WorldWideScience

Sample records for concrete mixing water

  1. 1.3. Chemical and mineral additives of concretes and water used for concrete mix preparation

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    It is known that chemical and mineral additives increase physicochemical properties of concretes, thus, chemical and mineral additives, including super plasticizer and organo mineral additives are examined in this work. It was noted that along with salt water fresh water can also be used for concrete mix preparation.

  2. Effect on Compressive Strength of Concrete Using Treated Waste Water for Mixing and Curing of Concrete

    Directory of Open Access Journals (Sweden)

    Humaira Kanwal

    2018-04-01

    Full Text Available Effective utilization of the available resources is imperative approach to achieve the apex of productivity. The modern world is focusing on the conditioning, sustainability and recycling of the assets by imparting innovative techniques and methodologies. Keeping this in view, an experimental study was conducted to evaluate the strength of concrete made with treated waste water for structural use. In this study ninetysix cylinders of four mixes with coarse aggregates in combination with FW (Fresh Water, WW (Wastewater, TWW (Treated Wastewater and TS (Treated Sewagewere prepared. The workability of fresh concrete was checked before pouring of cylinders. The test cylinders were left for 7, 14, 21 and 28 days for curing. After curing, the compressive strength was measured on hardened concrete cylinders accordingly. Test results showed that workability of all the four mixes were between 25-50mm but ultimate compressive strength of concrete with WW was decreased and with TWW, TS at the age of 28 days do not change significantly. This research will open a new wicket in the horizon of recycling of construction materials. The conditioning and cyclic utilization will reduce the cost of the construction and building materials as well as minimize the use of natural resources. This novelty and calculating approach will save our natural assets and resources.

  3. Recycling of fresh concrete exceeding and wash water in concrete mixing plants

    Directory of Open Access Journals (Sweden)

    Férriz Papí, J. A.

    2014-03-01

    Full Text Available The exceeding concrete and washing equipment water are a matter to solve in concrete production. This paper explains several possibilities for recycling and analyses the products obtained with one recycling equipment. The objective of this work is to study the possibility to increase the percentage of recycling in new mixes. The developed study relates wash water density and fine particles content. Besides, mortar and concrete samples were tested introducing different quantities of these fine particles, substituting cement, sand or only as an addition. Consistency, compressive strength, setting time, absorption, and capillarity were tested. The results indicated an improvement of the studied properties in some percentages when substituting sand. It confirms the possibility to introduce larger quantities of wash water in new concrete mixes, with corrections in sand quantity depending on water density.Los hormigones frescos sobrantes y aguas procedentes de la limpieza de equipos son un inconveniente a resolver en las plantas de hormigón. Este artículo explica varias posibilidades de reciclado y analiza los productos obtenidos en un equipo reciclador concreto, con el objetivo de estudiar el incremento del porcentaje de reciclaje en nuevas amasadas. El estudio realizado relaciona la densidad del agua de lavado y el contenido de partículas finas. Además, ensaya muestras de mortero y hormigón realizando sustituciones de estas partículas finas por cemento, arena o simplemente como adición. Determina consistencia, resistencia a compresión, principio y fin de fraguado, absorción y capilaridad. Los resultados indicaron un incremento general de las propiedades estudiadas en algunos porcentajes de sustitución por arena. Ello confirma la posibilidad de introducir mayores cantidades de agua de lavado en nuevas amasadas de hormigón, mediante correcciones en la dosificación de arena en función de la densidad del agua.

  4. 1.5. The concrete mix properties

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    Different properties of concrete mix, including connectivity, mobility and water demand were considered in this work. The steps of water demand of concrete mix obtained from Portland cement, sand and gravel are presented in this work. The classification of concrete mixes is presented as well.

  5. Optimum Mix for Pervious Geopolymer Concrete (GEOCRETE Based on Water Permeability and Compressive Strength

    Directory of Open Access Journals (Sweden)

    Abdulsalam Arafa Salaheddin

    2017-01-01

    Full Text Available The production of ordinary Portland cement (OPC consumes considerable natural resources and energy, and it also affects the emission of a significant quantity of CO2 in the atmosphere. This pervious geopolymer concrete study aims to explore an alternative binder without OPC. Pervious geopolymer concretes were prepared from fly ash (FA, sodium silicate (NaSiO3, sodium hydroxide (NaOH solution, and coarse aggregate (CA. The effects of pervious geopolymer concrete parameters that affect water permeability and compressive strength are evaluated. The FA to CA ratios of 1:6, 1:7,1:8, and 1:9 by weight, CA sizes of 5–10, 10–14, and 14–20 mm, constant NaSiO3/NaOH ratio of 2.5, alkaline liquid to fly ash (AL/FA ratios of 0.4, 0.5, and 0.6, and NaOH concentrations of 8, 10, and 12 M were the pervious geopolymer concrete mix proportions. The curing temperature of 80 °C for 24 h was used. The results showed that a pervious geopolymer concrete with CA of 10 mm achieved water permeability of 2.3 cm/s and compressive strength of 20 MPa with AL/FA ratio of 0.5, NaOH concentration of 10 M, and FA:CA of 1:7. GEOCRETE is indicated to have better engineering properties than does pervious concrete that is made of ordinary Portland cement.

  6. Water Entrainment in Concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben

    This report gives a survey of different techniques for incorporation of designed, water-filled cavities in concrete: Water entrainment. Also an estimate of the optimum size of the water inclusions is given. Water entrainment can be used to avoid self-desiccation and self-desiccation shrinkage...... during hydration [1,26]. What is needed is some sort of container which retains the shape of the water when mixed into the concrete. The container may function based on several different physical or chemical principles. Cells and gels are examples of containers found in nature. A cell membrane provides...... a boundary to water, whereas a polymer network incorporates water in its intersticious space with its affinity due to interaction energy and polymer entropy. Such containers allow water to be stored as an entity. In relation to concrete the water encapsulation may be accomplished either before or after start...

  7. DRY MIX FOR OBTAINING FOAM CONCRETE

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2015-01-01

    Full Text Available Composition of a dry mix has been developed for production of non-autoclaved foam concrete with natural curing. The mix has been created on the basis of Portland cement, UFAPORE foaming agent, mineral additives (RSAM sulfoaluminate additive, MK-85 micro-silica and basalt fiber, plasticizing and accelerating “Citrate-T” additive and   redispersible Vinnapas-8034 H powder. It has been established that foam concrete with  density of 400–800 kg/m3, durability of 1,1–3,4 MPa, low water absorption (40–50 %, without shrinkable cracks has been formed while adding water of Water/Solid = 0.4–0.6 in the dry mix,  subsequent mechanical swelling and curing of foam mass.Introduction of the accelerating and plasticizing “Citrate-T” additive into composition of the dry mix leads to an increase of rheological properties in expanded foam mass and  time reduction of its drying and curing. An investigation on microstructure of foam-concrete chipping surface carried out with the help of a scanning electron microscope has shown that the introduction of  basalt fiber and redispersible Vinnapas-8034 H powder into the composition of the dry mix promotes formation of more finely-divided crystalline hydrates. Such approach makes it possible to change purposefully morphology of crystalline hydrates and gives the possibility to operate foam concrete structurization process.

  8. Mixed materials for concrete. Concrete yo konwazai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kono, K [Tokushima Univ., Tokushima (Japan). Faculty of Engineering

    1994-07-05

    The materials except cement, water and aggregate added into the cement paste, mortar or concrete before the execution of smashing are called mixed materials. The mixed materials are indispensable to the concrete for improving the quality of the fresh concrete as well as the hardened concrete; providing the characteristics suitable for the operation; and increasing the economy. In this paper, the main mixed materials including fly ash, which is the by-product in coal thermoelectric power station; silica fume; micropowder of slag in blast furnace; expansive materials and so on are described summarily. Especially, silica fume is the by-product, which are the super micro-powders with the average size around 0.1 micrometer, collected by the dust-collector from the waste gas generated during the manufacture in the electric furnace of ferrosilicon, which is an alloy iron, or silicon metal used as the deacidificating and desulfurizing agents in the steel production. But the most part thereof is depended on the import since the domestic output is low. 38 refs., 19 figs., 6 tabs.

  9. Concrete = aggregate, cement, water?

    International Nuclear Information System (INIS)

    Jelinek, J.

    1990-01-01

    Concrete for the Temelin nuclear power plant is produced to about 70 different formulae. For quality production, homogeneous properties of aggregates, accurate proportioning devices, technological discipline and systematic inspections and tests should be assured. The results are reported of measuring compression strength after 28 days for different concrete samples. The results of such tests allow reducing the proportion of cement, which brings about considerable savings. Reduction in cement quantities can also be achieved by adding ash to the concrete mixes. Ligoplast, a plasticizer addition is used for improving workability. (M.D). 8 figs

  10. CONCRETE MIX DESIGN FOR STRUCTURES SUBJECTED TO EXPOSURE CLASS XC1 DEPENDING ON CONCRETE COVER

    Directory of Open Access Journals (Sweden)

    O. Yu. Cherniakevich

    2016-01-01

    Full Text Available The reinforced steel corrosion which is the most important problem of reinforced concrete structures durability is generally stipulated for carbonization of concrete surrounding it. Concrete cover calculation at the design stage is predicated one because of the differences in manufacturing conditions and use of constructions. The applying of the probabilistic approaches to the carbonation process modeling allows to get predicated grade of the depth of carbonization of concrete and, thus, to settle minimum concrete cover thickness for a given projected service life of a construction. The procedures for concrete mix design for different strength classes of concrete are described in the article. Current recommendations on assignment of concrete strength class as well as concrete cover are presented. The European Standard EN 206:2013 defines the content requirements for the concrete structures operated in the exposure class XC1, including the minimum values of water-cement ratio, minimum cement content, and minimum strength class of concrete. Since the standard does not include any basis or explanations of the requirements, we made an effort to develop a scientific justification for the mentioned requirements. We developed the probabilistic models for the process of carbonation of concrete based on the concrete mix which was designed using the software VTK-Korroziya. The reinforced concrete structures with concrete cover 20–35 mm operated in the most unfavorable conditions within the exposure class XC1 were analyzed. The corresponding probabilistic calculations of the depth of carbonated concrete are described in the article. 

  11. Automation of production of concrete mix

    Directory of Open Access Journals (Sweden)

    Popello Egor

    2017-01-01

    Full Text Available Computer-aided design of concrete leads to a reduction in terms of production, the exclusion of product deficiencies, improve the quality of manufactured products. This approach allows to produce the concrete to exact physical and mechanical characteristics, which makes the design more reliable and economical. The software package will allow: to reduce the settlement time in the design of concrete mixture, to improve the efficiency of the staff of the laboratory building, to improve the quality of the concrete mix due to higher accuracy of calculations, to apply a flexible approach to the design of concrete mixture in question of introducing new chemical additives and their characteristics.

  12. Recycled aggregates concrete: aggregate and mix properties

    Directory of Open Access Journals (Sweden)

    González-Fonteboa, B.

    2005-09-01

    Full Text Available This study of structural concrete made with recycled concrete aggregate focuses on two issues: 1. The characterization of such aggregate on the Spanish market. This involved conducting standard tests to determine density, water absorption, grading, shape, flakiness and hardness. The results obtained show that, despite the considerable differences with respect to density and water absorption between these and natural aggregates, on the whole recycled aggregate is apt for use in concrete production. 2. Testing to determine the values of basic concrete properties: mix design parameters were established for structural concrete in non-aggressive environments. These parameters were used to produce conventional concrete, and then adjusted to manufacture recycled concrete aggregate (RCA concrete, in which 50% of the coarse aggregate was replaced by the recycled material. Tests were conducted to determine the physical (density of the fresh and hardened material, water absorption and mechanical (compressive strength, splitting tensile strength and modulus of elasticity properties. The results showed that, from the standpoint of its physical and mechanical properties, concrete in which RCA accounted for 50% of the coarse aggregate compared favourably to conventional concrete.

    Se aborda el estudio de hormigones estructurales fabricados con áridos reciclados procedentes de hormigón, incidiéndose en dos aspectos: 1. Caracterización de tales áridos, procedentes del mercado español. Para ello se llevan a cabo ensayos de densidad, absorción, granulometría, coeficiente de forma, índice de lajas y dureza. Los resultados obtenidos han puesto de manifiesto que, a pesar de que existen diferencias notables (sobre todo en cuanto a densidad y absorción con los áridos naturales, las características de los áridos hacen posible la fabricación de hormigones. 2. Ensayos sobre propiedades básicas de los hormigones: se establecen parámetros de dosificaci

  13. Properties of Concrete Mixes with Carwash Wastewater

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available The rapid growth of the car wash industry today results in the need for wastewater reclamation. Thus, this paper aims to investigate the effect of using car wash wastewater on concrete properties in terms of mechanical properties. The basic characteristics of wastewater were investigated according to USEPA (Method 150.1 & 3 00.0 while the mechanical properties of concrete with car wash wastewater were compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentages of wastewater replaced in the concrete mix ranged from 0% up to 40%. In addition, the results also suggest that the concrete with 20% car wash wastewater achieved the highest compressive strength and modulus of elasticity compared to other compositions of wastewater. Moreover, the results also recommended that concrete mixed with car wash wastewater has better compressive strength compared to conventional concrete.

  14. Radiometric assessment of quality of concrete mix with respect to hardened concrete strength

    International Nuclear Information System (INIS)

    Czechowski, J.

    1983-01-01

    The experiments have confirmed the relationship between the intensity of backscattered gamma radiation and the density of fresh concrete, and also between the flow of backscattered fast neutrons and the water content. From the said two parameters it is possible to derive the compression strength of concrete over the determined period of mix hardening, e.g., after 28 days. For a certain composition of concrete it is possible to derive empirical relations between the intensity of backscattered gamma radiation and neutrons and concrete strength after hardening and to construct suitable nomograms. (Ha)

  15. Effect of prolonged mixing time on concrete properties

    International Nuclear Information System (INIS)

    Mohd Noorul Ikhsan Mohamed; Sidek, H.A.A.; Wahab, Z.A.

    2009-01-01

    The correlation between workability, compressive strength and mixing time of fresh concrete has been studied. The concrete samples used in the study are normal concrete of grade 30. The mix design of the concrete samples was estimated using software called Calcrete. Three concrete cubes of 150 mm size were cast immediately after mixing. The same grade of concrete was prepared with the mixing time of 30 minutes to 5 hours. All of the concrete samples were cured for 28 days under room temperature before they were compressed using a compression machine. Result shows that the compressive strength of concrete decreases when mixing time is increased. (author)

  16. Mix Proportion Design of Asphalt Concrete

    Science.gov (United States)

    Wu, Xianhu; Gao, Lingling; Du, Shoujun

    2017-12-01

    Based on the gradation of AC and SMA, this paper designs a new type of anti slide mixture with two types of advantages. Chapter introduces the material selection, ratio of ore mixture ratio design calculation, and determine the optimal asphalt content test and proportioning design of asphalt concrete mix. This paper introduces the new technology of mix proportion.

  17. Evaluation of concrete recycling system efficiency for ready-mix concrete plants.

    Science.gov (United States)

    Vieira, Luiz de Brito Prado; Figueiredo, Antonio Domingues de

    2016-10-01

    The volume of waste generated annually in concrete plants is quite large and has important environmental and economic consequences. The use of fresh concrete recyclers is an interesting way for the reuse of aggregates and water in new concrete production. This paper presents a study carried out for over one year by one of the largest ready-mix concrete producers in Brazil. This study focused on the evaluation of two recyclers with distinct material separation systems, herein referred to as drum-type and rotary sieve-type equipment. They were evaluated through characterization and monitoring test programs to verify the behaviour of recovered materials (aggregates, water, and slurry). The applicability of the recovered materials (water and aggregates) was also evaluated in the laboratory and at an industrial scale. The results obtained with the two types of recyclers used were equivalent and showed no significant differences. The only exception was in terms of workability. The drum-type recycler generated fewer cases that required increased pumping pressure. The analysis concluded that the use of untreated slurry is unfeasible because of its intense negative effects on the strength and workability of concrete. The reclaimed water, pre-treated to ensure that its density is less than 1.03g/cm(3), can be used on an industrial scale without causing any harm to the concrete. The use of recovered aggregates consequently induces an increase in water demand and cement consumption to ensure the workability conditions of concrete that is proportional to the concrete strength level. Therefore, the viability of their use is restricted to concretes with characteristic strengths lower than 25MPa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. prediction of concrete mix cost using modified regression theory

    African Journals Online (AJOL)

    Kambula

    2013-07-02

    Jul 2, 2013 ... one can predict the cost per cubic meter of concrete if the mix ratios are given. The model can also give possible mix ratios for a specified cost. Statistical tool was used to verify the adequacy of this model. The concrete cost analysis is based on the current market prices of concrete constituent materials.

  19. Early age compressive strength, porosity, and sorptivity of concrete using peat water to produce and cure concrete

    Science.gov (United States)

    Olivia, Monita; Ismeddiyanto, Wibisono, Gunawan; Sitompul, Iskandar R.

    2017-09-01

    Construction in peatland has faced scarce water sources for mixing and curing concrete. It is known that peat water has high organic content and low pH that can be harmful to concrete in the environment. In some remote areas in Riau Province, contractors used peat water directly without sufficient treatments to comply with SKSNI requirements of concrete mixing water. This paper presents a study of compressive strength, porosity and sorptivity of Ordinary Portland Cement (OPC) and blended OPC-Palm Oil Fuel Ash (OPC-POFA) concrete. The specimens were mixed using natural water and peat water, then some of them were cured in fresh water and peat water. Six mixtures were investigated using a variation of cement, mixing water and curing water. Tap water is used as control mixing and curing water for all specimens. The compressive strength, porosity and sorptivity were calculated at seven and 28 days. Results indicate that the use of peat water will cause low compressive strength, high porosity and sorptivity for both OPC and OPC-POFA concrete. Using peat water and curing the specimens in tap water could improve the early strength, porosity and sorptivity of OPC concrete; however, it has an adverse effect on OPC-POFA specimens. The properties of early age concrete of both types (OPC and OPC-POFA) using peat water were as good as those with tap water. Therefore, it is suggested that peat water should be considered as mixing and curing water for concrete where tap water resources are scarce. Investigation of its long-term properties, as well as extending the observed age of concrete is recommended before any use of peat water.

  20. Transmission of neutrons in serpentine mixed and ordinary concrete a comparative study

    International Nuclear Information System (INIS)

    Ravishankar, R.; Bhattacharyya, Sarmishtha; Bandyopadhyay, Tapas; Sarkar, P.K.

    2002-01-01

    Full text: In particle accelerator facilities, for radiation shielding, concrete is commonly used for its effectiveness in attenuating neutrons in addition to its good structural and mechanical properties. Neutron attenuation depends largely on the water content in the concrete. Serpentine mixed concrete is reported to retain better water content than ordinary concrete. Experiments have been carried out to compare neutron attenuation properties of Serpentine mixed concrete slabs and ordinary concrete slabs of different thickness. Transmission of neutrons from a 185 GBq Pu-Be neutron source has been studied using NE-213 liquid scintillator detector, along with the associated electronics to discriminate neutron from gamma using pulse shape discrimination techniques. The energy differential neutron spectra transmitted through the concrete slabs and the corresponding dose have been obtained by unfolding the pulse height spectra using the FERDOR-U computer code and proper response matrix data of the NE-213 detector. The neutron transmission factors through both Serpentine and Ordinary concrete slabs have been studied. The results show serpentine mixed concrete slabs can attenuate more neutrons of varying energies compared to ordinary concrete slabs of equal dimensions. From the trend, it has been found out, with the increase in slab thickness, the gain in neutron attenuation increases. This is due to increase in quantity of serpentine with the increase in thickness of, concrete. A Monte Carlo simulation carried out, for theoretical analysis of the results, has been found to be in order

  1. Transmission of neutrons in serpentine mixed and ordinary concrete- a comparative study

    International Nuclear Information System (INIS)

    Ravishankar, R.; Bhattacharyya, Sarmishtha; Bandyopadhyay, Tapas; Sarkar, P. K.

    2002-01-01

    In particle accelerator facilities, for radiation shielding, concrete is commonly used for its effectiveness in attenuating neutrons in addition to its good structural and mechanical properties. Neutron attenuation depends largely on the water content in the concrete. Serpentine mixed concrete is reported to retain better water content than ordinary concrete. Experiments have been carried out to compare neutron attenuation properties of Serpentine mixed concrete slabs and ordinary concrete slabs of different thickness. Transmission of neutrons from a 185 GBq Pu-Be neutron source has been studied using NE-213 liquid scintillator detector, along with the associated electronics to discriminate neutron from gamma using pulse shape discrimination techniques. The energy differential neutron spectra transmitted through the concrete slabs and the corresponding dose have been obtained by unfolding the pulse height spectra using the FERDOR-U computer code and proper response matrix data of the NE-213 detector. The neutron transmission factors through both Serpentine and Ordinary concrete slabs have been studied. The results show serpentine mixed concrete slabs can attenuate more neutrons of varying energies compared to ordinary concrete slabs of equal dimensions. From the trend, it has been found out, with the increase in slab thickness, the gain in neutron attenuation increases. This is due to increase in quantity of serpentine with the increase in thickness of concrete. A Monte Carlo simulation carried out, for theoretical analysis of the results, has been found to be in order

  2. NPDES Permit for Super Concrete Ready-Mix Corp. (Aggregate Industries)

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number DC0000175, Super Concrete Ready-Mix Corporation is authorized to discharge from a facility to receiving waters named unnamed tributary to Northwest Branch of the Anacostia River.

  3. MIX DESIGN FOR OIL-PALM-BOILER CLINKER (OPBC) CONCRETE

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    concrete and mix design methods as used for lightweight concrete were employed to obtain the target compressive strength at 28-day and was found to be lower than the target strength for. OPBC concrete. ... the OPBC as renewable resource can be high potential as an ..... PhD Thesis, Universiti Malaysia Sabah,. Sabah ...

  4. Prediction of Concrete Mix Cost Using Modified Regression Theory ...

    African Journals Online (AJOL)

    The cost of concrete production which largely depends on the cost of the constituent materials, affects the overall cost of construction. In this paper, a model based on modified regression theory is formulated to optimise concrete mix cost (in Naira). Using the model, one can predict the cost per cubic meter of concrete if the ...

  5. Ultrafine particles in concrete: Influence of ultrafine particles on concrete properties and application to concrete mix design

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten

    2010-07-01

    In this work, the influence of ultrafine particles on concrete properties was investigated. In the context of this work, ultrafine particles (reactive and inert materials) are particles finer than cement. Due to the development of effective superplasticizers, the incorporation of ultrafine particles in concrete is nowadays possible. Different minerals, usually considered inert, were tested. These minerals were also used in combination with reactive silica fume. The modified Andreassen model was used to optimise the particle size distribution and thus the packing density of the complete mix composition. Heat of hydration, compressive strength, shrinkage, frost resistance and the microstructure were investigated.The influence of different ultrafine inert materials on the cement hydration was investigated. The results show that most of the minerals have an accelerating effect. They provide nucleation sites for hydration products and contribute in that way to a faster dissolution of cement grains. Minerals containing calcium were found to influence the early stage of hydration as well. These minerals shortened the dormant period of the cement hydration, the effect is known from limestone filler in self-compacting concrete. In a first test series on concrete, different ultrafine inert particles were used to replace cement. That was done in several ways; with constant water content or constant w/c. The results from this test series show that the best effect is achieved when cement is replaced by suitable ultrafines while the w/c is kept constant. In doing so, the compressive strength can be increased and shrinkage can be reduced. The microstructure is improved and becomes denser with improved packing at microlevel. Efficiency factors (k values) for the ultrafine inert materials were calculated from the compressive strength results. The k values are strongly dependent on the mode of cement replacement, fineness and type of the replacement material and curing time. Drying

  6. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    Science.gov (United States)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  7. Liquid concrete mixes for V-2 nuclear power plant at Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Valenta, D.; Oravec, J.

    1983-01-01

    The liquid concrete mixes consist of aggregates, cement, water and plastifiers. The main component of aggregates is redeposited dolomite from the Dolinka locality and sand. Cement of the SPC-325 type is used while mixing water is taken from the service water pump station for the V-1 nuclear power plant. All concretes used for the V-2 nuclear power plant construction are treated using plastifier Plastifikator S. In concrete mix development, care was primarily taken to select sand with sufficient amounts of grain of a size up to 0.25 mm. Granularity curves of the sands and the resulting curve of the aggregates granularity of the concrete mix are shown graphically. The method of manufacture and conveying of concrete mixes are briefly described. The mathematical statistical analysis of the quality of the concrete mixes produced showed that the proposed concrete mixes meet the requirements for homogeneity in the controlled parameters and that they can be manufactured in the situation of building production provided suitable components are selected, suitable aggregates are available and the quality of production is systematically checked. (J.P.)

  8. The effect on slurry water as a fresh water replacement in concrete properties

    Science.gov (United States)

    Kadir, Aeslina Abdul; Shahidan, Shahiron; Hai Yee, Lau; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Concrete is the most widely used engineering material in the world and one of the largest water consuming industries. Consequently, the concrete manufacturer, ready mixed concrete plant is increased dramatically due to high demand from urban development project. At the same time, slurry water was generated and leading to environmental problems. Thus, this paper is to investigate the effect of using slurry water on concrete properties in term of mechanical properties. The basic wastewater characterization was investigated according to USEPA (Method 150.1 & 300.0) while the mechanical property of concrete with slurry water was compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentage of wastewater replaced in concrete mixing was ranging from 0% up to 50%. In addition, the resulted also suggested that the concrete with 20% replacement of slurry water was achieved the highest compressive strength and modulus of elasticity compared to other percentages. Moreover, the results also recommended that concrete with slurry water mix have better compressive strength compared to control mix concrete.

  9. Influence of High Temperatures on the Workability of Fresh Ready-Mixed Concrete

    Directory of Open Access Journals (Sweden)

    Victor Sampebulu'

    2012-04-01

    Full Text Available Properties of fresh concrete made in tropical countries, which is mixed, transported (with agitation, placed and initially cured in places where the temperature ranges from about 20oC to 40oC and relative humidity above 60%, are not completely understood. Applicable requirements also differ from country to country and government agencies and private enterprises have their own specifications. Assuming such temperature and relative humidity conditions, the present study is an attempt at evaluating the properties of hot weather concrete in fresh state with using a method of ready–mixed concrete. The fresh concrete was mixed and agitated at varying concrete and ambient temperatures. Three groups of the component materials, each material having such temperature as to bring resulting temperature of the fresh concrete to about 20oC, 30oC, 35oC, were chosen. The temperature of cement was conditioned to about20o, 40oC and 60oC for each of groups respectively. The aggregate was made warm enough to simulate the condition of outdoor pile in ready-mixed concrete plant. The temperature of tap water was always 20oC as it was easily controlled and unlikely affected by outdoor temperature. With the fresh concrete prevented from evaporation, slump loss is caused solely by increased temperature of concrete. During agitation, the slump loss increases rapidly during the first 30 minutes but moderately during the remaining period. Concrete-placing temperature (upon arrival at the work site could be estimated by a proposed formula derived from this study. Besides the freshly mixed concrete temperature, this formula also takes into consideration the ambient temperature, agitating time in transit and hydration heat. The achievement as described in this study may be useful to control concrete quality in terms of strength, shrinkage and other properties of concrete to be placed in hot-humid environment.

  10. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    Science.gov (United States)

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Properties of concrete mixed with sand frozen by liquid nitrogen

    International Nuclear Information System (INIS)

    Negami, Yoshiaki; Kurita, Morio; Kuwahara, Takashi; Goto, Sadao.

    1990-01-01

    This paper presents a new precooling method which reduces the temperature of mixed concrete by mixing it with sand frozen by liquid nitrogen. The authors tried to clarify the properties of both the frozen sand and the concrete mixed with the frozen sand. The results of a series of experimental studies indicate that the temperature of mixed concrete can be reduced about 25degC, which is a larger reduction quantity than that achieved by conventional precooling methods; and that this method contributes to improvement of the consistency and the compressive strength of the concrete. Furthermore, the advantageous effect of this precooling method is confirmed from the results of laboratory tests using massive concrete members. (author)

  12. Effect of Mixing Process on Polypropylene Modified Bituminous Concrete Mix Properties

    OpenAIRE

    Noor Zainab Habib; Ibrahim Kamaruddin; Madzalan Napiah; Isa Mohd Tan

    2011-01-01

    This paper presents a research conducted to investigate the effect of mixing process on polypropylene (PP) modified bitumen mixed with well graded aggregate to form modified bituminous concrete mix. Two mode of mixing, namely dry and wet with different concentration of polymer polypropylene was used with 80/100 pen bitumen, to evaluate the bituminous concrete mix properties. Three percentages of polymer varying from 1-3% by the weight of bitumen was used in this study. Three mixes namely cont...

  13. Development of Mix Design Method in Efforts to Increase Concrete Performance Using Portland Pozzolana Cement (PPC)

    Science.gov (United States)

    Krisnamurti; Soehardjono, A.; Zacoeb, A.; Wibowo, A.

    2018-01-01

    Earthquake disaster can cause infrastructure damage. Prevention of human casualties from disasters should do. Prevention efforts can do through improving the mechanical performance of building materials. To achieve high-performance concrete (HPC), usually used Ordinary Portland Cement (OPC). However, the most widely circulating cement types today are Portland Pozzolana Cement (PPC) or Portland Composite Cement (PCC). Therefore, the proportion of materials used in the HPC mix design needs to adjust to achieve the expected performance. This study aims to develop a concrete mix design method using PPC to fulfil the criteria of HPC. The study refers to the code/regulation of concrete mixtures that use OPC based on the results of laboratory testing. This research uses PPC material, gravel from Malang area, Lumajang sand, water, silica fume and superplasticizer of a polycarboxylate copolymer. The analyzed information includes the investigation results of aggregate properties, concrete mixed composition, water-binder ratio variation, specimen dimension, compressive strength and elasticity modulus of the specimen. The test results show that the concrete compressive strength achieves value between 25 MPa to 55 MPa. The mix design method that has developed can simplify the process of concrete mix design using PPC to achieve the certain desired performance of concrete.

  14. Plastometry for the Self-Compacting Concrete Mixes

    Science.gov (United States)

    Lapsa, V. Ā.; Krasnikovs, A.; Lusis, V.; Lukasenoks, A.

    2015-11-01

    Operative determination of consistence of self-compacting concrete mixes at plant or in construction conditions is an important problem in building practice. The Abram's cone, the Vebe's device, the U-box siphon, L-box or funnel tests are used in solving this problem. However, these field methods are targeted at determination of some indirect parameters of such very complicated paste-like material like concrete mix. They are not physical characteristics suitable for the rheological calculations of the coherence between the stress and strains, flow characteristics and the reaction of the concrete mix in different technological processes. A conical plastometer having higher precision and less sensitive to the inaccuracy of the tests in construction condition has been elaborated at the Concrete Mechanics Laboratory of RTU. In addition, a new method was elaborated for the calculation of plasticity limit τ0 taking into account the buoyancy force of the liquid or non-liquid concrete mix. In the present investigation rheological test of the concrete mix by use the plastometer and the method mentioned earlier was conducted for different self-compacting and not self-compacting concrete mixes.

  15. Effect of mix proportion of high density concrete on compressive strength, density and radiation absorption

    International Nuclear Information System (INIS)

    Noor Azreen Masenwat; Mohamad Pauzi Ismail; Suhairy Sani; Ismail Mustapha; Nasharuddin Isa; Mohamad Haniza Mahmud; Mohammad Shahrizan Samsu

    2014-01-01

    To prevent radiation leaks at nuclear reactors, high-density concrete is used as an absorbent material for radiation from spreading into the environment. High-density concrete is a mixture of cement, sand, aggregate (usually high-density minerals) and water. In this research, hematite stone is used because of its mineral density higher than the granite used in conventional concrete mixing. Mix concrete in this study were divided into part 1 and part 2. In part 1, the concrete mixture is designed with the same ratio of 1: 2: 4 but differentiated in terms of water-cement ratio (0.60, 0.65, 0.70, 0.75, 0.80 ). Whereas, in part 2, the concrete mixture is designed to vary the ratio of 1: 1: 2, 1: 1.5: 3, 1: 2: 3, 1: 3: 6, 1: 2: 6 with water-cement ratio (0.7, 0.8, 0.85, 0.9). In each section, the division has also performed in a mixture of sand and fine sand hematite. Then, the physical characteristics of the density and the compressive strength of the mixture of part 1 and part 2 is measured. Comparisons were also made in terms of absorption of radiation by Cs-137 and Co-60 source for each mix. This paper describes and discusses the relationship between the concrete mixture ratio, the relationship with the water-cement ratio, compressive strength, density, different mixture of sand and fine sand hematite. (author)

  16. a new approach to concrete mix design using computer techniques

    African Journals Online (AJOL)

    Engr. Vincent okoloekwe

    required for a specified grade of concrete. 26 ... terms of the grade of the concrete required, its durability and ... experiments involves the use of a planned ..... machinery or vehicles. Nominal mix; 1:1:2. ½. 1. 1½. 2. 4½. 9. 1. 2. 3. 3¾. 82/3. 171/3.

  17. Optimising of Steel Fiber Reinforced Concrete Mix Design | Beddar ...

    African Journals Online (AJOL)

    Optimising of Steel Fiber Reinforced Concrete Mix Design. ... as a result of the loss of mixture workability that will be translated into a difficult concrete casting in site. ... An experimental study of an optimisation method of fibres in reinforced ...

  18. Quality assurance program : bituminous concrete and central mix aggregates.

    Science.gov (United States)

    1980-01-01

    This report presents the results of a pilot quality assurance program initiated in the Richmond District in 1978. Under this program the producer's control tests are used for the acceptance of central mix aggregate and bituminous concrete and the Dep...

  19. Density measurement verification for hot mix asphalt concrete pavement construction.

    Science.gov (United States)

    2010-06-01

    Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...

  20. Density measurement verification for hot mixed asphalt concrete pavement construction.

    Science.gov (United States)

    2010-06-01

    Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...

  1. Techniques for internal water curing of concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Pietro, Lura

    2003-01-01

    This paper gives an overview of different techniques for incorporation of internal curing water in concrete. Internal curing can be used to mitigate self-desiccation and self-desiccation shrinkage. Some concretes may need 50 kg/m3 of internal curing water for this purpose. The price of the internal...

  2. Influence of the mix parameters and microstructure on the behaviour of concrete at high temperature

    International Nuclear Information System (INIS)

    Kanema, M.; Noumowe, A.; Gallias, J.-L.; Cabrillac, R.

    2005-01-01

    Concrete is used in structures likely to be exposed to high temperature. Data on the behaviour of concrete at high temperature are necessary to design buildings and other civil engineering structures in order to resist under accidental conditions (fire) or particular conditions of service (storage of radioactive waste). The present experimental study was carried out on the behaviour of five concretes containing the same nature and quantity of aggregates and presenting different water/cement ratios. Concrete specimens were submitted to heating-cooling cycles whose maximum temperatures were 150, 300, 450 and 600 degree C. Measurements of compressive and tensile strength, modulus of elasticity and permeability were carried out on cylindrical specimens before and after heating-cooling cycles. The results showed the influence of concrete mix parameters on the residual properties and the dehydration of the cement paste matrix, the evolution of the permeability and thermal stability of concrete when it is subjected to high temperature. (authors)

  3. Reliability-Based Approach for the Determination of the Required Compressive Strength of Concrete in Mix Design

    OpenAIRE

    Okasha , Nader M

    2017-01-01

    International audience; Concrete is recognized as the second most consumed product in our modern life after water. The variability in concrete properties is inevitable. The concrete mix is designed for a compressive strength that is different from, typically higher than, the value specified by the structural designer. Ways to calculate the compressive strength to be used in the mix design are provided in building and structural codes. These ways are all based on criteria related purely and on...

  4. Experimental Study on Superfine Sand Concrete Mixed by Double Mixing Technology

    OpenAIRE

    yuqing zhao

    2013-01-01

    Traditional concept thought that medium sand and fine sand can be used to mix concrete, superfine sand can not used to mix concrete. This makes the source of superfine sand limited. With the shortage of medium sand and fine sand, it is imperative to exploit the resource of superfine sand. Superfine sand concrete is mixed by means of Double-doped Technology-ultra-fine fly ash and super plasticizer. Primary factor influencing superfine sand concrete strength is studied by orthogonal test, the o...

  5. Effect of Hand Mixing on the Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    James Isiwu AGUWA

    2010-12-01

    Full Text Available This paper presents the effect of hand mixing on the compressive strength of concrete. Before designing the concrete mix, sieve analysis of sharp sand and chippings was carried out and their fineness moduli were determined. Also the dry weight of chippings and the specific gravities of both sand and chippings were determined. A designed concrete mix of 1:2:4 was used and the number of turnings of the mixture over from one end to another by hand mixing was varying from one time up to and including seven times. The strengths were measured at the curing ages of 7, 14, 21 and 28 days respectively using 150mm concrete cubes cast, cured and crushed. The results revealed that the compressive strengths of concrete cubes appreciably increased with increase in number of turnings from one to four times but remained almost constant beyond four times of turning for all the ages tested. For example, at 1, 2, and 3 times turning; the compressive strengths at 28 days were 4.67, 13.37 and 20.28N/mm2 respectively while at 4, 5 and 6 times turning; the compressive strengths at 28 days were 21.15, 21.34 and 21.69N/mm2. From the data, adequate strengths were not developed at turnings below three times of hand mixing, concluding that a minimum of three times turning is required to produce concrete with satisfactory strength.

  6. Experimental Study on Ready-Mix Concrete: Case Study

    Directory of Open Access Journals (Sweden)

    Ellouze Dorra

    2018-01-01

    Full Text Available Ready-mix concrete (RMC in Tunisia is becoming more and more in demand in the civil engineering sector thanks to its qualities of handling in the fresh state and resistance in the hardened state, this composite material must respect the quality-price ratio. A RMC with a minimal cost is the object of our work. This research is part of the opening of higher education on professional life, where we optimized the formulation of a RMC. This work has 3 axes. In the first place the resources in building materials were characterized, namely various samples of sand, gravel, cement and water. Subsequently, the adjuvant-cement ratio (A/C was optimized. Finally, the workability of the concrete as well as its mechanical aptitude at various ages 7, 14 and 28 days were characterized. These examinations have resulted in an appropriate formulation for any type of resource that varies according to the provenance of the quarries (gravel and sand, the effect of the plasticizer-water reducer is found for a very interesting A/C ratio, the mechanical tests for different ages are also conclusive.

  7. Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete

    Directory of Open Access Journals (Sweden)

    Manu S. Nadesan

    2017-12-01

    Full Text Available Concrete is one of the most widely used construction materials and has the ability to consume industrial wastes in high volume. As the demand for concrete is increasing, one of the effective ways to reduce the undesirable environmental impact of the concrete is by the use of waste and by-product materials as cement and aggregate substitutes in concrete. One such waste material is fly ash, which is produced in large quantities from thermal power plants as a by-product. A substantial amount of fly ash is left unused posing environmental and storage problems. The production of sintered lightweight aggregate with fly ash is an effective method to dispose of fly ash in large quantities. Due to lack of a proper mix design procedure, the production and application of lightweight aggregate in structural concrete are not much entertained. The absorption characteristic of lightweight aggregate is a major concern, while developing the mix proportioning of lightweight concretes. The present study is an attempt to establish a new mix design procedure for the development of sintered fly ash lightweight aggregate concretes, which is simple and more reliable than the existing procedures. Also, the proposed methodology has been validated by developing a spectrum of concretes having water cement ratios varying from 0.25 to 0.75. From the study, it is obvious that the development of 70 MPa concrete is possible by using cement alone without any additives. Also, it is ensured that all the concretes have densities less than 2000 kg/m3.

  8. Characterization of mixed mode crack opening in concrete

    DEFF Research Database (Denmark)

    Jacobsen, Jonas Sejersbøl; Poulsen, Peter Noe; Olesen, John Forbes

    2012-01-01

    components of the mixed mode displacement are measured using a custom made orthogonal gauge, and the measurements are used directly as the closed loop control signals. A double notch, concrete specimen is used for the crack investigation. The tests are divided into two steps, a pure Mode I opening step......In real concrete structures cracks often open in mixed mode after their initiation. To capture the direct material behavior of a mixed mode crack opening a stiff biaxial testing machine, capable of imposing both normal and shear loads on a given crack area, has been applied. The opening and sliding......, where a macro crack is initiated in the specimen followed by the mixed mode opening step. The high stiffness of the set-up together with the closed control loop ensures a stable crack initiation followed by a controllable mixed mode opening. The deep notches result in a plane crack, only influenced...

  9. Use of selected waste materials in concrete mixes.

    Science.gov (United States)

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  10. Use of selected waste materials in concrete mixes

    International Nuclear Information System (INIS)

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures

  11. Evaluation of concrete bridge mix designs for control of cracking, phase I.

    Science.gov (United States)

    2014-11-01

    Cracking of concrete is a common problem with concrete structures such as bridge decks, pavements and bridge : rail. The Agency of Transportation (VTrans) has recently invested in higher performing concrete mixes that are : more impervious and has hi...

  12. Application of orthogonal test method in mix proportion design of recycled lightweight aggregate concrete

    Science.gov (United States)

    Zhao, Zhanshan; An, Le; Zhang, Yijing; Yuan, Jie

    2017-03-01

    Recycled lightweight aggregate concrete was made with construction waste and ceramsite brick mainly including brick. Using the orthogonal test method, the mix proportion of recycled lightweight aggregate concrete was studied, and the Influence regularity and significance of water binder ratio, fly ash, sand ratio, the amount of recycled aggregate proportion on the compressive strength of concrete, the strong influence of mass ratio, slump expansion degree was studied. Through the mean and range analysis of the test results, the results show that the water binder ratio has the greatest influence on the 28d intensity of recycled lightweight aggregate concrete. Secondly, the fly ash content, the recycled aggregate replacement rate and the sand ratio have little influence. For the factors of expansion: the proportion of fly ash = water binder ratio sand >sand rate> recycled aggregate replacement rate. When the content of fly ash is about 30%, the expanded degree of recycled lightweight aggregate concrete is the highest, and the workability of that is better and the strength of concrete with 28d and 56d are the highest. When the content of brickbat is about 40% brick particles, the strength of concrete reaches the highest.

  13. Development of k-300 concrete mix for earthquake-resistant Housing infrastructure in indonesia

    Science.gov (United States)

    Zulkarnain, Fahrizal

    2018-03-01

    In determining the strength of K-300 concrete mix that is suitable for earthquake-resistant housing infrastructure, it is necessary to research the materials to be used for proper quality and quantity so that the mixture can be directly applied to the resident’s housing, in the quake zone. In the first stage, the examination/sieve analysis of the fine aggregate or sand, and the sieve analysis of the coarse aggregate or gravel will be carried out on the provided sample weighing approximately 40 kilograms. Furthermore, the specific gravity and absorbance of aggregates, the examination of the sludge content of aggregates passing the sieve no. 200, and finally, examination of the weight of the aggregate content. In the second stage, the planned concrete mix by means of the Mix Design K-300 is suitable for use in Indonesia, with implementation steps: Planning of the cement water factor (CWF), Planning of concrete free water (Liters / m3), Planning of cement quantity, Planning of minimum cement content, Planning of adjusted cement water factor, Planning of estimated aggregate composition, Planning of estimated weight of concrete content, Calculation of composition of concrete mixture, Calculation of mixed correction for various water content. Implementation of the above tests also estimates the correction of moisture content and the need for materials of mixture in kilograms for the K-300 mixture, so that the slump inspection result will be achieved in planned 8-12 cm. In the final stage, a compressive strength test of the K-300 experimental mixture is carried out, and subsequently the composition of the K-300 concrete mixture suitable for one sack of cement of 50 kg is obtained for the foundation of the proper dwelling. The composition is consists of use of Cement, Sand, Gravel, and Water.

  14. Chloride Ingress into Concrete under Water Pressure

    DEFF Research Database (Denmark)

    Lund, Mia Schou; Sander, Lotte Braad; Grelk, Bent

    2011-01-01

    The chloride ingress into concrete under water pressures of 100 kPa and 800 kPa have been investigated by experiments. The specimens were exposed to a 10% NaCl solution and water mixture. For the concrete having w/c = 0.35 the experimental results show the chloride diffusion coefficient at 800 k......Pa (~8 atm.) is 12 times greater than at 100 kPa (~1 atm.). For w/c = 0.45 and w/c = 0.55 the chloride diffusion coefficients are 7 and 3 times greater. This means that a change in pressure highly influences the chloride ingress into the concrete and thereby the life length models for concrete structures....

  15. Study of water permeability in concrete by neutron and gamma-ray techniques

    International Nuclear Information System (INIS)

    Abd El-Monem, A.M.M.

    2010-01-01

    water infiltration in various building materials , namely concrete used for buildings basement and underwater construction is the main concern of the studies performed in this thesis. The studies aim to develop a nuclear techniques for investigation a concrete mixes with different additives capable to decrease concrete porosity and intern resist water propagation inside concrete materials without any deterioration of concrete physical and mechanical properties . These issues were achieved through the preparation of ordinary concrete mixes with different percentages of silica fume. Concrete samples of different shape and geometries were made to study water diffusion when the concrete samples are submerged in water for different periods of time. The concrete samples were first sealed by molten asphalt from all sides expect two opposite faces to ensure water migration only along one direction. Water infiltration in concrete samples with different percentages of silica fume and submerged in tap and seawater for different periods of time was studied by neutrons and gamma techniques. Also, water propagation in mortar samples with different percentages of silica fume was studied by electrical methods based on measuring the variation in electrical conductivity of these samples.

  16. Mix design proposal for structural concrete using messobo ordinary ...

    African Journals Online (AJOL)

    Hessebo Ordinary Portland Cement (OPC). Realizing the various factors contributing to the quality of concrete, 43 trial batches of different mix designs were investigated. Based on the test results, equations were derived to relate compressive strength to w/c and to predict the 28 days compressive strength from the 7 days ...

  17. Steel slag in hot mix asphalt concrete : final report

    Science.gov (United States)

    2000-04-01

    In September 1994, steel slag test and control sections were constructed in Oregon to evaluate the use of steel slag in hot mix asphalt concrete (HMAC). This report covers the construction and five-year performance of a pavement constructed with 30% ...

  18. Mix for production of heavy concretes

    International Nuclear Information System (INIS)

    Skvara, F.; Halen, S.; Kolar, K.; Novotny, J.; Zadak, Z.; Zezulka, J.

    1981-01-01

    The mix consists of 76 to 99.79 wt.% of cement clay of a specific area of 150 to 3000 m 2 /kg, of heavy aggregate (in a ratio of 1 part of cement clay to more than 1 part of the heavy aggregate) and of 0.1 to 8 wt.% of lignosulphonic acid salt. The mix also contains 0.1 to 8 wt.% of boric acid, 0.01 to 8 wt.% of a carbonate or a hydrogen carbonate of an alkali metal. (H.S.)

  19. Mass transfer in water-saturated concretes

    International Nuclear Information System (INIS)

    Atkinson, A.; Claisse, P.A.; Harris, A.W.; Nickerson, A.K.

    1990-01-01

    Cements and concretes are often considered as components of barriers for the containment of radioactive waste. The performance of such materials as mainly physical barriers to the transport of dissolved radionuclides depends on the mass transfer characteristics of the material. In particular the diffusion and sorption behavior of the radionuclides and the water permeability are important. These parameters also influence how the chemistry of the concrete is imposed on the repository. In addition, the transport of gas through concrete controls the way in which gases escape from the repository. Diffusion and gas transport have been measured in a variety of cementitious materials, covering both structural concretes and cementitious backfills; all possible repository construction materials. Measurements have been made using aqueous iodide, strontium and caesium ions and tritiated water as diffusants. The results show that the diffusion of tritiated water is more rapid than that of other species, whilst the transport of strontium and caesium is hindered by sorption; particularly in materials containing blast furnace slag. The transport of gas in these materials has been found to be very sensitive to the degree of water saturation and is extremely low in fully saturated structural concretes. Cementitious backfills have, nevertheless, been identified that have appreciable gas transport even when almost water saturated. The consequences of the results for the performance of cementitious barriers are discussed

  20. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    Science.gov (United States)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  1. Advantages of Concrete Mixing with Tyre Rubber

    OpenAIRE

    Mazyad Al-Fadhli *

    2017-01-01

    Strong waste administration is one of the major natural concerns everywhere throughout the world. Tire-rubber particles made out of tire chips, piece elastic, and a mix of tire chips and scrap elastic, where utilized to supplant mineral totals in cement. These particles were utilized to supplant 10% , 15% , 20%, and 25% of the aggregate mineral totals volume in cement.Using rubber aggregates in such applications can help to prevent pollution and overcome the problem of storing used tyres. Adv...

  2. Effects on concrete from borated water and boric compounds cast into the concrete

    International Nuclear Information System (INIS)

    Fagerlund, Goeran

    2010-06-01

    A study has been made of the effects on concrete of its exposure to external water containing boric acid, and the effects on concrete of boric compounds cast into the concrete during its manufacture. According to information in literature boric acid is a weak Lewis acid that has no effect on concrete. Reaction between calcium hydroxide existing in concrete and boric acid might occur at the concrete surface. The reaction product formed (calcium-metaboritehexahydrate) has lower solubility than calcium hydroxide itself. Therefore, the reaction is reasonably harmless. Accelerated and non-accelerated test methods exist by which quantitative information on the effect of boric acid can be obtained. The test principles are described. Boron-containing compounds might be mixed into concrete in order to increase its resistance to neutron radiation. Pure boron minerals, as well as boron-containing residual materials from processing of natural boron minerals, might be used. Concrete might be affected with regard to the following properties: - Workability of the fresh concrete; - Stiffening and hardening of the concrete; - Strength (compression, tension); - Deformation (E-modulus, creep); - Durability (chemical, steel corrosion. Information in literature indicates that the hardening process might be severely affected also when rather small amounts of certain boron-containing materials are used. The effect seems to be small, or none, however, if materials with low solubility are used. The effect on workability seems to be marginal. Test methods exist by which it is practical possible to develop acceptable concrete recipes. The effects on mechanical properties are not well clarified by research. However, effects seem to be small when boron materials with low solubility are used. In one study, in which part of the cement was replaced by a boron containing colemanite waste, it was found that the E-modulus was very much reduced. The significance of this result is unclear. The

  3. Concrete mix design for X-and gamma shielding

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Abdul Bakhri Muhammad; Mohd Kamal Shah Shamsuddin; Rahmad Abd Rashid

    2012-01-01

    The design of X-ray or gamma ray radiographic exposure room requires some calculations on shielding to provide safe operation of the facility and minimum exposure to radiation workers. Careful design can lead to economical installations with minimal barriers. The design depends on such factors as: maximum energy, maximum intensity, permitted full-body dosage, workload, use factor, occupancy factor, maximum dose output and shielding materials. Choice of material for a barrier depends on convenience and cost. The radiographic exposure room is usually made of normal concrete with density of about 2.3 - 2.4 g/ cc. Normal concrete is often used for construction of exposure room because of cheap and ease of construction. This paper explained and discussed the optimum mix design for normal concrete used for X-and gamma shielding. (author)

  4. Evaluating the time-dependent and bond characteristics of lightweight concrete mixes for Kansas prestressed concrete bridges.

    Science.gov (United States)

    2011-07-01

    This report details results from testing that was conducted to determine the bond and time-dependent : characteristics of two lightweight concrete mixes. The lightweight mixes were evaluated to possibly : provide a more cost-effective solution to rep...

  5. Characterization of Concrete Mixes Containing Phase Change Materials

    Science.gov (United States)

    Paksoy, H.; Kardas, G.; Konuklu, Y.; Cellat, K.; Tezcan, F.

    2017-10-01

    Phase change materials (PCM) can be used in passive building applications to achieve near zero energy building goals. For this purpose PCM can be added in building structures and materials in different forms. Direct incorporation, form stabilization and microencapsulation are different forms used for PCM integration in building materials. In addition to thermal properties of PCM itself, there are several other criteria that need to be fulfilled for the PCM enhanced building materials. Mechanical properties, corrosive effects, morphology and thermal buffering have to be determined for reliable and long-term applications in buildings. This paper aims to give an overview of characterization methods used to determine these properties in PCM added fresh concrete mixes. Thermal, compressive strength, corrosion, and microscopic test results for concrete mixes with PCM are discussed.

  6. Reuse of By-Products from Ready-Mixed Concrete Plants for the Production of Cement Mortars

    Directory of Open Access Journals (Sweden)

    Monika Zervaki

    2013-06-01

    Full Text Available This study was motivated by the necessity to recycle sludge water resulting from washing out concrete mixing trucks - a problem of both environmental and economic importance for the ready-mixed concrete industry. Sludge water from ready-mixed concrete plants as well as dry sludge, which is derived from the settling of the water, are hazardous for disposal due to their high pH value (pH>11.5. In this work, cement mortars were composed using either sludge water after various treatment, or dry sludge in several ratios. The cement mortars were tested for their workability and strength development. The purpose of this experimental design was to prove that sludge water, as well as sludge in a wet or dry form, can be used in the production of mortars without degrading any of their properties.

  7. Gas and Water Permeability of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.

    2012-11-01

    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  8. estimating formwork striking time for concrete mixes estimating

    African Journals Online (AJOL)

    eobe

    In this study, we estimated the time for strength development in concrete cured up to 56 days. Water. In this .... regression analysis using MS Excel 2016 Software performed on the ..... [1] Abolfazl, K. R, Peroti S. and Rahemi L 'The Effect of.

  9. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content.

    Science.gov (United States)

    López-Uceda, Antonio; Ayuso, Jesús; López, Martin; Jimenez, José Ramón; Agrela, Francisco; Sierra, María José

    2016-01-26

    In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m³ of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m³ of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works.

  10. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content

    Science.gov (United States)

    López-Uceda, Antonio; Ayuso, Jesús; López, Martin; Jimenez, José Ramón; Agrela, Francisco; Sierra, María José

    2016-01-01

    In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m3 of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m3 of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works. PMID:28787874

  11. Improved concrete properties to resist the saline water using environmental by-product

    Directory of Open Access Journals (Sweden)

    Mohamed Anwar

    2013-10-01

    Full Text Available This paper investigates the influence of using environmental by-product materials (silica fume and fly ash in concrete on the chloride ion permeability of concrete. Nine concrete mixtures were designed to have the same degree of workability and air content with water/cementitious material ratio of 0.4. The studied parameters include the main fresh and hardened concrete properties such as slump, air content, unit weight, compressive strength, tensile strength, flexural strength, static Young's modulus, and dynamic elastic modulus. Concrete samples were kept in water for 28 days, then immersed in artificial sea water for 5 months. The total and soluble chloride contents were measured through the concrete using the potentiometric titration analysis. The obtained test results indicated that the use of ternary systems in concrete improved the different characteristics of the product concrete and showed a significant resistance to chloride penetration. The weights of chloride in mix 9 (10% silica fume and 25% fly ash at depths from the concrete surface to 30 mm were less than the weights of control mix 1 (100% ordinary Portland cement by about 60%. Further, the ternary systems can be used in concrete industry with considerable proportions.

  12. Evaluation of isotropy in wet-mix sprayed concrete

    Directory of Open Access Journals (Sweden)

    Yubero, E.

    2009-07-01

    Full Text Available It is well known that there are differences between the fresh mix concrete and the placed concrete sprayed using dry or wet-mix process. Because of that, the characterization of such material is carried out in cores extracted parallel to the spray direction from sample panels. However, in many applications (e.g. tunnel lining, considerable compressive stresses appear along the transversal direction. In this paper different spayed concretes are evaluated. It was observed that the values of compressive strength and modulus of elasticity were different depending on the direction of measurement. These differences are related to a preferential orientation of the coarse aggregate due to the characteristics of the casting process. Rather than applying classic empirical methods, the concrete mixes used in this study were designed according to a new proportioning method based on the difference between the composition of the fresh mix concrete and the placed concrete.Dadas las diferencias entre el hormigón de partida y el colocado, la evaluación de las propiedades de un hormigón proyectado, por vía húmeda o seca, se realiza mediante la extracción de testigos, evaluándose las propiedades mecánicas o deformacionales de forma uniaxial, según la dirección de la proyección. No obstante, son muchas las aplicaciones, como es el caso del sostenimiento en túneles, en las que esta disposición no representa la forma de trabajo principal del hormigón en la estructura. En el presente artículo se ha verificado que pueden existir diferencias en la resistencia a compresión y módulo de elasticidad del hormigón proyectado por vía húmeda, según la dirección de evaluación. Éstas van ligadas a la orientación que sufre el árido grueso como consecuencia de la puesta en obra del hormigón. Asimismo, el hormigón proyectado del estudio se ha dosificado utilizando como procedimiento de dosificación una propuesta metodológica, basada en las diferencias

  13. Determination of water retention curves of concrete

    International Nuclear Information System (INIS)

    Villar, M.V.; Romero, F.J.

    2015-01-01

    The water retention curves of concrete and mortar obtained with two different techniques and following wetting and drying paths were determined. The material was the same used to manufacture the disposal cells of the Spanish surface facility of El Cabril. The water retention capacity of mortar is clearly higher than that of concrete when expressed as gravimetric water content, but the difference reduces when it is expressed as degree of saturation. Hysteresis between wetting and drying was observed for both materials, particularly for mortar. The tests went on for very long periods of time, and concerns about the geochemical, mineralogical and porosity changes occurred in the materials during the determinations (changes in dry mass, grain density, samples volume) and their repercussion on the results obtained (water content and degree of saturation computation) were raised. Also, the fact of having used techniques applying total and matrix suction could have affected the results. (authors)

  14. Effect of Salt Water in the Production of Concrete | Mbadike ...

    African Journals Online (AJOL)

    In this research work, the effect of salt water in the production of concrete was investigated. A total of ninety (90) concrete cubes were cast for compression strength test i.e. forty five cubes were cast using fresh water and the other forty five cubes were also cast using salt water. Similarly, a total of ninety (90) concrete beams ...

  15. Mechanical properties of self-compacted fiber concrete mixes

    Directory of Open Access Journals (Sweden)

    Mounir M. Kamal

    2014-04-01

    Full Text Available Increased productivity and improved working environment have had high priority in the development of concrete construction over the last decade. The major impact of the introduction of self-compacting concrete (SCC is connected to the production process. The productivity is drastically improved through the elimination of vibration compaction and process reorganization. The working environment is significantly enhanced through avoidance of vibration induced damages, reduced noise and improved safety. Additionally, SCC technology has improved the performance in terms of hardened concrete properties like surface quality, strength and durability. The main objective of this research was to determine the optimum content of fibers (steel and polypropylene fibers used in SCC. The effect of different fibers on the fresh and hardened properties was studied. An experimental investigation on the mechanical properties, including compressive strength, flexural strength and impact strength of fiber reinforced self-compacting concrete was performed. The results of the investigation showed that: the optimum dosage of steel and polypropylene fiber was 0.75% and 1.0% of the cement content, respectively. The impact performance was also improved due to the use of fibers. The control mix specimen failed suddenly in flexure and impact, the counterpart specimens contain fibers failed in a ductile manner, and failure was accompanied by several cracks.

  16. Capability of GGBS concrete exposed to sea water

    International Nuclear Information System (INIS)

    Salihuddin Radin Sumadi; Rosli Hamir; Abu Bakar Mohamad Diah

    1999-01-01

    This paper reported studies the penetration of chloride into ground granulated blast furnace slag (GGBS) concrete with exposure on marine environment. Test were conducted on ordinary portland cement (OPC) concrete and 60% (by weight) of OPC replaced GGBS (S-60). The specimens immersed in sea water were tested for chloride penetration. The results show that higher replacement level of GGBS in concrete significantly reduce the chloride content in concrete. The results also show that chloride concentration decreases with increasing depth into concrete. (author)

  17. Influence of mixing procedure on robustness of self-consolidating concrete.

    Science.gov (United States)

    2014-08-01

    Self-Consolidating Concrete is, in the fresh state, more sensitive to small variations in the constituent elements and the mixing : procedure compared to Conventional Vibrated Concrete. Several studies have been performed recently to identify robustn...

  18. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production.

    Science.gov (United States)

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; López-Ochoa, Luis M; López-González, Luis M

    2017-07-18

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study's methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product's performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete's strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete's performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced.

  19. Mix design and pollution control potential of pervious concrete with non-compliant waste fly ash.

    Science.gov (United States)

    Soto-Pérez, Linoshka; Hwang, Sangchul

    2016-07-01

    Pervious concrete mix was optimized for the maximum compressive strength and the desired permeability at 7 mm/s with varying percentages of water-to-binder (W/B), fly ash-to-binder (FA/B), nano-iron oxide-to-binder (NI/B) and water reducer-to-binder (WR/B). The mass ratio of coarse aggregates in sizes of 4.75-9.5 mm to the binder was fixed at 4:1. Waste FA used in the study was not compliant with a standard specification for use as a mineral admixture in concrete. One optimum pervious concrete (Opt A) targeting high volume FA utilization had a 28-day compressive strength of 22.8 MPa and a permeability of 5.6 mm/s with a mix design at 36% W/B, 35% FA/B, 6% NI/B and 1.2% WR/B. The other (Opt B) targeting a less use of admixtures had a 28-day compressive strength and a permeability of 21.4 MPa and 7.6 mm/s, respectively, at 32% W/B, 10% FA/B, 0.5% NI/B and 0.8% WR/B. During 10 loads at a 2-h contact time each, the Opt A and Opt B achieved the average fecal coliform removals of 72.4% and 77.9% and phosphorus removals of 49.8% and 40.5%, respectively. Therefore, non-compliant waste FA could be utilized for a cleaner production of pervious concrete possessing a greater structural strength and compatible hydrological property and pollution control potential, compared to the ordinary pervious concrete. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of magnetic water on strength and workability of high performance concrete

    Directory of Open Access Journals (Sweden)

    Moosa Mazloom

    2016-09-01

    Full Text Available Nowadays, concrete is one of the most important and widely used human product. Improving concrete characteristics have always been one of the fundamental subjects for engineers. Improve the physical properties of water, as one of the main elements of concrete, is one way to improve the characteristics of the concrete. When water passes through the magnetic field, its physical quality has changed, it is called Magnetic water. This study examines the effect of the use of magnetized water (MW with a solenoid current-carrying, on the compressive strength and workability of high performance concrete. The variables of this study were the intensity of magnetic field, the silica fume replacement level and water to cement ratio in different mixes. The results show that using MW increases the workability of concrete about 36% in average.MW in combination with superplasticizer is more effective than MW on workability and compressive strength of concrete. MW had more positive effects on the samples without silica fume. Increasing the intensity of magnetic field improved the workability, 28 and 90 days compressive strength concrete.

  1. Experimental study on the strength parameter of Quarry Dust mixed Coconut Shell Concrete adding Coconut Fibre

    Science.gov (United States)

    Matangulu Shrestha, Victor; Anandh, S.; Sindhu Nachiar, S.

    2017-07-01

    Concrete is a heterogeneous mixture constitute of cement as the main ingredient with a different mix of fine and coarse aggregate. The massive use of conventional concrete has a shortfall in its key ingredients, natural sand and coarse aggregate, due to increased industrialisation and globalisation. To overcome the shortage of material, an alternate material with similar mechanical properties and composition has to be studied, as replacement of conventional concrete. Coconut shell concrete is a prime option as replacement of key ingredients of conventional concrete as coconut is produced in massive quantity in south East Asia. Coconut shell concrete is lightweight concrete and different research is still ongoing concerning about its mix design and composition in the construction industry. Concrete is weak in tension as compared to compression, hence the fibre is used to refrain the crack in the concrete. Coconut fibre is one of many fibres which can be used in concrete. The main aim of this project is to analyse the use of natural by-products in the construction industry, make light weight concrete and eco-friendly construction. This project concerns with the comparison of the mechanical properties of coconut shell concrete and conventional concrete, replacing fine aggregate with quarry dust using coconut fibre. M25 grade of concrete was adopted and testing of concrete was done at the age of 3, 7 and 28 days. In this concrete mix, sand was replaced completely in volumetric measurement by quarry dust. The result was analysed and compared with addition of coconut fibre at varying percentage of 1%, 2%, 3%, 4% and 5%. From the test conducted, coconut shell concrete with quarry dust has the maximum value at 4% of coconut fibre while conventional concrete showed the maximum value at 2% of coconut fibre.

  2. Monitoring water loss form fresh concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2006-01-01

    Desiccation of concrete before or during setting may lead to detrimental plastic shrinkage cracking in the concrete surface zone. Cracking due to plastic shrinkage is a major technological problem for any concrete, however, modern high-performance concretes are especially susceptible to this...... determination of the evaporation loss from hardening concrete and thus better possibility for preventing curing problems, including detrimental crack damage due to plastic shrinkage....

  3. Hysteresis Behaviour of Mass Concrete Mixed with Plastic Fibre under Compression

    OpenAIRE

    A. A. Okeola; T. I. Sijuade

    2016-01-01

    Unreinforced concrete is a comparatively brittle substance when exposed to tensile stresses, the required tensile strength is provided by the introduction of steel which is used as reinforcement. The strength of concrete may be improved tremendously by the addition of fibre. This study focused on investigating the compressive strength of mass concrete mixed with different percentage of plastic fibre. Twelve samples of concrete cubes with varied percentage of plastic fibre at 7, 14 and 28 days...

  4. Evaluation of Colemanite Waste as Aggregate Hot Mix Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Nihat MOROVA

    2015-09-01

    Full Text Available In this study usability of waste colemanite which is obtained after cutting block colemanite for giving proper shape to blocks as an aggregate in hot mix asphalt. For this aim asphalt concrete samples were prepared with four different aggregate groups and optimum bitumen content was determined. First of all only limestone was used as an aggregate. After that, only colemanite aggregate was used with same aggregate gradation. Then, the next step of the study, Marshall samples were produced by changing coarse and fine aggregate gradation as limestone and colemanite and Marshall test were conducted. When evaluated the results samples which produced with only limestone aggregate gave the maximum Marshall Stability value. When handled other mixture groups (Only colemanite, colemanite as coarse aggregate-limestone as fine aggregate, colemanite as fine aggregate-limestone as coarse aggregate all groups were verified specification limits. As a result, especially in areas where there is widespread colemanite waste, if transportation costs did not exceed the cost of limestone, colemanite stone waste could be used instead of limestone in asphalt concrete mixtures as fine aggregate

  5. Techniques and materials for internal water curing of concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Lura, Pietro

    2006-01-01

    This paper gives an overview of different techniques for incorporation of internal curing water in concrete. Internal water curing can be used to mitigate self-desiccation and selfdesiccation shrinkage. Some concretes may need 50 kg/m3 of internal curing water for this purpose. The price...

  6. Gas and water permeability of concrete for reactor buildings small specimens

    International Nuclear Information System (INIS)

    Mills, R.H.

    1986-03-01

    The effect on permeability of artifical aging by drying shrinkage and by freeze-thaw was determined by observing mass transfer of gas and water under a pressure gradient. It was found that damage due to freeze-thaw was negligible but that cracking around aggregate caused by drying shrinkage resulted in significantly increased permeability to both gas and water. The absence of freeze-thaw damage was attributed to self-dessication. Since the concrete was not exposed to an external source of water, the chemical reaction was sustained by consumption of mixing water. The resulting air voids were, apparently, sufficient to absorb expansive pressures due to ice formation. The response to lateral prestress was different for cracked and uncracked concrete. Although, in all cases, increased prestress resulted in reduced leakage, the effect was stronger in cracked concrete. Mean pore diameter as determined by gas diffusion was not, however, substantially affected because the leakage in cracked concrete remained very low. Reinforcing steel did not have a great influence on permeability of small specimens. Gas transmission through concrete was strongly influenced by moisture content. Free moisture constituted a barrier to gas flow, acting as a virtual solid. This is important since aging of concrete results in reduced free moisture. Ultrasonic pulse velocity appeared to vary with moisture content and porosity of concrete in the same way as gas permeability and gave promise of being effective for in-situ monitoring of concrete in reactor buildings

  7. Experimental and theoretical studies on water and gas release from heated concrete

    International Nuclear Information System (INIS)

    McCormack, J.D.; Postma, A.K.

    1977-01-01

    Procedures currently used in licensing of nuclear facilities require analysis of postulated accidents which are more severe than ''design basis'' events. For breeder program reactors, some accidents in this severe category involve spillage of sodium coolant onto concrete protected by a steel liner. Heat transfer through the liner heats the concrete, causing a part of the mixing water and other gases to be driven off. These gases would add to pressure in the containment atmosphere, and the water vapor can form hydrogen if it contacts sodium. Evaluations of containment integrity for such postulated accidents will be aided by knowledge of how much water and other gases are released from heated concrete. The report presents results of a research effort at Hanford Engineering Development Laboratory designed to improve understanding of the release of water and gases from heated concrete

  8. Non-destructive evaluation of the water content of concretes by low energy gamma backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, V M; Bhatnagar, P K; Meenakshisundaram, V [Reactor Research Centre, Kalpakkam (India). Safety Research Lab.

    1983-02-15

    A method of estimating the water content of various concretes mixed with neutron absorbers like boron or rare earths is described. This makes use of the fact that a large buildup of low energy photons in the 20 - 100 keV range is observed in the backscattered spectrum from water when compared to concrete. A 4.36 mCi /sup 137/Cs (662 keV) source is used with a 1 mm thick NaI scintillator as the detector to measure the backscattered radiation in the energy range. Calibration curves for evaluating the water content in borated concretes, ordinary concretes of different thickness, and a mortar brick are reported. It has been possible to estimate the water content to within 0.25% (by weight) by this method.

  9. The effect of fibers on the loss of water by evaporation and shrinkage of concrete

    Directory of Open Access Journals (Sweden)

    N. M. P. Pillar

    Full Text Available Shrinkage is one of the least desirable attributes in concrete. Large areas of exposed concrete surfaces , such as in shotcrete tunnel linings, where it is practically impossible to make a moist cure, are highly susceptible to plastic shrinkage at early ages. The autogenous and drying shrinkage can lead to states of greater than threshold strength, causing fracture, mechanical damage and lack of durability of concrete structures. The addition of fibers can greatly reduce plastic shrinkage, but has limited effect in mitigating autogenous and drying shrinkage. To evaluate the performance of polypropylene and steel fibers to understand their effect on shrinkage of concrete, a study was carried out to relate the loss of water from the paste and the shrinkage during the first 28 days of age, and compare it with a control mix without fiber. The loss of water was obtained by the weight loss of the specimens at different ages, since the only component that could contribute for the loss of weight was the water lost by the paste of the concrete. And the paste itself is the only source of shrinkage. Uniaxial compressive tests from very early ages enabled the determination of time when plastic shrinkage ended. It was observed that the control concrete mix lost three times more water and developed plastic and drying shrinkage 60 % higher than the fiber reinforced concrete mixes. It was possible to demonstrate that the reduced loss of water caused by the incorporation of fibers is related to the mitigation of plastic shrinkage. It was observed that the fibers are effective to restrain the movement of water through the cement paste in the plastic state, however such effect is limited after concrete starts the hardening state.

  10. Neutron imaging of water penetration into cracked steel reinforced concrete

    International Nuclear Information System (INIS)

    Zhang, P.; Wittmann, F.H.; Zhao, T.; Lehmann, E.H.

    2010-01-01

    Service life and durability of reinforced concrete structures have become a crucial issue because of the economical and ecological implications. Service life of reinforced concrete structures is often limited by penetration of water and chemical compounds dissolved in water into the porous cement-based material. By now it is well-known that cracks in reinforced concrete are preferential paths for ingress of aggressive substances. Neutron radiography was successfully applied to study the process of water penetration into cracked steel reinforced concrete. In addition, the effectiveness of integral water repellent concrete to prevent ingress of water and salt solutions was investigated. Results are described in detail in this contribution. It will be shown that neutron radiography is a powerful method to visualize the process of water penetration into cracked and uncracked cement-based materials. On the basis of the obtained experimental data, it is possible to quantify the time-dependent water distributions in concrete with high accuracy and spatial resolution. It is of particular interest that penetration of water and salt solutions into damaged interfaces between concrete and steel can be visualized by means of neutron radiography. Deteriorating processes in cracked reinforced concrete structures can be studied in a completely new way. This advanced technology will help and find adequate ways to improve durability and service life of reinforced concrete structures. This will mean at the same time an essential contribution to improved sustainability.

  11. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production

    Science.gov (United States)

    Ferreiro-Cabello, Javier; López-González, Luis M.

    2017-01-01

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study’s methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product’s performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete’s strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete’s performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced. PMID:28773183

  12. The Influence of Salt Water on Chloride Penetration in Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Halim Like Novia

    2017-01-01

    Full Text Available This paper presents the influence of chloride ion penetration in geopolymer concrete. Fly ash as based material for geopolymer concrete was used in this mixture. Fly ash was mixed with sodium hydroxide (NaOH 8 M and sodium silicate (Na2SiO3 as the alkali solution. The sizes of cylindrical specimens were prepared with a diameter of 100 mm and 200 mm high. Some specimens were immersed in salt water at a concentration of 3.5%, and other control specimens were cured in tap water for 30, 60, 90, and 120 days. The mechanical properties were determined with compressive test which was conducted at 28, 30, 60, 90 and 120 days. Some durability tests were performed for porosity, chloride penetration, and pH measurement. It was found that geopolymer concrete has higher compressive strength than concrete made with Ordinary Portland cement (OPC. However, chloride penetration in geopolymer concrete is higher than OPC. The pH measurement showed that geopolymer concrete has less pH than OPC concrete. The porosity of concrete has been found to influence chloride penetration and pH of concrete.

  13. Abrasion Properties of Steel Fiber Reinforced Silica Fume Concrete According to Los Angeles and Water Abrasion Tests

    Directory of Open Access Journals (Sweden)

    Tsan-Ching CHENG

    2014-12-01

    Full Text Available The current study mainly investigated the influence of different tests on the abrasion resistance of concrete mixed with steel fibers and silica fume. The abrasion resistance was assessed at 28, 56 and 91 days on concretes with water-binder ratios of 0.35 and 0.55 where in some mixes silica fume was substituted by 5 % of cement by weight. Steel fibers of 0.5 % and 1.0 % of concrete volume were also added into the test concrete by replacement of coarse and fine aggregates. The results showed that concrete with higher compressive strength in Los Angeles abrasion tests also had better abrasion resistance. The inclusion of steel fibers into test concrete with a water-binder ratio of 0.35 resulted in a significant increase in compressive strength. This concrete also displayed better abrasion resistance and splitting tensile strength than reference concrete; in the test sample with a water-binder ratio of 0.55, the added steel fibers was unable to effectively produce cementation with the concrete. The inclusion of silica fume improved the abrasion resistance of concretes. In water abrasion testing, the abrasion resistance of concrete containing steel fiber was worse than that of concrete without steel fibers. In the water abrasion testing, the surface of steel fiber reinforced concrete was eroded by water and steel balls, and the impact caused the steel fibers to separate from the concrete and led to higher wear loss. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6460

  14. 2.4. Kinetics of voids structure change according to the specific properties of the concrete mix

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    This work is devoted to kinetics of voids structure changes according to the specific properties of concrete mix. The influence of concrete mix mobility on durability and watertightness of concrete was studied. The influence of cement expenditure on concrete durability was examined.

  15. Lightweight concrete materials and structural systems for water tanks for thermal storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buckman, R.W. Jr.; Elia, G.G.; Ichikawa, Y.

    1980-12-01

    Thermally efficient hot water storage tanks were designed, fabricated and evaluated. The tanks were made using cellular concrete at a nominal density of 100 lb/ft/sup 3/ for the structural elements and at a 30 lb/ft/sup 3/ density for the insulating elements. Thermal performance testing of the tanks was done using a static decay test since the test procedure specified in ASHRAE 94-77 was not experimentally practical. A series of composition modifications to the cellular concrete mix were investigated and the addition of alkaline resistant glass fibers was found to enhance the mechanical properties at no sacrifice in thermal behavior. Economic analysis indicated that cellular concrete provides a cost-effective insulating material. The total portability of the plant for producing cellular concrete makes cellular concrete amenable to on-site fabrication and uniquely adaptable to retrofit applications.

  16. Evaluation of the use of steelmaking slag as an aggregate in concrete mix: A factorial design approach

    OpenAIRE

    Aljbour Salah H.; Tarawneh Sultan A.; Al-Harahsheh Adnan M.

    2017-01-01

    Slag is investigated towards its potential use as an aggregate in concrete mix production. Full factorial design methodology is applied to study the effect of two process input variables, namely: slag as coarse aggregate and slag as medium aggregate on the properties of concrete mix. Additionally, the interaction between input variables is also examined. Incorporating steel slag aggregate in the concrete mix affected its compressive strength. Enhanced compressive strength concrete mix was obt...

  17. Value-added utilisation of recycled concrete in hot-mix asphalt.

    Science.gov (United States)

    Wong, Yiik Diew; Sun, Darren Delai; Lai, Dickson

    2007-01-01

    The feasibility of partial substitution of granite aggregate in hot-mix asphalt (HMA) with waste concrete aggregate was investigated. Three hybrid HMA mixes incorporating substitutions of granite fillers/fines with 6%, 45% untreated, and 45% heat-treated concrete were evaluated by the Marshall mix design method; the optimum binder contents were found to be 5.3%, 6.5% and 7.0% of grade Pen 60/70 bitumen, respectively. All three hybrid mixes satisfied the Marshall criteria of the Singapore Land Transport Authority (LTA) W3B wearing course specification. The hybrid mix with 6% concrete fillers gave comparable resilient modulus and creep resistance as the conventional W3B mix, while hybrid mixes with higher concrete substitutions achieved better performance. X-ray diffraction (XRD) showed the distinct presence of free lime in the heat-treated concrete, while the scanning electron microscope (SEM) provided an in-depth perspective of the concrete grains in the HMA matrix. The results suggest feasible use of waste concrete as partial aggregate substitution in HMA.

  18. Neutron radiation shielding properties of polymer incorporated self compacting concrete mixes.

    Science.gov (United States)

    Malkapur, Santhosh M; Divakar, L; Narasimhan, Mattur C; Karkera, Narayana B; Goverdhan, P; Sathian, V; Prasad, N K

    2017-07-01

    In this work, the neutron radiation shielding characteristics of a class of novel polymer-incorporated self-compacting concrete (PISCC) mixes are evaluated. Pulverized high density polyethylene (HDPE) material was used, at three different reference volumes, as a partial replacement to river sand in conventional concrete mixes. By such partial replacement of sand with polymer, additional hydrogen contents are incorporated in these concrete mixes and their effect on the neutron radiation shielding properties are studied. It has been observed from the initial set of experiments that there is a definite trend of reductions in the neutron flux and dose transmission factor values in these PISCC mixes vis-à-vis ordinary concrete mix. Also, the fact that quite similar enhanced shielding results are recorded even when reprocessed HDPE material is used in lieu of the virgin HDPE attracts further attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mechanical Properties of Hot Mix Crumb Rubber Modified Asphalt Concrete Using Waste Tire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak Seok; Lee, Woo Yeol [Kyonggi University, Suwon (Korea)

    1998-06-30

    Wheel tracking and ravelling tests were conducted on the hot mix crumb rubber modified asphalt concrete using waste tire to evaluate the mechanical properties in comparison with conventional asphalt concrete. According to the test results, the modified product was superior to the conventional one by 50% in the resistance of permanent deformation and by 15% in the resistance of durability. The experimental results should recommend that the waste tire is positively recycled for asphalt concrete. (author). 11 refs., 6 tabs., 2 figs.

  20. Study on the dynamic performance of concrete mixer's mixing drum

    Directory of Open Access Journals (Sweden)

    J. Yang

    2017-06-01

    Full Text Available When working, the geometric distribution shape of concrete in concrete mixing truck's rotary drum changes continuously, which cause a great difficulty for studying the dynamic performance of the mixing drum. In this paper, the mixing system of a certain type of concrete mixing truck is studied. A mathematical formulation has been derived through the force analysis to calculate the supporting force. The calculation method of the concrete distribution shape in the rotary drum is developed. A new transfer matrix is built with considering the concrete geometric distribution shape. The effects of rotating speed, inclination angle and concrete liquid level on the vibration performance of the mixing drum are studied with a specific example. Results show that with the increase of rotating speed, the vibration amplitude of the mixing drum decreases. The peak amplitude gradually moves to the right with the inclination angle increasing. The amplitude value of the peak's left side decreases when tilt angle increases, while the right side increases. The maximum unbalanced response amplitude of the drum increases with the decrease of concrete liquid level height, and the vibration peak moves to the left.

  1. Application of an artificial neural network to ready-mixed concretes mix design

    Directory of Open Access Journals (Sweden)

    Setién, J.

    2003-06-01

    Full Text Available This paper presents the practical application of cm artificial neural network (ANN to the problem of concrete mix in a factory. After a brief introduction to the complex problem of concrete mixes design and a quick review of the fundamental basis of neurocomputation, an optimal neural network model has been developed to cope with such a problem. For training the net, several control mixes have been fabricated recording in all cases both the characteristic 28 days compressive strength and the workability measured in terms of the slump of the Abrams' cone. After the training process of the net, the power of its predictive ability is checked by comparison of the results obtained with those corresponding to four reference mixes; in this way, it is shown that the considered approach can be used in multicriterial search for optimal concrete mixes.

    En este trabajo se presenta la aplicación práctica de una red neuronal artificial (ANN al problema de la dosificación de hormigones en planta. Tras una breve introducción a la compleja problemática de la dosificación de hormigones y un repaso a los fundamentos de la neurocomputación, se diseña un modelo de red neuronal óptimo para abordar el problema. Para entrenar dicha red, se realizan varias amasadas de prueba, registrándose para cada una de ellas la trabajabilidad, mediante la medida del asiento del cono de Abrams, y ¡a resistencia característica a los 28 días. Una vez entrenada la red, se pone a prueba su carácter predictivo comparando los resultados que proporciona con los de cuatro amasadas de referencia, demostrándose que esta aproximación puede ser utilizada como método multicriterial para la obtención de mezclas óptimas de hormigón.

  2. A Study of the Effect of Recycled Mix Glass on the Mechanical Properties of Green Concrete

    Directory of Open Access Journals (Sweden)

    Aseel B. Al-Zubaidi

    2017-12-01

    Full Text Available In this paper we utilized mixing of different types of recycled glass such as (neon glass, brown glass, and green glass that has high percentage of silicon dioxide (SiO2 with different concentrations. Utilization these landfall materials can be considered as keeping on resources. Different waste glasses used as a partial replacement of cement with different concentrations 11%, 13%, and 15% of cement weight for each type, and study the effect of it on the mechanical properties of concrete. After mixing, casting, and curing in water at (20±2°C for (7, 14, and 28 days, the mechanical properties showed that the compressive strength and flexural showed highest results at 13% from cement weight of neon glass, whereas splitting tensile strength showed the highest value at the same percentage, but from green glass.

  3. Water absorption tests for measuring permeability of field concrete.

    Science.gov (United States)

    2013-09-01

    The research results from CFIRE Project 04-06 were communicated to engineers and researchers in this project. : Specifically, the water absorption of concrete samples (i.e., 2-in. thick, 4-in. diameter discs cut from concrete : cylinders) was found s...

  4. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete.

    Science.gov (United States)

    López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge

    2016-02-02

    This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors' knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  5. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete

    Directory of Open Access Journals (Sweden)

    Antonio López-Uceda

    2016-02-01

    Full Text Available This research aims to produce non-structural concrete with mixed recycled aggregates (MRA in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%, using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors’ knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  6. Experimental observation of internal water curing of concrete

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2007-01-01

    Internal water curing has a significant effect on concrete. In addition to affecting hydration and moisture distribution, it influences most concrete properties, such as strength, shrinkage, cracking, and durability. The following paper is an overview of experimental methods to study internal water...... curing of concrete and its consequences. The special techniques needed to study internal water curing are dealt with along with the consequences of this process. Examples of applications are given and new measuring techniques that may potentially be applied to this field are addressed....

  7. Cathodic protection of concrete ground floor elements with mixed in chloride

    NARCIS (Netherlands)

    Schuten, G.; Leggedoor, J.; Polder, R.B.

    1999-01-01

    Corrosion of reinforcement in precast concrete ground floor elements containing mixed in chloride can cause considerable damage. This is a major problem in the Netherlands concerning a large number of privately owned houses. Conventional concrete repair is not acceptable because it does not provide

  8. Effect of unground oil palm ash as mixing ingredient towards properties of concrete

    Science.gov (United States)

    Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.

    2018-04-01

    Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.

  9. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete

    International Nuclear Information System (INIS)

    Cifuentes, H.; Ríos, J.D.; Gómez, E.J.

    2018-01-01

    Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies) have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio) on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been p [es

  10. Concrete slurry, wash and loss water mitigation.

    Science.gov (United States)

    2012-08-01

    This report presents an evaluation of wastewaters derived from concrete placement and maintenance and the : preparation of best management practices (BMPs). Investigation and documentation of existing practices was done : to ensure application to rea...

  11. Temperature and mixing effects on electrical resistivity of carbon fiber enhanced concrete

    International Nuclear Information System (INIS)

    Chang, Christiana; Song, Gangbing; Gao, Di; Mo, Y L

    2013-01-01

    In this paper, the effect of temperature and mixing procedure on the electrical resistivity of carbon fiber enhanced concrete is investigated. Different compositions of concrete containing varying concentrations of carbon fiber into normal and self-consolidating concrete (SCC) were tested under DC electrical loading over the temperature range −10 to 20 °C. The electrical resistivity of the bulk samples was calculated and compared against temperature. It was observed that there is an inverse exponential relationship between resistivity and temperature which follows the Arrhenius relationship. The bulk resistivity decreased with increasing fiber concentration, though data from SCC indicates a saturation limit beyond which electrical resistivity begins to drop. The activation energy of the bulk electrically conductive concrete was calculated and compared. While SCC exhibited the lowest observed electrical resistance, the activation energy was similar amongst SCC and surfactant enhanced concrete, both of which were lower than fiber dispersed in normal concrete. (paper)

  12. Mathematical Model to Predict the Permeability of Water Transport in Concrete Structure

    OpenAIRE

    Solomon Ndubuisi Eluozo

    2013-01-01

    Mathematical model to predict the permeability of water transport in concrete has been established, the model is to monitor the rate of water transport in concrete structure. The process of this water transport is based on the constituent in the mixture of concrete. Permeability established a relation on the influence of the micropores on the constituent that made of concrete, the method of concrete placement determine the rate of permeability deposition in concrete structure, permeability es...

  13. Performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate with different mix design ratio

    Science.gov (United States)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Mazenan, P. N.; Zahir, Z.; Shahidan, S.

    2018-04-01

    This study is focuses to the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. The objective is to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate and polyethylene terephthalate waste and to determine the optimum mix ratio of bricks containing recycled concrete aggregate and polyethylene terephthalate waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 1.0%, 1.5%, 2.0% and 2.5% by weight of natural sand. Based on the results of compressive strength, it indicates that the replacement of RCA shows an increasing strength as the strength starts to increase from 25% to 50% for both mix design ratio. The strength for RCA 75% volume of replacement started to decrease as the volume of PET increase. However, the result of water absorption with 50% RCA and 1.0% PET show less permeable compared to control brick at both mix design ratio. Thus, one would expect the density of brick decrease and the water absorption to increase as the RCA and PET content is increased.

  14. Utilizing Slurry and Carwash Wastewater as Fresh Water Replacement in Concrete Properties

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available The high demand for concrete production generates wastewater which causes environmental problems. However, if wastewater is able to be recycled as part of engineering construction materials, many benefits can be reaped. Unfortunately, the use of wastewater in manufacturing concrete is not common. Therefore, this research aims to identify the influence of using slurry water and car wash wastewater on concrete properties, focusing particularly on its mechanical properties. The basic characteristics of wastewater were studied according to USEPA method while the properties of concrete with wastewater were compared according to ASTM C1602 and BS EN 1008 standards. In this paper, the compressive strength, modulus of elasticity and tensile strength were examined in order to determine the mechanical properties of concrete. The wastewater was replaced in the concrete mix from 0% up to 40%. The results indicated that the characteristics of wastewater complied with the BS and ASTM standards. In addition, the results also recommended that the concrete mixture with 20% of wastewater has given the highest compressive strength and modulus of elasticity.

  15. Evaluation of the use of steelmaking slag as an aggregate in concrete mix: A factorial design approach

    Directory of Open Access Journals (Sweden)

    Aljbour Salah H.

    2017-01-01

    Full Text Available Slag is investigated towards its potential use as an aggregate in concrete mix production. Full factorial design methodology is applied to study the effect of two process input variables, namely: slag as coarse aggregate and slag as medium aggregate on the properties of concrete mix. Additionally, the interaction between input variables is also examined. Incorporating steel slag aggregate in the concrete mix affected its compressive strength. Enhanced compressive strength concrete mix was obtained with 70 wt.% coarse slag aggregate and 70 wt.% medium slag aggregate. Under these proportions, the 28-days compressive strength was higher than the 28-days compressive strength of a concrete mix prepared from normal aggregate. Strong interaction effect exists between slag aggregate size on the compressive strength at 7-days curing. Lower compressive strength for the concrete mix might be obtained if improper proportions of mixed medium and coarse slag aggregate were employed.

  16. Study characteristics of new concrete mixes and their mechanical, physical, and gamma radiation attenuation features

    Energy Technology Data Exchange (ETDEWEB)

    El-Samrah, Moamen G.; Abdel-Rahman, Mohamed A.E. [Nuclear Engineering Department, Military Technical College Kobry El-kobbah, Cairo (Egypt); Kany, Amr M.I. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt)

    2018-02-01

    Ordinary concrete and those of different compositions are regarded as suitable material in many applications concerning with gamma and neutron radiation shielding purposes. They are widely used in nuclear power plant, medical facilities, nuclear shelters, and for radioactive materials transportation as well as storage of radioactive wastes. In this study four different concrete mixes were prepared with the following different types of coarse aggregates: dolomite, barite, goethite, and steel slag. The effect of changes in the fine aggregates, selected to be 50 % local sand and 50 % limonite with addition of 10 % silica fume (SF) and 10 % fly ash (FA) by replacement of the total cement weight, on the performance of the samples was also investigated. To examine the performance of such samples for radiation shielding applications, a set of physical, mechanical, and radiation attenuation properties was studied and compared with those of ordinary concrete. This investigation includes compressive strength, slump test, bulk density, ultrasonic pulse velocity test, and gamma rays attenuation measurements for the different samples. A verification of the experimental results concerning the radiation attenuation measurements was performed using WinXcom program (Version 3.1). The experimental results revealed that all concrete mixes; goethite-limonite concrete (G.L), barite-limonite concrete (B.L), steel slag-limonite concrete (S.L) and dolomite concrete (D.C) have good physical and mechanical properties that successfully satisfying them as high performance concretes. In addition the barite-limonite and the steel slag-limonite have the higher γ-ray attenuation coefficients at low and high energy range and hence have a better radiation shielding. The obtained results from WinXcom program calculations showed a good agreement with the experimental results concerning γ-ray attenuation measurements for the studied concrete mixes. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGa

  17. Use of Residual Solids from Pulp and Paper Mills for Enhancing Strength and Durability of Ready-Mixed Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus

    2003-09-18

    This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residual solids.

  18. Analysis of Environmental Impact for Concrete Using LCA by Varying the Recycling Components, the Compressive Strength and the Admixture Material Mixing

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-04-01

    Full Text Available Concrete is a type of construction material in which cement, aggregate, and admixture materials are mixed. When cement is produced, large amounts of substances that impact the environment are emitted during limestone extraction and clinker manufacturing. Additionally, the extraction of natural aggregate causes soil erosion and ecosystem destruction. Furthermore, in the process of transporting raw materials such as cement and aggregate to a concrete production company, and producing concrete in a batch plant, substances with an environmental impact are emitted into the air and water system due to energy use. Considering the fact that the process of producing concrete causes various environmental impacts, an assessment of various environmental impact categories is needed. This study used a life cycle assessment (LCA to evaluate the environmental impacts of concrete in terms of its global warming potential, acidification potential, eutrophication potential, ozone depletion potential, photochemical ozone creation potential, and abiotic depletion potential (GWP, AP, EP, ODP, POCP, ADP. The tendency was that the higher the strength of concrete, the higher the GWP, POCP, and ADP indices became, whereas the AP and EP indices became slightly lower. As the admixture mixing ratio of concrete increased, the GWP, AP, ODP, ADP, and POCP decreased, but EP index showed a tendency to increase slightly. Moreover, as the recycled aggregate mixing ratio of concrete increased, the AP, EP, ODP, and ADP decreased, while GWP and POCP increased. The GWP and POCP per unit compressed strength (1 MPa of high strength concrete were found to be about 13% lower than that for its normal strength concrete counterpart. Furthermore, in the case of AP, EP, ODP, and ADP per unit compressed strength (1 MPa, high-strength concrete was found to be about 10%~25% lower than its normal strength counterpart. Among all the environmental impact categories, ordinary cement was found to have

  19. SYSTEM FOR CONTROLLING ELECTRIC DRIVE OF ASPHALT CONCRETE MIXING PLANT

    Directory of Open Access Journals (Sweden)

    A. S. Surmak

    2005-01-01

    Full Text Available It is proposed to evaluate quality of asphalt concrete mixture through definition of current component variable of a drive motor and measurement of its derivative sign. In order to carry out final determination of mixture uniformity a transducer on the basis of a nuclear magnetic resonance is applied. Block diagram of the system is presented and algorithm of its operation is given in the paper. In addition to improvement of the finished product quality the application of the system makes it possible to reduce bitumen consumption used for production of asphalt concrete.

  20. A new mix design concept for earth-moist concrete: A theoretical and experimental study

    NARCIS (Netherlands)

    Hüsken, Götz; Brouwers, Jos

    2008-01-01

    This paper addresses experiments on earth-moist concrete (EMC) based on the ideas of a new mix design concept. First, a brief introduction into particle packing and relevant packing theories is given. Based on packing theories for geometric packing, a new concept for the mix design of earth-moist

  1. Developing design methods of concrete mix with microsilica additives for road construction

    Science.gov (United States)

    Dmitrienko, Vladimir; Shrivel, Igor; Kokunko, Irina; Pashkova, Olga

    2017-10-01

    Based on the laboratory test results, regression equations having standard cone and concrete strength, to determine the available amount of cement, water and microsilica were obtained. The joint solution of these equations allowed the researchers to develop the algorithm of designing heavy concrete compositions with microsilica additives for road construction.

  2. Creep and shrinkage behaviour of concrete with mixed recycled aggregates

    NARCIS (Netherlands)

    Hordijk, D.A.; Uijl, J. den

    1999-01-01

    For environmental reasons the interest in possibilities to use recycled aggregates in concrete is strongly increasing. World-wide, most attention with respect to recycled aggregates is paid to the quality of the aggregates. Still only limited information is available for the mechanica! properties of

  3. Effect of water absorption by the aggregate on properties of high-strength lightweight concrete

    Energy Technology Data Exchange (ETDEWEB)

    Punkki, J

    1996-12-31

    Recently, high-strength lightweight concrete has become an interesting building material for the offshore oil industry. This doctoral thesis presents an experimental investigation of the effect of water absorption by three different types of lightweight aggregates. One type did not show any water absorption ability at all and so represented no problem to the concrete production. For the two other high-strength aggregates, which were of more conventional types, the water absorption depended not only on the properties of the aggregates, but also on the concrete mixing procedure and the properties of the fresh cement paste. When water absorbing lightweight aggregate was used in a dry condition, the workability of the concrete was significantly reduced by the water absorption of the aggregate. This effect was not present when prewetted aggregate was used. The water absorption by the lightweight aggregate also affected the early compressive strength of concrete. After one day, dry aggregate gave on the average 10 MPa higher compressive strength than did prewetted aggregate. The strength-density ratio was affected by the moisture condition of the aggregate. Dry lightweight aggregate gave 9 MPa higher compressive strength at a density of 2000 kg/m{sup 3} compared to that of prewetted aggregate. The water absorption by the lightweight also affected the microstructure of the hardened concrete. Dry lightweight aggregate gave a slightly better microstructure than normal weight aggregate. The results indicate that the use of prewetted aggregate adversely affected the transition zone between the aggregate and the cement paste. 69 refs., 58 figs., 42 tabs.

  4. Effect of water absorption by the aggregate on properties of high-strength lightweight concrete

    Energy Technology Data Exchange (ETDEWEB)

    Punkki, J.

    1995-12-31

    Recently, high-strength lightweight concrete has become an interesting building material for the offshore oil industry. This doctoral thesis presents an experimental investigation of the effect of water absorption by three different types of lightweight aggregates. One type did not show any water absorption ability at all and so represented no problem to the concrete production. For the two other high-strength aggregates, which were of more conventional types, the water absorption depended not only on the properties of the aggregates, but also on the concrete mixing procedure and the properties of the fresh cement paste. When water absorbing lightweight aggregate was used in a dry condition, the workability of the concrete was significantly reduced by the water absorption of the aggregate. This effect was not present when prewetted aggregate was used. The water absorption by the lightweight aggregate also affected the early compressive strength of concrete. After one day, dry aggregate gave on the average 10 MPa higher compressive strength than did prewetted aggregate. The strength-density ratio was affected by the moisture condition of the aggregate. Dry lightweight aggregate gave 9 MPa higher compressive strength at a density of 2000 kg/m{sup 3} compared to that of prewetted aggregate. The water absorption by the lightweight also affected the microstructure of the hardened concrete. Dry lightweight aggregate gave a slightly better microstructure than normal weight aggregate. The results indicate that the use of prewetted aggregate adversely affected the transition zone between the aggregate and the cement paste. 69 refs., 58 figs., 42 tabs.

  5. Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering.

    Science.gov (United States)

    Bordallo, Heloisa N; Aldridge, Laurence P; Desmedt, Arnaud

    2006-09-14

    Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion

  6. A New Approach to Concrete Mix Design Using Computer Techniques

    African Journals Online (AJOL)

    In addition such a model can be used to generate data on mix proportions and their corresponding compressive strength, thereby furnishing useful information for general purpose, safe-ready-to-use mix design. Such data were generated and checked against values obtainable from standard mix design practice and found ...

  7. Mix proportioning and performance of a crushed limestone sand-concrete

    OpenAIRE

    Makhloufi Zoubir; Bouziani Tayeb; Bédérina Madani; Hadjoudja Mourad

    2014-01-01

    Satisfying the ever-growing demand of concrete aggregates poses a problem in many parts of the world due to shortage of natural sand. Moreover, to conserve natural resources and protect civil engineering infrastructures, there is a need to find alternative materials. Crushed stone sand has been identified as a potential substitute material for natural sand in making good quality concrete. The main objective of the present investigation is to determine an adequate mix design method and evaluat...

  8. Elastic and strength properties of Hanford concrete mixes at room and elevated temperatures

    International Nuclear Information System (INIS)

    Abrams, M.S.; Gillen, M.; Campbell, D.H.

    1979-03-01

    The effects of long-term exposure to elevated temperatures on the physical properties of concrete mixes used in Hanford radioactive waste storage tanks were determined. Temperature had a significant effect on the elastic modulus of concretes. Poisson's ratio determined by the sonic method remained relatively constant. The splitting tensile strength increased rapidly up to 190 days of age. Then strength decreased to about 350 days and either leveled off or increased from that point on. Compressive strength data were erratic

  9. Designing a supply chain of ready-mix concrete using Voronoi diagrams

    Science.gov (United States)

    Kozniewski, E.; Orlowski, M.; Orlowski, Z.

    2017-10-01

    Voronoi diagrams are used to solve scientific and practical problems in many fields. In this paper Voronoi diagrams have been applied to logistic problems in construction, more specifically in the design of the ready-mix concrete supply chain. Apart from the Voronoi diagram, the so-called time-distance circle (circle of range), which in metric space terminology is simply a sphere, appears useful. It was introduced to solve the problem of supplying concrete-related goods.

  10. EFFECT OF SALT WATER IN THE PRODUCTION OF CONCRETE

    African Journals Online (AJOL)

    ES Obe

    11. Agunwamba J.C. Water Engineering Sys- tems. Revised Edition by De-Adroit Inno- vation, Enugu, Nigeria, 2008. 12. British Standard Code Structural Use of. Concrete. Part 1, Code of Practice for De- sign and Construction 2004. 13. Tchobanoglous G., Burton F.L. and Stensel. H.D. Waste Water Engineering and Treat-.

  11. Automated measurement and control of concrete properties in a ready mix truck with VERIFI.

    Science.gov (United States)

    2014-02-01

    In this research, twenty batches of concrete with six different mixture proportions were tested with VERIFI to evaluate 1) accuracy : and repeatability of VERIFI measurements, 2) ability of VERIFI to adjust slump automatically with water and admixtur...

  12. Effect of mixing methods and aggregate type on strength of hardened concrete

    International Nuclear Information System (INIS)

    Elhadi, S.

    2006-01-01

    The objective of the research contained in this paper is to study the effect on strength of concrete which can be caused by changing method of concrete mix with or without changing aggregate crushing value under hand or mechanical compaction, and to compare results obtained when nondestructive testing techniques are used. It has been found that all methods of mix design are nearly identical in predicting the strength under a known value of w/c ratio. Up to strength of about 30 N/mm 2 , hand and mechanical compaction seems to be identical in all methods of concrete mixing. Important results regarding destructive and non-destructive testing has been drawn from the study.(Author)

  13. Non-destructive evaluation of the water content of concretes by low energy gamma backscattering

    International Nuclear Information System (INIS)

    Raghunath, V.M.; Bhatnagar, P.K.; Meenakshisundaram, V.

    1983-01-01

    A method of estimating the water content of various concretes mixed with neutron absorbers like boron or rare earths is described. This makes use of the fact that a large buildup of low energy photons in the 20 - 100 keV range is observed in the backscattered spectrum from water when compared to conrete. A 4.36 mCi 137 Cs (662 keV) source is used with a 1 mm thick NaI scintillator as the detector to measure the backscattered radiation in the energy range. Calibration curves for evaluating the water content in borated concretes, ordinary conretes of different thickness, and a mortar brick are reported. It has been possible to estimate the water content to within 0.25% (by weight) by this method. (orig.)

  14. Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture.

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia Mª; Guerra-Romero, M Ignacio

    2014-09-01

    The replacement of natural aggregates by recycled aggregates in the concrete manufacturing has been spreading worldwide as a recycling method to counteract the large amount of construction and demolition waste. Although legislation in this field is still not well developed, many investigations demonstrate the possibilities of success of this trend given that concrete with satisfactory mechanical and durability properties could be achieved. However, recycled aggregates present a low quality compared to natural aggregates, the water absorption being their main drawback. When used untreated in concrete mix, the recycled aggregate absorb part of the water initially calculated for the cement hydration, which will adversely affect some characteristics of the recycled concrete. This article seeks to demonstrate that the technique of pre-saturation is able to solve the aforementioned problem. In order to do so, the water absorption of the aggregates was tested to determine the necessary period of soaking to bring the recycled aggregates into a state of suitable humidity for their incorporation into the mixture. Moreover, several concrete mixes were made with different replacement percentages of natural aggregate and various periods of pre-saturation. The consistency and compressive strength of the concrete mixes were tested to verify the feasibility of the proposed technique.

  15. Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture †

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-del Pozo, Julia Mª; Guerra-Romero, M. Ignacio

    2014-01-01

    The replacement of natural aggregates by recycled aggregates in the concrete manufacturing has been spreading worldwide as a recycling method to counteract the large amount of construction and demolition waste. Although legislation in this field is still not well developed, many investigations demonstrate the possibilities of success of this trend given that concrete with satisfactory mechanical and durability properties could be achieved. However, recycled aggregates present a low quality compared to natural aggregates, the water absorption being their main drawback. When used untreated in concrete mix, the recycled aggregate absorb part of the water initially calculated for the cement hydration, which will adversely affect some characteristics of the recycled concrete. This article seeks to demonstrate that the technique of pre-saturation is able to solve the aforementioned problem. In order to do so, the water absorption of the aggregates was tested to determine the necessary period of soaking to bring the recycled aggregates into a state of suitable humidity for their incorporation into the mixture. Moreover, several concrete mixes were made with different replacement percentages of natural aggregate and various periods of pre-saturation. The consistency and compressive strength of the concrete mixes were tested to verify the feasibility of the proposed technique. PMID:28788188

  16. Constitutive Mixed Mode Behavior of Cracks in Concrete

    DEFF Research Database (Denmark)

    Jacobsen, Jonas Sejersbøl

    of custom made orthogonal gauge rails mounted on the specimen. The precise orthogonal gauge rails entail a direct interpretation of the mixed mode crack opening process, ensuring that the achieved response over the ligament is equal to the prescribed mixed mode displacement. After a crack is initiated...

  17. Abrasive water jet cutting technique for biological shield concrete dismantlement

    International Nuclear Information System (INIS)

    Konno, T.; Narazaki, T.; Yokota, M.; Yoshida, H.; Miura, M.; Miyazaki, Y.

    1987-01-01

    The Japan Atomic Energy Research Institute (JAERI) is developing the abrasive-water jet cutting system to be applied to dismantling the biological shield walls of the JPDR as a part of the reactor dismantling technology development project. This is a total system for dismantling highly activated concrete. The concrete biological shield wall is cut into blocks by driving the abrasive-water jet nozzle, which is operated with a remote, automated control system. In this system, the concrete blocks are removed to a container, while the slurry and dust/mist which are generated during cutting are collected and treated, both automatically. It is a very practical method and will quite probably by used for actual dismantling of commercial power reactors in the future because it can minimize workers' exposure to radioactivity during dismantling, contributes to preventing diffusion of radiation, and reduces the volume of contaminated secondary waste

  18. Self-curing concrete types; water retention and durability

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-09-01

    This study was carried out to compare among concretes without or with silica fume (SF along with chemical type of shrinkage reducing admixture, polyethylene-glycol (Ch, and leca as self-curing agents for water retention even at elevated temperature (50 °C and their durability. The cement content of 400 kg/m3, silica fume of 15% by weight of cement, polyethylene-glycol of 2% by weight of cement, pre-saturated lightweight aggregate (leca 15% by volume of sand and water with Ch/binder ratio of 0.4 were selected in this study. Some of the physical and mechanical properties were determined periodically up to 28 days in case of exposure to air curing in temperature of (25 °C and (50 °C while up to 6 months of exposure to 5% of carbon dioxide and wet/dry cycles in 8% of sodium chloride for durability study. The concrete mass loss and the volumetric water absorption were measured, to evaluate the water retention of the investigated concretes. Silica fume concrete either without or with Ch gave the best results under all curing regimes; significant water retention and good durability properties.

  19. Towards a more common use of Ultra-High Performance Concrete (UHPC) – development of UHPC for ready-mix and prefabrication concrete plants

    NARCIS (Netherlands)

    Spiesz, P.R.; Hunger, M.; Justnes, Harald; Braarud, Henny

    2017-01-01

    This study addresses the development of ultra-high performance concrete (UHPC) suitable for a mass production in conventional ready-mix and prefabrication concrete plants. In order to facilitate the production process, curing regime and to minimize the costs, no additional treatments (e.g. thermal

  20. Optimizing the use of natural gravel Brantas river as normal concrete mixed with quality fc = 19.3 Mpa

    Science.gov (United States)

    Limantara, A. D.; Widodo, A.; Winarto, S.; Krisnawati, L. D.; Mudjanarko, S. W.

    2018-04-01

    The use of natural gravel (rivers) as concrete mixtures is rarely encountered after days of demands for a higher strength of concrete. Moreover, today people have found High-Performance Concrete which, when viewed from the rough aggregate consisted mostly of broken stone, although the fine grain material still used natural sand. Is it possible that a mixture of concrete using natural gravel as a coarse aggregate is capable of producing concrete with compressive strength equivalent to a concrete mixture using crushed stone? To obtain information on this, a series of tests on concrete mixes with crude aggregates of Kalitelu Crusher, Gondang, Tulungagung and natural stone (river gravel) from the Brantas River, Ngujang, Tulungagung in the Materials Testing Laboratory Tugu Dam Construction Project, Kab. Trenggalek. From concrete strength test results using coarse material obtained value 19.47 Mpa, while the compressive strength of concrete with a mixture of crushed stone obtained the value of 21.12 Mpa.

  1. Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix

    Directory of Open Access Journals (Sweden)

    Sanjay Mundra

    2016-09-01

    Full Text Available The study investigates the use of crushed rock sand as viable alternative to Natural River sand that is being conventionally used as fine aggregate in cement concrete. Various mix designs were developed for different grades of concrete based on IS, ACI and British codes using Natural River sand and crushed rock sand. In each case, the cube compressive strength test, and beam flexure tests were conducted. The results of the study show that, the strength properties of concrete using crushed rock sand are nearly similar to the conventional concrete. The study has shown that crushed stone sand can be used as economic and readily available alternative to river sand and can therefore help to arrest the detrimental effects on the environment caused due to excessive mining of river sand.

  2. Analysis of the spectrum distribution of oscillation amplitudes of the concrete mix at shock vibration molding

    Directory of Open Access Journals (Sweden)

    Sharapov Rashid

    2017-01-01

    Full Text Available In the production of concrete structures widespread shaking tables of various designs. The effectiveness of vibroforming concrete items largely depends on the choice of rational modes of vibroeffect to the compacting mixture. The article discusses the propagation of a wave packet in the concrete mixture under shock and vibration molding. Studies have shown that the spectrum of a wave packet contains a large number of harmonics. The main parameter influencing the amplitude-frequency spectrum is the stiffness of elastic gaskets between mold and forming machine vibrating table. By varying the stiffness of the elastic gaskets can widely change the spectrum of the oscillations propagating in the concrete mix. Thus, it is possible to adjust the intensity of the process of vibroforming.

  3. Determining the water content in concrete by gamma scattering method

    International Nuclear Information System (INIS)

    Priyada, P.; Ramar, R.; Shivaramu

    2014-01-01

    Highlights: • Gamma scattering technique for estimation of water content in concrete is given. • The scattered intensity increases with the volumetric water content. • Attenuation correction is provided to the scattered intensities. • Volumetric water content of 137 Cs radioactive source and a high resolution HPGe detector based energy dispersive gamma ray spectrometer. Concrete samples of uniform density ≈2.4 g/cm 3 are chosen for the study and the scattered intensities found to vary with the amount of water present in the specimen. The scattered intensities are corrected for attenuation effects and the results obtained with reference to a dry sample are compared with those obtained by gravimetrical and gamma transmission methods. A good agreement is seen between gamma scattering results and those obtained by gravimetric and transmission methods within accuracy of 6% and <2% change in water content can be detected

  4. High - velocity water jet impact on concrete samples

    Czech Academy of Sciences Publication Activity Database

    Mádr, V.; Uhlář, R.; Hlaváč, L. M.; Sitek, Libor; Foldyna, Josef; Hela, R.; Bodnárová, L.; Kaličinský, J.

    2009-01-01

    Roč. 2, č. 4 (2009), s. 43-48 ISSN 2067-3809 Institutional research plan: CEZ:AV0Z30860518 Keywords : water jet * concrete * depth of penetration * disintegration volume Subject RIV: JM - Building Engineering http://acta.fih.upt.ro/pdf/2009-4/ACTA-2009-4-08.pdf

  5. marine water effect on compressive strength of concrete

    African Journals Online (AJOL)

    hp

    (OH-) associated with Alkalis in the cement or concrete [1, 2]. ... alkaline minerals in the aggregate by the hydroxide .... clearly some complex chemical mechanisms involved here. .... [7] Mbadike, E.M and Elinwa, A.U. 'Effect of Salt Water in.

  6. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete

    Directory of Open Access Journals (Sweden)

    H. Cifuentes

    2018-02-01

    Full Text Available Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been provided on the self-compacting concrete mixes.

  7. Specifications and Construction Methods for Asphalt Concrete and Other Plant-Mix Types, 3rd Edition.

    Science.gov (United States)

    Asphalt Inst., College Park, MD.

    The purpose of this publication is to assist engineers in the analysis, design and control of paving projects that use asphalt concrete and other asphalt plant-mixes. The scope of this new third edition has been enlarged, and changes necessitated by advances in asphalt technology have been incorporated. Chapters I and II and Appendices A and B…

  8. Evaluation of recycled hot mix asphalt concrete on Route 220 : final report.

    Science.gov (United States)

    1985-01-01

    This report describes the performance of an approximately 8-mi section of roadway on which the rod two layers of asphalt concrete were milled, recycled through a conventional asphalt batch plant, and relaid. The recycled mix consisted of about 40% re...

  9. The direct incorporation of micro-encapsulated phase change materials in the concrete mixing process

    NARCIS (Netherlands)

    Hunger, M.; Entrop, A.G.; Mandilaras, I.; Brouwers, H.J.H.; Founti, M.; Durmisevic, E.

    2009-01-01

    The present study refers to a set of tests using different amounts of microencapsulated PCM directly mixed into self-compacting concrete. This SCC is investigated regarding its fresh and hardened properties. It will be shown that increasing PCM amounts lead to lower thermal conductivity and

  10. 78 FR 51267 - Hours of Service of Drivers: National Ready Mixed Concrete Association; Application for Exemption

    Science.gov (United States)

    2013-08-20

    ... Mixed Concrete Association (NRMCA) for an exemption from the 30-minute rest break provision of the.... Due to the nature of their operation, NRMCA believes that compliance with the 30-minute rest break... reasons for denying or granting the application and, if granted, the name of the person or class of...

  11. Influence of Curing Age and Mix Composition on Compressive Strength of Volcanic Ash Blended Cement Laterized Concrete

    Directory of Open Access Journals (Sweden)

    Babafemi A.J.

    2012-01-01

    Full Text Available This study investigates the influence of curing age and mix proportions on the compressive strength of volcanic ash (VA blended cement laterized concrete. A total of 288 cubes of 100mm dimensions were cast and cured in water for 3, 7, 28, 56, 90 and 120 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively while a control mix of 28-day target strength of 25N/mm2 (using British Method was adopted. The results show that the compressive strength of the VA-blended cement laterized concrete increased with the increase in curing age but decreased as the VA and laterite (LAT contents increased. The optimum replacement level was 20%LAT/20%VA. At this level the compressive strength increased with curing age at a decreasing rate beyond 28 days. The target compressive strength of 25N/mm2 was achieved for this mixture at 90 days of curing. VA content and curing age was noted to have significant effect (α ≤ 0.5 on the compressive strength of the VA-blended cement laterized concrete.

  12. An Experimental Study on Strength and Durability for Utilization of Fly Ash in Concrete Mix

    Directory of Open Access Journals (Sweden)

    Abdulhalim Karaşin

    2014-01-01

    Full Text Available The intention of this study is to discuss the variation of concrete exposed to high sulfate environment of a specific region with respect to strength and durability. Secondly, it is aimed to discuss the possibility of reducing the cement amount in construction of concrete structures. For this purpose, laboratory tests were conducted to investigate compressive strength and sulfate resisting capacity of concrete by using 20% fly ash as mineral additives, waste materials, instead of cement. As a case study the soil samples, received from Siirt Province areas which contain high sulfate rate, have been compared with respect to sulfate standard parameters of TS 12457-4. In such regions contact of underground water seep into hardened concrete substructures poses a risk of concrete deterioration. In order to determine the variation of strength and durability for concrete exposed to such aggressive environment, the samples were rested in a solution of Na2SO4 (150 g/lt in accordance with ASTM C 1012 for the tests. As a result of this experimental study, it is noted that the use of 20% fly ash, replacement material instead of cement, has no significant effect on compressive strength of concrete over time.

  13. Concrete

    DEFF Research Database (Denmark)

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities. Through tangible experiments the project...... specific for this to happen. And the knowledge and intention behind the drawing becomes specialised through the understanding of the fabrication processes and their affect on the materials.The structure Concrete is a result of a multi-angled kerf series in ash wood and a concrete base. The ash wood is cut...... using a 5-axis CNC router with a thin saw blade attached. The programming of the machining results in variations of kerfs that lets the ash wood twist into unique shapes.The shapes of the revolving ash ribbons continue into the concrete creating a cohesive shape. The form for the concrete itself is made...

  14. Evaluating The Performance of Asphalt Concrete Mixes by Utilizing Carbon Black as Asphalt Modifier

    Directory of Open Access Journals (Sweden)

    Aliaa Faleh Al.ani

    2018-02-01

    Full Text Available Carbon black produced from several factories in Iraq is expected to provide a reinforcing agent for asphalt paving materials. Carbon black has many characteristics that distinguish  it from conventional mineral fillers, as well as their different function in pavement mixtures. Theory and exercise advanced  in the inclusive utilize of carbon black as a reinforcing agent for rubber has led to concept of asphalt reinforcement. The very fine particles of micro filler added in different contents will be dispersed in asphalt cement improving the mechanical properties of asphalt concrete mixes. In this Four percentages rates were utilized; 0, 3, 6, and 9 percent adding to asphalt grade (60-70. Mixes of asphalt concrete were destined at their optimum asphalt content (OAC then experienced to assess their engineering characteristics that contain moisture of damage, permanent deformation, modulus of resilient and characteristics of fatigue. These characteristics have been assessed utilizing indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixtures improved with carbon black were existed to have amended permanent deformation and fatigue characteristics, else exhibited high resilient modulus and lower moisture susceptibility. Result showed that a rate changed from 3 to 9 percent has shown an increase in resilient modulus for increment of carbon black and modulus of resilient for mixes with 9 percent carbon black was 1.4 times that for mixes with 0 percent carbon black. The altering of carbon black from a range (3-9 percent has modified the fatigue property of the asphalt concrete mixes as determined by flexural test, Significantly, to modify the asphalt concrete manner taken the  percent of carbon black 6, and to produce the mixes more durable , higher resistance to distresses by adding the local knowledge.

  15. A model describing water and salt migration in concrete during wetting/drying cycles

    NARCIS (Netherlands)

    Arends, T.; Taher, A.; van der Zanden, A.J.J.; Brouwers, H.J.H.; Bilek, V.; Kersner, Z.

    2014-01-01

    In order to predict the life span of concrete structures, models describing the migration of chloride are needed. In this paper, a start is made with a simple, theoretical model describing water and chloride transport in a concrete sample. First, transport of water in concrete is considered with

  16. Pervious concrete physical characteristics and effectiveness in stormwater pollution reduction.

    Science.gov (United States)

    2016-04-01

    The objective of this research was to investigate the physical/chemical and water flow characteristics of various previous concrete : mixes made of different concrete materials and their effectiveness in attenuating water pollution. Four pervious con...

  17. TRANSPARENT CONCRETE

    OpenAIRE

    Sandeep Sharma*, Dr. O.P. Reddy

    2017-01-01

    Transparent concrete is the new type of concrete introduced in todays world which carries special property of light transmitting due to presence of light Optical fibres. Which is also known as translucent concrete or light transmitting concrete, it is achieved by replacing coarse aggregates with transparent alternate materials (Optical fibres). The binding material in transparent concrete may be able to transmit light by using clear resins the concrete mix. The concrete used in industry in pr...

  18. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs

  19. Core-concrete interactions with overlying water pools

    International Nuclear Information System (INIS)

    Blose, R.E.; Powers, D.A.; Copus, E.R.; Brockmann, J.E.; Simpson, R.B.; Lucero, D.A.

    1993-11-01

    The WETCOR-1 test of simultaneous interactions of a high-temperature melt with water and a limestone/common-sand concrete is described. The test used a 34.1-kg melt of 76.8 w/o Al 2 O 3 , 16.9 w/o CaO, and 4.0 w/o SiO 2 heated by induction using tungsten susceptors. Once quasi-steady attack on concrete by the melt was established, an attempt was made to quench the melt at 1850 K with 295 K water flowing at 57 liters per minute. Net power into the melt at the time of water addition was 0.61 ± 0.19 W/cm 3 . The test configuration used in the WETCOR-1 test was designed to delay melt freezing to the walls of the test fixture. This was done to test hypotheses concerning the inherent stability of crust formation when high-temperature melts are exposed to water. No instability in crust formation was observed. The flux of heat through the crust to the water pool maintained over the melt in the test was found to be 0.52 ± 0.13 MW/m 2 . Solidified crusts were found to attenuate aerosol emissions during the melt concrete interactions by factors of 1.3 to 3.5. The combination of a solidified crust and a 30-cm deep subcooled water pool was found to attenuate aerosol emissions by factors of 3 to 15

  20. Concrete

    OpenAIRE

    Kruse Aagaard, Anders

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities.Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion as an opportunity to connect th...

  1. Aging management of light water reactor concrete containments

    International Nuclear Information System (INIS)

    Shah, V.N.; Hookhman, C.J.

    1994-01-01

    This paper evaluates aging of light water reactor concrete containments and identifies three degradation mechanisms that have potential to cause widespread aging damage after years of satisfactory experience: alkali-silica reaction, corrosion of reinforcing steel, and sulfate attack. The evaluation is based on a comprehensive review of the relevant technical literature. Low-alkali cement and slow-reacting aggregates selected according to ASTM requirements cause deleterious alkali-silica reactions. Low concentrations of chloride ions can initiate corrosion of the reinforcing steel if the hydroxyl ions are sufficiently reduced by carbonation, leaching, or magnesium sulfate attack. Magnesium sulfate attack on concrete can cause loss of strength and cementitious properties after long exposure. Techniques to detect and mitigate these long-term aging effects are discussed

  2. Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components.

    Science.gov (United States)

    Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D

    2016-10-01

    When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  3. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report C : shear behavior of HVFA reinforced concrete.

    Science.gov (United States)

    2012-10-01

    Concrete is the most widely used man-made material on the planet. Unfortunately, producing Portland cement generates carbon dioxide (a greenhouse gas) at roughly a pound for pound ratio. High-volume fly ash (HVFA) concrete concrete with at least ...

  4. Properties of Concrete Exposed to Running Fresh Water for 24 Years

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    2008-01-01

    A total of nine concretes, comprising three cement types, incorporation of fly ash, superplasticized high strength concrete and high performance concrete with microsilica, have been monitored during 24 years of exposure to running fresh water under Danish outdoor climatic conditions....... The compressive strength development has been measured, and durability aspects have been assessed after 6 and 21 years of exposure, with very positive results....

  5. Evaluation of tritiated water retention capacity of fusion reactor concrete building

    International Nuclear Information System (INIS)

    Numata, S.; Fujii, Y.; Okamoto, M.

    1992-01-01

    In this paper the diffusion of tritiated water vapor into concrete walls is studied to evaluate tritiated water retention capacity of a fusion reactor concrete building. Using a model of the tritiated water diffusion determined form experimental results, depth profiles of tritiated water in concrete are calculated in the case of being exposed to air containing tritiated water vapor during the normal operational condition of a fusion reactor. A 0.5-m-thick concrete is sufficient for reactor hall walls from a viewpoint of the tritium containment

  6. Improving of Water Resistance of Asphalt Concrete Wearing Course Using Latex-Bitumen Binder

    Directory of Open Access Journals (Sweden)

    Siswanto Henri

    2017-01-01

    Full Text Available It is well known that presence of water in a bituminous mix is a critical factor which can lead to premature failure of flexible pavements. This requires solutions one of which is to formulate an asphalt mix that has a high resistance to moisture and one way to do this is to mix latex with the asphalt mix. The purpose of this experimental study was to investigate the effect of water on Marshall stability of asphalt concrete wearing course (ACWC made with a latex-bitumen binder. Latex-bitumen was mixed with aggregate and four levels of latex content were investigated in this study, namely, 0%, 2%, 4% and 6% respectively by weight of asphalt. Wet procces was used in the blending of mixtures. The procedure used to obtain the optimum binder contents conformed to the Marshall procedure (SNI 06-2489-1991. Six Marshall specimens at optimum binder content were prepared for each binder mix investigated. Three of six specimens from each group were tested under Marshall standards. The remaining specimens were tested by immersion in a bath at 60°C for 24 hours. The Marshall index of retained stability was used to evaluate the effect of water on the Marshall stability of ACWC. The results indicated that the addition of up to 4% latex to ACWC mix increased the retained Marshall stability, whereas the addition of latex above 4% decreased the retained stability of the mixture. The addition of 4% CRM significantly improved the retained stability of the mixture and was the best latex – ACWC mix.

  7. Prestressed concrete pressure vessels for boiling water reactors

    International Nuclear Information System (INIS)

    Menon, S.

    1979-12-01

    Following a general description of the Scandinavian cooperative project on prestressed concrete pressure vessels for boiling water reactors, detailed discussion is given in four appendices of the following aspects: the verification programme of tests and studies, the development and testing of a liner venting system, a preliminary safety philosophy and comparative assessment of cold and hot liners. Vessel failure probability is briefly discussed and some figures presented. The pressure gradients in the vessel wall resulting from various stipulated linear cracks, with a liner venting system are presented graphically. (JIW)

  8. On-line monitoring of water amount in fresh concrete by radioactive-wave method

    International Nuclear Information System (INIS)

    Kemi, T.; Arai, M.; Enomoto, S.; Suzki, K.; Kumahara, Y.

    2003-01-01

    The committee on nondestructive inspection for steel reinforced concrete structures in the Federation of Construction Materials Industries, Japan has published a proposed standard for on-line monitoring of water amount in fresh concrete by the radioactive wave method. By applying a neutron technique, water amount in fresh concrete is estimated continuously from the energy consumption of neutron due to hydrogen. A standard is discussed along with results of verification tests. Thus, on-line monitoring for water amount is proposed

  9. Use of pulsating water jet technology for removal of concrete in repair of concrete structures

    Czech Academy of Sciences Publication Activity Database

    Sitek, Libor; Foldyna, Josef; Martinec, Petr; Ščučka, Jiří; Bodnárová, L.; Hela, R.

    2011-01-01

    Roč. 6, č. 4 (2011), s. 235-242 ISSN 1822-427X R&D Projects: GA ČR GA103/07/1662; GA ČR GP101/07/P512; GA AV ČR 1QS300860501; GA MŠk ED2.1.00/03.0082 Grant - others:GA MPO(CZ) FR-TI2/390 Program:FR Institutional research plan: CEZ:AV0Z30860518 Keywords : high-speed water jet technology * pulsating jet * rotating jets * removal of concrete layer Subject RIV: JQ - Machines ; Tools Impact factor: 1.610, year: 2011 http://www.bjrbe.vgtu.lt/volumes/en/volume6/number4/03.php

  10. Effect of moisture content of concrete on water uptake

    International Nuclear Information System (INIS)

    Rucker-Gramm, P.; Beddoe, R.E.

    2010-01-01

    The penetration of water and non-polar hexane in Portland cement mortar prisms with different initial moisture contents was investigated using nuclear magnetic resonance ( 1 H NMR). The amount of water in gel pores strongly affects the penetration of water in much larger capillary pores. Water penetration is reduced by the self-sealing effect as characterized by non-√t dependence of capillary uptake and penetration depth. This is explained by the ongoing redistribution of water from capillaries into gel pores which results in internal swelling and loss of continuity of the capillary pore system; a correlation was observed between the amount of redistributed water and departure from √t behaviour. A descriptive model is used to explain the dependence of water uptake and penetration on moisture content. For increasing initial moisture contents up to a critical value equivalent to equilibrium with a relative humidity between 65 and 80%, less penetrating water is able to redistribute. Thus more penetrating water is in larger capillaries with less viscous resistance; uptake and penetration depth increase. Above the critical initial moisture content, uptake and penetration depth decrease towards zero. This is explained by (a) an overall reduction in capillary pressure because transport takes places in fewer and larger pores and (b) an increase in viscous resistance due to the connection of penetrating capillary water with pores already containing water. Less capillary pore space is available for transport. The surface region of concrete placed in contact with water is not instantaneously saturated. Water content increases with time depending on the degree of surface saturation. A new transition coefficient for capillary suction γ is defined for the calculation of surface flux.

  11. INFLUENCE OF WATER-TO-CEMENT RATIO ON AIR ENTRAILMENT IN PRODUCTION OF NON-AUTOCLAVED FOAM CONCRETE USING TURBULENCE CAVITATION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Gorshkov Pavel Vladimirovich

    2012-10-01

    Full Text Available Non-autoclaved foam concrete is an advanced thermal insulation material. Until recently, foam concrete production has been based on separate preparation of foam and solution, followed by their blending in a mixer. The situation changed when high-quality synthetic foaming agents and turbulence cavitation technology appeared on the market. Every model provides a dependence between the foam concrete strength and the water-to-cement ratio. According to the water-cement ratio we can distinguish strong concrete mixtures (with the water-to-cement ratio equal to 0.3…0.4 and ductile ones (with the water-to-cement ratio equal to 0.5…0.7. Strong concrete mixtures are more durable. The lower the water-to-cement ratio, the higher the foam concrete strength. However super-plastic substances cannot be mixed by ordinary turbulent mixers. Foam concrete produced using the turbulence cavitation technology needs air-entraining, its intensity being dependent on several factors. One of the main factors is the amount of free water, if it is insufficient, the mixture will not be porous enough. A researcher needs to identify the optimal water-to-cement ratio based on the water consumption rate. Practical production of prefabricated concrete products and structures has proven that the reduction of the water-to-cement ratio improves the strength of the product. The task is to find the water-to-cement ratio for the foam concrete mixture to be plastic enough for air entraining. An increase in the ratio causes loss in the strength. The ratio shall vary within one hundredth points. Super-plasticizers are an alternative solution.

  12. Water permeability evaluation of hollow cylindrical reinforced concrete structure by means of long-term water penetration test with pressure

    International Nuclear Information System (INIS)

    Fujiwara, Ai; Miura, Norihiko; Konishi, Kazuhiro; Tsuji, Yukikazu

    2005-01-01

    In order to evaluate initial permeability of large concrete structure, hollow cylindrical reinforced concrete structure, having 6 m in outer diameter, 6 m in height, 1 m in thickness, had been tested by means of 0.25 MPa of outside water pressure. As the results, although surface cracking and partial separation of joint had been observed at the inner side, no water permeation through concrete could be happened even after 5.5 years. After this test, concrete core specimen showed less water penetration within the depth of concrete cover of reinforcement. Thus it was verified that this concrete structure had very high water-tightness, and that the initial average water permeability was estimated to be about 1.6 x 10 -12 m/s. (author)

  13. Concrete durability: physical chemistry of the water attack

    International Nuclear Information System (INIS)

    Faucon, P.

    1997-01-01

    Cement paste constitutes an basic medium, thermodynamically stable for high pH's. For this reason, water constitutes an aggressive environment. For hydraulic structures, or nuclear waste disposal, water must be considered as a 'chemical loading'. In the short- and medium-term water-degradation of cement paste is principally due to transport of matter between the healthy zone and the aggressive solution through diffusion of ionic species from the interstitial solution of the cement paste. In the long-term, dissolution of the surface may occur. Various cement pastes were prepared and leached with continually demineralized water. After a critical time, which depends on the type of paste, the dissolution of the surface layer in contact with water will control the degradation kinetics. The diffusive and chemical properties of the degraded layer are therefore fundamental for the prediction of the long-term behaviour of concrete in water. 29 Si Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) combined with 27 A1 MAS NMR and 57 Fe Moessbauer spectroscopy indicate that the superficial layer is formed by a CSH with a molecular structure near from the tobermorite mineral. Nuclear magnetic resonance techniques allow us to demonstrate the fundamental role of cationic substitutions occurring in the CSH during degradation on the superficial layer solubility. Our experimental results were used to model the cement paste behaviour taking into account the diffusion and the dissolution of the material. (author)

  14. Influence of Temperature Upon Permanent Deformation Parameters of Asphalt Concrete Mixes

    Directory of Open Access Journals (Sweden)

    Amjad Hamad Albayati

    2017-07-01

    Full Text Available The performance of asphalt concrete pavement has affected by many factors, the temperature is the most important environmental one which has a large effect on the structural behavior of flexible pavement materials. The main cause of premature failure of pavement is the rutting, Due to the viscoelastic nature of the asphalt cement, rutting is more pronounced in hot climate areas because the viscosity of the asphalt binder which is inversely related to rutting is significantly reduced with the increase in temperature resulting in a more rut susceptible paving mixtures. The objective of this study is to determine the effect of temperatures variations on the permanent deformation parameters (permanent strain (p, intercept (a, slope (b, Alpha and Mu as well as resilient strain (r and resilient modulus (Mr. To achieve this objective, one aggregate gradation with 12.5mm nominal maximum size, two grades of asphalt cements (40-50 and 60-70 brought form Al- Daurah refinery, limestone dust filler has been used to prepare the asphalt concrete mixtures. 30 Marshall specimens were prepared to determine the optimum asphalt cement content. Thereafter, 30 cylindrical asphalt concrete specimens (102mm in diameter and 203 mm in height are prepared in optimum asphalt cement and optimum ±0.5 percent. The prepared specimens were used in uniaxial repeated load test to evaluate the permanent deformation parameters of asphalt concrete mixes under the following testing temperature (5, 15, 25, 40 and 60c. The test result analyses appeared that Mr is decrease 51 percent when temperature increased from 5 c to 25 c and then decrease 22 percent with further increase in temperature from 25 c to 60 c. Also, the Alpha value decreases by a factor of 1.25 and 1.13 when temperature increases from 5 c to 25 c and 25 c to 60 c, espectively. Finally, statistical models were developed to predict the Alpha and Mu parameters of permanent deformation.

  15. A study on the influence of curing on the strength of a standard grade concrete mix

    OpenAIRE

    Krishna Rao M.V.; Kumar Rathish P.; Khan Azhar M.

    2010-01-01

    Curing is essential if concrete is to perform the intended function over the design life of the structure while excessive curing time may lead to the escalation of the construction cost of the project and unnecessary delays. Where there is a scarcity of water and on sloping surfaces where curing with water is difficult and in cases where large areas like pavements have to be cured, the use of curing compound may be resorted to. The parameters of the study include the curing period [1, 3, 7, 1...

  16. Performance Evaluation of Stone Mastic Asphalt and Hot Mix Asphalt Mixtures Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Mohammad Saeed Pourtahmasb

    2014-01-01

    Full Text Available Environmental and economic considerations have encouraged civil engineers to find ways to reuse recycled materials in new constructions. The current paper presents an experimental research on the possibility of utilizing recycled concrete aggregates (RCA in stone mastic asphalt (SMA and hot mix asphalt (HMA mixtures. Three categories of RCA in various percentages were mixed with virgin granite aggregates to produce SMA and HMA specimens. The obtained results indicated that, regardless of the RCA particular sizes, the use of RCA to replace virgin aggregates increased the needed binder content in the asphalt mixtures. Moreover, it was found that even though the volumetric and mechanical properties of the asphalt mixtures are highly affected by the sizes and percentages of the RCA but, based on the demands of the project and traffic volume, utilizing specific amounts of RCA in both types of mixtures could easily satisfy the standard requirements.

  17. The influence of kind of coating additive on the compressive strength of RCA-based concrete prepared by triple-mixing method

    Science.gov (United States)

    Urban, K.; Sicakova, A.

    2017-10-01

    The paper deals with the use of alternative powder additives (fly ash and fine fraction of recycled concrete) to improve the recycled concrete aggregate and this occurs directly in the concrete mixing process. Specific mixing process (triple mixing method) is applied as it is favourable for this goal. Results of compressive strength after 2 and 28 days of hardening are given. Generally, using powder additives for coating the coarse recycled concrete aggregate in the first stage of triple mixing resulted in decrease of compressive strength, comparing the cement. There is no very important difference between samples based on recycled concrete aggregate and those based on natural aggregate as far as the cement is used for coating. When using both the fly ash and recycled concrete powder, the kind of aggregate causes more significant differences in compressive strength, with the values of those based on the recycled concrete aggregate being worse.

  18. Discussion on Construction Technology of Prestressed Reinforced Concrete Pipeline of Municipal Water Supply and Drainage

    Science.gov (United States)

    Li, Chunyan

    2017-11-01

    Prestressed reinforced concrete pipe has the advantages of good bending resistance, good anti-corrosion, anti-seepage, low price and so on. It is very common in municipal water supply and drainage engineering. This paper mainly explore the analyze the construction technology of the prestressed reinforced concrete pipe in municipal water supply and drainage engineering.

  19. Marketing mix of chosen Slovak mineral water

    Directory of Open Access Journals (Sweden)

    Juhanová Silvia

    2001-09-01

    Full Text Available Considering its small area, Slovakia abounds in many sources of mineral waters and a considerable amount of them can be used for the commercial utilization. STN 86 8000 divides mineral waters in the natural mineral waters, natural mineral table waters and the natural mineral healing waters. Natural mineral water is, after the present norm, in effect water, which rises from natural trapped sources. This type of water contains more than 1 gram of dissolved substances or 1 gram of dissolved CO 2 in 1 litter. Natural mineral table water is water that, with its chemical composition as well as its physical and sensorial attributes is suitable as a refresher. It contains at least 1 gram of melted CO2 and up to 6 grams of dissolved illiquid substances in 1 litter. The mentioned substances are not characterised by any marked pharmacological effect. Natural mineral healing water is water, which with an eye to its chemical composition and physical properties, have a scientifically demonstrable effects to the human health and it is generally used for healing purposes. In the present contribution, an attention is orientated to the occurrence of listed types of waters in Slovakia, in connection with geological conditions of their circulation and accumulation and especially with possibilities of their use on the Slovak buyer’s market.The marketing mix is a complex of information, which can be regulated. Firms accumulate this information to satisfy a customer. Marketing mix of mineral waters includes information about four variables: product (characteristics of product, quality, packing, design..., prices, advertisement, distribution (the way how to get product to customer. Data listed in the contribution come from the sectional market research, which was performed between December 1st and December 22nd 2000 in twenty groceries in

  20. Compressive strength of a concrete mix for pavement blocks incorporating industrial by-product

    CSIR Research Space (South Africa)

    Mokoena, Refiloe

    2017-07-01

    Full Text Available - reference 3 0 0.26 808 0 1062 344 210 0 - Mix 8 50 0.28 404 404 1062 212 226 0 0 Mix 8A 50 0.28 404 404 1062 212 226 3.10 5 Mix 8B 50 0.28 404 404 1062 212 226 6.21 10 Mix 9 90 0.28 81 727 1062 106 226 0 55 *water:binder ratio where fly ash and cement... was made for the 90% fly ash specimens due to the specimens disintegrating once placed in water. These specimens were therefore cured in heavy duty plastic bags; mixes 3, 6 and 9 were cured in the heavy duty bags before crushing on the appropriate days...

  1. Tidal mixing in Dahej creek waters

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Sarma, R.V.

    Mixing characteristics of a tidal inlet near Dahej at the mouth of Narmada River, Gujarat, India are examined in terms of tides, currents and bathymetry. The dilution potential of the Dahej Creek waters during a tidal march for a given rate...

  2. Water content monitoring for Flamanville 3 EPR trademark prestressed concrete containment. An application for TDR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, Alexis; Clauzon, Timothee [EDF DPIH DTG, Lyon (France); Taillade, Frederic [EDF R and D, Chatou (France); Martin, Gregoire [EDF CNEN, Montrouge (France)

    2015-07-01

    Long term operation of nuclear power plant requires an appropriate monitoring of containment structures. For prestressed concrete containment vessels, a key parameter for ageing analysis is the evolution of the amount of water remaining within the concrete pores. EDF decides to launch a development program, in order to determine what sensor technologies are able to achieve such kind of monitoring on large concrete structures. One of the main parts of this program is to determine the maximum allowable uncertainty for the measurement. Another stake is the calibration process of sensors dedicated to water content measurement in concrete structures and the management of the parameters which have the largest influence on the measurement process.

  3. Quality Assessment of Mixed and Ceramic Recycled Aggregates from Construction and Demolition Wastes in the Concrete Manufacture According to the Spanish Standard †

    Science.gov (United States)

    Rodríguez-Robles, Desirée; García-González, Julia; Juan-Valdés, Andrés; Pozo, Julia Mª Morán-del; Guerra-Romero, Manuel I

    2014-01-01

    Construction and demolition waste (CDW) constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA) and ceramic recycled aggregates (CerRA). In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08) to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation) of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW. PMID:28788164

  4. Quality Assessment of Mixed and Ceramic Recycled Aggregates from Construction and Demolition Wastes in the Concrete Manufacture According to the Spanish Standard.

    Science.gov (United States)

    Rodríguez-Robles, Desirée; García-González, Julia; Juan-Valdés, Andrés; Morán-Del Pozo, Julia Mª; Guerra-Romero, Manuel I

    2014-08-13

    Construction and demolition waste (CDW) constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA) and ceramic recycled aggregates (CerRA). In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08) to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation) of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW.

  5. Quality Assessment of Mixed and Ceramic Recycled Aggregates from Construction and Demolition Wastes in the Concrete Manufacture According to the Spanish Standard

    Directory of Open Access Journals (Sweden)

    Desirée Rodríguez-Robles

    2014-08-01

    Full Text Available Construction and demolition waste (CDW constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA and ceramic recycled aggregates (CerRA. In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08 to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW.

  6. Gas and water permeability tests of 25 year old concrete from the NPD Nuclear Generating Station

    International Nuclear Information System (INIS)

    Mills, R.H.

    1990-05-01

    Permeability tests on cores recovered from concrete which had been in service for 25 years in the Nuclear Power Demonstration (NPD) reactor showed rates of mass transfer of gas and water which were greater than young fresh concrete of the same proportions and that reported in previous AECB reports. This transparency of the concrete was also 2 orders of magnitude greater than that of comparable concrete which had been stored in the laboratory atmosphere for 19 years. Analysis of the effluent in water permeability tests revealed the presence of unusual amounts of soluble materials, mainly Na and K but little Ca, in the reactor concrete. This suggested service-related deterioration of the concrete rather than the release of soluble Ca by continuing hydration of cement

  7. Quantification of water penetration into concrete through cracks by neutron radiography

    International Nuclear Information System (INIS)

    Kanematsu, M.; Maruyama, I.; Noguchi, T.; Iikura, H.; Tsuchiya, N.

    2009-01-01

    Improving the durability of concrete structures is one of the ways to contribute to the sustainable development of society, and it has also become a crucial issue from an environmental viewpoint. It is well known that moisture behavior in reinforced concrete is linked to phenomena such as cement hydration, volume change and cracking caused by drying shrinkage, rebar corrosion and water leakage that affect the durability of concrete. In this research, neutron radiography was applied for visualization and quantification of water penetration into concrete through cracks. It is clearly confirmed that TNR can make visible the water behavior in/near horizontal/vertical cracks and can quantify the rate of diffusion and concentration distribution of moisture with high spatial and time resolution. On detailed analysis, it is observed that water penetrates through the crack immediately after pouring and its migration speed and distribution depend on the moisture condition in the concrete.

  8. Water Permeability of Pervious Concrete Is Dependent on the Applied Pressure and Testing Methods

    Directory of Open Access Journals (Sweden)

    Yinghong Qin

    2015-01-01

    Full Text Available Falling head method (FHM and constant head method (CHM are, respectively, used to test the water permeability of permeable concrete, using different water heads on the testing samples. The results indicate the apparent permeability of pervious concrete decreasing with the applied water head. The results also demonstrate the permeability measured from the FHM is lower than that from the CHM. The fundamental difference between the CHM and FHM is examined from the theory of fluid flowing through porous media. The testing results suggest that the water permeability of permeable concrete should be reported with the applied pressure and the associated testing method.

  9. Safety in ready mixed concrete industry: descriptive analysis of injuries and development of preventive measures.

    Science.gov (United States)

    Akboğa, Özge; Baradan, Selim

    2017-02-07

    Ready mixed concrete (RMC) industry, one of the barebones of construction sector, has its distinctive occupational safety and health (OSH) risks. Employees experience risks that emerge during the fabrication of concrete, as well as its delivery to the construction site. Statistics show that usage and demand of RMC have been increasing along with the number of producers and workers. Unfortunately, adequate OSH measures to meet this rapid growth are not in place even in top RMC producing countries, such as Turkey. Moreover, lack of statistical data and academic research in this sector exacerbates this problem. This study aims to fill this gap by conducting data mining in Turkish Social Security Institution archives and performing univariate frequency and cross tabulation analysis on 71 incidents that RMC truck drivers were involved. Also, investigations and interviews were conducted in seven RMC plants in Turkey and Netherlands with OSH point of view. Based on the results of this research, problem areas were determined such as; cleaning truck mixer/pump is a hazardous activity where operators get injured frequently, and struck by falling objects is a major hazard at RMC industry. Finally, Job Safety Analyses were performed on these areas to suggest mitigation methods.

  10. Vision-Inspection System for Residue Monitoring of Ready-Mixed Concrete Trucks

    Directory of Open Access Journals (Sweden)

    Deok-Seok Seo

    2015-01-01

    Full Text Available The objective of this study is to propose a vision-inspection system that improves the quality management for ready-mixed concrete (RMC. The proposed system can serve as an alternative to the current visual inspection method for the detection of residues in agitator drum of RMC truck. To propose the system, concept development and the system-level design should be executed. The design considerations of the system are derived from the hardware properties of RMC truck and the conditions of RMC factory, and then 6 major components of the system are selected in the stage of system level design. The prototype of system was applied to a real RMC plant and tested for verification of its utility and efficiency. It is expected that the proposed system can be employed as a practical means to increase the efficiency of quality management for RMC.

  11. Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors

    Science.gov (United States)

    Miller, Sabbie A.; Horvath, Arpad; Monteiro, Paulo J. M.; Ostertag, Claudia P.

    2015-11-01

    With increased awareness of the emissions of greenhouse gases (GHGs) and the significant contribution from the cement industry, research efforts are being advanced to reduce the impacts associated with concrete production and consumption. A variety of methods have been proposed, one of the most common being the replacement of cement as a binder in concrete with supplementary cementitious materials, such as fly ash (FA), which can have lower environmental effects. The use of FA can change the kinetics of the hydration reactions and, consequently, modify the evolution of the concrete strength over time. Yet the influence of designing structural elements to obtain the required strength at later ages has not been examined in terms of their influence on global warming potential (GWP) of concrete. This research investigates the influence of design age, in addition to mix proportions and geometric aspects, on the GWP associated with making beams, columns, and a concrete building frame. Findings suggest that while the GWP for beams is not highly dependent on concrete mixture strength, the GWP for columns is dependent on strength, thus the influence of required strength at later ages influences GWP of making columns more so than beams. For the concrete frame analyzed, a potential 45% reduction in GWP, depending on mix proportions and design age, was found. Using the findings from this research, the GWP associated with production of concrete in California could be reduced by approximately 1.8 million metric tons of CO2-eq emissions, equivalent to approximately 2% of all industrial GHG emissions in California.

  12. Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors

    International Nuclear Information System (INIS)

    Miller, Sabbie A; Horvath, Arpad; Monteiro, Paulo J M; Ostertag, Claudia P

    2015-01-01

    With increased awareness of the emissions of greenhouse gases (GHGs) and the significant contribution from the cement industry, research efforts are being advanced to reduce the impacts associated with concrete production and consumption. A variety of methods have been proposed, one of the most common being the replacement of cement as a binder in concrete with supplementary cementitious materials, such as fly ash (FA), which can have lower environmental effects. The use of FA can change the kinetics of the hydration reactions and, consequently, modify the evolution of the concrete strength over time. Yet the influence of designing structural elements to obtain the required strength at later ages has not been examined in terms of their influence on global warming potential (GWP) of concrete. This research investigates the influence of design age, in addition to mix proportions and geometric aspects, on the GWP associated with making beams, columns, and a concrete building frame. Findings suggest that while the GWP for beams is not highly dependent on concrete mixture strength, the GWP for columns is dependent on strength, thus the influence of required strength at later ages influences GWP of making columns more so than beams. For the concrete frame analyzed, a potential 45% reduction in GWP, depending on mix proportions and design age, was found. Using the findings from this research, the GWP associated with production of concrete in California could be reduced by approximately 1.8 million metric tons of CO 2 -eq emissions, equivalent to approximately 2% of all industrial GHG emissions in California. (letter)

  13. Chloride accelerated test: influence of silica fume, water/binder ratio and concrete cover thickness

    Directory of Open Access Journals (Sweden)

    E. Pereira

    Full Text Available In developed countries like the UK, France, Italy and Germany, it is estimated that spending on maintenance and repair is practically the same as investment in new constructions. Therefore, this paper aims to study different ways of interfering in the corrosion kinetic using an accelerated corrosion test - CAIM, that simulates the chloride attack. The three variables are: concrete cover thickness, use of silica fume and the water/binder ratio. It was found, by analysis of variance of the weight loss of the steel bars and chloride content in the concrete cover thickness, there is significant influence of the three variables. Also, the results indicate that the addition of silica fume is the path to improve the corrosion protection of low water/binder ratio concretes (like 0.4 and elevation of the concrete cover thickness is the most effective solution to increase protection of high water/binder ratio concrete (above 0.5.

  14. Coolant mixing in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, T; Grunwald, G

    1998-10-01

    The behavior of PWRs during cold water or boron dilution transients is strongly influenced by the distribution of coolant temperature and boron concentration at the core inlet. This distribution is the needed input to 3-dimensional neutron kinetics to calculate the power distribution in the core. It mainly depends on how the plugs of cold or unborated water formed in a single loop are mixed in the downcomer and in the lower plenum. To simulate such mixture phenomena requires the application of 3-dimensional CFD (computational fluid dynamics) codes. The results of the simulation have to be validated against mixture experiments at scaled facilities. Therefore, in the framework of a research project funded by BMBF, the institute creates a 1:5 mixture facility representing first the geometry of a German pressurized water reactor and later the European Pressurized Water Reactor (EPR) geometry. The calculations are based on the CFD Code CFX-4. (orig.)

  15. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes

    International Nuclear Information System (INIS)

    Yang Jian; Hu Yu; Zuo Zheng; Jin Feng; Li Qingbin

    2012-01-01

    Removal of hydration heat from mass concrete during construction is important for the quality and safety of concrete structures. In this study, a three-dimensional finite element program for thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes was developed based on the equivalent equation of heat conduction including the effect of cooling water pipes and hydration heat of concrete. The cooling function of the double-layer staggered heterogeneous cooling pipes in a concrete slab was derived from the principle of equivalent cooling. To improve the applicability and precision of the equivalent heat conduction equation under small flow, the cooling function was revised according to its monotonicity and empirical formulas of single-phase forced-convection heat transfer in tube flow. Considering heat hydration of concrete at later age, a double exponential function was proposed to fit the adiabatic temperature rise curve of concrete. Subsequently, the temperature variation of concrete was obtained, and the outlet temperature of cooling water was estimated through the energy conservation principle. Comparing calculated results with actual measured data from a monolith of an arch dam in China, the numerical model was proven to be effective in sufficiently simulating accurate temperature variations of mass concrete. - Highlights: ► Three-dimensional program is developed to model temperature history of mass concrete. ► Massive concrete is embedded with double-layer heterogeneous cooling pipes. ► Double exponential function is proposed to fit the adiabatic temperature rise curve. ► Outlet temperature of cooling water is estimated. ► A comparison is made between the calculated and measured data.

  16. Marine Water Effect on Compressive Strength of Concrete: A Case ...

    African Journals Online (AJOL)

    However, in the case of reinforced concrete, it is recommended that reinforcement be prevented from corrosion by using stainless steels where available and corrosion inhibitors. However, long-term effect of seawater concentration on properties of concrete such as creep and durability were not investigated in this work.

  17. Changes of strength characteristics of pervious concrete due to variations in water to cement ratio

    Science.gov (United States)

    Kovac, M.; Sicakova, A.

    2017-10-01

    Pervious concrete is considered to be a sustainable pavement material due to high water permeability. The experiment presented in this paper was aimed at study the influence of water to cement ratio on both the compressive and splitting tensile strength of pervious concrete. Typically, less water content in concrete mixture leads to less porosity of cement paste and thus it provides desirable mechanical properties. In case of conventional dense concrete, the lower is the water to cement ratio, the higher or better is the strength, density and durability of concrete. This behaviour is not quite clear in case of pervious concrete because of low amount of cement paste present. Results of compressive and splitting tensile strength of pervious concrete are discussed in the paper while taking into account values measured after 2 and 28 days of hardening and variations in water to cement ratio. The results showed that changes of water to cement ratio from 0.25 to 0.35 caused only slight differences in strength characteristics, and this applied to both types of tested strength.

  18. Effect of Water-Cement Ratio on Pore Structure and Strength of Foam Concrete

    Directory of Open Access Journals (Sweden)

    Zhongwei Liu

    2016-01-01

    Full Text Available Foam concrete with different dry densities (400, 500, 600, 700, and 800 kg/m3 was prepared from ordinary Portland cement (P.O.42.5R and vegetable protein foaming agent by adjusting the water-cement ratio through the physical foaming method. The performance of the cement paste adopted, as well as the structure and distribution of air pores, was characterized by a rheometer, scanning electron microscope, vacuum water saturation instrument, and image analysis software. Effects of the water-cement ratio on the relative viscosity of the cement paste, as well as pore structure and strength of the hardened foam concrete, were discussed. Results showed that water-cement ratio can influence the size, distribution, and connectivity of pores in foam concrete. The compressive strength of the foam concrete showed an inverted V-shaped variation law with the increase in water-cement ratio.

  19. Effect of Gum Arabic karroo as a Water-Reducing Admixture in Concrete.

    Science.gov (United States)

    Mbugua, Rose; Salim, Ramadhan; Ndambuki, Julius

    2016-01-28

    Concrete is one of the most popular construction materials in the world. Chemical admixtures are ingredients added to concrete to enhance its properties. However, most chemical admixtures on the market today are expensive, thereby making them out of reach for small consumers of concrete. In Africa, use of chemical admixtures is rare despite the harsh weather conditions. In the current study, Gum from Acacia karroo (GAK) was used as a water-reducing admixture in concrete. A slump test, density and compressive strength were studied using different dosages of GAK while neat concrete was the control. Results showed that slump increased by 200% at a 2% dosage of GAK. This enabled reduction of water-to-binder (w/b) ratio from 0.61 to 0.48 for samples with a 3% dosage. Reduction in w/b resulted in increased compressive strength of 37.03% above the control after 180 days of curing for a 3% dosage. XRD studies also showed a decreased rate of hydration in the presence of GAK in concrete. It was concluded that GAK can be used in concrete as a water-reducing admixture, which is environmentally-friendly, thus producing sustainable and greener concrete.

  20. Effect of Gum Arabic karroo as a Water-Reducing Admixture in Concrete

    Science.gov (United States)

    Mbugua, Rose; Salim, Ramadhan; Ndambuki, Julius

    2016-01-01

    Concrete is one of the most popular construction materials in the world. Chemical admixtures are ingredients added to concrete to enhance its properties. However, most chemical admixtures on the market today are expensive, thereby making them out of reach for small consumers of concrete. In Africa, use of chemical admixtures is rare despite the harsh weather conditions. In the current study, Gum from Acacia karroo (GAK) was used as a water-reducing admixture in concrete. A slump test, density and compressive strength were studied using different dosages of GAK while neat concrete was the control. Results showed that slump increased by 200% at a 2% dosage of GAK. This enabled reduction of water-to-binder (w/b) ratio from 0.61 to 0.48 for samples with a 3% dosage. Reduction in w/b resulted in increased compressive strength of 37.03% above the control after 180 days of curing for a 3% dosage. XRD studies also showed a decreased rate of hydration in the presence of GAK in concrete. It was concluded that GAK can be used in concrete as a water-reducing admixture, which is environmentally-friendly, thus producing sustainable and greener concrete. PMID:28787879

  1. Evaluation of the reinforcing steel corrosion in concrete mixes that will be used for constructing mid activity disposal repositories

    International Nuclear Information System (INIS)

    Moreno, Manuel; Alvarez, Marta G.; Duffo, Gustavo S.

    2000-01-01

    This study presents an evaluation of the reinforcing steel bars (rebars) corrosion behavior embedded in high performance concrete's prepared with three different cement types (normal Portland, Sulfate resistant and with furnace slag). The results of the study will provide the basis to select the materials used for constructing the mid activity radioactive disposals containers. The effect of aggressive ions such as chlorides and sulfates, as well as concrete carbonation, on the rebar corrosion process is evaluated using concrete specimens containing rebar segments. The electrochemical parameters that characterize the rebar corrosion process (corrosion potential (E corr ), polarization resistance (Rp) and electrical resistivity of concrete (ρ)) where periodically monitored after a conditioning period of 100 days. The results show that under all exposure conditions evaluated the rebar segments in contact with the three concrete mixes achieve a passive state of corrosion. Due to the continuos curing process of concrete the values of ρ present an increasing trend within time, even in the specimens exposed to the immersed conditions. (author)

  2. A study on the water permeability of concrete structures

    International Nuclear Information System (INIS)

    Loadsman, R.V.C.; Acres, D.H.; Stokes, C.J.; Wadeson, L.

    1988-03-01

    This report forms part of the DoE's research programme on the disposal of nuclear waste. The information available on the permeability of concrete and the effects of various factors on this value are reviewed. The effect of defects on the overall permeability of concrete structures is examined and the recorded performance of a range of existing concrete structures is considered with identification of some of the factors that are significant in practice. Deficiencies in the information available on this subject are identified and recommendations for further work are made including a list of structures suitable for future monitoring. (author)

  3. New potentional of high-speed water jet technology for renovating concrete structures

    Science.gov (United States)

    Bodnárová, L.; Sitek, L.; Hela, R.; Foldyna, J.

    2011-06-01

    The paper discusses the background and results of research focused on the action of a high-speed water jet on concrete with different qualities. The sufficient and careful removal of degraded concrete layers is very important for the renovation of concrete structures. High-speed water jet technology is one of the most common methods used for removing degraded concrete layers. Different types of high-speed water jets were tested in the experimental part. The classical technology of a single continuous water jet generated with one nozzle was tested as well as the technology of revolving water jets generated by multiple nozzles (used mainly for the renovation of larger areas). A continuous flat water jet and pulsating flat water jet were tested the first time, because the connection of a water jet with the acoustic generator of a pulsating jet offers new possibilities for the use of a water jet (see [1] and [2]). A water jet with such a modification is capable of efficient action and can even be used for cutting solid concrete with a relatively low consumption of energy. A flat pulsating water jet which can be newly used for renovation seems to be a promising technology.

  4. Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete

    Science.gov (United States)

    Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.

    2018-03-01

    This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.

  5. pH neutralization of the by-product sludge waste water generated from waste concrete recycling process using the carbon mineralization

    Science.gov (United States)

    Ji, Sangwoo; Shin, Hee-young; Bang, Jun Hwan; Ahn, Ji-Whan

    2017-04-01

    About 44 Mt/year of waste concrete is generated in South Korea. More than 95% of this waste concrete is recycled. In the process of regenerating and recycling pulmonary concrete, sludge mixed with fine powder generated during repeated pulverization process and water used for washing the surface and water used for impurity separation occurs. In this way, the solid matter contained in the sludge as a by-product is about 40% of the waste concrete that was input. Due to the cement component embedded in the concrete, the sludge supernatant is very strong alkaline (pH about 12). And it is necessary to neutralization for comply with environmental standards. In this study, carbon mineralization method was applied as a method to neutralize the pH of highly alkaline waste water to under pH 8.5, which is the water quality standard of discharged water. CO2 gas (purity 99%, flow rate 10ml/min.) was injected and reacted with the waste water (Ca concentration about 750mg/L) from which solid matter was removed. As a result of the experiment, the pH converged to about 6.5 within 50 minutes of reaction. The precipitate showed high whiteness. XRD and SEM analysis showed that it was high purity CaCO3. For the application to industry, it is needed further study using lower concentration CO2 gas (about 14%) which generated from power plant.

  6. A comparative study of recycled aggregates from concrete and mixed debris as material for unbound road sub-base

    International Nuclear Information System (INIS)

    Jimenez, J. R.; Agrela, F.; Ayuso, J.; Lopez, M.

    2011-01-01

    Seven different types of recycled aggregates from construction and demolition waste (CDW) have been evaluated as granular materials for unbound road sub bases construction. The results showed that recycled concrete aggregates complied with all specifications for using in the construction of unbound structural layers (sub-base) for T3 and T4 traffic categories according to the Spanish General Technical Specification for Road Construction (PG-3). Some mixed recycled aggregates fell short of some specifications due to a high content of sulphur compounds and poor fragmentation resistance. Sieving off the fine fraction prior to crushing the mixed CDW reduce the total sulphur content and improve the quality of the mixed recycled aggregates, by contrast, pre-sieving concrete CDW had no effect on the quality of the resulting aggregates. The results were compared with a crushed limestone as natural aggregate. (Author) 23 refs.

  7. Experimental and Numerical Studies of Controlling Thermal Cracks in Mass Concrete Foundation by Circulating Water

    Directory of Open Access Journals (Sweden)

    Wenchao Liu

    2016-04-01

    Full Text Available This paper summarizes an engineering experience of solving the problem of thermal cracking in mass concrete by using a large project, Zhongguancun No.1 (Beijing, China, as an example. A new method is presented for controlling temperature cracks in the mass concrete of a foundation. The method involves controlled cycles of water circulating between the surface of mass concrete foundation and the atmospheric environment. The temperature gradient between the surface and the core of the mass concrete is controlled at a relatively stable state. Water collected from the well-points used for dewatering and from rainfall is used as the source for circulating water. Mass concrete of a foundation slab is experimentally investigated through field temperature monitoring. Numerical analyses are performed by developing a finite element model of the foundation with and without water circulation. The calculation parameters are proposed based on the experiment, and finite element analysis software MIDAS/CIVIL is used to calculate the 3D temperature field of the mass concrete during the entire process of heat of hydration. The numerical results are in good agreement with the measured results. The proposed method provides an alternative practical basis for preventing thermal cracks in mass concrete.

  8. Prediction of concrete strength in massive structures

    International Nuclear Information System (INIS)

    Sakamoto, T.; Makino, H.; Nakane, S.; Kawaguchi, T.; Ohike, T.

    1989-01-01

    Reinforced concrete structures of a nuclear power plant are mostly of mass concrete with cross-sectional dimensions larger than 1.0 m. The temperature of concrete inside after placement rises due to heat of hydration of cement. It is well known that concrete strengths of mass concrete structure subjected to such temperature hysteresis are generally not equal to strengths of cylinders subjected to standard curing. In order to construct a mass concrete structure of high reliability in which the specified concrete strength is satisfied by the specified age, it is necessary to have a thorough understanding of the strength gain property of concrete in the structure and its relationships with the water-cement ratio of the mix, strength of standard-cured cylinders and the internal temperature hysteresis. This report describes the result of studies on methods of controlling concrete strength in actual construction projects

  9. A Factorial Design Approach to Analyse the Effect of Coarse Recycled Concrete Aggregates on the Properties of Hot Mix Asphalt

    Science.gov (United States)

    Tanty, Kiranbala; Mukharjee, Bibhuti Bhusan; Das, Sudhanshu Shekhar

    2018-06-01

    The present study investigates the effect of replacement of coarse fraction of natural aggregates by recycled concrete aggregates on the properties of hot mix asphalt (HMA) using general factorial design approach. For this two factors i.e. recycled coarse aggregates percentage [RCA (%)] and bitumen content percentage [BC (%)] are considered. Tests have been carried out on the HMA type bituminous concrete, prepared with varying RCA (%) and BC (%). Analysis of variance has been performed on the experimental data to determine the effect of the chosen factors on various parameters such as stability, flow, air void, void mineral aggregate, void filled with bitumen and bulk density. The study depicts that RCA (%) and BC (%) have significant effect on the selected responses as p value is less than the chosen significance level. In addition to above, the outcomes of the statistical analysis indicate that interaction between factors have significant effects on void mineral aggregate and bulk density of bituminous concrete.

  10. A Factorial Design Approach to Analyse the Effect of Coarse Recycled Concrete Aggregates on the Properties of Hot Mix Asphalt

    Science.gov (United States)

    Tanty, Kiranbala; Mukharjee, Bibhuti Bhusan; Das, Sudhanshu Shekhar

    2018-02-01

    The present study investigates the effect of replacement of coarse fraction of natural aggregates by recycled concrete aggregates on the properties of hot mix asphalt (HMA) using general factorial design approach. For this two factors i.e. recycled coarse aggregates percentage [RCA (%)] and bitumen content percentage [BC (%)] are considered. Tests have been carried out on the HMA type bituminous concrete, prepared with varying RCA (%) and BC (%). Analysis of variance has been performed on the experimental data to determine the effect of the chosen factors on various parameters such as stability, flow, air void, void mineral aggregate, void filled with bitumen and bulk density. The study depicts that RCA (%) and BC (%) have significant effect on the selected responses as p value is less than the chosen significance level. In addition to above, the outcomes of the statistical analysis indicate that interaction between factors have significant effects on void mineral aggregate and bulk density of bituminous concrete.

  11. Performance of Waterless Concrete

    Science.gov (United States)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  12. NEW TECHNOLOGY OF ASH AND SLAG CONCRETES

    Directory of Open Access Journals (Sweden)

    PAVLENKO T. M.

    2017-03-01

    Full Text Available Summary. Purpose. Development of scientific-technical bases of manufacture and application of concrete on the basis of ash and slag mixes of thermal power plants. Methods. It is proposed a new technology of preparation of ash and slag concrete mixes. First the ash and slag mix is dispersed through the sieve with meshes 5 mm in a fine-grained fraction and slag. Then, in accordance with the composition of the concrete, obtained fine-grained fraction, slag, cement and tempering water are separately dosed into the mixer. Results. It is proven the high efficiency of the proposed technology of manufacture of ash and slag concretes. It is established that this technological solution allows to increase the strength of concrete by 20...30%, and in the preparation of full-strength concrete to reduce the cement consumption by 15...20%. Scientific novelty. It is developed the new technology of ash and slag mixes application. The concrete mix on the basis of ash and slag mix has an optimal particle size distribution, which ensures the best compaction and, accordingly, the greatest strength of ash and slag concrete with the given cement consumption. Practical significance. The research results promote the mass application of ash and slag mixes of thermal power plants in construction, obtaining of products from the proposed concretes of low cost with high physical-mechanical properties. Conclusion. It is proven the high efficiency of the proposed technology of production of ash and slag concretes. It is established that this technological solution allows increasing concrete strength, and obtaining full-strength concrete to reduce cement consumption. The extensive application of such concrete in construction makes it possible to solve the problem of aggregates for concrete, promotes recycling of TPP waste and consequently the protection of the environment.

  13. Water footprint and life cycle assessment of concrete roof tile and brick products at PT. XYZ

    Science.gov (United States)

    Octavia, Caesara; Laurence; Hartono, Natalia

    2017-12-01

    PT. XYZ is an Indonesian company engaged in manufacturing concrete roof tile and paving block. The company has not paid attention to the environmental and human health aspects of their production activity, where there is so much water used and discarded during the production process and no water treatment for the wastewater produced. Therefore this topic proposed in order to determine the resulting impacts from the production processes of concrete roof tile and brick at PT. XYZ on the environment and human health. The impact on the environment and human health were identified through water footprint assessment (WFA) and life cycle assessment (LCA). Through the WFA accounting, it is known that the amount of water needed to produce a concrete roof tile is 21.384 L which consists of 16.433 L blue water and 4.951 L grey water, whereas for a brick is 10.496 L which consists of 10.48 L blue water and 0.016 L grey water. With ReCiPe midpoint (H) method, it is known that the dominant impact categories generated in one batch production processes of concrete roof tile and brick are natural land transformation, marine eco-toxicity, freshwater eutrophication, and freshwater eco-toxicity, where those impact categories represent the average of 75.5% from overall impact category for concrete roof tile and brick products.

  14. Status and Prospect of Test Methods of Quality Silicone Water Repellent for Protecting Reinforced Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H. Y.; Yuan, Z. Y.; Yang, Z.; Shan, G. L. [Nanjing Hydraulic Research Institute, Nanjing (China); Shen, M. X. [Hehai University, Nanjing (China)

    2017-06-15

    Impregnating with quality silicone water repellent on the concrete surface is an effective method of protecting concrete. Quality silicone water repellent has been widely used in the engineering profession because of its desirable properties such as hydrophobicity, keeping concrete breathable and preserving the original appearance of the concrete. The companies in China that produce silicone water repellent are listed. Test methods in the specifications or standards about silicone water repellent in China are summed. The test methods relative to durability of concrete impregnated with silicone water repellent (such as resistant to chloride ion penetration, resistant to alkali, resistance to freezing and thawing and weather ability etc.) and the constructive quality (such as water absorption rate, impregnating depth and the dry velocity coefficient etc.) are compared and analyzed. The results indicate that there are differences among test methods relative to different specifications with the same index and therefore, confusion has ensued when selecting test methods. All test methods with the exception of the method of water absorption rate by using a Karsten flask are not non-destructive methods or conducted in a laboratory. Finally, further research on silicone water repellent during application is proposed.

  15. Status and Prospect of Test Methods of Quality Silicone Water Repellent for Protecting Reinforced Concrete

    International Nuclear Information System (INIS)

    Sun, H. Y.; Yuan, Z. Y.; Yang, Z.; Shan, G. L.; Shen, M. X.

    2017-01-01

    Impregnating with quality silicone water repellent on the concrete surface is an effective method of protecting concrete. Quality silicone water repellent has been widely used in the engineering profession because of its desirable properties such as hydrophobicity, keeping concrete breathable and preserving the original appearance of the concrete. The companies in China that produce silicone water repellent are listed. Test methods in the specifications or standards about silicone water repellent in China are summed. The test methods relative to durability of concrete impregnated with silicone water repellent (such as resistant to chloride ion penetration, resistant to alkali, resistance to freezing and thawing and weather ability etc.) and the constructive quality (such as water absorption rate, impregnating depth and the dry velocity coefficient etc.) are compared and analyzed. The results indicate that there are differences among test methods relative to different specifications with the same index and therefore, confusion has ensued when selecting test methods. All test methods with the exception of the method of water absorption rate by using a Karsten flask are not non-destructive methods or conducted in a laboratory. Finally, further research on silicone water repellent during application is proposed.

  16. Concrete produced with recycled aggregates

    Directory of Open Access Journals (Sweden)

    J. J. L. Tenório

    Full Text Available This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW, which were divided into recycled sand (fine and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW. The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.

  17. Properties of concrete containing foamed concrete block waste as fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Budiea, A. M. A.; Zaidan, A. L. F.; Rasid, M. H.; Hazimmah, D. S.

    2017-11-01

    Environmental degradation due to excessive sand mining dumping at certain places and disposal of foamed concrete block waste from lightweight concrete producing industry are issues that should be resolved for a better and cleaner environment of the community. Thus, the main intention of this study is to investigate the potential of foamed concrete block waste as partial sand replacement in concrete production. The foamed concrete waste (FCW) used in this research that were supplied by a local lightweight concrete producing industry. The workability and compressive strength of concrete containing various percentage of foamed concrete waste as partial sand replacement has been investigated. Prior to the use, the foamed concrete waste were crushed to produce finer particles. Six concrete mixes containing various content of crushed foamed concrete waste that are 0%, 10%, 20%, 30%, 40% and 50% were used in this experimental work. Then the prepared specimens were placed in water curing until the testing age. Compressive strength test and flexural strength tests were conducted at 7, 14 and 28 days. The result shows that integration of crushed foamed concrete waste as partial sand replacement in concrete reduces the mix workability. It is interesting to note that both compressive strength and flexural strength of concrete improves when 30% crushed foamed concrete waste is added as partial sand replacement.

  18. Modelling of water and chloride transport in concrete during yearly wetting/drying cycles

    NARCIS (Netherlands)

    Van Der Zanden, A.J.J.; Taher, A.; Arends, T.

    2015-01-01

    The simultaneous transport of water and chloride in concrete has been modelled. The water transport is described with a concentration dependent diffusion coefficient. The chloride transport is modelled with a convective part, caused by the water transport, and a diffusive part, caused by the

  19. Effects of Water Jet on Heat-Affected Concretes

    Czech Academy of Sciences Publication Activity Database

    Sitek, Libor; Bodnárová, L.; Válek, J.; Zeleňák, Michal; Klich, Jiří; Foldyna, Josef; Novotný, M.

    2013-01-01

    Roč. 57, č. 1 (2013), s. 1036-1044 E-ISSN 1877-7058 R&D Projects: GA MŠk ED2.1.00/03.0082 Grant - others:GA ČR(CZ) GAP104/12/1988; TA ČR(CZ) TA01010948 Program:GA Institutional support: RVO:68145535 Keywords : concrete * heating * repair of structures * fireproof concrete s * surface layers Subject RIV: JN - Civil Engineering http://www.sciencedirect.com/science/article/pii/S1877705813008643

  20. Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete

    OpenAIRE

    Manu S. Nadesan; P. Dinakar

    2017-01-01

    Concrete is one of the most widely used construction materials and has the ability to consume industrial wastes in high volume. As the demand for concrete is increasing, one of the effective ways to reduce the undesirable environmental impact of the concrete is by the use of waste and by-product materials as cement and aggregate substitutes in concrete. One such waste material is fly ash, which is produced in large quantities from thermal power plants as a by-product. A substantial amount of ...

  1. INVESTIGATION ON UTILITY OF PLASTIC WASTE AS AN ADDITIVE FOR BITUMINOUS CONCRETE USING WET PROCESS OF MIXING

    Directory of Open Access Journals (Sweden)

    Anurag Virendra Tiwari

    2017-12-01

    Full Text Available Purpose. Plastic waste has become a major environmental issue of concern due to its exponential growth due to rapid urbanization. The paper investigates utility of plastic waste as an additive for bituminous concrete using wet process of mixing. Methodology. The methodology for the present paper has been designed with complex research consisting of Marshall mix design of the bituminous mix added with plastic waste for modifying bitumen using wet process of mixing, performing the tests on the samples and analyzing the results in the form of table and figures. In the present paper LDPE and HDPE type of plastic waste are used to modify the bitumen. Finding. The results show that addition of 6 percent of bitumen improves the Marshall properties of the mix. Use of plastic to modify the bitumen not only makes the road surface more durable but also it is an eco-friendly way of proper disposal of plastic waste. Originality. The processes used for mixing the plastic waste to the bitumen are dry process and wet process. Dry process of mixing the plastic waste to the bituminous mix is most common and lot of study is carried out on its application. In the present paper wet process of mixing has not yet been studied much. Practical Value. The practical application of utilizing the plastic waste to modify bitumen in the bituminous mix improves the stability values resulting in the more durable road surface. Also the method ensures the proper disposal of plastic waste in eco-friendly way.

  2. Forterra Concrete Products, Inc. - Clean Water Act Public Notice

    Science.gov (United States)

    The EPA is providing notice of a proposed Administrative Penalty Assessment against Forterra Concrete Products, Inc., a business located at 511 E. John Carpenter Freeway, Irving, TX, 75062, for alleged violations at its facility located at 23600 W. 40th St

  3. Parametric design of silo steel framework of concrete mixing station based on the finite element method and MATLAB

    Directory of Open Access Journals (Sweden)

    Long Hui

    2016-01-01

    Full Text Available When the structure of the silo steel framework of concrete mixing station is designed, In most cases, the dimension parameters, shape parameters and position parameters of silo steel framework beams are changed as the productivity adjustment of the concrete mixing station, but the structure types of silo steel framework will remain the same. In order to acquire strength of silo steel framework rapidly and efficiently, it is need to provide specialized parametric strength computational software for engineering staff who does not understand the three-dimensional software such as PROE and finite element analysis software. By the finite element methods(FEM, the parametric stress calculation modal of the silo steel framework of concrete mixing station is established, which includes dimension parameters, shape parameters, position parameters and applied load parameters of each beams, and then the parametric calculation program is written with MATLAB. The stress equations reflect the internal relationship between the stress of the silo steel frames with the dimension parameters, shape parameters, position parameters and load parameters. Finally, an example is presented, the calculation results show the stress of all members and the size and location of the maximum stress, which agrees well with realistic cases.

  4. Behavior of Plain Concrete of a High Water-Cement Ratio after Freeze-Thaw Cycles

    OpenAIRE

    Shang, Huai-Shuai; Yi, Ting-Hua; Song, Yu-Pu

    2012-01-01

    An experimental study of plain concrete specimens of water-cement ratio 0.55, subjected to 0, 15, 25, 40, 50 and 75 cycles of freeze-thaw was completed. The dynamic modulus of elasticity (DME), weight loss, compressive strength, tensile strength, flexural strength, cleavage strength and stress-strain relationships of plain concrete specimens suffering from freeze-thaw cycles were measured. The experimental results showed that the strength decreased as the freeze-thaw cycles were repeated. A c...

  5. Effect of water on the triaxial response under monotonic loading of asphalt concrete used in dams

    Science.gov (United States)

    Gaxiola Hernández, Alberto; Ossa López, Alexandra

    2018-01-01

    Embankment dams with asphalt concrete cores have been constructed on practically all continents with satisfactory results. Nowadays many advantages, such as the mechanical strength, are known that makes asphalt concrete a competitive alternative for the construction of the impervious elements of dams. However, the current available information does not describe the effect of prolonged contact between asphalt concrete and water on the structure of an embankment dam. In this research cylindrical asphalt concrete specimens with a void content similar to that used in impervious barriers of dams were fabricated and submerged in water for a prolonged period to simulate the conditions experienced by asphalt concrete placed inside an embankment dam as its core material. Subsequently, triaxial compression tests were conducted on the specimens. The results indicated that the asphalt concrete exhibited a reduction in strength because of the saturation process to which the material was subjected. However, no changes were observed in the mechanical response to prolonged contact with water for periods of up to 12 months.

  6. Evaluation of warm mix technologies for use in asphalt rubber - asphaltic concrete friction courses (AR\\0x2010ACFC) : final report.

    Science.gov (United States)

    2016-07-01

    The objective of this research project was to determine whether warm mix asphalt (WMA) technologies can be : used by the Arizona Department of Transportation (ADOT) for the production of an asphalt rubberasphaltic : concrete friction course (AR...

  7. The Environmental Impact and Cost Analysis of Concrete Mixing Blast Furnace Slag Containing Titanium Gypsum and Sludge in South Korea

    Directory of Open Access Journals (Sweden)

    Tae Hyoung Kim

    2016-05-01

    Full Text Available This study assessed the environmental effects and cost of the Industrial Waste addictive Blast Furnace Slag (W-BFS using Life Cycle Assessment (LCA and compared it to general BFS. The environmental impacts of W-BFS were as follows: 1.12 × 10−1 kg-CO2 eq/kg, 3.18 × 10−5 kg-Ethylene eq/kg, 4.79 × 10−4 kg-SO2 eq/kg, 7.15 × 10−4 kg-PO43− eq/kg, 7.15 × 10−4 kg-CFC11 eq/kg and 3.94 × 10−3 kg-Antimony eq/kg. Among the environmental impact category, GWP and AP were 9.28 × 10−2 kg-CO2 eq/kg and 3.33 × 10−4 kg-SO2 eq/kg at a raw material stage, accounting for 80% and 70% of total environmental impact respectively. In EP, POCP and ADP, in addition, raw material stage accounted for a great portion in total environmental impact because of “W” among input materials. In ODP, however, compared to the environmental impact of raw materials, oil, which was used in transporting BFS to the W-BFS manufacturing factory, was more influential. In terms of GWP, POCP and ODP, W-BFS was higher than general BFS. In terms of AP, EP and ADP, in contrast, the former was lower than the latter. In terms of cost, W-BFS (41.7 US$/ton was lower than general BFS by about 17% because of the use of waste additives comprised of industrial wastes instead of natural gypsum ,which has been commonly used in general BFS. In terms of GWP and POCP, the W-BFS mixed (30% concrete was lower than plain concrete by 25%. In terms of AP and EP, the former was lower than the latter by 30%. In terms of ADP, furthermore, W-BFS mixed (30% concrete was lower than plain concrete by 11%. In aggregate-related ODP, however, almost no change was found. In terms of cost, when W-BFS was added by 10% and 30%, it was able to reduce cost by 3% and 7% respectively, compared to plain concrete. Compared to BFS-mixed concrete as well, cost could be saved by 1% additionally because W-BFS (US$41.7/ton is lower than common cement (US$100.3/ton by about 60% in terms of production costs.

  8. ADDITIVES FOR COLD ASPHALT-CONCRETE MADE FROM EMULSION-MINERAL MIXES

    Directory of Open Access Journals (Sweden)

    P. V. Vavilov

    2015-01-01

    Full Text Available The article considers the additives use for cold asphalt emulsion mixes. Urgency of the issue consists in the necessity of usage justification and regulation of additive for cold mixes properties adjustment. The article is represented as the general result of analysis of regulatory, literary and other sources related to additive using for CAEM.The main part of the article proposes and justifies the classification of CAEM additives according to their functional purpose (the main purpose of additive: increasing of strength, water resistance, durability, regulating curing and technological modifiers. Depending on the purpose the criteria of technical efficiency of additive using are presented. For each criteria provided the methods determining one or more quality indicators. The quality indicator changing is indicator of additive efficiency. There is provided the formula determining the efficiency of CAEM curing period reduction additives. As an example provided efficiency calculation and evaluation of additives for regulation (acceleration CAEM curing according to the previously published experimental data. The efficiency of curing regulating additives was determined according to the function of temporal changes of CAEM compressing strength and dynamic modulus of elasticity.The article provides the example list of materials that could be or currently used as additives for cold mixes. The conclusion states that proposed classification and criteria give base to purposive regulation of cold asphalt emulsion mixture compositions and their properties.

  9. Measurement of the wetting profile in concrete samples with vertical water by gamma radiation transmission method

    International Nuclear Information System (INIS)

    Silva, L.M. da; Rocha, M.C. da; Appoloni, C.R.; Portezan Filho, O.; Lopes, F.; Melquiades, F.L.; Santos, E.A. dos; Santos, A.O. dos; Moreira, A.C.; Poetker, W.E.; Almeida, E. de; Tannous, C.Q.; Kuramoto, R.; Cavalcante, F.H. de M.; Barbieri, P.F.

    2000-01-01

    Samples of concrete for popular habitation (0,1x0,03x0,1 m) and cellular concrete (0,1x0,05x0,1 m) were submitted to water vertical ascending infiltration. The moisture content spatial and temporal evolution of each sample it was monitored in three halfway positions in a same horizontal line, applying the gamma rays transmission method. The data were taken with a 137 Cs (3,7x10 10 Bq, 0662 MeV) source, NaI (Tl) of 2x2' detector coupled to between wetting profiles and concrete strength. The cellular concrete showed a wetting profile compatible to its greater porosity. (author)

  10. Diffusion under water-saturated conditions in PFA/OPC-based structural concrete

    International Nuclear Information System (INIS)

    Harris, A.W.; Nickerson, A.K.

    1990-05-01

    A substantial proportion of the volume of the UK radioactive waste repository is likely to be composed of materials based on hydraulic cements. This includes the structural components, which are likely to be manufactured from concrete. The mass transport characteristics of dissolved species for a typical structural concrete, based on a mixture of pulverised fuel ash and ordinary Portland cement, have been measured in a water-saturated condition. Both the water permeability and the diffusion parameters (for caesium, strontium and iodide ion and tritiated water diffusion) are low compared to values obtained for other structural concretes. The intrinsic diffusion coefficients for iodide and caesium ions are in the range 2-5x10 -14 m 2 s -1 . There is no evidence of significant sorption of any of the diffusants studied. (author)

  11. Properties of water leakage through concrete slabs with a parallel gap

    International Nuclear Information System (INIS)

    Shimooka, Kenji; Abe, Mikiya

    1988-10-01

    This paper describes the experimental results of water flow in concrete crack, in order to get the fundamental data on the barrier effect of the concrete material on the nuclide migration. Concrete slabs with a parallel gap, instead of the unidentified native cracks were used in the experiment and the water leakage through the certain gap was studied in detail. It is recognized that the water flow through cracks can be generally treated as a laminar flow, thus the theoretical equation derived from Navier-Stokes equation can be applied in the flow analysis. According to the theory, the amount of water flow through the crack is described to be proportional both to the third power of crack width and to the pressure gradient, and also to be inversely proportional to the coefficient of water viscosity. We have confirmed that the equation can be applied to the water flow through even 0.01 cm width gap in concrete by the experiments, measurement of the water flow under the conditions of constant head and gradually changing temperatures and also at the constant temperatures. (author)

  12. Effect of Soorh Metakaolin on Concrete Compressive Strength and Durability

    Directory of Open Access Journals (Sweden)

    A. Saand

    2017-12-01

    Full Text Available Concrete durability is a key aspect for forecasting the expected life time of concrete structures. In this paper, the effect of compressive strength and durability of concrete containing metakaolin developed from a local natural material (Soorh of Thatta Distict of Sindh, Pakistan is investigated. Soorh is calcined by an electric furnace at 8000C for 2 hours to produce metakaolin. One mix of ordinary concrete and five mixes of metakaolin concrete were prepared, where cement is replaced by developed metakaolin from 5% to 25% by weight, with 5% increment step. The concrete durability was tested for water penetration, carbonation depth and corrosion resistance. The obtained outcomes demonstrated that, 15% replacement level of local developed metakaolin presents considerable improvements in concrete properties. Moreover, a considerable linear relationship was established between compressive strength and concrete durability indicators like water penetration, carbonation depth and corrosion resistance.

  13. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-04-01

    Full Text Available The purpose of this study is to investigate porous vegetation concrete formed using the industrial by-products blast furnace slag powder and blast furnace slag aggregates. We investigated the void ratio, compressive strength, freeze–thaw resistance, plant growth and water purification properties using concretes containing these by-products, natural jute fiber and latex. The target performance was a compressive strength of ≥12 MPa, a void ratio of ≥25% and a residual compressive strength of ≥80% following 100 freeze–thaw cycles. Using these target performance metrics and test results for plant growth and water purification, an optimal mixing ratio was identified. The study characterized the physical and mechanical properties of the optimal mix, and found that the compressive strength decreased compared with the default mix, but that the void ratio and the freeze–thaw resistance increased. When latex was used, the compressive strength, void ratio and freeze–thaw resistance all improved, satisfying the target performance metrics. Vegetation growth tests showed that plant growth was more active when the blast furnace slag aggregate was used. Furthermore, the use of latex was also found to promote vegetation growth, which is attributed to the latex forming a film coating that suppresses leaching of toxic components from the cement. Water purification tests showed no so significant differences between different mixing ratios; however, a comparison of mixes with and without vegetation indicated improved water purification in terms of the total phosphorus content when vegetation had been allowed to grow.

  14. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis.

    Directory of Open Access Journals (Sweden)

    Julide Oner

    Full Text Available The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures.

  15. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis.

    Science.gov (United States)

    Oner, Julide; Sengoz, Burak

    2015-01-01

    The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP) is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA) technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing) at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures.

  16. Study of the performance of steel fiber reinforced concrete to water and salt freezing condition

    International Nuclear Information System (INIS)

    Niu, Ditao; Jiang, Lei; Bai, Min; Miao, Yuanyao

    2013-01-01

    Highlights: ► Based on the fast freeze–thaw test, the frost resistance of SFRC has been studied. ► Different volumes of steel fiber have been selected to prepare the concrete. ► The microstructure of SFRC subjected to freeze–thaw cycles has been analyzed. ► The influence of steel fiber volume on the frost-resisting property is obvious. ► Steel fiber can be used to improve the frost-resisting property of concrete. -- Abstract: Properties of plain concrete and steel fiber reinforced concrete (SFRC) (with volume fraction of 0.5%, 1%, 1.5% and 2%) subjected to freeze–thaw cycles in water and in the 3.5% NaCl solution were investigated in this paper. Through the experiment, surface damage, weight loss and splitting tensile strength loss of SFRC were measured after different numbers of freeze–thaw circulations. The microstructure and the pore structure of SFRC were analyzed on the basis of scanning electron microscope (SEM) and mercury intrusion experiment. The test results show that the use of steel fiber could improve the pore structure and decelerate the damage of concrete during freeze–thaw cycles. However, the ability of steel fiber to reduce surface scaling of concrete is limited subjected to freeze–thaw cycles in the NaCl solution. Furthermore, the weight loss and the splitting tensile strength loss of concrete tested in the NaCl solution were larger than those in water. It is also shown that the steel fiber content has the great influence on the frost-resisting property of SFRC. When a relatively steel fiber content is introduced (1.5 vol.%), the deterioration process of concrete subjected to the frost damage is considerably reduced.

  17. Abrasion-resistant concrete mix designs for precast bridge deck panels.

    Science.gov (United States)

    2010-08-01

    The report documents laboratory investigations undertaken to develop high performance concrete (HPC) for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) re...

  18. Reduction of minimum required weight of cementitious materials in WisDOT concrete mixes.

    Science.gov (United States)

    2011-12-01

    This project was designed to explore the feasibility of lowering the cementitious materials content : (CMC) used in Wisconsin concrete pavement construction. The cementitious materials studied included : portland cement, fly ash, and ground granulate...

  19. Reduction of minimum required weight of cementitious materials in WisDOT concrete mixes.

    Science.gov (United States)

    2011-12-01

    "This project was designed to explore the feasibility of lowering the cementitious materials content : (CMC) used in Wisconsin concrete pavement construction. The cementitious materials studied included : portland cement, fly ash, and ground granulat...

  20. Heat Conductivity Resistance of Concrete Wall Panel by Water Flowing in Different Orientations of Internal PVC pipe

    Science.gov (United States)

    Umi, N. N.; Norazman, M. N.; Daud, N. M.; Yusof, M. A.; Yahya, M. A.; Othman, M.

    2018-04-01

    Green building technology and sustainability development is current focus in the world nowadays. In Malaysia and most tropical countries the maximum temperature recorded typically at 35°C. Air-conditioning system has become a necessity in occupied buildings, thereby increasing the cost of electric consumption. The aim of this study is to find out the solution in minimizing heat transfer from the external environment and intentions towards going green. In this study, the experimental work includes testing three types of concrete wall panels. The main heat intervention material in this research is 2 inch diameter Polyvinyl Chloride (PVC) pipe embedded at the center of the concrete wall panel, while the EPS foam beads were added to the cement content in the concrete mix forming the outer layer of the wall panel. Water from the rainwater harvesting system is regulated in the PVC pipe to intervene with the heat conductivity through the wall panel. Results from the experimental works show that the internal surface temperature of these heat resistance wall panels is to 3□C lower than control wall panel from plain interlocking bricks.

  1. Intense volume reduction of mixed and low-level waste, solidification in sulphur polymer concrete, and excellent disposal at minimum cost

    International Nuclear Information System (INIS)

    Darnell, G.R.

    1990-01-01

    Progressive changes in regulations governing the disposal of the nation's radioactive and hazardous wastes demand the development of more advanced treatment and disposal systems. The U.S. Department of Energy's Radioactive Waste Technology Support Program (formerly the Defense Low-Level Waste Management Program) was given the task of demonstrating the degree of excellence that could be achieved at reasonable cost using existing technology. The resulting concept is a Waste Treatment and Disposal Complex that will fully treat contact-handled mixed and low-level radioactive waste to a disposable product that is totally liquid-free and approximately 98% inorganic. An excellent volume reduction factor is achieved through sorting, sizing, incineration, vitrification, and final grouting. Inorganic waste items larger than 1/4 in. will be placed in inexpensive, uniform-sized, smooth-sided, thin-walled steel boxes. The smaller particles will be mixed with sulfur polymer concrete and pumped into the boxes, filling most voids. The appendage-free boxes measuring 1 by 1 by 1 m will be stacked tightly in an abovegrade, earth-mounded, concrete disposal vault where a temporary roof will protect them from rain and snow. A concrete roof poured directly on top of the dense, essentially voidless waste stack will be topped by an engineered, water-shedding earthen cover. Total cost for design, construction, testing, 30 years of treatment and disposal, administration, decontamination and decommissioning, site closure, and postclosure monitoring and maintenance will cost less per cubic foot than is currently expended for subsurface disposal. A radiological performance assessment shows this concept will exceed the nation's existing disposal systems and governmental performance objectives for the protection of the general public by a factor of 30,000

  2. Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength?

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jensen, Ole Mejlhede; Kovler, Konstantin

    2012-01-01

    The paper “Super absorbing polymers as an internal curing agent for mitigation of early-age cracking of high-performance concrete bridge decks” deals with different aspects of using superabsorbent polymers (SAP) in concrete to mitigate self-desiccation. The paper concludes that “Addition of SAP...... by overestimation of SAP water absorption. This results in an increase in water/cement ratio (w/c) for concrete with SAP. It is misleading to conclude on how SAP influences concrete properties, based on comparison of concrete mixes with SAP and reference concrete without SAP, if SAP mixes have higher w/c than...

  3. A review on the suitability of rubberized concrete for concrete bridge decks

    Science.gov (United States)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Radziah Abdullah, Siti; Anting Guntor, Nickholas; Syazani Leman, Alif

    2017-11-01

    Road authorities manage a large population of ageing bridges, a substantial number of which fail to meet the current requirements either due to deterioration and other structural deficiencies or as a result of the escalating demands imposed by increased traffic. This problem is related to the dynamic load from vehicles. This problem can be solved by producing a type of concrete that can reduce the amplitude of oscillation or vibration such as rubberized concrete. Green construction has been a very important aspect in concrete production field in the last decade. One of the most problematic waste materials is scrap tires. The use of scrap tires in civil engineering is increasing by producing rubberized concrete. Rubberized concrete is a type of concrete that is mixed with rubber. The purpose of this review is to justify the suitability of rubberized concrete for concrete bridge decks. Several parameters named physical, chemical and mechanical properties were measured to ensure the suitability of rubberized concrete for concrete bridge decks. Rubberized concrete has similar workability to normal concrete. The rubber reduced the density and compressive strength of the concrete while increased the flexural strength, water absorption and damping ratio. The used of rubber in concrete beyond 20% is not recommended due to decreasing in compressive strength. Rubberized concrete recommended to be used in circumstances where vibration damping was required such as in bridge construction as shock-wave absorber.

  4. EFFECT OF SEA WATER ON THE STRENGTH OF POROUS CONCRETE CONTAINING PORTLAND COMPOSITE CEMENT AND MICROFILAMENT POLYPROPYLENE FIBER

    OpenAIRE

    TJARONGE, M.W

    2011-01-01

    The aim of this research is to study the influence of sea water on the strength of porous concrete containing Portland Composite cement and micro monofilament polypropylene fibre. The specimens of porous concrete were immersed in the sea water up to 28 days. The compressive strength test and flexural strength test were carried out at 3, 7 and 28 days in order to investigate the strength development. The test result indicated that the strength of porous concrete can develop in t...

  5. The effect of water binder ratio and fly ash on the properties of foamed concrete

    Science.gov (United States)

    Saloma, Hanafiah, Urmila, Dea

    2017-11-01

    Foamed concrete is a lightweight concrete composed by cement, water, fine aggregate and evenly distributed foam. Foamed concrete is produced by adding foam to the mixture. The function of foam is to create air voids in the mixture, so the weight of the concrete becomes lighter. The foaming agent is diluted in water then given air pressure by foam generator to produce foam. This research utilizes coal combustion, which is fly ash as cementitious material with a percentage of 0%, 10%, 15%, and 20%. The purpose of the research is to examine the effect of water binder ratio 0.425, 0.450, 0.475, and 0.500 using fly ash on the properties of foamed concrete. Fresh concrete tests include slump flow and setting time test while hardened concrete tests include density and compressive strength. The maximum value of slump flow test result is 59.50 cm on FC-20-0.500 mixture with w/b = 0.500 and 20% of fly ash percentage. The results of the setting time tests indicate the fastest initial and final time are 335 and 720 minutes, respectively on FC-0-0.425 mixture with w/b = 0.425 without fly ash. The lowest density is 978.344 kg/m3 on FC-20-0.500 mixture with w/b = 0.500 and 20% of fly ash percentage. The maximum compressive strength value is 4.510 MPa at 28 days on FC-10-0.450 mixture with w/b = 0.450 and 10% of fly ash percentage.

  6. Molten LWR core material interactions with water and with concrete

    International Nuclear Information System (INIS)

    Dahlgren, D.A.; Buxton, L.D.; Muir, J.F.; Murfin, W.B.; Nelson, L.S.; Powers, D.A.

    1977-01-01

    Nuclear power reactors are designed and operated to minimize the possibility of fuel melting. Nevertheless, in order to assess the risks associated with reactor operation, a realistic assessment is required for postulated accident sequences in which melting occurs. To investigate the experimental basis of the fuel melt accident analyses, a comprehensive review was performed at Sandia Laboratories. The results of that study indicated several phenomenological areas where additional experimental data should be gathered to verify common assumptions made in risk studies. In particular, vapor explosions and molten core material/concrete interactions were identified for further study. Results of these studies are presented

  7. Factors and mechanisms affecting corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Dehqanian, Ch.

    1986-01-01

    Atomic power plants possess reinforced concrete structures which are exposed to sea water or sea atmosphere. Sea water or its surrounding environment contain very corrosive species which cause corrosion of metal in concrete. It should be mentioned that corrosion of steel in concrete is a complex problem that is not completely understood. Some of the factors which influence the corrosion mechanism and can be related to the pore solution composition is discussed. Chloride ion caused problems are the main source of the corrosion damage seen on the reinforced concrete structures. Corrosion rate in concrete varies and depends on the way chloride ion diffuses into concrete. In addition, the associated cations can influence diffusion of chloride into concrete. The type of portland cement and also the concrete mix design all affect the corrosion behaviour of steel in concrete

  8. Corrosion potential: influence of moisture, water-cement ratio, chloride content and concrete cover

    Directory of Open Access Journals (Sweden)

    M. H. F. Medeiros

    Full Text Available ABSTRACT The method of measuring the corrosion potential is used as an electrochemical tool for helping the monitoring of the corrosion of reinforcements of concrete structures. As a criterion for evaluating results it is common to use intervals of corrosion potential and their correlation with corrosion probability, as precognizes ASTM C 876:2015. With this criterion, it is possible to establish an overview of the thermodynamic situation of corrosion in the structure or in the test specimen in laboratory. However, the method is influenced by several factors related with the concrete, the environment and with procedures adopted at the moment of executing the readings. Aiming to provide information to guide the technical and scientific environment regarding the right use of this type of non-destructive testing, the objective of this work is to evaluate some possible factors influencing the reading of corrosion potential, such as: moisture content of the concrete, water/cement ratio, thickness of the concrete cover and degree of contamination by chlorides. Results indicate that moisture and degree of contamination of the concrete by chloride ions had a tendency of making the corrosion potential more electronegative. Besides, it was verified that the influence of the cover is different for the case of contaminated concrete (1% of chlorides by mass of cement and not contaminated with chlorides: the influence of the thickness of the cover, in the case of concrete contaminated by chlorides, was inversely proportional, in other words, the greater the cover thickness is, the less electronegative the value of the corrosion potential will be. On the other hand, in cases of concretes without chlorides, the effect of the cover thickness in the readings or corrosion potential was irrelevant. All this information was proved with 95% of statistical significance.

  9. Thermal behaviour and water release of concrete heated to temperatures between 300 and 6000C

    International Nuclear Information System (INIS)

    L'Homme, A.; Humbert, J.M.; Quillico, J.J.; Lourenco, A.

    1982-06-01

    This paper deals with the description of the experimental device, the study programme and the physical model developed for the final interpretation of the experiments. Some experimental results are given as an example. The experimental device enables one side of a concrete cylinder of 1 m 3 (section 1 m 2 , height 1 m), fitted with temperature and pressure measurement instrument in the mass, to be heated. The water is collected continuously on each of the 2 sides. Several experiments have been carried out on reinforced and non reinforced concrete samples, for hot face maximum temperatures in the 300 to 600 0 C range. The duration of an experiment varies from 2 days to one week. The physical model developed for interpreting the experiments allows for all thermal exchanges and various types of water transport in the porosity of the concrete (gaseous or liquid phase, towards the hot side or the cold side) [fr

  10. The effect of mixing sequence on the workability and indirect tensile strength of asphalt concrete

    NARCIS (Netherlands)

    Voskuilen, J.; Gaarkeuken, B.; Vliet, D. van; Poot, M.

    2017-01-01

    The KGO mixing method was developed 40 years ago. Instead of adding the bitumen at the end of the mixing cycle, the bitumen was poured down first together with the larger aggregates. After mixing the bitumen with the larger aggregates, the reamining aggregates were mixed down. As benefits of the KGO

  11. Development of lightweight concrete mixes for construction industry at the state of Arkansas

    Science.gov (United States)

    Almansouri, Mohammed Abdulwahab

    As the construction industry evolved, the need for more durable, long lasting infrastructure increased. Therefore, more efforts have been put to find new methods to improve the properties of the concrete to prolong the service life of the structural elements. One of these methods is the use of lightweight aggregate as an internal curing agent to help reducing self-desiccation and shrinkage. This research studied the effects of using locally available lightweight aggregate (expanded clay), as a partial replacement of normal weight aggregate in the concrete matrix. The concrete mixtures contained lightweight aggregate with a replacement percentage of 12.5, 25, 37.5, and 50 percent by volume. Fresh properties as well as compressive strength, modulus of rupture, and drying shrinkage were measured. While was effective in reducing drying shrinkage, the use of lightweight aggregate resulted in slightly reducing both the compressive strength and modulus of rupture.

  12. The Effects of Substitution of The Natural Sand by Steel Slag in The Properties of Eco-Friendly Concrete with The 1:2:3 Ratio Mixing Method

    Science.gov (United States)

    Rahmawati, A.; Saputro, I. N.

    2018-03-01

    This study was motivated by the need for the development of eco-friendly concrete, and the use of large quantities of steel slag as an industrial waste which is generated from the steel manufacturers. This eco-friendly concrete was developed with steel slag as a substitute for natural sand. Properties of concrete which used waste slag as the fine aggregate with the 1 cement: 2 sand : 3 coarse aggregate ratio mixing method were examined. That ratio was in volume. Then a part of natural sand replaced with steel slag sand in six variations percentages that were 0 %, 20 %, 40 %, 60 %, 80 % and 100 %. The compressive strength, tensile strength, and flexural strength of concrete specimens were determined after curing for 28 days. The research results demonstrate that waste steel slag can increase the performance of concrete. The optimal percentage substitution natural sand by steel slag sand reached of slag on the percentage of 20 % which reached strength ratios of steel slag concrete to the strength of conventional concrete with natural sandstone were 1.37 for compressive strength and 1.13 for flexural strength. While the tensile strength reached a higher ratio of concrete with steel slag sand to the concrete with natural sand on the 80% substitution of natural sand with steel slag sand.

  13. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report D : creep, shrinkage, and abrasion resistance of HVFA concrete.

    Science.gov (United States)

    2012-10-01

    The main objective of this study was to determine the effect on shrinkage, creep, : and abrasion resistance of high-volume fly ash (HVFA) concrete. The HVFA concrete : test program consisted of comparing the shrinkage, creep, and abrasion performance...

  14. The application of neutron radiography to the measurement of the water-permeability of concrete

    International Nuclear Information System (INIS)

    Mo, Dawei; Zhang, Chaozong; Guo, Zhi-Ping; Liu, Yisi; An, Fulin; Mio, Qitian; Wang, Zhimin; Lian, Huizhen.

    1988-01-01

    The water-permeability of concrete is significant for dam, offshore platform and under-water basement of brindge etc. The traditional measuring method of permeability is the fixed pressure of water method in which the water-permeating process in a concreteblock cannot be measured continuously. Owing to the obvious difference of hydrogen content in the permeated regions of samples and the regions which have not been permeated. A combination of the neutron radiography and traditional method has been used to study continuously the whole process of water permeating. The combined method overcomes some shortages of the traditional methods and helps to gain more informations. (author)

  15. Recycling of asphalt concrete : Oregon's first hot mix project : interim report.

    Science.gov (United States)

    1977-11-01

    The need to reduce fuel consumption and conserve natural resources have been items of ever-increasing importance during recent years. This report discusses a project in which almost 50,000 tons of asphalt concrete placed to carry detour traffic durin...

  16. Mixed metaphors: Electrophysiological brain responses to (un)expected concrete and abstract prepositional phrases.

    Science.gov (United States)

    Zane, Emily; Shafer, Valerie

    2018-02-01

    Languages around the world use spatial terminology, like prepositions, to describe non-spatial, abstract concepts, including time (e.g., in the moment). The Metaphoric Mapping Theory explains this pattern by positing that a universal human cognitive process underlies it, whereby abstract concepts are conceptualized via the application of concrete, three-dimensional space onto abstract domains. The alternative view is that the use of spatial propositions in abstract phrases is idiomatic, and thus does not trigger metaphoric mapping. In the current study, event-related potentials (ERPs) were used to examine the time-course of neural processing of concrete and abstract phrases consisting of the prepositions in or on followed by congruent and incongruent nouns (e.g., in the bowl/plate and in the moment/mend). ERPs were recorded from the onset of reference nouns in 28 adult participants using a 128-channel electrode net. Results show that congruency has differential effects on neural measures, depending on whether the noun is concrete or abstract. Incongruent reference nouns in concrete phrases (e.g., on the bowl) elicited a significant central negativity (an N400 effect), while incongruent reference nouns in abstract phrases (e.g., on the moment) did not. These results suggest that spatially incongruent concrete nouns are semantically unexpected (N400 effect). A P600 effect, which might indicate rechecking, reanalysis and/or reconstruction, was predicted for incongruent abstract nouns, but was not observed, possibly due to the variability in abstract stimuli. Findings cast doubt on accounts claiming that abstract uses of prepositions are cognitively and metaphorically linked to their spatial sense during natural, on-line processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Influence of wollastonite on mechanical properties of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Renu Mathur; A.K. Misra; Pankaj Goel

    2007-12-15

    Studies were made on cement concrete and cement-fly ash concrete mixes incorporating wollastonite as partial substitute of cementitious material and sand respectively. Improvements in compressive (28-35%) and flexural strength (36-42%) at 28 and 56 days respectively were observed by incorporation of wollastonite (10%) in concrete mixes. By incorporation of wollastonite, reduction in water absorption, drying-shrinkage and abrasion loss of concrete, and enhancement in durability against alternate freezing-thawing and sulphate attack were observed. Because of high concrete strength and abrasion resistance, a better utilization of concrete cross section is possible. Alternatively, thickness of pavement slab can be reduced by incorporation of wollastonite micro-fibres in concrete mixes.

  18. A planning model with a solution algorithm for ready mixed concrete production and truck dispatching under stochastic travel times

    Science.gov (United States)

    Yan, S.; Lin, H. C.; Jiang, X. Y.

    2012-04-01

    In this study the authors employ network flow techniques to construct a systematic model that helps ready mixed concrete carriers effectively plan production and truck dispatching schedules under stochastic travel times. The model is formulated as a mixed integer network flow problem with side constraints. Problem decomposition and relaxation techniques, coupled with the CPLEX mathematical programming solver, are employed to develop an algorithm that is capable of efficiently solving the problems. A simulation-based evaluation method is also proposed to evaluate the model, coupled with a deterministic model, and the method currently used in actual operations. Finally, a case study is performed using real operating data from a Taiwan RMC firm. The test results show that the system operating cost obtained using the stochastic model is a significant improvement over that obtained using the deterministic model or the manual approach. Consequently, the model and the solution algorithm could be useful for actual operations.

  19. Sustainable approach for recycling waste lamb and chicken bones for fluoride removal from water followed by reusing fluoride-bearing waste in concrete.

    Science.gov (United States)

    Ismail, Zainab Z; AbdelKareem, Hala N

    2015-11-01

    Sustainable management of waste materials is an attractive approach for modern societies. In this study, recycling of raw waste lamb and chicken bones for defluoridation of water has been estimated. The effects of several experimental parameters including contact time, pH, bone dose, fluoride initial concentration, bone grains size, agitation rate, and the effect of co-existing anions in actual samples of wastewater were studied for fluoride removal from aqueous solutions. Results indicated excellent fluoride removal efficiency up to 99.4% and 99.8% using lamb and chicken bones, respectively at fluoride initial concentration of 10 mg F/L and 120 min contact time. Maximum fluoride uptake was obtained at neutral pH range 6-7. Fluoride removal kinetic was well described by the pseudo-second order kinetic model. Both, Langmuir and Freundlich isotherm models could fit the experimental data well with correlation coefficient values >0.99 suggesting favorable conditions of the process. Furthermore, for complete sustainable management of waste bones, the resulted fluoride-bearing sludge was reused in concrete mixes to partially replace sand. Tests of the mechanical properties of fluoride sludge-modified concrete mixes indicated a potential environmentally friendly approach to dispose fluoride sludge in concrete and simultaneously enhance concrete properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The Mechanism of Disintegration of Cement Concrete at High Temperatures

    Directory of Open Access Journals (Sweden)

    Jocius Vytautas

    2016-10-01

    Full Text Available Concrete is a composite material composed of a binder, aggregates, water and additives. Mixing of cement with water results in a number of chemical reactions known as cement hydration. Heating of concrete results in dehydration processes of cement minerals and new hydration products, which disintegrate the microstructure of concrete. This article reviews results of research conducted with Portland and alumina cement with conventional and refractory concrete aggregates. In civic buildings such common fillers as gravel, granite, dolomite or expanded clay are usually used. It is important to point out the differences between fillers because they constitute the majority of the concrete volume.

  1. Reliability-based decision making for selection of ready-mix concrete supply using stochastic superiority and inferiority ranking method

    International Nuclear Information System (INIS)

    Chou, Jui-Sheng; Ongkowijoyo, Citra Satria

    2015-01-01

    Corporate competitiveness is heavily influenced by the information acquired, processed, utilized and transferred by professional staff involved in the supply chain. This paper develops a decision aid for selecting on-site ready-mix concrete (RMC) unloading type in decision making situations involving multiple stakeholders and evaluation criteria. The uncertainty of criteria weights set by expert judgment can be transformed in random ways based on the probabilistic virtual-scale method within a prioritization matrix. The ranking is performed by grey relational grade systems considering stochastic criteria weight based on individual preference. Application of the decision aiding model in actual RMC case confirms that the method provides a robust and effective tool for facilitating decision making under uncertainty. - Highlights: • This study models decision aiding method to assess ready-mix concrete unloading type. • Applying Monte Carlo simulation to virtual-scale method achieves a reliable process. • Individual preference ranking method enhances the quality of global decision making. • Robust stochastic superiority and inferiority ranking obtains reasonable results

  2. Influence of water and temperature on long term mechanical behaviour of high performance concrete

    International Nuclear Information System (INIS)

    Cagnon, H.; Vidal, T.; Sellier, A.; Camps, G.

    2015-01-01

    The experimental program on thermal expansion of concretes presents a dual purpose. The first one is to quantify the differential thermal dilation of the constituents of nuclear containment area. The second is to bring elements of explanation on the damage detected at 80 C. degrees. Between 20 and 80 C. degrees there is an important differential thermal dilation concerning various phases of the concrete. As a comparison cement paste dilates 7 times more than limestone aggregate, mortar 4 times more and concrete 2 times more. This differential thermal deformation can cause a strong microcracking particularly for saturated sample submitted to 80 C. degrees. The value of the coefficient of thermal expansion of concrete and mortar seems to correspond to the value averaged by the coefficients of every phase (cement paste / aggregates) balanced by their volume fraction. Water seems to have an important impact on thermal expansion on saturated samples for a significant rise of temperature (80 C. degrees). To ensure this result, complementary tests will be done. The other experimental program deals with the deformation evolution versus the chronology of temperature/loading cycles and the improvement of understanding of the thermal transient deformation. The thermal transient deformation would be an increase of the kinetics of deformation under load. It seems to be not totally repeatable because of the consolidation of concrete

  3. LOW WATER DEMAND CEMENTS - WAY OF EFFICIENT USE OF CLINKER AND MINERAL FILLERS IN CONCRETES

    Directory of Open Access Journals (Sweden)

    Khokhryakov Oleg Viktorovich

    2017-10-01

    Full Text Available Subject: the provisions in the updated edition of the technical specifications for cements are analyzed. A trend to decrease the clinker volume in Portland cement due to the wider use of mineral additives, up to 95%, was observed. Research objectives: substantiation of the most complete and efficient use of Portland cement and mineral additives in the composition of low water demand cements. Materials and methods: portland cement, mineral additives and superplasticizer were used as raw materials for obtaining cements of low water demand. The experimental methods comply with the current standards. Results: comparative properties of low water demand cements and cements with mineral additives are presented. The properties of cement-water suspensions of these binders have been studied, and, on their basis, heavy concretes have been made. The results of the grindability of Portland cement and mineral components with a superplasticizer are given. Conclusions: it is shown that the cement of low water demand, in which the advantages of both Portland cement and mineral additives are more fully and efficiently presented, complies with the tendency to decrease the clinker volume to the greatest degree. It is established that the clinker volume index for heavy concrete prepared on low water demand cement is almost four times lower than that for heavy concrete based on common Portland cement.

  4. Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems ...

    African Journals Online (AJOL)

    Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems. ... method has been used to study heavy metal interaction in model lake water in KNO3 ... is of no consequential effect because in its normal state, the [OH-] of the lake water is ...

  5. Lightweight Concrete Using Oil Palm Boiler Clinker (OPBC – A Review

    Directory of Open Access Journals (Sweden)

    Hartono Herry

    2016-01-01

    Full Text Available Lightweight concrete can be effectively produced by replacing normal aggregates (60% to 75% of concrete volume with a lighter alternative. With depleting natural resources, utilising waste materials, such as oil palm boiler clinker (OPBC, in concrete for structural use is one way to mitigate environmental concerns raised by the construction industry. This paper presents a review of the mechanical properties, structural behaviour and performance of OPBC concrete. Lightweight concrete using OPBC can be designed to achieve different compressive strengths with different mixes. The different OPBC concrete mixes result in different densities and workability. The degree of content and the type of OPBC substitutes used affect the flexural strength and 28-day splitting tensile strength of OPBC concrete. A different effect was observed in the modulus of elasticity as the drying shrinkage and water absorption of OPBC concrete are also impacted. This review study also compares the structural performance of OPBC concrete to that of conventional concrete.

  6. Obtaining and physical mechanical properties of cement composites with the use of fillers and mixing water from the Chechen Republic fields

    Directory of Open Access Journals (Sweden)

    Erofeev Vladimir Trofimovich

    Full Text Available Improving physical mechanical and operational properties of concretes and other composite materials is one of the most important tasks in construction material science. At the present time various methods are applied for that, which includes the use of additives, composite binders, activated mixing water, etc. Composite construction materials based on cement binders with mineral additives are widelu used, because they possess improved physical mechanical and technological properties. Implementation of additives improve placeability and nonsegregation factors of concrete and mortar mixes, lead to compaction of concrete and mortars structure. The additives substantially lower heat generation of concretes, which is of great importance in concrete casting of large structures. The article presents the results of experimental studies of cement composites filled with powders of rocks and mixable with activated water from the deposits of the Chechen Republic. The soundness of cement compositions with the additives of mountain and river limestone, sandstone and quartz sand was established. The results of experimental studies on establishing the effect of fine and coarse aggregate on strength formation of cement composites activated by water mixing were presented.

  7. Influence of Palm Oil Fuel Ash and W/B Ratios on Compressive Strength, Water Permeability, and Chloride Resistance of Concrete

    Directory of Open Access Journals (Sweden)

    Wachilakorn Sanawung

    2017-01-01

    Full Text Available This research studies the effects of W/B ratios and palm oil fuel ash (POFA on compressive strength, water permeability, and chloride resistance of concrete. POFA was ground until the particles retained on sieve number 325 were less than 5% by weight. POFA was used to partially replace OPC at rates of 15, 25, and 35% by weight of binder. The water to binder (W/B ratios of concrete were 0.40 and 0.50. The compressive strength, water permeability, and chloride resistance of concrete were investigated up to 90 days. The results showed that POFA concrete with W/B ratio of 0.40 had the compressive strengths ranging from 45.8 to 55.9 MPa or 82–94% of OPC concrete at 90 days, while POFA concrete with W/B ratio of 0.50 had the compressive strengths of 33.9–41.9 MPa or 81–94% of OPC concrete. Furthermore, the compressive strength of concrete incorporation of ground POFA at 15% was the same as OPC concrete. The water permeability coefficient and the chloride ion penetration of POFA concrete were lower than OPC concrete when both types of concrete had the same compressive strengths. The findings also indicated that water permeability and chloride ion penetration of POFA concrete were significantly reduced compared to OPC concrete.

  8. A study of concrete properties using phyllite as coarse aggregates

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Afrifa, Russell Owusu

    2010-01-01

    Nowadays, industrial activities generate a huge amount of waste. One such activity is underground mining which generates phyllite wastes that are recycled as coarse aggregates for use in concrete production. Aggregate use in concrete is dependent on availability. This paper reports of an experimental study on some of the physical and mechanical properties of phyllite aggregate concrete as compared to granite (conventional) aggregate concrete. The obtained physical and mechanical properties of both aggregates for specific gravity, water absorption (%), dry density, aggregate impact value (%), aggregate crushing value (%), 10% fines, elongation index (%), flakiness index (%) and Los Angeles abrasion values satisfied minimum requirements for aggregates suitable for concrete production. Five mixes of concrete mix proportions designated M1, M2, M3, M4 and M5 were cast using phyllite and granite aggregates. A total of 400 concrete cubes and 210 modulus of rupture beams were cast and cured by total submerging in water for ages 3, 7, 14, 28, 56, 90, 180 and 360 days before compression and bending tests were performed. The results show that the trends in the development of compressive and bending strengths of plain phyllite concrete were similar to those in granite (conventional) aggregate concrete. However the compressive and bending strengths of phyllite concrete mixes were on the average 15-20% lower than those of the corresponding granite concrete mixes at all ages. The same concrete mix proportions gave lower concrete classes for phyllite compared to granite with the exception of the lowest grade. This was probably because the flakiness and elongation properties coupled with reactive materials in phyllite aggregates affect the absorption and bond characteristics of its concrete.

  9. Effects of Different Water and Super Plasticizer Amount, Pre-Setting and Curing Regimes on the Behavior of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    M. A. Dashti Rahmatabadi

    2014-12-01

    Full Text Available Reactive Powder Concrete (RPC is an ultra high performance concrete which has superior mechanical and physical properties. The RPC is composed of cement and very fine powders such as crushed quartz (100–600 μm and silica fume with very low water/binder ratio (W/B (less than 0.20 and Super Plasticizer (SP. The RPC has a very high compressive and tensile strength with better durability properties than current high performance concretes. Application of very low water/binder ratio with a high dosage of super plasticizer, different heat curing processes and pre-setting pressure improve mechanical and physical properties of RPC. In this study, the RPC is composed of available materials in Iran. Two different mixing proportions, different water/binder ratios for preparation of samples, different super plasticizer dosages, five different (0, 25, 50, 100 and 150 MPa pre-setting pressure and 7 different curing regimes were used in samples preparation and experiments. Results showed that appropriate water/binder ratio and super plasticizer dosage, higher temperature and pre-setting pressure increase the workability, density and compressive strength of compositions.

  10. Performance of Portland cement mixes containing silica fume and mixed with lime-water

    Directory of Open Access Journals (Sweden)

    Metwally A.A. Abd Elaty

    2014-12-01

    Test results show that using lime-water in mixing enhances consistency degree compared to the corresponding control mixes. Furthermore, it delays both initial and final setting times compared with traditional water due to the common ion effect principles. Moreover, combined use of lime-water and silica fume enhances the pozzolanic reaction that was identified by the strength development at both early and later ages. The existence of CH crystals for higher percentages of silica fume (up to 30% for further reaction at later ages was observed by XRD results. Moreover, combined use of silica fume and lime-water ensures a high alkaline media around steel bars from the moment of ingredients mixing as long as later ages despite of pozzolanic reaction that was identified from results of chloride attack.

  11. Properties of concrete with tire derived aggregate and crumb rubber as a lighthweight substitute for mineral aggregates in the concrete mix

    Science.gov (United States)

    Siringi, Gideon Momanyi

    Scrap tires continue to be a nuisance to the environment and this research proposes one way of recycling them as a lightweight aggregate which can substitute for mineral aggregates in concrete. Aggregates derived from scrap tires are often referred to as Tire Derived Aggregate (TDA). First, the focus is how much mineral aggregate can be replaced by these waste tires and how the properties of concrete are affected with the introduction of rubber. This is being mindful of the fact that for a new material to be acceptable as an engineering material, its properties and behavior has to be well understood, the materials must perform properly and be acceptable to the regulating agencies. The role played by the quantity of TDA and Crumb Rubber replacing coarse aggregate and fine aggregate respectively as well as different treatment and additives in concrete on its properties are examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, Splitting Tensile Strength based on ASTM C496, Modulus of Rupture (flexural strength) based on ASTM C78 and Bond strength of concrete developed with reinforcing steel based on ASTM C234.Through stress-strain plots, the rubberized concrete is compared in terms of change in ductility, toughness and Elastic Modulus. Results indicate that while replacement of mineral aggregates with TDA results in reduction in compressive strength, this may be mitigated by addition of silica fume or using a smaller size of TDA to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product with lower density while utilizing recycled TDA. From the results, it is observed that 7-10% of weight of mineral aggregates can be replaced by an equal volume of TDA to produce concrete with compressive strength of up to 4000 psi (27.5 MPa). Rubberized concrete would have higher ductility and toughness with

  12. Coolant mixing in pressurized water reactors. Proceedings

    International Nuclear Information System (INIS)

    Hoehne, T.; Grunwald, G.; Rohde, U.

    1998-10-01

    For the analysis of boron dilution transients and main steam like break scenarios the modelling of the coolant mixing inside the reactor vessel is important. The reactivity insertion due to overcooling or deboration depends strongly on the coolant temperature and boron concentration. The three-dimensional flow distribution in the downcomer and the lower plenum of PWR's was calculated with a computational fluid dynamics (CFD) code (CFX-4). Calculations were performed for the PWR's of SIEMENS KWU, Westinghouse and VVER-440 / V-230 type. The following important factors were identified: exact representation of the cold leg inlet region (bend radii etc.), extension of the downcomer below the inlet region at the PWR Konvoi, obstruction of the flow by the outlet nozzles penetrating the downcomer, etc. The k-ε turbulence model was used. Construction elements like perforated plates in the lower plenum have large influence on the velocity field. It is impossible to model all the orifices in the perforated plates. A porous region model was used to simulate perforated plates and the core. The porous medium is added with additional body forces to simulate the pressure drop through perforated plates in the VVER-440. For the PWR Konvoi the whole core was modelled with porous media parameters. The velocity fields of the PWR Konvoi calculated for the case of operation of all four main circulation pumps show a good agreement with experimental results. The CFD-calculation especially confirms the back flow areas below the inlet nozzles. The downcomer flow of the Russian VVER-440 has no recirculation areas under normal operation conditions. By CFD calculations for the downcomer and the lower plenum an analytical mixing model used in the reactor dynamic code DYN3D was verified. The measurements, the analytical model and the CFD-calculations provided very well agreeing results particularly for the inlet region. The difficulties of analytical solutions and the uncertainties of turbulence

  13. Pressure and temperature fields and water released by concrete submitted to high heat fluxes

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de

    1982-01-01

    Inovations are introduced in the original program USINT considering thermal conductivity variations with the temperature. A subroutine - PLOTTI - is incorporate to the program aiming to obtain a graphic for results. The new program - USINTG - is used for calculating the field of pressure and temperature and the water released from the concrete structure during a simulation of sodium leak. The theoretical results obtained with USINTG are in good agreement with the experimental results previously obtained. (E.G.) [pt

  14. Use of dry sludge from waste water treatment plants as an additive in prefabricated concrete brick

    OpenAIRE

    Yagüe, A.; Valls, S.; Vázquez, E.; Kuchinow, V.

    2002-01-01

    Dry sludge from the Sabadell Water Treatment Plant was used to prepare prefabricated concrete bricks. After characterising the sludge and the manufacturing process used to make the bricks, we define the conditions of addition of the sludges in the manufacture. Reference samples not containing sludge and samples containing 2 % of dry sludge by cement weight were prepared. The variation in density, porosity, absorption coefficient and compressive strength of the bricks with the presence of...

  15. Effect of water-to-cement ratio and curing method on the strength, shrinkage and slump of the biosand filter concrete body.

    Science.gov (United States)

    Chan, Nicole; Young-Rojanschi, Candice; Li, Simon

    2018-03-01

    The biosand filter is a household-level water treatment technology used globally in low-resource settings. As of December 2016, over 900,000 biosand filters had been implemented in 60 countries around the world. Local, decentralized production is one of the main advantages of this technology, but it also creates challenges, especially in regards to quality control. Using the current recommended proportions for the biosand filter concrete mix, slump was measured at water-to-cement ratios of 0.51, 0.64 and 0.76, with two replicates for each level. Twenty-eight-day strength was tested on four replicate cylinders, each at water-to-cement ratios of 0.51, 0.59, 0.67 and 0.76. Wet curing and dry curing were compared for 28-day strength and for their effect on shrinkage. Maximum strength occurred at water-to-cement ratios of 0.51-0.59, equivalent to 8-9.3 L water for a full-scale filter assuming saturated media, corresponding to a slump class of S1 (10-40 mm). Wet curing significantly improved strength of the concrete mix and reduced shrinkage. Quality control measures such as the slump test can significantly improve the quality within decentralized production of biosand filters, despite localized differences in production conditions.

  16. Thermal and strength performance of reinforced self-compacting concrete slabs mixed with basalt and PVA fibers in high intensity fire

    Directory of Open Access Journals (Sweden)

    Mohd Jani Noraniza

    2017-01-01

    Full Text Available Fibers addition to concrete and the innovation of self-compacting concrete technology lead to the development of high-performance concrete. However, high intensity fire may adversely affect the performance of this type of concrete. A series of fire resistance test experiments to evaluate the performance of fiber reinforced self-compacting concrete (FR-SCC slabs consisting of various mix of basalt and PVA fibers were carried out by subjecting the concrete slabs as an element of construction to high intensity Hydrocarbon fire heating condition. The fire testing condition was in accordance with the standard time-temperature fire curve for 120 minutes up to 1100°C heating temperature. The temperatures on the surface and within the concrete slabs were recorded and the performance of each type of FRSCC slabs were evaluated. The performance of Basalt FR-SCC was found to be more resistant to fire in comparison to PVA FRSCC. There residual compressive strength of core samples were tested and SEM analysis were carried out to determine the effect of high intensity fire on the basalt and PVA FR-SCC slabs.

  17. engineering properties of scoria concrete as a construction material

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    2015-08-11

    Aug 11, 2015 ... The scoria concrete so produced in mix ratio 1:2:4 was tested for compressive strength, flexural strength and water absorption capacity. Empirical values of those factors that affect ... Scoria obtained from Wurukum market was.

  18. Concrete aggregate durability study.

    Science.gov (United States)

    2009-06-01

    There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...

  19. Study of local Agregate for Gamma radiation concrete shield

    International Nuclear Information System (INIS)

    Tochrul-Binowo; Endro-Kismolo; Darsono

    1996-01-01

    Investigation on the composition of gamma radiation concrete shield made of local barite, manganese fine and coarse aggregates from Kulon Progo, Yogyakarta has been done. The purpose of the research was to find out the quality of these local material for an aggregate of gamma radiation concrete shield. The research was done where each mineral was used as coarse aggregate and the fine aggregate from Kulon Progo was used as fine basic aggregate. Firstly a normal concrete was made by mixing cement, fine aggregate, coarse aggregate and water at a weight ratio of cement: fine aggregate: coarse: water 1: 2.304: 3.456: 0.58. The gamma radiation absorption capacity of the concrete tested by using Cs-137 as source standard. The same method was done on barite concrete at the weight ratio of cement: fine aggregate: barite aggregate: water 1: 2.303: 3.456: 0.58 and manganese concrete at the weight ratio of cement: fine aggregate: manganese aggregate: and water 1: 1.896: 2.844: 0.58. The result of the study showed that the gamma radiation absorption capacity of barite aggregate was greater than that of normal concrete and manganese concrete. The coefficient linear attenuation (for 6.0 cm thickness) of each concrete were μ barite concrete = 0.23071 cm -1 , μ manganese concrete = 0.08401 cm -1 and μ normal concrete = 0.1669 cm -1

  20. The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete

    International Nuclear Information System (INIS)

    Beygi, Morteza H.A.; Kazemi, Mohammad T.; Nikbin, Iman M.; Amiri, Javad. Vaseghi

    2013-01-01

    Highlights: ► Fracture properties of SCC were obtained using two different methods. ► Results showed with decrease of w/c ratio the fracture toughness increases. ► Size effect method can predict the peak load with a good precision for SCC beams. ► The size effect curve showed SCC ductility increases with increase of w/c ratio. - Abstract: The paper describes an experimental research on fracture characteristics of self-compacting concrete (SCC). Three point bending tests conducted on 154 notched beams with different water to cement (w/c) ratios. The specimens were made from mixes with various w/c ratios from 0.7 to 0.35. For all mixes, common fracture parameters were determined using two different methods, the work-of-fracture method (WFM) and the size effect method (SEM). Test results showed that with decrease of w/c ratio from 0.7 to 0.35 in SCC: (a) the fracture toughness increases linearly: (b) the brittleness number is approximately doubled: (c) the effective size of the process zone c f in SEM and the characteristic length (l ch ) in WFM decrease which may be explained by the change in structural porosity of the aggregate–paste transition zone; and (d) the fracture surface of concrete is roughly smoother, which can be attributed to the improved bond strength between the aggregates and the paste. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G F ) and the value measured through SEM (G f ) (G F ≅ 2.92G f )

  1. Quality control of concrete structures in nuclear power plant, (4)

    International Nuclear Information System (INIS)

    Takahashi, Hisao; Kawaguchi, Tohru; Oike, Takeshi; Morimoto, Shoichi; Takeshita, Shigetoshi.

    1979-01-01

    This report describes the result of an investigation to clarify the effect of concrete temperature as mixed in the summer season on the strength gain characteristics of mass concrete such as used in construction of nuclear power plants. It is pointed out that the low strength gain of control cylinders in summer is caused by two main factors, viz., the absence of water modification in the mix design according to concrete temperature as mixed and high curing temperature after placing up to mold removal rather than concrete temperature itself as mixed. On the other hand, it has been clarified that high strength gain in mass concrete can be realized by lowering concrete temperature as mixed so as to lower the subsequent curing temperature at early age. Furthermore, it is explained that the larger the size of the member is, the more effect can be expected from lowering concrete temperature. The effect of concrete temperature as mixed on high strength concrete to be used in PCCV is discussed in the Appendix. (author)

  2. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  3. Core-concrete interactions with overlying water pools. The WETCOR-1 test

    Energy Technology Data Exchange (ETDEWEB)

    Blose, R.E. [Ktech Corp., Albuquerque, NM (United States); Powers, D.A.; Copus, E.R.; Brockmann, J.E.; Simpson, R.B.; Lucero, D.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    The WETCOR-1 test of simultaneous interactions of a high-temperature melt with water and a limestone/common-sand concrete is described. The test used a 34.1-kg melt of 76.8 w/o Al{sub 2}O{sub 3}, 16.9 w/o CaO, and 4.0 w/o SiO{sub 2} heated by induction using tungsten susceptors. Once quasi-steady attack on concrete by the melt was established, an attempt was made to quench the melt at 1850 K with 295 K water flowing at 57 liters per minute. Net power into the melt at the time of water addition was 0.61 {plus_minus} 0.19 W/cm{sup 3}. The test configuration used in the WETCOR-1 test was designed to delay melt freezing to the walls of the test fixture. This was done to test hypotheses concerning the inherent stability of crust formation when high-temperature melts are exposed to water. No instability in crust formation was observed. The flux of heat through the crust to the water pool maintained over the melt in the test was found to be 0.52 {plus_minus} 0.13 MW/m{sup 2}. Solidified crusts were found to attenuate aerosol emissions during the melt concrete interactions by factors of 1.3 to 3.5. The combination of a solidified crust and a 30-cm deep subcooled water pool was found to attenuate aerosol emissions by factors of 3 to 15.

  4. Crystalline Coating and Its Influence on the Water Transport in Concrete

    Directory of Open Access Journals (Sweden)

    Pavel Reiterman

    2016-01-01

    Full Text Available The presented paper deals with an experimental study of the efficiency of surface coating treatment based on secondary crystallization as an additional protection of the subsurface concrete structure loaded by moisture or ground water pressure. The aim of the experimental program was the evaluation of the depth impact of the crystalline coating and the assessment of the reliability of construction joints performed on models simulating real conditions of the concrete structure. The evolution of the secondary crystallizing process was monitored using the water absorption test carried out at different depths of the samples. The coefficient of adsorption decreased to 60% of the reference mixture for a surface layer of up to 40 mm at 28 days and to 50% at 180 days after the coating’s application. Furthermore, the electrical resistivity method was applied with respect to the nature of measurement and the low accessibility of real subsurface concrete structures. The results of moisture measurement at a depth of 180–190 mm from the surface treated with a crystalline coating showed an essential decrease in moisture content percentage in comparison with untreated specimens (measured 125 days after the coating’s application.

  5. Strength Characteristics of Groundnut Leaf/Stem Ash (GLSA Concrete

    Directory of Open Access Journals (Sweden)

    Oseni O. W.

    2016-09-01

    Full Text Available The compressive strength properties of concrete are substantial factors in the design and construction of concrete structures. Compressive strength directly affects the degree to which the concrete can be able to carry a load over time. These changes are complemented by deflections, cracks etc., in the structural elements of concrete. This research investigated the effect of groundnut leaf/stem ash (GLSA on the compressive strength of concrete at 0%, 5 %, 10 % and 15 % replacements of cement. The effect of the water-cement ratio on properties such as the compressive strength, slump, flow and workability properties of groundnut leaf/stem ash (GLSA mixes with OPC were evaluated to determine whether they are acceptable for use in concrete structural elements. A normal concrete mix with cement at 100 % (i.e., GLSA at 0% with concrete grade C25 that can attain an average strength of 25 N/mm2 at 28 days was used as a control at design water-cement ratios of 0.65 and grading of (0.5-32 mm from fine to coarse aggregates was tested for: (1 compressive strength, and the (2 slump and flow Test. The results and observations showed that the concrete mixes from GLSA at 5 – 15 % ratios exhibit: pozzolanic properties and GLSA could be used as a partial replacement for cement at these percentage mix ratios compared with the control concrete; an increase in the water-cement ratio showed a significant decrease in the compressive strength and an increase in workability. Therefore, it is important that all concrete mixes exude an acceptably designed water-cement ratio for compressive strength characteristics for use in structures, water-cement ratio is a significant factor.

  6. Strength Characteristics of Groundnut Leaf/Stem Ash (GLSA) Concrete

    Science.gov (United States)

    Oseni, O. W.; Audu, M. T.

    2016-09-01

    The compressive strength properties of concrete are substantial factors in the design and construction of concrete structures. Compressive strength directly affects the degree to which the concrete can be able to carry a load over time. These changes are complemented by deflections, cracks etc., in the structural elements of concrete. This research investigated the effect of groundnut leaf/stem ash (GLSA) on the compressive strength of concrete at 0%, 5 %, 10 % and 15 % replacements of cement. The effect of the water-cement ratio on properties such as the compressive strength, slump, flow and workability properties of groundnut leaf/stem ash (GLSA) mixes with OPC were evaluated to determine whether they are acceptable for use in concrete structural elements. A normal concrete mix with cement at 100 % (i.e., GLSA at 0%) with concrete grade C25 that can attain an average strength of 25 N/mm2 at 28 days was used as a control at design water-cement ratios of 0.65 and grading of (0.5-32) mm from fine to coarse aggregates was tested for: (1) compressive strength, and the (2) slump and flow Test. The results and observations showed that the concrete mixes from GLSA at 5 - 15 % ratios exhibit: pozzolanic properties and GLSA could be used as a partial replacement for cement at these percentage mix ratios compared with the control concrete; an increase in the water-cement ratio showed a significant decrease in the compressive strength and an increase in workability. Therefore, it is important that all concrete mixes exude an acceptably designed water-cement ratio for compressive strength characteristics for use in structures, water-cement ratio is a significant factor.

  7. Development of construction materials like concrete from lunar soils without water

    Science.gov (United States)

    Desai, Chandra S.; Saadatmanesh, H.; Frantziskonis, G.

    1989-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. A unique approach is attempted that utilizes factors such as initial vacuum and then cyclic loading to enhance the mechanical properties of dry materials similar to those available on the moon. The application of such factors is expected to allow reorientation, and coming together, of particles of the materials toward the maximum theoretical density. If such a density can provide deformation and strength properties for even a limited type of construction, the approach can have significant application potential, although other factors such as heat and chemicals may be needed for specific construction objectives.

  8. Review of warm mix rubberized asphalt concrete : Towards a sustainable paving technology

    NARCIS (Netherlands)

    Wang, H.; Liu, X.; Apostolidis, P.; Scarpas, Athanasios

    2018-01-01

    In recent years, transportation agencies and the general public alike are demanding increased considerations of sustainability in transport infrastructure. Warm mix asphalt (WMA) is developed for reducing energy consumptions and emissions in asphalt paving industry. In addition, the use of

  9. Concrete pavement mixture design and analysis (MDA) : application of a portable x-ray fluorescence technique to assess concrete mix proportions.

    Science.gov (United States)

    2012-03-01

    Any transportation infrastructure system is inherently concerned with durability and performance issues. The proportioning and : uniformity control of concrete mixtures are critical factors that directly affect the longevity and performance of the po...

  10. A comparative study of recycled aggregates from concrete and mixed debris as material for unbound road sub-base

    Directory of Open Access Journals (Sweden)

    Jiménez, J. R.

    2011-06-01

    Full Text Available Seven different types of recycled aggregates from construction and demolition waste (CDW have been evaluated as granular materials for unbound road sub-bases construction. The results showed that recycled concrete aggregates complied with all specifications for using in the construction of unbound structural layers (sub-base for T3 and T4 traffic categories according to the Spanish General Technical Specification for Road Construction (PG-3. Some mixed recycled aggregates fell short of some specifications due to a high content of sulphur compounds and poor fragmentation resistance. Sieving off the fine fraction prior to crushing the mixed CDW reduce the total sulphur content and improve the quality of the mixed recycled aggregates, by contrast, pre-sieving concrete CDW had no effect on the quality of the resulting aggregates. The results were compared with a crushed limestone as natural aggregate.

    Siete áridos reciclados de residuos de construcción y demolición (RCD se han evaluado como zahorras para la construcción de sub-bases de carreteras. Los resultados muestran que los áridos reciclados de hormigón cumplen todas las especificaciones del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras de España (PG-3 para su uso en capas estructurales (sub-base de las categorías de tráfico T3 y T4. Algunos áridos reciclados mixtos no cumplen por escaso margen algunas de las especificaciones, debido a un alto contenido de compuestos de azufre y a una menor resistencia a la fragmentación. El precribado de la fracción fina antes de la trituración de los RCD mixtos reduce el contenido de azufre total y mejora la calidad, por el contrario, el precribado de los RCD de hormigón no tiene ningún efecto sobre la calidad de los áridos reciclados. Los resultados se compararon con una zahorra artificial caliza como árido natural.

  11. Development of concrete mix proportions for minimizing/eliminating shrinkage cracks in slabs and high performance grouts : final report.

    Science.gov (United States)

    2017-02-01

    The two focus areas of this research address longstanding problems of (1) cracking of concrete slabs due to creep and shrinkage and (2) high performance compositions for grouting and joining precast concrete structural elements. Cracking of bridge de...

  12. The mixing of particle clouds plunging into water

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, S.; Theofanous, T.G.; Yuen, W.W. [Univ. of California, Santa Barbara, CA (United States)

    1995-09-01

    This work addresses certain fundamental aspects of the premixing phase of steam explosions, At issue are the multifield interaction aspects under highly transient, multidimensional conditions, and in presence of strong phase changes. They are addressed in an experiment (the MAGICO-2000) involving well-characterized particle clouds mixing with water, and detailed measurements on both external and internal characteristics of the mixing zone. Both cold and hot (up to 1500{degrees}C) particle clouds are considered in conjunction with saturated and subcooled water pools. The PMALPHA code is used as an aid in interpreting the experimental results, and the exercise reveals good predictive capabilities for it.

  13. Effects of Elevated Temperature on Compressive Strength Of Concrete

    African Journals Online (AJOL)

    This study presents the results of investigation of the effects of elevated temperatures on the compressive strength of Grade 40 concrete. A total of thirty cube specimens were cast, cured in water at ambient temperature in the laboratory and subjected to various temperature regimes before testing. A concrete mix of 1:1:3 ...

  14. Freeze/thaw phenomena in concrete at low temperatures

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2007-01-01

    Freeze/thaw damage in concrete is by general practice concluded to be a problem that can be avoided by using air-entraining agents to develop an air bubble structure in the hardened concrete together with the use of a relatively low water to cement ratio in mix. This fact is true for inner damage...

  15. Development of high stability hot mix asphalt concrete with hybrid binder

    Directory of Open Access Journals (Sweden)

    Toshiaki Hirato

    2014-12-01

    Full Text Available Cost reduction of public works projects has been desired due to severe financial circumstances. Therefore, asphalt pavement has been requested to extend its life. Semi-flexible pavement or epoxy asphalt pavement, which has high rutting resistance and oil resistance, may be applied to the place where these performances ae demanded. However, special technique is required in manufacturing and construction. In addition, these materials have also raised a problem that they cannot be recycled. Meanwhile, conventional asphalt pavement has several drawbacks. It is vulnerable to rutting caused by traffic load and damage caused by petroleum oils such as gasoline or motor oil. The materials used in asphalt mixtures were studied for improving the durability of asphalt mixture. A high stability asphalt concrete was developed which has equal or superior performance to semi-flexible pavement and epoxy asphalt pavement. In this paper, the process of selecting the substance and the characteristics evaluation of the developed mixtures ae described. Furthermore, an inspection result as well as follow-up survey of the performance of the developed mixtures obtained from trial and actual construction is shown.

  16. Preliminary study of tin slag concrete mixture

    Science.gov (United States)

    Hashim, Mohd Jamil; Mansor, Ishak; Pauzi Ismail, Mohamad; Sani, Suhairy; Azmi, Azhar; Sayuti, Shaharudin; Zaidi Ibrahim, Mohd; Adli Anuar, Abul; Rahim, Abdul Adha Abdul

    2018-01-01

    The study focuses on practices to facilitate tin smelting industry to reduce radioactive waste product (Tin Slag) by diluting its radioactivity to a safe level and turning it to a safer infrastructural building product. In the process the concrete mix which include Portland cement, sand, tin slag, water and plasticizer are used to produce interlocking brick pavements, piles and other infrastructural products. The mixing method follows DOE (UK) standard method of mixing targeted at in selected compressive strength suitable for its function and durability. A batching machine is used in the mixing and six test cubes are produced for the test. The testing equipment used are a compressional machine, ultrasonic measurement and a Geiger Muller counter to evaluate of the concrete mix to find the lowest emission of radiation surface dose without compromising the strength of concrete mix. The result obtained indicated the radioactivity of tin slag in the mixing process has reduced to background level that is 0.5μSv/h while the strength and workability of the concrete has not been severely affected. In conclusion, the concrete mix with tin slag has shown the potential it can be turned into a safe beneficial infrastructural product with good strength.

  17. Thermodynamics of saline and fresh water mixing in estuaries

    Science.gov (United States)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2018-03-01

    The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.

  18. The role of water in the behaviour of concretes at high temperature

    International Nuclear Information System (INIS)

    Feraille-Fresnet, A.

    2000-01-01

    Since 1996, three fires have been counted in tunnels in Europe. During each of these accidents. the temperature reached by the structure has been estimated between 800 deg C and 1200 deg C. Beside these spectacular accidental situations, there are many other situations in which concrete structures are submitted to high temperatures during their regular use. Several research work has been undertaken for a better understanding of the behaviour of concrete submitted to high temperatures and the physical phenomena involved. This PhD Thesis takes down as part of this research work and develops, more particularly, the role of water in the material submitted to heating up to high temperatures. At first, we are interested in the role of water inside a material crack, during heating. We have established an original analytical solution giving the liquid-vapour repartition and the stress intensity factor, as functions of crack's length, water molecules contained in the inner of the crack and temperature. Then, we are able to study the crack stability. In the second part, we propose to approach the studied phenomena using the non saturated porous media theory. We present a thermo-hydro-chemical model which permits to describe the concrete behaviour under thermal loading. The material microstructure is defined using a 'porosimetric surface'. Each pore is characterised by two radii: the pore radius and the access radius into the pore. With this description, the zone of pores saturated by liquid is a state variable. We also introduce the concept of kinetic dehydration, clearly lighted by experimental studies. An hypothesis of erosion of the solid phase by dehydration permits to link the evolution of microstructure and of the zone of pores saturated by liquid to the mass of water created by dehydration. (author)

  19. ANALYSIS OF PROPERTIES OF CONCRETE USING DRIED BANANA PEEL POWDER AS ADMIXTURE

    OpenAIRE

    Vishal Gadgihalli; MeenaY.R; Sindhu Shankar; Raghavendra Prasad Havanje Dinakar

    2017-01-01

    Ingredients other than cement, water& aggregates that import a specific quality to either plastic(fresh)mix or the hardened concrete (ASTMC 496) is called concrete admixture. In this paper analysis of properties of concrete using banana peel as admixture is studied and verified the strength of concrete and temperature emitted due to chemical reaction to the normal Portland cement. As banana’s peel is rich in natural fiber and it is well known source of potassium. The flexural strength of conc...

  20. Capillary transport of water through textile-reinforced concrete applied in repairing and/or strengthening cracked RC structures

    International Nuclear Information System (INIS)

    Lieboldt, M.; Mechtcherine, V.

    2013-01-01

    The use of textile-reinforced concrete (TRC) has great potential for innovative solutions in repairing, protecting, and strengthening concrete and RC structures. The article at hand reports on an investigation on composite concrete specimens made of cracked ordinary concrete as substrate and textile-reinforced concrete (TRC) as a cover layer for its strengthening and repair. The TRC cover layer was assessed with regard to its effectiveness as a protective layer against the ingress of water through capillary action. Since in real applications such TRC layers may be cracked or presumed to be so, thereby activating the load-carrying function of the textile reinforcement, the TRC layer was cracked for purposes of this study. The water transport in the cracked ordinary concrete specimens without the TRC layer was used as a reference. Gravimetric measurements and neutron radiography served as the testing techniques. In ordinary concrete quick and deep ingress of water through relatively wide macro-cracks of approximately 100 μm width, followed by transport through the capillary pore system, caused saturation of large areas in a rather short time. TRC applied to the RC surface reduced the ingress of water to a large extent. Its small crack widths of 15 to 20 μm changed suction behaviour fundamentally. In the cracked substrate of ordinary concrete, capillary suction was prevented, and transport through the pore system of the matrix became the prevailing transport mechanism of capillary action. Not only was the mechanism altered, but the transport of water deep into inner regions was markedly retarded as well

  1. Quality control chart for crushed granite concrete

    Directory of Open Access Journals (Sweden)

    Ewa E. DESMOND

    2016-07-01

    Full Text Available A chart for assessing in-situ grade (strength of concrete, has been developed in this study. Four grades of concrete after the Nigerian General Specification for Roads and bridges (NGSRB-C20, C25, C30 and C35, is studied at different water-cement ratios for medium and high slump range. The concrete mixes are made from crushed granite rock as coarse aggregate with river sand as fine aggregate. Compression test on specimens are conducted at curing age of 1, 3, 7, 14, 21, 28 and 56 days. Results on concrete workability from slump values, and water-cement ratios revealed that specimens with lower water-cement ratio were less workable but had higher strength, compared to mixes with higher water cement ratio. A simple algorithm using nonlinear regression analysis performed on each experimental data set produced Strength-Age (S-A curves which were used to establish a quality control chart. The accuracy of these curves were evaluated by computing average absolute error (AAS, the error of estimate (EoE and the average absolute error of estimate (Abs EoE for each concrete mix. These were done based on the actual average experimental strengths to measure how close the predicted values are to the experimental data set. The absolute average error of estimate (Abs. EoE recorded was less than ±10% tolerance zone for concrete works.

  2. Towards Better Understanding of Concrete Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Hisham Qasrawi

    2013-01-01

    Full Text Available The effect of using recycled concrete aggregates (RCA on the basic properties of normal concrete is studied. First, recycled aggregate properties have been determined and compared to those of normal aggregates. Except for absorption, there was not a significant difference between the two. Later, recycled aggregates were introduced in concrete mixes. In these mixes, natural coarse aggregate was partly or totally replaced by recycled aggregates. Results show that the use of recycled aggregates has an adverse effect on the workability and air content of fresh concrete. Depending on the water/cement ratio and on the percent of the normal aggregate replaced by RCA, the concrete strength is reduced by 5% to 25%, while the tensile strength is reduced by 4% to 14%. All results are compared with previous research. As new in this research, the paper introduces a simple formula for the prediction of the modulus of elasticity of RCA concrete. Furthermore, the paper shows the variation of the air content of RAC.

  3. Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions.

    Science.gov (United States)

    Obla, K; Hong, R; Sherman, S; Bentz, D P; Jones, S Z

    2018-01-01

    Characterization of fresh concrete is critical for assuring the quality of our nation's constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly K + , Na + , and OH - ) that are the main source of electrical conduction; and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass ( w/c ), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c , paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data is supplemented by measuring the resistivity of its component pore solution obtained from 5 laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture's paste content or the product w*c ; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed.

  4. Effects of chemical and mineral additives and the water/cement ratio on the thermal resistance of Portland cement concrete

    International Nuclear Information System (INIS)

    Cesar, Leandro Cesar Dias; Morelli, Arnaldo C.; Baldo, Joao Baptista

    1998-01-01

    The exposure of Portland concrete to high temperatures (>250 deg C) can damage drastically the microstructural integrity of the material. Since the water/cement ratio as well as the inclusion of superplasticizers and mineral additives (silica fume) can alter constitutively and micro structurally the material, in this work it was investigated per effect of these additions on the damage resistance of portland concrete after exposure to high temperatures. (author)

  5. An Investigation of Concrete Deterioration at South Florida Water Management District Structure S65E

    Science.gov (United States)

    2014-02-01

    deterioration by dissolution of certain concrete com- ponents, specifically limestone ( calcium carbonate, CaCO3) aggregate and portlandite in the paste...K) 2.98 Sodium (Na) 14.6 Calcium (Ca) 19.1 Copper (Cu) 0.0011 Manganese (Mn) 0.0057 Nickel (Ni) 0.0012 Vanadium (V) 0.0011 Zinc (Zn) 0.0189...5A. Water quality differences are consistent with the surface geology at the respective sites. The Kissimmee River Basin is characterized by

  6. Effects of Continuous and Pulsating Water Jet on CNT/Concrete Composite

    Czech Academy of Sciences Publication Activity Database

    Foldyna, Vladimír; Foldyna, Josef; Klichová, Dagmar; Klich, Jiří; Hlaváček, Petr; Bodnárová, L.; Jarolím, T.; Mamulová Kutláková, K.

    2017-01-01

    Roč. 63, č. 10 (2017), s. 583-589 ISSN 0039-2480 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082; GA ČR GA15-23219S Institutional support: RVO:68145535 Keywords : pulsating and continuous water jet * CNT/concrete composite * material removal Subject RIV: JQ - Machines ; Tools OBOR OECD: Civil engineering Impact factor: 0.914, year: 2016 http://ojs.sv-jme.eu/index.php/sv-jme/ article /view/sv-jme.2017.4357

  7. A simplified model of aerosol scrubbing by a water pool overlying core debris interacting with concrete

    International Nuclear Information System (INIS)

    Powers, D.A.; Sprung, J.L.

    1993-11-01

    A classic model of aerosol scrubbing from bubbles rising through water is applied to the decontamination of gases produced during core debris interactions with concrete. The model, originally developed by Fuchs, describes aerosol capture by diffusion, sedimentation, and inertial impaction. This original model for spherical bubbles is modified to account for ellipsoidal distortion of the bubbles. Eighteen uncertain variables are identified in the application of the model to the decontamination of aerosols produced during core debris interactions with concrete by a water pool of specified depth and subcooling. These uncertain variables include properties of the aerosols, the bubbles, the water and the ambient pressure. Results are analyzed using a nonparametric, order statistical analysis that allows quantitative differentiation of stochastic and phenomenological uncertainty. The sampled values of the decontamination factors are used to construct estimated probability density functions for the decontamination factor at confidence levels of 50%, 90% and 95%. The decontamination factors for pools 30, 50, 100, 200, 300, and 500 cm deep and subcooling levels of 0, 2, 5, 10, 20, 30, 50, and 70 degrees C are correlated by simple polynomial regression. These polynomial equations can be used to estimate decontamination factors at prescribed confidence levels

  8. The methods of receiving coal water suspension and its use as the modifying additive in concrete

    Science.gov (United States)

    Buyantuyev, S. L.; Urkhanova, L. A.; Lkhasaranov, S. A.; Stebenkova, Y. Y.; Khmelev, A. B.; Kondratenko, A. S.

    2017-01-01

    Results of research of the coal water suspension (CWS) from a cake received in the electrodigit ways in the fluid environment and gas are given in article and also the possibilities of its use as the modifying additive in concrete are considered. Use of a coal cake is perspective as it is a withdrawal of the coal and concentrating enterprises and has extremely low cost. Methods of receiving CWS and possibility of formation of carbon nanomaterials (CNM) are given in their structure. Research and the analysis of a microstructure of a surface of exemplars before electrodigit processing, their element structure, dependence of durability of a cement stone on a look and quantity of an additive of CWS is conducted. For modification of cement the carbon nanomaterials received from the following exemplars of water coal suspensions were used: foams from a cake from a scrubber of the plasma modular reactor, coal water suspension from a cake from electrodigit installation. The product which can find further application for a power engineering as fuel for combustion, and also in structural materials science, in particular, as the modifying additive in concrete allows to receive these methods.

  9. Water, vapour and heat transport in concrete cells for storing radioactive waste

    Science.gov (United States)

    Carme Chaparro, M.; W. Saaltink, Maarten

    2016-08-01

    Water is collected from a drain situated at the centre of a concrete cell that stores radioactive waste at 'El Cabril', which is the low and intermediate level radioactive waste disposal facility of Spain. This indicates flow of water within the cell. 2D numerical models have been made in order to reproduce and understand the processes that take place inside the cell. Temperature and relative humidity measured by sensors in the cells and thermo-hydraulic parameters from laboratory test have been used. Results show that this phenomenon is caused by capillary rise from the phreatic level, evaporation and condensation within the cell produced by temperature gradients caused by seasonal temperature fluctuations outside. At the centre of the cell, flow of gas and convection also play a role. Three remedial actions have been studied that may avoid the leakage of water from the drain.

  10. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    Directory of Open Access Journals (Sweden)

    Francisco Carrión

    2014-01-01

    Full Text Available Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate, and waste aggregates (basalt and limestone coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%, and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  11. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    Science.gov (United States)

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  12. Flow structure of steam-water mixed spray

    International Nuclear Information System (INIS)

    Sanada, Toshiyuki; Mitsuhashi, Yuki; Mizutani, Hiroya; Saito, Takayuki

    2010-01-01

    In this study, the flow structure of a steam-water mixed spray is studied both numerically and experimentally. The velocity and pressure profiles of single-phase flow are calculated using numerical methods. On the basis of the calculated flow fields, the droplet behavior is predicted by a one-way interaction model. This numerical analysis reveals that the droplets are accelerated even after they are sprayed from the nozzle. Experimentally, the mixed spray is observed using an ultra-high-speed video camera, and the velocity field is measured by using the oarticle image velocimetry (PIV) technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, the mixing process of steam and water and the atomization process of a liquid film are observed using a transparent nozzle. High-speed photography observations reveal that the flow inside the nozzle is annular flow and that most of the liquid film is atomized at the nozzle throat and nozzle outlet. Finally, the optimum mixing method for steam and water is determined.

  13. Flow structure of steam-water mixed spray

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Toshiyuki, E-mail: ttsanad@ipc.shizuoka.ac.j [Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka (Japan); Mitsuhashi, Yuki; Mizutani, Hiroya; Saito, Takayuki [Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka (Japan)

    2010-12-15

    In this study, the flow structure of a steam-water mixed spray is studied both numerically and experimentally. The velocity and pressure profiles of single-phase flow are calculated using numerical methods. On the basis of the calculated flow fields, the droplet behavior is predicted by a one-way interaction model. This numerical analysis reveals that the droplets are accelerated even after they are sprayed from the nozzle. Experimentally, the mixed spray is observed using an ultra-high-speed video camera, and the velocity field is measured by using the oarticle image velocimetry (PIV) technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, the mixing process of steam and water and the atomization process of a liquid film are observed using a transparent nozzle. High-speed photography observations reveal that the flow inside the nozzle is annular flow and that most of the liquid film is atomized at the nozzle throat and nozzle outlet. Finally, the optimum mixing method for steam and water is determined.

  14. Petroleum contaminated soil in Oman: evaluation of bioremediation treatment and potential for reuse in hot asphalt mix concrete.

    Science.gov (United States)

    Jamrah, Ahmad; Al-Futaisi, Ahmed; Hassan, Hossam; Al-Oraimi, Salem

    2007-01-01

    This paper presents a study that aims at evaluating the leaching characteristics of petroleum contaminated soils as well as their application in hot mix asphalt concrete. Soil samples are environmentally characterized in terms of their total heavy metals and hydrocarbon compounds and leachability. The total petroleum hydrocarbon (TPH) present in the PCS before and after treatment was determined to be 6.8% and 5.3% by dry weight, indicating a reduction of 1% in the TPH of PCS due to the current treatment employed. Results of the total heavy metal analysis on soils indicate that the concentrations of heavy metals are lower when extraction of the soil samples is carried out using hexane in comparison to TCE. The results show that the clean soils present in the vicinity of contaminated sites contain heavy metals in the following decreasing order: nickel (Ni), followed by chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), and vanadium (V). The current treatment practice employed for remediation of the contaminated soil reduces the concentrations of nickel and chromium, but increases the concentrations of all remaining heavy metals.

  15. Experimental characterization of the concrete behaviour under high confinement: influence of the saturation ratio and of the water/cement ratio

    International Nuclear Information System (INIS)

    Vu, X.H.

    2007-08-01

    The objective of this thesis is to experimentally characterize the influence of the saturation ratio and of the water/cement ratio of concrete on its behaviour under high confinement. This thesis lies within a more general scope of the understanding of concrete behaviour under severe loading situations (near field detonation or ballistic impacts). A near field detonation or an impact on a concrete structure generate very high levels of stress associated with complex loading paths in the concrete material. To validate concrete behaviour models, experimental results are required. The work presented in this thesis concerns tests conducted using a static triaxial press that allows to obtain stress levels of the order of the giga Pascal. The porous character of concrete and the high confinement required on the one hand, a development of a specimen protection device, and on the other hand, a development of an instrumentation with strain gauges, which is unprecedented for such high confinements. Hydrostatic and triaxial tests, conducted on the one hand on model materials and on the other hand on concrete, allowed to validate the developed experimental procedures as well as the technique of strain and stress measurements. The studies concerning the influence of the saturation ratio and of the water/cement ratio of concrete on its behaviour required the formulation of a plain baseline concrete and of two modified concretes with different water/cement ratios. The analysis of triaxial tests performed on the baseline concrete shows that the saturation ratio of concrete has a major influence on its static behaviour under high confinement. This influence is particularly marked for the concrete loading capacity and for the shape of limit state curves for saturation ratios greater than 50%. The concrete loading capacity increases with the confinement pressure for tests on dry concrete whereas beyond a given confinement pressure, it remains limited for wet or saturated concrete

  16. Field evidences and theoretical analysis of the gravity-driven wetting front instability of water runoffs on concrete structures

    NARCIS (Netherlands)

    Kuntz, M.; Van Mier, J.G.M.

    1997-01-01

    A series of field observations of the evolution of water runoffs over several vertical concrete walls directly exposed to rain falls is reported in this note. In all the cases, the main water flow originated from the top horizontal surface of the walls. The observations show that the gravity-driven

  17. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report E : hardened mechanical properties and durability performance of HVFA concrete.

    Science.gov (United States)

    2012-10-01

    A rising concern in todays construction industry is environmental responsibility. : The addition of fly ash is a leading innovation in sustainable design of concrete. Fly ash, : a waste by-product of coal burning power plants, can be used to repla...

  18. Analysis of production factors in high performance concrete

    Directory of Open Access Journals (Sweden)

    Gilberto Carbonari

    2003-01-01

    Full Text Available The incorporation of silica fume and superplasticizers in high strength and high performance concrete, along with a low water-cement ratio, leads to significant changes in the workability and the energy needed to homogenize and compact the concrete. Moreover, several aspects of concrete production that are not critical for conventional concrete are important for high strength concrete. This paper will discuss the need for controlling the humidity of the aggregates, optimizing the mixing sequence used in the fabrication, and the slump loss. The application of a silica fume concrete in typical building columns will be analyzed considering the required consolidation, the variability of the material strength within the structural element and the relation between core and molded specimen strength. Comparisons will also be made with conventional concrete.

  19. Packing Density Approach for Sustainable Development of Concrete

    Directory of Open Access Journals (Sweden)

    Sudarshan Dattatraya KORE

    2017-12-01

    Full Text Available This paper deals with the details of optimized mix design for normal strength concrete using particle packing density method. Also the concrete mixes were designed as per BIS: 10262-2009. Different water-cement ratios were used and kept same in both design methods. An attempt has been made to obtain sustainable and cost effective concrete product by use of particle packing density method. The parameters such as workability, compressive strength, cost analysis and carbon di oxide emission were discussed. The results of the study showed that, the compressive strength of the concrete produced by packing density method are closer to that of design compressive strength of BIS code method. By adopting the packing density method for design of concrete mixes, resulted in 11% cost saving with 12% reduction in carbon di oxide emission.

  20. Optimum concrete compression strength using bio-enzyme

    OpenAIRE

    Bagio Tony Hartono; Basoeki Makno; Tistogondo Julistyana; Pradana Sofyan Ali

    2017-01-01

    To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the con...

  1. The combined influence of paste volume and volumetric water-to- powder ratio on robustness of fresh self-compacting concrete

    NARCIS (Netherlands)

    Van der Vurst, F.; Grunewald, S.; Feys, D.; De Schutter, G.

    2015-01-01

    In order to avoid durability problems caused by an inadequate consolidation of concrete, self-compacting concrete (SCC) has been developed. The mix design of SCC aims at balancing a minimum flowability allowing air bubbles to escape and a maximum flowability in order to avoid segregation. Because of

  2. Comparison of carbon footprints of steel versus concrete pipelines for water transmission.

    Science.gov (United States)

    Chilana, Lalit; Bhatt, Arpita H; Najafi, Mohammad; Sattler, Melanie

    2016-05-01

    The global demand for water transmission and service pipelines is expected to more than double between 2012 and 2022. This study compared the carbon footprint of the two most common materials used for large-diameter water transmission pipelines, steel pipe (SP) and prestressed concrete cylinder pipe (PCCP). A planned water transmission pipeline in Texas was used as a case study. Four life-cycle phases for each material were considered: material production and pipeline fabrication, pipe transportation to the job site, pipe installation in the trench, and operation of the pipeline. In each phase, the energy consumed and the CO2-equivalent emissions were quantified. It was found that pipe manufacturing consumed a large amount of energy, and thus contributed more than 90% of life cycle carbon emissions for both kinds of pipe. Steel pipe had 64% larger CO2-eq emissions from manufacturing compared to PCCP. For the transportation phase, PCCP consumed more fuel due to its heavy weight, and therefore had larger CO2-eq emissions. Fuel consumption by construction equipment for installation of pipe was found to be similar for steel pipe and PCCP. Overall, steel had a 32% larger footprint due to greater energy used during manufacturing. This study compared the carbon footprint of two large-diameter water transmission pipeline materials, steel and prestressed concrete cylinder, considering four life-cycle phases for each. The study provides information that project managers can incorporate into their decision-making process concerning pipeline materials. It also provides information concerning the most important phases of the pipeline life cycle to target for emission reductions.

  3. Determination of the heating temperature of potholes surface on road pavement in the process of repairs using hot asphalt concrete mixes

    Directory of Open Access Journals (Sweden)

    Giyasov Botir Iminzhonovich

    2014-12-01

    Full Text Available In the process of roads construction the necessary transport and operational characteristics should be achieved, which depend on the quality of the applied, material and technologies. Under the loads of transport means and the influence of weather conditions on the road pavement deformations and destructions occur, which lead to worsening of transport and operational characteristics, decrease of operational life of the road and they are often the reason of road accidents. According to the data of the Strategic Research Center of "Rosgosstrah" more than 20 % of road accidents in Russia occur due to bad quality of road pavement. One of the main directions in traffic security control and prolongation of operational life for road pavement of non-rigid type is road works, as a result of which defects of pavement are eliminated and in case of timely repairs of high quality the operational life of the road increases for several years. The most widely used material for non-rigid pavement repairs is hot road concrete mixes and in case of adherence to specifications they provide high quality of works. The authors investigate the problems of hot asphalt concrete mixes for repairs of road surfaces of non-rigid type. The results of the study hot asphalt concrete mix’s temperature regimes are offered in case of repair works considering the temperature delivered to the work site and the ambient temperature depending on the type of mix and class of bitumen.

  4. Studies on recycled aggregates-based concrete.

    Science.gov (United States)

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  5. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate

    Science.gov (United States)

    Zheng, Chaocan; Lou, Cong; Du, Geng; Li, Xiaozhen; Liu, Zhiwu; Li, Liqin

    2018-06-01

    This paper presents an experimental investigation on the effect of the replacement of natural coarse aggregate (NCA) with either recycled concrete aggregate (RCA) or recycled clay brick aggregate (RBA) on the compressive strengths of the hardened concrete. Two grades (C25 and C50) of concrete were investigated, which were achieved by using different water-to-cement ratios. In each grade concrete five different replacement rates, 0%, 25%, 50%, 75% and 100% were considered. In order to improve the performance of the recycled aggregates in the concrete mixes, the RCA and RBA were carefully sieved by using the optimal degradation. In this way the largest reduction in the 28-day compressive strength was found to be only 7.2% and 9.6% for C25 and C50 recycled concrete when the NCA was replaced 100% by RCA, and 11% and 13% for C25 and C50 recycled concrete when the NCA was replaced 100% by RBA. In general, the concrete with RCA has better performance than the concrete with RBA. The comparison of the present experimental results with those reported in literature for hardened concrete with either RCA or RBA demonstrates the effectiveness in improving the compressive strength by using the optimal gradation of recycled aggregates.

  6. Shear transfer in concrete reinforced with carbon fibers

    Science.gov (United States)

    El-Mokadem, Khaled Mounir

    2001-10-01

    Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.

  7. Effects of climate and corrosion on concrete behaviour

    Science.gov (United States)

    Ismail, Mohammad; Egba, Ernest Ituma

    2017-11-01

    Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.

  8. Reduction of the capillary water absorption of foamed concrete by using the porous aggregate

    Science.gov (United States)

    Namsone, E.; Sahmenko, G.; Namsone, E.; Korjakins, A.

    2017-10-01

    The article reports on the research of reduction of the capillary water absorption of foamed concrete (FC) by using the porous aggregate such as the granules of expanded glass (EG) and the cenospheres (CS). The EG granular aggregate is produced by using recycled glass and blowing agents, melted down in high temperature. The unique structure of the EG granules is obtained where the air is kept closed inside the pellet. The use of the porous aggregate in the preparation process of the FC samples provides an opportunity to improve some physical and mechanical properties of the FC, classifying it as a product of high-performance. In this research the FC samples were produced by adding the EG granules and the CS. The capillary water absorption of hardened samples has been verified. The pore size distribution has been determined by microscope. It is a very important characteristic, specifically in the cold climate territories-where temperature often falls below zero degrees. It is necessary to prevent forming of the micro sized pores in the final structure of the material as it reduces its water absorption capacity. In addition, at a below zero temperature water inside these micro sized pores can increase them by expanding the stress on their walls during the freezing process. Research of the capillary water absorption kinetics can be practical for prevision of the FC durability.

  9. Pipes of glassfiber reinforced plastics and prestressed concrete for hot-water transportation

    International Nuclear Information System (INIS)

    Schmeling, P.; Roseen, R.

    1980-06-01

    The report constitutes stage 2-3 of a project for the evaluation of pipes made from glass reinforced plastics and prestressed concrete. This stage was made possible through funds from the Swedish National Board for Energy Source Development and the participation of three industrial firms. Experimental pipes of large dimensions (O.D. 0.5 m) were tested at elevated temperatures and pressures. The glass reinforced plastic tubes showed in general an acceptable short term strength at 100-110 degree C. Further long term testing is needed in order to predict the life time; their manufacture requires a strictrly controlled process. The pipes made from prestressed concrete were tested at 95 and 110 degree C for more than a year with good results, and their resistence to thermal shocks was shown to be acceptable. Long term stress relaxation of the EPDM rubber for the joints was measured at 125 and 110 degree C. The best rubbers can be used for 3 years at 110 degree C and a compression of 35 percent, a longer life time is most probable but cannot be foreseen until results from continued testing have been collected. It was demonstrated that the relaxation rate is lowered in water with low oxygen contents. (author)

  10. Dose calculations for the concrete water tunnels at 190-C Area, Hanford Site

    International Nuclear Information System (INIS)

    Kamboj, S.; Yu, C.

    1997-01-01

    The RESRAD-BUILD code was used to calculate the radiological dose from the contaminated concrete water tunnels at the 190-C Area at the Hanford Site. Two exposure scenarios, recreationist and maintenance worker, were considered. A residential scenario was not considered because the material was assumed to be left intact (i.e., the concrete would not be rubbleized because the location would not be suitable for construction of a house). The recreationist was assumed to use the tunnel for 8 hours per day for 1 week as an overnight shelter. The maintenance worker was assumed to spend 20 hours per year working in the tunnel. Six exposure pathways were considered in calculating the dose. Three external exposure pathways involved penetrating radiation emitted directly from the contaminated tunnel floor, emitted from radioactive particulates deposited on the tunnel floor, and resulting from submersion in airborne radioactive particulates. Three internal exposure pathways involved inhalation of airborne radioactive particulates; inadvertent direct ingestion of removable, contaminated material on the tunnel floor; and inadvertent indirect ingestion of airborne particulates deposited on the tunnel floor. The gradual removal of surface contamination over time and the ingrowth of decay products were considered in calculating the dose at different times. The maximum doses were estimated to be 1.5 mrem/yr for the recreationist and 0.34 mrem/yr for the maintenance worker

  11. Retempering of Concrete made by using Manufactured Sand

    Science.gov (United States)

    Pethkar, A. R.; Deshmukh, G.

    2014-06-01

    Retempering is defined as, " Addition of water and remixing of concrete or mortar which has lost enough workability to become unplaceable". Retempering inevitably results in some loss of strength compared with the original concrete [1]. Adding water to a plastic mix to increase slump is an extremely common practice, even though it is not recommended because it increases the porosity of concrete. Concrete often arrives on site more than half an hour after initial mixing. Placement operations can take anywhere from 10 to 60 min, depending on the field conditions and the size of the load. When the slump decreases to an unacceptable level during the operations, water is added to the mix [1]. In this work, an attempt is made to study the strength characteristics of retempered concrete made by using manufactured sand. Usually the retempering process is there with normal and ready mixed concrete; hence an attempt is made to check the compressive and flexural strength of normal retempered concrete with an addition of retarder 0.2, 0.4 and 0.6 % at retempering time from 15 to 90 min. There is scarcity of natural sand due to various factors, which is replaced by the manufactured sand. The concept of manufactured sand is nothing but breaking stone into smaller and smaller particles in such way that the gradation of particle will match with zone-II of I.S.

  12. A Study on the Reuse of Plastic Concrete Using Extended Set-Retarding Admixtures

    Science.gov (United States)

    Lobo, Colin; Guthrie, William F.; Kacker, Raghu

    1995-01-01

    The disposal of ready mixed concrete truck wash water and returned plastic concrete is a growing concern for the ready mixed concrete industry. Recently, extended set-retarding admixtures, or stabilizers, which slow or stop the hydration of portland cement have been introduced to the market. Treating truck wash-water or returned plastic concrete with stabilizing admixtures delays its setting and hardening, thereby facilitating the incorporation of these typically wasted materials in subsequent concrete batches. In a statistically designed experiment, the properties of blended concrete containing stabilized plastic concrete were evaluated. The variables in the study included (1) concrete age when stabilized, (2) stabilizer dosage, (3) holding period of the treated (stabilized) concrete prior to blending with fresh ingredients, and (4) amount of treated concrete in the blended batch. The setting time, strength, and drying shrinkage of the blended concretes were evaluated. For the conditions tested, batching 5 % treated concrete with fresh material did not have a significant effect on the setting time, strength, or drying shrinkage of the resulting blended concrete. Batching 50 % treated concrete with fresh materials had a significant effect on the setting characteristics of the blended cocnrete, which in turn affected the water demand to maintain slump. The data suggests that for a known set of conditions, the stabilizer dosage can be optimized within a relatively narrow range to produce desired setting characteristics. The strength and drying shrinkage of the blended concretes were essentially a function of the water content at different sampling ages and the relationship followed the general trend of control concrete. PMID:29151762

  13. A Study on the Reuse of Plastic Concrete Using Extended Set-Retarding Admixtures.

    Science.gov (United States)

    Lobo, Colin; Guthrie, William F; Kacker, Raghu

    1995-01-01

    The disposal of ready mixed concrete truck wash water and returned plastic concrete is a growing concern for the ready mixed concrete industry. Recently, extended set-retarding admixtures, or stabilizers, which slow or stop the hydration of portland cement have been introduced to the market. Treating truck wash-water or returned plastic concrete with stabilizing admixtures delays its setting and hardening, thereby facilitating the incorporation of these typically wasted materials in subsequent concrete batches. In a statistically designed experiment, the properties of blended concrete containing stabilized plastic concrete were evaluated. The variables in the study included (1) concrete age when stabilized, (2) stabilizer dosage, (3) holding period of the treated (stabilized) concrete prior to blending with fresh ingredients, and (4) amount of treated concrete in the blended batch. The setting time, strength, and drying shrinkage of the blended concretes were evaluated. For the conditions tested, batching 5 % treated concrete with fresh material did not have a significant effect on the setting time, strength, or drying shrinkage of the resulting blended concrete. Batching 50 % treated concrete with fresh materials had a significant effect on the setting characteristics of the blended cocnrete, which in turn affected the water demand to maintain slump. The data suggests that for a known set of conditions, the stabilizer dosage can be optimized within a relatively narrow range to produce desired setting characteristics. The strength and drying shrinkage of the blended concretes were essentially a function of the water content at different sampling ages and the relationship followed the general trend of control concrete.

  14. Improved technology for spun-cast concrete poles

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, W H; Ghali, A

    1984-07-01

    Different types of concrete were investigated with the goal of developing concrete suitable for the production of spun-cast concrete poles. A total of 65 different concrete mixes were investigated, with the suitability criteria defined as: compactability, no segregation of the mix components during the spinning operation, no shrinkage cracking, high strength, and durability. High strength normal weight concretes and semi-lightweight concretes, both with and without fly ash and/or silica fume and with different types of admixtures were used to produce spun-cast concrete pole segments. Of the 35 lightweight concretes only 3 were considered successful, as in all other specimens the inner layer of coarse aggregate was not well embedded in the mortar, and many mixes could not be compacted properly because they were too stiff, too wet, or started to set before spinning commenced. The three successful specimens contained fly ash and one contained silica fume, and had low water/cement ratios (0.26 to 0.29). Of the 23 normal weight concretes tested, only 5 were considered suitable, and all these had a sand/coarse aggregate ratio of 0.25 or smaller and a cement content between 350 and 400 kg/m{sup 3}. A theoretical study of the stresses in the end zones of pretensioned poles is presented. 10 refs., 53 figs., 14 tabs.

  15. Experimental Study of Reinforced Light Weight Concrete Beams

    Directory of Open Access Journals (Sweden)

    Hassanien Mohammed Thiyab

    2016-12-01

    Full Text Available This study provides a new technique for a lightweight concrete on one side and contribute to the application of sustainability principle by another side. The lightweight concrete was produced by replacing the coarse aggregate in the concrete mix by crushed bricks after conducting the sieve analysis process. To apply this technique to reinforced concrete beams, seven specimens having dimensions (1200 mm length × 200mm height × 100 mm width for each were poured. The first of these beams had made from ordinary concrete, and the rest lightweight different mix design as well as the casting of three cubes and a three-cylinder with each beam. After curing the specimens with water to the age 28 days, they were examined in the laboratory. Using different design mixes of concrete and with the help of super stabilizer material , good compressive strength of concrete was obtained so it become more effective lightweight in structure. By comparing between the results of the light and normal weight concrete beams, it is found reducing in the weight of concrete by about 23% due to using this technique ,the ultimate strength increased to about 32.1% and the deflection decreased about 46.7% .

  16. Remote sensing in the mixing zone. [water pollution in Wisconsin

    Science.gov (United States)

    Villemonte, J. R.; Hoopes, J. A.; Wu, D. S.; Lillesand, T. M.

    1973-01-01

    Characteristics of dispersion and diffusion as the mechanisms by which pollutants are transported in natural river courses were studied with the view of providing additional data for the establishment of water quality guidelines and effluent outfall design protocols. Work has been divided into four basic categories which are directed at the basic goal of developing relationships which will permit the estimation of the nature and extent of the mixing zone as a function of those variables which characterize the outfall structure, the effluent, and the river, as well as climatological conditions. The four basic categories of effort are: (1) the development of mathematical models; (2) laboratory studies of physical models; (3) field surveys involving ground and aerial sensing; and (4) correlation between aerial photographic imagery and mixing zone characteristics.

  17. Palm Oil Fuel Ash (POFA and Eggshell Powder (ESP as Partial Replacement for Cement in Concrete

    Directory of Open Access Journals (Sweden)

    Mohamad Mazizah Ezdiani

    2018-01-01

    Full Text Available This study is an attempt to partially replace Ordinary Portland cement (OPC in concrete with palm oil fuel ash (POFA and eggshell powder (ESP. The mix proportions of POFA and ESP were varied at 10% of cement replacement and compared with OPC concrete as control specimen. The fineness of POFA is characterized by passing through 300 μm sieve and ESP by passing through 75 μm sieve. Compressive strength testing was conducted on concrete specimens to determine the optimum mix proportion of POFA and ESP. Generally the compressive strength of OPC concrete is higher compared to POFA-ESP concrete. Based on the results of POFA-ESP concrete overall, it shows that the optimum mix proportion of concrete is 6%POFA:4% ESP achieved compressive strength of 38.60 N/mm2 at 28 days. The compressive strength of OPC concrete for the same period was 42.37 N/mm2. Higher water demand in concrete is needed due to low fineness of POFA that contributing to low compressive strength of POFA-ESP concrete. However, the compressive strength and workability of the POFA-ESP concrete were within the ranges typically encountered in regular concrete mixtures indicating the viability of this replacement procedure for structural and non-structural applications.

  18. Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) as Partial Replacement for Cement in Concrete

    Science.gov (United States)

    Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Nur Nadhira A., R.

    2018-03-01

    This study is an attempt to partially replace Ordinary Portland cement (OPC) in concrete with palm oil fuel ash (POFA) and eggshell powder (ESP). The mix proportions of POFA and ESP were varied at 10% of cement replacement and compared with OPC concrete as control specimen. The fineness of POFA is characterized by passing through 300 μm sieve and ESP by passing through 75 μm sieve. Compressive strength testing was conducted on concrete specimens to determine the optimum mix proportion of POFA and ESP. Generally the compressive strength of OPC concrete is higher compared to POFA-ESP concrete. Based on the results of POFA-ESP concrete overall, it shows that the optimum mix proportion of concrete is 6%POFA:4% ESP achieved compressive strength of 38.60 N/mm2 at 28 days. The compressive strength of OPC concrete for the same period was 42.37 N/mm2. Higher water demand in concrete is needed due to low fineness of POFA that contributing to low compressive strength of POFA-ESP concrete. However, the compressive strength and workability of the POFA-ESP concrete were within the ranges typically encountered in regular concrete mixtures indicating the viability of this replacement procedure for structural and non-structural applications.

  19. The Importance of Superplastizer Dosage in the Mix Design of Lightweight Aggregate Concrete Reinforced With Plypropylene Fiber

    Directory of Open Access Journals (Sweden)

    Shafigh Payam

    2016-01-01

    Full Text Available This paper reports the results of a study conducted to investigate the effect of superplasticizer (SP dosage on the slump, density, compressive strength and splitting tensile strength under different curing conditions of a lightweight aggregate concrete reinforced with polypropylene (PP fiber. The lightweight aggregate used in this study was oil palm shell, which is an agricultural solid waste, originating from the palm oil industry. The results indicated that an increase in superplasticizer increased the workability, however, all the mechanical properties declined significantly. The reduction in the 28-day compressive and splitting tensile strengths was about 14. This study showed that although additional SP can improve the workability of the concrete, it may have a negative effect on the other properties of concrete. Therefore, the SP dosage in concrete mixtures containing PP fiber should be limited to a certain amount.

  20. Measured and Predicted Variations in Fast Neutron Spectrum in Massive Shields of Water and Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, E; Sandlin, R; Fraeki, R

    1965-09-15

    The absolute magnitude, and the variations in form, of the fast neutron spectrum during deep penetration (0.8 - 1.1 metre) in massive shields of water, ordinary and magnetite concrete have been studied by using threshold detectors (In (n, h'), S(n,p), Al(n, {alpha})). The results have been compared with predictions by two rigorous (NIOBE, Moments method) and two non-rigorous (multigroup removal-diffusion) shielding codes (NRN, RASH D). The absolute results predicted were in general within 50% of the measured ones, i. e. showed as good or better accuracy than thermal and epithermal flux predictions in the same small-reactor configurations. No difference in accuracy was found between the rigorous and non-rigorous methods. The changes in the relative form of the spectrum (indicated by variations in the (Al/S) and (In/S) reaction rate ratios and amounting to factors up to 3 - 4 during a one metre penetration in water) were rather accurately (within 10 - 30%) predicted by all of the methods. The photonuclear excitation of the 335 keV level used for detecting the In(n, n') reaction was found to distort completely the In results in water at penetrations > 50 cm.

  1. Production and construction technology of C100 high strength concrete filled steel tube

    Science.gov (United States)

    Wu, Yanli; Sun, Jinlin; Yin, Suhua; Liu, Yu

    2017-10-01

    In this paper, the effect of the amount of cement, water cement ratio and sand ratio on compressive strength of C100 concrete was studied. The optimum mix ratio was applied to the concrete filled steel tube for the construction of Shenyang Huangchao Wanxin mansion. The results show that the increase of amount of cement, water cement ratio can improve the compressive strength of C100 concrete but increased first and then decreased with the increase of sand ratio. The compressive strength of C100 concrete can reach 110MPa with the amount of cement 600kg/m3, sand ratio 40% and water cement ratio 0.25.

  2. COMPARATIVE STUDY OF GLASS FIBRE CONCRETE AND NORMAL CONCRETE

    OpenAIRE

    Mr.Yogesh S.Lanjewar*

    2018-01-01

    Concrete is basically the most important material concerning with the construction and infrastructural procedures, for which it should be of good strength and durability. Many researches are being conducted to make concrete more sustainable and of more strength and durability. Therefore keeping this in mind i have chosen to do the comparative study regarding the strength of normal concrete with the glass fibre added concrete using mix design procedure as per IS 10262-2009 for concrete. As w...

  3. Effect of Superabsorbent Polymer on the Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Juntao Dang

    2017-12-01

    Full Text Available Incorporating superabsorbent polymer (SAP, which has the abilities of absorption and desorption in concrete can achieve the effect of internal curing. The influences of the volume, particle size and ways of entrained water of SAP on the workability, compressive strength, shrinkage, carbonation resistance and chloride penetration resistance of concrete were analyzed through the macroscopic and microscopic test. The results show that pre-absorbed SAP can increase the slump of the mixture, but SAP without water absorption and pre-absorbed SAP with the deduction of internal curing water from mixing water can reduce the slump. The improvement effects of SAP on compressive strength of concrete increase gradually with the increase of age. Especially from 28 days, the compressive strength of concrete increases obviously. At later age, the compressive strengths of SAP concrete under natural curing environment exceed the strength of reference concrete under natural curing environment and nearly reach the strengths of reference concrete under standard curing environment. SAP effectively reduces the shrinkage of concrete, improves the concrete’s abilities of carbonation resistance and chloride penetration resistance. The microscopic test results show that SAP can effectively improve the micro structure and make the pore structure refined. When SAP is added into concrete, the gel pores and small capillary pores are increased, the size of big capillary pores and air pores are reduced.

  4. Infiltration properties of covering soil into the void of buried concrete waste due to fluctuation of ground water level and its prevention

    International Nuclear Information System (INIS)

    Takatsu, Tadashi; Tadano, Hideki; Abe, Satoshi; Imai, Jun; Yanagisawa, Eiji; Mitachi, Toshiyuki

    1999-01-01

    Low level radioactive concrete waste will be produced in future by breaking up the nuclear facilities, and the waste will be disposed in shallow depth of ground. In order to prepare for those situation, it is needed to clarify the infiltration properties of the covering soil into the void of buried concrete waste due to the fluctuation of ground water level and to develop the prevention methods against the infiltration of the covering soil. In this study, full-scale concrete structure specimens were broken up, and were compacted in large scale testing boxes and a series tests changing water level up and down in the concrete waste and covering soil were performed. From the test results, it was found that the appropriate filter installed between the covering soil and the concrete waste, enable us to prevent the infiltration of covering soil into the void of concrete waste. (author)

  5. Performance of Kaolin Clay on the Concrete Pavement

    Science.gov (United States)

    Abdullah, M. E.; Jaya, R. P.; Shahafuddin, M. N. A.; Yaacob, H.; Ibrahim, M. H. Wan; Nazri, F. M.; Ramli, N. I.; Mohammed, A. A.

    2018-05-01

    This paper investigates the performance of concrete pavement containing kaolin clay with their engineering properties and to determine the optimum kaolin clay content. The concrete used throughout the study was designed as grade 30 MPa strength with constant water to cement ratio of 0.49. The compressive strength, flexural strength and water absorption test was conducted in this research. The concrete mix designed with kaolin clay as cement replacement comprises at 0%, 5%, 10% and 15% by the total weight of cement. The results indicate that the strength of pavement concrete decreases as the percentage of kaolin clay increases. It also shows that the water absorption increases with the percentage of cement replacement. However, 5% kaolin clay is found to be the optimum level to replace cement in a pavement concrete.

  6. Autogenous healing and reinforcement corrosion of water-penetrated separation cracks in reinforced concrete

    International Nuclear Information System (INIS)

    Ramm, W.; Biscoping, M.

    1998-01-01

    Depending on the crack width, the thickness of the structure, the water pressure, and the degree of acid of the water, long-term investigations have been performed over a period of 2 years with respect to the autogenous healing and reinforcement corrosion of water-penetrated separation cracks in reinforced concrete by the University of Kaiserslautern, supported by the Deutsche Forschungsgemeinschaft (DFG). For the waters penetrating the cracks deionised water (neutral, pH=7.0), and boric acid treated deionised water with a pH-value of 6.1 and 5.2 (weakly acid waters) were used. A complete autogenous healing could not be observed. The water penetrating the cracks could hardly be measured with a pH-value of 7.0 at the end of the test. While naturally at the beginning of the test, no influence of the water-chemical degree of the acids could be determined, the existing flow-through quantities towards the end of the test period depended clearly on the crack width and the pH-value. With an increasing crack width and an increasing acid-degree larger flow-through quantities were measured. Depending on the pH-value and the crack width it was determined whether and to which extent corrosion developed at the reinforcing steel bars crossing the cracks. With a crack width of 0.1 mm, corrosion was not to be observed in any case. For the test specimens with a crack width of 0.2 mm a start of the corrosion was found depending on the pH-value. With an increasing width of the crack, an increasing corrosion development is to be expected for test specimens penetrated by acid water. For a crack width of 0.4 mm and a pH-value of 5.2, the highest corrosion development was to be observed, however, there were weakenings of the cross section not worth being mentioned even after a 2-year test period. (orig.)

  7. Analisis Kuat Tekan Beton Dengan Bahan Tambah Reduced Water Dan Accelerated Admixture

    OpenAIRE

    Rahmat, Rahmat; Hendriyani, Irna; Anwar, Moh. Syaiful

    2016-01-01

    Concrete consist of: cement mortar, coarse aggregate, fine aggregate, water, and addictive materials. The main ingredient in manufacturing of concrete: rock material that called as aggregates. Aggregate has an important role on the quality of the concrete. Various types and trademarks for admixture of concrete that can be used as addictive of the concrete mix with specific purpose. The study aims to determine the effect of the added material of Reduced Water and Accelerated Admixture (Bestmit...

  8. Geochemical modelling of the evolution of a granite-concrete-water system around a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Fritz, B.; Made, B.; Tardy, Y.

    1988-04-01

    The interactions between a granitic rock and concrete due to the natural solutions circulating around a repository for spent nuclear fuel has been simulated considering the dissolution of Ca(OH) 2 as the major source of alkalinity due to the concrete. This study follows a previous one considering the same interaction without concrete at 25, 60 and 100 deg C. The temperature range has been extended to 150 deg C. The results of the modelling are considered as following: - evolution of the water chemistry due to detected pssible chemical reactions. - minerals produced and dissolved. The calculations give mass transfers and volumic consequences (opening or closing tendencies). The conclusions of this yearly report are mainly the following: (1) the extent of the temperature range for the storage (up to 150 deg C) does not change the tendencies previously detected in the same conditions without any particular alkaline effect due to concrete dissolution, the reactions occurring tend to decrease the porosity of the rock by a sealing effect due to calcite precipitation and clays formation. (2) The effect of an alkaline concrete dissolution is clearly important, pH may reach very high values in closed system, and the volumic consequence is found in favour of an opening of the porosity, at the stage of saturation of the portlandite. This is probably an important point considering the security of natural barriers around such a repository. (authors)

  9. Dimethylamine biodegradation by mixed culture enriched from drinking water biofilter.

    Science.gov (United States)

    Liao, Xiaobin; Chen, Chao; Zhang, Jingxu; Dai, Yu; Zhang, Xiaojian; Xie, Shuguang

    2015-01-01

    Dimethylamine (DMA) is one of the important precursors of drinking water disinfection by-product N-nitrosodimethylamine (NDMA). Reduction of DMA to minimize the formation of carcinogenic NDMA in drinking water is of practical importance. Biodegradation plays a major role in elimination of DMA pollution in the environment, yet information on DMA removal by drinking water biofilter is still lacking. In this study, microcosms with different treatments were constructed to investigate the potential of DMA removal by a mixed culture enriched from a drinking water biofilter and the effects of carbon and nitrogen sources. DMA could be quickly mineralized by the enrichment culture. Amendment of a carbon source, instead of a nitrogen source, had a profound impact on DMA removal. A shift in bacterial community structure was observed with DMA biodegradation, affected by carbon and nitrogen sources. Proteobacteria was the predominant phylum group in DMA-degrading microcosms. Microorganisms from a variety of bacterial genera might be responsible for the rapid DMA mineralization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC

    International Nuclear Information System (INIS)

    Cwirzen, A.; Penttala, V.; Vornanen, C.

    2008-01-01

    The basic mechanical properties, frost durability and the bond strength with normal strength concretes of the ultra high strength (UHS) mortars and concretes were studied. The produced mixes had plastic or fluid-like consistency. The 28-day compressive strength varied between 170 and 202 MPa for the heat-treated specimens and between 130 and 150 MPa for the non-heat-treated specimens. The shrinkage values were two times higher for the UHS mortars in comparison with the UHS concretes. After the initial shrinkage, swelling was noticed in the UHS mortars. The lowest creep values were measured for the non-heat-treated UHS concretes. The frost-deicing salts durability of the UHS mortars and concretes appeared to be very good even despite the increased water uptake of the UHS concretes. The study of the hybrid concrete beams indicated the formation of low strength transition zone between the UHS mortar and normal strength concrete

  11. The Effect of a Plasticizing Admixture on the Properties of Hardened Concrete

    Directory of Open Access Journals (Sweden)

    Anastasija Abasova

    2012-11-01

    Full Text Available Concrete is material obtained mixing matrix material, coarse and small aggregates and water along with additives acquiring necessary properties of hardening. The quality and properties of raw material used for manufacturing concrete, V/C ratio and the uniformity of the compaction of the mixture lead to the fundamental properties of concrete. The compressive strength of concrete is one of the most important properties of concrete. The article deals with the impact of plasticizers on the structural properties of concrete choosing an optimal content of additives. Concrete plasticizers increasing the content of additive increase the strength of samples, the density and ultrasonic pulse of velocity and decrease absorption. Test results have revealed that a plasticizing admixture under dosing or overdosing can reduce the properties of concrete.

  12. Water Storage, Mixing and Transit Times During a Multiyear Drought.

    Science.gov (United States)

    Van der Velde, Y.; Visser, A.; Thaw, M.; Safeeq, M.

    2017-12-01

    From 2012 to 2016, a five year intensive drought occurred in the Californian Sierra Nevada. We use this drought period as an opportunity to investigate how catchment water storage, mixing and transit times changes from wet to dry conditions using long term datasets of river discharge, evapotranspiration, water quality, and multiple cosmogenic radioactive isotopes. Characteristic features of the test catchment (4.6 km2 , altitude 1660-2117 m) include a thick (>5m) unsaturated zone in deeply weathered granite mountain soils, snow melt and events of high intensity rainfall, dry summers and numerous wetland meadows along the stream. Our data and model analysis suggest that under drought conditions, river flow predominantly consist of deep groundwater tapped by deeply incised sections of the stream, while the wetlands hold on to their water just below the root system of its shallow rooting vegetation. In contrast, during wet periods, most runoff is generated on the flat riparian wetland meadows, while the regional groundwater system slowly refills itself as water makes its way through the thick unsaturated zones. Antecedent wet or dry years play an crucial role as antecedent wet years cause a substantial regional groundwater flow towards the riparian wetlands, filling up the riparian wetlands and yielding a much stronger discharge response of the wetlands to rainfall events than under antecedent dry years This interaction between the regional groundwater system and the local wetland systems weakens as the drought progresses and regional groundwater flow to the wetlands lessens. Although, due to the wet events in 2016-2017, the catchment fills up rapidly to pre-drought conditions, we show that water transit times and therefore likely the water quality will contain drought signs for several years to come. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS- XXXXXX

  13. How Concrete Is Concrete?

    Science.gov (United States)

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  14. Effects of Medium Temperature and Industrial By-Products on the Key Hardened Properties of High Performance Concrete.

    Science.gov (United States)

    Safiuddin, Md; Raman, Sudharshan N; Zain, Muhammad Fauzi Mohd

    2015-12-10

    The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete.

  15. Effects of Medium Temperature and Industrial By-Products on the Key Hardened Properties of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Md. Safiuddin

    2015-12-01

    Full Text Available The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete.

  16. Effects of Medium Temperature and Industrial By-Products on the Key Hardened Properties of High Performance Concrete

    Science.gov (United States)

    Safiuddin, Md.; Raman, Sudharshan N.; Zain, Muhammad Fauzi Mohd.

    2015-01-01

    The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete. PMID:28793732

  17. Engineering Behavior of Concrete with Recycled Aggregate

    Directory of Open Access Journals (Sweden)

    Ayob Afizah

    2017-01-01

    Full Text Available Concrete is extensively used as construction materials in Malaysia. Concrete contributes suitable feature for construction industry for instance durability, adequate compressive strength, fire resistance, availability and is economic as compared to other construction materials. Depletion of natural resources and disposal of construction and demolition waste remarkably claim environmental threat. In this paper, the engineering behavior, durability, and concrete microstructure of recycled concrete aggregates (RCA on short-term concrete properties were investigated. The studied concrete at design mix proportion of 1:0.55:2.14:2.61 (weight of cement :coarse aggregates :sand :water used to obtain medium-high compressive strength with 20%, 50%, and 100% of RCA. Results show that for the same water/cement ratio, RCA replacement up to 50% still achieved the targeted compressive strength of 25 MPa at 28 curing days. Addition, at similar RCA replacement, the highest carbonation depth value was found at 1.03 mm which could be attributed to the pozzolanic reaction, thus led to lower carbonation resistance. Scanning electron microscopy microstructure shows that the RCA surface was porous and covered with loose particles. Moreover, the interfacial transition zone was composed of numerous small pores, micro cracks, and fissures that surround the mortar matrix. On the basis of the obtained results, recommendable mineral admixtures of RCA are necessary to enhance the quality of concrete construction.

  18. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Saito, Tetsuo

    1983-01-01

    The repair works of the shielding for the nuclear ship ''Mutsu'' were completed in August, 1982. For the primary shielding, serpentine concrete was adopted as it contains a large quantity of water required for neutron shielding, and in the secondary shielding at the upper part of the reactor containment vessel, the original shielding was abolished, and the heavy concrete (high water content, high density concrete) which is effective for neutron and gamma-ray shielding was newly adopted. In this report, the design and construction using these shielding concrete are outlined. In September, 1974, Mutsu caused radiation leak during the test, and the cause was found to be the fast neutrons streaming through a gap between the reactor pressure vessel and the primary shielding. The repair works were carried out in the Sasebo Shipyard. The outline of the repair works of the shielding is described. The design condition for the shielding, the design standard for the radiation dose outside and inside the ship, the method of shielding analysis and the performance required for shielding concrete are reported. The selection of materials, the method of construction and mixing ratio, the evaluation of the soundness and properties of concrete, and the works of placing the shielding concrete are outlined. (Kako, I.)

  19. A Study on the Evaluation of Field Application of High-Fluidity Concrete Containing High Volume Fly Ash

    Directory of Open Access Journals (Sweden)

    Yun-Wang Choi

    2015-01-01

    Full Text Available In the recent concrete industry, high-fluidity concrete is being widely used for the pouring of dense reinforced concrete. Normally, in the case of high-fluidity concrete, it includes high binder contents, so it is necessary to replace part of the cement through admixtures such as fly ash to procure economic feasibility and durability. This study shows the mechanical properties and field applicability of high-fluidity concrete using mass of fly ash as alternative materials of cement. The high-fluidity concrete mixed with 50% fly ash was measured to manufacture concrete that applies low water/binder ratio to measure the mechanical characteristics as compressive strength and elastic modulus. Also, in order to evaluate the field applicability, high-fluidity concrete containing high volume fly ash was evaluated for fluidity, compressive strength, heat of hydration, and drying shrinkage of concrete.

  20. Reusing recycled aggregates in structural concrete

    Science.gov (United States)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  1. Variability in properties of Salado Mass Concrete

    International Nuclear Information System (INIS)

    Wakeley, L.D.; Harrington, P.T.; Hansen, F.D.

    1995-08-01

    Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft 3 to 5.0 yd 3 , with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties

  2. Concrete durability

    OpenAIRE

    Gaspar Tébar, Demetrio

    1991-01-01

    The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of rese...

  3. Light Water Reactor Sustainability Program: survey of models for concrete degradation

    International Nuclear Information System (INIS)

    2014-01-01

    Concrete has been used in the construction of nuclear facilities because of two primary properties: its structural strength and its ability to shield radiation. Concrete structures have been known to last for hundreds of years, but they are also known to deteriorate in very short periods of time under adverse conditions. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. The goal of this report is to review and document the main aging mechanisms of concern for concrete structures in nuclear power plants (NPPs) and the models used in simulations of concrete aging and structural response of degraded concrete structures. This is in preparation for future work to develop and apply models for aging processes and response of aged NPP concrete structures in the Grizzly code. To that end, this report also provides recommendations for developing more robust predictive models for aging effects of performance of concrete.

  4. Light Water Reactor Sustainability Program: Survey of Models for Concrete Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation; Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States). Energy and Environment Science and Technology

    2014-08-01

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have predictive tools to address concerns related to aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to review and document the main aging mechanisms of concern for concrete structures in nuclear power plants (NPPs) and the models used in simulations of concrete aging and structural response of degraded concrete structures. This is in preparation for future work to develop and apply models for aging processes and response of aged NPP concrete structures in the Grizzly code. To that end, this report also provides recommendations for developing more robust predictive models for aging effects of performance of concrete.

  5. TECHNOLOGY AND EFFICIENCY OF PEAT ASH USAGE IN CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    G. D. Liakhevich

    2015-01-01

    Full Text Available One of the main ways to improve physical and mechanical properties of cement concrete is an introduction of ash obtained due to burning of fossil fuels into concrete mix. The concrete mixes with ash are characterized by high cohesion, less water gain and disintegration. At the same time the concrete has high strength, density, water resistance, resistance to sulfate corrosion. The aim of this paper is to explore the possibility to use peat ash and slag of peat enterprises of the Republic of Belarus in the concrete for improvement of its physical and mechanical properties and characteristics of peat ash, slag, micro-silica, cement, superplasticizing agent. Compositions and technology for preparation of concrete mixes have been developed and concrete samples have been have been fabricated and tested in the paper. It has been shown that the concrete containing ash, slag obtained due to burning of peat in the industrial installations of the Usiazhsky and Lidsky Peat Briquette Plants and also MK-85-grade micro-silica NSPKSAUsF-1-grade superplasticizing agent have concrete tensile strength within 78–134 MPa under axial compression and 53 MPa – for the control composition. This index is 1.5–2.5 times more than for the sample containing no additives.The usage of peat ash, slag together with MK-85-grade micro-silica and NSPKSAUsF-1-grade superplasticizing agent for fabrication of concrete and reinforced bridge and tunnel structures will provide the following advantages: reduction of cross-sectional area of structures while maintaining their bearing capacity due to higher value of tensile strength in case of axial compression; higher density, waterand gas tightness due to low water cement ratio; high resistance to aggressive environment due to lower content of capillary pores that ensures bridge structure longevity; achievement of environmental and social impacts.

  6. Performance and Compatibility of Phosphonate-Based Superplasticizers for Concrete

    Directory of Open Access Journals (Sweden)

    Luigi Coppola

    2017-07-01

    Full Text Available The paper deals with the effectiveness of an innovative phosphonate-based superplasticizer (PNH for ready mixed concrete. Concrete specimens were manufactured by considering a constant initial workability, equal to 220 mm slump at the end of the mixing procedure. Workability was measured at 0, 30, and 60 min to evaluate the workability retention performances of the innovative superplasticizer. Compressive tests at 1, 7, and 28 days were carried out to evaluate the influence of the phosphonate-based superplasticizer on concrete setting and hardening. The concrete mixes were designed by considering 13 different cements to assess the superplasticizer-cement compatibility. The PNH-based admixture showed a better performance in terms of water reduction and workability retention with respect to napthalenesulphonate based admixtures (NSF; however, a higher dosage of PNH with respect to polycarboxylate ethers (PCEs was needed to get the same initial fluidity.

  7. Production of an economic high-density concrete for shielding megavoltage radiotherapy rooms and nuclear reactors

    International Nuclear Information System (INIS)

    Mortazavi, S. M. J.; Mosleh-Shirazi, M. A.; Maheri, M. R.; Haji-pour, A.; Yousefnia, H.; Zolghadri, S.

    2007-01-01

    In megavoltage radiotherapy rooms, ordinary concrete is usually used due to its low construction costs, although higher density concrete are sometimes used, as well. The use of high-density concrete decreases the required thickness of the concrete barrier; hence, its disadvantage is its high cost. In a nuclear reactor, neutron radiation is the most difficult to shield. A method for production of economic high-density concrete witt, appropriate engineering properties would be very useful. Materials and Methods: Galena (Pb S) mineral was used to produce of a high-density concrete. Galena can be found in many parts of Iran. Two types of concrete mixes were produced. The water-to-concrete (w/c) ratios of the reference and galena concrete mixes were 0.53 and 0.25, respectively. To measure the gamma radiation attenuation of Galena concrete samples, they were exposed to a narrow beam of gamma rays emitted from a cobalt-60 therapy unit. Results: The Galena mineral used in this study had a density of 7400 kg/m 3 . The concrete samples had a density of 4800 kg/m 3 . The measured half value layer thickness of the Galena concrete samples for cobalt 60 gamma rays was much less than that of ordinary concrete (2.6 cm compared to 6.0 cm). Furthermore, the galena concrete samples had significantly higher compressive strength (500 kg/cm 2 compared to 300 kg/cm 2 ). Conclusion: The Galena concrete samples made in our laboratories had showed good shielding/engineering properties in comparison with all samples made by using high-density materials other than depleted uranium. Based on the preliminary results, Galena concrete is maybe a suitable option where high-density concrete is required in megavoltage radiotherapy rooms as well as nuclear reactors

  8. Mixed garnet laser crystals for water vapour DIAL transmitter

    Science.gov (United States)

    Treichel, Rainer; Czeranowsky, Christoph; Ileri, Bilge; Petermann, Klaus; Huber, Günter

    2017-11-01

    There are more or less well established technologies such as the optical-parametric-oscillator (OPO), the Raman-laser, and the Ti-Sapphire laser, which are able to emit laser light in the region of the water vapour absorption lines. For WALES the regions of about 935 nm, 942 nm, and 944 nm have been identified as the most suitable wavelength ranges. However, each of these laser designs is highly sophisticated. Current baseline for WALES is the Ti-Sapphire laser. A fourth possibility to achieve these wavelength ranges is to shift the groundstate laser lines (938 nm and 946 nm) of the Nd:YAG laser by replacing Aluminium and Yttrium by other rare earth elements. Changes of the host lattice characteristics lead to a shift of the upper and lower laser levels. These modified crystals are summarized under the name of "Mixed Garnet" crystals. Only the Mixed Garnet lasers can be pumped directly with diode laser and use a direct approach to generate the required laser pulses without frequency conversion. Therefore no additional non-linear crystals are needed and a higher electric to optical efficiency is expected as well as single frequency operation using spectral tuning elements like etalons. Such lasers have the great potential to fulfil the requirements and to become the preferred transmitter concept for WALES as well as for follow up missions. Within a ESA study several crystal compositions have been grown, spectrally characterised and analysed. Absorbed space radiation energy in the crystal lattice causes colour centres, which can reabsorb the pump and laser wavelength and consequently reduce the laser gain considerably. Co-dopants such as Chromium and Cerium are able to suppress the colour centres and are candidates for effective radiation hardening. The results of the crystal tuning, the co-doping with different radiation hardeners and the radiation tests will be presented. There applicability for a space based water vapour DIAL transmitter will be discussed.

  9. Self-curing concrete with different self-curing agents

    Science.gov (United States)

    Gopala krishna sastry, K. V. S.; manoj kumar, Putturu

    2018-03-01

    Concrete is recognised as a versatile construction material globally. Properties of concrete depend upon, to a greater extent, the hydration of cement and microstructure of hydrated cement. Congenial atmosphere would aid the hydration of cement and hence curing of concrete becomes essential, till a major portion of the hydration process is completed. But in areas of water inadequacy and concreting works at considerable heights, curing is problematic. Self-Curing or Internal Curing technique overcomes these problems. It supplies redundant moisture, for more than sufficient hydration of cement and diminish self-desiccation. Self-Curing agents substantially help in the conservation of water in concrete, by bringing down the evaporation during the hydration of Concrete. The present study focuses on the impact of self-curing agents such as Poly Ethylene Glycol (PEG), Poly Vinyl Alcohol (PVA) and Super Absorbent Polymer (SAP) on the concrete mix of M25 grade (reference mix). The effect of these agents on strength properties of Concrete such as compressive strength, split tensile strength and flexural strength was observed on a comparative basis which revealed that PEG 4000 was the most effective among all the agents.

  10. Characterization of High Density Concrete by Ultrasonic Goniometer

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohamad Pauzi Ismail; Noor Azreen Masenwat; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of ultrasonic goniometer measurements on concrete containing hematite. Local hematite stones were used as aggregates to produce high density concrete for application in X-and gamma shielding. Concrete cube samples (150 mm x 150 mm x 150 mm) containing hematite as coarse aggregates were prepared by changing mix ratio, water to cement ratio (w/ c) and types of fine aggregate. All samples were cured in water for 7 days. After 28 days of casting, the concrete cubes were then cut into small size of about 10 mm x 20 mm x 30 mm so that it can be fitted into goniometer specimen holder. From this measurement, longitudinal, shear and surface Rayleigh waves in the concrete can be determined. The measurement results are explained and discussed. (author)

  11. Nanogranular origin of concrete creep.

    Science.gov (United States)

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  12. A study on the performance of concrete containing recycled aggregates and ceramic as materials replacement

    Science.gov (United States)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Anting, N.; Mazenan, P. N.

    2017-11-01

    Natural fine aggregate materials are commonly used in development and commercial construction in Malaysia. In fact, concrete production was increased as linear with the growing Malaysia economy. However, an issue was production of concrete was to locate adequate sources of natural fine aggregates. There lot of studies have been conducted in order to replace the fine aggregate in which natural fine aggregate replace with the waste material in concrete preparation. Therefore, this study aims to utilize the Recycled Concrete Aggregate (RCA) and ceramic waste which has great potential to replace the natural aggregate in concrete mix with different type of method, admixture, and parameters. This research were focused on compressive strength and water absorption test to determine the optimum mix ratio of concrete mix. The concrete aggregate was chosen due to improvement capillary bonding mechanisms and ceramic presented similar strength compared to the conventional concrete using natural aggregate. Percent of replacement have been used in this study was at 25%, 35% and 45% of the RCA and 5%, 10% and 15% for ceramic, respectively. Furthermore, this research was conduct to find the optimum percentage of aggregate replacement, using water-cement ratio of 0.55 with concrete grade 25/30. The best percentage of replacement was the RCA35% C15% with the compressive strength of 34.72 MPa and the water absorption was satisfied.

  13. Effect of presaturation and seawater on strength and durability of lightweight concrete

    International Nuclear Information System (INIS)

    Haque, M.N.

    2009-01-01

    The internal curing is provided, usually, by the use of some proprietary fine aggregates which provide sufficient water from within to promote the ongoing hydration of cement and hence result in a relatively high performance concrete. Two concretes, one total lightweight concrete (TLWC) and the second sand lightweight concrete (SLWC) of 28 day cube strength of approximately 40 MPa (5800 psi) were designed. A total of six mixes were cast out of these two concretes, 4-TLWC's and 2-SLWC's. The variation in the mixes was due to moisture condition of the aggregates and the use of seawater in mixing and curing of the concretes. The effect of these variations on the cube compressive strength, water permeability, sulphate and chloride content, depth of carbonation and shrinkage of these six concretes was studied. The presaturation of the lightweight aggregates (LWA's used do not seem to have improved the compressive strength, and water permeability of these concretes. The drying shrinkage strains of the concrete using pre saturated aggregates decreased considerably. The application of seawater in making and curing these LWC's increased the compressive strength by about 15%. (author)

  14. The establishment of a method for evaluating the long-term water-tightness durability of underground concrete structure taking into account some deteriorations

    International Nuclear Information System (INIS)

    Hironaga, Michihiko; Kawanishi, Motoi

    1996-01-01

    To establish a method of evaluating the long-term water-tightness durability of underground concrete structures, the authors firstly studied a deterioration evaluation model to express the deterioration condition of concrete structures and constructed, on the basis of this model, a function evaluation model to estimate the lowering of functions due to deterioration, consequently indicating a 'concept for evaluating the deterioration and functions of concrete structures' which will make it possible to perform the functional evaluation of concrete structures. Based on this concept, the authors then discusses a technique for evaluating the long-term water-tightness durability of underground concrete structures, specifically indicating the technique by means of illustrations. (author)

  15. Reduced labor and condensed schedules with cellular concrete solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lavis, D. [CEMATRIX Inc., Calgary, AB (Canada)

    2008-07-01

    This paper discussed the use of cellular concrete materials in oil sands tank base foundation systems, shallow buried utility insulation systems, roadways, slabs, and buried modules. The concrete is formed from Portland cement, water, specialized pre-formed foaming agents, and air mixed in controlled proportions. Fly ash and polypropylene or glass fibers can also be used as additions. Cellular concrete can often be used to speed up construction and minimize labour requirements. Cellular concrete can be cast-in-place, and has soil-stabilizing and self-compacting features. The concrete can be produced and placed on-site at rates exceeding 120 cubic meters per hour. Cellular concrete can be pumped into place over long distances through flexible hoses. A case study comparing the cellular concrete to traditional plastic foam insulation was used to demonstrate the equivalency and adequacy of insulation, structural properties and installation costs. The study showed that although the cellular concrete had a high installation cost, greater compressive strength was gained. The concrete was self-levelling and did not require compaction or vibration. The use of the cellular concrete resulted in an accelerated construction schedule. 6 refs., 2 tabs., 6 figs.

  16. Relationship between the Compressive and Tensile Strength of Recycled Concrete

    International Nuclear Information System (INIS)

    El Dalati, R.; Haddad, S.; Matar, P.; Chehade, F.H

    2011-01-01

    Concrete recycling consists of crushing the concrete provided by demolishing the old constructions, and of using the resulted small pieces as aggregates in the new concrete compositions. The resulted aggregates are called recycled aggregates and the new mix of concrete containing a percentage of recycled aggregates is called recycled concrete. Our previous researches have indicated the optimal percentages of recycled aggregates to be used for different cases of recycled concrete related to the original aggregates nature. All results have shown that the concrete compressive strength is significantly reduced when using recycled aggregates. In order to obtain realistic values of compressive strength, some tests have been carried out by adding water-reducer plasticizer and a specified additional quantity of cement. The results have shown that for a limited range of plasticizer percentage, and a fixed value of additional cement, the compressive strength has reached reasonable value. This paper treats of the effect of using recycled aggregates on the tensile strength of concrete, where concrete results from the special composition defined by our previous work. The aim is to determine the relationship between the compressive and tensile strength of recycled concrete. (author)

  17. Concrete laying laboratory

    International Nuclear Information System (INIS)

    Bastlova, K.

    1986-01-01

    The task of the concrete laying laboratory established within a special department for quality control and assurance at the Dukovany nuclear power plant, is to check the composition of concrete mixes produced by the central concrete production plant on the site, and the shipment, laying and processing of concrete. The composition is given of special barite and serpentinite concretes designed for biological shields. The system of checks and of filing the results is briefly described. Esperience is summed up from the operation of the concrete laying laboratory, and conclusions are formulated which should be observed on similar large construction sites. They include the precise definition of the designer's requirements for the quality of concrete, the surface finish of concrete surfaces, the method of concreting specific structures around bushings, increased density reinforcements and various technological elements, and requirements for shipment to poorly accessible or remote places. As for the equipment of the laboratory, it should be completed with an instrument for the analysis of fresh concrete mixes, a large capacity drying kiln, etc. (Z.M.)

  18. Pollen, water, and wind: Chaotic mixing in a puddle of water

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig

    2016-01-01

    and nutrient distribution in puddles and small ponds.The flow patterns are generated by wind blowing across the puddle surface. This causes a shear stress at the atmospheric interface, which drives a flow in the liquid below. Chaotic mixing can occur if the wind direction changes over time. A fluid patch......This paper talks about how pine pollen grains dispersedin an approximately 1 m wide and 1 cm deep water puddle. The pollen has mixed due to wind blowing across the liquid surface, revealing a strikingly complex flow pattern. The flows revealed by nature’s tracer particles may influence circulation...

  19. Study on Concrete Containing Recycled Aggregates Immersed in Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Adnan Suraya Hani

    2017-01-01

    Full Text Available In recent decades, engineers have sought a more sustainable method to dispose of concrete construction and demolition waste. One solution is to crush this waste concrete into a usable gradation for new concrete mixes. This not only reduces the amount of waste entering landfills but also alleviates the burden on existing sources of quality natural concrete aggregates. There are too many kinds of waste but here constructions waste will be the priority target that should be solved. It could be managed by several ways such as recycling and reusing the concrete components, and the best choice of these components is the aggregate, because of the ease process of recycle it. In addition, recycled aggregates and normal aggregates were immersed in epoxy resin and put in concrete mixtures with 0%, 5%, 10% and 20% which affected the concrete mixtures properties. The strength of the concrete for both normal and recycled aggregates has increased after immersed the aggregates in epoxy resin. The percentage of water absorption and the coefficient of water permeability decreased with the increasing of the normal and the recycled aggregates immersed in epoxy resin. Generally the tests which have been conducted to the concrete mixtures have a significant results after using the epoxy resin with both normal and recycled aggregates.

  20. Assessing the Portion of the Crack Length Contributing to Water Sorption in Concrete Using X-ray Absorption

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Couch, Jon; Geiker, Mette Rica

    2009-01-01

    While it is generally known that cracks accelerate fluid movements, there is a need to quantify how cracks influence the controlling transport mechanism(s) for more accurate service life modeling. This paper describes an experimental approach using x-ray absorption measurements to quantify the in......-ray absorption measurements over time. The effect cracks have on sorption is discussed and compared to the behavior of pristine concrete. In addition, the maximum water sorption depth after one hour of exposure is compared to crack lengths determined by the cracked hinge model.......While it is generally known that cracks accelerate fluid movements, there is a need to quantify how cracks influence the controlling transport mechanism(s) for more accurate service life modeling. This paper describes an experimental approach using x-ray absorption measurements to quantify...... the influence of cracks with varying width and length on water sorption in concrete. Concrete wedge splitting specimens, conditioned to 50% relative humidity, were loaded to varying crack openings. Water sorption was monitored for ponded specimens with varying crack widths and lengths by taking multiple x...

  1. Influence of silica fume on mechanical and physical properties of recycled aggregate concrete

    Directory of Open Access Journals (Sweden)

    Özgür Çakır

    2015-08-01

    Full Text Available Several studies related to sustainable concrete construction have encouraged development of composite binders, involving Portland cement, industrial by-products, and concrete mixes with partial replacement of natural aggregate with recycled aggregate. In this paper, the effects of incorporating silica fume (SF in the concrete mix design to improve the quality of recycled aggregates in concrete are presented. Portland cement was replaced with SF at 0%, 5% and 10%. Specimens were manufactured by replacing natural aggregates with recycled aggregates. Two size fractions (4/12 mm and 8/22 mm as recycled aggregates were used and four series of concrete mixtures were produced. In all concrete mixtures, a constant water/binder ratio at 0.50 was used and concrete mixtures with a target initial slump of S4 class (16–21 cm were prepared. Concrete properties were evaluated by means of compressive strength, tensile splitting strength, water absorption and ultrasonic pulse velocity and it was found that, using 10% SF as a cement replacement for recycled aggregate concretes enhanced the mechanical and physical properties of concrete. At all the test ages the tensile splitting strength gain of the natural aggregate concrete mixture (NA with and without SF was higher than that of the recycled concrete mixtures. Continuous and significant improvement in the tensile splitting strength of recycled aggregate concretes incorporating SF was observed. Similar to compressive strength test results, concrete incorporating 10% SF and containing 4/12 mm fraction recycled aggregates showed better performance among recycled aggregate concretes.

  2. Erratum to: Study on Chloride Ion Penetration Resistance of Rubberized Concrete Under Steady State Condition

    Directory of Open Access Journals (Sweden)

    Md Noor Nurazuwa

    2016-01-01

    In this paper, the effect of crumb rubber, CR as fine aggregate in the concrete to enhance concrete durability against chloride ion diffusion was studied. Chloride ion diffusion in rubberized concrete was tested by migration test under steady state condition. Concrete specimen with water-to-cement ratio of 0.50 was prepared to study the CR effectiveness in comparison with lower water-to-cement ratio. In addition, 10% silica fume, SF was added to provide denser concrete and to understand its effectiveness against chloride ion diffusion. Results showed that chloride transport characteristics were improved by the increasing amount of CR in all mixed due to the fact that CR has the ability to repel water. Meanwhile, rubberized concrete with w/c = 0.35 gave better resistance against chloride ion penetration compared to w/c = 0.50. This was much improved with combination of CR and SF.

  3. Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers.

    Science.gov (United States)

    Cartuxo, Francisco; de Brito, Jorge; Evangelista, Luis; Jiménez, José Ramón; Ledesma, Enrique F

    2016-02-08

    This paper evaluates the influence of two superplasticizers (SP) on the durability properties of concrete made with fine recycled concrete aggregate (FRCA). For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All mixes had the same particle size distribution, cement content and amount of superplasticizer. The w/c ratio was calibrated to obtain similar slump. The results showed that the incorporation of FRCA increased the water absorption by immersion, the water absorption by capillary action, the carbonation depth and the chloride migration coefficient, while the use of superplasticizers highly improved these properties. The incorporation of FRCA jeopardized the SP's effectiveness. This research demonstrated that, from a durability point of view, the simultaneous incorporation of FRCA and high-performance SP is a viable sustainable solution for structural concrete production.

  4. Study of local Agregate for Gamma radiation concrete shield; Studi pemakaian Agregat lokal pada pembuatan beton perisai radiasi Gamma

    Energy Technology Data Exchange (ETDEWEB)

    Tochrul-Binowo,; Endro-Kismolo,; Darsono, [Yogyakarta Nuclear Research Centre, National Atomic Energy Agency, Yogyakarta (Indonesia)

    1996-04-15

    Investigation on the composition of gamma radiation concrete shield made of local barite, manganese fine and coarse aggregates from Kulon Progo, Yogyakarta has been done. The purpose of the research was to find out the quality of these local material for an aggregate of gamma radiation concrete shield. The research was done where each mineral was used as coarse aggregate and the fine aggregate from Kulon Progo was used as fine basic aggregate. Firstly a normal concrete was made by mixing cement, fine aggregate, coarse aggregate and water at a weight ratio of cement: fine aggregate: coarse: water 1: 2.304: 3.456: 0.58. The gamma radiation absorption capacity of the concrete tested by using Cs-137 as source standard. The same method was done on barite concrete at the weight ratio of cement: fine aggregate: barite aggregate: water 1: 2.303: 3.456: 0.58 and manganese concrete at the weight ratio of cement: fine aggregate: manganese aggregate: and water 1: 1.896: 2.844: 0.58. The result of the study showed that the gamma radiation absorption capacity of barite aggregate was greater than that of normal concrete and manganese concrete. The coefficient linear attenuation (for 6.0 cm thickness) of each concrete were {mu} barite concrete = 0.23071 cm{sup -1}, {mu} manganese concrete = 0.08401 cm{sup -1} and {mu} normal concrete = 0.1669 cm{sup -1}.

  5. Mixed filling for the successive isotopic exchange in the phase sequence water - water vapors - hydrogen

    International Nuclear Information System (INIS)

    Stefanescu, D.; Peculea, M.; Hirean, I.; Croitoru, C.

    1995-01-01

    The paper deals with the process of the isotopic exchange implied in heavy water production. Details concerning the structural arrangement of the process contact elements inside the exchange columns are presented. A hydrophilic filling, based on phosphorous bronze, and the platinum catalyst structure , resulted from this work, are to be implemented in the column equipment of the heavy water distillation pilot operating in connection with the CANDU type reactors. The performances of the mixed catalyst components were derived from experimental data by means of the three fluids model equations

  6. Does deep ocean mixing drive upwelling or downwelling of abyssal waters?

    Science.gov (United States)

    Ferrari, R. M.; McDougall, T. J.; Mashayek, A.; Nikurashin, M.; Campin, J. M.

    2016-02-01

    It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However the observational evidence that the turbulent fluxes generated by small-scale mixing in the stratified ocean interior are more vigorous close to the ocean bottom than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal water. Using a combination of numerical models and observations, it will be shown that abyssal waters return to the surface along weakly stratified boundary layers, where the small-scale mixing of density decays to zero. The net ocean meridional overturning circulation is thus the small residual of a large sinking of waters, driven by small-scale mixing in the stratified interior, and a comparably large upwelling, driven by the reduced small-scale mixing along the ocean boundaries.

  7. CONCRETE SUPPORT DESIGN FOR MISCELLANEOUS ESF UTILITIES

    International Nuclear Information System (INIS)

    Misiak, T.A.

    1999-01-01

    The purpose and objective of this analysis is to design concrete supports for the miscellaneous utility equipment used at the Exploratory Studies Facility (ESF). Two utility systems are analyzed: (1) the surface collection tanks of the Waste Water System, and (2) the chemical tracer mixing and storage tanks of the Non-Potable Water System. This analysis satisfies design recommended in the Title III Evaluation Reports for the Subsurface Fire Water System and Subsurface Portion of the Non-Potable Water System (CRWMS M andO 1998a) and Waste Water Systems (CRWMS M andO 1998b)

  8. OPTIMIZATION OF PRESERVATIVE FOR PROTECTION OF CONCRETE PAVEMENT OF HIGHWAYS

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2018-01-01

    Full Text Available Disadvantages of road concrete pavement quite well known professionals-standards. They were mainly low elasticity modulus asphaltic concrete, as well as a fairly rapid aging of asphalt concrete core component-bitumen. And, as a consequence, is relatively low durability of the coating, the need for frequent repair. To some extent, cement concrete cover signifi cantly outperform this index of asphalt, convinces experience roads of Germany, the United States and other countries. The correct structure of concrete, overall compliance technology laying concrete, comprehensive quality control production  work, sufficient technical personnel qualifications provide long defect-free work road re-coated. However, violations by manufacture of works or in the process of exploitation, particularly in the harsh conditions of freezing and thawing, saturation-drying, especially under the influence of salts-defrosting, cause defects, reduce its durability. There are two directions of increase of durability of the coating. Firstly, it is the primary protection is the creation of concrete with minimal possible on data components mixture water cement ratio that provides reception of concrete with minimum porosity and consequently with maximum durability. Secondly, the secondary protection, providing increased resistance already ready-mixed concrete cover external aggressive actions. In this case against the background of other ways quite promising looks impregnation of the surface concrete integrated structure. Composition must contain multiple components, primarily water repellents, preventing penetration of fluid into the body of the concrete, and finely dispersed silica sol in particular silica, providing reduction of the porosity of the surface layers of concrete by interacting with the free calcium hydroxide. The problem of optimization of impregnation structure and is dedicated to this work.

  9. Attenuation of Gamma Rays by Concrete . Lead Slag Composites

    International Nuclear Information System (INIS)

    Ismail, I.M.; Sweelam, M.H.; Zaghloul, Y.R.; Aly, H.F.

    2008-01-01

    Using of wastes and industrial by-products as concrete aggregate to be used as structural and radiation shielded material has increased in the recent years. Concrete was mixed with different amounts of lead slag extracted from recycling of the spent automotive batteries as fine aggregates. The lead slag was used as partial replacement of sand in the studied composites. The concrete composites obtained were characterized in terms of density, water absorption, porosity, compressive strength and attenuation of γ- rays with different energies. The attenuation coefficient and the half value thickness of the different matrices were calculated and discussed

  10. Carbonation of ternary cementitious concrete systems containing fly ash and silica fume

    Directory of Open Access Journals (Sweden)

    Eehab Ahmed Badreldin Khalil

    2015-04-01

    Full Text Available Carbonation is quite a complex physical negative effect phenomenon on concrete especially in the ones containing ternary blends of Portland Cement, fly ash, and silica fume. Nine selected concrete mixtures were prepared with various water to cementitious materials’ ratios and various cementitious contents. The concrete mixtures were adapted in such a way to have the same workability and air content. The fresh concrete properties were kept near identical in slump, air content, and unit weight. The variation was in the hardened concrete mechanical properties of compression and tension strength. The carbonation phenomenon was studied for these mixes showing at which mixes of ternary cementitious content heavy carbonation attacks maybe produced. The main components of such mixes that do affect the carbonation process with time were presented.

  11. Automatic dam concrete placing system; Dam concrete dasetsu sagyo no jidoka system

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Y; Hori, Y; Nakayama, T; Yoshihara, K; Hironaka, T [Okumura Corp., Osaka (Japan)

    1994-11-15

    An automatic concrete placing system was developed for concrete dam construction. This system consists of the following five subsystems: a wireless data transmission system, an automatic dam concrete mixing system, a consistency determination system, an automatic dam concrete loading and transporting system, and a remote concrete bucket opening and closing system. The system includes the following features: mixing amount by mixing ratio and mixing intervals can be instructed from a concrete placing site by using a wireless handy terminal; concrete is mixed automatically in a batcher plant; a transfer car is started, and concrete is charged into a bucket automatically; the mixed concrete is determined of its properties automatically; labor cost can be reduced, the work efficiency improved, and the safety enhanced; and the system introduction has resulted in unattended operation from the aggregate draw-out to a bunker line, manpower saving of five persons, and reduction in cycle time by 10%. 11 figs., 2 tabs.

  12. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  13. Improvement of Concrete Paving Blocks Properties by Mineral Additions

    Directory of Open Access Journals (Sweden)

    Aqeel Hatem Chkheiwer

    2017-03-01

    Full Text Available This research presents the results of experimental work on the various properties concrete paving blocks (CPB made with concrete containing different mineral additions.in this study, three types of mineral additions;Fly Ash (FA,Metakaolin (MK and Silica Fume (SF were used. Thirteen concretes mixes were cast at a water/binder ratio of 0.45 with 0, 5, 10,15and 20% cement replaced by either Fly ash,Metakaolin or Silica Fume. Theconcrete mixes were tested for slump, compressive strength, water absorption, and abrasion resistance.Metakaolin-contained concrete showed a better workability than fly ash and silica fume concrete. As the replacement level wasincreased, the 28-days compressive strength of the CPB containing MK increased similarly to that of the silica fume-containedCPB up to 20% replacement ratio. The replacement ratio of MK and SF from 5 to 20 % reduced water absorptionof CPB from5 to 19 than that of control mix. The increase in replacement ratio of MK andSF from 5 to 20 % leads to increasing abrasion resistance from 8 to 18% that of control mix

  14. Using locally available fly ash for modifying concrete properties

    International Nuclear Information System (INIS)

    Rizwan, S.A.; Toor, S.R.; Ahmad, H.

    2005-01-01

    This paper suggests the possible use of fly ash, a bye-product produced in our thermal power plants operating on coal as fuel for improvement of concrete quality. In the present investigation, locally available finely divided fly ash has been used for modification Presently, it is being used extensively in concrete in modem countries and is considered as waste material in general. Behavior of fly ash modified concrete in comparison to normal concrete having same mix proportions, aggregates, net water-cement ratio and similar curing conditions has been studied in short terms up to the age of 56 days during which the specimens were subjected to normal water curing method. Tests were carried out for compressive strength at 3, 7, 14,28 and 56 days, 24 hours % age water absorption at the age of 56 days and durability (resistance of concrete against N/2 solutions of both nitric acid and hydrochloric acid for one month) of concrete were also carried out at the age of 56 days. It was seen that the compressive strength of concrete modified with the available type of fly ash was less than the normal concrete. But so. far as the durability and % age water absorption are concerned, fly ash plays an important role here. 24 hours % age water absorption decreases with increase in fly ash content an admixture and as a cement replacement in concrete. But so far as durability is concerned, 20% replacement of fly ash with cement appears to be more effective than it is with 40%. The purpose of investigation was to introduce the use of fly ash in concretes to the Engineers and Architects in Pakistan. (author)

  15. The effects of silica fume and hydrated lime on the strength development and durability characteristics of concrete under hot water curing condition

    Directory of Open Access Journals (Sweden)

    Hamza Ali

    2017-01-01

    Full Text Available Sustainability is considered to be highly important for preserving continued industrial growth and human development. Concrete, being the world’s largest manufacturing material comprises cement as an essential binding component for strength development. However, excessive production of cement due to high degree of construction practices around the world frames cement as a leading pollutant of releasing significant amounts of CO2 in the atmosphere. To overcome this environmental degradation, silica fume and hydrated lime are used as partial replacements to cement. This paper begins with the examination of the partial replacement levels of hydrated lime and silica fume in concrete and their influence on the mechanical properties and durability characteristics of concrete. The effect of hot water curing on concrete incorporated with both silica fume and hydrated lime is also investigated in this paper. The results reported in this paper show that the use of silica fume as a partial replacement material improved both the mechanical properties and durability characteristics of concrete due to the formation of calcium silica hydrate crystals through the pozzolanic reaction. Although the hydrated lime did not significantly contribute in the development of strength, its presence enhanced the durability of concrete especially at long-term. The results also showed that hot water curing enhanced the strength development of concrete incorporated with silica fume due to the accelerated rate of both the hydration and pozzolanic reaction that takes place between silica fume and calcium hydroxide of the cement matrix particularly at early times. The results reported in this paper have significant contribution in the development of sustainable concrete. The paper does not only address the use of alternative binders as a partial replacement material in concrete but also suggest proper curing conditions for the proposed replacement materials. These practices

  16. Usage of Crushed Concrete Fines in Decorative Concrete

    Science.gov (United States)

    Pilipenko, Anton; Bazhenova, Sofia

    2017-10-01

    The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of

  17. Performance Evaluation of Concrete using Marble Mining Waste

    Science.gov (United States)

    Kore, Sudarshan Dattatraya; Vyas, A. K.

    2016-12-01

    A huge amount waste (approximately 60%) is generated during mining and processing in marble industries. Such waste can be best utilized in infrastructure development works. Coarse aggregate 75% by weight was replaced by aggregate obtained from marble mining waste. The impact of marble waste as a partial replacement for conventional coarse aggregate on the properties of concrete mixes such as workability, compressive strength, permeability, abrasion, etc. was evaluated. The test results revealed that the compressive strength was comparable to that of control concrete. Other properties such as workability of concrete increased, water absorption reduced by 17%, and resistance to abrasion was marginally increased by 2% as compared to that of control concrete. Ultrasonic pulse velocity and FTIR results show improvement in quality of concrete with crushed marble waste. From the TGA analysis it was confirmed that, aggregate produced from marble waste shows better performance under elevated temperature than that of conventional aggregates.

  18. SLAM: a sodium-limestone concrete ablation model

    International Nuclear Information System (INIS)

    Suo-Anttila, A.J.

    1983-12-01

    SLAM is a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer and dehydrated concrete) region, and a wet (hydrated concrete) region. The model includes a solution to the mass, momentum, and energy equations in each region. A chemical kinetics model is included to provide heat sources due to chemical reactions between the sodium and the concrete. Both isolated model as well as integrated whole code evaluations have been made with good results. The chemical kinetics and water migration models were evaluated separately, with good results. Several small and large-scale sodium limestone concrete experiments were simulated with reasonable agreement between SLAM and the experimental results. The SLAM code was applied to investigate the effects of mixing, pool temperature, pool depth and fluidization. All these phenomena were found to be of significance in the predicted response of the sodium concrete interaction. Pool fluidization is predicted to be the most important variable in large scale interactions

  19. Effect of insulating concrete forms in concrete compresive strength

    Science.gov (United States)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  20. DETERMINATION OF ADHESIVE STRENGTH LAYER’S ROLLER COMPACTED CONCRETE THE METHOD AXIAL EXTENSION

    Directory of Open Access Journals (Sweden)

    Tang Van Lam

    2017-07-01

    Full Text Available Roller compacted concrete for the construction of hydraulic and hydroelectric buildings is a composite material, which consists of a binder, fine aggregate (sand, coarse aggregate (gravel or crushed stone, water and special additives that provide the desired concrete workability and impart the required concrete performance properties. Concrete mixture is prepared at from concrete mixing plants strictly metered quantities of cement, water, additives and graded aggregates, whereupon they are delivered to the site laying Mixer Truck and sealing layers with each stack layer. The advantages of roller compaction technology should include the reduction of construction time, which allows fast commissioning construction projects, as well as reduce the amount of investment required. One of the main problems encountered in the process of roller compaction of the concrete mix is the need to provide the required adhesion strength between layers of concrete. This paper presents a method for determining the strength of adhesion between the concrete layers of different ages roller compacted concrete using axial tension. This method makes it possible to obtain objective and accurate results with a total thickness of layers of compacted concrete of up to 300…400 mm. Results from this method, studies have shown that the value of strength between the concrete layers in addition to the composition of the concrete and adhesion depends on the quality and the parallel end surfaces of the cylinder-models, which are mounted steel plates for axial tension, as well as the state of the contact surfaces of the concrete layer. The method can be used to determine the strength of interlayer adhesion in roller compacted concrete, which are used in the construction of dams and other hydraulic structures.

  1. A new technology for air-entrainment of concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Hasholt, Marianne Tange; Jensen, Ole Mejlhede

    2008-01-01

    This paper describes a new technology for air-entrainment of concrete. The technology is based on the addition of dry superabsorbent polymers (SAP) to the concrete. A large amount of small internal water reservoirs are formed during mixing when SAP absorbs water and swells. The internal water......-entrainment include stability of the air void system and improved control of both the amount of added air and the air void size. The new technology based on SAP has been tested in freeze-thaw experiments, where the amount of surface scaling was measured. The results clearly show that SAP is beneficial for frost...... reservoirs are distributed throughout the concrete. During the hydration process the cement paste imbibes water from the water-filled SAP voids. Thereby the water-filled SAP voids turn into partly air-filled voids. The advantages of the SAP-based technology compared to traditional chemical air...

  2. A Novel Concrete-Based Sensor for Detection of Ice and Water on Roads and Bridges.

    Science.gov (United States)

    Tabatabai, Habib; Aljuboori, Mohammed

    2017-12-14

    Hundreds of people are killed or injured annually in the United States in accidents related to ice formation on roadways and bridge decks. In this paper, a novel embedded sensor system is proposed for the detection of black ice as well as wet, dry, and frozen pavement conditions on roads, runways, and bridges. The proposed sensor works by detecting changes in electrical resistance between two sets of stainless steel poles embedded in the concrete sensor to assess surface and near-surface conditions. A preliminary decision algorithm is developed that utilizes sensor outputs indicating resistance changes and surface temperature. The sensor consists of a 102-mm-diameter, 38-mm-high, concrete cylinder. Laboratory results indicate that the proposed sensor can effectively detect surface ice and wet conditions even in the presence of deicing chlorides and rubber residue. This sensor can further distinguish black ice from ice that may exist within concrete pores.

  3. A Novel Concrete-Based Sensor for Detection of Ice and Water on Roads and Bridges

    Directory of Open Access Journals (Sweden)

    Habib Tabatabai

    2017-12-01

    Full Text Available Hundreds of people are killed or injured annually in the United States in accidents related to ice formation on roadways and bridge decks. In this paper, a novel embedded sensor system is proposed for the detection of black ice as well as wet, dry, and frozen pavement conditions on roads, runways, and bridges. The proposed sensor works by detecting changes in electrical resistance between two sets of stainless steel poles embedded in the concrete sensor to assess surface and near-surface conditions. A preliminary decision algorithm is developed that utilizes sensor outputs indicating resistance changes and surface temperature. The sensor consists of a 102-mm-diameter, 38-mm-high, concrete cylinder. Laboratory results indicate that the proposed sensor can effectively detect surface ice and wet conditions even in the presence of deicing chlorides and rubber residue. This sensor can further distinguish black ice from ice that may exist within concrete pores.

  4. Gas and water permeability of concrete for reactor buildings--prototype scale specimens

    International Nuclear Information System (INIS)

    Mills, R.H.

    1987-02-01

    The permeability testing was performed on four concrete cylinders, 0.25 m in diameter and 2 m long, modelling the wall-thickness of reactor containment structures on the prototype scale. Tests were performed on the cylinders before and after artificial induction of longitudinal cracks, intented to model defects developing after some period of adverse service conditions. Permeability increased greatly with the introduction of longitudinal cracks in the concrete, and was also affected by moisture content and casting direction. The influence of reinforcing steel could not be resolved within the bounds of experimental variability. Ultrasound measurements were taken on each cylinder before and after cracking, and a correlation between increased permeability and lowered Ultrasonic Pulse Velocity was observed. Ultrasonic Pulse Velocity measurements thus show promise as a means of continuous monitoring of the integrity of the concrete barrier in service

  5. Effect of Coarse Aggregate and Slag Type on the Mechanical Behavior of High and Normal Weight Concrete Used at Barrage Structure

    Directory of Open Access Journals (Sweden)

    Muhammad Sanaullah

    2017-04-01

    Full Text Available Present study is an effort to assess the composite effect of limestone aggregate and blast furnace slag on the mechanical characteristics of normal and high weight concrete at various structural units (barrage girders, main weir and block apron of New Khanki Barrage Project, Punjab. Mix designs for different concrete classes falling under the domain of high and normal weight concrete were prepared after aggregate quality testing. On attaining satisfactory results of quality testing nine concrete mixes were designed (three for each class: A1, A and B by absolute volume method (ACI- 211.1. The required compressive strength of normal and high strength was set at 6200, 5200 and 4200 Psi for the concrete types A1, A and B respectively after 28 days (ACI -318. For compressive strength assessment, a total 27 concrete cylinders were casted (9-cylinders for each mix and were water cured. The achieved average UCS of cylinder concrete specimens at 3, 7 and 28 days are 5170, 6338 and 7320 Psi for A1 – type, 3210, 4187 and 5602 Psi for A-type and 2650, 3360 and 4408 Psi for B- type mix. It has been found that all concrete mixes for suggested classes attained target strength at age of 7-days. The coarse aggregate (Margala Hill limestone and fine aggregates (from Lawrancepur /Qibla Bandi quarries used in all concrete mix designs have demonstrated a sound mechanical suitability for high and normal weight concrete.

  6. Performance of super-absorbent polymer as an internal curing agent for self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Al-Hubboubi Suhair

    2018-01-01

    Full Text Available Internal curing agent by using super-absorbent polymer was present in this study, its effect on the properties of self-compacting concrete was evaluated .The SAP content in the concrete mix was 0.5 % by weight of cement. Three procedures for curing were adopted; curing in water, curing in water and air and curing in polyethylene sealed bags. Fresh concrete tests conducted to assess the self-compactability of the produced concrete. Moreover, compressive and splitting strength tests were carried out. The testing program had been extended to the age of 90 days.The use of super-absorbent polymer did not affect the fresh state characteristics of the studied SCC and achieved an increase in both compressive and tensile strengths as compared to the reference concrete mix.

  7. Recycled aggregates in concrete production: engineering properties and environmental impact

    Directory of Open Access Journals (Sweden)

    Seddik Meddah Mohammed

    2017-01-01

    Full Text Available Recycled concrete aggregate is considered as the most abundant and used secondary aggregate in concrete production, other types of solid waste are also being used in concrete for specific purposes and to achieve some desired properties. Recycled aggregates and particularly, recycled concrete aggregate substantially affect the properties and mix design of concrete both at fresh and hardened states since it is known by high porosity due to the adhered layer of old mortar on the aggregate which results in a high water absorption of the recycled secondary aggregate. This leads to lower density and strength, and other durability related properties. The use of most recycled aggregate in concrete structures is still limited to low strength and non-structural applications due to important drop in strength and durability performances generated. Embedding recycled aggregates in concrete is now a current practice in many countries to enhance sustainability of concrete industry and reduce its environmental impacts. The present paper discusses the various possible recycled aggregates used in concrete production, their effect on both fresh and hardened properties as well as durability performances. The economic and environmental impacts of partially or fully substituting natural aggregates by secondary recycled aggregates are also discussed.

  8. Olive pomace based lightweight concrete, an experimental approach and contribution

    Directory of Open Access Journals (Sweden)

    Lynda Amel Chaabane

    2018-01-01

    Full Text Available Due to conventional aggregates resources depletion, material recycling has become an economic and ecologic alternative. In this paper, locally available natural residues such as olive pomace were investigated, when partially incorporated in the concrete formulation, since the mechanical characteristics of lightweight aggregate concrete strongly depend on its properties and proportions. Lightweight aggregates are more deformable than the cement matrix because of their high porosity, and their influence on the concrete strength remains complex. The purpose of this paper is to investigate the aggregates properties on lightweight concrete mechanical behaviour through an experimental approach. In addition, the different substitution sequences and the W/C ratio on lightweight concrete behaviour were evaluated, in order to determine the W/C ratio influence on the improvement of the lightweight concrete mechanical properties while knowing that the mixing water quantity gives the cement paste manoeuvrability and mechanical strength effects. The last part of this paper, therefore, was to provide statistical survey for estimating strength and weight reduction through the different natural aggregate substitutions to improve the lightweight concrete properties. The results achieved in a significant olive-pomace lower adhesion with the matrix after the cement setting, making the lightweight concrete mechanical strength weak. However, this work can open several perspectives: Results modeling and correlation with an experimental approach, the evolution and determination of lightweight concrete characteristics when exposed to high temperatures and thermohydric properties.

  9. Thermodynamics of mixing of sodium naproxen and procaine hydrochloride in ethanol + water cosolvent mixtures

    OpenAIRE

    Mora Guerrero, Carolina Del Pilar

    2010-01-01

    Thermodynamic functions Gibbs energy, enthalpy, and entropy of mixing of sodium naproxen and procaine hydrochloride were evaluated. Mixing quantities were calculated based on fusion calorimetric values obtained from differential scanning calorimetry measurements and equilibrium solubility values reported in the literature for both drugs in ethanol + water mixtures. By means of enthalpy-entropy compensation analysis, non-linear ΔH°mix vs. ΔG°mix plots were obtained which indicates different me...

  10. Reuse of thermosetting plastic waste for lightweight concrete.

    Science.gov (United States)

    Panyakapo, Phaiboon; Panyakapo, Mallika

    2008-01-01

    This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm2 and 1395 kg/m3, respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard.

  11. Study of the Thermal Behaviour of Water for Residential Use in Tanks of Concrete and Polyethylene in Humid Subtropical Climate

    Directory of Open Access Journals (Sweden)

    Diego-Ayala Ulises

    2015-09-01

    Full Text Available This article presents a comparative study of the thermal behavior of residential water tanks of polyethylene and concrete exposed to the sun over a year in the state of Yucatan. The energy for radiation and their corresponding temperatures in each system were measured. Daily patterns of elevation and reduction of temperature were identified and the amount of energy acquired during the day as well as the heat dissipated overnight were determined, aiming to determine the possibility of using residential water tanks as a source of hot water in residential homes in the Yucatan region. Based on this study it has been found that the periods of the day with hot water temperature for showering with comfort is limited and that, interestingly, both systems show similar temperatures at the bottom of the tanks throughout the year.

  12. Modeling reinforced concrete durability : [summary].

    Science.gov (United States)

    2014-06-01

    Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...

  13. How Concrete is Concrete

    OpenAIRE

    Koeno Gravemeijer

    2010-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two diff...

  14. Optimization of superplasticizer in portland pozzolana cement mortar and concrete

    Science.gov (United States)

    Sathyan, Dhanya; Anand, K. B.; Mini, K. M.; Aparna, S.

    2018-02-01

    Chemical Admixtures are added to concrete at the time of mixing of its constituents to impart workability. The requirement of right workability is the essence of good concrete. It has been found that the use of optimum use of admixtures is very important since low dosage may result in loss of fluidity and over dosage could lead to segregation, bleeding, excessive air entrainment etc in concrete. Hence it is essential to find optimum dosage of superplasticizer for getting good strength and workability. But large number of trial tests are required in the field to find the saturation dosage of superplasticizer in concrete which requires more materials and consume more time. The paper deals with developing a co-relation between the quantity requirements of superplasticiser in mortar to that of cement concrete to get good workability. In this work for preparing mortar and concrete 4 brands of locally available Portland pozzolana cement (PPC) and superplasticizer (SP) belonging to 4 different families namely Polycarboxylate Ether (PCE), Lignosulphate (LS), Sulfonated Naphthalene Formaldehyde (SNF) and Sulfonated Melamine Formaldehyde (SMF) are used. Two different brands of SP’s are taken from each family. Workability study on the superplasticized mortar with cement to sand ratio 1:1.5 and water cement ratio of 0.4 was performed using marsh cone and flow table test and workability study on the concrete with same cement/sand ratio and water cement ratio was done using slump cone and flow table test. Saturation dosage of superplasticizer in mortar and concrete determined experimentally was compared to study the correlation between two. Compressive strength study on concrete cubes were done on concrete mixes with a superplasticizer dosage corresponding to the saturation dosage and a comparative study were done to analyse the improvement in the compressive strength with addition of superplasticizer from different family.

  15. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments.

    Science.gov (United States)

    Vishwakarmaa, Vinita; George, R P; Ramachandran, D; Anandkumar, B; Mudalib, U Kamachi

    2014-01-01

    In cooling water systems, many concrete structures in the form of tanks, pillars and reservoirs that come in contact with aggressive seawater are being deteriorated by chemical and biological factors. The nuclear industry has decided to partially replace the Portland cement with appropriate pozzolans such as fly ash, which could densify the matrix and make the concrete impermeable. Three types of concrete mixes, viz., normal concrete (NC), concrete with fly ash and superplasticizer (FA) and concrete with only superplasticizer (SP) were fabricated for short- and long-term exposure studies and for screening out the better concrete in seawater environments. Biofilm characterization studies and microscopic studies showed excellent performance of FA concrete compared to the other two. Laboratory exposure studies in pure cultures of Thiobacillus thiooxidans and Fusarium oxysporum were demonstrated for the inhibition of microbial growth on fly ash. Epifluorescence and scanning electron microscopic studies supported the better performance of the FA specimen. Thus, the present study clearly showed that FA concrete is less prone to biofilm formation and biodeterioration.

  16. Durability Properties of Palm Oil Fuel Ash Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    T. Ofuyatan

    2015-02-01

    Full Text Available Self Compacting Concrete (SCC is a new innovation in technology that can flow readily into place under its own self weight and fill corner areas of reinforcement structures without the need to vibrate and without segregation of its constitute. The problem of durability of concrete structures due to inadequate compaction by skilled workers has become a source of concern globally. The shortage of skilled manpower, noise and vibration of equipment on construction sites has led to the development of self compacting concrete. This paper presents an experimental study on the durability properties of Self Compacting Concrete with partial placement of Palm Oil Fuel Ash (POFA. Twelve POFA self-compacting concretes of various strength grades were designed at varying percentages of 0, 5, 10, 15, 20, 25 and 30%. The concrete with no placement of ash served as control. Conplast SP432MS was used as superplasticiser in the mix. The experiments are carried out by adopting a water-powder ratio of 0.36. Workability of the fresh concrete is determined by using tests such as: slump flow, T50, V-funnel and L-Box tests. The durability of concrete is tested by acid resistance, sulphate attack and saturated water absorption at the age of 14, 28, 56 and 90 days.

  17. Nanoscale study on water damage for different warm mix asphalt binders

    Directory of Open Access Journals (Sweden)

    Kefei Liu

    2016-11-01

    Full Text Available In order to analyze the water damage to different warm mix asphalt binders from the micro scale, five kinds of asphalt binders, 70#A base asphalt, sasobit warm mix asphalt, energy champion 120 °C (EC120 warm mix asphalt, aspha-min warm mix asphalt, sulfur-extended asphalt modifier (SEAM warm mix asphalt, under different conditions (dry/wet, original/aging are prepared for laboratory tests. The atomic force microscope (AFM is used to observe the surface properties and measure the adhesion force between the asphalt and the mineral aggregate. The obtained results show that under the dry condition aspha-min warm mix asphalt and SEAM warm mix asphalt show stronger adhesive ability with the mineral aggregate compared with other asphalt binders, but also have relatively large dispersion and fluctuation in the tested results; under the wet condition, aspha-min warm mix asphalt and SEAM warm mix asphalt show stronger water damage resistance ability. The EC120 warm mix asphalt and aspha-min warm mix asphalt are less sensitive to moist, and their corresponding adhesion force is less susceptible to the change of external moisture conditions, leading to a better ability to resist water erosion. The aging process significantly lowers the moisture erosion resistance ability, which further impairs the water damage resistance ability. The base asphalt is more sensitive to moisture and more vulnerable to water damage, no matter whether it is under original or aging conditions. The aging aspha-min warm mix asphalt has the least loss of adhesion force, the smallest dispersion of the tested adhesion force, the strongest water damage resistance ability, no matter it is dry or wet. Keywords: Road engineering, Warm mix asphalt, Moisture damage, Atomic force microscope, Microcosmic

  18. Use of dry sludge from waste water treatment plants as an additive in prefabricated concrete brick

    Directory of Open Access Journals (Sweden)

    Yagüe, A.

    2002-09-01

    Full Text Available Dry sludge from the Sabadell Water Treatment Plant was used to prepare prefabricated concrete bricks. After characterising the sludge and the manufacturing process used to make the bricks, we define the conditions of addition of the sludges in the manufacture. Reference samples not containing sludge and samples containing 2 % of dry sludge by cement weight were prepared. The variation in density, porosity, absorption coefficient and compressive strength of the bricks with the presence of sludge was determined over time. Leaching of the bricks was determined according to the NEN 7345 standard. In most cases the addition of sludge produces a decrease in porosity and absorption coefficients and an increase in compressive strength, so one could expect these bricks to have greater durability. As regards leaching pollutants in the bricks, they are below the limit of the Dutch NEN standard for construction materials and thus can be classified as inert material.

    El estudio ha consistido en la utilización de lodo seco de origen biológico de la depuradora de aguas residuales de Sabadell (Riu Sec, como adición en la preparación de adoquines de hormigón prefabricado. Después de caracterizar los lodos y el proceso de fabricación de los adoquines que utilizaremos, definimos las condiciones de adición de los lodos en esta fabricación. Se prepararon muestras de referencia, sin adición, y muestras con el 2 % de lodo seco sobrepeso de cemento. Se determinaron cómo variaban en el tiempo, con la presencia de lodos: la densidad, la porosidad y el coeficiente de absorción, y la resistencia mecánica a compresión de los adoquines. También se determinó la lixiviación que estas piezas presentaban de acuerdo a la norma NEN 7345. La adición de lodos produce, en la mayoría de los casos, una disminución de las porosidades y de los coeficientes de absorción y un aumento en las resistencias mecánicas, por lo que cabe esperar una mayor

  19. Protection of Reinforced Concrete Structures of Waste Water Treatment Reservoirs with Stainless Steel Coating Using Arc Thermal Spraying Technique in Acidified Water

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-09-01

    Full Text Available Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance—a mixture of Cr3+ enriched with Cr2O3 and Cr-hydroxide in inner and Fe3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions.

  20. How Concrete is Concrete

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2010-07-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics

  1. Water-powder mixtures at the onset of flowing

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    The knowledge of water demands of the manifold concrete ingredients is of vital interest for the design of concrete mixes. Physical properties like workability or strength and durability in hardened state are controlled by the total water content. Water demand is defined as the volumetric ratio of

  2. Simulation of the behavior of pressurized underwater concrete

    Directory of Open Access Journals (Sweden)

    Ashraf Mohamed Heniegal

    2015-06-01

    Full Text Available Under-Water Concrete (UWC contains Anti-Washout Admixtures (AWA (0.0%, 0.2%, 0.3%, 0.4% and 0.5% by weight of cement with cement contents (400, 450, 500 and 550 kg/m3. All concrete mix contains silica fume and high-range water reducing (15% and 4% respectively by weight of cement. The fine to steel slag coarse aggregate was 1:1. The concrete mix was tested for slump, slump flow, compressive strength and washout resistance using two test methods based on different principles. The first method is the plunge test CRDC61 which is widely used in North America, and the second method is the pressurized air tube which has been manufactured for this research and developed to simulate the effect of water pressure on washout resistance of underwater mix. The results of compressive strength test were compared to concrete cast underwater with that cast in air. Test results indicated that the use of an AWA facilitates the production of UWC mix with the added benefit of lower washout resistance. New technique of simulating pressurized UWC is reliable for detecting UWC properties. Adding AWA (0.3–0.5% by weight of cement makes all mix acceptable according to Japanese Society of Civil Engineers.

  3. Durability of high performance concrete in seawater

    International Nuclear Information System (INIS)

    Amjad Hussain Memon; Salihuddin Radin Sumadi; Rabitah Handan

    2000-01-01

    This paper presents a report on the effects of blended cements on the durability of high performance concrete (HPC) in seawater. In this research the effect of seawater was investigated. The specimens were initially subjected to water curing for seven days inside the laboratory at room temperature, followed by seawater curing exposed to tidal zone until testing. In this study three levels of cement replacement (0%, 30% and 70%) were used. The combined use of chemical and mineral admixtures has resulted in a new generation of concrete called HPC. The HPC has been identified as one of the most important advanced materials necessary in the effort to build a nation's infrastructure. HPC opens new opportunities in the utilization of the industrial by-products (mineral admixtures) in the construction industry. As a matter of fact permeability is considered as one of the fundamental properties governing the durability of concrete in the marine environment. Results of this investigation indicated that the oxygen permeability values for the blended cement concretes at the age of one year are reduced by a factor of about 2 as compared to OPC control mix concrete. Therefore both blended cement concretes are expected to withstand in the seawater exposed to tidal zone without serious deterioration. (Author)

  4. Climatology and evolution of the mixing height over water

    Energy Technology Data Exchange (ETDEWEB)

    Sempreviva, A.M. [Istituto di Fisica dell`Atmosfera, CNR, Rome (Italy); Grynig, S.E. [Risoe National Lab., Roskilde (Denmark)

    1997-10-01

    In this paper we present results from an experimental investigation on the height of the mixed layer h, using a meteorological station located on the Danish island of Anholt. The station was operational for two years from September 1990 to October 1992. We present the analysis of two years of radio-sounding showing the average daily evolution of h. Furthermore observations of the mixed layer growth under near-neutral and unstable atmospheric conditions during six consecutive days has been modelled using a simple zero-order mixed-layer height model. Finally we have compared the evolution of the mixing height from the model with the evolution of the correlation coefficient between temperature and humidity to study the influence of the deepness of the convective layer on the mechanism of the correlation between temperature and humidity in the surface layer. (au)

  5. Influence of Changes in Water-to-Cement Ratio, Alkalinity, Concrete Fluidity, Voids, and Type of Reinforcing Steel on the Corrosion Potential of Steel in Concrete.

    Science.gov (United States)

    2014-04-01

    "Research on steel corrosion has demonstrated that the concentrations of chloride and hydroxide ion at the concrete/steel : interface influence the susceptibility of the steel to corrosive attack. This study used electrochemical means and changes in ...

  6. Concrete with onyx waste aggregate as aesthetically valued structural concrete

    Science.gov (United States)

    Setyowati E., W.; Soehardjono, A.; Wisnumurti

    2017-09-01

    The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.

  7. Performance of electrical spectroscopy using a RESPER probe to measure salinity and water content of concrete and terrestrial soil

    Directory of Open Access Journals (Sweden)

    Alessandro Settimi

    2011-08-01

    Full Text Available

    This paper discusses the performance of electrical spectroscopy using a RESPER probe to measure the salinity s and volumetric content θW of the water in concrete or terrestrial soil. The RESPER probe is an induction device for spectroscopy which performs simultaneous and non invasive measurements of the electrical RESistivity 1/σ and relative dielectric PERmittivity εr of a subjacent medium. Numerical simulations establish that the RESPER can measure σ and ε with inaccuracies below a predefined limit (10% up to the high frequency band (HF. Conductivity is related to salinity and dielectric permittivity to volumetric water content using suitably refined theoretical models which are consistent with the predictions of Archie’s and Topp’s empirical laws. The better the agreement, the lower the hygroscopic water content and the higher s; so closer agreement is found with concrete containing almost no bonded water molecules provided these are characterized by a high σ. A novelty of the present paper is the application of a mathematical–physical model to the propagation of errors in the measurements, based on a sensitivity functions tool. The inaccuracy of salinity (water content is the ratio (product between the conductivity (permittivity inaccuracy, specified by the probe, and the sensitivity function of salinity (water content relative to conductivity (permittivity, derived from the constitutive equations of the medium. The main result is the model’s prediction that the lower the inaccuracy for the measurements of s and θW (decreasing by as much as an order of magnitude from 10% to 1%, the higher σ; so the inaccuracy for soil is lower. The proposed physical explanation is that water molecules are mostly dispersed as H+ and OH- ions

  8. Estimation of The Contribution of the Water Sources in The Mixed Waters; Karisim Sularinda Koekensel Katkilarin Belirlenmesi

    Energy Technology Data Exchange (ETDEWEB)

    Kurttas, T [Hacettepe University, Ankara (Turkey)

    2002-07-01

    In many cases simple hydrogeochemical evaluations are sufficient to distinguish different source of the waters in the hydrogeological studies. In this study how hydrochemical data can be used to understand mixing mechanism is explained. Mixing ratios determined by using physically or chemically nonreactive component in hydrogeological studies. For mixing quantity calculations, quantity of the end members that cause to mixing, need to be known. Electrical conductivity is another parameter may be used when lack of hydrochemical data is present or more practical and fast solution is required. Isotope techniques are widely used to describe the hydrogeological conditions, where the conventional methods is not sufficient to understand. Since {sup 18}O ve D are conservative isotopes and do not effected by the hydrochemical processes in the aquifer, they are used to explain recharge quantities of the aquifer, determination of the recharge areas, groundwater-surface water relations, determination of mixing quantities and understanding of recharge-discharge relations in the fractured aquifers. By using stable isotope data, sources of the mixing portions, dissolution of salts, evaporation and isotopic enrichment or fresh water-salt water/fresh water- sea water mixing can be identified easily.

  9. Impact of Pigments on Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Ernestas Ivanauskas

    2011-04-01

    Full Text Available We describe an impact of using iron oxide pigment on self-compacting concrete (SCC properties. We have experimented with adding portions of iron oxide pigment from 3 % to 6 % into cement paste. A few alternative pigments (chromic oxide and iron oxide hydroxide were used for performing the same experiments. The impact of these pigments on a normal cement paste is described in this paper. We demonstrate that iron oxide pigment reduces the need for water in a normal cement paste. However, adding the pigment also reduces the compressive strength of concrete up to 20 %. The concrete specimens were tested in various time spans, i.e. 1 day to 28 days, by keeping them in 20 ± 2 ºC water – normal consolidation regimen. Some of the specimens were processed in steam chamber, at 60 ºC in order to make the process of the cement hydration faster, as well as to estimate an impact of active SiO2 proportion in ash on SCC properties. We show that using iron oxide pigment for SCC mixture increases the slump-flow property of concrete mix up to 5 %. Experiments with solidified concrete have demonstrated that iron oxide diminishes water absorption up to 6 % and decreases open concrete porosity that makes concrete resistant against freezing. Article in Lithuanian

  10. Radiation shielding concrete

    International Nuclear Information System (INIS)

    Kunishima, Shigeru.

    1990-01-01

    The radiation shielding concretes comprise water, cement, fine aggregates consisting of serpentines and blown mist slags, coarse aggregates consisting of serpentines and kneading materials. Since serpentines containing a relatively great amount of water of crystallization in rocks as coarse aggregates and fine aggregates, the hydrogen content in the radiation shielding concretes is increased and the neutron shielding effect is improved. In addition, since serpentines are added as the fine aggregates and blown mists slags of a great specific gravity are used, the specific gravity of the shielding concretes is increased to improve the γ-ray shielding effect. Further, by the use of the kneading material having a water reducing effect and fluidizing effect, and by the bearing effect of the spherical blown mist slags used as the fine aggregates, concrete fluidity can be increased. Accordingly, workability of the radiation shielding concretes can be improved. (T.M.)

  11. Grouting aid for controlling the separation of water for cement grout for grouting vertical tendons in nuclear concrete pressure vessels

    International Nuclear Information System (INIS)

    Schupack, M.

    1976-01-01

    Considerable testing and development work has led to grouting procedures which can successfully grout 60 m and taller tendons in containment structures. The exaggerated water separation phenomena of strand tendons can be controlled by chemical admixtures using proper mixing and pumping procedures. Experience with both vertical six-bar tendons and large capacity strand type tendons are described. History, development work, characteristics of grout using the admixtures, mixing and pumping procedure, full scale tests and practical applications are included. (author)

  12. Rheological behaviour of self-compacting micro-concrete

    Indian Academy of Sciences (India)

    phase composition to link fresh concrete workability and mixing intensity. In this paper, rheological measurements have been performed using a novel rheometer equipped with a ball measuring system. SCMC mixtures with various HRWRA contents and conventional cement paste mixtures with varying water/cement ratios ...

  13. CFD analysis of supercritical water flow and heat transfer in single channel with mixing vane

    International Nuclear Information System (INIS)

    Zuo Guoping; Xie Hongyan; Yu Tao

    2012-01-01

    Three-dimensional rectangular channel with the mixing wane in supercritical water reactor is investigated with CFX. The mixing vane elevation influenced on temperature distribution and flow field are simulated in the model. The results showed the mixing vane cause fluid circumferential flow, making flow hot and cold fluids mixed and fluid temperature uniform distribution, effectively improve the fuel rod surface temperature distribution and reduced hot temperature. Among the mixing wing elevation of 15, 30, 45, 50, 60 and 70 angle, the 30 angle is the best case in improving temperature distribution. (authors)

  14. Report E : self-consolidating concrete (SCC) for infrastructure elements - hardened mechanical properties and durability performance.

    Science.gov (United States)

    2012-08-01

    Concrete is one of the most produced and utilized materials in the world. Due to : the labor intensive and time consuming nature of concrete construction, new and : innovative concrete mixes are being explored. Self-consolidating concrete (SCC) is on...

  15. Special protective concretes

    International Nuclear Information System (INIS)

    Bouniol, P.

    2001-01-01

    Concrete is the most convenient material when large-scale radiation protection is needed. Thus, special concretes for nuclear purposes are used in various facilities like reactors, reprocessing centers, storage sites, accelerators, hospitals with nuclear medicine equipment, food ionization centers etc.. The recent advances made in civil engineering for the improvement of concrete durability and compactness are for a large part transposable to protection concretes. This article presents the basic knowledge about protection concretes with the associated typological and technological aspects. A large part is devoted to the intrinsic properties of concretes and to their behaviour in irradiation and temperature conditions: 1 - definition and field of application of special protective concretes; 2 - evolution of concepts and technologies (durability of structures, techniques of formulation, new additives, market evolution); 3 - design of protective structures (preliminary study, radiation characteristics, thermal constraints, damping and dimensioning, mechanical criteria); 4 - formulation of special concretes (general principles, granulates, hydraulic binders, pulverulent additives, water/cement ratio, reference composition of some special concretes); 5 - properties of special concretes (damping and thermo-mechanical properties); 6 - induced-irradiation and temperature phenomena (activation, radiolysis, mineralogical transformations, drying, shrinking, creep, corrosion of reinforcement). (J.S.)

  16. Exerimental study on the water permeability of a reinforced concrete silo for radioactive waste repository

    International Nuclear Information System (INIS)

    Iriya, K.; Itoh, Y.; Hosoda, M.; Fujiwara, A.; Tsuji, Y.

    1992-01-01

    A low permeable conrete structure is required in a shallow land disposal system in order to isolate radioactive waste from the biosphere. Two model silos (7.25 m dia., 5.25 m height, 1.50 m wall thickness) will be constructed to demonstrate the performance of the concrete structure constructed by the two concepts. One concept is called the improved grouting method. We intend to inject cementitious material to the defective zone such as a crack after its construction by an ordinary construction method. The other concept is called the improved constructing method. We intend to minimize the defective zone, which influences the permeability, during the construction by an improved constructing method. The permeability of the concrete structure as a whole structure will be assessed by two large-scale-model-silos until 1992. The design, objectives, and preliminary results of this experiment are mainly described in this paper. (orig.)

  17. A laboratory investigation of mixing dynamics between biofuels and surface waters

    Science.gov (United States)

    Wang, Xiaoxiang; Cotel, Aline

    2017-11-01

    Recently, production and usage of ethanol-blend fuels or biofuels have increased dramatically along with increasing risk of spilling into surface waters. Lack of understanding of the environmental impacts and absence of standard clean-up procedures make it crucial to study the mixing behavior between biofuels and water. Biofuels are represented by a solution of ethanol and glycol. A Plexiglas tank in conjunction with a wave generator is used to simulate the mixing of surface waters and biofuels under different natural conditions. In our previous experiments, two distinct mixing regimes were observed. One regime was driven by turbulence and the other by interfacial instabilities. However, under more realistic situations, without wind driven waves, only the first mixing regime was found. After one minute of rapid turbulent mixing, biofuels and water were fully mixed and no interface was formed. During the mixing process, chemical reactions happened simultaneously and influenced mixing dynamics. Current experiments are investigating the effect of waves on the mixing dynamics. Support from NSF CBET 1335878.

  18. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  19. Reclamation of potable water from mixed gas streams

    Science.gov (United States)

    Judkins, Roddie R; Bischoff, Brian L; Debusk, Melanie Moses; Narula, Chaitanya

    2013-08-20

    An apparatus for separating a liquid from a mixed gas stream can include a wall, a mixed gas stream passageway, and a liquid collection assembly. The wall can include a first surface, a second surface, and a plurality of capillary condensation pores. The capillary condensation pores extend through the wall, and have a first opening on the first surface of the wall, and a second opening on the second surface of the wall. The pore size of the pores can be between about 2 nm to about 100 nm. The mixed gas stream passageway can be in fluid communication with the first opening. The liquid collection assembly can collect liquid from the plurality of pores.

  20. Domestic Wastewater Reuse in Concrete Using Bench-Scale Testing and Full-Scale Implementation

    Directory of Open Access Journals (Sweden)

    Ayoup M. Ghrair

    2016-08-01

    Full Text Available Demand for fresh water by the construction sector is expected to increase due to the high increase in the growth of construction activities in Jordan. This study aims to evaluate the potential of scale-up of the application of treated domestic wastewater in concrete from bench-scale to a full-scale. On the lab scale, concrete and mortar mixes using Primary and Secondary Treated Wastewater (PTW, STW and Distilled Water (DW were cast and tested after various curing ages (7, 28, 120, and 200 days. Based on wastewater quality, according to IS 456-2000, the STW is suitable for mortar and concrete production. Mortar made with STW at curing time up to 200 days has no significant negative effect on the mortar’s compressive strength. Conversely, the PTW exceeded the maximum permissible limits of total organic content and E coli. for concrete mixing-water. Using PTW results, a significant increase in the initial setting time of up to 16.7% and a decrease in the concrete workability are observed. In addition, using PTW as mixing water led to a significant reduction in the compressive strength up to 19.6%. The results that came out from scaling up to real production operation of ready-mix concrete were in harmony with the lab-scale results.

  1. A multifunctional design approach for sustainable concrete : with application to concrete mass products

    NARCIS (Netherlands)

    Hüsken, G.

    2010-01-01

    This thesis provides a multifunctional design approach for sustainable concrete, particularly earth-moist concrete (EMC), with application to concrete mass products. EMC is a concrete with low water content and stiff consistency that is used for the production of concrete mass products, such as

  2. A comparative study of recycled aggregates from concrete and mixed debris as material for unbound road sub-base; Estudio comparativo de los aridos reciclados de hormigon y mixtos como material para sub-bases de carreteras

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J. R.; Agrela, F.; Ayuso, J.; Lopez, M.

    2011-07-01

    Seven different types of recycled aggregates from construction and demolition waste (CDW) have been evaluated as granular materials for unbound road sub bases construction. The results showed that recycled concrete aggregates complied with all specifications for using in the construction of unbound structural layers (sub-base) for T3 and T4 traffic categories according to the Spanish General Technical Specification for Road Construction (PG-3). Some mixed recycled aggregates fell short of some specifications due to a high content of sulphur compounds and poor fragmentation resistance. Sieving off the fine fraction prior to crushing the mixed CDW reduce the total sulphur content and improve the quality of the mixed recycled aggregates, by contrast, pre-sieving concrete CDW had no effect on the quality of the resulting aggregates. The results were compared with a crushed limestone as natural aggregate. (Author) 23 refs.

  3. Automatic Control of the Concrete Mixture Homogeneity in Cycling Mixers

    Science.gov (United States)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The article describes the factors affecting the concrete mixture quality related to the moisture content of aggregates, since the effectiveness of the concrete mixture production is largely determined by the availability of quality management tools at all stages of the technological process. It is established that the unaccounted moisture of aggregates adversely affects the concrete mixture homogeneity and, accordingly, the strength of building structures. A new control method and the automatic control system of the concrete mixture homogeneity in the technological process of mixing components have been proposed, since the tasks of providing a concrete mixture are performed by the automatic control system of processing kneading-and-mixing machinery with operational automatic control of homogeneity. Theoretical underpinnings of the control of the mixture homogeneity are presented, which are related to a change in the frequency of vibrodynamic vibrations of the mixer body. The structure of the technical means of the automatic control system for regulating the supply of water is determined depending on the change in the concrete mixture homogeneity during the continuous mixing of components. The following technical means for establishing automatic control have been chosen: vibro-acoustic sensors, remote terminal units, electropneumatic control actuators, etc. To identify the quality indicator of automatic control, the system offers a structure flowchart with transfer functions that determine the ACS operation in transient dynamic mode.

  4. Flow analysis of water-powder mixtures: Application to specific surface area and shape factor

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.

    2009-01-01

    This paper addresses the characterization of powder materials with respect to their application in concrete. Given that powders provide by far highest percentage of specific surface area in a concrete mix, their packing behavior and water demand is of vital interest for the design of concrete. They

  5. Flow analysis of water-powder mixtures : Application to specific surface area and shape factor

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.

    2009-01-01

    This paper addresses the characterization of powder materials with respect to their application in concrete. Given that powders provide by far highest percentage of specific surface area in a concrete mix, their packing behavior and water demand is of vital interest for the design of concrete. They

  6. Physico-mechanical properties of high performance concrete using different aggregates in presence of silica fume

    Directory of Open Access Journals (Sweden)

    Salah A. Abo-El-Enein

    2014-04-01

    Full Text Available Heavy weight high performance concrete (HPC can be used when particular properties, such as high strength and good radiation shielding are required. Such concrete, using ilmenite and hematite coarse aggregates can significantly have higher specific gravities than those of concrete made with dolomite and air-cooled slag aggregates. Four different concrete mixes with the same cement content and different w/c ratios were designed using normal dolomite aggregate, air-cooled slag by-product and two different types of iron ore aggregates. High performance concrete (grade-M60 can be achieved using superplasticizer to reduce the water/cement ratio; the effect of SF on the performance of concrete was studied by addition of 10% silica fume to the total cement content. The physico-mechanical properties of coarse aggregates and hardened concrete were studied. The results show that, Ilmenite coarse aggregate gives higher physical and mechanical properties than the other aggregates. Also, addition of 10% silica fume developed a stronger and a denser interfacial transition zone (ITZ between concrete particles and the cement matrix. Crushed air-cooled slag can be used to produce a high-strength concrete with better mechanical properties than corresponding concrete made with crushed hematite and ilmenite. Heavy density concrete made with fine aggregates of ilmenite and air-cooled slag are expected to be suitable as shielding materials to attenuate gamma rays.

  7. Study on Mechanical Properties of Concrete Using Plastic Waste as an Aggregate

    Science.gov (United States)

    Jaivignesh, B.; Sofi, A.

    2017-07-01

    Disposal of large quantity of plastic causes land, water and air pollution etc.., so a study is conducted to recycle the plastic in concrete. This work investigates about the replacement of natural aggregate with non-biodegradable plastic aggregate made up of mixed plastic waste in concrete. Several tests are conducted such as compressive strength of cube, split tensile strength of cylinder, flexural strength test of prism to identify the properties and behavior of concrete using plastic aggregate. Replacement of fine aggregate weight by 10%, 15%, 20% with Plastic fine (PF) aggregate and for each replacement of fine aggregate 15%, 20%, 25% of coarse aggregate replacement also conducted with Plastic Coarse(PC) aggregate. In literatures reported that the addition of plastic aggregate in concrete causes the reduction of strength in concrete due to poor bonding between concrete and plastic aggregate, so addition of 0.3% of steel fiber by weight of cement in concrete is done to improve the concrete strength. Totally 60 cubes, 60 cylinders and 40 prisms are casted to identify the compressive strength, split tensile strength and flexural strength respectively. Casted specimens are tested at 7 and 28 days. The identified results from concrete using plastic aggregate are compared with conventional concrete. Result shows that reduction in mechanical properties of plastic aggregate added concrete. This reduction in strength is mainly due to poor bond strength between cement and plastic aggregate.

  8. Structure formation control of foam concrete

    Science.gov (United States)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya; Syrkin, Oleg

    2017-01-01

    The process of predetermined foam concrete structure formation is considered to be a crucial issue from the point of process control and it is currently understudied thus defining the need for additional research. One of the effective ways of structure formation control in naturally hardening foam concrete is reinforcement with dispersed fibers or introduction of plasticizers. The paper aims at studying the patterns of influence of microreinforcing and plasticizing additives on the structure and performance properties of foam concrete. Preparation of foam concrete mix has been conducted using one-step technology. The structure of modified foam concrete has been studied by means of electron microscopy. The cellular structure of foam concrete samples with the additives is homogeneous; the pores are uniformly distributed over the total volume. It has been revealed that introduction of the Neolas 5.2 plasticizer and microreinforcing fibers in the foam concrete mixture in the amount of 0.4 - 0.1 % by weight of cement leads to reduction of the average pore diameter in the range of 45.3 to 30.2 microns and the standard deviation of the pore average diameter from 23.6 to 9.2 in comparison with the sample without additive. Introduction of modifying additives has stimulated formation of a large number of closed pores. Thus porosity of conditionally closed pores has increased from 16.06 % to 34.48 %, which has lead to increase of frost resistance brand of foam concrete from F15 to F50 and to reduction of its water absorption by weight by 20 %.

  9. Influences of Steelmaking Slags on Hydration and Hardening of Concretes

    Science.gov (United States)

    Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.

    2017-11-01

    It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.

  10. Water treatment technologies for a mixed waste remedial action

    Energy Technology Data Exchange (ETDEWEB)

    Reith, C; Freeman, G [Weldon Spring Site Remedial Action Project, Jacobs Engineering Group, Inc., St. Charles, MO (United States); Ballew, B [Weldon Spring Site Remedial Action Project, Dames and Moore, St. Charles, MO (United States)

    1992-07-01

    Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)

  11. Water treatment technologies for a mixed waste remedial action

    International Nuclear Information System (INIS)

    Reith, C.; Freeman, G.; Ballew, B.

    1992-01-01

    Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)

  12. Development and investigation of the prestressed reinforced concrete vessels for the water cooled reactors in the FRG

    International Nuclear Information System (INIS)

    Medovikov, A.I.; Bogopol'skij, V.G.; Nikolaev, Yu.B.; Konevskij, V.N.

    1980-01-01

    An analysis of calculation results for characteristics of stress-strained state of reactor vessel made of prestressed reinforced concrete is presented. Experimental data obtained during the investigation into a model of reactor vessel top cover are given. Thermal shielding system both for boiling water and pressurized-water reactors has been considered and its working capacity has been evaluated. An analysis of experimental data show correctness of the method assumed for calculation of the reactor top cover which permits to exactly determine its stressed-strained state as well as the nature of crack propagation in the vessel and the structure supporting power. Ceramics is suggested to be used as a heat-insulating material

  13. Influence of Aggregate Coated with Modified Sulfur on the Properties of Cement Concrete

    Directory of Open Access Journals (Sweden)

    Swoo-Heon Lee

    2014-06-01

    Full Text Available This paper proposes the mixing design of concrete having modified sulfur-coated aggregate (MSCA to enhance the durability of Portland cement concrete. The mechanical properties and durability of the proposed MSCA concrete were evaluated experimentally. Melting-modified sulfur was mixed with aggregate in order to coat the aggregate surface at a speed of 20 rpm for 120 s. The MSCA with modified sulfur corresponding to 5% of the cement weight did not significantly affect the flexural strength in a prism concrete beam specimen, regardless of the water-cement ratio (W/C. However, a dosage of more than 7.5% decreased the flexural strength. On the other hand, the MSCA considerably improved the resistance to the sulfuric acid and the freezing-thawing, regardless of the sulfur dosage in the MSCA. The coating modified sulfur of 5% dosage consequently led to good results for the mechanical properties and durability of MSCA concrete.

  14. Utilization of Hospital Waste Ash in Concrete

    Directory of Open Access Journals (Sweden)

    Shazim Ali Memon

    2013-01-01

    Full Text Available Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement.

  15. Utilization of hospital waste ash in concrete

    International Nuclear Information System (INIS)

    Memon, S.; Sheikh, M.

    2013-01-01

    Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement) while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction) of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix) showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement. (author)

  16. Mixed

    Directory of Open Access Journals (Sweden)

    Pau Baya

    2011-05-01

    Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.

  17. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    NARCIS (Netherlands)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-01-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in

  18. Mixing Hot and Cold Water Streams at a T-Junction

    Science.gov (United States)

    Sharp, David; Zhang, Mingqian; Xu, Zhenghe; Ryan, Jim; Wanke, Sieghard; Afacan, Artin

    2008-01-01

    A simple mixing of a hot- and cold-water stream at a T-junction was investigated. The main objective was to use mass and energy balance equations to predict mass low rates and the temperature of the mixed stream after the T-junction, and then compare these with the measured values. Furthermore, the thermocouple location after the T-junction and…

  19. Kinetic Hydration Heat Modeling for High-Performance Concrete Containing Limestone Powder

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2017-01-01

    Full Text Available Limestone powder is increasingly used in producing high-performance concrete in the modern concrete industry. Limestone powder blended concrete has many advantages, such as increasing the early-age strength, reducing the setting time, improving the workability, and reducing the heat of hydration. This study presents a kinetic model for modeling the hydration heat of limestone blended concrete. First, an improved hydration model is proposed which considers the dilution effect and nucleation effect due to limestone powder addition. A degree of hydration is calculated using this improved hydration model. Second, hydration heat is calculated using the degree of hydration. The effects of water to binder ratio and limestone replacement ratio on hydration heat are clarified. Third, the temperature history and temperature distribution of hardening limestone blended concrete are calculated by combining hydration model with finite element method. The analysis results generally agree with experimental results of high-performance concrete with various mixing proportions.

  20. Chloride Transport in OPC Concrete Subjected to the Freeze and Thaw Damage

    Directory of Open Access Journals (Sweden)

    Ki Yong Ann

    2017-01-01

    Full Text Available To predict the durability of a concrete structure under the coupling degradation consisting of the frosting and chloride attack, microstructural analysis of the concrete pore structure should be accompanied. In this study, the correlation between the pore structure and chloride migration for OPC concrete was evaluated at the different cement content in the concrete mix accounting for 300, 350, and 400 kg/m3 at 0.45 of a free water cement ratio. The influence of frosting damage on the rate of chloride transport was assessed by testing with concrete specimens subjected to a rapid freezing and thawing cyclic environment. As a result, it was found that chloride transport was accelerated by frost damage, which was more influential at the lower cement content. The microscopic examination of the pore structure showed that the freezing environment increased the volume of the large capillary pore in the concrete matrix.

  1. Mix design for improved strength and freeze-thaw durability of pervious concrete fill in Pearl-Chain Bridges

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Kevern, John T.; Schaefer, Vernon R.

    2017-01-01

    different mixture proportions using two different sizes of granite coarse aggregate and at two different water-to-cement ratios. The specimens had an average void content of 24-28 %. Specimens containing air entraining and high-range water reducing admixtures were most workable, as determined by fresh...... density, and thus the easiest to place. The addition of a high-range water reducing admixture and lightweight sand (expanded shale) for internal curing improved the 28-day compressive strength and splitting tensile strength. The coarse aggregate gradation had a large influence on permeability; however......, all tested permeabilities were high enough to drain the rain from a 100-year rain event in Denmark. The air entraining agent dosage used was not sufficiently high to create the necessary protective air content in the cement paste, and the freeze-thaw durability of the specimens were generally poor...

  2. How Concrete is Concrete?

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2011-01-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics.Key words:  Conceret Learning Materials, School Math, Common Sense, Scaffolding, Communication DOI: http://dx.doi.org/10.22342/jme.2.1.780.1-14

  3. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution ... Having tremendous load bearing capacity, it can withstand .... retention coefficients for similar concrete compositions.

  4. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    Science.gov (United States)

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Study of polluted water mixing on sediment of Lahore canal

    International Nuclear Information System (INIS)

    Asim, M.

    2016-01-01

    People living in societies along the canals which pass through the urban areas, are adding domestic and industrial waste water and wastes into them like Lahore canal. This untreated industrial and municipal waste and contaminated water may become a risk to irrigation water quality and sediment moving in it in the form of suspended load. The results disclose that as suspended sediment concentration increases the pH value drops. Consequently it can be established from results that they are inversely related to each other but this behaviour is generally due to effect of rain water runoff. The suspended sediment content was at its highest during monsoon season. Similarly pH values varied considerably from limit of 6.5-8.4. Other water quality chemical parameters did not stray from their recommended limits. The dumping of waste water from pipes did not have any major effect on the water quality of the canal due to its less percentage to the total canal discharge. (author)

  6. Determination of transmission factors of concretes with different water/cement ratio, curing condition, and dosage of cement and air entraining agent

    International Nuclear Information System (INIS)

    Sahin, Remzi; Polat, Recep; Icelli, Orhan; Celik, Cafer

    2011-01-01

    Highlights: → We determined transmission factors of parameters affecting properties of concrete. → The most important parameter is W/C ratio for attenuation of radiation of concrete. → Taguchi Method provides an appropriate methodology for parameter reduction. - Abstract: This study focuses on determination of transmission factors of main parameters affecting the properties of both normal- and heavy-weight concrete in order to increase knowledge and understanding of radiation attenuation in concrete at a later age. Water/cement (W/C) ratio, curing condition, cement quantity and air entraining agent (AEA) were selected as the main parameters. Eight energy values have been selected within the energy interval of 30.85-383.85 keV to be used in the radiation source. The Taguchi Method was used as the method of optimization. It was determined in the study that the most important parameter affecting the attenuation of the radiation of the concrete is the W/C ratio and the concretes produced with the lowest level of W/C ratio absorb more radiation. However, it was also determined that there was a combined effect between the W/C ratio and the cement dosage.

  7. developed algorithm for the application of british method of concret

    African Journals Online (AJOL)

    t-iyke

    Most of the methods of concrete mix design developed over the years were geared towards manual approach. ... Key words: Concrete mix design; British method; Manual Approach; Algorithm. ..... Statistics for Science and Engineering.

  8. Design of Normal Concrete Mixtures Using Workability-Dispersion-Cohesion Method

    Directory of Open Access Journals (Sweden)

    Hisham Qasrawi

    2016-01-01

    Full Text Available The workability-dispersion-cohesion method is a new proposed method for the design of normal concrete mixes. The method uses special coefficients called workability-dispersion and workability-cohesion factors. These coefficients relate workability to mobility and stability of the concrete mix. The coefficients are obtained from special charts depending on mix requirements and aggregate properties. The method is practical because it covers various types of aggregates that may not be within standard specifications, different water to cement ratios, and various degrees of workability. Simple linear relationships were developed for variables encountered in the mix design and were presented in graphical forms. The method can be used in countries where the grading or fineness of the available materials is different from the common international specifications (such as ASTM or BS. Results were compared to the ACI and British methods of mix design. The method can be extended to cover all types of concrete.

  9. Utilization of fly ash and ultrafine GGBS for higher strength foam concrete

    Science.gov (United States)

    Gowri, R.; Anand, K. B.

    2018-02-01

    Foam concrete is a widely accepted construction material, which is popular for diverse construction applications such as, thermal insulation in buildings, lightweight concrete blocks, ground stabilization, void filling etc. Currently, foam concrete is being used for structural applications with a density above 1800kg/m3. This study focuses on evolving mix proportions for foam concrete with a material density in the range of 1200 kg/m3 to 1600 kg/m3, so as to obtain strength ranges that will be sufficient to adopt it as a structural material. Foam concrete is made lighter by adding pre-formed foam of a particular density to the mortar mix. The foaming agent used in this study is Sodium Lauryl Sulphate and in order to densify the foam generated, Sodium hydroxide solution at a normality of one is also added. In this study efforts are made to make it a sustainable construction material by incorporating industrial waste products such as ultrafine GGBS as partial replacement of cement and fly ash for replacement of fine aggregate. The fresh state and hardened state properties of foam concrete at varying proportions of cement, sand, water and additives are evaluated. The proportion of ultrafine GGBS and fly ash in the foam concrete mix are varied aiming at higher compressive strength. Studies on air void-strength relationship of foam concrete are also included in this paper.

  10. The characterization of cement waste form for final disposal of decommissioning concrete wastes

    International Nuclear Information System (INIS)

    Lee, Yoon-ji; Lee, Ki-Won; Min, Byung-Youn; Hwang, Doo-Seong; Moon, Jei-Kwon

    2015-01-01

    Highlights: • Decommissioning concrete waste recycling and disposal. • Compressive strength of cement waste form. • Characteristic of thermal resistance and leaching of cement waste form. - Abstract: In Korea, the decontamination and decommissioning of KRR-1, 2 at KAERI have been under way. The decommissioning of the KRR-2 was finished completely by 2011, whereas the decommissioning of KRR-1 is currently underway. A large quantity of slightly contaminated concrete waste has been generated from the decommissioning projects. The concrete wastes, 83ea of 200 L drums, and 41ea of 4 m 3 containers, were generated in the decommissioning projects. The conditioning of concrete waste is needed for final disposal. Concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled with a void space after concrete rubble pre-placement into 200 L drums. Thus, this research developed an optimizing mixing ratio of concrete waste, water, and cement, and evaluated the characteristics of a cement waste form to meet the requirements specified in the disposal site specific waste acceptance criteria. The results obtained from a compressive strength test, leaching test, and thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested as an optimized mixing ratio of 75:15:10. In addition, the compressive strength of the cement waste form was satisfied, including a fine powder up to a maximum of 40 wt% in concrete debris waste of about 75%. According to the scale-up test, the mixing ratio of concrete waste, water, and cement is 75:10:15, which meets the satisfied compressive strength because of an increase in the particle size in the waste

  11. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  12. Effect of mineral admixtures on kinetic property and compressive strength of self Compacting Concrete

    Science.gov (United States)

    Jagalur Mahalingasharma, Srishaila; Prakash, Parasivamurthy; Vishwanath, K. N.; Jawali, Veena

    2017-06-01

    This paper presents experimental investigations made on the influence of chemical, physical, morphological and mineralogical properties of mineral admixtures such as fly ash, ground granulate blast furnace slag, metakaoline and micro silica used as a replacement of cement in self compacting concrete on workability and compressive strength. Nineteen concrete mixes were cast by replacing with cement by fly ash or ground granulated blast furnace slag as binary blend at 30%, 40%, 50% and with addition of micro silica and metakaoline at 10% as a ternary blend with fly ash, ground granulated blast furnace slag and obtained results were compare with control mix. Water powder ratio 0.3 and super plasticizer dosage 1% of cementitious material was kept constant for all the mixes. The self compacting concrete tested for slump flow, V-funnel, L-Box, J-Ring, T50, and compressive strength on concrete cube were determined at age of 3, 7, 28, 56, 90 days.

  13. Light water reactor mixed-oxide fuel irradiation experiment

    International Nuclear Information System (INIS)

    Hodge, S.A.; Cowell, B.S.; Chang, G.S.; Ryskamp, J.M.

    1998-01-01

    The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding

  14. Concrete research using blended cements

    International Nuclear Information System (INIS)

    Butler, W.B.

    2001-01-01

    Concrete research increasingly involves the use of mixes containing one or more of the supplementary cementitious materials (SCMs), often in conjunction with chemical admixtures. The influence of materials is commonly evaluated on the basis of water/ cement or water/ binder ratio and SCM content as a percentage of total binder, with dosage level of chemical admixture varied to maintain workability. As a result, more than one variable is introduced at a time and the objectives of the research may not be achieved. The significance of water/ cement ratio and addition rates of admixtures are examined from a practical standpoint with suggestions for more appropriate means of evaluation of the influence of individual materials. Copyright (2001) The Australian Ceramic Society

  15. Concrete-Water-Interaction and Ikaite (CaCO3.6H2O) Precipitation in a Man-Made River Bed

    Science.gov (United States)

    Boch, R.; Dietzel, M.; Reichl, P.; Leis, A.; Pölt, P.; Baldermann, A.

    2014-12-01

    Centimetre-thick, beige-colored and soft crusts were observed shortly after construction of a man-made river bed, i.e. a small natural river was bypassed flowing through a new bed lined with concrete and blocks. Hydrochemical investigations during wintertime - when water temperatures dropped down close to freezing - showed surprisingly high pH values up to 13.0 and elevated Ca2+ concentrations up to 200 mg/l. Both, the artifical and natural (downstream) section of the river bed were affected by the anomalous hydrochemistry and formation of prominent secondary precipitates. In order to better understand the particular and rapid water-rock-interaction, a hydrochemical monitoring program was launched and several of the delicate precipitates were recovered in refrigerator boxes in their original solution. The samples were analyzed in the laboratory within a few hours after sampling and stored at 1 °C. XRD and FT-IR patterns clearly revealed the predominant occurrence of "ikaite" in the crusts next to minor amounts of other carbonates (calcite, aragonite, vaterite) and detrital minerals. Ikaite - calcium carbonate hexahydrate - is a worldwide rarely documented carbonate mineral. This mineral is metastable and needs particular and narrow conditions in order to precipitate from solutions, i.e. a very limited water-temperature range between 0 and 4 °C (with ambient-pressure and low-salinity), highly alkaline pH conditions, high supersaturation values, and in many cases carbonate precipitation inhibitors (e.g. phosphates). Outside these conditions it disintegrates into calcite and water within minutes to hours. The few places of ikaite formation include Ikka Fjord in Greenland, Arctic- and Antarctic sea-ice and some sites of water mixing at Mono Lake, California. Combining detailed field monitoring results, solid-phase analyses and regional meteorological data (rainfall, water discharge, temperature) with hydrogeochemical modeling allows constraining the mechanisms of

  16. Mechanical properties of self-curing concrete (SCUC

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-12-01

    Full Text Available The mechanical properties of concrete containing self-curing agents are investigated in this paper. In this study, two materials were selected as self-curing agents with different amounts, and the addition of silica fume was studied. The self-curing agents were, pre-soaked lightweight aggregate (Leca; 0.0%, 10%, 15%, and 20% of volume of sand; or polyethylene-glycol (Ch.; 1%, 2%, and 3% by weight of cement. To carry out this study the cement content of 300, 400, 500 kg/m3, water/cement ratio of 0.5, 0.4, 0.3 and 0.0%, 15% silica fume of weight of cement as an additive were used in concrete mixes. The mechanical properties were evaluated while the concrete specimens were subjected to air curing regime (in the laboratory environment with 25 °C, 65% R.H. during the experiment. The results show that, the use of self-curing agents in concrete effectively improved the mechanical properties. The concrete used polyethylene-glycol as self-curing agent, attained higher values of mechanical properties than concrete with saturated Leca. In all cases, either 2% Ch. or 15% Leca was the optimum ratio compared with the other ratios. Higher cement content and/or lower water/cement ratio lead(s to more efficient performance of self-curing agents in concrete. Incorporation of silica fume into self-curing concrete mixture enhanced all mechanical properties, not only due to its pozzolanic reaction, but also due to its ability to retain water inside concrete.

  17. Mixed reverse micelles facilitated downstream processing of lipase involving water-oil-water liquid emulsion membrane.

    Science.gov (United States)

    Bhowal, Saibal; Priyanka, B S; Rastogi, Navin K

    2014-01-01

    Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water-oil-water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0-fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1-17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. © 2014 American Institute of Chemical Engineers.

  18. Three-Dimensional Effects of Artificial Mixing in a Shallow Drinking-Water Reservoir

    Science.gov (United States)

    Chen, Shengyang; Little, John C.; Carey, Cayelan C.; McClure, Ryan P.; Lofton, Mary E.; Lei, Chengwang

    2018-01-01

    Studies that examine the effects of artificial mixing for water-quality mitigation in lakes and reservoirs often view a water column with a one-dimensional (1-D) perspective (e.g., homogenized epilimnetic and hypolimnetic layers). Artificial mixing in natural water bodies, however, is inherently three dimensional (3-D). Using a 3-D approach experimentally and numerically, the present study visualizes thermal structure and analyzes constituent transport under the influence of artificial mixing in a shallow drinking-water reservoir. The purpose is to improve the understanding of artificial mixing, which may help to better design and operate mixing systems. In this reservoir, a side-stream supersaturation (SSS) hypolimnetic oxygenation system and an epilimnetic bubble-plume mixing (EM) system were concurrently deployed in the deep region. The present study found that, while the mixing induced by the SSS system does not have a distinct 3-D effect on the thermal structure, epilimnetic mixing by the EM system causes 3-D heterogeneity. In the experiments, epilimnetic mixing deepened the lower metalimnetic boundary near the diffuser by about 1 m, with 55% reduction of the deepening rate at 120 m upstream of the diffuser. In a tracer study using a 3-D hydrodynamic model, the operational flow rate of the EM system is found to be an important short-term driver of constituent transport in the reservoir, whereas the duration of the EM system operation is the dominant long-term driver. The results suggest that artificial mixing substantially alters both 3-D thermal structure and constituent transport, and thus needs to be taken into account for reservoir management.

  19. Operation and Licensing of Mixed Cores in Water Cooled Reactors

    International Nuclear Information System (INIS)

    2013-11-01

    Nuclear fuel is a highly complex material that is subject to continuous development and is produced by a range of manufacturers. During operation of a nuclear power plant, the nuclear fuel is subject to extreme conditions of temperature, corroding environment and irradiation, and many different designs of fuel have been manufactured with differing fuel materials, cladding materials and assembly structure to ensure these conditions. The core of an operating power plant can contain hundreds of fuel assemblies, and where there is more than a single design of a fuel assembly in the core, whether through a change of fuel vendor, introduction of an improved design or for some other reason, the core is described as a mixed core. The task of ensuring that the different assembly types do not interact in a harmful manner, causing, for example, differing flow resistance resulting in under cooling, is an important part of ensuring nuclear safety. This report has compiled the latest information on the operational experience of mixed cores and the tools and techniques that are used to analyse the core operation and demonstrate that there are no safety related problems with its operation. This publication is a result of a technical meeting in 2011 and a series of consultants meetings

  20. The characterization of cement waste form for final disposal of decommissioned concrete waste

    International Nuclear Information System (INIS)

    Lee, K.W.; Lee, Y.J.; Hwang, D.S.; Moon, J.K.

    2015-01-01

    Since the decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete waste have been generated. In Korea, the decontamination and decommissioning of the KRR-1, 2 at the KAERI have been under way. In addition, 83 drums of 200 l, and 41 containers of 4 m 3 of concrete waste were generated. Conditioning of concrete waste is needed for final disposal. Concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled into a void space after concrete rubble pre-placement into 200 l drums. Thus, this research developed an optimizing mixing ratio of concrete waste, water, and cement, and evaluated the characteristics of a cement waste form to meet the requirements specified in the disposal site specific waste acceptance criteria. The results obtained from compressive strength test, leaching test, and thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested to have 75:15:10 as the optimized mixing ratio. In addition, the compressive strength of cement waste form was satisfied, including fine powder up to a maximum 40 wt% in concrete debris waste of about 75%. (authors)

  1. Study on the durability of concrete using granulated blast furnace slag as fine aggregate

    Science.gov (United States)

    Shi, Dongsheng; Liu, Qiang; Xue, Xinxin; He, Peiyuan

    2018-03-01

    In order to assessing the durability of concrete using granulated blastfurnace slag (GBS) as fine aggregate and compare it with natural river sand concrete, three different size of specimen were produced by using the same mix proportion with 3 different water cement ratios and 3 replacement ratios, and using it to measure the three aspects on the durability of concrete including freeze-thaw performance, dry-shrinkage performance and anti-chloride-permeability performance. In this paper. The test results show that using GBS as fine aggregate can slightly improve anti-chloride-permeability performance and dry-shrinkage performance of concrete in the condition of low water cement ratio, on the other hand, using GBS or natural river sand as fine aggregate has almost similar durability of concrete.

  2. A preliminary study on using manufactured sand from Jelsa Quarry for the production of plastic concrete mixes. FA 2 Competitive constructions. SP 2.3 High quality manufactured sand for concrete

    OpenAIRE

    Cepuritis, Rolands

    2012-01-01

    This study has been carried out within COIN - Concrete Innovation Centre - one of presently 14 Centres for Research based Innovation (CRI), which is an initiative by the Research Council of Norway. 3D005940

  3. Concrete works in Igata Nuclear Power Station Unit-2

    International Nuclear Information System (INIS)

    Yanase, Hidemasa

    1981-01-01

    The construction of Igata Nuclear Power Station Unit-2 was started in February, 1978, and is scheduled to start the commercial operation in March, 1982. Construction works are to be finished by August, 1981. The buildings of Igata Nuclear Power Station are composed of large cross section concrete for the purpose of shielding and the resistance to earth quakes. In response to this, moderate heat Portland cement has been employed, and in particular, the heat of hydration has been controlled. In this report, also fine and coarse aggregates, admixtures and chemical admixtures, and further, the techniques to improve the quality are described. Concrete preparation plant was installed in the power station site. Fresh concrete was carried with agitator body trucks from the preparation plant to the unloading point, and from there with pump trucks. Placing of concrete was carried out, striving to obtain homogeneous and dense concrete by using rod type vibrators. Further, concrete was placed in low slump (8 - 15 cm) to reduce water per unit volume, and its temperature was also carefully controlled, e.g., cold water (temperature of mixing water was about 10 deg C) was used in summer season (end of June to end of September). As a result, the control target was almost satisfied. As for testing and inspection, visual appearance test was done as well as material testing in compliance with JIS and other standards. (Wakatsuki, Y.)

  4. Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis

    NARCIS (Netherlands)

    Daniilidis, Alexander; Vermaas, David; Herber, Rien; Nijmeijer, Dorothea C.

    2014-01-01

    Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power

  5. Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis

    NARCIS (Netherlands)

    Daniilidis, Alexandros; Vermaas, David A.; Herber, Rien; Nijmeijer, Kitty

    Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power

  6. Concrete pavement mixture design and analysis (MDA) : assessment of air void system requirements for durable concrete.

    Science.gov (United States)

    2012-06-01

    Concrete will suffer frost damage when saturated and subjected to freezing temperatures. Frost-durable concrete can be produced if a : specialized surfactant, also known as an air-entraining admixture (AEA), is added during mixing to stabilize micros...

  7. Concrete quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Holz, N. [Harza Engineering Company, Chicago, IL (United States)

    2000-08-01

    This short article reports on progress at the world's largest civil construction project, namely China's Three Gorges hydro project. Work goes on around the clock to put in place nearly 28 M m{sup 3} of concrete. At every stage of the work there is strong emphasis on quality assurance (QA) and concrete is no exception. The US company Harza Engineering has been providing QA since the mid-1980s and concrete QA has been based on international standards. Harza personnel work in the field with supervisors developing educational tools for supervising concrete construction and quality, as well as providing training courses in concrete technology. Some details on flood control, capacity, water quality and environmental aspects are given..

  8. Low pH self compacting concrete for deposition tunnel plugs

    International Nuclear Information System (INIS)

    Vogt, Carsten; Lagerblad, Bjoern; Wallin, Kjell; Baldy, Franziska; Jonasson, Jan-Erik

    2009-04-01

    The temporary plugs in the entrance of the deposition tunnel have three purposes, i.e. to bring about a water pressure in the deposition holes as quickly as possible in order to facilitate the wetting of the buffer, to reduce the groundwater's pressure gradient in the backfill so that piping is prevented, and to keep the backfill in place during the operating phase until the main tunnel has been backfilled. In the repository concept, low-pH-concrete shall be used instead of conventional concrete. A low-pH concrete is a concrete with a leachate pH below 11, which is lower than in normal concrete (pH > 12.5). The low-pH concrete developed is achieved by replacing 40% by weight of the cement with silica fume. According to the current understanding, low-pH concrete should not disturb the function of the bentonite. This is accomplished by avoiding the development of a high-pH leachate by replacing leachable calcium compounds with silica in the low-pH-concrete. There are different demands on the concrete in fresh and hardened state in order to fulfil its purpose. The geometry of the plug requires the fresh concrete to be self-compacting. The method of placement requires that the fresh concrete keeps its self-compacting properties for at least two hours. All components of the mix design must be commercially available and it must be possible to produce the concrete in a normal concrete factory. The concrete shall release low exothermic heat during curing. The volume changes of the young and mature concrete shall be minimised. The properties of the young and mature concrete need to be quantified in order to design and construct the plugs so that they fulfil the intended purpose. Low-pH concrete with self-compacting properties has been developed and is presented in the report. The low-pH SCC (Self-Compacting Concrete) contains ordinary Portland cement, densified silica fume, limestone filler, super plasticizer, high quality natural fine aggregates and average quality crushed

  9. Low pH self compacting concrete for deposition tunnel plugs

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten; Lagerblad, Bjoern; Wallin, Kjell; Baldy, Franziska (Swedish Cement and Concrete Research Institute, Stockholm (Sweden)); Jonasson, Jan-Erik (Luleaa Univ. of Technology, Luleaa (Sweden))

    2009-04-15

    The temporary plugs in the entrance of the deposition tunnel have three purposes, i.e. to bring about a water pressure in the deposition holes as quickly as possible in order to facilitate the wetting of the buffer, to reduce the groundwater's pressure gradient in the backfill so that piping is prevented, and to keep the backfill in place during the operating phase until the main tunnel has been backfilled. In the repository concept, low-pH-concrete shall be used instead of conventional concrete. A low-pH concrete is a concrete with a leachate pH below 11, which is lower than in normal concrete (pH > 12.5). The low-pH concrete developed is achieved by replacing 40% by weight of the cement with silica fume. According to the current understanding, low-pH concrete should not disturb the function of the bentonite. This is accomplished by avoiding the development of a high-pH leachate by replacing leachable calcium compounds with silica in the low-pH-concrete. There are different demands on the concrete in fresh and hardened state in order to fulfil its purpose. The geometry of the plug requires the fresh concrete to be self-compacting. The method of placement requires that the fresh concrete keeps its self-compacting properties for at least two hours. All components of the mix design must be commercially available and it must be possible to produce the concrete in a normal concrete factory. The concrete shall release low exothermic heat during curing. The volume changes of the young and mature concrete shall be minimised. The properties of the young and mature concrete need to be quantified in order to design and construct the plugs so that they fulfil the intended purpose. Low-pH concrete with self-compacting properties has been developed and is presented in the report. The low-pH SCC (Self-Compacting Concrete) contains ordinary Portland cement, densified silica fume, limestone filler, super plasticizer, high quality natural fine aggregates and average quality

  10. Artificial-Crack-Behavior Test Evaluation of the Water-Leakage Repair Materials Used for the Repair of Water-Leakage Cracks in Concrete Structures

    Directory of Open Access Journals (Sweden)

    Soo-Yeon Kim

    2016-09-01

    Full Text Available There are no existing standard test methods at home and abroad that can verify the performance of water leakage repair materials, and it is thus very difficult to perform quality control checks in the field of water leakage repair. This study determined that the key factors that have the greatest impact on the water leakage repair materials are the micro-behaviors of cracks, and proposed an artificial-crack-behavior test method for the performance verification of the repair materials. The performance of the 15 kinds of repair materials that are currently being used in the field of water leakage repair was evaluated by applying the proposed test method. The main aim of such a test method is to determine if there is water leakage by injecting water leakage repair materials into a crack behavior test specimen with an artificial 5-mm crack width, applying a 2.5 mm vertical behavior load at 100 cycles, and applying 0.3 N/mm2 constant water pressure. The test results showed that of the 15 kinds of repair materials, only two effectively sealed the crack and thus stopped the water leakage. The findings of this study confirmed the effectiveness of the proposed artificial-crack-behavior test method and suggest that it can be used as a performance verification method for checking the responsiveness of the repair materials being used in the field of water leakage repair to the repetitive water leakage behaviors that occur in concrete structures. The study findings further suggest that the use of the proposed test method makes it possible to quantify the water leakage repair quality control in the field.

  11. Recycling of Reclaimed Asphalt Pavement in Portland Cement Concrete

    Directory of Open Access Journals (Sweden)

    Salim Al-Oraimi

    2009-06-01

    Full Text Available Reclaimed Asphalt Pavement (RAP is the result of removing old asphalt pavement material. RAP consists of high quality well-graded aggregate coated with asphalt cement. The removal of asphalt concrete is done for reconstruction purposes, resurfacing, or to obtain access to buried utilities. The disposal of RAP represents a large loss of valuable source of high quality aggregate. This research investigates the properties of concrete utilizing recycled reclaimed asphalt pavement (RAP. Two control mixes with normal aggregate were designed with water cement ratios of 0.45 and 0.5. The control mixes resulted in compressive strengths of 50 and 33 MPa after 28 days of curing. The coarse fraction of RAP was used to replace the coarse aggregate with 25, 50, 75, and 100% for both mixtures. In addition to the control mix (0%, the mixes containing RAP were evaluated for slump, compressive strength, flexural strength, and modulus of elasticity. Durability was evaluated using surface absorption test.

  12. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  13. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  14. An Experimental Investigation on the Effect of Addition of Ternary Blend on the Mix Design Characteristics of High Strength Concrete using Steel Fibre

    Science.gov (United States)

    Sinha, Deepa A., Dr; Verma, A. K., Dr

    2017-08-01

    This paper presents the results of M60 grade of concrete. M60 grade of concrete is achieved by maximum density technique. Concrete is brittle and weak in tension and develops cracks during curing and due to thermal expansion / contraction over a period ot time. Thus the effect of addition of 1% steel fibre is studied. For ages, concrete has been one of the widely used materials for construction. When cement is manufactured, every one ton of cement produces around one ton of carbon dioxide leading to global warming and also as natural resources are finishing, so use of supplementary cementitious material like alccofine and flyash is used as partial replacement of cement is considered. The effect of binary and ternary blend on the strength characteristics is studied. The results indicate that the concrete made with alccofine and flyash generally show excellent fresh and hardened properties. The ternary system that is Portland cement-fly ash-Alccofine concrete was found to increase the strength of concrete when compared to concrete made with Portland cement or even from Portland cement and fly ash.

  15. Mechanical Properties of High Strength Concrete Containing Coal Bottom Ash and Oil-Palm Boiler Clinker as Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Soofinajafi Mahmood

    2016-01-01

    Full Text Available This research aims to utilize Coal Furnace Bottom ash (CBA and Oil-Palm Boiler Clinker (OPBC as fine aggregate in concrete mix proportions. They are solid wastes from power plant and Oil Palm industry, respectively. Since these by-products do not have any primary use and are pure waste, an opportunity to use them as aggregate in concrete industry not only is economical but also will be an environmental friendly opportunity leading towards a more sustainable production chain. CBA and OPBC sands had similar grading to normal sand but have lower density and higher water absorption. In a high strength concrete, normal sand was replaced up to 25% with either CBA or OPBC. Test results showed that although water absorption of these wastes was more than normal sand but the slump value of concrete containing each of these wastes showed that these concretes had good workability. All mixes containing these wastes had slightly lower compressive strength at early ages and equivalent or higher compressive strength at later ages compared to control mix. The 28-day compressive strength of these concretes was in the range of 69–76 MPa which can be categorized as high strength concrete. In general, the performance of OPBC was better than CBA at 25% replacement level. However, it is recommended that at least 12.5% of total volume of fine aggregate in a high strength concrete is used of CBA or OPBC.

  16. Pervious Concrete

    OpenAIRE

    Torsvik, Øyvind André Hoff

    2012-01-01

    Pervious concrete is a material with a high degree of permeability but generally low strength. The material is primarily used for paving applications but has shown promise in many other areas of usage. This thesis investigates the properties of pervious concrete using normal Norwegian aggregates and practices. An overview of important factors when it comes to designing and producing pervious concrete is the result of this investigation. Several experiments have been performed in the concrete ...

  17. Application of super workable concrete to main tower of cable-stayed prestressed concrete bridge. ; Kiba park grand bridge. PC shachokyo no shuto eno tekiyo. ; Kiba koen ohashi

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Y.; Shindo, T.; Sakamoto, A. (Taisei Corp., Tokyo (Japan))

    1993-08-01

    The Kiba Park Grand Bridge is a cable-stayed prestressed concrete (PC) bridge with a length of 186m. The main tower of this PC cable-stayed bridge consists of a pair of vertical columns with height of 60m and a beam connecting the columns. For the purpose of the advanced efficiency of construction without formwork and removal work and the improvement of durability, the precast buried formwork made of polymer impregnated concrete formwork was adopted. Approximate 650 cubic meter of super workable concrete was placed for the upper part ranging from 7th to 17th blocks of vertical columns and the beam. Blast furnace cement B and fly ash were used as binder. Naphthalenesulfonic acid type high performance water reducing agent and lignosulfonic acid type AE (air-entraining) water reducing agent were used as admixtures. Super workable concrete was mixed using forced double-axle mixers in the ready-mixed concrete plant. Satisfactory quality of the fresh concrete and strength of the hardened concrete were obtained. 2 refs., 11 figs., 3 tabs.

  18. Biopolymers to improve physical properties and leaching characteristics of mortar and concrete: A review

    Science.gov (United States)

    Olivia, M.; Jingga, H.; Toni, N.; Wibisono, G.

    2018-04-01

    The invention of environmentally friendly, high performance, and green material such as biopolymers marked an emerging trend for sustainable construction over the past decades. Biopolymer comprises of natural monomers and synthesized by plants or other organisms. The sustainable, biodegradable, and renewable biopolymers were used in concrete mixes to improve their physical and mechanical properties and durability. The aim of this paper is to provide a brief an overview of the impact of biopolymer addition into concrete and mortar mixes. Many studies on the influence of biopolymer on the properties of concrete and mortar by adding biopolymers at a certain proportion (usually less than one wt.%) to the concrete or mortar mixes, and the heavy metal leaching, rheological, and mechanical properties of the mixes were conducted. Biopolymers included in this review are chitosan (CH), xanthan gum (XG), guar gum (GG), lignosulphonate (LS), and cellulose ethers (CE). Data from previous studies showed that the addition of certain types of biopolymer into concrete and mortar mixes improve workability, water retention, and compressive strength by up to 30 percent. Chitosan strengthens heavy metal encapsulation in the mortar and neutralizes the negative impact of heavy metal on the mortar properties and environment. To sum up, the use of biopolymers improve physical properties and leaching characteristics of mortar and concrete.

  19. Structural Precast Concrete Handbook

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly.......Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly....

  20. LIGHTWEIGHT CONCRETE BASED GRANSHLAK

    Directory of Open Access Journals (Sweden)

    NETESA M. I.

    2016-02-01

    Full Text Available Raising of problem. Concrete advisable to obtain a low strength with local secondary resources for recycling and reduce the environmental burden on the environment. But it is important to design such concrete compositions with a reduced flow of cement. It is known that the coefficient of efficiency of use of cement in the concrete of the heavy and B10 is less than about 0.5, which is almost two times smaller than in class B15 concrete and above. Even lower coefficient of efficiency in light concrete cement low strength. Therefore, it is important to find patterns determining the composition of lightweight concrete based on local-products industry with more efficient use of cement in them. Purpose.. Based on the analysis of earlier research results, including with the use of methods of mathematical planning of experiments to determine the concrete contents, which can provide the requirements for the underlying layers of the floor, the compressive strength of which should correspond to the class B5. It is important to provide the required strength at minimum flow of the cement, which is the most expensive and energy-intensive part of concrete. Conclusion. Analysis of the test results of control samples of concrete in 28-day-old, the following laws. The required tensile strength of concrete compressive strength of 7.0 MPa can be obtained in the test range when used in formulations as a filler as the Dnieper hydroelectric power station fly ash and tailings Krivoy Rog iron ore YuGOK. To ensure providing the required characteristic strength of the concrete in the underlying layers of the floor is advisable to use a nominal composition per cubic meter of concrete: cement 160 kg granshlaka Plant named after Petrovsky, 675 kg of fly ash Dnieper HPP 390 kg, 400 kg of sand, 230 liters of water. Thus, while ensuring rational grain composition components can obtain the desired strength lightweight concrete based granshlaka plant Petrovsky, using as fillers