams. By comparison with experimental data from the literature, it is demonstrated that the proposed model predicts quite closely: stress-strain diagrams for concretes of different strength; uniaxial, biaxial and triaxial stress-strain diagrams and failure envelopes; failure envelopes for combined torsion and compression, lateral strains and volume expansion in uniaxial and biaxial tests; the behavior of spirally confined concrete; hysteresis loops or repeated high compression; cyclic creep up to 10/sup 6/ cycles; the strain rate effect; the decrease of long time strength; and the increase of short-time strength due to low stress creep.

  10. Numerical-computational analysis of reinforced concrete structures considering the damage, fracture and failure criterion

    Directory of Open Access Journals (Sweden)

    L. A. F. de Souza

    Full Text Available The experimental results of testing structures or structural parts are limited and, sometimes, difficult to interpret. Thus, the development of mathematical-numerical models is needed to complement the experimental analysis and allow the generalization of results for different structures and types of loading. This article makes two computational studies of reinforced concrete structures problems found in the literature, using the Finite Element Method. In these analyses, the concrete is simulated with the damage classical model proposed by Mazars and the steel by a bilinear elastoplastic constitutive model. Numerical results show the validity of the application of constitutive models which consider the coupling of theories with the technique of finite element discretization in the simulation of linear and two-dimensional reinforced concrete structures.

  11. Evaluation of NASA Structural Analysis (NASTRAN) to Predict the Dynamic Response of Reinforced Concrete

    Science.gov (United States)

    1983-12-01

    D. E., Deformation of Concrete Structures, McGraw-Hill Book Co, New York, NY, 1977 . 5. Coltharp, D. A., Analysis of One-Quarter-Scale Model Test...Results, Unpublished Report from USA Waterways Experiment Station, Structures Laboratory, Structure Mechanics Division, Vicksburg, MS. 6. Mindess , S

  12. Drying of concrete. Part I: A comparison of instruments for measuring the relative humidity in concrete structures

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Christensen, Søren Lolk

    1998-01-01

    , and it is performed by use of saturated salt solutions in the laboratory. Further, the five different instruments are placed in the same concrete, and the instruments readings are followed during drying of the concrete for 43 days. The laboratory tests and the measurements in the concrete show that most...

  13. Online Monitoring of Concrete Structures in Nuclear Power Plants: Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The existing fleet of nuclear power plants in the United States have initial operating licenses of 40 years, and many of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code-based design margins of safety. Structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. The online monitoring of concrete structures project conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory is seeking to develop and demonstrate capabilities for concrete structures health monitoring. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses activities in this project during October-December, 2014. The most significant activity during this period was the organizing of a two-day workshop on research needs in online monitoring of concrete structures, hosted by Vanderbilt University in November 2014. Thirty invitees from academia, industry and government participated in the workshop. The presentations and discussions at the workshop surveyed current activities related to concrete structures deterioration modeling and monitoring, and identified the challenges, knowledge gaps, and opportunities for advancing the state of the art; these

  14. Nondestructive testing of airport concrete structures: runways, taxiways, roads, bridges, building walls, and roofs

    Science.gov (United States)

    Weil, Gary J.

    1998-03-01

    Maintenance of airport infrastructure presents many unique challenges. Airport engineering and maintenance personnel must maintain around the clock service to millions of people each year while maintaining millions of cubic meters of concrete distributed throughout the facilities. This infrastructure includes runways, taxiways, roadways, walkways, bridges, building walls and roofs. Presently only a limited number of accurate and economical techniques exist to test this myriad of concrete structures for integrity and safety as well as insure that they meet original design specifications. Remote sensing, non-destructive testing techniques, such as IR thermography, ground penetrating radar, magnetometer and pachometer, measure physical properties affected by the various materials and conditions found within, and under, concrete infrastructure. These techniques have established reputations for accurate investigations of concrete anomalies.

  15. Evolution of the health of concrete structures by electrically conductive GFRP (glass fiber reinforced plastic) composites

    Science.gov (United States)

    Shin, Soon-Gi

    2002-02-01

    The function and performance of self-diagnostic composites embedded in concrete blocks and piles were investigated by bending tests and electrical resistance measurement. Carbon powder (CP) and carbon fiber (CF) were introduced into glass fiber reinforced plastic (GFRP) composites to provide electrical conductivity. The CPGFRP composite displays generally good performance in various bending tests of concrete block and piles compared to the CFGFRP composite. The electrical resistance of the CPGFRP composite increases remarkably at small strains in response to microcrack formation at about 200 μm strain, and can be used to detect smaller deformations before crack formation. The CPGFRP composite shows continuous change in resistance up to a large strain level just before the final fracture for concrete structures reinforced by steel bars. It is concluded that self-diagnostic composites can be used to predict damage and fracture in concrete blocks and piles.

  16. Temperature Effect on Mechanical Properties and Damage Identification of Concrete Structure

    Directory of Open Access Journals (Sweden)

    Yubo Jiao

    2014-01-01

    Full Text Available Static and dynamic mechanical properties of concrete are affected by temperature effect in practice. Therefore, it is necessary to investigate the corresponding influence law and mechanism. This paper demonstrates the variation of mechanical properties of concrete at temperatures from −20°C to 60°C. Temperature effects on cube compressive strength, splitting tensile strength, prism compressive strength, modulus of elasticity, and frequency are conducted and discussed. The results indicate that static mechanical properties such as compressive strength (cube and prism, splitting tensile strength, and modulus of elasticity have highly linear negative correlation with temperature; this law is also applied to the first order frequency of concrete slab. The coupling effect of temperature and damage on change rate of frequency reveals that temperature effect cannot be ignored in damage identification of structure. Mechanism analysis shows that variation of elastic modulus of concrete caused by temperature is the primary reason for the change of frequency.

  17. Temperature control and cracking prevention in coastal thin-wall concrete structures

    Directory of Open Access Journals (Sweden)

    Li-xia GUO

    2011-12-01

    Full Text Available A three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system is introduced in this paper. The program was applied to simulation of the temperature and stress field of the Cao’e Sluice during the construction period. From the calculated results, we can find that the temperature and stress of concrete cooled with plastic pipes are much lower than those of concrete without pipes. Moreover, plastic pipes could not be corroded by seawater. That is to say, a good effect of temperature control and cracking prevention can be achieved, which provides a useful reference for other similar nearshore concrete projects.

  18. Structural Aspects of Railway Truss Bridges Affecting Transverse Shear Forces in Steel-Concrete Composite Decks

    Science.gov (United States)

    Siekierski, Wojciech

    2015-03-01

    At the steel-concrete interface, the horizontal shear forces that are transverse to cross beams occur due to joint action of the steel-concrete composite deck and the truss girders. Numerical analysis showed that values of the forces are big in comparison to the longitudinal shear forces. In both cases extreme force values occur near side edges of a slab. The paper studies possibilities of reduction of these shear forces by structural alterations of the following: rigidity of a concrete slab, arrangement of a wind bracing, arrangement of concrete slab expansion joints. An existing railway truss bridge span has been analysed. Numerical analysis shows that it is possible to reduce the values of shear forces transverse to cross beams. It may reach 20% near the side edges of slabs and 23% in the centre of slab width.

  19. Structural Aspects of Railway Truss Bridges Affecting Transverse Shear Forces in Steel-Concrete Composite Decks

    Directory of Open Access Journals (Sweden)

    Siekierski Wojciech

    2015-03-01

    Full Text Available At the steel-concrete interface, the horizontal shear forces that are transverse to cross beams occur due to joint action of the steel-concrete composite deck and the truss girders. Numerical analysis showed that values of the forces are big in comparison to the longitudinal shear forces. In both cases extreme force values occur near side edges of a slab. The paper studies possibilities of reduction of these shear forces by structural alterations of the following: rigidity of a concrete slab, arrangement of a wind bracing, arrangement of concrete slab expansion joints. An existing railway truss bridge span has been analysed. Numerical analysis shows that it is possible to reduce the values of shear forces transverse to cross beams. It may reach 20% near the side edges of slabs and 23% in the centre of slab width.

  20. Monitoring corrosion of reinforcement in concrete structures via fiber Bragg grating sensors

    Institute of Scientific and Technical Information of China (English)

    Zhupeng ZHENG; Xiaoning SUN; Ying LEI

    2009-01-01

    Corrosion of steel and rebar in concretestructures is one of the most frequent reasons for civil infrastructure failures. Thus, improving the effective corrosion sensor technology can greatly reduce cost and provide safe structures with long service lives. However, assessing the corrosion condition of rebars is not simple because they are buried in concrete. In this paper, using fiber Bragg grating (FBG), a corrosion sensor for monitoring steel rebars embedded in a concrete structure is developed and validated by experiments. Based on the fact that the volume and diameter of a rebar embedded in concrete will enlarge due to corrosion, an FBG packaged with fiber-reinforced plastics (FRP) is wrapped on the steel bar. During corrosion, the increase in the bar diameter leads to the increase in fiber strain, which can be measured by the shift of the wavelength of FBG. Performances of the corrosion sensor are validated by accelerating corrosion in lab experiments. The corrosion sensor is embedded in a concrete specimen put in a 5% sodium chloride solution with a constant current. Experimental results show that the corrosion sensor can monitor the concurrence of corrosion of rebars in concrete. The corrosion extent can be quantitatively evaluated through the change in the wavelength of FBG. Therefore, the corrosion sensor developed in this paper is feasible for monitoring the early corrosion of rebars in concrete.

  1. Covercrete with hybrid functions - A novel approach to durable reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Tang, L.; Zhang, E.Q. [Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Fu, Y. [KTH Royal Institute of Technology, SE-106 91 Stockholm (Sweden); Schouenborg, B.; Lindqvist, J.E. [CBI Swedish Cement and Concrete Research Institute, c/o SP, Box 857, SE-501 15 Boraas (Sweden)

    2012-12-15

    Due to the corrosion of steel in reinforced concrete structures, the concrete with low water-cement ratio (w/c), high cement content, and large cover thickness is conventionally used for prolonging the passivation period of steel. Obviously, this conventional approach to durable concrete structures is at the sacrifice of more CO{sub 2} emission and natural resources through consuming higher amount of cement and more constituent materials, which is against sustainability. By placing an economically affordable conductive mesh made of carbon fiber or conductive polymer fiber in the near surface zone of concrete acting as anode we can build up a cathodic prevention system with intermittent low current density supplied by, e.g., the solar cells. In such a way, the aggressive negative ions such as Cl{sup -}, CO{sub 3}{sup 2-}, and SO{sub 4}{sup 2-} can be stopped near the cathodic (steel) zone. Thus the reinforcement steel is prevented from corrosion even in the concrete with relatively high w/c and small cover thickness. This conductive mesh functions not only as electrode, but also as surface reinforcement to prevent concrete surface from cracking. Therefore, this new type of covercrete has hybrid functions. This paper presents the theoretical analysis of feasibility of this approach and discusses the potential durability problems and possible solutions to the potential problems. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Numerical Analysis of Composite Steel Concrete Structural Shear Walls with Steel Encased Profiles

    Directory of Open Access Journals (Sweden)

    Daniel Dan

    2009-01-01

    Full Text Available The use of common reinforced concrete shear walls in high rise buildings is sometimes limited because of the large amount of reinforcement localized at the end of the element. A good alternative in avoiding this disadvantage is to use composite steel concrete structural shear walls with steel encased profiles. This solution used for high rise buildings, offers to designers lateral stiffness, shear capacity and high bending resisting moment of structural walls. The encasement of the steel shapes in concrete is applied also for the following purposes: flexural stiffening and strengthening of compression elements; fire protection; potentially easier repairs after moderate damage; economy with respect both to material and construction. Until now in the national and international literature poor information about nonlinear behaviour of composite steel concrete structural shear walls with steel encased profiles is available. A theoretical and experimental program related to the behaviour of steel concrete structural shear walls with steel encased profiles is developed at “Politehnica” University of Timişoara. The program refers to six different elements, which differ by the shape of the steel encased profile and also by the arrangement of steel shapes on the cross section of the element. In order to calibrate the elements for experimental study some numerical analysis were made. The paper presents the results of numerical analysis with details of stress distribution, crack distribution, structural stiffness at various loads, and load bearing capacity of the elements.

  3. Development of structural health monitoring and early warning system for reinforced concrete system

    Energy Technology Data Exchange (ETDEWEB)

    Iranata, Data, E-mail: iranata-data@yahoo.com, E-mail: data@ce.its.ac.id; Wahyuni, Endah [Civil Engineering Department, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111 (Indonesia); Murtiadi, Suryawan [Civil Engineering Department, Universitas Mataram, Mataram 83125 (Indonesia); Widodo, Amien [Geophysical Engineering Department, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111 (Indonesia); Riksakomara, Edwin; Sani, Nisfu Asrul [Information Systems Department, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111 (Indonesia)

    2015-04-24

    Many buildings have been damaged due to earthquakes that occurred recently in Indonesia. The main cause of the damage is the large deformation of the building structural component cannot accommodate properly. Therefore, it is necessary to develop the Structural Health Monitoring System (SHMS) to measure precisely the deformation of the building structural component in the real time conditions. This paper presents the development of SHMS for reinforced concrete structural system. This monitoring system is based on deformation component such as strain of reinforcement bar, concrete strain, and displacement of reinforced concrete component. Since the deformation component has exceeded the limit value, the warning message can be sent to the building occupies. This warning message has also can be performed as early warning system of the reinforced concrete structural system. The warning message can also be sent via Short Message Service (SMS) through the Global System for Mobile Communications (GSM) network. Hence, the SHMS should be integrated with internet modem to connect with GSM network. Additionally, the SHMS program is verified with experimental study of simply supported reinforced concrete beam. Verification results show that the SHMS has good agreement with experimental results.

  4. Characteristics of acoustic emission temporal sequences during the failure of a concrete structure under loading

    Institute of Scientific and Technical Information of China (English)

    包太; LIU; Xinrong; 等

    2002-01-01

    The characteristics of acoustic emission(AE)signals given off in the course of the failure of a concrete structure is explored based on the laboratory experiments with concrete specimens.It is observed that the failure of a concrete structure experiences three stages divided by two inflexion points on the AE event curve,which are sequentially no damage,damage initiation and propagation,and major failure stages.In the first stage,existing micro cracks and defects are compacted by loading. but no damage propagated,hence few AE signals are detected,and it appears that there exists a nearly linear relationship between the relative stress and relative strain.In the second stage,the AE event frequency increases implying that micro cracks begin to emerge inside the concrete structure,which is consistent with the damage mechanics.When the load is over 80% of that breaks the structure,i.e.the maximum load,there is a vertical jump on the AE event count curve,which suggests that the failure propagation speeds up.After the second inflexion point,the AE event density increases faster than before,and there is another jump just before breaking,which indicates a quick propagation stage.These findings are valuable for evaluating the damage situations,and for studying and monitoring the dynamic process of the failure behaviors of a concrete structure.

  5. Characterization of basin concrete in support of structural integrity demonstration for extended storage

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, A. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-09-30

    Concrete core samples from C basin were characterized through material testing and analysis to verify the design inputs for structural analysis of the L Basin and to evaluate the type and extent of changes in the material condition of the concrete under extended service for fuel storage. To avoid the impact on operations, core samples were not collected from L area, but rather, several concrete core samples were taken from the C Basin prior to its closure. C basin was selected due to its similar environmental exposure and service history compared to L Basin. The microstructure and chemical composition of the concrete exposed to the water was profiled from the water surface into the wall to evaluate the impact and extent of exposure. No significant leaching of concrete components was observed. Ingress of carbonation or deleterious species was determined to be insignificant. No evidence of alkali-silica reactions (ASR) was observed. Ettringite was observed to form throughout the structure (in air voids or pores); however, the sulfur content was measured to be consistent with the initial concrete that was used to construct the facility. Similar ettringite trends were observed in the interior segments of the core samples. The compressive strength of the concrete at the mid-wall of the basin was measured, and similar microstructural analysis was conducted on these materials post compression testing. The microstructure was determined to be similar to near-surface segments of the core samples. The average strength was 4148 psi, which is well-above the design strength of 2500 psi. The analyses showed that phase alterations and minor cracking in a microstructure did not affect the design specification for the concrete.

  6. The States-of-arts and Key Scientific Issues on Durability Research of Concrete Structures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Concrete has traditionally been regarded as a durable material requiring little or no maintenance. However, over the past several decades, a number of durability related problems have emerged and stimulated research into the factors relating to concrete durability globally. The challenge now facing practicing engineers is how to design and build structures that not only satisfy the specified structural requirements, but also achieve the performance levels required from a durability standpoint. Research works on concrete structural durability have been widely reported in the literature over the last several decades. In this paper, reviews of four stages of research work on durability, i e, environments, materials, components, and structures, were presented. Afterwards, the key scientific issues in this field were also pointed out.

  7. Surface wave techniques for the evaluation of concrete structures, In : Non-destructive evaluation of reinforced concrete structures, Volume 2

    OpenAIRE

    Popovics, John; Abraham, Odile

    2010-01-01

    This chapter describes non-destructive test methods based on surface guided mechanical waves for application to concrete. After a summary of the history of development of the methods, surface wave propagation in homogenous and layered media is reviewed, where analytical and numerical modelling efforts are described. Then specific time domain and frequency domain surface wave methods are introduced, including the SASW and MASW methods. The needed equipment are described and finally successful ...

  8. Dam safety review using non-destructive methods for reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, Alain; Saint-Pierre, Francois; Turcotte, Bernard [Le Groupe S.M. International Inc., Sherbrooke, (Canada)

    2010-07-01

    Dams built at the beginning of the twentieth century include concrete structures that were put in under rehabilitation works. In some cases, the details of the structures are not well documented. In other cases, concrete damage can be hidden under new layers of undamaged material. This requires that the dam safety review in a real investigation gather the information necessary for carrying out the hydraulic and stability studies required by the Dam Safety Act. This paper presented the process of dam safety review using non-destructive methods for reinforced concrete structures. Two reinforced concrete dams built in the 1900's, the Eustic dam on the Coaticook River and the Frontenac dam on the Magog River near Sherbrooke, were evaluated by S.M. International using non-destructive methods such as sonic and ground penetrating radar methods. The studies allowed mapping of concrete damage and provided geometric information on some non visible structure elements that were part of previous reinforcement operations.

  9. Pore Structure and Influence of Recycled Aggregate Concrete on Drying Shrinkage

    Directory of Open Access Journals (Sweden)

    Yuanchen Guo

    2013-01-01

    Full Text Available Pore structure plays an important role in the drying shrinkage of recycled aggregate concrete (RAC. High-precision mercury intrusion and water evaporation were utilized to study the pore structure of RAC, which has a different replacement rate of recycled concrete aggregate (RCA, and to analyze its influence on drying shrinkage. Finally, a fractal-dimension calculation model was established based on the principles of mercury intrusion and fractal-geometry theory. Calculations were performed to study the pore-structure fractal dimension of RAC. Results show the following. (1 With the increase in RCA content, the drying shrinkage values increase gradually. (2 Pores with the greatest impact on concrete shrinkage are those whose sizes ranging from 2.5 nm to 50 nm and from 50 nm to 100 nm. In the above two ranges, the proportions of RAC are greater than those of RC0 (natural aggregate concrete, NAC, which is the main reason the shrinkage values of RAC are greater than those of NAC. (3 The pore structure of RAC has good fractal feature, and the addition of RCA increases the complexity of the pore surface of concrete.

  10. Structuring of nanomodified concrete cured in different temperature and humidity conditions

    Directory of Open Access Journals (Sweden)

    Voronin Viktor

    2016-01-01

    Full Text Available The article deals with the issues on the influence of the curing conditions on the formation of structure and properties of the concrete with nanomodifiers. Mechanochemically activated waste generated by the production of mineral fertilizers was used as nanomodified additives. It was established that providing favorable conditions for the initial structuring of concrete was the purpose of erecting structures made of concrete mix with said nanomodified additives in different temperature and humidity environments. It is provided that different types of production waste gaining the properties of efficient additives for binders, concrete mixes and compositions made on their basis as the result of the corresponding processing will be used as mineral fillers. Production waste is generally characterized by a heterogeneous composition and structure, by impurity content and by low chemical activity. Thus, one of the methods for increasing the efficiency of the waste is mechanical, chemical or physical activation. As the result of such activation, nanosizeparticles appear, and additional defects of mineral lattices are generated, which leads to accelerating the elementary interaction of the surface layer particles. Data on the research of macro- and microstructure of concrete and composites with nanomodifiers cured in different temperature and humidity conditions is given in the table.

  11. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    Science.gov (United States)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  12. New Surface-Treatment Technique of Concrete Structures Using Crack Repair Stick with Healing Ingredients.

    Science.gov (United States)

    Ahn, Tae-Ho; Kim, Hong-Gi; Ryou, Jae-Suk

    2016-08-04

    This study focused on the development of a crack repair stick as a new repair method along with self-healing materials that can be used to easily repair the cracks in a concrete structure at the construction site. In developing this new repair technique, the self-healing efficiency of various cementitious materials was considered. Likewise, a crack repair stick was developed to apply to concrete structures with 0.3 mm or lower crack widths. The crack repair stick was made with different materials, such as cement, an expansive material (C12A₇), a swelling material, and calcium carbonate, to endow it with a self-healing property. To verify the performance of the crack repair stick for concrete structures, two types of procedures (field experiment and field absorption test) were carried out. As a result of such procedures, it was concluded that the developed crack repair stick could be used on concrete structures to reduce repair expenses and for the improved workability, usability, and serviceability of such structures. On the other hand, to evaluate the self-healing performance of the crack repair stick, various tests were conducted, such as the relative dynamic modulus of elasticity test, the water tightness test, the water permeability test, observation via a microscope, and scanning electron microscope (SEM) analysis. From the results, it is found that water leakage can be prevented and that the durability of a concrete structure can be improved through self-healing. Also, it was verified that the cracks were perfectly closed after 28 days due to application of the crack repair stick. These results indicate the usability of the crack repair stick for concrete structures, and its self-healing efficiency.

  13. New Surface-Treatment Technique of Concrete Structures Using Crack Repair Stick with Healing Ingredients

    Directory of Open Access Journals (Sweden)

    Tae-Ho Ahn

    2016-08-01

    Full Text Available This study focused on the development of a crack repair stick as a new repair method along with self-healing materials that can be used to easily repair the cracks in a concrete structure at the construction site. In developing this new repair technique, the self-healing efficiency of various cementitious materials was considered. Likewise, a crack repair stick was developed to apply to concrete structures with 0.3 mm or lower crack widths. The crack repair stick was made with different materials, such as cement, an expansive material (C12A7, a swelling material, and calcium carbonate, to endow it with a self-healing property. To verify the performance of the crack repair stick for concrete structures, two types of procedures (field experiment and field absorption test were carried out. As a result of such procedures, it was concluded that the developed crack repair stick could be used on concrete structures to reduce repair expenses and for the improved workability, usability, and serviceability of such structures. On the other hand, to evaluate the self-healing performance of the crack repair stick, various tests were conducted, such as the relative dynamic modulus of elasticity test, the water tightness test, the water permeability test, observation via a microscope, and scanning electron microscope (SEM analysis. From the results, it is found that water leakage can be prevented and that the durability of a concrete structure can be improved through self-healing. Also, it was verified that the cracks were perfectly closed after 28 days due to application of the crack repair stick. These results indicate the usability of the crack repair stick for concrete structures, and its self-healing efficiency.

  14. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  15. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.

    Science.gov (United States)

    Bogas, J Alexandre; Gomes, M Glória; Gomes, Augusto

    2013-07-01

    In this paper the compressive strength of a wide range of structural lightweight aggregate concrete mixes is evaluated by the non-destructive ultrasonic pulse velocity method. This study involves about 84 different compositions tested between 3 and 180 days for compressive strengths ranging from about 30 to 80 MPa. The influence of several factors on the relation between the ultrasonic pulse velocity and compressive strength is examined. These factors include the cement type and content, amount of water, type of admixture, initial wetting conditions, type and volume of aggregate and the partial replacement of normal weight coarse and fine aggregates by lightweight aggregates. It is found that lightweight and normal weight concretes are affected differently by mix design parameters. In addition, the prediction of the concrete's compressive strength by means of the non-destructive ultrasonic pulse velocity test is studied. Based on the dependence of the ultrasonic pulse velocity on the density and elasticity of concrete, a simplified expression is proposed to estimate the compressive strength, regardless the type of concrete and its composition. More than 200 results for different types of aggregates and concrete compositions were analyzed and high correlation coefficients were obtained.

  16. Analysis of the connection of the timber-fiber concrete composite structure

    Science.gov (United States)

    Holý, Milan; Vráblík, Lukáš; Petřík, Vojtěch

    2017-09-01

    This paper deals with an implementation of the material parameters of the connection to complex models for analysis of the timber-fiber concrete composite structures. The aim of this article is to present a possible way of idealization of the continuous contact model that approximates the actual behavior of timber-fiber reinforced concrete structures. The presented model of the connection was derived from push-out shear tests. It was approved by use of the nonlinear numerical analysis, that it can be achieved a very good compliance between results of numerical simulations and results of the experiments by a suitable choice of the material parameters of the continuous contact. Finally, an application for an analytical calculation of timber-fiber concrete composite structures is developed for the practical use in engineering praxis. The input material parameters for the analytical model was received using data from experiments.

  17. Structural modelling of ASR-affected concrete: The approach developed in the PAT-ASR project

    NARCIS (Netherlands)

    Esposito, R.; Hendriks, M.A.N.

    2013-01-01

    The Alkali-Silica Reaction is a harmful reaction which can compromise the integrity and capacity of concrete structures. Due to its nature, a multiscale material model has been chosen to perform structural analyses. The model aims to couple the chemical and mechanical effects in order to characteriz

  18. The use of permanent corrosion monitoring in new and existing reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Broomfield, J.P. [Broomfield (J.P.), London (United Kingdom); Davies, K.; Hladky, K.

    1999-11-01

    Corrosion monitoring systems consisting of linear polarization, concrete resistivity and other probes have been installed in new structures to monitor durability and in existing structures to evaluate rehabilitation strategies such as corrosion inhibitor application and patch repairs. The types of sensors used, data collection techniques, results and interpretation are discussed.

  19. Innovation based on tradition: Blast furnace slag cement for durable concrete structures in Norway?

    NARCIS (Netherlands)

    Polder, R.B.; Nijland, T.; De Rooij, M.; Larsen, C.K.; Pedersen, B.

    2014-01-01

    Blast furnace slag cement (BFSC) has been used to build reinforced concrete structures in marine and road environment in The Netherlands for nearly a century. The experience is good and structures with long service lives can be obtained, as has been shown by several field studies. This is caused by

  20. Elastomeric Polymers for Retrofitting of Reinforced Concrete Structures against the Explosive Effects of Blast

    Directory of Open Access Journals (Sweden)

    S. N. Raman

    2012-01-01

    Full Text Available The main distinction of blast load from other types of dynamic loadings is its impulsive nature, where the loads usually act for a very short duration but transmit very high impulsive pressures. This paper presents an overview of the present retrofitting techniques in use to enhance the capacity of structural elements to withstand the effects of blast loads, and introduces an alternative retrofitting approach by utilizing polymer coatings. The authors have demonstrated the positive effects of this approach by conducting a numerical investigation on the behavior of an unretrofitted reinforced concrete panel subjected to the blast load from a 2 kg charge at 1.6 m stand-off distance, and subsequently comparing its performance with several polymer coated panels. The analysis was performed by using an explicit nonlinear finite element (FE code. The results demonstrate the contributions of this technique in terms of panel displacement control and energy dissipation. Considering that the polymer coating can also act as a protective layer in improving the durability of structural materials, this technique can also be optimized favorably to enhance the overall sustainability of structures.

  1. Galvanic metallized zinc cathodic protection systems for a carbonated reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Sitton, I.; Costa, J.E. [Corrosion Restoration Technologies, Inc., Jupiter, FL (United States); Powers, R.G. [Florida Dept. of Transportation, Gainesville, FL (United States). Materials Office

    1998-12-31

    A corrosion assessment survey was conducted with the objective of facilitating the selection of repair methods for the corrosion control of two reinforced concrete structures. The work completed during the evaluation consisted of visual inspections, depth of cover determinations, concrete resistivity measurements, chloride analyses, carbonation depth measurements, and cathodic protection feasibility tests. Results from preliminary field-testing indicated that these 75+ year old historically significant structures both exhibited widespread corrosion distress throughout most of the substructure components due to carbonation of the concrete matrix. These areas were generally associated with shallow concrete cover over the steel reinforcement. Consequently, the concrete resistivity values measured at the two structures were high in comparison to resistivity values observed in various other Florida locations. Tests to assess the prospect of using cathodic protection (CP) as a means of controlling the state of corrosion were preformed using a series of zinc foil anodes with an ionically conductive adhesive backing. Results from the CP tests indicated that although anode current outputs were low, the steel was cathodically protected due to a rapid high potential shift observed. Based on the field results and an economic analysis, the use of a sacrificial metallized zinc CP system, applied directly unto the spalled areas, emerged as the leading restoration option.

  2. Investigation of micro-structural phenomena at aggregate level in concretes using DEM

    Science.gov (United States)

    Nitka, Michał; Tejchman, Jacek

    2017-06-01

    This paper presents numerical analyses of concrete beams under three-point bending. The discrete element methods (DEM) was used to calculate fracture at the aggregate level. Concrete was described as a four-phase material, which was composed of aggregate, cement matrix, interfacial transitional zones (ITZs) and macro-voids. The beam micro-structure was directly taken from our experiments using x-ray micro-tomography. Simulations were carried out with real aggregate modelled as sphere clusters. Numerical results were compared with laboratory outcomes. The special attention was laid on the fracture propagation and some micro-structural phenomena at the aggregate level.

  3. Finite Element Reliability Analysis of Chloride Ingress into Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    2007-01-01

    For many reinforced concrete structures corrosion of the reinforcement is an important problem since it can result in maintenance and repair actions. Further, a reduction of the load-bearing capacity can occur. In the present paper the Finite Element Reliability Method (FERM) is employed for obta......For many reinforced concrete structures corrosion of the reinforcement is an important problem since it can result in maintenance and repair actions. Further, a reduction of the load-bearing capacity can occur. In the present paper the Finite Element Reliability Method (FERM) is employed...

  4. The pre-stack migration imaging technique for damages identification in concrete structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Pre-stack migration imaging (PMI) method,which is used in geophysical exploration by the performance of single side detection and visually display,can be used to identify the location,orientation,and severity of damages in concrete structure.In particular,this letter focuses on the experimental study by using a finite number of sensors for further practical applications.A concrete structure with a surface-mounted linear PZT transducers array is illustrated.Three types of damages,horizontal,dipping and V-sha...

  5. A Probabilistic Model for Chloride-Ingress and Initation of Corrosion in Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Engelund, S.; Sørensen, John Dalsgaard

    1998-01-01

    value. In the present paper a statistical model by which the chloride content in a reinforced concrete structure can be predicted, is developed. The model parameters are estimated on the basis of measurements. The distribution of the time to initiation of corrosion can now be estimated by traditional......Corrosion of the reinforcement is a major problem for a large number of reinforced concrete structures because it can lead to a substantial decrease of the load-bearing capacity. One mode of corrosion initiation is that the chloride content around the reinforcement exceeds a critical threshold...

  6. SELF-HEALING CAPACITY OF CONCRETE - COMPUTER SIMULATION STUDY OF UNHYDRATED CEMENT STRUCTURE

    Directory of Open Access Journals (Sweden)

    Huan He

    2011-05-01

    Full Text Available Aggregate occupies at least three-quarters of the volume of concrete, so its impact on concrete's properties is large. The aggregate's influence on the non-hydrated part of the matured paste is assessed by concurrent algorithm-based computer simulation system SPACE in this paper. A distinction is made between interfacial zones (ITZs and bulk paste. Containers with rigid boundaries were employed for the production of series of cement pastes. They were subjected to quantitative microstructure analysis. Relevant gradient structures in the ITZ and bulk are presented and discussed. The relevance of this structure information for possible selfhealing of cracks is briefly discussed.

  7. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content

    Directory of Open Access Journals (Sweden)

    Antonio López-Uceda

    2016-01-01

    Full Text Available In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m3 of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%. To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa with an MRA replacement ratio of up to 100% for 200 kg/m3 of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works.

  8. Nondestructive Testing of Advanced Concrete Structure during Lifetime

    Directory of Open Access Journals (Sweden)

    Lubos Pazdera

    2015-01-01

    Full Text Available The paper reports on measurements and analysis of the measurements during hardening and drying of specimens using selected acoustic nondestructive testing techniques. An integrated approach was created for better understanding of the relations between the lifetime cycle and the development of the mechanical properties of concrete. Acoustic emission, impact echo, and ultrasonic techniques were applied simultaneously to the same mixtures. These techniques and results are presented on alkali-activated slag mortars. The acoustic emission method detects transient elastic waves within the material, caused by the release of cumulated stress energy, which can be mechanical, thermal, or chemical. Hence, the cause is a phenomenon which releases elastic energy into the material, which then spreads in the form of an elastic wave. The impact echo method is based on physical laws of elastic stress wave propagation in solids generated by mechanical impulse. Ultrasonic testing is commonly used to find flaws in materials or to assess wave velocity spreading.

  9. Response Analysis for Steel Reinforced Concrete Frame Structures under Earthquake Load

    OpenAIRE

    Hua Wei; Jiye Zhang; Haijun Wang

    2013-01-01

    In order to understand the whole process of the steel reinforced concrete frame structure from elastic to elasto-plastic cracking gradually, damage until the collapse, the elasto-plastic finite element analysis theory and ETABS structural analysis software were used, then the spatial three-dimensional truss system model of frame structures was established. Based on the analysis of the elasto-plastic response for the frame structure under one-dimensional and two-dimensional earthquake load, th...

  10. Multilevel Optimal Design of Prestressed Lightweight Concrete-Steel Platform Structures

    Institute of Scientific and Technical Information of China (English)

    王立成; 宋玉普; 康海贵; 王兴国

    2002-01-01

    The concrete-steel platform structure is rather complicated because it involves such materials as concrete, reinforcingbars, steel, and so on. If the traditional dimension optimization method is employed, the optimal design of the platform willmeet many handicaps, even it cannot be implemented at all. The multilevel optimal design approach is an efficient tool forthe solution of large-scale engineering structures. In this paper, this approach is applied to the optimal design of a concrete-steel platform, which is formulated as a system level optimal design problem and a set of uncoupled substructure level opti-mal design problems. The process of optimization is a process of iteration between system level and substructure level untilthe objective function converges. An illustrative example indicates that this method is effective in the optimal design of con-crete-steel platforms.

  11. State of Strength in Massive Concrete Structure Subjected to Non-Mechanical Loads

    Directory of Open Access Journals (Sweden)

    Łydźba Dariusz

    2015-02-01

    Full Text Available The paper deals with an impact of non–mechanical loads on the state of strength in massive concrete hydraulic structures. An example of hydroelectric plant subjected to the effect of water temperature annual fluctuation is considered. Numerical analysis of transient thermal–elasticity problem was performed. After determining the temperature distributions within the domain, the Duhamel-Neumann set of constitutive equations was employed to evaluate fields of mechanical quantities: displacement, strain and stress. The failure criterion proposed by Pietruszczak was adopted in assessing whether the load induces exceeding of strength of concrete within the structure volume. The primary finding is that the temperature effect can lead to damage of concrete in draft tubes and spirals, especially in winter months.

  12. Probabilistic durability assessment of concrete structures in marine environments: Reliability and sensitivity analysis

    Science.gov (United States)

    Yu, Bo; Ning, Chao-lie; Li, Bing

    2017-03-01

    A probabilistic framework for durability assessment of concrete structures in marine environments was proposed in terms of reliability and sensitivity analysis, which takes into account the uncertainties under the environmental, material, structural and executional conditions. A time-dependent probabilistic model of chloride ingress was established first to consider the variations in various governing parameters, such as the chloride concentration, chloride diffusion coefficient, and age factor. Then the Nataf transformation was adopted to transform the non-normal random variables from the original physical space into the independent standard Normal space. After that the durability limit state function and its gradient vector with respect to the original physical parameters were derived analytically, based on which the first-order reliability method was adopted to analyze the time-dependent reliability and parametric sensitivity of concrete structures in marine environments. The accuracy of the proposed method was verified by comparing with the second-order reliability method and the Monte Carlo simulation. Finally, the influences of environmental conditions, material properties, structural parameters and execution conditions on the time-dependent reliability of concrete structures in marine environments were also investigated. The proposed probabilistic framework can be implemented in the decision-making algorithm for the maintenance and repair of deteriorating concrete structures in marine environments.

  13. Impact of structural aging on seismic risk assessment of reinforced concrete structures in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ellingwood, B.; Song, J. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-03-01

    The Structural Aging Program is addressing the potential for degradation of concrete structural components and systems in nuclear power plants over time due to aging and aggressive environmental stressors. Structures are passive under normal operating conditions but play a key role in mitigating design-basis events, particularly those arising from external challenges such as earthquakes, extreme winds, fires and floods. Structures are plant-specific and unique, often are difficult to inspect, and are virtually impossible to replace. The importance of structural failures in accident mitigation is amplified because such failures may lead to common-cause failures of other components. Structural condition assessment and service life prediction must focus on a few critical components and systems within the plant. Components and systems that are dominant contributors to risk and that require particular attention can be identified through the mathematical formalism of a probabilistic risk assessment, or PRA. To illustrate, the role of structural degradation due to aging on plant risk is examined through the framework of a Level 1 seismic PRA of a nuclear power plant. Plausible mechanisms of structural degradation are found to increase the core damage probability by approximately a factor of two.

  14. Experimental and theoretical studies on concrete structures with special-shaped shear walls

    Directory of Open Access Journals (Sweden)

    LIU Jianxin

    2014-06-01

    Full Text Available On the basis of concept design and staggered shear panels structure,this paper puts forward a new reinforced concrete high rise biuding structure with special-shaped shear walls and presents an experimental study of the seismic performance of the new special-shaped shear walls structure under low reversed cyclic loading using MTS electro hydraulic servo system.Compared with experimental results,a finite element analysis on this special-shaped shear wall structure,which considers the nonlinearity of concrete structure,is found suitable.It shows that the experimental results fairly confirms to the calculated values,which indicates that this new structure has advantages as good architecture function,big effective space,high overall lateral stiffness,fine ductility,advanced seismic behavior,etc..That is,the close r agreement between the theoretical and experimental results indicates the proposed shear wall structure has wide applications.

  15. Qualification of a truly distributed fiber optic technique for strain and temperature measurements in concrete structures

    Science.gov (United States)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-04-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μ strain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades, either embedded in the concrete or attached to the surface of the structure. They must ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Based on the European guide FD CEN/TR 14748 "Non-destructive testing - Methodology for qualification of non-destructive tests", a qualification method was developed. Tests were carried out using various sensing cables embedded in the volume or fixed to the surface of plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument, while mechanical solicitations were imposed to the concrete element. Preliminary experiments seem very promising since measurements performed with distributed sensing systems are found comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  16. Hybrid optical-fibre/geopolymer sensors for structural health monitoring of concrete structures

    Science.gov (United States)

    Perry, M.; Saafi, M.; Fusiek, G.; Niewczas, P.

    2015-04-01

    In this work, we demonstrate hybrid optical-fibre/geopolymer sensors for monitoring temperature, uniaxial strain and biaxial strain in concrete structures. The hybrid sensors detect these measurands via changes in geopolymer electrical impedance, and via optical wavelength measurements of embedded fibre Bragg gratings. Electrical and optical measurements were both facilitated by metal-coated optical fibres, which provided the hybrid sensors with a single, shared physical path for both voltage and wavelength signals. The embedded fibre sensors revealed that geopolymer specimens undergo 2.7 mɛ of shrinkage after one week of curing at 42 °C. After curing, an axial 2 mɛ compression of the uniaxial hybrid sensor led to impedance and wavelength shifts of 7 × 10-2 and -2 × 10-4 respectively. The typical strain resolution in the uniaxial sensor was 100 μ \\varepsilon . The biaxial sensor was applied to the side of a concrete cylinder, which was then placed under 0.6 mɛ of axial, compressive strain. Fractional shifts in impedance and wavelength, used to monitor axial and circumferential strain, were 3 × 10-2 and 4 × 10-5 respectively. The biaxial sensor’s strain resolution was approximately 10 μ \\varepsilon in both directions. Due to several design flaws, the uniaxial hybrid sensor was unable to accurately measure ambient temperature changes. The biaxial sensor, however, successfully monitored local temperature changes with 0.5 °C resolution.

  17. Overview of activities in the U.S. related to continued service of nuclear power plant concrete structures

    Directory of Open Access Journals (Sweden)

    Naus D.J.

    2011-04-01

    Full Text Available Safety-related nuclear power plant concrete structures are described and commentary on continued service assessments of these structures is provided. In-service inspection and testing requirements in the U.S. are summarized. The license renewal process in the U.S. is outlined and its current status noted. A summary of operating experience related to U.S. nuclear power plant concrete structures is presented. Several candidate areas are identified where additional research would be of benefit to aging management of NPP concrete structures. Finally current ORNL activities related to aging-management of concrete structures are outlined: development of operating experience database, application of structural reliability theory, and compilation of elevated temperature concrete material property data and information.

  18. The hysteretic contribution of friction for the polished rubber on the concrete surface

    Science.gov (United States)

    Feshanjerdi, M.; Khorrami, M.; Masoudi, A. A.; Razzaghi Kashani, M.

    2017-02-01

    The rubber friction coefficient, and the contact area during stationary sliding is calculated, for the contact of a polished rubber block and a concrete surface, when both surfaces are rough. The calculation is based on an extended version of Persson's contact mechanics theory. Compared to only the substrate being rough, when both of the surfaces are rough but their cross correlation is zero, the friction coefficient is larger. Introducing a positive correlation decreases the friction coefficient, while introducing a negative correlation increases the friction coefficient. To support these theoretical arguments, some experiments have been performed. We have produced roughness on the rubber surface, using abrasive paper, and measured the surface topographies for the concrete and the polished rubber surfaces. The auto spectral density functions for the both surfaces have been calculated, and the rubber viscoelastic modulus mastercurve has been obtained. We have measured the rubber friction at different sliding velocities, when the rubber surfaces are rough and smooth, and compared it to the theoretical results. It is seen that when the rubber surface is rough, the rubber friction coefficient is larger compared to the case the rubber surface is smooth. The theoretical results are in good agreement with experimental observation.

  19. Combination Of The Non-Destructive Methods For Evaluating The Quality Of Concrete Used In Structures In Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Mr. R. OBAD

    2014-12-01

    Full Text Available The study is aboutthe use and comparison of three non-destructive methods (dynamic auscultation, sclerometric auscultation and auscultation by RADAR (Radio Detecting and Ranging to monitor and assess the quality of concrete. Samples of reinforced concrete panels, dimensions 200x100x30 cm of concrete dosed at 350 kg/m3 with diverse E/C ratio were achieved, conserved in the laboratory and subjected to various non-destructive test. The synthesis of the results obtained by auscultation RADAR shows a decrease in the propagation speed of the electromagnetic wave with an increase of the E/C ratio and a decrease in resistance of concrete values measured and confirmed by other non-destructive techniques (sclerometric and dynamic auscultations. This shows that more the dielectric constant is high, morethe concrete resistance is reduced, and conversely the opposite.

  20. A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures

    OpenAIRE

    Liquan Chen; Kai Tai Wan; Leung, Christopher K.Y.

    2008-01-01

    Steel corrosion resulting from the penetration of chloride ions or carbon dioxide is a major cause of degradation for reinforced concrete structures,. The objective of the present investigation was to develop a low-cost sensor for steel corrosion, which is based on a very simple physical principle. The flat end of a cut optical fiber is coated with an iron thin film using the ion sputtering technique. Light is then sent into a fiber embedded in concrete and the reflected signal is monitored. ...

  1. Welding of girders to insert plates of composite steel-concrete structure of tower in Kuwait

    OpenAIRE

    A. Lisiecki; J. Szlek; A. Klimpel

    2007-01-01

    Purpose: A study of influence of preheating and MMA welding technique of tee-joints of plate girders to insert plates of a composite steel-concrete structure of the telecommunication tower, on the properties and quality of the concrete in the region of the insert plate has been carried out.Design/methodology/approach: Studies of thermo-mechanical phenomena during manual arc welding MMA of tee-joints between plate girders and insert plates were carried out to identify possible sources of the ...

  2. Welding of girders to insert plates of composite steel-concrete structure

    OpenAIRE

    A. Klimpel; A. Lisiecki; J. Szlek

    2007-01-01

    Purpose: of this paper: A study of influence of preheating and MMA welding technique of tee-joints of plate girders to insert plates of a composite steel-concrete structure of the telecommunication tower, on the properties and quality of the concrete in the region of the insert plate has been carried out.Design/methodology/approach: Studies of thermo-mechanical phenomena during manual arc welding MMA of tee-joints between plate girders and insert plates were carried out to identify possible s...

  3. Particulate structure and microstructure evolution of concrete investigated by DEM: Part 2: Porosimetry in hydrating binders

    NARCIS (Netherlands)

    Huan He, H.; Le, N.L.B.; Stroeven, P.

    2012-01-01

    Durability of concrete in engineering structures is becoming more and more of a major problem. Research into such problems is complicated and expensive, however. Developments in computer technology make it possible nowadays realistically simulating cementitious materials and studying its pore networ

  4. Service life prediction and repair of concrete structures with spatial variability

    NARCIS (Netherlands)

    Li, Y.; Vrouwenvelder, A.C.W.M.

    2007-01-01

    Due to various mechanical, physical and chemical processes, concrete structures are subject to deterioration such as rebar corrosion, cracking and spalling. As most parameters in those processes are random, probability-based reliability analysis is often applied. However, in most studies, spatial

  5. Three-dimensional submodel for modelling of joints in precast concrete structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2016-01-01

    The shear capacity of in-situ cast joints is crucial to the overall stability of precast concrete structures. The current design is based on empirical formulas, which account for neither the reinforcement layout of the joint nor the three-dimensional stress states present within the joint...

  6. Shear-deforming textile reinforced concrete for the construction of double-curved structures

    NARCIS (Netherlands)

    Woodington, W.; Bergsma, O.K.; Schipper, H.R.

    2015-01-01

    A composite textile reinforced concrete (TRC) material is developed to overcome the difficulties of constructing double-curved freeform structures. This is possible by shear-deformation of the woven reinforcement. It affects the direction of reinforcement and thickness, resulting in variable orthotr

  7. Corrosion monitoring for underground and submerged concrete structures - examples and interpretation issues

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Leegwater, G.

    2008-01-01

    Since about 1980 Corrosion Monitoring Systems have been used in many concrete structures in aggressive environmentworldwide. While these systemswork properly in aboveground environment, some questions have arisen for submerged conditions, e.g. the outer sides of tunnels, piers in seawater or foundat

  8. Corrosion monitoring for underground and submerged concrete structures - examples and interpretation issues

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Leegwater, G.

    2008-01-01

    Since about 1980 Corrosion Monitoring Systems have been used in many concrete structures in aggressive environmentworldwide. While these systemswork properly in aboveground environment, some questions have arisen for submerged conditions, e.g. the outer sides of tunnels, piers in seawater or

  9. New potentional of high-speed water jet technology for renovating concrete structures

    Science.gov (United States)

    Bodnárová, L.; Sitek, L.; Hela, R.; Foldyna, J.

    2011-06-01

    The paper discusses the background and results of research focused on the action of a high-speed water jet on concrete with different qualities. The sufficient and careful removal of degraded concrete layers is very important for the renovation of concrete structures. High-speed water jet technology is one of the most common methods used for removing degraded concrete layers. Different types of high-speed water jets were tested in the experimental part. The classical technology of a single continuous water jet generated with one nozzle was tested as well as the technology of revolving water jets generated by multiple nozzles (used mainly for the renovation of larger areas). A continuous flat water jet and pulsating flat water jet were tested the first time, because the connection of a water jet with the acoustic generator of a pulsating jet offers new possibilities for the use of a water jet (see [1] and [2]). A water jet with such a modification is capable of efficient action and can even be used for cutting solid concrete with a relatively low consumption of energy. A flat pulsating water jet which can be newly used for renovation seems to be a promising technology.

  10. Feasibility of using phase change materials to control the heat of hydration in massive concrete structures.

    Science.gov (United States)

    Choi, Won-Chang; Khil, Bae-Soo; Chae, Young-Seok; Liang, Qi-Bo; Yun, Hyun-Do

    2014-01-01

    This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2 · 8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.

  11. Finite element model updating of concrete structures based on imprecise probability

    Science.gov (United States)

    Biswal, S.; Ramaswamy, A.

    2017-09-01

    Imprecise probability based methods are developed in this study for the parameter estimation, in finite element model updating for concrete structures, when the measurements are imprecisely defined. Bayesian analysis using Metropolis Hastings algorithm for parameter estimation is generalized to incorporate the imprecision present in the prior distribution, in the likelihood function, and in the measured responses. Three different cases are considered (i) imprecision is present in the prior distribution and in the measurements only, (ii) imprecision is present in the parameters of the finite element model and in the measurement only, and (iii) imprecision is present in the prior distribution, in the parameters of the finite element model, and in the measurements. Procedures are also developed for integrating the imprecision in the parameters of the finite element model, in the finite element software Abaqus. The proposed methods are then verified against reinforced concrete beams and prestressed concrete beams tested in our laboratory as part of this study.

  12. Structural Behavior of Continuous Prestressed Steel Fiber Reinforced High Strength Concrete Beam

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.

  13. Feasibility of Using Phase Change Materials to Control the Heat of Hydration in Massive Concrete Structures

    Directory of Open Access Journals (Sweden)

    Won-Chang Choi

    2014-01-01

    Full Text Available This paper presents experimental results that can be applied to select a possible phase change material (PCM, such as a latent heat material (LHM, to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH2·8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.

  14. Comparative Evaluation Of Reinforced Concrete, Steel And Composite Structures Under The Effect Of Static And Dynamic Loads

    OpenAIRE

    Zafar Mujawar; Prakarsh Sangave

    2015-01-01

    Steel-concrete composite construction has gained wide acceptance all over the world as an alternative for pure steel and pure concrete construction. However this approach is a new concept for construction industry. R.C.C are no longer economical because of their increased dead load, hazardous formwork. The present study deals with comparison of reinforced concrete, steel and composite structures under the effect of static and dynamic loads. The results of this work show that compo...

  15. Optimization of flowable concrete for structural design: Progress report of fib task group 8.8

    NARCIS (Netherlands)

    Grunewald, S.; Ferrara, L.; Dehn, F.

    2014-01-01

    With the tendency to apply concrete with a higher workability and the use of new concrete components more options are available to design concrete. New concrete types like self-compacting concrete (SCC), ultra-high performance fibre reinforced concrete (UHPFRC) and high performance fibre reinforced

  16. Optimization of flowable concrete for structural design: Progress report of fib task group 8.8

    NARCIS (Netherlands)

    Grunewald, S.; Ferrara, L.; Dehn, F.

    2014-01-01

    With the tendency to apply concrete with a higher workability and the use of new concrete components more options are available to design concrete. New concrete types like self-compacting concrete (SCC), ultra-high performance fibre reinforced concrete (UHPFRC) and high performance fibre reinforced

  17. NANOMODIFIED CONCRETE

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available One of the main directions in construction material science is the development of  next generation concrete that is ultra-dense, high-strength, ultra-porous, high heat efficient, extra corrosion-resistant. Selection of such direction is caused by extreme operational impacts on the concrete, namely: continuously increasing load on the concrete and various dynamics of such loads; the necessity in operation of concrete products in a wide temperature range and their exposure to various chemical and physical effects.The next generation concrete represents high-tech concrete mixtures with additives that takes on and retain the required properties when hardening and being used under any operational conditions. A differential characteristic of the next generation concrete is its complexity that presumes usage of various mineral dispersed components, two- and three fractional fine and coarse aggregates, complex chemical additives, combinations of polymer and iron reinforcement.Design strength and performance properties level of the next generation concrete is achieved by high-quality selection of the composition, proper selection of manufacturing techniques, concrete curing, bringing the quality of concrete items to the required level of technical condition during the operational phase. However, directed formation of its structure is necessary in order to obtain high-tech concrete.Along with the traditional methods for regulation of the next generation concrete structure, modification of concrete while using silica nanoparticles is also considered as a perspective one because the concrete patterning occurs due to introduction of a binder in a mineral matrix. Due to this it is possible to obtain nano-modified materials with completely new properties.The main problem with the creation of nano-modified concrete is a uniform distribution of nano-materials in the volume of the cement matrix which is particularly important in the cases of adding a modifier in

  18. Service Life Assessment of Harbor Structures - Case studies of chloride ingress into concrete and sheet piling corrosion rates

    OpenAIRE

    Wall, Henrik

    2013-01-01

    The two most used building materials in harbor structures are undoubtedly steel and concrete. These two materials are often combined in the structures of wharfs and quays where the steel sheet pile walls often have cap beams of reinforced concrete. The degradation processes of these structures must be taken into account both when designing new structures and when inspecting existing harbor structures with the purpose of determining their remaining service life. Since the environmental loads o...

  19. Effect of Lightweight Aggregate Pre-wetting on Micro-structure and Permeability of Mixed Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    GE Yong; KONG Lijuan; ZHANG Baosheng; YUAN Jie

    2009-01-01

    The influence of lightweight aggregate(LWA)pre-wetting on the chemical bound water and pore structure of the paste around aggregate as well as concrete permeability were investi-gated.The results show that,in early age the dry LWA has significant effect on the formation of dense paste around it and improving the concrete impermeability.However the prewetted LWA has strong water-releasing effect in later age,which increases the hydration degree of the paste around it, and makes the adjacent paste develop a structure with low porosity and finer aperture,furthermore the concrete impermeability can be improved.It is suggested that,as for concrete with low durability requirement,the LWA without pre-wetting treatment can be used as long as meet the workability re-quirement of fresh concrete,the good impermeability of concrete can be gained as well.As for con-crete with high durability requirement,the prewetted LWA should be used,and the pre-wetting time should be extended as long as possible,in order to optimize the concrete structure in long term,and improve the concrete durability.

  20. Service-life prediction of reinforced concrete structures in subsurface environment

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ki Jung; Jung, Hae Ryong; Park, Joo Wan [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-03-15

    This paper focuses on the estimation of durability and service-life of reinforced concrete structures in Wolsong Low- and intermediate-level wastes Disposal Center (WLDC) in Korea. There are six disposal silos located in the saturated environment. The silo concrete is degraded due to reactions with groundwater and chemical attacks, and finally it will lose its properties as a transport barrier. The infiltration of sulfate and magnesium, leaching of potassium hydroxide, and chlorine induced corrosion are the most significant factors for degradation of reinforced concrete structure in underground environment. From the result of evaluation of the degradation time for each factor, the degradation rate of the reinforced concrete due to sulfate and magnesium is 1.308×10{sup -3} cm/yr, and it is estimated to take 48,000 years for full degradation while potassium hydroxide is leached in depth of less than 1.5 cm at 1,000 years after the initiation of degradation. In case of chlorine induced corrosion, it takes 1,648 years to initiate corrosion in the main reinforced bar and 2,288 years to reach the lifetime limit of the structural integrity, and thus it is evaluated as the most significant factor.

  1. Development of a Skewed Pipe Shear Connector for Precast Concrete Structures.

    Science.gov (United States)

    Kim, Sang-Hyo; Choi, Jae-Gu; Park, Sejun; Lee, Hyunmin; Heo, And Won-Ho

    2017-05-13

    Joint connection methods, such as shear key and loop bar, improve the structural performance of precast concrete structures; consequently, there is usually decreased workability or constructional efficiency. This paper proposes a high-efficiency skewed pipe shear connector. To resist shear and pull-out forces, the proposed connectors are placed diagonally between precast concrete segments and a cast-in-place concrete joint part on a girder. Design variables (such as the pipe diameter, length, and insertion angle) have been examined to investigate the connection performance of the proposed connector. The results of our testing indicate that the skewed pipe shear connectors have 50% higher ductility and a 15% higher ratio of maximum load to yield strength as compared to the corresponding parameters of the loop bar. Finite element analysis was used for validation. The resulting validation indicates that, compared to the loop bar, the skewed pipe shear connector has a higher ultimate shear and pull-out resistance. These results indicate that the skewed pipe shear connector demonstrates more idealized behavior than the loop bar in precast concrete structures.

  2. Experimental and Empirical Time to Corrosion of Reinforced Concrete Structures under Different Curing Conditions

    Directory of Open Access Journals (Sweden)

    Ahmed A. Abouhussien

    2014-01-01

    Full Text Available Reinforced concrete structures, especially those in marine environments, are commonly subjected to high concentrations of chlorides, which eventually leads to corrosion of the embedded reinforcing steel. The total time to corrosion of such structures may be divided into three stages: corrosion initiation, cracking, and damage periods. This paper evaluates, both empirically and experimentally, the expected time to corrosion of reinforced concrete structures. The tested reinforced concrete samples were subjected to ten alternative curing techniques, including hot, cold, and normal temperatures, prior to testing. The corrosion initiation, cracking, and damage periods in this investigation were experimentally monitored by an accelerated corrosion test performed on reinforced concrete samples. Alternatively, the corrosion initiation time for counterpart samples was empirically predicted using Fick’s second law of diffusion for comparison. The results showed that the corrosion initiation periods obtained experimentally were comparable to those obtained empirically. The corrosion initiation was found to occur at the first jump of the current measurement in the accelerated corrosion test which matched the half-cell potential reading of around −350 mV.

  3. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen

    2016-02-25

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.

  4. Stiffness analysis of glued connection of the timber-concrete structure

    Science.gov (United States)

    Daňková, Jana; Mec, Pavel; Majstríková, Tereza

    2016-01-01

    This paper presents results of experimental and mathematical analysis of stiffness characteristics of a composite timber-concrete structure. The composite timberconcrete structure presented herein is non-typical compared to similar types of building structures. The interaction between the timber and concrete part of the composite cross-section is not based on metal connecting elements, but it is ensured by a glued-in perforated mesh made of plywood. The paper presents results of experimental and mathematical analysis for material alternatives of the solution of the glued joint. The slip modulus values were determined experimentally. Data obtained from the experiment evaluated by means of regression analysis. Test results were also used as input data for the compilation of a 3D model of a composite structure by means of the 3D finite element model. On the basis of result evaluation, it can be stated that the stress-deformation behaviour at shear loading of this specific timber-concrete composite structure can be affected by the type of glue used. Parameters of the 3D model of both alternative of the structure represent well the behaviour of the composite structure and the model can be used for predicting design parameters of a building structure.

  5. A Study on the Properties and Chloride Resistance of Modified Sulfur Concrete for Nuclear Power Plant and Marine Structures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Soon Myun; Chang, Hyun Young; Park, Heung Bae [KEPCO EnC, Seongnam (Korea, Republic of)

    2015-05-15

    The mechanical, physical and chemical properties of concrete with modified sulfur have been compared and assessed against ordinary concrete. As its excellent chloride resistance and extended service life have been verified, the technology to apply modified sulfur to the construction of nuclear power plant and marine structures has been developed and secured. Recently, modified sulfur concrete has been applied for road pavement and repair works in more than 20 sites including highway and airport in Korea. Also, in the U.S., Federal Highway Administration and Virginia Department of Transportation are implementing tests to apply modified sulfur to bridge road pavement, and the modified sulfur concrete has been recognized for its good performance. Based on these cases, this study carried out tests on physical, mechanical and chemical properties of concrete after adding modified sulfur by building concrete specimens based on the concrete mix design employed to construct the Shin-Kori Units 3 and 4 containment building. Multiple tests were performed particularly for chemical resistance, a factor directly related to concrete service life. As a result, it has been verified that concrete with 5% modified sulfur content relative to cement weight has equal mechanical properties (compressive strength, tensile strength, etc.) and much better workability (slump change) and chemical resistance (resistance to chloride ion penetration, concrete carbonation) compared with ordinary concrete. Based on this, it has been concluded that an addition of modified sulfur can double the service life of concrete. In general, studies demonstrate that a significant amount of slag should be mixed into concrete to raise chemical resistance (but with decreasing mechanical properties). Considering this, this study is unparalleled.

  6. Structure formation of aerated concrete containing waste coal combustion products generated in the thermal vortex power units

    Science.gov (United States)

    Ivanov, A. I.; Stolboushkin, A. Yu; Temlyanstev, M. V.; Syromyasov, V. A.; Fomina, O. A.

    2016-10-01

    The results of fly ash research, generated in the process of waste coal combustion in the thermal vortex power units and used as an aggregate in aerated concrete, are provided. It is established that fly ash can be used in the production of cement or concrete with low loss on ignition (LOI). The permitted value of LOI in fly ash, affecting the structure formation and operational properties of aerated concrete, are defined. During non-autoclaved hardening of aerated concrete with fly ash aggregate and LOI not higher than 2%, the formation of acicular crystals of ettringite, reinforcing interporous partitions, takes place.

  7. A Demonstration of Concrete Structural Health Monitoring Framework for Degradation due to Alkali-Silica Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neal, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Peter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-04-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant that is subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification and prognosis. This report focuses on degradation caused by ASR (alkali-silica reaction). Controlled specimens were prepared to develop accelerated ASR degradation. Different monitoring techniques – thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) -- were used to detect the damage caused by ASR. Heterogeneous data from the multiple techniques was used for damage diagnosis and prognosis, and quantification of the associated uncertainty using a Bayesian network approach. Additionally, MapReduce technique has been demonstrated with synthetic data. This technique can be used in future to handle large amounts of observation data obtained from the online monitoring of realistic structures.

  8. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  9. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  10. Composite structures of steel and concrete beams, slabs, columns, and frames for buildings

    CERN Document Server

    Johnson, R P

    2008-01-01

    This book sets out the basic principles of composite construction with reference to beams, slabs, columns and frames, and their applications to building structures. It deals with the problems likely to arise in the design of composite members in buildings, and relates basic theory to the design approach of Eurocodes 2, 3 and 4.The new edition is based for the first time on the finalised Eurocode for steel/concrete composite structures.

  11. Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures

    Science.gov (United States)

    Li, Weijie; Kong, Qingzhao; Ho, Siu Chun Michael; Lim, Ing; Mo, Y. L.; Song, Gangbing

    2016-11-01

    Acoustic emission (AE) is a nondestructive evaluation technique that is capable of monitoring the damage evolution of concrete structures in real time. Conventionally, AE sensors are surface mounted on the host structures, however, the AE signals attenuate quickly due to the high attenuation properties of concrete structures. This study conducts a feasibility study of using smart aggregates (SAs), which are a type of embedded piezoceramic transducers, as embedded AE sensors for the health monitoring of concrete structures. A plain concrete beam with two surface mounted AE sensors and two embedded SAs was fabricated in laboratory and loaded under a designed three-point-bending test. The performance of embedded SAs were compared with the traditional surface mounted AE sensors in their ability to detect and evaluate the damage to the concrete structure. The results verified the feasibility of using smart aggregates as embedded AE sensors for monitoring structural damage in concrete. Potentially, the low cost smart aggregates could function as embedded AE sensors, providing great sensitivity and high reliability in applications for the structural health monitoring of concrete structures.

  12. Probabilistic failure modelling of reinforced concrete structures subjected to chloride penetration

    Science.gov (United States)

    Nogueira, Caio Gorla; Leonel, Edson Denner; Coda, Humberto Breves

    2012-12-01

    Structural durability is an important criterion that must be evaluated for every type of structure. Concerning reinforced concrete members, chloride diffusion process is widely used to evaluate durability, especially when these structures are constructed in aggressive atmospheres. The chloride ingress triggers the corrosion of reinforcements; therefore, by modelling this phenomenon, the corrosion process can be better evaluated as well as the structural durability. The corrosion begins when a threshold level of chloride concentration is reached at the steel bars of reinforcements. Despite the robustness of several models proposed in literature, deterministic approaches fail to predict accurately the corrosion time initiation due the inherent randomness observed in this process. In this regard, structural durability can be more realistically represented using probabilistic approaches. This paper addresses the analyses of probabilistic corrosion time initiation in reinforced concrete structures exposed to chloride penetration. The chloride penetration is modelled using the Fick's diffusion law. This law simulates the chloride diffusion process considering time-dependent effects. The probability of failure is calculated using Monte Carlo simulation and the first order reliability method, with a direct coupling approach. Some examples are considered in order to study these phenomena. Moreover, a simplified method is proposed to determine optimal values for concrete cover.

  13. Concrete under severe conditions. Environment and loading

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    -disciplinary ideas in order to improve the current situation. In continuity with previous CONSEC conferences, chloride ingress within concrete structures, durability performance in marine environment, and mitigation of corrosion has deserved important research effort, leading to numerous meaningful contributions. Themes of wear, fatigue resistance of concrete and concrete structures, and control of crack openings represent traditionally important durability issues, for which significant new results are provided. Moreover, with the evolution of research themes, of design and building practice and of social needs, some topics indicate a renewed and major interest of CONSEC'07 contributors: - shock and impact strength of concrete structures, in relation with natural and industrial hazards or terrorist attacks, - thermo-mechanical couplings and fire resistance of concrete structures, which represents an important industrial and safety issue, - rational accounting for chemical attacks and prevention of associated degradations, - performance-based engineering of concrete material, with a special care of durability. Sixteen papers dealing with the behaviour of concrete structures in nuclear facilities have been selected for INIS.

  14. A combined corrosion protection system for reinforced concrete structures using a carbon fibre mesh

    Energy Technology Data Exchange (ETDEWEB)

    Bruns, M.; Raupach, M. [Institut fuer Bauforschung der RWTH Aachen, IBAC, Institute of Building Materials Research of the Technical University of Aachen, Schinkelstrasse 3 Aachen (Germany)

    2004-07-01

    Cathodic Protection (CP) has become a world-wide used method to protect reinforced concrete structures against reinforcement corrosion. Another method to stop or reduce reinforcement corrosion, at least in case of lower chloride contents is the reduction of the water content of the concrete by applying sealing coatings on the concrete surface. At the Institute of Building Materials Research of Aachen University (IBAC) actually a surface protection system is investigated based on the combination of both methods mentioned above. The idea is to protect the reinforcement within the first years after system installation by cathodic protection until the water content of the concrete has decreased to a level due to the surface coating where the corrosion rate of the reinforcement is uncritical and does not lead to any damage. The system investigated, consists of a carbon fibre net embedded in a special mortar layer as impressed current anode for cathodic protection, covered by a 'dense' cement based polymer modified surface coating. In order to investigate the system, it has been installed on a test area on the weathered upper deck of a parking garage in Aachen, Germany. To investigate the effectiveness regarding the reduction of the water content of the concrete the test area was equipped with so called Multiring-Electrodes (MRE) for depth depended measurement of the concrete resistivity. Reference electrodes for potential and depolarization measurements as well a device for automatic measurement of the protection current were installed to investigate the effectiveness of the impressed current cathodic protection. Additionally 3 re bars were embedded into the concrete of the test area using mortar containing 1, 2 or 3 M.-% chloride by weight of cement respectively, to investigate the influence of the chloride content. First results of the MRE-measurements showing already within the first months after system installation a distinct drying of the concrete cover

  15. Seismic Response Analysis of Concrete Lining Structure in Large Underground Powerhouse

    Directory of Open Access Journals (Sweden)

    Xiaowei Wang

    2017-01-01

    Full Text Available Based on the dynamic damage constitutive model of concrete material and seismic rock-lining structure interaction analysis method, the seismic response of lining structure in large underground powerhouse is studied in this paper. In order to describe strain rate dependence and fatigue damage of concrete material under cyclic loading, a dynamic constitutive model for concrete lining considering tension and shear anisotropic damage is presented, and the evolution equations of damage variables are derived. The proposed model is of simple form and can be programmed into finite element procedure easily. In order to describe seismic interaction characteristics of the surrounding rock and lining, an explicit dynamic contact analysis method considering bond and damage characteristics of contact face between the surrounding rock and lining is proposed, and this method can integrate directly without iteration. The proposed method is applied to seismic stability calculation of Yingxiuwan Underground Powerhouse, results reveal that the amplitude and duration of input seismic wave determine the damage degree of lining structure, the damage zone of lining structure is mainly distributed in its arch, and the contact face damage has great influence on the stability of the lining structure.

  16. Cohesive Zone Model Based Numerical Analysis of Steel-Concrete Composite Structure Push-Out Tests

    Directory of Open Access Journals (Sweden)

    J. P. Lin

    2014-01-01

    Full Text Available Push-out tests were widely used to determine the shear bearing capacity and shear stiffness of shear connectors in steel-concrete composite structures. The finite element method was one efficient alternative to push-out testing. This paper focused on a simulation analysis of the interface between concrete slabs and steel girder flanges as well as the interface of the shear connectors and the surrounding concrete. A cohesive zone model was used to simulate the tangential sliding and normal separation of the interfaces. Then, a zero-thickness cohesive element was implemented via the user-defined element subroutine UEL in the software ABAQUS, and a multiple broken line mode was used to define the constitutive relations of the cohesive zone. A three-dimensional numerical analysis model was established for push-out testing to analyze the load-displacement curves of the push-out test process, interface relative displacement, and interface stress distribution. This method was found to accurately calculate the shear capacity and shear stiffness of shear connectors. The numerical results showed that the multiple broken lines mode cohesive zone model could describe the nonlinear mechanical behavior of the interface between steel and concrete and that a discontinuous deformation numerical simulation could be implemented.

  17. Towards Rational Design Method for Strengthening of Concrete Structures by External Bonding

    Directory of Open Access Journals (Sweden)

    Furuuchi H.

    2012-01-01

    Full Text Available Many infrastructures need to be repaired or strengthened due to various reasons, such as unexpected deterioration and changes in performance requirement. This paper presents the following recent achievements by the authors’ group on design method for flexural strengthening of concrete structures by external bonding; (i fracture characteristics of interface between substrate concrete and cementitious overlay, (ii crack spacing of flexural strengthened beams, which affects debonding strength, (iii strengths of intermediate crack (IC debonding and end peeling, (iv strength of concrete cover separation, and (v effectiveness of strengthening by external bonding. A unified approach for flexural strengthening by steel plate, fiber reinforced polymer lami¬nate and cementitious overlay, for both intermediate crack (IC debonding, including end peeling, and concrete cover separation is pre¬sented with consideration of crack spacing in the streng¬thened members. Appropriate interfacial rough¬¬¬ness to achieve efficient interface bond property is clari¬fied and the concept of effectiveness of strengthen¬ing is proposed for better strengthening design.

  18. Damage detection monitoring applications in self-healing concrete structures using embedded piezoelectric transducers and recovery

    Science.gov (United States)

    Karaiskos, G.; Tsangouri, E.; Aggelis, D. G.; Deraemaeker, A.; Van Hemelrijck, D.

    2015-07-01

    The ageing, operational and ambient loadings have a great impact in the operational and maintenance cost of concrete structures. Their service life prolongation is of utmost importance and this can be efficiently achieved by using reliable and low-cost monitoring and self-healing techniques. In the present study, the ultrasonic pulse velocity (UPV) method using embedded small-size and low-cost piezoelectric PZT (lead zirconate titanate) ceramic transducers in concrete with self-healing properties is implemented for monitoring not only the setting and hardening phases of concrete since casting time, but also for the detection of damage initiation, propagation and recovery of integrity after healing. A couple of small-scale notched unreinforced concrete beams are subjected to mode-I fracture through three-point bending tests. After a 24-hour healing agent curing period, the beams are reloaded using the same loading scenario. The results demonstrate the excellent performance of the proposed monitoring technique during the hydration, damage generation and recovery periods.

  19. Effects of edge beams on mechanic behavior under lateral load in reinforced concrete hollow slab-column structure

    Institute of Scientific and Technical Information of China (English)

    成洁筠; 杨建军; 唐小弟

    2008-01-01

    In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained.

  20. Less material, more design - Optimized concrete structures with fabric formwork

    NARCIS (Netherlands)

    Prayudhi, B.; Borg Costanzi, C.; Van Baalen, S.

    2015-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Innovation and Sustainability This manual explains one of the many methods of design and fabrication of biomimicry design in structural element. Rethinking the way we design a column, by using topology optimization method to generate a

  1. Maintenance Planning for Chloride Initiated Corrosion in Concrete Structures

    DEFF Research Database (Denmark)

    Engelund, S.; Sørensen, John Dalsgaard

    1998-01-01

    , maintenance and repair of the structure are carried out. In the present paper it is shown how the planning of maintenance and repair can be carried out on the basis of decision theory in conjunction with FORM/SORM-analysis. In an illustrative example the optimal plan for maintenance and repair of a motorway...

  2. SPACE Approach to Concrete's Space Structure and its Mechanical Properties

    NARCIS (Netherlands)

    Stroeven, P.; Stroeven, M.

    2001-01-01

    Structural properties of particulate materials can be described in densities of the particle packing, more generally denoted as particle composition. Obviously, this global measure does not offer information on the way particles are mutually arranged in space. This is associated with particle config

  3. Less material, more design - Optimized concrete structures with fabric formwork

    NARCIS (Netherlands)

    Prayudhi, B.; Borg Costanzi, C.; Van Baalen, S.

    2015-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Innovation and Sustainability This manual explains one of the many methods of design and fabrication of biomimicry design in structural element. Rethinking the way we design a column, by using topology optimization method to generate a

  4. Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures

    Directory of Open Access Journals (Sweden)

    Yong Lu

    2008-01-01

    Full Text Available Piezoelectric ceramic Lead Zirconate Titanate (PZT based electro-mechanicalimpedance (EMI technique for structural health monitoring (SHM has been successfullyapplied to various engineering systems. However, fundamental research work on thesensitivity of the PZT impedance sensors for damage detection is still in need. In thetraditional EMI method, the PZT electro-mechanical (EM admittance (inverse of theimpedance is used as damage indicator, which is difficult to specify the effect of damage onstructural properties. This paper uses the structural mechanical impedance (SMI extractedfrom the PZT EM admittance signature as the damage indicator. A comparison study on thesensitivity of the EM admittance and the structural mechanical impedance to the damages ina concrete structure is conducted. Results show that the SMI is more sensitive to the damagethan the EM admittance thus a better indicator for damage detection. Furthermore, this paperproposes a dynamic system consisting of a number of single-degree-of-freedom elementswith mass, spring and damper components to model the SMI. A genetic algorithm isemployed to search for the optimal value of the unknown parameters in the dynamic system.An experiment is carried out on a two-storey concrete frame subjected to base vibrations thatsimulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the framestructure to acquire PZT EM admittance signatures. The relationship between the damageindex and the distance of the PZT sensor from the damage is studied. Consequently, thesensitivity of the PZT sensors is discussed and their sensing region in concrete is derived.

  5. Approaches for Modelling the Residual Service Life of Marine Concrete Structures

    Directory of Open Access Journals (Sweden)

    Amir Rahimi

    2014-01-01

    Full Text Available This paper deals with the service life design of existing reinforced concrete structures in a marine environment. The general procedure of condition assessment for estimating the residual service life of structures before a repair measure is illustrated. For assessment of the residual service life of structures which have undergone a repair measure a simplified mathematical model of chloride diffusion in a 2-layer system is presented. Preliminary probabilistic calculations demonstrate the effect of various conditions on the residual service life. First studies of the chloride diffusion in a 2-layer system have been conducted using the finite element method. Results of a long-term exposure test are presented to illustrate the performance of two different repair materials. The distribution of residual chlorides after application of a repair material is being studied in laboratory investigations. The residual chlorides migrate from the concrete layer into the new layer immediately after the repair material has been applied to the concrete member. The content and gradient of residual chlorides, along with the thickness and the chloride ingress resistance of both the remaining and the new layer of cover, will determine the residual service life of the repaired structures.

  6. Structural evaluation and analysis under normal conditions for spent fuel concrete storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Taechul; Baeg, Changyeal; Yoon, Sitae [Korea Radioactive waste Management Agency, Daejeon (Korea, Republic of); Jung, Insoo [Korea Nuclear Engineering and Service Co., Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this paper is the verification of stabilities of the structural elements that influence the safety of a concrete storage cask. The evaluation results were reviewed with respect to every design criterion, in terms of whether the results satisfy the criteria, provided by 10CFR 72 and NUREG-1536. The basic information on the design is partially explained in 2. Description of spent fuel storage system and the maintainability and assumptions included in the analysis were confirmed through detailed explanations of the acceptable standards, analysis model, and analysis method. ABAQUS 6.10, a widely used finite element analysis program, was used in the structural analysis. The storage cask shall maintain the sub-criticality, shielding, structural integrity, thermal capability and confinement in accordance with the requirements specified in US 10 CFR 72. The safety of storage cask is analyzed and it has been confirmed to meet the requirements of US 10 CFR 72. This paper summarizes the structural stability evaluation results of a concrete storage cask with respect to the design criteria. The evaluation results of this paper show that the maximum stress was below the allowable stress under every condition, and the concrete storage cask satisfied the design criteria.

  7. Assessing the performance of a soy methyl ester -polystyrene topical treatment to extend the service life of concrete structures

    Science.gov (United States)

    Thomas, D'Shawn G.

    Experimental results show that soy methyl ester (SME), a derivative of soy bean oil, along with the incorporation of polystyrene (PS) is a non-toxic, biodegradable and renewable material that can be used effectively as a topical concrete surface treatment. While, concrete sealants and topical surface treatments can be used to extend to durability of concrete structures, it is difficult to predict the durability of concrete structures sealed with a sealant or topical surface treatment. This is due to a lack of necessary model inputs that can be used to address the durability of concrete structures treated with these materials. In general, this thesis expands upon previous research in exploring the use of SME-PS blends as a topical treatment used to enhance concrete durability and presents a sound theoretical framework for modeling the durability of concrete structures topically treated with SME-PS using Fick's 2nd Law of diffusion. Using experimental data generated in this study, fluid transport tests have been carried out to investigate how SME-PS changes fluid absorption and chloride ingress into concrete. The results show that the diffusion of chloride ions into concrete treated with SME-PS can be modeled by using a fractional amount (in this case 60% is recommended) of the value of Cs that is used for conventional concrete when Fick 2 nd Law is used. This is critically important from a design and cost prospective, since tests do not need to be conducted with SME-PS to determine the benefits of surface treatment.

  8. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  9. Guide to diagnosis and appraisal of AAR damage to concrete in structures

    CERN Document Server

    Rooij, Mario; Wood, Jonathan

    2013-01-01

    This book describes procedures and methodologies used predominantly to obtain a diagnosis of damaged concrete possibly caused by Alkali-Aggregate Reaction (AAR). It has two primary objectives, namely firstly to identify the presence of AAR reaction, and whether or not the reaction is the primary or contributory cause of damage in the concrete; and secondly, to establish its intensity (severity) in various members of a structure. It includes aspects such as field inspection of the structure, sampling, petrographic examination of core samples, and supplementary tests and analyses on cores, such as mechanical tests and chemical analysis. Evaluation of test data for prognosis, consequences and appraisal will be more fully set out in AAR-6.2.

  10. DETERMINING THE EFFECTS OF RADIATION ON AGING CONCRETE STRUCTURES OF NUCLEAR REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M.

    2010-01-29

    The U.S. Department of Energy Office of Environmental Management (DOE-EM) is responsible for the Decontamination and Decommissioning (D&D) of nuclear facilities throughout the DOE Complex. Some of these facilities will be completely dismantled, while others will be partially dismantled and the remaining structure will be stabilized with cementitious fill materials. The latter is a process known as In-Situ Decommissioning (ISD). The ISD decision process requires a detailed understanding of the existing facility conditions, and operational history. System information and material properties are need for aged nuclear facilities. This literature review investigated the properties of aged concrete structures affected by radiation. In particular, this review addresses the Savannah River Site (SRS) isotope production nuclear reactors. The concrete in the reactors at SRS was not seriously damaged by the levels of radiation exposure. Loss of composite compressive strength was the most common effect of radiation induced damage documented at nuclear power plants.

  11. Survey of Experience Using Reinforced Concrete in Floating Marine Structures.

    Science.gov (United States)

    1983-01-01

    boats. For the underdeveloped countries in this region, the low-technology, labor -intensive techniques of ferrocement construction are very... Labor costs ran higher than anticipated. The oil barges had to be relined with expensive protective coating in order to make them suitable for...34SHELL STRUCTURES AND CLIMA - TIC INFLUENCES," lIASS CALGARY SYMPOSIUM PROC., UNIVERSITY OF CALGARY, ALTA., JULY 3-6, 1972. 200. GOLUVCHENOKO, A

  12. Load-carrying capacity of lightly reinforced, prefabricated walls of lightweight aggregate concrete with open structure

    DEFF Research Database (Denmark)

    Goltermann, Per

    2009-01-01

    The paper presents and evaluates the results of a coordinated testing of prefabricated, lightly reinforced walls of lightweight aggregate concrete with open structure. The coordinated testing covers all wall productions in Denmark and will therefore provide a representative assessment of the qual...... of the quality actually produced. Existing and new formulas for the capacity are evaluated by comparison to the test results and a new model with a good correlation with the test results is presented....

  13. Minimum Reinforcement in Concrete Structures under Restrained Shrinkage and Thermal Actions

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter

    1999-01-01

    The present paper deals with minimum reinforcement to ensure limitation of crack widths in concrete structures subjected to small imposed strains, such as those from restrained shrinkage or thermal actions. A theory is presented, which models the behaviour of a tensile member from zero load...... to first yielding of reinforcement. The theory takes into account the formation of each crack. However, concluding the paper, a simple design formula is given, which provides the amount of reinforcement, necessary to ensure a given crack width....

  14. Probabilistic design and management of environmentally sustainable repair and rehabilitation of reinforced concrete structures

    DEFF Research Database (Denmark)

    Lepech, Michael D.; Geiker, Mette Rica; Stang, Henrik

    2014-01-01

    This paper presents a probabilistic sustainability design framework for the design of concrete repairs and rehabilitations intended to achieve targeted improvements in quantitative sustainability indicators. The framework consists of service life prediction models combining deterioration mechanisms...... to a probabilistic calculation of cumulative impacts throughout the structure's service life, from initial repair to functional obsolescence (end of life). The methods discussed are in accordance with sustainability design requirements within the 2010 fib Model Code. A case study is presented which computes...

  15. Cathodic protection of reinforced concrete structure using discrete anode strips -- case history

    Energy Technology Data Exchange (ETDEWEB)

    Gulikers, J. [Ministry of Transport, Public Works and Water Management (Netherlands)

    2000-07-01

    Cathodic protection of reinforcing steel suffering from chloride-induced corrosion has been used for at least the last decade. It has been demonstrated to be the most appropriate, cost-effective and reliable repair option when compared to conventional repair methods. This case study describes the actions taken on a bridge substructure in the Netherlands, built in 1938 as the major structural support for a balance bridge, where a condition assessment revealed that reinforcement corrosion had been initiated by chloride penetration and carbonation. Cathodic protection with impressed current was proposed to protect the reinforcing steel. The system was based on discrete titanium anode strips, inserted perpendicular to the concrete surface. In order to achieve a uniform distribution of protective current, a system of an average of 10 strips per square meter of concrete surface was placed in holes drilled to a depth of 35 cm. In view of the innovative nature of the design and the heightened risk of non-uniform current distribution, provisions were made for additional monitoring of the performance of the cathodic system. Measurements included concrete resistance, current distribution over the concrete surface and frequent depolarization. Monitoring results revealed a pronounced non-uniform current distribution over the concrete surface and a high current demand in one particular zone. The pronounced differences encountered in this instance were attributed to delaminations and macroscopic cracks in the concrete cover, severely limiting the flow of protective current to the reinforcement. It is suggested that repair of the delaminations by injecting a low resistivity cementitious grout, thereby allowing the use of a more cost-effective surface-mounted anode system might have been a more appropriate option than the one chosen. The principal lesson learned from this particular case is the strong need for quantitative information regarding anodic and cathodic current

  16. Application of global elements to a reinforced concrete structure; Application des elements globaux a une structure en beton arme

    Energy Technology Data Exchange (ETDEWEB)

    Morand, O

    1994-07-01

    The dimensioning of nuclear facilities requires to take into account the possible risk of earthquakes. However such installations are generally complex structures with reinforced concrete poles, walls, beams and porches. In this study, a seismic analysis of such a structure is proposed. The use of the Castem 2000 global element code was attempted to dynamically simulate the behaviour of the reinforced concrete elements. However, no suitable modeling has been found for the storeys, the functioning of which being dominated by carrying walls. Concerning the porch-type storeys, monotonous static loads were simulated and provided information on the local and global behaviour of these structures. Thus, representative global elements could be realized for these structures. Results obtained are satisfactory for these storeys which essentially undergo a bending deformation. (J.S.)

  17. Recycled fishing nets as reinforcement of existing concrete structures

    DEFF Research Database (Denmark)

    Sigvardsen, Nina Marie; Bonnerup, Amanda Helena; Ottosen, Lisbeth M.

    2016-01-01

    Large amounts of fishing nets are discarded every year polluting the oceans with plastic fibers on a global scale. Due to the big fishing industry in Greenland, an alternative use for discarded fishing nets would have a decreasing effect on the amount of marine litter in the Arctic. A use...... for discarded fishing nets could be as fiber-reinforced polymer (FRP) composites for near surface mounted reinforcement (NSMR). NSMR prolongs the lifetime of existing structures, and thus reduces the amount of materials transported to Greenland, reducing CO2-emission and expenses. The effect of NSMR FRP bars...

  18. Numerical Study on Nonlinear Semiactive Control of Steel-Concrete Hybrid Structures Using MR Dampers

    Directory of Open Access Journals (Sweden)

    Long-He Xu

    2013-01-01

    Full Text Available Controlling the damage process, avoiding the global collapse, and increasing the seismic safety of the super high-rise building structures are of great significance to the casualties’ reduction and seismic losses mitigation. In this paper, a semiactive control platform based on magnetorheological (MR dampers comprising the Bouc-Wen model, the semi-active control law, and the shear wall damage criteria and steel damage material model is developed in LS-DYNA program, based on the data transferring between the main program and the control platform; it can realize the purpose of integrated modeling, analysis, and design of the nonlinear semi-active control system. The nonlinear seismic control effectiveness is verified by the numerical example of a 15-story steel-concrete hybrid structure; the results indicate that the control platform and the numerical method are stable and fast, the relative displacement, shear force, and damage of the steel-concrete structure are largely reduced using the optimal designed MR dampers, and the deformations and shear forces of the concrete tube and frame are better consorted by the control devices.

  19. Online monitoring of cracking in concrete structures using embedded piezoelectric transducers

    Science.gov (United States)

    Dumoulin, C.; Karaiskos, G.; Sener, J.-Y.; Deraemaeker, A.

    2014-10-01

    Online damage detection is of great interest in the field of concrete structures and, more generally, within the construction industry. Current economic requirements impose the reduction of the operating costs related to such inspection while the security and the reliability of structures must constantly be improved. In this paper, nondestructive testing is applied using piezoelectric transducers embedded in concrete structures. These transducers are especially adapted for online ultrasonic monitoring, due to their low cost, small size, and broad frequency band. These recent transducers are called smart aggregates. The technique of health monitoring developed in this study is based on a ultrasonic pulse velocity test with an embedded ultrasonic emitter-receiver pair (pitch-catch). The damage indicator focuses on the early wave arrival. The Belgian company MS3 takes an interest in evaluating the quality of the concrete around the anchorage system of highway security barriers after important shocks. The failure mechanism can be viewed as a combination of a bending and the failure of the anchorages. Accordingly, the monitoring technique has been applied both on a three-points bending test and several pull-out tests. The results indicate a very high sensitivity of the method, which is able to detect the crack initiation phase and follow the crack propagation over the entire duration of the test.

  20. Pore structure modification of cement concretes by impregnation with sulfur-containing compounds

    Directory of Open Access Journals (Sweden)

    YANAKHMETOV Marat Rafisovich

    2015-02-01

    Full Text Available The authors study how the impregnation with sulfur-containing compounds changes the concrete pore structure and how it influences on the water absorption and watertightness. The results of this research indicate that impregnation of cement concrete with water-based solution of polysulphide modifies pore structure of cement concrete in such a way that it decreases total and effective porosity, reduces water absorption and increases watertightness. The proposed impregnation based on mineral helps to protect for a long time the most vulnerable parts of buildings – basements, foundations, as well as places on the facades of buildings exposed to rain, snow and groundwater. Application of the new product in the construction industry can increase the durability of materials, preventing the destruction processes caused by weathering, remove excess moisture in damp basements. The surfaces treated by protective compounds acquire antisoiling properties for a long time, and due to reduced thermal conductivity the cost of heating buildings is decreased. The effectiveness of the actions and the relatively low cost of proposed hydrophobizator makes it possible to spread widely the proposed protection method for building structures.

  1. Concrete Mix Design for Service Life of RC Structures under Carbonation Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Seung-Jun Kwon

    2014-01-01

    Full Text Available Steel corrosion in reinforced concrete (RC structure is such a critical problem to structural safety that many researches have been performed for maintaining required performance during intended service life. This paper is for a numerical technique for obtaining optimum concrete mix proportions through genetic algorithm (GA for RC structures under carbonation which is considered as a serious deterioration in underground sites and big cities. For this study, mix proportions and CO2 diffusion coefficients are analyzed through the previous studies, and then the fitness function of CO2 diffusion coefficient is derived through regression analysis. The fitness function from 69 test results includes 5 variables of mix proportions such as w/c (water to cement ratio, cement content, sand content percentage, coarse aggregate content, and R.H. (relative humidity. Through GA technique, simulated mix proportions are obtained for 12 cases of verification and they show reasonable results with average relative error of 4.6%. Assuming intended service life and design parameters, intended CO2 diffusion coefficients and cement contents are determined and then related mix proportions are simulated. The proposed technique can provide initial concrete mix proportions which satisfy service life under carbonation.

  2. Innovative Ultrasonic Techniques for Inspection and Monitoring of Large Concrete Structures

    Science.gov (United States)

    Wiggenhauser, H.; Niederleithinger, E.

    2013-07-01

    Ultrasonic echo and transmission techniques are used in civil engineering on a regular basis. New sensors and data processing techniques have lead to many new applications in the structural investigation as well as quality control. But concrete structures in the nuclear sector have special features and parameters, which pose problems for the methods and instrumentation currently available, e.g. extreme thickness, dense reinforcement, steel liners or special materials. Several innovative ultrasonic techniques have been developed to deal with these issues at least partly in lab experiments and pilot studies. Modern imaging techniques as multi-offset SAFT have been used e. g. to map delaminations. Thick concrete walls have successfully been inspected, partly through a steel liner. Embedded ultrasonic sensors have been designed which will be used in monitoring networks of large concrete structures above and below ground. In addition, sensitive mathematical methods as coda wave interferometry have been successfully evaluated to detect subtle changes in material properties. Examples of measurements and data evaluation are presented.

  3. Innovative Ultrasonic Techniques for Inspection and Monitoring of Large Concrete Structures

    Directory of Open Access Journals (Sweden)

    Niederleithinger E.

    2013-07-01

    Full Text Available Ultrasonic echo and transmission techniques are used in civil engineering on a regular basis. New sensors and data processing techniques have lead to many new applications in the structural investigation as well as quality control. But concrete structures in the nuclear sector have special features and parameters, which pose problems for the methods and instrumentation currently available, e.g. extreme thickness, dense reinforcement, steel liners or special materials. Several innovative ultrasonic techniques have been developed to deal with these issues at least partly in lab experiments and pilot studies. Modern imaging techniques as multi-offset SAFT have been used e. g. to map delaminations. Thick concrete walls have successfully been inspected, partly through a steel liner. Embedded ultrasonic sensors have been designed which will be used in monitoring networks of large concrete structures above and below ground. In addition, sensitive mathematical methods as coda wave interferometry have been successfully evaluated to detect subtle changes in material properties. Examples of measurements and data evaluation are presented.

  4. FRP tendon anchorage in post-tensioned concrete structures

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Täljsten, Björn; Bennitz, Anders

    2008-01-01

    Strengthening of building structures by the use of various external post-tensioning steel tendon systems, is known to be a very efficient method. However, FRP as material in external post-tensioning projects has been investigated during the last decade. The advantages for this material are the high...... effective Young´s modulus and the high stress capacity in the linear elastic range of the material. The use of external tendons increases the requirements on the anchorage systems. This is in particular important when using un-bonded tendon systems, where the anchorage and deviators are the only force...... transfer points. The demand for high capacity anchorage tendons is fulfilled for steel tendons, but no competitive mechanical anchor has yet been developed for FRP tendon. A new small, reliable and more user friendly anchor has to be developed, before FRP tendons can be utilized with all of its capacity...

  5. A RSM Method for Nonlinear Probabilistic Analysis of the Reinforced Concrete Structure Failure of a Nuclear Power Plant - Type VVER 440

    OpenAIRE

    Králik, Juraj

    2011-01-01

    This paper describes the reliability analysis of a concrete containment for VVER 440 under a high internal overpressure. The probabilistic safety assessment (PSA) level 3 aims at an assessment of the probability of the concrete structure failure under the excessive overpressure. The non-linear analysis of the concrete structures was considered. The uncertainties of the loads level (long-time temperature and dead loads), the material model (concrete cracking and crushing, behavior of the reinf...

  6. Reinforced concrete structures loaded by snow avalanches : numerical and experimental approaches.

    Science.gov (United States)

    Ousset, I.; Bertrand, D.; Brun, M.; Limam, A.; Naaim, M.

    2012-04-01

    Today, due to the extension of occupied areas in mountainous regions, new strategies for risk mitigation have to be developed. In the framework of risk analysis, these latter have to take into account not only the natural hazard description but also the physical vulnerability of the exposed structures. From a civil engineering point of view, the dynamic behavior of column or portico was widely investigated especially in the case of reinforced concrete and steel. However, it is not the case of reinforced concrete walls for which only the in-plan dynamic behavior (shear behavior) has been studied in detail in the field of earthquake engineering. Therefore, the aim of this project is to study the behavior of reinforced concrete civil engineering structures submitted to out-of-plan dynamic loadings coming from snow avalanche interaction. Numerical simulations in 2D or 3D by the finite element method (FEM) are presented. The approach allows solving mechanical problems in dynamic condition involving none linearities (especially none linear materials). Thus, the structure mechanical response can be explored in controlled conditions. First, a reinforced concrete wall with a L-like shape is considered. The structure is supposed to represent a French defense structure dedicated to protect people against snow avalanches. Experimental pushover tests have been performed on a physical model. The experimental tests consisted to apply a uniform distribution of pressure until the total collapse of the wall. A 2D numerical model has been developed to simulate the mechanical response of the structure under quasi-static loading. Numerical simulations have been compared to experimental datas and results gave a better understanding of the failure mode of the wall. Moreover, the influence of several parameters (geometry and the mechanical properties) is also presented. Secondly, punching shear experimental tests have also been carried out. Reinforced concrete slabs simply supported have

  7. Comparative Evaluation Of Reinforced Concrete, Steel And Composite Structures Under The Effect Of Static And Dynamic Loads

    Directory of Open Access Journals (Sweden)

    Zafar Mujawar

    2015-01-01

    Full Text Available Steel-concrete composite construction has gained wide acceptance all over the world as an alternative for pure steel and pure concrete construction. However this approach is a new concept for construction industry. R.C.C are no longer economical because of their increased dead load, hazardous formwork. The present study deals with comparison of reinforced concrete, steel and composite structures under the effect of static and dynamic loads. The results of this work show that composite structures are best suited for high rise buildings compared to that of steel and reinforced concrete structures. Response spectrum method is used for comparison of three structures with the help of ETABS software.

  8. Evaluation of the effect of varying the workability in concrete pore structure by using X-ray microtomography

    Directory of Open Access Journals (Sweden)

    E. E. Bernardes

    Full Text Available The useful life of concrete is associated with the penetrative ability of aggressive agents on their structures. Structural parameters such as porosity, pore distribution and connectivity have great influence on the properties of mass transport in porous solids. In the present study, the effect of varying the workability of concrete in fresh state, produced through the use of additives, on pore structure and on the mechanical compressive strength of hardened concrete was assessed. The pore structure was analyzed with the aid of X-ray microtomography, and the results obtained were compared to the total pore volume calculated from data derived from helium and mercury pycnometry tests. A good approximation between the porosity values obtained through the two techniques was observed, and it was found that, regardless of concrete consistency, the samples from the surface of the specimens showed a percentage of pores higher than those taken from the more inner layers.

  9. Application of shearography to crack detection in concrete structures subjected to traffic loading

    Science.gov (United States)

    Muzet, V.; Blain, P.; Przybyla, D.

    2010-09-01

    Early detection of defects in concrete structures, such as bridges or dams, is essential to optimize the maintenance of civil engineering facilities. Optical methods constitute non-destructive means of control and measurement but they are generally confined in laboratories where both the setup and environnement are controlled. The method of shearography is especially well adapted to detect damages due to both its capacity to distinctly visualize strain concentration zones and its robustness. The experimental set-up is relatively compact, which enables to examine an extensive surface area by simply moving the shearographic head. In this paper, the application of this methodology for the detection of cracks is presented on concrete samples and circulated outside concrete structures. Due to its sensitivity to strain concentration, shearography is able to detect structural cracks, even when they were not through-cracks. Operational implementation is made on two circulated structures with experts in manual cracks detection. No stimulation device is used. In the first structure, cracks are detected on the bridge deck and on the bridge abutment. In the second structure, cracks on the intrados of the bridge deck are detected and also beginning of cracks which have not been detected by the visual inspection. Different areas are scanned and the results are in agreement with the visual inspection. This technique enables detecting cracks on structures subjected to traffic load. The natural loading of an engineering structure, i.e. the rolling traffic it bears, proves well suited for cracks detection by means of shearography, provided traffic patterns are regular enough.

  10. Soft impact testing of a wall-floor-wall reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Vepsä, Ari, E-mail: ari.vepsa@vtt.fi; Calonius, Kim; Saarenheimo, Arja; Aatola, Seppo; Halonen, Matti

    2017-01-15

    Highlights: • A wall-floor-wall reinforced concrete structure was built. • The structure was subjected to three almost identical soft impact tests. • Response was measured with accelerometers, displacement sensors and strain gauges. • Modal tests was also carried out with the same structure in different conditions. • The results are meant to be used for validation of computational methods and models. - Abstract: Assessing the safety of the reactor building of a nuclear power plant against the crash of an airplane calls for valid computational tools such as finite element models and material constitutive models. Validation of such tools and models in turn calls for reliable and relevant experimental data. The problem is that such data is scarcely available. One of the aspects of such a crash is vibrations that are generated by the impact. These vibrations tend to propagate from the impact point to the internal parts of the building. If strong enough, these vibrations may cause malfunction of the safety-critical equipment inside the building. To enable validation of computational models for this type of behaviour, we have conducted a series of three tests with a wall-floor-wall reinforced concrete structure under soft impact loading. The response of the structure was measured with accelerometers, displacement sensors and strain gauges. In addition to impact tests, the structure was subjected to modal tests under different conditions. The tests yielded a wealth of useful data for validation of computational models and better understanding about shock induced vibration physics especially in reinforced concrete structures.

  11. Advances in Chemical and Structural Characterization of Concretion with Implications for Modeling Marine Corrosion

    Science.gov (United States)

    Johnson, Donald L.; DeAngelis, Robert J.; Medlin, Dana J.; Carr, James D.; Conlin, David L.

    2014-05-01

    The Weins number model and concretion equivalent corrosion rate methodology were developed as potential minimum-impact, cost-effective techniques to determine corrosion damage on submerged steel structures. To apply the full potential of these technologies, a detailed chemical and structural characterization of the concretion (hard biofouling) that transforms into iron bearing minerals is required. The fractions of existing compounds and the quantitative chemistries are difficult to determine from x-ray diffraction. Environmental scanning electron microscopy was used to present chemical compositions by means of energy-dispersive spectroscopy (EDS). EDS demonstrates the chemical data in mapping format or in point or selected area chemistries. Selected-area EDS data collection at precise locations is presented in terms of atomic percent. The mechanism of formation and distribution of the iron-bearing mineral species at specific locations will be presented. Based on water retention measurements, porosity in terms of void volume varies from 15 v/o to 30 v/o (vol.%). The void path displayed by scanning electron microscopy imaging illustrates the tortuous path by which oxygen migrates in the water phase within the concretion from seaside to metalside.

  12. Fracture Formation Evaluation of Reinforced Concrete Structure Using Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Alireza Panjsetooni

    2013-01-01

    Full Text Available Acoustic emission (AE is an important nondestructive evaluation (NDE technique used in the field of structural engineering for both case local and global monitoring. In this study AE technique with a new approach was employed to investigate the process of fracture formation in reinforced concrete structure. A number of reinforced concrete (RC one story frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data was analyzed using the relaxation ratio and calm and load ratio method. Also, the relaxation ratio was dominated with approaching load to 58% of the ultimate load. In addition three levels of damage using calm and load ratio were distinguished. The trend of relaxation ratio and calm and load ratio method during loading and unloading showed that these methods are strongly sensitive with cracks growth in RC frame specimens and were able to indicate the levels of damage. Also, results showed that AE can be considered as a viable method to predict the remaining service life of reinforced concrete. In addition, with respect to the results obtained from relaxation ratio and, load and calm ratio indicated, a new chart is proposed.

  13. Reduced surface wave transmission function and neural networks for crack evaluation of concrete structures

    Science.gov (United States)

    Shin, Sung Woo; Yun, Chung Bang; Furuta, Hitoshi; Popovics, John S.

    2007-04-01

    Determination of crack depth in field using the self-calibrating surface wave transmission measurement and the cutting frequency in the transmission function (TRF) is very difficult due to variations of the measurement conditions. In this study, it is proposed to use the measured full TRF as a feature for crack depth assessment. A principal component analysis (PCA) is employed to generate a basis of the measured TRFs for various crack cases. The measured TRFs are represented by their projections onto the most significant principal components. Then artificial neural network (ANN) using the PCA-compressed TRFs is applied to assess the crack in concrete. Experimental study is carried out for five different crack cases to investigate the effectiveness of the proposed method. Results reveal that the proposed method can be effectively used for the crack depth assessment of concrete structures.

  14. Structural design of concrete storage pads for spent-fuel casks

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Y.R.; Nickell, R.E.; James, R.J. (ANATECH Research Corp., San Diego, CA (United States))

    1993-04-01

    The loading experienced by spent fuel dry storage casks and storage pads due to potential drop or tip-over accidents is evaluated using state-of-the-art concrete structural analysis methodology. The purpose of this analysis is to provide simple design charts and formulas so that design adequacy of storage pads and dry storage casks can be demonstrated. The analysis covers a wide range of slab-design parameters, e.g., reinforcement ratio, slab thickness, concrete compressive strength, and sub-base soil compaction, as well as variations in drop orientation and drop height. The results are presented in the form of curves, giving the force on the cask as a function of storage pad hardness for various drop heights. In addition, force-displacement curves, deformed shapes, crack patterns, stresses and strains are given for various slab-design conditions and drop events. The utility of the results in design are illustrated through examples.

  15. Estimation of Prestress Force Distribution in the Multi-Strand System of Prestressed Concrete Structures

    Directory of Open Access Journals (Sweden)

    Keunhee Cho

    2015-06-01

    Full Text Available Prestressed concrete (PSC is one of the most reliable, durable and widely used construction materials, which overcomes the weakness of concrete in tension by the introduction of a prestress force. Smart strands enabling measurement of the prestress force have recently been developed to maintain PSC structures throughout their lifetime. However, the smart strand cannot give a representative indication of the whole prestress force when used in multi-strand systems since each strand sustains a different prestress force. In this paper, the actual distribution of the prestress force in a multi-strand system is examined using elastomagnetic (EM sensors to develop a method for tracking representative indicators of the prestress force using smart strands.

  16. Modeling of Fracture Propagation in Concrete Structures Using a Constitutive Relation with Embedded Discontinuity

    Directory of Open Access Journals (Sweden)

    Pietruszczak Stanisław

    2015-02-01

    Full Text Available In this paper, the problem of modeling of mixed mode cracking in concrete structures is addressed within the context of a constitutive law with embedded discontinuity (CLED. This approach, which was originally developed for describing the propagation of localized deformation in a “smeared” sense, is enhanced here to model a discrete nature of crack propagation. The latter is achieved by coupling the CLED approach with the level-set method, which is commonly used within the framework of Extended Finite Element (XFEM. Numerical simulations of experimental tests conducted at Delft University, which involve four-point bending of a notched concrete beam under the action of two independent actuators, are presented. The results based on enhanced CLED approach are directly compared with XFEM simulations. The predictions from both these methodologies are quite consistent with the experimental data, thereby giving advantage to CLED scheme in view of its simplicity in the numerical implementation.

  17. Structural health and dynamic behavior of residential buildings: field challenges in the rehab of damaged reinforced concrete

    Directory of Open Access Journals (Sweden)

    Chalhoub M. S.

    2014-01-01

    Full Text Available Reinforced concrete buildings require special consideration under dynamic excitations due to their anisotropic material properties. Strain compatibility equations are used in concrete analysis and design with assumptions about the stress and strain field across member section and member length. However, these assumptions fall short of describing real life behavior when concrete elements deteriorate, age or undergo cyclic loading. This paper addresses the structural health of reinforced concrete buildings and proposes an analytical model to account for concrete damage through loss of bond. The proposed model relates steel loading that causes bond distress to design parameters such as development length and bar properties, and therefore could be complemented by field measurement. The paper proposes a diagnosis method and discusses the sustainability of the structure by assisting in a simplistic decision rule as to whether to perform minor fixes, major rehabilitation, or disposal. Emphasis is placed on the difference between reversible and irreversible effects of cyclic loading on structural behaviour, and draws a distinction between damage to the girder and damage to the column in the overall structural system. The model is compared to empirical results to address field challenges faced when the structure is subjected to severe conditions in its ambient environment, or to unusual loading. Deterioration in concrete causes alteration in its composite behavior with the reinforcing steel. This affects the fundamental period of the structure, and its response to seismic loading.

  18. Fundamental Study on the Development of Structural Lightweight Concrete by Using Normal Coarse Aggregate and Foaming Agent

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2014-06-01

    Full Text Available Structural lightweight concrete (SLWC has superior properties that allow the optimization of super tall structure systems for the process of design. Because of the limited supply of lightweight aggregates in Korea, the development of structural lightweight concrete without lightweight aggregates is needed. The physical and mechanical properties of specimens that were cast using normal coarse aggregates and different mixing ratios of foaming agent to evaluate the possibility of creating structural lightweight concrete were investigated. The results show that the density of SLWC decreases as the dosage of foaming agent increases up to a dosage of 0.6%, as observed by SEM. It was also observed that the foaming agent induced well separated pores, and that the size of the pores ranged from 50 to 100 μm. Based on the porosity of concrete specimens with foaming agent, compressive strength values of structural lightweight foam concrete (SLWFC were obtained. It was also found that the estimated values from proposed equations for compressive strength and modulus of elasticity of SLWFC, and values obtained by actual measurements were in good agreement. Thus, this study confirms that new structural lightweight concrete using normal coarse aggregates and foaming agent can be developed successfully.

  19. Evaluation of deteriorating concrete structures using neural network; Nyuraru nettowaku ni motozuita concrete kozobutsu tenken gijutsusha no shiko katei no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, N.; Tsutsumi, T. [The Tokyo Electric Power Co. Inc., Tokyo (Japan). Technical Lab.; Shiraki, W. [Tottori Univ., Tottori (Japan). Faculty of Engineering; Matsushima, M. [Tokyo Electric Power Services Co. Ltd., Tokyo (Japan)

    1994-08-20

    In Japan, the phenomena of early deterioration of concrete structures have begun to be pointed out and the importance of maintenance and management services of structures is recognized once again. In this study, since a part of the data of inspecting concrete structures of the existing thermal power plants is available as a data base, a neural network system to evaluate deterioration due to sea salt has been constructed using this data base. The thinking processes so far judged by inspection engineers have been clarified by testing the suitability of the evaluation of the degree of soundness of concrete structures by the above system, and conducting the sensitivity analysis concerning the factors determining the degree of soundness. It has been revealed that the neural network system has shown the accuracy in terms of the number of right answers of as high as 85% in the evaluation of the degree of soundness and it has been found that the system has shown no difference whatsoever from inspection engineers. According to the sensitivity analysis of this system, its sensitivity has become higher in the order of crack width, peeling-off, falling-off and crack alongside a member at the deterioration level II, and at the deterioration level III, the sensitivity of the crack width has become predominant. 22 refs., 5 figs., 4 tabs.

  20. Structural performance of new thin-walled concrete sandwich panel system reinforced with bfrp shear connectors

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2013-01-01

    This paper presents a new thin-walled concrete sandwich panel system reinforced with basalt fiber-reinforced plastic (BFRP) with optimum structural performances and a high thermal resistance developed by Connovate and Technical University of Denmark. The shear connecting system made of a BFRP grid...... is described and provides information on the structural design with its advantages. Experimental and numerical investigations of the BFRP connecting systems were performed. The experimental program included testing of small scale specimens by applying shear (push-off) loading and semi-full scale specimens...

  1. Realisation of complex precast concrete structures through the integration of algorithmic design and novel fabrication techniques

    DEFF Research Database (Denmark)

    Larsen, Niels Martin; Egholm Pedersen, Ole; Pigram, Dave

    2012-01-01

    of complex geometry. In two full-scale experiments, grid shell structures have been designed and built at Aarhus School of Architecture and the University of Technology, Sydney, in 2011 and 2012. The novel design method is described as an iterative process, negotiating both physical and digital constraints....... This involves consideration of the relations between geometry and technique, as well as the use of form-finding and simulation algorithms for shaping and optimising the shape of the structure. Custom-made scripts embedded in 3D-modeling tools were used for producing the information necessary for realising...... the construction comprised of discrete concrete elements....

  2. Non destructive characterization of cracks in concrete by ultrasonic auscultation of civil engineering structures

    Energy Technology Data Exchange (ETDEWEB)

    Quiviger, A.; Payan, C.; Chaix, J.F.; Zardan, J.P.; Garnier, V. [EDF, LCND (France); Salin, J. [EDF Paris (France)

    2011-07-01

    Concrete Non Destructive Characterisation is one of the important issues to evaluate the life duration in the present and future civil engineering structures. The damaging modes of the structures often imply the phases of the appearance and after growth of the cracks. We have to detect, identify and characterize them. The characterization result must lead to a diagnosis of the criticality of a crack regarding to the integrity of the structure and its ability to fulfill its function. The Non Destructive Evaluation techniques are numerous but the ultrasonic ones are able to give an answer to both the characterization and the follow-up of the defect on site. Yet if this method is potentially relevant to detect and identify the cracks in the concrete, we have today a certain amount of locks to remove in order to offer robust and reproducible industrial solutions. These locks range from research points like the description of the real propagation of linear or non linear ultrasonic waves in a heterogeneous material, to more industrial concepts such as the development of devices designed to be applied in the concrete control. For this purpose, we present our latest works on this topic. We develop an overview of the problem: first, to extract the most important theoretical solutions to analyse an unstopping and closed crack in concrete with an only one face access. Then we suggest a methodology to apply one of these solutions on site. A first step of this work after having chosen a solution is to check the ability of the technique to detect a crack, and its sensitivity to the length, depth and opening of the crack. We have developed an experimental plan based on theoretical concept to compare the linear and non linear survey on a set of specimens composed of concrete beams cracked to different depths. We describe the devices and give the latest results. The non linear technique is able to extract information on the size of the cracks. It is an important step to progress in

  3. Overview of studies on the effect of recycled aggregates sourced from tested cylinders on concrete material and structural properties

    Directory of Open Access Journals (Sweden)

    Bilal Hamad

    2017-01-01

    Full Text Available The paper presents an overview of a two-phase research program that was designed at the American University of Beirut (AUB to investigate the effect of replacing different percentages of natural coarse aggregates (NCA with recycled coarse aggregates (RCA on the properties of the produced concrete. The source of RCA was tested cylinders in batching plants which would help recycling and reusing portion of the waste products of the concrete industry. In the first phase, the fresh and hardened mechanical properties of the produced concrete mix were investigated. The variables were the concrete strength (28 or 60 MPa and the percentage replacement of NCA with RCA from crushed tested cylinders [0 (control, 20, 40, 60, 80, or 100%. Normal strength tested cylinders were used as source of the recycled aggregates for the normal strength concrete (NSC mix and high strength tested cylinders were used for the high strength concrete (HSC mix. Tests included plastic state slump and hardened state mechanical properties including cylinder compressive strength, cylinder splitting tensile strength, modulus of elasticity, and standard beams flexural strength. The results indicated no significant effect on the slump and around 10% average reduction in the hardened mechanical properties for both investigated levels of concrete compressive strength. In the second phase, the structural behavior of normal strength concrete (NSC reinforced concrete beams prepared by replacing different percentages of NCA with RCA from tested concrete cylinders was studied. For each of three modes of failure (flexural, shear, or bond splitting, three beams with different percentages replacement [0 (control, 40, or 100 percent] were tested. One replicate was prepared for each beam to validate the test results. Results indicated no significant difference in the ultimate load reached or load-deflection behavior that could be related to the percentage replacement of NCA with RCA.

  4. Response Analysis for Steel Reinforced Concrete Frame Structures under Earthquake Load

    Directory of Open Access Journals (Sweden)

    Hua Wei

    2013-07-01

    Full Text Available In order to understand the whole process of the steel reinforced concrete frame structure from elastic to elasto-plastic cracking gradually, damage until the collapse, the elasto-plastic finite element analysis theory and ETABS structural analysis software were used, then the spatial three-dimensional truss system model of frame structures was established. Based on the analysis of the elasto-plastic response for the frame structure under one-dimensional and two-dimensional earthquake load, the interbedded displacement angle-time curve and horizontal displacement-time curve were obtained. Through the analysis of the model, the sequence of appearance of plastic hinges in the frame structure under earthquake load was cleared and the weak location of the frame structure was detected.

  5. Compressive force-path method unified ultimate limit-state design of concrete structures

    CERN Document Server

    Kotsovos, Michael D

    2014-01-01

    This book presents a method which simplifies and unifies the design of reinforced concrete (RC) structures and is applicable to any structural element under both normal and seismic loading conditions. The proposed method has a sound theoretical basis and is expressed in a unified form applicable to all structural members, as well as their connections. It is applied in practice through the use of simple failure criteria derived from first principles without the need for calibration through the use of experimental data. The method is capable of predicting not only load-carrying capacity but also the locations and modes of failure, as well as safeguarding the structural performance code requirements. In this book, the concepts underlying the method are first presented for the case of simply supported RC beams. The application of the method is progressively extended so as to cover all common structural elements. For each structural element considered, evidence of the validity of the proposed method is presented t...

  6. Methodology for Assessing the Probability of Corrosion in Concrete Structures on the Basis of Half-Cell Potential and Concrete Resistivity Measurements

    OpenAIRE

    Lukasz Sadowski

    2013-01-01

    In recent years, the corrosion of steel reinforcement has become a major problem in the construction industry. Therefore, much attention has been given to developing methods of predicting the service life of reinforced concrete structures. The progress of corrosion cannot be visually assessed until a crack or a delamination appears. The corrosion process can be tracked using several electrochemical techniques. Most commonly the half-cell potential measurement technique is used for this purpos...

  7. Special Concrete with Polymers

    National Research Council Canada - National Science Library

    Nicolae Angelescu; Ioana Ion; Darius Stanciu; José Barroso Aguiar; Elena Valentina Stoian; Vasile Bratu

    2016-01-01

    .... They were prepared epoxy resin polymer concrete, Portland cement, coarse and fine aggregate and to evaluate the influence of resin dosage on microstructures and density of such structures reinforced concrete mixtures...

  8. Management of the aging of critical safety-related concrete structures in light-water reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B. (Oak Ridge National Lab., TN (USA)); Arndt, E.G. (Nuclear Regulatory Commission, Washington, DC (USA))

    1990-01-01

    The Structural Aging Program has the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant safety-related structures for continued service. The program consists of a management task and three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued-service determinations. Objectives, accomplishments, and planned activities under each of these tasks are presented. Major program accomplishments include development of a materials property data base for structural materials as well as an aging assessment methodology for concrete structures in nuclear power plants. Furthermore, a review and assessment of inservice inspection techniques for concrete materials and structures has been complete, and work on development of a methodology which can be used for performing current as well as reliability-based future condition assessment of concrete structures is well under way. 43 refs., 3 tabs.

  9. A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures

    Directory of Open Access Journals (Sweden)

    Liquan Chen

    2008-03-01

    Full Text Available Steel corrosion resulting from the penetration of chloride ions or carbon dioxide is a major cause of degradation for reinforced concrete structures,. The objective of the present investigation was to develop a low-cost sensor for steel corrosion, which is based on a very simple physical principle. The flat end of a cut optical fiber is coated with an iron thin film using the ion sputtering technique. Light is then sent into a fiber embedded in concrete and the reflected signal is monitored. Initially, most of the light is reflected by the iron layer. When corrosion occurs to remove the iron layer, a significant portion of the light power will leave the fiber at its exposed end, and the reflected power is greatly reduced. Monitoring of the reflected signal is hence an effective way to assess if the concrete environment at the location of the fiber tip may induce steel corrosion or not. In this paper, first the principle of the corrosion sensor and its fabrication are described. The sensing principle is then verified by experimental results. Sensor packaging for practical installation will be presented and the performance of the packaged sensors is assessed by additional experiments.

  10. CHANGE IN DEFORMATION PROPERTIES MODELING OF CONCRETE IN PROTECTIVE STRUCTURES OF NUCLEAR REACTOR BY IONIZING RADIATION

    Directory of Open Access Journals (Sweden)

    E. K. Agakhanov

    2016-01-01

    Full Text Available The necessity of studying the effect impact of elementary particles impact on the strength and deformation materials properties used in protective constructions nuclear reactors and reactor technology has been stipulated. A nuclear reactor pressure vessel from prestressed concrete, combining the functions of biological protection is to be considered. The neutron flux problem distribution in the pressure vessel of a nuclear reactor has been solved. The solution is made in axisymmetric with the finite element method using a flat triangular finite element. Computing has been conducted in Matlab package. The comparison with the results has been obtained using the finite difference method, as well as the graphs of changes under the influence of radiation exposure and the elastic modulus of concrete radiation deformations have been constructed. The proposed method allows to simulate changes in the deformation properties of concrete under the influence of neutron irradiation. Results of the study can be used in the calculation of stress-strain state of structures, taking into account indirect heterogeneity caused by the physical fields influence.

  11. A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures.

    Science.gov (United States)

    Leung, Christopher K Y; Wan, Kai Tai; Chen, Liquan

    2008-03-20

    Steel corrosion resulting from the penetration of chloride ions or carbon dioxide is a major cause of degradation for reinforced concrete structures,. The objective of the present investigation was to develop a low-cost sensor for steel corrosion, which is based on a very simple physical principle. The flat end of a cut optical fiber is coated with an iron thin film using the ion sputtering technique. Light is then sent into a fiber embedded in concrete and the reflected signal is monitored. Initially, most of the light is reflected by the iron layer. When corrosion occurs to remove the iron layer, a significant portion of the light power will leave the fiber at its exposed end, and the reflected power is greatly reduced. Monitoring of the reflected signal is hence an effective way to assess if the concrete environment at the location of the fiber tip may induce steel corrosion or not. In this paper, first the principle of the corrosion sensor and its fabrication are described. The sensing principle is then verified by experimental results. Sensor packaging for practical installation will be presented and the performance of the packaged sensors is assessed by additional experiments.

  12. Experimental and numerical investigation of concrete structures with metal and non-metal reinforcement at impulse loadings

    Science.gov (United States)

    Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.; Kudyakov, K. L.

    2016-11-01

    Manufacturing durable and high-strength concrete structures has always been a relevant objective. Therefore special attention has been paid to non-metallic composite reinforcement. This paper considers experimental and numerical studies of nature of fracture and crack formation in concrete beams with rod composite reinforcement. Fiber glass rods, 6 mm in diameter, have been used as composite reinforcement. Concrete elements have been tested under dynamic load using special pile driver. The obtained results include patterns of fracture and crack formation, maximum load value and maximum element deflection. Comparative analysis of numerical and experimental studies has been held.

  13. How Concrete Is Concrete?

    Science.gov (United States)

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  14. Structural Aging Program to evaluate continued performance of safety-related concrete structures in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States)

    1994-03-01

    This report discusses the Structural Aging (SAG) Program which is being conducted at the Oak Ridge National Laboratory (ORNL) for the United States Nuclear Regulatory commission (USNRC). The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved technical bases for their continued service. The program is organized into three technical tasks: Materials Property Data Base, Structural Component Assessment/Repair Technologies, and Quantitative Methodology for continued Service Determinations. Objectives and a summary of recent accomplishments under each of these tasks are presented.

  15. Structural Aging Program approach to providing an improved basis for aging management of safety-related concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B. [Johns Hopkins Univ., Baltimore, MD (United States)

    1993-11-01

    The Structural Aging (SAG) Program is being conducted at the Oak Ridge National Laboratory (ORNL) for the United States Nuclear Regulatory Commission (USNRC). The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved technical bases for their continued service. The program is organized into four tasks: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technologies, and Quantitative Methodology for Continued Service Determinations. Objectives and a summary of recent accomplishments under each of these tasks are presented.

  16. METHOD OF DETERMINATION OF DIFFERENT STAGES OF CORROSION PROCESSES IN REINFORCED CONCRETE STRUCTURES ACCORDING TO SIGNALS AE

    Directory of Open Access Journals (Sweden)

    P. M. Stashuk

    2010-03-01

    Full Text Available The article describes the research of electrochemical corrosion of reinforcement concrete samples using the method of acoustic emission. The task of research was to identify patterns of acoustic emission signals depending on the mechanism of reinforcement corrosion. Тhe basic research results are outlined. As evaluation criteria for the selection of different stages of corrosion processes in reinforced concrete structures the usage of histograms of acoustic emission parameter Kр is proposed.

  17. The use of Waste Materials in Utility Poles, Crossarms, Paver, and Reef Balls Concrete Structures: Advantages and Care

    Directory of Open Access Journals (Sweden)

    Kleber Franke Portella

    2013-01-01

    Full Text Available Industrial residues such as sludge from water treatment plants (Swtp from centrifuged method; electrical porcelain residues (Pw; silica fume (Sf1 and Sf2; tire-rubber waste were evaluated in order to be used in concrete structures of electrical energy and environmental sectors, such as utility poles, crossarms, and reef balls technology. The results showed the necessity for evaluating different recycling concentrations in concrete, concomitantly to physicochemical tests allowing to diagnose natural and accelerated aging.

  18. Effect of concrete creep and shrinkage on tall hybrid structures and its countermeasures

    Institute of Scientific and Technical Information of China (English)

    Pusheng SHEN; Hui FANG; Xinhong XIA

    2009-01-01

    This paper aims to study the different vertical displacements in tall hybrid-structures and the corresponding engineering measures. First, the method to calculate the different vertical displacements in tall hybrid-structures is presented. This method takes into account the effects of construction process by applying loads sequentially story by story. Based on the concrete creep and shrinkage calculation formula in American Concrete Institute (ACI)code, with the assumption that loads are increased linearly in members, the creep and shrinkage effects of members are analyzed by adopting two parameters named average load-aged-coefficient and average age-last coefficient. The effects of steel ratio on members creep are analyzed by age-adjusted module method (AEMM). The effects that core-tube were constructed in advance to outer steel frame were also considered. Then, based on the samplecalculation, the measures to effectively reduce the different vertical displacements in hybrid-structures are proposed. This method is simple and practical in the calculation of different vertical displacements in tall and super-tall hybrid-structures.

  19. Developing a Computerized Aging Management System for Concrete Structures in Finnish Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Hradil P.

    2013-07-01

    Full Text Available Finland has four nuclear reactors units in two power plants. The first unit started operation in 1977 and in the early 1980's all four units were in use. During the last few years the aging management of the Nuclear Power Plant's (NPP concrete structures has grown an important issue because the existing structures are reaching the end of their licensed operating lifetime (about 40 years. Therefore the nuclear power companies are developing aging management systems to avoid premature degradation of NPP facilities and to be able to extend their operating lifetime. This paper is about the development of a computerized ageing management system for the nuclear power plants concrete structures. The computerized ageing management system is built upon central database and implementation applications. It will assist the personnel of power companies to implement the aging management activities at different phases of the lifetime of a power plant. It will provide systematic methods for planning, surveillance, inspection, monitoring, condition assessment, maintenance and repair of structures.

  20. Developing a Computerized Aging Management System for Concrete Structures in Finnish Nuclear Power Plants

    Science.gov (United States)

    Al-Neshawy, F.; Piironen, J.; Sistonen, E.; Vesikari, E.; Tuomisto, M.; Hradil, P.; Ferreira, M.

    2013-07-01

    Finland has four nuclear reactors units in two power plants. The first unit started operation in 1977 and in the early 1980's all four units were in use. During the last few years the aging management of the Nuclear Power Plant's (NPP) concrete structures has grown an important issue because the existing structures are reaching the end of their licensed operating lifetime (about 40 years). Therefore the nuclear power companies are developing aging management systems to avoid premature degradation of NPP facilities and to be able to extend their operating lifetime. This paper is about the development of a computerized ageing management system for the nuclear power plants concrete structures. The computerized ageing management system is built upon central database and implementation applications. It will assist the personnel of power companies to implement the aging management activities at different phases of the lifetime of a power plant. It will provide systematic methods for planning, surveillance, inspection, monitoring, condition assessment, maintenance and repair of structures.

  1. Application of the wave finite element method to reinforced concrete structures with damage

    Science.gov (United States)

    El Masri, Evelyne; Ferguson, Neil; Waters, Timothy

    2016-09-01

    Vibration based methods are commonly deployed to detect structural damage using sensors placed remotely from potential damage sites. Whilst many such techniques are modal based there are advantages to adopting a wave approach, in which case it is essential to characterise wave propagation in the structure. The Wave Finite Element method (WFE) is an efficient approach to predicting the response of a composite waveguide using a conventional FE model of a just a short segment. The method has previously been applied to different structures such as laminated plates, thinwalled structures and fluid-filled pipes. In this paper, the WFE method is applied to a steel reinforced concrete beam. Dispersion curves and wave mode shapes are first presented from free wave solutions, and these are found to be insensitive to loss of thickness in a single reinforcing bar. A reinforced beam with localised damage is then considered by coupling an FE model of a short damaged segment into the WFE model of the undamaged beam. The fundamental bending, torsion and axial waves are unaffected by the damage but some higher order waves of the cross section are significantly reflected close to their cut-on frequencies. The potential of this approach for detecting corrosion and delamination in reinforced concrete beams will be investigated in future work.

  2. The 2010 fib Model Code for Structural Concrete: A new approach to structural engineering

    NARCIS (Netherlands)

    Walraven, J.C.; Bigaj-Van Vliet, A.

    2011-01-01

    The fib Model Code is a recommendation for the design of reinforced and prestressed concrete which is intended to be a guiding document for future codes. Model Codes have been published before, in 1978 and 1990. The draft for fib Model Code 2010 was published in May 2010. The most important new elem

  3. [Measurement of steel corrosion in concrete structures by analyzing long-period fiber grating spectrum character].

    Science.gov (United States)

    Wang, Yan; Liang, Da-Kai; Zhou, Bing

    2008-11-01

    The consideration on the durability of concrete structures with reinforcement corrosion has become a most urgent problem. A new technique to measure the corrosion of steel in concrete structures was proposed in the present paper. It is based on the microbending characteristic of long period optical grating (LPFG). The temperature spectum character and curvature spectrum character of long period optical fiber grating were studied first. It was shown that the transmission spectrum of long period optical fiber grating shifted right and the transmission of the resonance wavelength was invariable when the temperature increased, while the transmission spectrum of long period optical fiber grating became shallow when the curvature increased, the transmission of the resonance wavelength would increase and it was linear with the curvature. On the basis of the characteristic, a notch shaped pedestal was designed and a long period optical fiber grating was laid on the steel surface. With this method the radial expansion of the steel resulting from the steel corrosion would translate into the curvature of the long period optical fiber grating. The curvature of long period optical fiber grating could be obtained by analyzing the change of spectrum, and then the steel corrosion depth could be measured. This method is simple and immediate and is independent of the variety in temperature, strain and refractive index owing to the inimitable spectrum characteristic of long period optical fiber grating. From the experiment it was found that the precision of the corrosion depth was better than 1.2 microm, and the corrosion depth of 3 mm could be achieved. This measurement could be used to monitor the early to metaphase corrosion of reinforcing steel in concrete structures.

  4. On the application of thermodynamics of corrosion for service life design of concrete structures

    DEFF Research Database (Denmark)

    Küter, Andre; Geiker, Mette Rica; Møller, Per

    2010-01-01

    There are unexploited possibilities in the application of thermodynamics of corrosion for service life design (SLD) of concrete structures. Thermodynamics provides means for insightful descriptions of corrosion mechanisms and of corrosion protection mechanisms. Strategies for corrosion protection...... can be based on thermodynamically consistent corrosion mechanisms and evaluation of existing and design of new countermeasures can be performed using thermodynamics. Similarly, materials concepts for embedded electrodes can be designed using thermodynamics. The present paper provides a brief outline...... of the application of thermodynamics for SLD and gives examples of two applications: description of corrosion processes and design of countermeasures. Emphasis is set on chloride induced corrosion....

  5. Assessment of the effects of microbially influenced degradation on a massive concrete structure. Final report, Report 5

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D. [Biodegradation Systems, Inc., Idaho Falls, ID (United States)

    1995-07-08

    There is a need to estimate the effect of environmental conditions on construction materials to be used in the repository at Yucca Mountain. Previous reports from this project have demonstrated that it is important to develop an understanding of microbially influenced degradation (MID) development and its influence on massive concrete structures. Further, it has been shown that the most effective way to obtain quantitative data on the effects of MID on the structural integrity of repository concrete is to study manmade, analog structures known to be susceptible to MID. The cooling tower shell located at the Ohaaki Power Station near Wairakei, New Zealand is such a structure.

  6. Discussion on “Malešev, M.; Radonjanin, V.; Marinković, S. Recycled Concrete as Aggregate for Structural Concrete Production. Sustainability, 2010, 2, 1204-1225”

    Directory of Open Access Journals (Sweden)

    Gholamreza Fathifazl

    2011-02-01

    Full Text Available The authors are to be congratulated for their comprehensive research work on the use of RCA as aggregate in structural grade concrete [1], but some of their conclusions with regard to the effect of aggregate type and RCA content on the fresh and hardened properties of concrete made with coarse RCA, termed RAC for brevity, need discussion.

  7. Thermal Performance Analysis of Reinforced Concrete Floor Structure with Radiant Floor Heating System in Apartment Housing

    Directory of Open Access Journals (Sweden)

    Young-Sun Jeong

    2015-01-01

    Full Text Available The use of the resilient materials in the radiant floor heating systems of reinforced concrete floor in apartment housing is closely related to the reduction of the floor impact sound and the heating energy loss. This study examined the thermal conductivity of expanded polystyrene (EPS foam used for the resilient material in South Korea and analysed the thermal transfer of reinforced concrete floor structure according to the thermal conductivity of the resilient materials. 82 EPS specimens were used to measure the thermal conductivity. The measured apparent density of EPS resilient materials ranged between 9.5 and 63.0 kg/m3, and the thermal conductivity ranged between 0.030 and 0.046 W/(m·K. As the density of resilient materials made of expanded polystyrene foam increases, the thermal conductivity tends to proportionately decrease. To set up reasonable thermal insulation requirements for radiant heating floor systems, the thermal properties of floor structure according to thermal insulation materials must be determined. Heat transfer simulations were performed to analyze the surface temperature, heat loss, and heat flow of floor structure with radiant heating system. As the thermal conductivity of EPS resilient material increased 1.6 times, the heat loss was of 3.4% increase.

  8. A fiber optic sensor for detecting and monitoring cracks in concrete structures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The formation and propagation of cracks reflect the aging and pathologic changes of concrete structures and may cause problems such as seepage and long-term durability. Crack detection and monitoring is therefore an effective way to evaluate structural health conditions. An important challenge in such a task is that the locations and orientations of cracks in concrete structures are difficult to predict due to material inhomogeneity and complexity. The number of the required conventional electric and electromagnetic sensors to cover all possible cracks may be too large to be practical for a monitoring scheme. In this paper, a fiber optic sensor with distributed crack sensing capability based on optical time domain reflectometry is proposed and its sensing principle is introduced. Experiments are conducted to obtain the optical power loss versus crack opening at different fiber inclination angles, and then a model is developed to quantify it. Finally, an experiment is performed to demonstrate the practical application of the sensor. The test results show that detecting and monitoring cracks with the sensor do not require a-priori knowledge of crack locations and orientations.

  9. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Directory of Open Access Journals (Sweden)

    Xingjun Lv

    2011-11-01

    Full Text Available In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  10. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    Science.gov (United States)

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  11. A new concept for the targeted cutting of concrete structures; Ein neues Konzept zum gezielten Abtrag von Stahlbetonstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Steffen; Gentes, Sascha [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (DE). Inst. fuer Technologie und Management im Baubetrieb (TMB); Weidemann, Roman; Geimer, Marcus [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). MOBIMA; Heise, Christoph; Edelmann, Thomas [Herrenknecht AG, Allmannsweier, Schwanau (Germany)

    2011-07-01

    The decontamination and crushing of reinforced concrete is a main part during deconstruction of nuclear facilities. The selective treatment of contaminated or activated material is of special interest, since the non-contaminated material can be transferred into the normal reprocessing cycle. In the frame of a project concerning the innovative cutting of massive reinforced concrete structures an all-purpose system for spatially restricted and defined cutting of strongly reinforced concrete including packaging suitable for final disposal was developed. Due to the remote handling of the machine the dose rate for personnel can be reduced significantly. Main part of the system is the tool that can cut highly reinforced concrete without system or component replacement. The authors describe preliminary tests of these tools, further experiments and process optimization are necessary before the tools can be integrated into the new system.

  12. Prediction of residual stress due to early age behaviour of massive concrete structures: on site experiments and macroscopic modelling

    CERN Document Server

    Zreiki, Jihad; Chaouche, Mohend; Moranville, Micheline

    2008-01-01

    Early age behaviour of concrete is based on complex multi-physical and multiscale phenomena. The predication of both cracking risk and residual stresses in hardened concrete structures is still a challenging task. We propose in this paper a practical method to characterize in the construction site the material parameters and to identify a macroscopic model from simple tests. We propose for instance to use a restrained shrinkage ring test to identify a basic early age creep model based on a simple ageing visco-elastic Kelvin model. The strain data obtained from this test can be treated through an early age finite element incremental procedure such that the fitting parameters of the creep law can be quickly identified. The others properties of concrete have been measured at different ages (elastic properties, hydration kinetics, and coefficient of thermal expansion). From the identified early age model, we computed the temperature rise and the stress development in a non reinforced concrete stress for nuclear w...

  13. Sustainable Concrete Technology

    Directory of Open Access Journals (Sweden)

    Sim J.

    2015-12-01

    Full Text Available The growing concern over global warming and significant ecological changes requires sustainable development in all fields of science and technology. Concrete not only consumes huge amount of energy and natural sources, but also emits large amount of CO2, mainly due to the production of cement. It is evident that such large amount of concrete production has put significant impact on the energy, resource, environment, and ecology of the society. Hence, how to develop the concrete technology in a sustainable way has become a significant issue. In this paper, some of Korean researches for sustainable development of concrete are presented. These are sustainable strengthening for deteriorated concrete structure, sustainable reinforcement of new concrete structure, sustainable concrete using recycled aggregate and supplementary cementing materials and finally application of each technique to precast concrete.

  14. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    Directory of Open Access Journals (Sweden)

    Michał A. Glinicki

    2016-01-01

    Full Text Available The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  15. Review of concrete biodeterioration in relation to nuclear waste.

    Science.gov (United States)

    Turick, Charles E; Berry, Christopher J

    2016-01-01

    Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces.

  16. Damage - Permeability relation for concrete. Applications to structural computations; Relation endommagement permeabilite pour les betons

    Energy Technology Data Exchange (ETDEWEB)

    Jason, L

    2004-10-01

    The relation between damage and permeability is of great importance to evaluate the consequences of a mechanical loading on the hydraulic integrity of sensitive concrete structures like containment buildings of nuclear power plants. An elastic plastic damage constitutive law for the mechanical behaviour is first developed. The model is validated on elementary and structural applications with a special focus on the efficiency of the numerical tools (tangent matrices). A relation between water saturation (drying), damage and permeability is then proposed, based on theoretical and experimental observations. Finally, a Representative Structural Volume of a containment vessel is studied to highlight the influence of hygro - mechanical loading on the hydraulic behaviour (distribution of gas pressure). (author)

  17. IDENTIFICATION OF OPTIMAL PARAMETERS OF REINFORCED CONCRETE STRUCTURES WITH ACCOUNT FOR THE PROBABILITY OF FAILURE

    Directory of Open Access Journals (Sweden)

    Filimonova Ekaterina Aleksandrovna

    2012-10-01

    The author suggests splitting the aforementioned parameters into the two groups, namely, natural parameters and value-related parameters that are introduced to assess the costs of development, transportation, construction and operation of a structure, as well as the costs of its potential failure. The author proposes a new improved methodology for the identification of the above parameters that ensures optimal solutions to non-linear objective functions accompanied by non-linear restrictions that are critical to the design of reinforced concrete structures. Any structural failure may be interpreted as the bounce of a random process associated with the surplus bearing capacity into the negative domain. Monte Carlo numerical methods make it possible to assess these bounces into the unacc eptable domain.

  18. Structural concretes with waste-based lightweight aggregates: from landfill to engineered materials.

    Science.gov (United States)

    De'Gennaro, Roberto; Graziano, Sossio Fabio; Cappelletti, Piergiulio; Colella, Abner; Dondi, Michele; Langella, Alessio; De'Gennaro, Maurizio

    2009-09-15

    This research provides possible opportunities in the reuse of waste and particularly muds, coming from both ornamental stone (granite sludges from sawing and polishing operations) and ceramic production (porcelain stoneware tile polishing sludge), for the manufacture of lightweight aggregates. Lab simulation of the manufacturing cycle was performed by pelletizing and firing the waste mixes in a rotative furnace up to 1300 degrees C, and determining composition and physicomechanical properties of lightweight aggregates. The best formulation was used to produce and test lightweight structural concretes according to standard procedures. Both granite and porcelain stoneware polishing sludges exhibit a suitable firing behavior due to the occurrence of SiC (an abrasive component) which, by decomposing at high temperature with gas release, acts as a bloating promoter, resulting in aggregates with particle density products with high mechanical features (particle density 1.25 Mg/m3; strength of particle 6.9 MPa). The best formulation (50 wt.% porcelain stoneware polishing sludge +50 wt.% granite sawing sludge) was used to successfully manufacture lightweight structural concretes with suitable properties (compressive strength 28 days > 20 MPa, bulk density 1.4-2.0 Mg/m3).

  19. The behaviour of reinforced concrete structure due to earthquake load using Time History analysis Method

    Science.gov (United States)

    Afifuddin, M.; Panjaitan, M. A. R.; Ayuna, D.

    2017-02-01

    Earthquakes are one of the most dangerous, destructive and unpredictable natural hazards, which can leave everything up to a few hundred kilometres in complete destruction in seconds. Indonesia has a unique position as an earthquake prone country. It is the place of the interaction for three tectonic plates, namely the Indo-Australian, Eurasian and Pacific plates. Banda Aceh is one of the cities that located in earthquake-prone areas. Due to the vulnerable conditions of Banda Aceh some efforts have been exerted to reduce these unfavourable conditions. Many aspects have been addressed, starting from community awareness up to engineering solutions. One of them is all buildings that build in the city should be designed as an earthquake resistant building. The objectives of this research are to observe the response of a reinforced concrete structure due to several types of earthquake load, and to see the performance of the structure after earthquake loads applied. After Tsunami in 2004 many building has been build, one of them is a hotel building located at simpang lima. The hotel is made of reinforced concrete with a height of 34.95 meters with a total area of 8872.5 m2 building. So far this building was the tallest building in Banda Aceh.

  20. Use of advanced corrosion monitoring for risk based management of concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Klinghoffer, O.; Eri, J.; Leggedoor, J.

    2007-01-01

    Reinforced concrete is a cost effective material used widely in our infrastructure. The durable combination of steel and concrete provides safety and serviceability. Normally, the physics and chemistry of concrete protects reinforcing steel against corrosion. Over time this protection can be lost du

  1. Experimental and Numerical Analysis of Thermal and Hygrometric Characteristics of Building Structures Employing Recycled Plastic Aggregates and Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Francesco Colangelo

    2013-11-01

    Full Text Available The correct estimation of building energy consumptions is assuming an always increasing importance, and a detailed reproduction of building structures, with all the single components involved, is necessary to achieve this aim. In addition, the current ecological development tries to limit the use of natural raw materials as building components, in favor of alternative (waste materials, which ensure significant advantages from the economic, energetic and environmental point of views. In this work, dynamic heat and vapor transport in a typical three-dimensional (3D building structure, involving different types of environmental-friendly concrete mixtures, have been simulated by using finite elements. In particular, the authors propose to substitute part of the aggregates with plastic waste and to use a fly ash based geopolymeric binder for the production of low conductivity concrete, to be employed in eco-efficient buildings. Concrete produced with natural limestone aggregates has been considered as the reference benchmark. The whole characterization of the different types of concrete tested in the present work has been obtained through laboratory experiments. The structure taken into account in the simulations is a 3D thermal bridge, typical of building envelopes. The thermal and hygrometric transient behavior of this structure, employing plastic waste in different percentages and geopolymer concrete, has been analyzed by the authors.

  2. Damage detection of concrete masonry structures by enhancing deformation measurement using DIC

    Science.gov (United States)

    Bolhassani, Mohammad; Rajaram, Satish; Hamid, Ahmad A.; Kontsos, Antonios; Bartoli, Ivan

    2016-04-01

    This study focuses on deformability and damage detection of a concrete masonry wall. It employed point-to-point traditional strain gages and full-field measurement technique using digital image correlation (DIC) to investigate the damage and deformability of a partially grouted (PG) reinforced masonry wall. A set of ungrouted and grouted assemblages and full-scale concrete masonry shear wall were constructed and tested under displacement control loading. The wall was constructed according with masonry standards joint committee (MSJC 2013) and tested under constant vertical compression load and horizontal lateral load using quasi-static displacement procedure. The DIC method was used to determine non-uniform strain contours on the assemblages. This method was verified by comparing strains along the selected directions with traditional TML gage results. After a successful comparison, the method was used to investigate the state of damage and deformability of the wall specimen. Panel deformation, crack pattern, displacement at the top, and the base strain of the wall were captured using full-field measurement and results were in a good agreement with traditional strain gages. It is concluded that full-filed measurements using DIC is promising especially when the test specimens experience inelastic deformation and high degree of damage. The ability to characterize and anticipate failure mechanisms of concrete masonry systems by depicting strain distribution, categorizing structural cracks and investigating their effects on the behavior of the wall were also shown using DIC. In addition to monitoring strains across the gage length, the DIC method provided full-field strain behavior of the test specimens and revealed strain hotspots at locations that corresponded to failure.

  3. The Effect of Steel Corrosion on Bond Strength in Concrete Structures

    Institute of Scientific and Technical Information of China (English)

    FANG Cong-qi; KOU Xin-jian

    2005-01-01

    The effect of steel corrosion on the behavior of bond between steel and the surrounding concrete was in vestigated. Pullout tests were carried out to demonstrate bond stress-slip response for reinforcing steel bars of a series of corrosion level. Specimens either confined or unconfined were investigated for evaluation of the effect of confinement on bond strength and failure mode. Also, the tests were analyzed using nonlinear finite element analysis. It was shown that for both confined and unconfined steel bars, bond strength generally decreases as the corrosion level increases when corrosion level is relatively high. Confinement was demonstrated to provide excellent means to conteract bond loss for corroded reinforcing steel bars. It was shown that unconfined specimens generally split at a small slip with a large crack width and result in splitting failure while confined specimens contribute to a small crack width and generally cause a pullout failure. The analysis results agree reasonably well with the experiments.

  4. The influence of cracks on chloride-induced corrosion of reinforced concrete structures - development of the experimental set-up

    NARCIS (Netherlands)

    Blagojevic, A.; Koleva, D.A.; Walraven, J.C.

    2014-01-01

    Chloride-induced corrosion of steel reinforcement is one of the major threats to durability of reinforced concrete structures in aggressive environmental conditions. When the steel reinforcement starts to corrode, structures gradually lose integrity and service life is shortened. Cracks are inevitab

  5. Structural Optimization of Steel Cantilever Used in Concrete Box Girder Bridge Widening

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2015-01-01

    Full Text Available The structural optimization method of steel cantilever used in concrete box girder bridge widening is illustrated in this paper. The structural optimization method of steel cantilever incorporates the conceptual layout design of steel cantilever beam based on the topological theory and the determination of the optimal location of the transverse external prestressed tendons which connect the steel cantilever and the box girder. The optimal design theory and the analysis process are illustrated. The mechanical model for the prestressed steel cantilever is built and the analytical expression of the optimal position of the transverse external tendon is deduced. At last the effectiveness of this method is demonstrated by the design of steel cantilevers which are used to widen an existing bridge.

  6. Coda Wave Interferometry Method Applied in Structural Monitoring to Assess Damage Evolution in Masonry and Concrete Structures

    Science.gov (United States)

    Masera, D.; Bocca, P.; Grazzini, A.

    2011-07-01

    In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a "damage-gauge" for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.

  7. Neutron imaging of water penetration into cracked steel reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P. [Center for Durability and Sustainability Studies of Shandong Province, Qingdao Technological University, Qingdao 266033 (China); Wittmann, F.H., E-mail: wittmann@aedificat.d [Center for Durability and Sustainability Studies of Shandong Province, Qingdao Technological University, Qingdao 266033 (China); Aedificat Institute Freiburg, Schlierbergstr. 80, D-79100 Freiburg (Germany); Zhao, T. [Center for Durability and Sustainability Studies of Shandong Province, Qingdao Technological University, Qingdao 266033 (China); Lehmann, E.H. [Neutron Imaging and Activation Group (NIAG), Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2010-04-01

    Service life and durability of reinforced concrete structures have become a crucial issue because of the economical and ecological implications. Service life of reinforced concrete structures is often limited by penetration of water and chemical compounds dissolved in water into the porous cement-based material. By now it is well-known that cracks in reinforced concrete are preferential paths for ingress of aggressive substances. Neutron radiography was successfully applied to study the process of water penetration into cracked steel reinforced concrete. In addition, the effectiveness of integral water repellent concrete to prevent ingress of water and salt solutions was investigated. Results are described in detail in this contribution. It will be shown that neutron radiography is a powerful method to visualize the process of water penetration into cracked and uncracked cement-based materials. On the basis of the obtained experimental data, it is possible to quantify the time-dependent water distributions in concrete with high accuracy and spatial resolution. It is of particular interest that penetration of water and salt solutions into damaged interfaces between concrete and steel can be visualized by means of neutron radiography. Deteriorating processes in cracked reinforced concrete structures can be studied in a completely new way. This advanced technology will help and find adequate ways to improve durability and service life of reinforced concrete structures. This will mean at the same time an essential contribution to improved sustainability.

  8. Structural Engineering Properties of Fibre Reinforced Concrete Based On Recycled Glass Fibre Polymer (GFRP

    Directory of Open Access Journals (Sweden)

    Adetiloye A

    2015-04-01

    Full Text Available Glass fibre reinforced plastics (GFRP based on resin recovered from recycling plastic waste has been shown to possess mechanical properties satisfying normative requirements. This paper investigates the flexural behavior of concrete beams reinforced with GFRP produced from resin recovered from recycled plastic wastes. A total of twelve of beams of sizes 150 ×150 ×900mm and 100 × 100 × 500mm reinforced with GFRP made from recycled glass fibre reinforced polymer was tested. The flexural test results yielded lower ultimate load, lower stiffness and larger deflections at the same load when compared with the control steel reinforced beam. However, the ultimate flexural strength of beams, reinforced with GFRP from recycled resin was at least four times higher than that of the control unreinforced beam. This is in agreement, quantitatively and qualitatively, with the trend of these parameters in GFRP reinforced concrete based on virgin resins. The results therefore confirm the applicability for structural uses of GFRP reinforcement made from recycled plastic waste, with the accompanying benefits of wealth creation, value addition and environmental sustainability.

  9. Characterizing the nano and micro structure of concrete to improve its durability

    KAUST Repository

    Monteiro, P.J.M.

    2009-09-01

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools are shown on this paper. © 2009 Elsevier Ltd. All rights reserved.

  10. State-of-the-art review on fracture analysis of concrete structural components

    Indian Academy of Sciences (India)

    A Rama Chandra Murthy; G S Palani; Nagesh R Iyer

    2009-04-01

    This paper presents a critical review of literature on fracture analysis of concrete structural components. Review includes various fracture models, tension softening models, methodologies for crack growth analysis and remaining life prediction. The widely used fracture models which are based on fictitious crack approach and effective elastic crack approach have been explained. Various tension softening models such as linear, bi-linear, tri-linear, etc. have been presented with appropriate expressions. From the critical review of models, it has been observed that some of the models have complex expressions involving many parameters. There is a need to develop some more generalised models. Studies have been conducted on crack growth analysis and remaining life prediction using linear elastic fracture mechanics (LEFM) principles. From the studies, it has been observed that there is significant difference between predicted and experimental observations. The difference in the values is attributed to not considering the tension softening effect in the analysis.

  11. Flexural retrofitting of reinforced concrete structures using Green Natural Fiber Reinforced Polymer plates

    Science.gov (United States)

    Cervantes, Ignacio

    An experimental study will be carried out to determine the suitability of Green Natural Fiber Reinforced Polymer plates (GNFRP) manufactured with hemp fibers, with the purpose of using them as structural materials for the flexural strengthening of reinforced concrete (RC) beams. Four identical RC beams, 96 inches long, are tested for the investigation, three control beams and one test beam. The first three beams are used as references; one unreinforced, one with one layer of Carbon Fiber Reinforced Polymer (CFRP), one with two layers of CFRP, and one with n layers of the proposed, environmental-friendly, GNFRP plates. The goal is to determine the number of GNFRP layers needed to match the strength reached with one layer of CFRP and once matched, assess if the system is less expensive than CFRP strengthening, if this is the case, this strengthening system could be an alternative to the currently used, expensive CFRP systems.

  12. EVALUATION OF THE DURABILITY OF THE STRUCTURAL CONCRETE OF REACTOR BUILDINGS AT SRS

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, A.; Reigel, M.

    2011-02-28

    The Department of Energy (DOE) intends to close 100-150 facilities in the DOE complex using an in situ decommissioning (ISD) strategy that calls for grouting the below-grade interior volume of the structure and leaving the above-grade interior open or demolishing it and disposing of it in the slit trenches in E Area. These closures are expected to persist and remain stable for centuries, but there are neither facility-specific monitoring approaches nor studies on the rate of deterioration of the materials used in the original construction or on the ISD components added during closure (caps, sloped roofs, etc). This report will focus on the evaluation of the actual aging/degradation of the materials of construction used in the ISD structures at Savannah River Site (SRS) above grade, specifically P & R reactor buildings. Concrete blocks (six 2 to 5 ton blocks) removed from the outer wall of the P Reactor Building were turned over to SRNL as the first source for concrete cores. Larger cores were received as a result of grouting activities in P and R reactor facilities. The cores were sectioned and evaluated using microscopy, x-ray diffraction (XRD), ion chromatography (IC) and thermal analysis. Scanning electron microscopy shows that the aggregate and cement phases present in the concrete are consistent with the mix design and no degradation mechanisms are evident at the aggregate-cement interfaces. Samples of the cores were digested and analyzed for chloride ingress as well as sulfate attack. The concentrations of chloride and sulfate ions did not exceed the limits of the mix design and there is no indication of any degradation due to these mechanisms. Thermal analysis on samples taken along the longitudinal axis of the cores show that there is a 1 inch carbonation layer (i.e., no portlandite) present in the interior wall of the reactor building and a negligible carbonation layer in the exterior wall. A mixed layer of carbonate and portlandite extends deeper into the

  13. A Review on the Use of Agriculture Waste Material as Lightweight Aggregate for Reinforced Concrete Structural Members

    Directory of Open Access Journals (Sweden)

    Kim Hung Mo

    2014-01-01

    Full Text Available The agriculture industry is one of the main industries in the Southeast Asia region due to its favourable conditions for plantations. In fact, Southeast Asia region is the world’s largest producer of palm oil and coconut. Nevertheless, vast plantation of these agriculture products leads to equally large amount of waste materials emanating from these industries. Previously, researchers have attempted to utilize the resulting waste materials such as oil palm shell, palm oil clinker, and coconut shell from these industries as lightweight aggregate to produce structural grade lightweight aggregate concrete. In order to promote the concept of using such concrete for actual structural applications, this paper reviews the use of such agriculture-based lightweight aggregate concrete in reinforced concrete structural members such as beam and slab, which were carried out by researchers in the past. The behaviour of the structural members under flexural, shear, and torsional load was also summarized. It is hoped that the knowledge attained from the paper will provide design engineers with better idea and proper application of design criteria for structural members using such agriculture waste as lightweight aggregate.

  14. Structural recycled concrete: utilization of recycled aggregate from construction and demolition wastes; Hormigon reciclado estructural: utilizacion de arido reciclado procedente de escombros de hormigon

    Energy Technology Data Exchange (ETDEWEB)

    Alaejos Gutierrez, P.; Sanchez de Juan, M.

    2015-07-01

    This paper aims to present the main results of CEDEX research works concerning the use of recycled aggregates for structural concretes. By way of conclusion, recommendations on the requirements of the recycled aggregates have been established, providing information about the influence of these aggregates on the properties of structural concrete. (Author)

  15. How Concrete is Concrete

    OpenAIRE

    2010-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these tw...

  16. CONCRETE BASED ON MODIFIED DISPERSE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2016-08-01

    Full Text Available Purpose. The article considers definition of the bond types occurring in a modified cement concrete matrix, and the evaluation of the quality of these links in a non-uniform material to determine the geometrical and physical relationships between the structure and the cement matrix modifiers. Methodology. To achieve this purpose the studies covered the microstructure of dispersed modified concrete cement matrix, the structure formation mechanism of the modified cement concrete system of natural hardening; as well as identification of the methods of sound concrete strength assessment. Findings. The author proposed a model of the spatial structure of the concrete cement matrix, modified by particulate reinforcement crystal hydrates. The initial object of study is a set of volume elements (cells of the cement matrix and the system of the spatial distribution of reinforcing crystallohydrates in these volume elements. It is found that the most dangerous defects such as cracks in the concrete volume during hardening are formed as a result of internal stresses, mainly in the zone of cement matrix-filler contact or in the area bordering with the largest pores of the concrete. Originality. The result of the study is the defined mechanism of the process of formation of the initial strength and stiffness of the modified cement matrix due to the rapid growth of crystallohydrates in the space among the dispersed reinforcing modifier particles. Since the lack of space prevents from the free growth of crystals, the latter cross-penetrate, forming a dense structure, which contributes to the growth of strength. Practical value. Dispersed modifying cement matrix provides a durable concrete for special purposes with the design performance characteristics. The developed technology of dispersed cement system modification, the defined features of its structure formation mechanism and the use of congruence principle for the complex of technological impacts of physical

  17. Strength Design of Reinforced Concrete Hydraulic Structures; Report 3, T-Wall Design.

    Science.gov (United States)

    1982-01-01

    Concrete Reinforcing Steel Institute. 1978. CRSI Handbook, 3rd ed. Federation Internationale de la Precontrainte (FIP). 1974. "Recommen- dations for... concrete cover to the stirrups and main steel of a bridge floor beam that has been completely spalled off due to severe steel corrosion. 12. In this...Corrosion damage to a bridge floor beam C6 Tensile crack exposure tests by WES 13. Two series of reinforced concrete beams were made and exposed to

  18. Comparison of environmental impacts of building structures with in situ cast floors and with precast concrete floors

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Mesa, Belinda; Pitarch, Angel; Tomas, Ana; Gallego, Teresa [Department of Mechanical Engineering and Construction (ESTCE), Universitat Jaume I, Av. Sos Baynat s/n, Castellon 12071 (Spain)

    2009-04-15

    In this paper, the environmental impacts of two types of slab systems are studied. The first type, a concrete-based one-way spanning slab, is the most common solution in residential buildings in Spain. The second type, a hollow core slab floor, is increasingly becoming more used in buildings, but is not being broadly used in residential buildings as yet. The study is undertaken through the Life Cycle Analysis methodology, applying the EPS 2000 method. The assessment shows that the environmental impact of a building structure with precast concrete floors is 12.2% lower than that with in situ cast floors for the defined functional unit. (author)

  19. Production of Curved Precast Concrete Elements for Shell Structures and Free-form Architecture using the Flexible Mould Method

    NARCIS (Netherlands)

    Schipper, H.R.; Grünewald, S.; Eigenraam, P.; Raghunath, P.; Kok, M.A.D.

    2014-01-01

    Free-form buildings tend to be expensive. By optimizing the production process, economical and well-performing precast concrete structures can be manufactured. In this paper, a method is presented that allows producing highly accurate double curved-elements without the need for milling two expensive

  20. Impacts of Global Warming and Sea Level Rise on Service Life of Chloride-Exposed Concrete Structures

    Directory of Open Access Journals (Sweden)

    Xiao-Jian Gao

    2017-03-01

    Full Text Available Global warming will increase the rate of chloride ingress and the rate of steel corrosion of concrete structures. Furthermore, in coastal (atmospheric marine zones, sea level rise will reduce the distance of concrete structures from the coast and increase the surface chloride content. This study proposes a probabilistic model for analyzing the effects of global warming and sea level rise on the service life of coastal concrete structures. First, in the corrosion initiation stage, an improved chloride diffusion model is proposed to determine chloride concentration. The Monte Carlo method is employed to calculate the service life in the corrosion initiation stage; Second, in the corrosion propagation stage, a numerical model is proposed to calculate the rate of corrosion, probability of corrosion cracking, and service life. Third, overall service life is determined as the sum of service life in the corrosion initiation and corrosion propagation stages. After considering the impacts of global warming and sea level rise, the analysis results show that for concrete structures having a service life of 50 years, the service life decreases by about 5%.

  1. Calculation of a Tunnel Cross Section Subjected to Fire – with a New Advanced Transient Concrete Model for Reinforced Structures

    Directory of Open Access Journals (Sweden)

    U. Schneider

    2009-01-01

    Full Text Available The paper presents the structural application of a new thermal induced strain model for concrete – the TIS-Model. An advanced transient concrete model (ATCM is applied with the material model of the TIS-Model. The non-linear model comprises thermal strain, elastic strain, plastic strain and transient temperature strains, and load history modelling of restraint concrete structures subjected to fire.The calculations by finite element analysis (FEA were done using the SAFIR structural code. The FEA software was basically new with respect to the material modelling derived to use the new TIS-Model (as a transient model considers thermal induced strain. The equations of the ATCM consider a lot of capabilities, especially for considering irreversible effects of temperature on some material properties. By considering the load history during heating up, increasing load bearing capacity may be obtained due to higher stiffness of the concrete. With this model, it is possible to apply the thermal-physical behaviour of material laws for calculation of structures under extreme temperature conditions.A tunnel cross section designed and built by the cut and cover method is calculated with a tunnel fire curve. The results are compared with the results of a calculation with the model of the Eurocode 2 (EC2-Model. The effect of load history in highly loaded structures under fire load will be investigated.A comparison of this model with the ordinary calculation system of Eurocode 2 (EC2 shows that a better evaluation of the safety level was achieved with the new model. This opens a space for optimizing concrete structure design with transient temperature conditions up to 1000 °C. 

  2. Nonlinear seismic response analysis of reinforced concrete tube in tube structure

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-bo; SHEN Pu-sheng

    2005-01-01

    Super-highly reinforced concrete tube in tube structure is a developing structure system of high-rise building. The more reasonable derivation process of the multi-vertical-line-element model stiffness matrix is given.On the premise of pointing out the problems of present multi-spring element model, combined with present multivertical-line-element model for analyzing on shear wall, the model is expanded to spatial one, and the stiffness matrix of which is derived. Combined with hysteretic axial model and hysteretic shear model, it is suitable for columns,wall limbs and beams with all kinds of section form. Some examples are calculated and compared with test results,which shows that the models have relatively good accuracy. On the base of the experimental phenomenon and failure mechanism for tube in tube structure specimen, nonlinear seismic responses analysis program on the basis of the advantaged element model for tube in tube structure is developed. Calculation results are in good agreement with those of the pseudo-dynamic tests and the failure mechanism can be well reflected.

  3. Qualitative and Quantitative Seismic Evaluation of Reinforced Concrete Structures in Petrochemical Plant

    Directory of Open Access Journals (Sweden)

    Fariborz Nateghi-A.

    2010-12-01

    Full Text Available In this paper the seismic evaluation of reinforced concrete structures in petrochemical facilities under sever conditions such as high pressure, high temperature and corrosive environment is studied. These structures were designed and constructed during 1976-78. The evaluation procedure is basically performed in two phases namely; a qualitative and b quantitative methods. In the qualitative evaluation, all possible documentations including drawings, specifications, structural calculations, new additions and test results were studied. Collected data then was summarized in an evaluation checklist. When the needed requirements did not meet the specified entries, more detailed and quantitative analysis were performed and utilized in this study. Quantitative and numerical study was performed using finite element modeling under sever loading combinations. Based on the results of this evaluation, some important RC structures in this plant were highly vulnerable to seismic forces which required immediate attention. The methodology used and results obtained can be generalized and adapted for similar facilities. This paper will present details, procedure and conclusions obtained.

  4. How Concrete is Concrete

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2010-07-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics

  5. Effect of distance from sea on chloride aggressiveness in concrete structures in brazilian coastal site

    Directory of Open Access Journals (Sweden)

    Meira, G. R.

    2003-12-01

    Full Text Available The distance of concrete structures from the sea is an important aspect when studying the deleterious effect of airborne salinity in marine environment zone. It permits to know how the durability of structures is affected by increasing the distance from the sea. This paper presents results of an experimental work on assessing the effect of the distance from sea on chloride aggressiveness, considering both the airborne salinity and chloride content in concrete specimens located at different distances from sea. This study has been carried out at Joao Pessoa, capital of the State of Paraiba, located in the northeast part of Brazil. The results indicated a drastic reduction of chloride deposition from marine aerosol, especially along the first 200 meters from the sea. Similar behavior was observed in the concrete specimens, even though the reduction has been less pronounced. Although more research is necessary, the differences in the rates of chloride decrease may be explained by different reasons, including the different chloride concentration in air and on concrete surface, the phenomena related to the skin effect and surface washing by rain.

    La influencia de la distancia al mar es un tema clave en el estudio de la agresividad salina en zona de atmósfera marina, ya que permite conocer cómo afecta a la durabilidad de las construcciones cuando aumenta la distancia al mar. Este trabajo presenta resultados de un estudio experimental que valora la situación a través de la medida del depósito de cloruros de la niebla salina y en probetas de hormigón expuestas a distintas distancias desde el mar en la ciudad de Joâo Pessoa, ubicada en la costa noreste de Brasil. Los resultados indican una importante disminución del depósito de cloruros de la niebla salina a medida que se aumenta la distancia al mar, especialmente en los primeros doscientos metros. La concentración de cloruros en el hormigón indica un comportamiento semejante. Sin

  6. Study on Fatigue Properties of Structural Concrete in China%国内结构混凝土疲劳性能研究现状

    Institute of Scientific and Technical Information of China (English)

    刘巍; 荣辉

    2011-01-01

    The research on fatigue performance of structural concrete is explained in detail. The fatigue property of steel reinforced concrete, high strength concrete, high performance concrete, fiber concrete are described, respectively. Furthermore, the fatigue research of the reactive powder concrete and porous concrete are presented. The fatigue performance of various structure concrete in China is analysed and is conducive to the future research. Finally, it is necessary to research the fatigue performance of structural concrete under coupling multiple environmental factors.%对国内结构混凝土疲劳性能的研究动态进行了较为全面详细的阐述.着重阐述了应用较多的钢筋预应力混凝土、高强混凝土、高性能混凝土、纤维混凝土的疲劳研究,同时简单介绍了活性粉末混凝土和多孔混凝土疲劳性能的研究.通过对国内各类结构混凝土疲劳性能研究现状分析,以期对国内研究者以后研究混凝土疲劳性能有所帮助.最后提出研究结构混凝土在多重环境因素耦合作用下疲劳性能的必要性.

  7. Experimentation, numerical simulation and the role of engineering judgement in the fracture mechanics of concrete and concrete structures

    NARCIS (Netherlands)

    Mier, J.G.M. van; Vliet, M.R.A. van

    1999-01-01

    Fracture mechanics plays a role in both structural engineering and materials engineering. The aim here is to improve understanding of the behaviour of structures and materials in the limit state. The use of numerical models can help improve the accuracy of our designs, but only if the certainty

  8. Condition assessment of concrete structures at nuclear power plants by state of the art non-destructive testing

    Directory of Open Access Journals (Sweden)

    Rydén N.

    2011-04-01

    Full Text Available The approach combining Non Destructive Examination (NDE with Finite Element Analysis (FEA methods is both workable and necessary in order to accurately determine and predict the condition of Nuclear Power Plant (NPP containment structures. This approach was introduced in the European 5th Framework Project with acronym CONMOD [1]. The current paper presents some of the work performed after the CONMOD project combining the on-site investigation at nuclear power plant (NPP stations in Sweden and Finland. Several non-destructive techniques were chosen for the investigations described in this paper. The MASW (Multi Channel Analysis of Surface Waves and Impact Echo (IE techniques have been used for evaluation of thickness and stiffness of concrete and also for location of possible defects. The above-mentioned techniques have been applied under investigations of concrete containments. Additionally reinforcement corrosion was investigated in cooling water channels by means of the Galvanostatic Pulse technique allowing determination of corrosion rate. Further, following the CONMOD concept, the coupling between the non-destructive measurements on site and finite element method is established. As the result of this coupling, the information about the status of concrete structures in nuclear power plants is obtained. In the ongoing research & development project CONSAFESYS (Concrete Containment Condition Status & Ageing Examination System the qualification and validation of investigative methods and diagnostic tools and analysis for reactor containments are further developed. One unique benefit with the CONSAFESYS project is the possibility of introducing artificial defects and anomalies into a decommissioned reactor containment structure.

  9. Effect of Coarse Aggregate and Slag Type on the Mechanical Behavior of High and Normal Weight Concrete Used at Barrage Structure

    Directory of Open Access Journals (Sweden)

    Muhammad Sanaullah

    2017-04-01

    Full Text Available Present study is an effort to assess the composite effect of limestone aggregate and blast furnace slag on the mechanical characteristics of normal and high weight concrete at various structural units (barrage girders, main weir and block apron of New Khanki Barrage Project, Punjab. Mix designs for different concrete classes falling under the domain of high and normal weight concrete were prepared after aggregate quality testing. On attaining satisfactory results of quality testing nine concrete mixes were designed (three for each class: A1, A and B by absolute volume method (ACI- 211.1. The required compressive strength of normal and high strength was set at 6200, 5200 and 4200 Psi for the concrete types A1, A and B respectively after 28 days (ACI -318. For compressive strength assessment, a total 27 concrete cylinders were casted (9-cylinders for each mix and were water cured. The achieved average UCS of cylinder concrete specimens at 3, 7 and 28 days are 5170, 6338 and 7320 Psi for A1 – type, 3210, 4187 and 5602 Psi for A-type and 2650, 3360 and 4408 Psi for B- type mix. It has been found that all concrete mixes for suggested classes attained target strength at age of 7-days. The coarse aggregate (Margala Hill limestone and fine aggregates (from Lawrancepur /Qibla Bandi quarries used in all concrete mix designs have demonstrated a sound mechanical suitability for high and normal weight concrete.

  10. Corrosion Inhibitors for Reinforced Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Steel corrosion in reinforced concrete structures has been a major problem across the U.S. Steel-reinforced concrete structures are continually subject to attack by corrosion brought on by naturally occurring environmental conditions. FerroGard, a corrosion inhibitor, developed by Sika Corporation, penetrates hardened concrete to dramatically reduce corrosion by 65% and extend the structure's service life.

  11. Prestressed CFRP Strips with Gradient Anchorage for Structural Concrete Retrofitting: Experiments and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Julien Michels

    2014-01-01

    Full Text Available This paper presents a study on the load carrying capacity of reinforced concrete (RC beams strengthened with externally bonded (EB carbon fiber reinforced polymer (CFRP strips prestressed up to 0.6% in strain. At the strip ends, the innovative gradient anchorage is used instead of conventional mechanical fasteners. This method, based on the epoxy resin’s ability to rapidly cure under high temperatures, foresees a sector-wise heating followed by a gradual decrease of the initial prestress force towards the strip ends. The experimental investigation shows a promising structural behavior, resulting in high strip tensile strains, eventually almost reaching tensile failure of the composite strip. Additionally, ductility when considering deflection at steel yielding and at ultimate load is satisfying, too. From a practical point of view, it is demonstrated that premature strip grinding in the anchorage zone is not beneficial. In addition, a non-commercial 1D finite element code has been enlarged to an EB reinforcement with prestressed composite strips. A bilinear bond stress-slip relation obtained in earlier investigations is introduced as an additional failure criterion to the code. The numerical code is able to almost perfectly predict the overall structural behavior. Furthermore, the calculations are used for comparison purposes between an initially unstressed and a prestressed externally bonded composite reinforcement. The increase in cracking and yielding load, as well as differences in structural stiffness are apparent.

  12. Progressive collapse resisting capacity of reinforced concrete load bearing wall structures

    Institute of Scientific and Technical Information of China (English)

    Alireza Rahai; Alireza Shahin; Farzad Hatami

    2015-01-01

    Reinforced concrete (RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthquakes, but also more economical. The effect of progressive collapse caused by removal of load bearing elements, in various positions in plan and stories of the RC load bearing wall system was evaluated by nonlinear dynamic and static analyses. For this purpose, three-dimensional model of 10-story structure was selected. The analysis results indicated stability, strength and stiffness of the RC load-bearing wall system against progressive collapse. It was observed that the most critical condition for removal of load bearing walls was the instantaneous removal of the surrounding walls located at the corners of the building where the sections of the load bearing elements were changed. In this case, the maximum vertical displacement was limited to 6.3 mm and the structure failed after applying the load of 10 times the axial load bored by removed elements. Comparison between the results of the nonlinear dynamic and static analyses demonstrated that the “load factor” parameter was a reasonable criterion to evaluate the progressive collapse potential of the structure.

  13. Probabilistic lifetime performance and structural capacity analysis of continuous reinforced concrete slab bridges

    Science.gov (United States)

    Gao, Zhicheng; Liang, Robert Y.; Patnaik, Anil K.

    2017-09-01

    A reliability-based method was developed for predicting the initiation time and the probability of flexural failure for continuous slab bridges with load-induced cracks exposed to chloride environment resulting from de-icing salts. A practical methodology was used for predicting the diffusion coefficient of chloride ingress into the pre-existing load-induced cracks in concrete. The reduction in the cross-sectional area of the reinforcement due to corrosion was included in the model. The proposed methodology accounts for uncertainties in the strength demand, structural capacity, and corrosion models, as well as uncertainties in environmental conditions, material properties, and structural geometry. All probabilistic data on uncertainties were estimated from the information contained in previous experimental and statistical studies. As an application of the proposed model, a three-span continuous slab bridge in Ohio is presented for demonstration of the developed methodology. A comparison of results clearly shows the importance of considering the effects of the load-induced cracks for correct prediction of the initiation of corrosion time and the critical time to maintain structural integrity.

  14. Seismic performance of prestressed concrete stand structure supporting retractable steel roof

    Institute of Scientific and Technical Information of China (English)

    Yiyi CHEN; Dazhao ZHANG; Weichen XUE; Wensheng LU

    2009-01-01

    The seismic behavior of a structural system composed of pre-stressed concrete stand supporting a retractable steel roof was studied, which is typically based on the prototype of engineering project of Shanghai Qizhong Tennis Center. By elasto-plastic finite element analysis and shaking table test, the following were investigated: the effects of roof configurations in opening and closing, the effect of pre-stress on the structural seismic response, and the failure mechanism of the spatial stand frame systems featured with circularly arranged columns and inverse-cone type stands. It was found thatthe roof status has great effect on the natural period,vibration modes, and seismic response of the whole structure, the stand response to horizontal seismic excitation is stronger in roof opening configuration than in closing state, and the response mode is dominantly translational rather than rotational, though the stand is characterized by its fundamentally torsional vibration mode. The study indicated that the pre-stressed inversecone stands can keep the system from global side-sway collapse under gravity loads, even in the case that most columns loose moment capacity.

  15. Overview of the development of service life design for concrete structures

    NARCIS (Netherlands)

    Siemes, A.J.M.

    2002-01-01

    After the introduction of reinforced concrete it was believed that the material was extremely durable. Soon it was found that reinforced concrete could have serious durability problems and that special care should be taken to avoid them. Durability became a design issue.

  16. Damage mechanics applied to the seismic behavior of concrete structures; Application de la mecanique de l'endommagement pour le comportement de batiments sous seisme

    Energy Technology Data Exchange (ETDEWEB)

    Ghavamian, Shahrokh; Bonenfant, J. [NECS, F-92300 Sceaux (France); Jason, L. [CEA Saclay, LM2S, SEMT, DM2S, DEN, CEA, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Complete text of publication follows: The seismic behavior of reinforced concrete structures is generally evaluated through modal spectral approaches, based on linear elastic analysis. In the case of seismic reevaluation of existing structures using traditional methods, since the nonlinear behavior of materials is not taken into account, these techniques often lead to an overestimation of the needs in reinforcement. In this contribution, it is proposed to highlight how including nonlinearity in the mechanical behavior of concrete and steel can improve the seismic evaluation of RC structures. For this purpose, a pushover technique is applied on an office building. Contrary to a classical approach, the progression of the failure mode and the mechanical degradation can be obtained and used to accurately elaborate the best retrofitting strategy. Some improvements of the constitutive laws are nevertheless needed if the use of this type of approaches is to be extended to more complex structures. However, the maturity of most constitutive models is not enough to allow industrial applications

  17. Moment Contribution Capacity of Tendon Prestressed Partial on Concrete Beam-column Joint Interior According to Provisions ACI 318-2008 Chapter 21.5.2.5(c Due to Cyclic Lateral Loads

    Directory of Open Access Journals (Sweden)

    Astawa Made Dharma

    2016-01-01

    Full Text Available This research designed a partial prestressed concrete beam-column with reinforced concrete interior joint, using square columns of 400/400 mm, reinforcement 6 D16 + 4D13, section beam 250/400 mm, tensile reinforcement 5 D13, compression reinforcement 3 D13 + 2 strand tendon D12,7 mm , and joint without plastic hinge, then tested in laboratory with lateral cyclic loads on peak column, static axial load 1120 kN on the centre column, to get the tendon capacity to assume positive and negative bending moments due to lateral load, according to provisions of ACI 318-2008 part 21.5.2.5 (c. Test results showed that the moment tendon contribution on beam section, in the tensile area, the positive and negative moment both on the left side or the right side column are all qualified ( 25 %. As for the negative moment, either left or right side column are all qualified (4.0. Although the contribution of positive moment capacity tendon in compression areas does not qualify, in overall, the reliability and ductility of the structure qualify.

  18. Comparative study between structural and electrical properties of geopolymers applied to a green concrete

    Science.gov (United States)

    Montaño, A. M.; González, C. P.; Pérez, J.; Royero, C.; Sandoval, D.; Gutiérrez, J.

    2013-11-01

    This work shows a comparative analysis of geopolymers obtained by alkaline activation of two aluminosilicates: bentonite and metakaolin. With the goal of to replace some cement percentage, both aluminosilicates were added in several proportions (10, 20 and 30%) to concrete mixes. Portland Type I cement was used to prepare the reference concrete (without geopolymer). X-ray diffraction of geopolymers allowed to find new crystallographic phases that was not present in precursor's minerals. To evaluate mechanical properties of concrete prepared with geopolymers, test tubes with 7, 14, 28 and 90 days as setting time were used. Chemical resistance and Electrical impedance of concrete mixes were also measured. Results shows that cementitious material obtained from metakaolin exhibit the best compressive strength. On the other hand, those materials derived from bentonite, have a high electrical resistance so that, they protected reinforced concrete better that Portland does.

  19. Mechanical Properties and Microstructure of Portland Cement Concrete Prepared with Coral Reef Sand

    Institute of Scientific and Technical Information of China (English)

    WANG Qiankun; LI Peng; TIAN Yapo; CHEN Wei; SU Chunyi

    2016-01-01

    The feasibility of using coral reef sand (CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densiifed compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of ifne pores in the range of 100 nm.

  20. High performance fly ash mixed concrete in underground construction of Delhi metro

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, R.; Gupta, A.K.; Garg, R.; Gopalkrishnan, E. [DMRC, New Delhi (India)

    2003-07-01

    The paper describes the comprehensive concrete durability studies carried out for deciding the specifications for the MCIA contract for construction of 4 km of underground metro from Vishwa Vidyalaya station to Kashmere Gate station in India. The study involved adiabatic concrete temperature measurement tests to know the heat generation and temperature rising properties inside concrete mass. The paper describes the background for selection of fly ash as a part replacement up to 30% of cement in concrete including determination of specification, identification of source, collection and transportation by bulk carrier and transfer to storage silo at the concrete batching plant. Control of temperature of concrete during production and after placement requires detailed arrangements for cooling aggregates and water at batching plant and thermal insulation along with curing to the concrete placed at site. Fully tanked membrane waterproofing and special waterproofing details at construction joints also contribute towards achieving the high performance durable concrete structure. 3 refs., 6 figs., 11 tabs.

  1. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO2 Emission Reduction

    Directory of Open Access Journals (Sweden)

    Bon-Min Koo

    2014-08-01

    Full Text Available In order to reduce carbon dioxide (CO2 emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC specimens cast with Hwangtoh admixtures (with and without PET fibers possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco

  2. The performance analysis of distributed Brillouin corrosion sensors for steel reinforced concrete structures.

    Science.gov (United States)

    Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen

    2013-12-27

    The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage.

  3. Corrosion rate of steel in concrete - from laboratory to reinforced structures

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, B. [Swiss Federal Inst. of Tech., Zurich (Switzerland). Inst. of Mater. Chem. and Corrosion

    1997-12-31

    Measuring corrosion rate of rebars in reinforced concrete is essential for establishing service life prediction of structures and controlling the efficiancy of repair methods. Different electrochemical techniques, all based on measuring the polarization resistance, are used in the laboratory and on site. In calculating corrosion rate from the experimentally determined Rp value, two main problems arise: current distribution between the small counter electrode and the rebars on real structures and localized corrosion attacks. In this work results from laboratory experiments on macrocell corrosion are presented, showing the influence of resistivity and geometrical arrangement on the macrocell corrosion rate under open circuit conditions and under an external anodic pulse. From the results it can be concluded that the polarization resistance measured experimentally corresponds to the corrosion rate of the anode in the macrocell. Most of the imposed current is flowing to the local anode and thus signal confinement for local corrosion attacks is not necessary. The segmented counter electrode opens a way to determined localized corrosion rates. (orig.) 30 refs.

  4. Review of the use of phase change materials (PCMs in buildings with reinforced concrete structures

    Directory of Open Access Journals (Sweden)

    Pons, O.

    2014-09-01

    Full Text Available Phase change materials are capable of storing and releasing energy in the form of heat in determined temperature ranges, so to increase a building’s thermal inertia, stabilize its indoor temperatures and reduce its energetic demand. Therefore, if we used these materials we could have more energetically efficient buildings. Nevertheless, are these materials most appropriate to be used in buildings? Could the incorporation of phase change materials in buildings with concrete structures be generalized? This article aims to carry out a review of these phase change materials from construction professionals’ points of view, study their applications for buildings with reinforced concrete structures and the key points for these applications, draw conclusions and provide recommendations useful for all professionals within the sector who are considering the application of these materials.Los materiales de cambio de fase son capaces de almacenar y liberar energía en forma de calor en un determinando rango de temperaturas, y así aumentar la inercia térmica de un edificio, estabilizar las temperaturas en el interior y reducir la demanda energética. En consecuencia, si utilizáramos estos materiales podríamos tener un parque de edificios más eficientes energéticamente. No obstante, ¿estos materiales son apropiados para usarse en edificios? ¿Se podría generalizar la incorporación de materiales de cambio de fase en edificios con estructuras de hormigón? Este artículo tiene como objetivos hacer una revisión del estado del arte de estos materiales de cambio de fase desde el punto de vista de los profesionales de la construcción, estudiar las aplicaciones en edificios con estructuras de hormigón armado y los puntos clave para estas aplicaciones, extraer conclusiones y recomendaciones útiles para los profesionales del sector que se planteen la utilización de estos materiales.

  5. How simple can nonlinear finite element modelling be for structural concrete?

    Directory of Open Access Journals (Sweden)

    Argirova, G.

    2014-12-01

    Full Text Available This paper discusses on the required level of simplicity for suitable modelling of structural concrete. Traditional equilibrium- based approaches (as strut-and-tie models are too coarse in some cases, as they account for the cracking state of concrete in a sometimes excessively simplified manner. The alternative of complex nonlinear numerical modelling is also not always satisfactory for design as the number of parameters required, their definition and the sensitivity of the structural response to them is complex and requires a high level of experience. Contrary to these approaches, this paper introduces the elastic plastic stress field method. This method is grounded on the theory of plasticity but allows considering deformation compatibility. The results are consistent both in terms of the strength and deformation field of the member. It also has the advantage of requiring only two physical material properties (modulus of elasticity and plastic strength which can be easily determined by designers.Este artículo discute sobre el nivel de sencillez ideal para un análisis no lineal de elementos de hormigón estructural. Los métodos de cálculo basados únicamente en condiciones de equilibrio (como los modelos de bielas-y-tirantes no son siempre adecuados ya que el estado de fisuración del hormigón se considera a veces de una manera excesivamente simplificada. Los análisis no lineales complejos tampoco son siempre adecuados, ya que el número de parámetros requeridos, su definición y la sensibilidad de la respuesta del elemento a sus variaciones requieren una gran experiencia. Como alternativa, se presenta el método de los campos de tensiones elasto-plásticos. Este método se basa en la teoría de la plasticidad pero incorporando condiciones de compatibilidad. Los resultados son coherentes en términos de resistencia y de deformaciones. Además, sólo necesita la definición de dos parámetros mecánicos (módulo de elasticidad y

  6. Structural evaluation of a prestressed concrete bridge under an alkali-silica reaction; Evaluacion estructural de un puente de hormigon pretensado afectado por una reaccion alcali-silice

    Energy Technology Data Exchange (ETDEWEB)

    Carpintero Garcia, I.; Bermudez Adriozola, B.

    2010-07-01

    The Central Laboratory of Structures and Materials (CEDEX) was commissioned by the National Department of Highways to evaluate the safety conditions of one bridge built on 1997, which is part of the net of the Spanish National Highways. Even at the first inspection many cracks were detected in the concrete deck, associated with expansion concrete processes. This examination revealed that concrete deterioration was not associated with any reinforcement corrosion process; in fact, there were no symptoms of this pathology all along the bridge. for that reason the internal chemical reactions were considered as the most probable cause for the expansion of concrete, as no symptoms of deterioration due to external attack were found. In order to check the origin of concrete expansion, some tests were carried out on concrete samples drilled on the decks. Results of these tests show that there had been internal reactions in concrete mass which explains its expansion and the appearance of those cracks observed. Further more, some other activities were also carried out on site to estimate the importance of the structural damages, as topographic levelling and dynamic testing of the decks. Also the mechanical properties of concrete probes were tested at laboratory. This article shows the main results obtained on the study carried on to determine the cause and significance of the structural damages of the bridge. (Author) 3 refs.

  7. Nonlinear Dynamic Response of Concrete Structure with Soil-Structure Interaction

    OpenAIRE

    Talberg, Marte Sørbrøden

    2015-01-01

    A common assumption for a structure that is subjected to an earthquake is that the structure is considered fixed at the base. In this thesis, analyses where the soil is deformed and the foundation may be moved and rotate have been done, and it has been investigated if this can reduce forces or displacements in the structure. This have been done through the use of soil-structure interaction (SSI). In this thesis well known beam-column element formulations will be presented, and the benefi...

  8. Material Characteristic of Lightweight Concretes With Waste PVC Additive and Their Possible Utilization in Agricultural Structures

    Directory of Open Access Journals (Sweden)

    I. Orung

    2007-05-01

    Full Text Available In this study, characteristics of lightweight concretes prepared adding waste PVC materials at different rates into natural lightweight aggregates of Van Ercis region were investigated. The aims of the study were to propose and produce a construction material with low unit weight, sufficient pressure resistance and low water absorption capacity. The unit weight of leight weight material produced was ranged from 760 to 883 kg/m3, compressive strenght was ranged from 21.4 to 37.7 kgf/cm2, and water absorption values were changed between 23.4 % and 32.3 %. The bulk density and compressive strength of samples were increasing with increasing waste PVC mixture, whereas, water absorbtion was decreased with the same amount of additions. The results of the study indicated that produced lightweight material could safely be used in agricultural structures, especially in animal housing facilities with sensitive environmental conditions, in storage facilities and houses as wall block materials. Introducing a material produced with waste PVC material into the construction market will provide several benefits to economy, and environment.

  9. Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC Structural Elements

    Directory of Open Access Journals (Sweden)

    Pedro Garcés

    2013-03-01

    Full Text Available In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC beam. Carbon nanofiber (CNFCC and fiber (CFCC cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached, service location (under tension or compression and electrical contacts (embedded or superficial were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8, while CFCC only reached gage factors values of 178.9 (tension or 49.5 (compression. Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse.

  10. 混凝土结构项目化设计%Project Design of Concrete Structures

    Institute of Scientific and Technical Information of China (English)

    谷锋

    2013-01-01

    混凝土结构项目化设计打破原有知识体系的架构,采用了包容递进式的项目设计,实行课上和课下双线并行的模式,利用专业计算机软件:Autocad2007和pkpm等工具实现了高职高专教育的“应用型“、“零距离就业”的培养目标,为社会输送适应市场需求的合格人才。%Reinforced concrete structures design on project is utilized to break the pervious knowledge system.The progressive inclusion design method on project is utilized in class and out-of-class.Some soft wares such as Autocad2007 and PKPM are introduced to the design method.The purpose is to achieve a voca-tional high tertiary education“applied”,“high employment rate”training objective for the society,to adapt the market demand of qualified professionals.

  11. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing.

    Science.gov (United States)

    de Alcantara, Naasson P; da Silva, Felipe M; Guimarães, Mateus T; Pereira, Matheus D

    2015-12-24

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works.

  12. Structural Health Monitoring of Precast Concrete Box Girders Using Selected Vibration-Based Damage Detection Methods

    Directory of Open Access Journals (Sweden)

    Zhengjie Zhou

    2010-01-01

    Full Text Available Precast, prestressed concrete box girders are commonly used as superstructure components for short and medium span bridges. Their configuration and typical side-by-side placement make large portions of these elements inaccessible for visual inspection or the application of nondestructive testing techniques. This paper demonstrates that vibration-based damage detection (VBDD is an effective alternative for monitoring their structural health. A box girder removed from a dismantled bridge was used to evaluate the ability of five different VBDD algorithms to detect and localize low levels of spalling damage, with a focus on using a small number of sensors and only the fundamental mode of vibration. All methods were capable of detecting and localizing damage to a region within approximately 1.6 times the longitudinal spacing between as few as six uniformly distributed accelerometers. Strain gauges configured to measure curvature were also effective, but tended to be susceptible to large errors in near support damage cases. Finite element analyses demonstrated that increasing the number of sensor locations leads to a proportional increase in localization accuracy, while the use of additional modes provides little advantage and can sometimes lead to a deterioration in the performance of the VBDD techniques.

  13. Self-centering seismic retrofit scheme for reinforced concrete frame structures: SDOF system study

    Science.gov (United States)

    Zhang, Yunfeng; Hu, Xiaobin

    2010-06-01

    This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose, an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters — the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio, peak acceleration ratio, energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake.

  14. In Situ Repair of Deteriorated Concrete in Hydraulic Structures: Feasibility Study

    Science.gov (United States)

    1987-05-01

    wider. Since formwork is not required, drypack is especially appropriate for use in vertical members. It is not appropriate for the repair of...improve the abrasion resistance of the concrete in outlet tunnel walls of dams. The impregnation process consists of four basic steps: a...to repair piles, footings, piers, retaining walls, abutments, base plates, tunnels , and dams. Preplaced-aggregate concrete provides low shrinkage

  15. Strengthening of concrete structures using carbon fibre reinforced polymers and cement-based adhesives

    OpenAIRE

    Hashemi, Siavash

    2017-01-01

    The research project conducted in this study concerns the investigation of the application of cement-based adhesives in CFRP strengthening of reinforced concrete members. The results demonstrate that mineral-based adhesives can provide the desired matrices for CFRP reinforcement. The literature review covers the background of CFRP application with conventional techniques. The bond characteristics of CFRP to concrete substrate, the flexural performance of retrofitted RC beams, and the fa...

  16. Analysis of the Dynamic Behaviour of Steel-Concrete Composite Footbridges Considering the Soil-Structure Interaction

    Directory of Open Access Journals (Sweden)

    J.G. Santos da Silva

    2016-11-01

    Full Text Available The main objective of this investigation is to present the finite element modelling of the dynamic behaviour of a steel-concrete composite footbridge, when subjected to human walking vibrations. The investigated structural system was based on a tubular steel-concrete composite footbridge, spanning 82.5 m. The structural model consists of tubular steel sections and a concrete slab. This investigation is carried out based on correlations between the experimental results related to the footbridge dynamic response and those obtained with finite element modelling. The soil-structure interaction effect was considered in the dynamic analysis based on the use of Winkler’s theory. The finite element model enabled a complete dynamic evaluation of the tubular footbridge in terms of human comfort and its associated vibration serviceability limit states. The peak accelerations found in this analysis indicated that the investigated footbridge presented problems related with human comfort and it was detected that the structural system can reach vibration levels that compromise the footbridge user’s comfort.

  17. Simulation and Experimental Investigation on the AE Tomography to Improve AE Source Location in the Concrete Structure

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2014-01-01

    Full Text Available Acoustic emission (AE tomography, which is based on the time-travel tomography with AE events as its signal sources, is a new visualization tool for inspecting and locating the internal damages in the structures. In this paper, AE tomography is applied to examine a man-made damage in a typical heterogeneous concrete structure to validate its effectiveness. Firstly, the finite element (ABAQUS/Explicit simulation model of the concrete structure with one damaged circle in its center is built, and the simulated AE signals are obtained to establish the AE tomography. The results show that the damaged circle in the created model can be visualized clearly with the AE tomography in its original location. Secondly, the concrete specimen based on the FE model is fabricated, and the pencil lead break (PLB signal is taken as the exciting source for AE tomography. It is shown that the experimental results have good consistency with the FE simulation results, which also verifies the feasibility of the finite element model for AE tomography. Finally, the damage source location based on AE tomography is compared with the traditional time of arrival (TOA location method, and the better location accuracy is obtained with the AE tomography. The research results indicate that AE tomography has great potential in the application of structure damage detection.

  18. Preparation and characterization of glass fibers - polymers (epoxy) bars (GFRP) reinforced concrete for structural applications

    Science.gov (United States)

    Alkjk, Saeed; Jabra, Rafee; Alkhater, Salem

    2016-06-01

    The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP) and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm) tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long) reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  19. Preparation and characterization of glass fibers – polymers (epoxy bars (GFRP reinforced concrete for structural applications

    Directory of Open Access Journals (Sweden)

    Alkjk Saeed

    2016-06-01

    Full Text Available The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  20. Contribution to Improving the Performance of Concrete: The Case of the Use of Desert Sand of the Region of Dakar

    Directory of Open Access Journals (Sweden)

    A. Cisse

    2012-12-01

    Full Text Available Although the extraction of sea sand is not the only factor responsible for coastal erosion, it is an important phenomenon in the degradation of the coastal environment. For this reason, local authorities have banned the use of sea sand and also operators in the construction sector (Public Works and Water Resources should use the desert sand that is the only current alternative. Indeed, the alluvial sand usually has better features than the desert sand, but it is not available in sufficient reserves to the needs of the construction sector. The purpose of this study is to characterize (granularity, cleanliness some quarries of desert sand used in the Dakar region to verify the extent to which they are used in construction and more specifically in hydraulic concrete composition. Furthermore, a method of mixing improved this desert sand with crushed sand 0/3, from the rock crushing mass, is studied below.