WorldWideScience

Sample records for concrete material requirements

  1. HTGR Base Technology Program. Task 2: concrete properties in nuclear environment. A review of concrete material systems for application to prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Naus, D.J.

    1981-05-01

    Prestressed concrete pressure vessels (PCPVs) are designed to serve as primary pressure containment structures. The safety of these structures depends on a correct assessment of the loadings and proper design of the vessels to accept these loadings. Proper vessel design requires a knowledge of the component (material) properties. Because concrete is one of the primary constituents of PCPVs, knowledge of its behavior is required to produce optimum PCPV designs. Concrete material systems are reviewed with respect to constituents, mix design, placing, curing, and strength evaluations, and typical concrete property data are presented. Effects of extreme loadings (elevated temperature, multiaxial, irradiation) on concrete behavior are described. Finally, specialty concrete material systems (high strength, fibrous, polymer, lightweight, refractory) are reviewed. 235 references

  2. Significance of tests and properties of concrete and concrete-making materials

    CERN Document Server

    Pielert, James H

    2006-01-01

    Reflects a decade of technological changes in concrete industry! The newest edition of this popular ASTM publication reflects the latest technology in concrete and concrete-making materials. Six sections cover: (1) General information on the nature of concrete, sampling, variability, and testing laboratories. A new chapter deals with modeling cement and concrete properties. (2) Properties of freshly mixed concrete. (3) Properties of hardened concrete. (4) Concrete aggregates—this section has been revised and the chapters are presented in the order that most concerns concrete users: grading, density, soundness, degradation resistance, petrographic examination, reactivity, and thermal properties. (5) Materials other than aggregates—the chapter on curing materials now reflects the current technology of materials applied to new concrete surfaces. The chapter on mineral admixtures has been separated into two chapters: supplementary cementitious materials and ground slag. (6) Specialized concretes—contains a ...

  3. Asphalt Concrete Mixtures: Requirements with regard to Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Jan Mikolaj

    2015-01-01

    Full Text Available Design of asphalt concrete, required properties of constituent materials and their mixing ratios, is of tremendous significance and should be implemented with consideration given to the whole life cycle of those materials and the final construction. Conformity with requirements for long term performance of embedded materials is the general objective of the Life Cycle Assessment (LCA. Therefore, within the assessment, material properties need to be evaluated with consideration given to the whole service life—from the point of embedding in the construction until their disposal or recycling. The evaluation focuses on verification of conformity with criteria set for these materials and should guarantee serviceability and performance during their whole service life. Recycling and reuse of asphalt concrete should be preferred over disposal of the material. This paper presents methodology for LCA of asphalt concrete. It was created to ensure not only applicability of the materials in the initial stage, at the point of their embedding, but their suitability in terms of normatively prescribed service performance of the final construction. Methods described and results are presented in a case study for asphalt mixture AC 11; I design.

  4. Reduction of minimum required weight of cementitious materials in WisDOT concrete mixes.

    Science.gov (United States)

    2011-12-01

    This project was designed to explore the feasibility of lowering the cementitious materials content : (CMC) used in Wisconsin concrete pavement construction. The cementitious materials studied included : portland cement, fly ash, and ground granulate...

  5. Reduction of minimum required weight of cementitious materials in WisDOT concrete mixes.

    Science.gov (United States)

    2011-12-01

    "This project was designed to explore the feasibility of lowering the cementitious materials content : (CMC) used in Wisconsin concrete pavement construction. The cementitious materials studied included : portland cement, fly ash, and ground granulat...

  6. Mixed materials for concrete. Concrete yo konwazai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kono, K [Tokushima Univ., Tokushima (Japan). Faculty of Engineering

    1994-07-05

    The materials except cement, water and aggregate added into the cement paste, mortar or concrete before the execution of smashing are called mixed materials. The mixed materials are indispensable to the concrete for improving the quality of the fresh concrete as well as the hardened concrete; providing the characteristics suitable for the operation; and increasing the economy. In this paper, the main mixed materials including fly ash, which is the by-product in coal thermoelectric power station; silica fume; micropowder of slag in blast furnace; expansive materials and so on are described summarily. Especially, silica fume is the by-product, which are the super micro-powders with the average size around 0.1 micrometer, collected by the dust-collector from the waste gas generated during the manufacture in the electric furnace of ferrosilicon, which is an alloy iron, or silicon metal used as the deacidificating and desulfurizing agents in the steel production. But the most part thereof is depended on the import since the domestic output is low. 38 refs., 19 figs., 6 tabs.

  7. Material test of concrete for PCCV

    International Nuclear Information System (INIS)

    Okada, Katsuya; Kamiyama, Yukio; Iwasawa, Jiro.

    1987-01-01

    The concrete used for the prestressed concrete containment vessel (PCCV) for Tsuruga No.2 plant of Japan Atomic Power Co. has the design standard strength as high as 420 kg/cm 2 , but for the purpose of preventing the cracking due to hydration heat at the time of concrete hardening, the medium heat cement mixed with flyash was adopted. The example of using the cement of this kind for high strength concrete has been few, and the data on its various properties have been scarce. First, the various mixing proportion for the high strength concrete using the medium heat cement mixed with flyash was experimented, and the basic mixing proportion for satisfying the design standard strength 420 kg/cm 2 was determined. Next, about this basic mixing proportion, the tests on the crrep characteristics and the thermal characteristics required for the design of PCCVs were carried out. In this report, the results of these tests on the concrete are described. By combining the concrete materials available in Tsuruga district, the test on unsolidified concrete and hardened concrete was carried out. The experimental method and the results are reported. Uniaxial compression creep test was carried out on the concrete having the selected mixing proportion to evaluate the propriety of the design creep factor. In the test of the thermal characteristics, the heat conductivity, heat diffusivity, linear thermal expansion and specific heat were measured. (Kako, I.)

  8. Required performance to the concrete structure of the accelerator facilities

    International Nuclear Information System (INIS)

    Irie, Masaaki; Yoshioka, Masakazu; Miyahara, Masanobu

    2006-01-01

    As for the accelerator facility, there is many a thing which is constructed as underground concrete structure from viewpoint such as cover of radiation and stability of the structure. Required performance to the concrete structure of the accelerator facility is the same as the general social infrastructure, but it has been possessed the feature where target performance differs largely. As for the body sentence, expressing the difference of the performance which is required from the concrete structure of the social infrastructure and the accelerator facility, construction management of the concrete structure which it plans from order of the accelerator engineering works facility, reaches to the design, supervision and operation it is something which expresses the method of thinking. In addition, in the future of material structural analysis of the concrete which uses the neutron accelerator concerning view it showed. (author)

  9. Material model for non-linear finite element analyses of large concrete structures

    NARCIS (Netherlands)

    Engen, Morten; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik; Beushausen, H.

    2016-01-01

    A fully triaxial material model for concrete was implemented in a commercial finite element code. The only required input parameter was the cylinder compressive strength. The material model was suitable for non-linear finite element analyses of large concrete structures. The importance of including

  10. Material properties characterization - concrete

    International Nuclear Information System (INIS)

    England, G.L.; MacLeod, J.S.

    1978-01-01

    A review is presented of the six contributions in the SMiRT 4 conference to Session H5 on structural analysis of prestressed concrete reactor pressure vessels. These relate to short term stress-strain aspects of concrete loaded beyond the linear range in uniaxial and biaxial stress fields, to some time and temperature dependent properties of concrete at working stress levels, and to a programme of strain-gauge testing for the assessment of concrete properties. From the information discussed, it is clear that there are difficulties in determining material properties for concrete, and these are summarised. (UK)

  11. Concrete deck material properties.

    Science.gov (United States)

    2009-01-01

    The two-fold focus of this study was (a) to develop an understanding of the mechanisms responsible for causing : cracking in the concrete; and (b) to study the influence of the local materials on the performance of NYSDOTs HP : concrete mixture. R...

  12. Concrete Waste as a Cement Replacement Material in Concrete Blocks for Optimization of Thermal and Mechanical Properties

    OpenAIRE

    Rosman M.S.; Abas N.F.; Othuman Mydin M.A.

    2014-01-01

    The sustainability of the natural environment and eco-systems is of great importance. Waste generated from construction forces mankind to find new dumping grounds and at the same time, more natural resources are required for use as construction materials. In order to overcome this problem, this study was conducted to investigate the use of concrete waste in concrete blocks with a special focus on the thermal and mechanical properties of the resulting products. Three varieties of concrete mixt...

  13. Determining the Environmental Benefits of Ultra High Performance Concrete as a Bridge Construction Material

    Science.gov (United States)

    Lande Larsen, Ingrid; Granseth Aasbakken, Ida; O'Born, Reyn; Vertes, Katalin; Terje Thorstensen, Rein

    2017-10-01

    Ultra High Performance Concrete (UHPC) is a material that is attracting attention in the construction industry due to the high mechanical strength and durability, leading to structures having low maintenance requirements. The production of UHPC, however, has generally higher environmental impact than normal strength concrete due to the increased demand of cement required in the concrete mix. What is still not sufficiently investigated, is if the longer lifetime, slimmer construction and lower maintenance requirements lead to a net environmental benefit compared to standard concrete bridge design. This study utilizes life cycle assessment (LCA) to determine the lifetime impacts of two comparable highway crossing footbridges spanning 40 meters, designed respectively with UHPC and normal strength concrete. The results of the study show that UHPC is an effective material for reducing lifetime emissions from construction and maintenance of long lasting infrastructure, as the UHPC design outperforms the normal strength concrete bridge in most impact categories.

  14. Recycled materials in Portland cement concrete

    Science.gov (United States)

    2000-06-01

    This report pertains to a comprehensive study involving the use of recycled materials in Portland cement concrete. Three different materials were studied including crushed glass (CG), street sweepings (SS), and recycled concrete (RC). Blast furnace s...

  15. Research requirements for improved design of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Holley, M.J. Jr.

    1978-01-01

    Reinforced concrete is a competitive material for the construction of nuclear power plant containment structures. However, the designer is constrained by limited data on the behavior of certain construction details which require him to use what may be excessive rebar quantities and lead to difficult and costly construction. This paper discusses several design situations where research is recommended to increase the designer's options, to facilitate construction, and to extend the applicability of reinforced concrete to such changing containment requirements as may be imposed by an evolving nuclear technology. (Auth.)

  16. Effect of supplementary cementing materials on the concrete corrosion control

    International Nuclear Information System (INIS)

    Mejia de Gutierrez, R.

    2003-01-01

    Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnaces slag (GGBS), silica fume (SF), meta kaolin (MK), fly ash (FA) and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete: (Author) 11 refs

  17. Advances in the material science of concrete

    National Research Council Canada - National Science Library

    Ideker, Jason H; Radlinska, Aleksandra

    2010-01-01

    ... Committee 236, Material Science of Concrete. The session focused on material science aspects of concrete with an emphasis placed on advances in understanding the fundamental scientific topics of cement-based materials, as well as the crucial...

  18. Excavated rock materials from tunnels for sprayed concrete

    OpenAIRE

    Luong, Judy Yuen Wah; Aarstad, Kari; De Weerdt, Klaartje; Bjøntegaard, Øyvind

    2017-01-01

    Sand extracted from natural resources is widely used in concrete production nowadays. The increase in demand for concrete production has resulted in shortage of natural sand resources, especially in terms of suitable materials for concrete production. At the same time, large amounts of excavated rock materials are and have been generated from tunnelling projects and discarded. Hence, there is an opportunity to use these excavated rock materials as aggregates for concrete production. The chall...

  19. 29 CFR 1926.704 - Requirements for precast concrete.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural framing...

  20. Optimal Material Layout - Applied on Reinforced Concrete Slabs

    DEFF Research Database (Denmark)

    Dollerup, Niels; Jepsen, Michael S.; Damkilde, Lars

    2015-01-01

    This paper introduces a general, finite-element-based optimisation tool for improving the material layout of concrete structures. The application presented is general and exemplified by material optimisation of reinforced concrete slabs. By utilising the optimisation tool, it is possible to deter......This paper introduces a general, finite-element-based optimisation tool for improving the material layout of concrete structures. The application presented is general and exemplified by material optimisation of reinforced concrete slabs. By utilising the optimisation tool, it is possible...... to determine the optimal material layout of a slab in the ultimate load state, based on simple inputs such as outer geometry, boundary conditions, multiple load cases and design domains. The material layout of the optimal design can either be fully orthotropic or isotropic, or a combination with a predefined...

  1. Development of Concrete Paving Blocks Prepared from Waste Materials without Portland Cement

    Directory of Open Access Journals (Sweden)

    Charin NAMARAK

    2018-02-01

    Full Text Available This experiment used three types of waste materials: calcium carbide residue, fly ash, and recycled concrete aggregate to develop concrete paving blocks. The blocks had calcium carbide residue and fly ash as a binder without ordinary Portland cement (OPC and combined with 100 % of recycled concrete aggregate. The concrete paving blocks were 10 × 10 × 20 cm and were formed using a pressure of 6 or 8 MPa. The binder-to-aggregate ratio was held constant at 1:3 by weight, while the water-to-binder ratios were 0.30, 0.35, and 0.40. The effects of the water-to-binder ratios and fineness of the binder on the compressive strength, flexural strength, abrasion resistance, and water absorption of the concrete paving blocks were determined and compared with those of TIS 827 and ASTM C1319 standards. The results revealed that by applying this procedure, we were able to produce an excellence concrete paving block without using OPC. The compressive strength of the concrete paving blocks made from these waste materials was 41.4 MPa at 28 days and increased to 45.3 MPa at 60 days. Therefore, these waste materials can be used as raw materials to manufacture concrete paving blocks without OPC that meet the requirements of 40 MPa and 35 MPa specified by the TIS 827 and ASTM C1319 standards, respectively.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17566

  2. Production of environmentally friendly aerated concrete with required construction and operational properties

    Directory of Open Access Journals (Sweden)

    Tkach Evgeniya

    2018-01-01

    Full Text Available The purpose of these studies is to justify the feasibility of recycling different types of industrial waste instead of conventional expensive raw materials in production of environmentally friendly aerated concrete with required construction and operational properties. The impact of wastes from various industries on the environmental condition of affected areas, as well as the results of their environmental assessment were analyzed to determine whether these wastes could be used in production of high-performance building materials. The assessment of industrial wastes in aerated concrete production suggests that industrial wastes of hazard class IV can be recycled to produce aerated concrete. An environmentally friendly method for large-scale waste recycling, including a two-step environmentally sustainable mechanism, was developed. The basic quality indicators of the modified aerated concrete proved that the environmental safety could be enhanced by strengthening the structure, increasing its uniformity and improving thermal insulation properties. The modified non-autoclaved aerated concrete products with improved physical and operational properties were developed. They have the following properties: density – D700; class of concrete – B3.5; thermal transmittance coefficient – 0.143 W/(m·°C; frost resistance – F75.

  3. Development of neutron shielding concrete containing iron content materials

    Science.gov (United States)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    Concrete is one of the most important construction materials which widely used as a neutron shielding. Neutron shield is obtained of interaction with matter depends on neutron energy and the density of the shielding material. Shielding properties of concrete could be improved by changing its composition and density. High density materials such as iron or high atomic number elements are added to concrete to increase the radiation resistance property. In this study, shielding properties of concrete were investigated by adding iron, FeB, Fe2B, stainless - steel at different ratios into concrete. Neutron dose distributions and shield design was obtained by using FLUKA Monte Carlo code. The determined shield thicknesses vary depending on the densities of the mixture formed by the additional material and ratio. It is seen that a combination of iron rich materials is enhanced the neutron shielding of capabilities of concrete. Also, the thicknesses of shield are reduced.

  4. Material law for concrete under multiaxial stress

    International Nuclear Information System (INIS)

    Geistefeldt, H.

    1977-01-01

    In this paper a general triaxial set of finite strain-stress relations is derived, which can include a step-by-step way nearly all known factors and curves of material response. The finite constitutive equations representing the behaviour of concrete are related to the main strain-directions. The elastic part, the functions for uniaxial behaviour, those for biaxial response and finally the relation-parts, nonzero only in triaxial stress-state, can be reset separately by suitable functions which have been adjusted to the material response of actual concrete known from special tests. With a new and very short biaxial failure criterion for concrete, which has been stated and compared with test results, the analytic description of the biaxial behaviour of Kupfer's concrete is completed. With some additional assumptions the proposed failure criteria and the strain-stress equations for concrete are extended to the biaxial response of uncracked orthogonally reinforced concrete response. (Auth.)

  5. Innovative Materials and Techniques in Concrete Construction : ACES Workshop

    CERN Document Server

    2012-01-01

    Recent years have seen enormous advances in the technology of concrete as a material, through which its strength, compactness and ductility can reach levels never dreamed of before. Thanks to these improved material properties, the strength and durability of concrete structures is greatly improved, their weight and dimensions reduced, the scope of concrete as a structural material is widened and – despite the higher material costs – overall economy is possible, with positive impacts on sustainability as well. Similar advances are underway in reinforcing materials, notably high strength steel and fibre-reinforced polymers, and in the way they are combined with concrete into high performance structures. Developments in materials and equipment, as well as new concepts, have lead to innovative construction techniques, reducing cost and construction time and making possible the application of concrete under extreme conditions of construction or environment. All these advances will be highlighted in the book by...

  6. Use of alternative waste materials in producing ultra-high performance concrete

    Directory of Open Access Journals (Sweden)

    Ahmad Shamsad

    2017-01-01

    Full Text Available In a corrosive environment similar to that of the Arabian Gulf, use of high-performance concrete is one of the options to ensure a target service life of concrete structures. However, in absence of good quality coarse aggregates, it is a challenging task to produce high-performance concrete. Recently, the possibility of producing ultra-high-performance concrete (UHPC has been widely reported in the literature. UHPC is produced without coarse aggregates at very low water to cementitious materials ratio, high amounts of cement, mineral admixtures, and superplasticizer along with fine quartz sand as aggregate, quartz powder as micro-filler, a nd steel fibres for fracture toughness. In the present work, an effort was made to utilize local waste materials as alternative mineral admixtures and local dune sand as aggregate in producing different UHPC mixtures without addition of quartz powder. The mechanical properties, shrinkage, and durability characteristics of the UHPC mixtures were studied. Test results indicate that it is possible to produce UHPC mixtures using alternative waste materials, which would have targeted flow, strength, toughness, and resistance against reinforcement corrosion. The information presented in the paper would help in optimum selection of a mixture of UHPC considering the availability of local materials, exposure conditions and structural requirements.

  7. Structural Materials: 95. Concrete

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2012-01-01

    Nuclear power plant concrete structures and their materials of construction are described, and their operating experience noted. Aging and environmental factors that can affect the durability of the concrete structures are identified. Basic components of a program to manage aging of these structures are identified and described. Application of structural reliability theory to devise uniform risk-based criteria by which existing facilities can be evaluated to achieve a desired performance level when subjected to uncertain demands and to quantify the effects of degradation is outlined. Finally, several areas are identified where additional research is desired.

  8. Review on supplymentary cementitious materials used in inorganic polymer concrete

    Science.gov (United States)

    Srinivasreddy, K.; Srinivasan, K.

    2017-11-01

    This paper presents a review on various supplementary cementitious materials generated from industries are used in concrete, which one is considered a waste material. These materials are rich in aluminosilicates and are activated by sodium/potassium based alkaline solution to form geopolymer concrete. When these geopolymer concrete is used in civil engineering applications has showed better or similar mechanical properties and durability properties than ordinary Portland cement concrete. This paper also given the overview on sodium hydroxide (NaOH) & sodium silicate solution (Na2SiO3) ratios, curing adopted for different geopolymer concretes and the effect of adding fibres in geopolymer concretes.

  9. Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model

    Science.gov (United States)

    Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr

    2017-10-01

    Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations

  10. Requirements for thermal insulation on prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Neylan, A.J.; Wistrom, J.D.

    1979-01-01

    During the past decade, extensive design, construction, and operating experience on concrete pressure vessels for gas-cooled reactor applications has accumulated. Excellent experience has been obtained to date on the structural components (concrete, prestressing systems, liners, penetrations, and closures) and the thermal insulation. Three fundamentally different types of insulation systems have been employed to ensure the satisfactory performance of this component, which is critical to the overall success of the prestressed concrete reactor vessel (PCRV). Although general design criteria have been published, the requirements for design, materials, and construction are not rigorously addressed in any national or international code. With the more onerous design conditions being imposed by advanced reactor systems, much greater attention has been directed to advance the state of the art of insulation systems for PCRVs. This paper addresses some of the more recent developments in this field being performed by General Atomic Company and others. (author)

  11. DECISION MAKING MODELING OF CONCRETE REQUIREMENTS

    Directory of Open Access Journals (Sweden)

    Suhartono Irawan

    2001-01-01

    Full Text Available This paper presents the results of an experimental evaluation between predicted and practice concrete strength. The scope of the evaluation is the optimisation of the cement content for different concrete grades as a result of bringing the target mean value of tests cubes closer to the required characteristic strength value by reducing the standard deviation. Abstract in Bahasa Indonesia : concrete+mix+design%2C+acceptance+control%2C+optimisation%2C+cement+content.

  12. Development of high performance and low radio activation concrete material for concrete cask

    International Nuclear Information System (INIS)

    Shirai, Koji; Sonobe, Ryoji

    2005-01-01

    For the realization of the long-term storage of the nuclear spent fuel with the concrete cask technology, a low radio activation high performance concrete was developed, which contains extremely small quantity of Eu and Co and assures enough heat-resistance and durability for degradation. Firstly, the activation analysis was performed to estimate the allowable content limit of their quantities according to the rules issued by Japanese government for determining the classification of the radioactive waste. Secondly, various candidate materials were sampled and irradiated to find out the activation level. As a result, as the optimum concrete mix, the combination of limestone and white fused alumina aggregates with fry-ash was chosen. Moreover, the basic characteristics of the candidate concrete (workability, strength under high temperature, heat conductivity and so on) were evaluated, and the thermal cracking test was executed with hollow cylinders. Finally, the developed concrete material seems to be suitable for the long-term use of concrete cask considering the low activation, high heat resistance and durability during storage. (author)

  13. New concrete materials technology for competitive house building

    OpenAIRE

    Peterson, Markus

    2003-01-01

    The research project aims at investigating the potential of new concrete materials technology (high performance concrete, HPC and self-compacting concete, SCC) for competitive design, production and function of structural frames of cast in-situ concrete in house building.

  14. Development of construction materials like concrete from lunar soils without water

    Science.gov (United States)

    Desai, Chandra S.; Saadatmanesh, H.; Frantziskonis, G.

    1989-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. A unique approach is attempted that utilizes factors such as initial vacuum and then cyclic loading to enhance the mechanical properties of dry materials similar to those available on the moon. The application of such factors is expected to allow reorientation, and coming together, of particles of the materials toward the maximum theoretical density. If such a density can provide deformation and strength properties for even a limited type of construction, the approach can have significant application potential, although other factors such as heat and chemicals may be needed for specific construction objectives.

  15. Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review.

    Science.gov (United States)

    Grengg, Cyrill; Mittermayr, Florian; Ukrainczyk, Neven; Koraimann, Günther; Kienesberger, Sabine; Dietzel, Martin

    2018-05-01

    Microbial induced concrete corrosion (MICC) is recognized as one of the main degradation mechanisms of subsurface infrastructure worldwide, raising the demand for sustainable construction materials in corrosive environments. This review aims to summarize the key research progress acquired during the last decade regarding the understanding of MICC reaction mechanisms and the development of durable materials from an interdisciplinary perspective. Special focus was laid on aspects governing concrete - micoorganisms interaction since being the central process steering biogenic acid corrosion. The insufficient knowledge regarding the latter is proposed as a central reason for insufficient progress in tailored material development for aggressive wastewater systems. To date no cement-based material exists, suitable to withstand the aggressive conditions related to MICC over its entire service life. Research is in particular needed on the impact of physiochemical material parameters on microbial community structure, growth characteristics and limitations within individual concrete speciation. Herein an interdisciplinary approach is presented by combining results from material sciences, microbiology, mineralogy and hydrochemistry to stimulate the development of novel and sustainable materials and mitigation strategies for MICC. For instance, the application of antibacteriostatic agents is introduced as an effective instrument to limit microbial growth on concrete surfaces in aggressive sewer environments. Additionally, geopolymer concretes are introduced as highly resistent in acid environments, thus representing a possible green alternative to conventional cement-based construction materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Concrete with supplementary cementitious materials

    OpenAIRE

    Jensen, Ole M; Kovler, Konstantin; De Belie, Nele

    2016-01-01

    This volume contains the proceedings of the MSSCE 2016 conference segment on “Concrete with Supplementary Cementitious Materials” (SCM). The conference segment is organized by the RILEM technical committee TC 238-SCM: Hydration and microstructure of concrete with supplementary cementitious materials. TC 238-SCM started activities in 2011 and has about 50 members from all over the world. The main objective of the committee is to support the increasing utilisation of hydraulic...

  17. Effect of Different Supplementary Cementitious Materials on Mechanical and Durability Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Rahul Sharma

    2016-09-01

    Full Text Available Concrete is the most widely used composite in the world. Ordinary Portland cement (OPC is the most commonly used binding material but the energy required for its production is large and its production leads to release of green house gases in the atmosphere therefore, the need for supplementary cementitious material is real. The utilization of Fly Ash (FA, Silica Fume (SF,Metakaolin (MK and Ground Granulated Blast Furnace Slag (GGBS, as a pozzolanic material for concrete has received considerable attention in the recent years. This interest is a part of the widely spread attention directed towards the utilization of wastes and industrial byproducts in order to minimize the Portland cement consumption, the manufacture of which is being environment damaging. The paper reviews were carried out on the use of FA, SF, MK and GGBS as partial pozzolanic replacement for cement in concrete. The literature demonstrates that GGBS was found to increase the mechanical and durability properties at later age depending upon replacement level. Silica fume concrete performed better than OPC concrete even at early period for production of high strength concrete and high performance concrete. Fly ash increases the later age strength due to slow rate of pozzlanic reaction. Metakaolin was found to improve early age strength as well as long term strength but had poor workability.

  18. Use of selected waste materials in concrete mixes

    International Nuclear Information System (INIS)

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures

  19. Use of selected waste materials in concrete mixes.

    Science.gov (United States)

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  20. Concrete Waste as a Cement Replacement Material in Concrete Blocks for Optimization of Thermal and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Rosman M.S.

    2014-01-01

    Full Text Available The sustainability of the natural environment and eco-systems is of great importance. Waste generated from construction forces mankind to find new dumping grounds and at the same time, more natural resources are required for use as construction materials. In order to overcome this problem, this study was conducted to investigate the use of concrete waste in concrete blocks with a special focus on the thermal and mechanical properties of the resulting products. Three varieties of concrete mixtures were prepared, whereby they each contained different amounts of concrete waste of 0%, 5% and 15%, respectively. These mixtures were formed into cube specimens and were then analysed for data on their compressive strength, density and ultrasonic pulse. Thermal investigations were carried out on each admixture as well as on a control concrete block of model design. The thermal data results indicated that the 15% concrete waste mixture had the lowest temperature in comparison to the surrounding air. For density and compressive strength, the highest readings came from the control mixture at 2390 kg/m3 and 40.69 N/mm2, respectively, at 28 days. In terms of pulse velocity, the 5% concrete waste mixture indicated medium quality results of 4016 m/s.

  1. The influence of the static wind load concept on the material requirements for reinforced-concrete natural-draught cooling towers

    International Nuclear Information System (INIS)

    Harnach, R.

    1977-01-01

    The natural wind is the decisive risk factor in natural-draught cooling towers; therefore, the establishment of an assumed velocity is indispensable for the safety and reliability of the construction. In the framework of a statistical wind concept, static substitution loads for the assumed dynamic wind pressure have been determined, also including dynamic wind effects and the resonance response of the structure. On this basis, it has been studied how wind loads with different periodicity affect the material requirements of reinforced-concrete natural-draught cooling towers. It is found that the additional steel requirements, related to the total building cost, remain within acceptable limits even for extreme wind loads. (orig.) [de

  2. 29 CFR 1926.703 - Requirements for cast-in-place concrete.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Requirements for cast-in-place concrete. 1926.703 Section..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.703 Requirements for cast-in-place concrete. (a) General requirements for formwork. (1...

  3. The material from Lampung as coarse aggregate to substitute andesite for concrete-making

    Science.gov (United States)

    Amin, M.; Supriyatna, Y. I.; Sumardi, S.

    2018-01-01

    Andesite stone is usually used for split stone material in the concrete making. However, its availability is decreasing. Lampung province has natural resources that can be used for coarse aggregate materials to substitute andesite stone. These natural materials include limestone, feldspar stone, basalt, granite, and slags from iron processing waste. Therefore, a research on optimizing natural materials in Lampung to substitute andesite stone for concrete making is required. This research used laboratory experiment method. The research activities included making cubical object samples of 150 x 150 x 150 mm with material composition referring to a standard of K.200 and w/c 0.61. Concrete making by using varying types of aggregates (basalt, limestone, slag) and aggregate sizes (A = 5-15 mm, B = 15-25 mm, and 25-50 mm) was followed by compressive strength test. The results showed that the obtained optimal compressive strengths for basalt were 24.47 MPa for 50-150 mm aggregate sizes, 21.2 MPa for 15-25 mm aggregate sizes, and 20.7 MPa for 25-50 mm aggregate sizes. These results of basalt compressive strength values were higher than the same result for andesite (19.69 MPa for 50-150 mm aggregate sizes), slag (22.72 MPa for 50-150 mm aggregate sizes), and limestone (19.69 Mpa for 50-150 mm aggregate sizes). These results indicated that basalt, limestone, and slag aggregates were good enough to substitute andesite as materials for concrete making. Therefore, natural resources in Lampung can be optimized as construction materials in concrete making.

  4. NANOMODIFIED CONCRETE

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available One of the main directions in construction material science is the development of  next generation concrete that is ultra-dense, high-strength, ultra-porous, high heat efficient, extra corrosion-resistant. Selection of such direction is caused by extreme operational impacts on the concrete, namely: continuously increasing load on the concrete and various dynamics of such loads; the necessity in operation of concrete products in a wide temperature range and their exposure to various chemical and physical effects.The next generation concrete represents high-tech concrete mixtures with additives that takes on and retain the required properties when hardening and being used under any operational conditions. A differential characteristic of the next generation concrete is its complexity that presumes usage of various mineral dispersed components, two- and three fractional fine and coarse aggregates, complex chemical additives, combinations of polymer and iron reinforcement.Design strength and performance properties level of the next generation concrete is achieved by high-quality selection of the composition, proper selection of manufacturing techniques, concrete curing, bringing the quality of concrete items to the required level of technical condition during the operational phase. However, directed formation of its structure is necessary in order to obtain high-tech concrete.Along with the traditional methods for regulation of the next generation concrete structure, modification of concrete while using silica nanoparticles is also considered as a perspective one because the concrete patterning occurs due to introduction of a binder in a mineral matrix. Due to this it is possible to obtain nano-modified materials with completely new properties.The main problem with the creation of nano-modified concrete is a uniform distribution of nano-materials in the volume of the cement matrix which is particularly important in the cases of adding a modifier in

  5. Material law for concrete under multiaxial stress

    International Nuclear Information System (INIS)

    Geistefeldt, H.

    1977-01-01

    In this paper a general triaxial set of finite strain-stress relations is derived, which can include in a step-by-step way nearly all known factors and curves of material response. The finite constitutive equations representing the behavior of concrete are related to the main strain-directions. The elastic part, the functions for uniaxial behavior, those for biaxial response and finally the relation-parts, nonzero only in triaxial stress-state, can be reset separately by suitable functions which have been adjusted to the material response of actual concrete known from special tests. In nonlinear incremental analysis a potential is usually assumed in incremental material behavior to keep incremental stiffness matrices symmetric. If the proposed generalized set of constitutive equations is restricted to special types of functions, the resulting tangent stiffness is symmetric. Special functions for the various parts are presented, the tangent stiffness of which can easily be derived explicitly by partial differentiation of the related strain-stress relations. Thus the application of the proposed constitutive equations in incremental nonlinear analysis is very effective. The free coefficients of one general set of equations are adjusted step by step to the results of Kupfer's biaxial tests under shorttime loading. With a new and very short bixial failure criterion for concrete, which has been stated and compared with test results, the analytic description of the biaxial behavior of Kupfer's concrete is completed. With some additional assumptions the proposed failure criteria and the strain-stress equations for concrete are extended to the biaxial response of uncracked othogonally reinforced concrete response

  6. Review of Carbon Fiber Reinforced Polymer Reinforced Material in Concrete Structure

    Directory of Open Access Journals (Sweden)

    Ayuddin Ayuddin

    2016-05-01

    Full Text Available Carbon Fiber Reinforced Polymer (FRP is a material that is lightweight, strong, anti-magnetic and corrosion resistant. This material can be used as an option to replace the steel material in concrete construction or as material to improve the strength of existing construction. CFRP is quite easy to be attached to the concrete structure and proved economically used as a material for repairing damaged structures and increase the resilience of structural beams, columns, bridges and other parts of the structure against earthquakes. CFRP materials can be shaped sheet to be attached to the concrete surface. Another reason is due to the use of CFRP has a higher ultimate strength and lower weight compared to steel reinforcement so that the handling is significantly easier. Through this paper suggests that CFRP materials can be applied to concrete structures, especially on concrete columns. Through the results of experiments conducted proved that the concrete columns externally wrapped with CFRP materials can increase the strength. This treatment is obtained after testing experiments on 130 mm diameter column with a height of 700 mm with concentric loading method to collapse. The experimental results indicate that a column is wrapped externally with CFRP materials can achieve a load capacity of 250 kN compared to the concrete columns externally without CFRP material which only reached 150 kN. If the column is given internally reinforcing steel and given externally CFRP materials can reach 270 kN. It shows that CFRP materials can be used for concrete structures can even replace reinforcing steel that has been widely used in building construction in Indonesia.

  7. Evaluation of Sulfur 'Concrete' for Use as a Construction Material on the Lunar Surface

    Science.gov (United States)

    Grugel, R. N.

    2008-01-01

    Combining molten sulfur with any number of aggregate materials forms, when solid, a mixture having attributes similar, if not better, to conventional water-based concrete. As a result the use of sulfur "concrete" on Earth is well established, particularly in corrosive environments. Consequently, discovery of troilite (FeS) on the lunar surface prompted numerous scenarios about its reduction to elemental sulfur for use, in combination with lunar regolith, as a potential construction material; not requiring water, a precious resource, for its manufacture is an obvious advantage. However, little is known about the viability of sulfur concrete in an environment typified by extreme temperatures and essentially no atmosphere. The experimental work presented here evaluates the response of pure sulfur and sulfur concrete subjected to laboratory conditions that approach those expected on the lunar surface, the results suggesting a narrow window of application.

  8. Evaluation of the environmental, material, and structural performance of recycled aggregate concrete

    Science.gov (United States)

    Michaud, Katherine Sarah

    Concrete is the most commonly used building material in the construction industry, and contributes to 52% of construction and demolition waste in Canada. Recycled concrete aggregate (RCA) is one way to reduce this impact. To evaluate the performance of coarse and granular (fine and coarse) RCA in structural concrete applications, four studies were performed: an environmental assessment, a material testing program, a shear performance study, and a flexural performance study. To determine the environmental benefits of recycled aggregate concrete (RAC), three case studies were investigated using different populations and proximities to city centres. Environmental modelling suggested that RCA replacement could result in energy savings and greenhouse gas emission reductions, especially in remote areas. Tests were performed to determine if the volumetric replacement of up to 30% coarse RCA and 20% granular RCA is suitable for structural concrete applications in Canada. Fresh, hardened, and durability properties were evaluated. All five (5) of the RCA mixes showed equivalent material performance to the control mixes and met the requirements for a structural concrete mix. The five (5) RAC mixes were also used in structural testing. One-way reinforced concrete slab specimens were tested to failure to evaluate the shear and flexural performance of the RAC members. Peak capacities of and crack formation within each member were analyzed to evaluate the performance of RAC compared to conventional concrete. The shear capacity of specimens made from four (4) of the five (5) RAC mixtures was higher or equivalent to the control specimens. Specimens of the concrete mixture containing the highest content of recycled aggregate, 20% volumetric replacement of granular RCA, had shear capacities 14.1% lower, and exhibited cracking at lower loads than the control. The average flexural capacities of all RAC specimens were within 3.7% of the control specimens. Results from this research

  9. Requirements for Weatherproofing Thin Shell Concrete Roofs. Proceedings of the Conference of Building Research Institute, Division of Engineering and Industrial Research (Spring 1961).

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC.

    Topics discussed include--(1) requirements for weatherproofing and sealant materials for thin shell concrete roof, (2) effect of physical factors on weatherproofing of thin shell concrete roofs, (3) problems and limitations imposed by thin shell concrete roofs and their effect on weatherproofing and sealant materials, and (4) properties and uses…

  10. Use of polymer concrete for construction materials

    International Nuclear Information System (INIS)

    Vrtanoski, Gligorche; Dukovski, Vladimir; Yamaguchi, Kitazumi

    2002-01-01

    Polymer concrete (PC), or resin concrete, consists of a polymer binder, which may be a thermoplastic but more frequently is a thermosetting polymer, and a mineral filler such as aggregate, gravel and crushed stone. PC has higher strength, greater resistance to chemicals and corrosive agents, lower water absorption and higher freeze-thaw stability than the conventional Portland cement concrete and Cast Iron. This paper is a review of the key features of PC materials as a bases for comparison with the cast iron. (Original)

  11. The Effect of Elevated Temperature on Concrete Materials and Structures - a Literature Review.

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2006-03-01

    The objective of this limited study was to provide an overview of the effects of elevated temperature on the behavior of concrete materials and structures. In meeting this objective the effects of elevated temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The effects of elevated temperature on high-strength concrete materials are noted and their performance compared to normal strength concretes. A review of concrete materials for elevated-temperature service is presented. Nuclear power plant and general civil engineering design codes are described. Design considerations and analytical techniques for evaluating the response of reinforced concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures are described.

  12. The Effect of Elevated Temperature on Concrete Materials and Structures - a Literature Review

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2006-01-01

    The objective of this limited study was to provide an overview of the effects of elevated temperature on the behavior of concrete materials and structures. In meeting this objective the effects of elevated temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The effects of elevated temperature on high-strength concrete materials are noted and their performance compared to normal strength concretes. A review of concrete materials for elevated-temperature service is presented. Nuclear power plant and general civil engineering design codes are described. Design considerations and analytical techniques for evaluating the response of reinforced concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures are described.

  13. The use of agricultural waste materials for concrete making ...

    African Journals Online (AJOL)

    This paper presents laterite as fine aggregate and agricultural waste materials such as periwinkle shell, (PS) and palm kernel shell (PKS) as coarse aggregate for making concrete. Saturated surface dry (SSD) bulk density and compressive cube strength tests of concrete made from these were carried at the concrete age of ...

  14. Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures

    Science.gov (United States)

    Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.

    2018-03-01

    Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.

  15. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    Directory of Open Access Journals (Sweden)

    Cuizhen Xue

    2016-01-01

    Full Text Available The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, and antipermeability and antifrost performances. Also the effects of CWCPM on the morphology, hydration products, and pore structure characteristics of the cement-based materials were analyzed. The results are encouraging. Although CWCPM slightly decreases the mechanical properties of the C20 concrete and the 7 d compressive strengths of the C25 and C30 concretes, the 28 d compressive strength and the 90 d flexural strength of the C25 and C30 concretes are improved when CWCPM has a dosage less than 30%; CWCPM improves the antipermeability and antifrost performances of the concretes due to its filling and pozzolanic effects; the best improvement is obtained at CWCPM dosage of 30%; CWCPM optimizes cement hydration products, refines concrete pore structure, and gives rise to reasonable pore size distribution, therefore significantly improving the durability of the concretes.

  16. Physical Characteristics of Laboratory Tested Concrete as a Substituion of Gravel on Normal Concrete

    Science.gov (United States)

    Butar-butar, Ronald; Suhairiani; Wijaya, Kinanti; Sebayang, Nono

    2018-03-01

    Concrete technology is highly potential in the field of construction for structural and non-structural construction. The amount uses of this concrete material raise the problem of solid waste in the form of concrete remaining test results in the laboratory. This waste is usually just discarded and not economically valuable. In solving the problem, this experiment was made new materials by using recycle material in the form of recycled aggregate which aims to find out the strength characteristics of the used concrete as a gravel substitution material on the normal concrete and obtain the value of the substitution composition of gravel and used concrete that can achieve the strength of concrete according to the standard. Testing of concrete characteristic is one of the requirements before starting the concrete mixture. This test using SNI method (Indonesian National Standard) with variation of comparison (used concrete : gravel) were 15: 85%, 25: 75%, 35:65%, 50:50 %, 75: 25%. The results of physical tests obtained the mud content value of the mixture gravel and used concrete is 0.03 larger than the standard of SNI 03-4142-1996 that is equal to 1.03%. so the need watering or soaking before use. The water content test results show an increase in the water content value if the composition of the used concrete increases. While the specific gravity value for variation 15: 85% until 35: 65% fulfilled the requirements of SNI 03-1969-1990. the other variasion show the specifics gravity value included on the type of light materials.

  17. Needs study of polymer materials concrete constructions; Behovsstudie av polymera material i betongkonstruktioner

    Energy Technology Data Exchange (ETDEWEB)

    Blomfeldt, Thomas; Bergsjoe, Petter

    2013-02-15

    Polymeric materials are frequently used in concrete constructions at hydro and nuclear power facilities. They are most commonly used as expansion joints, seals, lead-thought's, coatings and as additives in cement or mortar. Polymeric materials in concrete constructions are difficult to evaluate, since they are often located within the concrete construction. In some cases the materials have been in place for over 30 years. In addition, these materials are also used to a great extent e.g. as protective coating on all concrete in a nuclear power plant or as several kilometres of joints. Replacing these materials is difficult, time consuming and very costly. That is why it is of great importance to evaluate their actual status and life-time expectancy with the largest possible precision. This report summarises the research needs in nuclear and hydro power regarding polymers in concrete constructions. During the project information has been gathered through inspections, interviews and surveys, to obtain the clearest possible picture of which polymeric components that have a need of in-depth research. In this project the nuclear power plants Oskarshamn (O1, O2 and O3), Forsmark (F2) and Ringhals (R1, R2 and R3) were visited. In the field of hydro power the concrete laboratory of Vattenfall R and D in Aalvkarleby and the hydro power plants of Aalvkarleby and Olidan were visited. The studies indicate that there are different needs for hydro and nuclear power. The survey showed that hydro-power facilities have a greater interest in joints. The nuclear power plants are more interested in components that are related to either the plant's security or if the component could lead to high future maintenance costs.

  18. PCM Concrete. [Phase Change Materials

    Energy Technology Data Exchange (ETDEWEB)

    Juul Andersen, T. [Danish Technological Institute, Taastrup (Denmark); Poulsen, H.-H. [BASF A/S, Roedekro (Denmark); Passov, F. [Spaencom A/S, Hedehusene (Denmark); Heiselberg, P. [Aalborg Univ..Aalborg (Denmark)

    2013-04-01

    PCM-Concrete was a research and development project launched in 2009 and finished in 2012. The project, which was funded by The Danish National Advanced Technology Foundation, had a total budget of 1.7 million Euros and included 4 partners: Danish Technological Institute (project manager), Aalborg University, BASF A/S and Spaencom A/S. The overall vision of the project was to reduce energy consumption for heating and cooling in buildings by developing high-performance concrete structures microencapsulated Phase Change Materials (PCM). The PCM used in the project was Micronal produced by BASF A/S. Micronal is small capsules with an acrylic shell and inside a wax with a melting point at approx. 23 deg. C equal to a comfortable indoor temperature. During the melting process thermal energy is transferred to chemical reaction (melting/solidification) depending on PCM being heated up or cooled down. Adding Micronal to concrete would theoretically increase the thermal mass of the concrete and improve the diurnal heat capacity which is the amount of energy that can be stored and released during 24 hours. Nevertheless, it is a relatively new technology that has not received much attention, yet. In the PCM-Concrete project 5 main investigations were carried out: 1) Development of concrete mix design with PCM. 2) Investigation of thermal properties of the PCM concrete: thermal conductivity, specific heat capacity, density. 3) Up-scaling the research to industrial production of PCM-concrete structures. 4) Testing energy efficiency in full scale. 5) Confronting aesthetic and acoustic barriers to full exploitation of the potential of PCM-concrete structures. The results from the test program showed: 1) That the diurnal heat storage capacity is higher for all 4 hollow core decks with tiles attached compared to the reference hollow core deck. 2) The hollow core decks with concrete tiles without PCM performs slightly better than the tiles with PCM. 3) That is was impossible to

  19. Corrosion of metal materials embedded in concrete

    International Nuclear Information System (INIS)

    Duffo, G.S.; Farina, S.B.; Schulz, F.M.

    2010-01-01

    Carbon steel is the material most frequently used to strengthen reinforced concrete structures; however, stainless steel and galvanized steel reinforcements are also used in construction concretes; and they are not often used in Latin America. Meanwhile, there are other metals that are embedded in the concrete forming part of the openings (aluminum) or in tubing systems (copper and lead). The use of concrete as a cementing material is also useful for immobilizing wastes, such as for example those generated by the nuclear industry. There is a great deal of research and development on the corrosion of steel reinforcements, but the same is not true for the behavior of other metals embedded in concrete and that also undergo corrosive processes. This work aims to study the corrosion of different metals: copper, lead, aluminum, zinc, stainless steel and carbon steel; embedded in concrete with and without the presence of aggressive species for the metal materials. Test pieces were made of mortar containing rods of different materials for testing, and with chlorides added in concentrations of 0; 0.3 % and 1% (mass of chloride per mass of cement). The test pieces were exposed to different conditions; laboratory environment with a relative humidity (RH) of 45%, a controlled atmosphere with 98% RH and submerged in a solution of 3.5% NaCl. The susceptibility to corrosion of the different metals was evaluated using techniques to monitor the corrosion potential, the resistivity of the mortar and the polarization resistance (PR). The rods were weighed before being placed inside the test pieces to later determine the loss of weight generated by the corrosion process. Polarization curves for the metals were also traced in a simulated pore solution (SPS) and in SPS with added chloride. The results obtained to date show that, of all the metals analyzed, aluminum is the most susceptible to corrosion, and that the test specimens with 0% and 1% of chloride exposed to the laboratory

  20. Use of recycled fine aggregate in concretes with durable requirements.

    Science.gov (United States)

    Zega, Claudio Javier; Di Maio, Angel Antonio

    2011-11-01

    The use of construction waste materials as aggregates for concrete production is highly attractive compared to the use of non-renewable natural resources, promoting environmental protection and allowing the development of a new raw material. Several countries have recommendations for the use of recycled coarse aggregate in structural concrete, whereas the use of the fine fraction is limited because it may produce significant changes in some properties of concrete. However, during the last decade the use of recycled fine aggregates (RFA) has achieved a great international interest, mainly because of economic implications related to the shortage of natural sands suitable for the production of concrete, besides to allow an integral use of this type of waste. In this study, the durable behaviour of structural concretes made with different percentage of RFA (0%, 20%, and 30%) is evaluated. Different properties related to the durability of concretes such as absorption, sorptivity, water penetration under pressure, and carbonation are determined. In addition, the results of compressive strength, static modulus of elasticity and drying shrinkage are presented. The obtained results indicate that the recycled concretes have a suitable resistant and durable behaviour, according to the limits indicated by different international codes for structural concrete. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Reinforced concrete treatment as composite material

    International Nuclear Information System (INIS)

    Oller, S.; Onate, E.; Miguel, J.

    1995-01-01

    This paper presents the general mixing theory applied to the numerical simulation of multiphase composite material behaviour as reinforced concrete materials. This theory is based on the mixture of that composite basic substances and allows to evaluate the inter-dependence behaviour between the different compounding constitutive models. If it would be necessary to consider the initial anisotropy of each compound it could be done by mean of the mapped isotropic plastic formulation. The approach is a generalization of the classic isotropic plasticity theory to be applied to either ortho tropic or anisotropic materials such as reinforced concrete. The existence of a stress and strain real anisotropic spaces, and the respective fictitious isotropic spaces are assumed, where a mapped fictitious problem is solved. Those spaces are relating by means of two fourth order transformation tensors. Both formulation are joined establishing a powerful work tool for the treatment of bulk-fiber composite materials. The induced anisotropy behaviour is take into account by each compounding constitutive formulation. (author). 24 refs., 3 figs

  2. Performance of concrete backfilling materials for shafts and tunnels in rock formations. Volume 1: concrete selection and properties

    International Nuclear Information System (INIS)

    Casson, R.B.J.; Davies, I.L.

    1986-01-01

    Preplaced Aggregate Concrete (PAC) consists of graded coarse aggregate, immobilised by cementitious grout injected into the voids. PAC can be considered as a suitable backfill material for mined radioactive waste repositories. PAC is also reported to be amenable to mechanical/remote placement and have usefully improved properties when compared with conventionally placed concretes. In particular reduced shrinkage and heat cycle during cement hydration, higher densities and improved plant economics are claimed. This study attempts to establish the validity of these claims both from reported experience and by practical demonstration through experimentation. A literature study supported the claims made for the PAC system but all reported experiences recorded the use of organic admixtures (workability aids, retarders etc). Because of the lack of long term durability data on such admixtures, especially in a radiation environnement, it was decided to prepare a sample of PAC without organic admixtures. Considerable experimental difficulties were encountered in obtaining a satisfactory quality for test specimens. The necessary grout fluidity was only achieved by the inclusion of bentonite. The test data collected indicates that the PAC system employed did not improve mechanical properties compared with conventional concretes. This is attributed to the non-usage of organic admixtures to achieve the expected performance. Further research on low permeability concretes would require the use of organic admixtures. The effect of radiation on these materials, and their leaching rate needs to be quantified

  3. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Álvarez

    2013-08-01

    Full Text Available The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the optimum percentage of additive in the mixture that enables compliance with the technical specifications required by the product to be manufactured. A test is also performed for measuring the thermal conductivity for the optimal sample obtained and it evidences the reduction thereof.

  4. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete.

    Science.gov (United States)

    Fenollera, María; Míguez, José Luis; Goicoechea, Itziar; Lorenzo, Jaime; Ángel Álvarez, Miguel

    2013-08-15

    The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the optimum percentage of additive in the mixture that enables compliance with the technical specifications required by the product to be manufactured. A test is also performed for measuring the thermal conductivity for the optimal sample obtained and it evidences the reduction thereof.

  5. Feasibility study of a concrete plug made of low pH concrete

    Energy Technology Data Exchange (ETDEWEB)

    Dahlstroem, Lars-Olof; Magnusson, Jonas (NCC Engineering (Sweden)); Gueorguiev, Ginko; Johansson, Morgan (Reinertsen Sverige AB, Goeteborg (Sweden))

    2009-09-15

    In this report a concrete plug, used as a barrier between the deposition tunnels and the access tunnel, is investigated. The objectives of the work is to see whether it is possible to use low pH concrete for the plug and whether it can be designed without using reinforcement. The requirements set on the plug are that the water leakage through it should be small enough and that the concrete stresses are limited to a value valid for the concrete used. A modified geometry of the plug is proposed, which makes it possible to use it as a general solution in all deposition tunnels. Material properties of a low pH concrete (B200) determined by CBI have been used. Loads considered in the study is the pressure from water and swelling, the temperature change in the rock and plug due to heat development from nuclear fuel stored in nearby copper canisters, pre-stressing in the plug due to cooling during construction and the shrinkage of concrete in the plug. Two-dimensional, axis-symmetric finite element analyses, assuming linear elastic material behaviour in rock and concrete where contact friction between concrete and rock is taken into consideration, have been used to study the structural response of the plug. A total of 48 main load combinations, consisting of 8 different load scenarios and 6 material combinations, have been used. It is found that the concrete plug will not remain uncracked when subjected to the loads studied but that it, nevertheless, is possible to achieve an unreinforced concrete plug that satisfies the requirements set up. The minimum size of the concrete compressed zone will be 0.5 m, resulting in a water leakage through the plug determined to be lower than the requirement of 0.01 l/min set up in this study. Further, the maximum compressive stresses of interest are 33 MPa and the maximum displacement in the plug is about 3 mm, which are deemed to be satisfactorily. Consequently, it is concluded that it seems possible to use low pH concrete for the plug

  6. Analysis of Transparent Concrete as an Innovative Material Used in Civil Engineering

    Science.gov (United States)

    Zielińska, Monika; Ciesielski, Albert

    2017-10-01

    Since the dawn of history concrete has been, right behind stone and brick, one of the oldest building materials. The ancient Romans took advantage of its opportunities. They constructed amazing architectural objects, which survived centuries as whole buildings or parts of them. Concrete is so ubiquitous, that when we are walking in a newer districts of cities we are virtually surrounded by concrete from everywhere. Sometimes we do not realize in how many cases and various ways concrete is used in towns and cities. As we know, human curiosity and quest for newer and newer solutions and capabilities does not leave such amazing material as concrete alone. There are many varieties of concrete, depending on what people want to achieve. By changing its chemical composition, technological process and adding various other materials, we receive various types of concrete. We use them to create durable supporting structures, a variety of concrete which is resistant to constant moisture or different chemical types. Additionally, some aspects of aesthetics in architecture are made with the help of concrete.

  7. Fly ashes from co-combustion as a filler material in concrete production; Anvaendning av energiaskor som fillermaterial vid betongtillverkning

    Energy Technology Data Exchange (ETDEWEB)

    Sundblom, Hillevi

    2004-01-01

    The Swedish concrete producers have decided to work towards a common goal to limit the production of concrete with naturally rounded aggregate. A consequence is when use of a substitute, crushed aggregate, the demand of filler material increases. During the last years ashes form the CFB boiler in Perstorp has been utilised as a filler material, with success, in concrete production at Sydsten, Malmoe, Sweden. To examine the potential of using Swedish fly ashes as a filler material in concrete production, have different Swedish fly ashes above been studied to see if they fit the requirements for a filler material. The fly ashes studied in the project can be divided into four different groups, considering fuel mix and boiler type; 1. Bio and sludge fired CFB/BFB boiler from the paper industry, 2. Bio and peat fired CFB/BFB boiler, 3. Pulverized peat/coal firing furnace, 4.Bio and peat fired grate-fired boiler. From Sydsten experiences of using Swedish fly ashes two demands have emerged concerning the chemical composition of the ashes. The total amount of chloride in the concrete should not be higher than 0,1% and the LOI, (Loss Of Ignition) must be less than 10 %. The different ash analyses showed that the fluidised bed boilers and pulverized firing furnaces, in this study, passed all the chemical requirements but the grate fire boilers had difficulties to fulfil the requirement of LOI. The ashes chosen to be studied in further rheological investigations in different fresh concrete mixtures were, Category 1 (Hallstavik's and Hyltebruk's papermill), Category 2 (Vaesteraas Vaermeverk och Vaertaverket) and from Category 3 (Vattenfall Vaerme Uppsala). The results presented an increased water consumption of ashes from paper mills comparing with the other ashes, a probable reason could be the shape of the ash grains. The experiments also showed that all ashes contributed to the final strength of the hardened concrete, the paper mill ashes also contributed to the

  8. Applications of waste material in the pervious concrete pavement: A review

    Science.gov (United States)

    Shakrani, Shahrul Azwan; Ayob, Afizah; Rahim, Mohd Asri Ab

    2017-09-01

    Pervious concrete pavement is one of the innovative structures designed in order to manage the quantity and quality of urban stormwater for a sustainable development. In general, pervious concrete pavement enables water to permeate through its structure and have a capability to cater dynamic loads at the same time. However, the conventional pervious concrete pavement lacks a superior strength while performing as pavement structure. Thus, an extensive research has been carried out in order to explore the possible materials to be incorporated into the pervious concrete pavement for better physical, structural and mechanical properties. The objectives of this paper are to review the waste materials used in the pervious concrete pavement along with their mechanical, durability and permeability performance.

  9. Optimizing cementious content in concrete mixtures for required performance.

    Science.gov (United States)

    2012-01-01

    "This research investigated the effects of changing the cementitious content required at a given water-to-cement ratio (w/c) on workability, strength, and durability of a concrete mixture. : An experimental program was conducted in which 64 concrete ...

  10. Influence of processing factors over concrete strength.

    Science.gov (United States)

    Kara, K. A.; Dolzhenko, A. V.; Zharikov, I. S.

    2018-03-01

    Construction of facilities of cast in-situ reinforced concrete poses additional requirements to quality of material, peculiarities of the construction process may sometimes lead to appearance of lamination planes and inhomogeneity of concrete, which reduce strength of the material and structure as a whole. Technology compliance while working with cast in-situ concrete has a significant impact onto the concrete strength. Such process factors as concrete curing, vibration and compaction of the concrete mixture, temperature treatment, etc., when they are countered or inadequately followed lead to a significant reduction in concrete strength. Here, the authors experimentally quantitatively determine the loss of strength in in-situ cast concrete structures due to inadequate following of process requirements, in comparison with full compliance.

  11. Modified composite material developed on the basis of no-fines asphalt concrete

    Directory of Open Access Journals (Sweden)

    Mikhasek Andrey

    2017-01-01

    Full Text Available Being a composite material, asphalt concrete is widely used in hydraulic engineering and road construction. The paper proves one of asphalt concrete modification, which includes first creating a skeleton of no-fines concrete and then its washing-down with bituminous materials by a hot procedure, can be successfully used in hydraulic structures Modified composite material based on no-fines asphalt concrete has a harder skeleton because of links from cement stone and has a technological advantage, as through the proposed technology it allows to reduce the cost of filling porous spaces. This technology allows to conclude that concrete aggregate with size fractions of 120 mm or less and frost resistance of 50 cycles and less can be recommended for fastening of slopes.

  12. Gamma ray attenuation studies on concrete reinforced with coconut shells

    International Nuclear Information System (INIS)

    Vishnu, C.V.; Antony, Joseph

    2017-01-01

    The fact that radiation could be harmful has led to the development of wide variety of shields to protect against it. For nuclear radiation shielding, a larger quantity of shielding material is required and therefore, the study of propagation of radiation flux in shielding materials is an essential requirement for shield design. Concrete has proven to be an excellent and versatile shielding material with well-established linear attenuation for neutrons and gamma rays. Coconut being naturally available, it can be used readily in concrete, still maintaining almost all the qualities of the original form of concrete. Concrete obtained using coconut shell as a coarse aggregate satisfies the requirements of concrete. Coconut shell aggregate possess acceptable strength which is required for structural concrete

  13. Characterization of Concrete Mixes Containing Phase Change Materials

    Science.gov (United States)

    Paksoy, H.; Kardas, G.; Konuklu, Y.; Cellat, K.; Tezcan, F.

    2017-10-01

    Phase change materials (PCM) can be used in passive building applications to achieve near zero energy building goals. For this purpose PCM can be added in building structures and materials in different forms. Direct incorporation, form stabilization and microencapsulation are different forms used for PCM integration in building materials. In addition to thermal properties of PCM itself, there are several other criteria that need to be fulfilled for the PCM enhanced building materials. Mechanical properties, corrosive effects, morphology and thermal buffering have to be determined for reliable and long-term applications in buildings. This paper aims to give an overview of characterization methods used to determine these properties in PCM added fresh concrete mixes. Thermal, compressive strength, corrosion, and microscopic test results for concrete mixes with PCM are discussed.

  14. Performance of concrete blended with pozzolanic materials in marine environment

    Directory of Open Access Journals (Sweden)

    Khan Asad-ur-Rehman

    2017-01-01

    Full Text Available Reinforced concretes structures located at or near the coast line needs to be repaired more frequently when compared to structures located elsewhere. This study is continuation of previous studies carried out at the Department of Civil Engineering, NED University of Engineering and Technology, Karachi, Pakistan to study the performance of concrete made up of cements blended by pozzolonic materials. Different pozzolanic materials (blast furnace slag, fly ash and silica fume were used in the study. Tests conducted during the study to compare the performance of samples cast from concrete of different mix designs were Compressive Strength Test (ASTM C 39, Flexural Strength Test (ASTM C 293, Rapid Migration Test (NT Build 492, Absorptivity of the oven-dried samples (ASTM C 642 and Half Cell Potential (ASTM C 876. Use of cements blended with pozzolanic materials, used during the study, proved to be effective in enhancing the performance of the concrete exposed to marine environment. Use of pozzolans in concrete not only provides a sustainable and feasible solution to the durability problems in coastal areas, it also helps in conservation of natural resources and reduction of pollution and energy leading to a green environment.

  15. Potential of Carbon Nanotube Reinforced Cement Composites as Concrete Repair Material

    Directory of Open Access Journals (Sweden)

    Tanvir Manzur

    2016-01-01

    Full Text Available Carbon nanotubes (CNTs are a virtually ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. It is evident from contemporary research that utilization of CNT in producing new cement-based composite materials has a great potential. Consequently, possible practical application of CNT reinforced cementitious composites has immense prospect in the field of applied nanotechnology within construction industry. Several repair, retrofit, and strengthening techniques are currently available to enhance the integrity and durability of concrete structures with cracks and spalling, but applicability and/or reliability is/are often limited. Therefore, there is always a need for innovative high performing concrete repair materials with good mechanical, rheological, and durability properties. Considering the mechanical properties of carbon nanotubes (CNTs and the test results of CNT reinforced cement composites, it is apparent that such composites could be used conveniently as concrete repair material. With this end in view, the applicability of multiwalled carbon nanotube (MWNT reinforced cement composites as concrete repair material has been evaluated in this study in terms of setting time, bleeding, and bonding strength (slant shear tests. It has been found that MWNT reinforced cement mortar has good prospective as concrete repair material since such composites exhibited desirable behavior in setting time, bleeding, and slant shear.

  16. Radiological dose assessment of naturally occurring radioactive materials in concrete building materials

    International Nuclear Information System (INIS)

    Amran AB Majid; Aznan Fazli Ismail; Muhamad Samudi Yasir; Redzuwan Yahaya; Ismail Bahari

    2013-01-01

    Previous studies have shown that the natural radioactivity contained in building materials have significantly influenced the dose rates in dwelling. Exposure to natural radiation in building has been of concerned since almost 80 % of our daily live are spend indoor. Thus, the aim of the study is to assess the radiological risk associated by natural radioactivity in soil based building materials to dwellers. A total of 13 Portland cement, 46 sand and 43 gravel samples obtained from manufacturers or bought directly from local hardware stores in Peninsular of Malaysia were analysed for their radioactivity concentrations. The activity concentrations of 226 Ra, 232 Th and 40 K in the studied building materials samples were found to be in the range of 3.7-359.3, 2.0-370.8 and 10.3-1,949.5 Bq kg -1 respectively. The annual radiation dose rates (μSv year -1 ) received by dwellers were evaluated for 1 to 50 years of exposure using Resrad-Build Computer Code based on the activity concentration of 226 Ra, 232 Th and 40 K found in the studied building material samples. The rooms modelling were based on the changing parameters of concrete wall thickness and the room dimensions. The annual radiation dose rates to dwellers were found to increase annually over a period of 50 years. The concrete thicknesses were found to have significantly influenced the dose rates in building. The self-absorption occurred when the concrete thickness was thicker than 0.4 m. Results of this study shows that the dose rates received by the dwellers of the building are proportional to the size of the room. In general the study concludes that concrete building materials; Portland cements, sands, and gravels in Peninsular of Malaysia does not pose radiological hazard to the building dwellers. (author)

  17. Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications

    International Nuclear Information System (INIS)

    Cao, Vinh Duy; Pilehvar, Shima; Salas-Bringas, Carlos; Szczotok, Anna M.; Rodriguez, Juan F.; Carmona, Manuel; Al-Manasir, Nodar; Kjøniksen, Anna-Lena

    2017-01-01

    Highlights: • Microencapsulated phase change materials give high energy storage capacity concrete. • Microcapsule addition increases the porosity of concrete. • Thermal and mechanical properties are linked to the enhanced concrete porosity. • Agglomerated microcapsules have strong impact on the concrete properties. • Microcapsules caused geopolymer to become more energy efficient than Portland cement. - Abstract: Concretes with a high thermal energy storage capacity were fabricated by mixing microencapsulated phase change materials (MPCM) into Portland cement concrete (PCC) and geopolymer concrete (GPC). The effect of MPCM on thermal performance and compressive strength of PCC and GPC were investigated. It was found that the replacement of sand by MPCM resulted in lower thermal conductivity and higher thermal energy storage, while the specific heat capacity of concrete remained practically stable when the phase change material (PCM) was in the liquid or solid phase. Furthermore, the thermal conductivity of GPC as function of MPCM concentration was reduced at a higher rate than that of PCC. The power consumption needed to stabilize a simulated indoor temperature of 23 °C was reduced after the addition of MPCM. GPC exhibited better energy saving properties than PCC at the same conditions. A significant loss in compressive strength was observed due to the addition of MPCM to concrete. However, the compressive strength still satisfies the mechanical European regulation (EN 206-1, compressive strength class C20/25) for concrete applications. Finally, MPCM-concrete provided a good thermal stability after subjecting the samples to 100 thermal cycles at high heating/cooling rates.

  18. Trace elements with large activation cross section in concrete materials in Japan

    International Nuclear Information System (INIS)

    Suzuki, Atsuo; Iida, Takao; Moriizumi, Jun; Sakuma, Yoichi; Takada, Jitsuya; Yamasaki, Keizo; Yoshimoto, Takaaki

    2001-01-01

    Amounts of trace elements with large activation cross section in concrete materials were measured to offer the basic data for developing of low activation concrete. From the measurements, the quantities of the activated radioactivities in biological shielding concrete were measured and evaluated for the clearance level. The average concentrations of 60 Co, 152 Eu and 134 Cs formed in concrete were 21.9, 1.08 and 3.21 ppm, respectively. The combination of the concrete materials for the most lowering concentrations of 60 Co, 152 Eu and 134 Cs was the limestone as aggregate and the white Portland cement produced in specific places. The most lowering concentrations of this limestone concrete were 0.16, 0.049 and 0.060 ppm, respectively. The limestone concrete was excellent as biological shielding concrete, because the neutron shielding effect was excellent a little compared with ordinary concrete. If this concrete used for biological shielding concrete, concrete waste will be able to handle as follows. Usage of this limestone low-activated concrete makes almost all concretes satisfy the clearance level for 60 Co after 20 yr cooling from decommissioning. In respect of 152 Eu, radioactivation quantity in the biological shielding concrete is reduced up to a half of the average value or less. With regard to 134 Cs, all concrete satisfies the clearance level. (author)

  19. Penetration of molten core materials into basaltic and limestone concrete

    International Nuclear Information System (INIS)

    Sutherland, H.J.

    1978-01-01

    In conjunction with the small-scale, melt-concrete interaction tests being conducted at Sandia Laboratories, an acoustic technique has been used to monitor the penetration of molten core materials into basaltic and limestone concrete. Real time plots of the position of the melt/concrete interface have been obtained, and they illustrate that the initial penetration rate of the melt may be of the order of 80 mm/min. Phenomena deduced by the technique include a non-wetted melt/concrete interface

  20. Radiation distribution through serpentine concrete using local materials and its application as a reactor biological shield

    International Nuclear Information System (INIS)

    Kansouh, W.A.

    2012-01-01

    Highlights: ► New serpentine concrete was made and examined as a reactor biological shield. ► Ilmenite–limonite concrete is a better reactor biological shield. ► New serpentine concrete is a better reactor fast neutrons shield than ordinary and hematite–serpentine concretes. ► Serpentine concrete has lower properties as a reactor total gamma rays shields. - Abstract: In the present work attempt has been made to estimate the shielding parameters of the new serpentine concrete (density = 2.4 g/cm 3 ) using local materials on the shielding parameters for two types of heat resistant concretes, namely hematite–serpentine (density = 2.5 g/cm 3 ) and ilmenite–limonite (density = 2.9 g/cm 3 ). Shielding parameters for ordinary concrete (density = 2.3 g/cm 3 ) were also discussed. These parameters were determined experimentally for serpentine concrete and compared with previously published values for other concretes, which had also been obtained using local materials. The leakage spectra of reactor fast neutrons and total gamma photon beams from cylindrical samples of these concrete shields were also investigated using a collimated beam from ET-RR-1 reactor. A neutron–gamma spectrometer was used in order to obtain pulse height spectra of reactor fast neutrons and the total gamma rays leakage through the investigated concrete samples. These spectra were utilized to obtain the energy spectra required in these investigations. Removal cross section Σ R (E n ) and linear attenuation coefficient μ(E g ) for reactor fast neutrons and total gamma rays and their relative coefficients were evaluated and presented. Measured results were compared with those previously measured for other concretes. The results show that ilmenite–limonite concrete is a better reactor biological shield than the other three concretes. Serpentine concrete under investigation is a better reactor fast neutrons shield than ordinary and hematite–serpentine concretes. Serpentine concrete

  1. Exploratory study of molten core material/concrete interactions, July 1975--March 1977

    International Nuclear Information System (INIS)

    Powers, D.A.; Dahlgren, D.A.; Muir, J.F.; Murfin, W.D.

    1978-02-01

    An experimental study of the interaction between high-temperature molten materials and structural concrete is described. The experimental efforts focused on the interaction of melts of reactor core materials weighing 12 to 200 kg at temperatures 1700 to 2800 0 C with calcareous and basaltic concrete representative of that found in existing light-water nuclear reactors. Observations concerning the rate and mode of melt penetration into concrete, the nature and generation rate of gases liberated during the interaction, and heat transfer from the melt to the concrete are described. Concrete erosion is shown to be primarily a melting process with little contribution from mechanical spallation. Water and carbon dioxide thermally released from the concrete are extensively reduced to hydrogen and carbon monoxide. Heat transfer from the melt to the concrete is shown to be dependent on gas generation rate and crucible geometry. Interpretation of results from the interaction experiments is supported by separate studies of the thermal decomposition of concretes, response of bulk concrete to intense heat fluxes (28 to 280 W/cm 2 ), and heat transfer from molten materials to decomposing solids. The experimental results are compared to assumptions made in previous analytic studies of core meltdown accidents in light-water nuclear reactors. A preliminary computer code, INTER, which models and extrapolates results of the experimental program is described. The code allows estimation of the effect of physical parameters on the nature of the melt/concrete interaction

  2. Eco-trench: a novel trench solution based on reusing excavated material and a finishing layer of expansive concrete

    International Nuclear Information System (INIS)

    Blanco, A.; Pujadas, R.; Fernández, C.; Cavalaro, S.H.P.; Aguado, A.

    2017-01-01

    Installing utility pipelines generates a significant amount of trench arisings, which are usually transported to landfills instead of being reused as backfill material. This practice generates CO2 emissions and wastes raw materials. This paper presents a more sustainable solution, an eco-trench, which is based on re-using trench arisings as backfill and adding a top layer of expansive concrete to improve the eco-trench’s structural performance. The technical feasibility of the eco-trench was evaluated through a finite element model, which identified the degree of expansion in concrete required to avoid failure or subside the stresses caused by traffic. The potential expansion of concrete was measured under confined conditions in the laboratory by means of a novel test developed for this purpose. The results showed that adding calcium oxide generates the required internal stress. The results were then confirmed in a pilot experience. [es

  3. Eco-trench: a novel trench solution based on reusing excavated material and a finishing layer of expansive concrete

    Directory of Open Access Journals (Sweden)

    A. Blanco

    2017-09-01

    Full Text Available Installing utility pipelines generates a significant amount of trench arisings, which are usually transported to landfills instead of being reused as backfill material. This practice generates CO2 emissions and wastes raw materials. This paper presents a more sustainable solution, an eco-trench, which is based on re-using trench arisings as backfill and adding a top layer of expansive concrete to improve the eco-trench’s structural performance. The technical feasibility of the eco-trench was evaluated through a finite element model, which identified the degree of expansion in concrete required to avoid failure or subside the stresses caused by traffic. The potential expansion of concrete was measured under confined conditions in the laboratory by means of a novel test developed for this purpose. The results showed that adding calcium oxide generates the required internal stress. The results were then confirmed in a pilot experience.

  4. Influence of Recycled Concrete Dust on the Properties of Self– Compacting Concrete (SCC)

    OpenAIRE

    Ivanauskas, Ernestas; Lazauskas, Mantas; Grigaliūnas, Paulius

    2017-01-01

    Concrete – composite material which economical effect mostly depends on the amount of binder material (usually cement), its type and fineness. Cement manufacturing generates great employment of energy resources. The demand for all kind of manufacturing natural resources are aimed to be reduced as much as possible. Alternative raw material resources are being introduced and tested together with increasing self-compacting concrete (SCC) popularity in Lithuania. Considering environmental require...

  5. Effect of supplementary cementing materials on the concrete corrosion control

    Directory of Open Access Journals (Sweden)

    Mejía de Gutiérrez, R.

    2003-12-01

    Full Text Available Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnace slag (GGBS, silica fume (SF, metakaolin (MK, fly ash (FA and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete.

    La falla del concreto en un tiempo inferior a la vida útil para la cual se diseñó puede ser consecuencia del medio ambiente al cual ha estado expuesto o de algunas otras causas de tipo interno. La incorporación de materiales suplementarios al cemento Portland tiene el propósito de mejorar la microestructura del concreto y también de contribuir a la resistencia del concreto a los ataques del medio ambiente. Diferentes minerales y subproductos tales como escorias granuladas de alto horno, humo de sílice, metacaolín, ceniza volante y otros productos han sido usados como materiales suplementarios cementantes. Este documento presenta el comportamiento del hormigón en presencia de diferentes adiciones. Los cementos adicionados, comparados con los cementos Portland muestran bajos calores de hidratación, baja permeabilidad, mayor resistencia a sulfatos y a agua de mar. Estos cementos adicionados encuentran un campo de aplicación importante cuando los requerimientos de durabilidad son

  6. Review on factors influencing thermal conductivity of concrete incorporating various type of waste materials

    Science.gov (United States)

    Misri, Z.; Ibrahim, M. H. W.; Awal, A. S. M. A.; Desa, M. S. M.; Ghadzali, N. S.

    2018-04-01

    Concrete is well-known as a construction material which is widely used in building and infrastructure around the world. However, its widespread use has affected the reduction of natural resources. Hence, many approached have been made by researchers to study the incorporation of waste materials in concrete as a substitution for natural resources besides reducing waste disposal problems. Concrete is basically verified by determining its properties; strengths, permeability, shrinkage, durability, thermal properties etc. In various thermal properties of concrete, thermal conductivity (TC) has received a large amount of attention because it is depend upon the composition of concrete. Thermal conductivity is important in building insulation to measure the ability of a material to transfer heat. The aim of this paper is to discuss the methods and influence factors of TC of concrete containing various type of waste materials.

  7. Numerical modelling of reinforced concrete beams with fracture-plastic material

    Directory of Open Access Journals (Sweden)

    O. Sucharda

    2014-10-01

    Full Text Available This paper describes the use of models of fracture-plastic materials for reinforced concrete in numerical modelling of beams made from reinforced concrete. The purpose of the paper is to use of a model of concrete for modelling of a behaviour of reinforced concrete beams which have been tested at the University of Toronto within re-examination of classic concrete beam tests. The original tests were performed by Bresler- Scordelis. A stochastic modelling based on LHS (Latin Hypercube Sampling has been performed for the reinforced concrete beam. An objective of the modelling is to evaluate the total bearing capacity of the reinforced concrete beams depending on distribution of input data. The beams from the studied set have longitudinal reinforcement only. The beams do not have any shear reinforcement. The software used for the fracture-plastic model of the reinforced concrete is the ATENA.

  8. Eco-efficient concretes: the effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete.

    Science.gov (United States)

    Guerra, I; Vivar, I; Llamas, B; Juan, A; Moran, J

    2009-02-01

    The aim of this research was to investigate some of the physical and mechanical properties of concrete mixed under laboratory conditions, where different proportions of coarse aggregate materials were substituted by porcelain from sanitary installations. The results of the tests show that the concrete produced has the same mechanical characteristics as conventional concrete, thus opening a door to selective recycling of sanitary porcelain and its use in the production of concrete.

  9. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    OpenAIRE

    Cuizhen Xue; Aiqin Shen; Yinchuan Guo; Tianqin He

    2016-01-01

    The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM) as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, ...

  10. Durability of concrete materials in high-magnesium brine

    International Nuclear Information System (INIS)

    Wakeley, L.D.; Poole, T.S.; Burkes, J.P.

    1994-03-01

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence of salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation

  11. A Review of the Effects of Elevated Temperature on Concrete Materials and Structures

    International Nuclear Information System (INIS)

    Naus, D.J.; Graves, H.L. III

    2006-01-01

    Concrete's properties are more complex than those of most materials because not only is concrete a composite material whose constituents have different properties, but its properties depend upon moisture and porosity. Exposure of concrete to elevated temperature affects its mechanical and physical properties. Elements could distort and displace, and, under certain conditions, the concrete surfaces could spall due to the buildup of steam pressure. Because thermally-induced dimensional changes, loss of structural integrity, and release of moisture and gases resulting from the migration of free water could adversely affect plant operations and safety, a complete understanding of the behavior of concrete under long-term elevated-temperature exposure as well as both during and after a thermal excursion resulting from a postulated design-basis accident condition is essential for reliable design evaluations and assessments of nuclear power plant structures. As the properties of concrete change with respect to time and the environment to which it is exposed, an assessment of the effects of concrete aging is also important in performing safety evaluations. The effects of elevated temperature on Portland cement concretes and constituent materials are summarized, design codes and standards identified, and considerations for elevated temperature service noted. (authors)

  12. Boron carbide nanostructures: A prospective material as an additive in concrete

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Kumar, Rohit; Kumar, Umesh; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Kumar, Akshay

    2018-05-01

    In recent decades, manufacture and ingestion of concrete have increased particularly in developing countries. Due to its low cost, safety and strength, concrete have become an economical choice for protection of radiation shielding material in nuclear reactors. As boron carbide has been known as a neutron absorber material makes it a great candidate as an additive in concrete for shielding radiation. This paper presents the synthesis of boron carbide nanostructures by using ball milling method. The X-ray diffraction pattern, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope analysis confirms the formation of boron carbide nanostructures. The effect of boron carbide nanostructures on the strength of concrete samples was demonstrated. The compressive strength tests of concrete cube B4C powder additives for 0 % and 5 % of total weight of cement was compared for different curing time period such as 7, 14, 21 and 28 days. The high compressive strength was observed when 5 wt % boron carbide nanostructures were used as an additive in concrete samples after 28 days curing time and showed significant improvement in strength.

  13. Sustainable Concrete Technology

    Directory of Open Access Journals (Sweden)

    Sim J.

    2015-12-01

    Full Text Available The growing concern over global warming and significant ecological changes requires sustainable development in all fields of science and technology. Concrete not only consumes huge amount of energy and natural sources, but also emits large amount of CO2, mainly due to the production of cement. It is evident that such large amount of concrete production has put significant impact on the energy, resource, environment, and ecology of the society. Hence, how to develop the concrete technology in a sustainable way has become a significant issue. In this paper, some of Korean researches for sustainable development of concrete are presented. These are sustainable strengthening for deteriorated concrete structure, sustainable reinforcement of new concrete structure, sustainable concrete using recycled aggregate and supplementary cementing materials and finally application of each technique to precast concrete.

  14. Experimental study of a foam concrete based on local Tunisian materials

    Directory of Open Access Journals (Sweden)

    Ellouze Dorra

    2018-01-01

    Full Text Available The building sector in Tunisia is very energy-intensive, the largest share of energy consumption comes from factories of building materials namely brick and cement plants. This work is part of the reduction of the energy bill in the building envelope. Indeed, the foam concrete can be walls in single or double wall with better insulating power. This paper presents an experimental study on the technical problems related to the formulation and manufacture of a new cellular concrete in Tunisia, called "foam" concrete, from Tunisian local materials. Indeed, six varieties of sand of different provenance and grain size will be analyzed, the "good" sand is the one that is best suited for the manufacture of foam concrete. Two clean, fine-grained (0/2mm rolled grain sands were retained. Then four foam concretes were formulated using each time a single type of sand and varying the density namely 0.8 and 1. These four formulations were tested mechanically and thermally. The results found showed that compressive strengths do not exceed 1.5 MPa at 28 days. Thus, the foam concrete can be used only as a filling concrete in non-load bearing elements such as partition walls. The guarded hot plate method was used to determine the thermal conductivities of the four foamed concretes studied. A low thermal conductivity was found of the order of 0.22 W/m°K which prove the insulating power of foam concrete.

  15. Balanced improvement of high performance concrete material properties with modified graphite nanomaterials

    Science.gov (United States)

    Peyvandi, Amirpasha

    Graphite nanomaterials offer distinct features for effective reinforcement of cementitious matrices in the pre-crack and post-crack ranges of behavior. Thoroughly dispersed and well-bonded nanomaterials provide for effective control of the size and propagation of defects (microcracks) in matrix, and also act as closely spaced barriers against diffusion of moisture and aggressive solutions into concrete. Modified graphite nanomaterials can play multi-faceted roles towards enhancing the mechanical, physical and functional attributes of concrete materials. Graphite nanoplatelets (GP) and carbon nanofibers (CNF) were chosen for use in cementitious materials. Experimental results highlighted the balanced gains in diverse engineering properties of high-performance concrete realized by introduction of graphite nanomaterials. Nuclear Magnetic Resonance (NMR) spectroscopy was used in order to gain further insight into the effects of nanomaterials on the hydration process and structure of cement hydrates. NMR exploits the magnetic properties of certain atomic nuclei, and the sensitivity of these properties to local environments to generate data which enables determination of the internal structure, reaction state, and chemical environment of molecules and bulk materials. 27 Al and 29Si NMR spectroscopy techniques were employed in order to evaluate the effects of graphite nanoplatelets on the structure of cement hydrates, and their resistance to alkali-silica reaction (ASR), chloride ion diffusion, and sulfate attack. Results of 29Si NMR spectroscopy indicated that the percent condensation of C-S-H in cementitious paste was lowered in the presence of nanoplatelets at the same age. The extent of chloride diffusion was assessed indirectly by detecting Friedel's salt as a reaction product of chloride ions with aluminum-bearing cement hydrates. Graphite nanoplatelets were found to significantly reduce the concentration of Friedel's salt at different depths after various periods

  16. Nonlinear analysis of reinforced concrete structures using software package abaqus

    OpenAIRE

    Marković Nemanja; Stojić Dragoslav; Cvetković Radovan

    2014-01-01

    Reinforced concrete (AB) is characterized by huge inhomogeneity resulting from the material characteristics of the concrete, then, quasi-brittle behavior during failure. These and other phenomena require the introduction of material nonlinearity in the modeling of reinforced concrete structures. This paper presents the modeling reinforced concrete in the software package ABAQUS. A brief theoretical overview is presented of methods such as: Concrete Damage Plasticity (CDP), Smeared Concrete Cr...

  17. Historic Concrete : From Concrete Repair to Concrete Conservation

    NARCIS (Netherlands)

    Heinemann, H.A.

    2013-01-01

    Concrete like materials were already applied during the Roman Empire. After the decline of the Roman Empire, a wide scale application of concrete only reappeared in the 19th century. Here lies also the origin of modern (reinforced) concrete. Since then, both concrete application and composition have

  18. Photocatalyticpaving concrete

    Directory of Open Access Journals (Sweden)

    Lyapidevskaya Ol'ga Borisovna

    2014-02-01

    Full Text Available Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in the paper according to the US Environmental Protection Agency materials. As an alternative, one can use cement-concrete pavement, which is in many ways more efficient than the bituminous concrete. It is proposed to enhance environmental performance of the cement-concrete pavement via usage of photocatalysis. The mechanism of different photocatalytic reactions is described in the paper, namely heterogeneous and homogeneous photocatalysis, photo-induces, photoactivated catalysis and catalytical photoreactions. It is pro-posed to use heterogeneous photocatalysis with titanium dioxide as a photocatalyst. The mechanism of photo oxidation of air contaminants, with the usage of titanium dioxide is2described. The paper sets problems, connected with the sensibilization of TiOto thevisible light (it is proposed to use titanium dioxide, doped with the atoms of certain elements to increase its sensibility to the visible light and with the development of a new photocatalytic paving concrete, which will meet the requirements, specified for paving in the climatic and traffic conditions of the Russian Federation.

  19. Utilizing waste materials to enhance mechanical and durability characteristics of concrete incorporated with silica fume

    Directory of Open Access Journals (Sweden)

    Hamza Ali

    2017-01-01

    Full Text Available Construction and demolition wastes are increasing significantly due to augmented boom of modern construction. Although the partial cement replacement materials do promote the idea of sustainable construction, the use of construction and demolition waste can also be considered to be viable option to advance the sustainability in modern construction practices. This paper investigates the use of industrial waste materials namely marble dust and crushed bricks as replacement of natural fine aggregates along with the use of silica fume as a partial cement replacement on the mechanical properties and durability characteristics of concrete. Partial replacement levels of waste materials were 10 and 20 percent by volume while the partial replacement level of silica fume was kept to 20 percent at all concrete samples. The results reported in this paper show that the use of marble dust as a replacement material to the natural fine aggregates resulted in an increase in the mechanical properties of concrete. However, the use of crushed bricks did not substantially contribute in the development of strength. Water permeability of concrete incorporated with both silica fume and waste materials (marble dust and crushed bricks decreased significantly. The decrease in water permeability of concrete was attributed to the pozzolanic reaction of silica fume with calcium hydroxide of cement and the filler effect of the waste materials of marble dust and crushed bricks. The use of waste materials also enhance the freeze and thaw resistance of concrete. Authors strongly suggest that the pozzolanic reaction and the development of the microstructure of the concrete through the use of waste materials are largely responsible from the advances in the durability of concrete.

  20. Utilizing Coal Fly Ash and Recycled Glass in Developing Green Concrete Materials

    Science.gov (United States)

    2012-06-01

    The environmental impact of Portland cement concrete production has motivated researchers and the construction industry to evaluate alternative technologies for incorporating recycled cementing materials and recycled aggregates in concrete. One such ...

  1. Investigation of Self Consolidating Concrete Containing High Volume of Supplementary Cementitious Materials and Recycled Asphalt Pavement Aggregates

    Science.gov (United States)

    Patibandla, Varun chowdary

    The use of sustainable technologies such as supplementary cementitiuous materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is important to study and qualify such mixtures and check if the required specifications of their intended application are met before they can be implemented in practice. This study presents the results of a laboratory investigation of Self Consolidating concrete (SCC) containing sustainable technologies. A total of twelve concrete mixtures were prepared with various combinations of fly ash, slag, and recycled asphalt pavement (RAP). The mixtures were divided into three groups with constant water to cementitiuous materials ratio of 0.37, and based on the RAP content; 0, 25, and 50% of coarse aggregate replaced by RAP. All mixtures were prepared to achieve a target slump flow equal to or higher than 500 mm (24in). A control mixture for each group was prepared with 100% Portland cement whereas all other mixtures were designed to have up to 70% of portland cement replaced by a combination of supplementary cementitiuous materials (SCMs) such as class C fly ash and granulated blast furnace slag. The properties of fresh concrete investigated in this study include flowability, deformability; filling capacity, and resistance to segregation. In addition, the compressive strength at 3, 14, and 28 days, the tensile strength, and the unrestrained shrinkage up to 80 days was also investigated. As expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. Moreover, several mixes satisfied compressive strength requirements for pavements and bridges; those mixes included relatively high percentages of SCMs and RAP. Based on the results obtained in this study, it is not

  2. Fiber reinforced concrete as a material for nuclear reactor containment buildings

    International Nuclear Information System (INIS)

    Mallikarjuna; Banthia, N.; Mindess, S.

    1991-01-01

    The fiber reinforced concrete as a constructional material for nuclear reactor containment buildings calls for an examination of its individual characteristics and potentialities due to its inherent superiority over normal plain and reinforced concrete. In the present investigation, first, to study the static behavior of straight, hooked-end and crimped fibers, recently developed nonlinear three-dimensional interface (contact) element has been used in conjunction with the eight nodded hexahedron and two nodded bar elements for concrete and steel fiber respectively. Then impact tests were carried out on fiber reinforced concrete beams with an instrumented drop weight impact machine. Two different concrete mixes were tested: normal strength and high strength concrete specimens. Fibers in the concrete mix found to significantly increase the ductility and the impact resistance of the composite. Deformed fibers increase peak pull-out load and pull-out distance, and perform better in the steel fiber reinforced concrete (SFRC) structures. (author)

  3. A review on the suitability of rubberized concrete for concrete bridge decks

    Science.gov (United States)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Radziah Abdullah, Siti; Anting Guntor, Nickholas; Syazani Leman, Alif

    2017-11-01

    Road authorities manage a large population of ageing bridges, a substantial number of which fail to meet the current requirements either due to deterioration and other structural deficiencies or as a result of the escalating demands imposed by increased traffic. This problem is related to the dynamic load from vehicles. This problem can be solved by producing a type of concrete that can reduce the amplitude of oscillation or vibration such as rubberized concrete. Green construction has been a very important aspect in concrete production field in the last decade. One of the most problematic waste materials is scrap tires. The use of scrap tires in civil engineering is increasing by producing rubberized concrete. Rubberized concrete is a type of concrete that is mixed with rubber. The purpose of this review is to justify the suitability of rubberized concrete for concrete bridge decks. Several parameters named physical, chemical and mechanical properties were measured to ensure the suitability of rubberized concrete for concrete bridge decks. Rubberized concrete has similar workability to normal concrete. The rubber reduced the density and compressive strength of the concrete while increased the flexural strength, water absorption and damping ratio. The used of rubber in concrete beyond 20% is not recommended due to decreasing in compressive strength. Rubberized concrete recommended to be used in circumstances where vibration damping was required such as in bridge construction as shock-wave absorber.

  4. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction; FINAL

    International Nuclear Information System (INIS)

    Ostowari, Ken; Nosson, Ali

    2000-01-01

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction

  5. Molten LWR core material interactions with water and with concrete

    International Nuclear Information System (INIS)

    Dahlgren, D.A.; Buxton, L.D.; Muir, J.F.; Murfin, W.B.; Nelson, L.S.; Powers, D.A.

    1977-01-01

    Nuclear power reactors are designed and operated to minimize the possibility of fuel melting. Nevertheless, in order to assess the risks associated with reactor operation, a realistic assessment is required for postulated accident sequences in which melting occurs. To investigate the experimental basis of the fuel melt accident analyses, a comprehensive review was performed at Sandia Laboratories. The results of that study indicated several phenomenological areas where additional experimental data should be gathered to verify common assumptions made in risk studies. In particular, vapor explosions and molten core material/concrete interactions were identified for further study. Results of these studies are presented

  6. Fissuring-chemical damaging on transfers in concrete

    International Nuclear Information System (INIS)

    Tognazzi, C.

    1998-01-01

    Concrete is a material often use in the nuclear wastes disposal. The safety analysis of a long time wastes disposal with concrete requires to verify the concrete behaviour in water. As concretes generally have cracks, it is necessary to study the crack propagation influence on chemical degradation. In this paper, the author presents diffusion tests on fissured and/or chemical aged cement. The chemical degradation of the material leads to a supplementary porosity by the hydrates decalcification and increases its diffusivity. The cracking impact is less important and can be experimentally concealed. (A.L.B.)

  7. Leaching studies of heavy concrete material for nuclear fuel waste immobilization containers

    International Nuclear Information System (INIS)

    Onofrei, M.; Raine, D.; Brown, L.; Hooton, R.D.

    1989-08-01

    The leaching behaviour of a high-density concrete was studied as part of a program to evaluate its potential use as a container material for nuclear fuel waste under conditions of deep geologic disposal. Samples of concrete material were leached in deionized distilled water, Standard Canadian Shield Saline Solution (SCSSS), SCSSS plus 20% Na-bentonite, and SCSSS plus granite and 20% Na-bentonite under static conditions at 100 degrees celsius for periods up to 365 days. The results of these leaching experiments suggest that the stability of concrete depends on the possible internal structural changes due to hydration reactions of unhydrated components, leading to the formation of C-S-H gel plus portlandite (Ca(OH) 2 ). The factors controlling the concrete leaching process were the composition of the leachant and the concentration of elements in solution capable of forming precipitates on the concrete surface, e.g., silicon, Mg 2+ and Ca 2+ . The main effect observed during leaching was an increase in groundwater pH (from 7 to 9). However, the addition of Na-bentonite suppressed the normal tendency of the pH of the groundwater in contact with concrete to rise rapidly. It was shown that the solution concentration of elements released from the concrete, particularly potassium, increased in the presence of Na-bentonite

  8. General requirements for concrete containment structures for CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1993-07-01

    This standard provides the general requirements used in the design, construction, testing, and commissioning of concrete containment structures for CANDU nuclear power plants designated as class containment and is directed to the owners, designers, manufacturers, fabricators, and constructors of the concrete components and parts

  9. Nonlinear analysis of reinforced concrete structures using software package abaqus

    Directory of Open Access Journals (Sweden)

    Marković Nemanja

    2014-01-01

    Full Text Available Reinforced concrete (AB is characterized by huge inhomogeneity resulting from the material characteristics of the concrete, then, quasi-brittle behavior during failure. These and other phenomena require the introduction of material nonlinearity in the modeling of reinforced concrete structures. This paper presents the modeling reinforced concrete in the software package ABAQUS. A brief theoretical overview is presented of methods such as: Concrete Damage Plasticity (CDP, Smeared Concrete Cracking (CSC, Cap Plasticity (CP and Drucker-Prager model (DPM. We performed a nonlinear analysis of two-storey reinforced concrete frame by applying CDP method for modeling material nonlinearity of concrete. We have analyzed damage zones, crack propagation and loading-deflection ratio.

  10. Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling

    DEFF Research Database (Denmark)

    Bogomolny, Michael; Amir, Oded

    2012-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its different strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures on the basis...... response must be considered. Optimized distribution of materials is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure. Copyright © 2012 John Wiley & Sons, Ltd....

  11. Evaluation of concrete recycling system efficiency for ready-mix concrete plants.

    Science.gov (United States)

    Vieira, Luiz de Brito Prado; Figueiredo, Antonio Domingues de

    2016-10-01

    The volume of waste generated annually in concrete plants is quite large and has important environmental and economic consequences. The use of fresh concrete recyclers is an interesting way for the reuse of aggregates and water in new concrete production. This paper presents a study carried out for over one year by one of the largest ready-mix concrete producers in Brazil. This study focused on the evaluation of two recyclers with distinct material separation systems, herein referred to as drum-type and rotary sieve-type equipment. They were evaluated through characterization and monitoring test programs to verify the behaviour of recovered materials (aggregates, water, and slurry). The applicability of the recovered materials (water and aggregates) was also evaluated in the laboratory and at an industrial scale. The results obtained with the two types of recyclers used were equivalent and showed no significant differences. The only exception was in terms of workability. The drum-type recycler generated fewer cases that required increased pumping pressure. The analysis concluded that the use of untreated slurry is unfeasible because of its intense negative effects on the strength and workability of concrete. The reclaimed water, pre-treated to ensure that its density is less than 1.03g/cm(3), can be used on an industrial scale without causing any harm to the concrete. The use of recovered aggregates consequently induces an increase in water demand and cement consumption to ensure the workability conditions of concrete that is proportional to the concrete strength level. Therefore, the viability of their use is restricted to concretes with characteristic strengths lower than 25MPa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Some considerations in the evaluation of concrete as a structural material for alternative LLW disposal technologies

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Siskind, B.; Bowerman, B.S.; Piciulo, P.L.

    1987-01-01

    The objective of this study was to develop information needed to evaluate the long-term performance of concrete and reinforced concrete as a structural material for alternative LLW disposal methods. The capability to carry out such an evaluation is required for licensing a site which employs one of these alternative methods. The basis for achieving the study objective was the review and analysis of the literature on concrete and its properties, particularly its durability. In carrying out this program characteristics of concrete useful in evaluating its performance and factors that can affect its performance were identified. The factors are both intrinsic, i.e., associated with composition of the concrete (and thus controllable), and extrinsic, i.e., due to external environmental forces such as climatic conditions and aggressive chemicals in the soil. The testing of concrete, using both accelerated tests and long-term non-accelerated tests, is discussed with special reference to its application to modeling of long-term performance prediction. On the basis of the study's results, conditions for acceptance are recommended as an aid in the licensing of disposal sites which make use of alternative methods

  13. Metrology Needs for Predicting Concrete Pumpability

    Directory of Open Access Journals (Sweden)

    Myoungsung Choi

    2015-01-01

    Full Text Available With the increasing use of pumping to place concrete, the development and refinement of the industry practice to ensure successful concrete pumping are becoming important needs for the concrete construction industry. To date, research on concrete pumping has been largely limited to a few theses and research papers. The major obstacle to conduct research on concrete pumping is that it requires heavy equipment and large amounts of materials. Thus, developing realistic and simple measurement techniques and prediction tools is a financial and logistical challenge that is out of reach for small research labs and many private companies in the concrete construction industry. Moreover, because concrete pumping involves the flow of a complex fluid under pressure in a pipe, predicting its flow necessitates detailed knowledge of the rheological properties of concrete, which requires new measurement science. This paper summarizes the technical challenges associated with concrete pumping and the development in concrete pumping that have been published in the technical literature and identifies future research needed for the industry to develop best practices for ensuring successful concrete pumping in the field.

  14. Potential of utilizing asphalt dust waste as filler material in the production of sustainable self compacting concrete (SCC)

    Science.gov (United States)

    Ismail, Isham; Shahidan, Shahiron; Bahari, Nur Amira Afiza Saiful

    2017-12-01

    Waste materials from many industries are widely used in the production of sustainable green concrete. Utilizing asphalt dust waste (ADW) as a filler material in the development of self-compacting concrete (SCC) is one of the alternative solutions for reducing environmental waste. SCC is an innovative concrete that does not require vibration for placing and compaction. However, there is limited information on the effects of utilizing ADW in the development of SCC. Therefore, this research study examines the effects of various w/b ratios (0.2, 0.3 and 0.4) and differing amounts of ADW (0% to 50%) on the rheological properties of fresh state concrete. The compressive strength of the SCC was tested only for 7 and 28 days as preliminary studies. The results revealed that mixtures MD730, MD740 and MD750 showed satisfactory results for the slump flow, J-Ring, L-Box and V-Funnel test during the fresh state. The compressive strength values obtained after 28 days for MD730, MD740 and MD750 were 35.1 MPa, 36.8 MPa and 29.4 MPa respectively. In conclusion, the distribution of materials in mixtures has significant effect in achieving rheological properties and compressive strength of SCC.

  15. TRANSPARENT CONCRETE

    OpenAIRE

    Sandeep Sharma*, Dr. O.P. Reddy

    2017-01-01

    Transparent concrete is the new type of concrete introduced in todays world which carries special property of light transmitting due to presence of light Optical fibres. Which is also known as translucent concrete or light transmitting concrete, it is achieved by replacing coarse aggregates with transparent alternate materials (Optical fibres). The binding material in transparent concrete may be able to transmit light by using clear resins the concrete mix. The concrete used in industry in pr...

  16. Construction of concrete hot cells; requirements for shielding windows for concrete walls with different densities

    International Nuclear Information System (INIS)

    1987-10-01

    The shielding windows form part of the basic equipment of hot cells for remote handling, as defined in standard DIN 25 420 part 1. The draft standard in hand is intended to specify the design and manufacture requirements, especially with regard to main dimensions, sight quality, shielding effects, and radiation resistance. The standard refers to three types of shielding window with surface area design (product of density and wall thickness) corresponding to concrete walls of the densities 2.4, 3.4, and 4.0 g/cm 3 . The windows fit to three types of concrete of common usage, and the design is made for Co-60 radiation, with attenuation factors of about 10 4 , 10 6 , or 10 7 . For concrete walls with densities between these data, a shielding window suitable to the next higher density data is to be chosen. (orig./HP) [de

  17. Variability in energy and carbon dioxide balances of wood and concrete building materials

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Sathre, Roger [Ecotechnology, Mid Sweden University, SE-831 25 OEstersund (Sweden)

    2006-07-15

    A variety of factors affect the energy and CO{sub 2} balances of building materials over their lifecycle. Previous studies have shown that the use of wood for construction generally results in lower energy use and CO{sub 2} emission than does the use of concrete. To determine the uncertainties of this generality, we studied the changes in energy and CO{sub 2} balances caused by variation of key parameters in the manufacture and use of the materials comprising a wood- and a concrete-framed building. Parameters considered were clinker production efficiency, blending of cement, crushing of aggregate, recycling of steel, lumber drying efficiency, material transportation distance, carbon intensity of fossil fuel, recovery of logging, sawmill, construction and demolition residues for biofuel, and growth and exploitation of surplus forest not needed for wood material production. We found the materials of the wood-framed building had lower energy and CO{sub 2} balances than those of the concrete-framed building in all cases but one. Recovery of demolition and wood processing residues for use in place of fossil fuels contributed most significantly to the lower energy and CO{sub 2} balances of wood-framed building materials. We conclude that the use of wood building material instead of concrete, coupled with greater integration of wood by-products into energy systems, would be an effective means of reducing fossil fuel use and net CO{sub 2} emission to the atmosphere. (author)

  18. Variability in energy and carbon dioxide balances of wood and concrete building materials

    International Nuclear Information System (INIS)

    Gustavsson, Leif; Sathre, Roger

    2006-01-01

    A variety of factors affect the energy and CO 2 balances of building materials over their lifecycle. Previous studies have shown that the use of wood for construction generally results in lower energy use and CO 2 emission than does the use of concrete. To determine the uncertainties of this generality, we studied the changes in energy and CO 2 balances caused by variation of key parameters in the manufacture and use of the materials comprising a wood- and a concrete-framed building. Parameters considered were clinker production efficiency, blending of cement, crushing of aggregate, recycling of steel, lumber drying efficiency, material transportation distance, carbon intensity of fossil fuel, recovery of logging, sawmill, construction and demolition residues for biofuel, and growth and exploitation of surplus forest not needed for wood material production. We found the materials of the wood-framed building had lower energy and CO 2 balances than those of the concrete-framed building in all cases but one. Recovery of demolition and wood processing residues for use in place of fossil fuels contributed most significantly to the lower energy and CO 2 balances of wood-framed building materials. We conclude that the use of wood building material instead of concrete, coupled with greater integration of wood by-products into energy systems, would be an effective means of reducing fossil fuel use and net CO 2 emission to the atmosphere. (author)

  19. Review of concrete properties for prestressed concrete pressure vesssels

    International Nuclear Information System (INIS)

    Nanstad, R.K.

    1976-10-01

    The desire for increasing power output along with safety requirements has resulted in consideration of the prestressed concrete pressure vessel (PCPV) for most current nuclear reactor systems, as well as for the very-high-temperature reactor for process heat and as primary pressure vessels for coal conversion systems. Results are presented of a literature review to ascertain current knowledge regarding plain concrete properties under conditions imposed by a mass concrete structure such as PCRV. The effects of high temperature on such properties as strength, elasticity, and creep are discussed, as well as changes in thermal properties, multiaxial behavior, and the mechanisms thought to be responsible for the observed behavior. In addition, the effects of radiation and moisture migration are discussed. It is concluded that testing results found in the technical literature show much disagreement as to the effects of temperature on concrete properties. The variations in concrete mixtures, curing and testing procedures, age at loading, and moisture conditions during exposure and testing are some of the reasons for such disagreement. Test results must be limited, in most cases, to the materials and conditions of a given test rather than applied to such a general class of materials such as concrete. It is also concluded that sustained exposure of normal concretes to current PCRV operating conditions will not result in any significant loss of properties. However, lack of knowledge regarding effects of temperatures exceeding 100 0 C (212 0 F), moisture migration, and multiaxial behavior precludes a statement advocating operation beyond current design limits. The report includes recommendations for future research on concrete for PCPVs

  20. Properties of concrete containing different type of waste materials as aggregate replacement exposed to elevated temperature – A review

    Science.gov (United States)

    Ghadzali, N. S.; Ibrahim, M. H. W.; Sani, M. S. H. Mohd; Jamaludin, N.; Desa, M. S. M.; Misri, Z.

    2018-04-01

    Concrete is the chief material of construction and it is non-combustible in nature. However, the exposure to the high temperature such as fire can lead to change in the concrete properties. Due to the higher temperature, several changes in terms of mechanical properties were observed in concrete such as compressive strength, modulus of elasticity, tensile strength and durability of concrete will decrease significantly at high temperature. The exceptional fire-proof achievement of concrete is might be due to the constituent materials of concrete such as its aggregates. The extensive use of aggregate in concrete will leads to depletion of natural resources. Hence, the use of waste and other recycled and by-product material as aggregates replacements becomes a leading research. This review has been made on the utilization of waste materials in concrete and critically evaluates its effects on the concrete performances during the fire exposure. Therefore, the objective of this paper is to review the previous search work regarding the concrete containing waste material as aggregates replacement when exposed to elevated temperature and come up with different design recommendations to improve the fire resistance of structures.

  1. Crack growth and development of fracture zones in plain concrete and similar materials

    International Nuclear Information System (INIS)

    Petersson, P.-E.

    1981-12-01

    A calculation model (the Fictitious Crack Model), based on fracture mechanics and the finite element method, is presented. In the model the fracture zone in front of a crack is represented by a fictitious crack that is able to transfer stress. The stress transferring capability of the fictitious crack normally decreases when the crack width increases. The applicability of linear elastic fracture mechanics to concrete and similar materials is analysed by use of the Fictitious Crack Model. The complete tensile stress-strain curve is introduced as a fracture mechanical parameter. The curve can be approximately determined if the tensile strength, the Young's modulus and the fracture energy are known. Suitable test methods for determining these properties are presented and test results are reported for a number of concrete qualities. A new type of very stiff tensile testing machine is presented by which it is possible to carry out stable tensile tests on concrete. The complete tensile stress-strain curves have been determined for a number of concrete qualities. A complete system for analysing crack propagation in concrete is covered, as a realistic material model, a functional calculation model and methods for determining the material properties necessary for the calculations are included. (Auth.)

  2. Development and Evaluation of Cement-Based Materials for Repair of Corrosion-Damaged Reinforced Concrete Slabs

    OpenAIRE

    Liu, Rongtang; Olek, J.

    2001-01-01

    In this study, the results of an extensive laboratory investigation conducted to evaluate the properties of concrete mixes used as patching materials to repair reinforced concrete slabs damaged by corrosion are reported. Seven special concrete mixes containing various combinations of chemical or mineral admixtures were developed and used as a patching material to improve the durability of the repaired slabs. Physical and mechanical properties of these mixes, such as compressive strength, stat...

  3. Experimental Investigation of Thermal Conductivity of Concrete Containing Micro-Encapsulated Phase Change Materials

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    in this article utilizes integration of the concrete and the microencapsulated Phase Change Material (PCM). PCM has the ability to absorb and release significant amounts of heat at a specific temperature range. As a consequence of admixing PCM to the concrete, new thermal properties like thermal conductivity...... and specific heat capacity have to be defined. This paper presents results from the measurements of the thermal conductivity of various microencapsulated PCM-concrete and PCM-cement-paste mixes. It was discovered that increase of the amount of PCM decreases the thermal conductivity of the concrete PCM mixture....... Finally, a theoretical calculation methodology of thermal conductivity for PCM-concrete mixes is developed....

  4. Evaluation of calculational and material models for concrete containment structures

    International Nuclear Information System (INIS)

    Dunham, R.S.; Rashid, Y.R.; Yuan, K.A.

    1984-01-01

    A computer code utilizing an appropriate finite element, material and constitutive model has been under development as a part of a comprehensive effort by the Electric Power Research Institute (EPRI) to develop and validate a realistic methodology for the ultimate load analysis of concrete containment structures. A preliminary evaluation of the reinforced and prestressed concrete modeling capabilities recently implemented in the ABAQUS-EPGEN code has been completed. This effort focuses on using a state-of-the-art calculational model to predict the behavior of large-scale reinforced concrete slabs tested under uniaxial and biaxial tension to simulate the wall of a typical concrete containment structure under internal pressure. This paper gives comparisons between calculations and experimental measurements for a uniaxially-loaded specimen. The calculated strains compare well with the measured strains in the reinforcing steel; however, the calculations gave diffused cracking patterns that do not agree with the discrete cracking observed in the experiments. Recommendations for improvement of the calculational models are given. (orig.)

  5. A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2014-01-01

    PCM. This paper describes the development of the new material and the experimental set-up to determine the specific heat capacity of the PCM concrete material. Moreover, various methods are proposed and compared to calculate the specific heat capacity of the PCM concrete. Finally, it is hoped......The study presented in this paper focuses on an experimental investigation of the specific heat capacity as a function of the temperature Cp (T) of concrete mixed with various amounts of phase change material (PCM). The tested specimens are prepared by directly mixing concrete and microencapsulated...... that this work can be used as an inspiration and guidance to perform measurements on the various composite materials containing PCM....

  6. Concrete and criticality

    International Nuclear Information System (INIS)

    Carter, R.D.

    1978-01-01

    Concrete is a widely used structural material which occurs frequently in systems requiring criticality analyses. Ordinarily, we give little thought to what its actual composition is (as compared to reference compositions), yet in criticality safety, differences in composition can cause large changes in k-effective and it may not be easy to predict in which direction the change will occur. Concrete composition is quite variable with differences in the aggregate used in the concrete in various parts of the country providing relative large differences in k-effective. The water content of concrete can also strongly affect the reactivity of a system in which it acts as a reflector or is interspersed between fissile units. Because concrete is so common and is often (but not always) a better reflector than water, one must know the concrete compositions or be prepared to use a ''worst case'' composition. It may be a problem, however, to determine just what is the worst case. At the Hanford Plant, the aggregate normally used is basalt, which gives a composition very low in carbon as opposed to those areas (e.g., Oak Ridge) where the use of limestone aggregate will result in concrete with a high carbon content. The data presented show some of the effects found in situations using ''Hanford'' concrete, but similar effects might be found with other compositions. In some cases, the use of concrete may be incidental to the effects shown. While the numbers shown are those for actual systems, the primary intent is to alert the reader that these effects can occur. In applying this information, the analyst should use material specific to the systems being analyzed

  7. Cask size and weight reduction through the use of depleted uranium dioxide-concrete material

    International Nuclear Information System (INIS)

    Lobach, S.Yu.; Haire, J.M.

    2007-01-01

    Newly developed depleted uranium (DU) composite materials enable fabrication of spent nuclear fuel (SNF) transport and storage casks that are smaller and lighter in weight than casks made with conventional materials. One such material is DU dioxide (DUO2)-concrete, so-called DUCRETE TM . This paper examines the radiation shielding efficiency of DUCRETE as compared with that of a conventional concrete cask that holds 32 pressurized-water-reactor SNF assemblies. In this analysis, conventional concrete shielding material is replaced with DUCRETE. The thickness of the DUCRETE shielding is adjusted to give the same radiation surface dose, 200 mrem/h (2 mSv/hr), as the conventional concrete cask. It was found that the concrete shielding thickness decreased from 71 to 20 cm and that the cask radial cross-section shielding area was reduced approx 50 %. The weight was reduced approx 21 %, from 154 to approx 127 tons. Should one choose to add an extra outer ring of SNF assemblies, the number of such assemblies would increase from 32 to 52. In this case, the outside cask diameter would still decrease, from 169 to 137 cm. However, the weight would increase somewhat from 156 to 177 tons. Neutron cask surface dose is only approx 10 % of the gamma dose. These reduced sizes and weights will significantly influence the design of next-generation SNF casks

  8. Experimental characterization of thermal and hygric properties of hemp concrete with consideration of the material age evolution

    Science.gov (United States)

    Bennai, F.; Issaadi, N.; Abahri, K.; Belarbi, R.; Tahakourt, A.

    2018-04-01

    The incorporation of plant crops in construction materials offers very good hygrothermal performance to the building, ensuring substantial environmental and ecological benefits. This paper focuses on studying the evolution of hygrothermal properties of hemp concrete over age (7, 30 and 60 days). The analysis is done with respect to two main hygric and thermal properties, respectively: sorption isotherms, water vapor permeability, thermal conductivity and heat capacity. In fact, most of these parameters are very susceptible to change function of the age of the material. This influence of the aging is mainly due to the evolution of the microstructure with the binder hydration over time and the creation of new hydrates which can reduces the porosity of the material and consequently modify its properties. All the tested hemp concrete samples presented high moisture storage capacity and high-water vapor permeability whatever the age of such hygroscopic material. These hygric parameters increase significantly for high relative humidity requiring more consideration of such variability during the modeling of coupled heat and mass transfer within the material. By the same, the thermal conductivity and heat capacity tests highlighted the impact of the temperature and hygric state of the studied material.

  9. Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics

    International Nuclear Information System (INIS)

    Kharita, M. H.; Takeyeddin, M.; Al-Nassri, M.; Yousef, S.

    2008-01-01

    Concrete is one of the most important materials used for radiation shielding in facilities containing radioactive sources and radiation generating machines. The concrete shielding properties may vary depending on the composite of the concrete. Aggregates is the largest constituent (about 70-80% of the total weight of normal concrete). The aim of this work is to develop special concrete with good shielding properties for gamma and neutrons, using natural local materials. For this reason two types of typical concrete widely used in Syria (in Damascus and Aleppo) and four other types of concrete, using aggregates from different regions, have been prepared. The shielding properties of these six types were studied for gamma ray (from Cs-137 and Co-60 sources)and for neutrons (from am-Be source). A reduction of about 10% in the HVL was obtained for the concrete from Damascus in comparison with that from Aleppo, for both neutrons and gammas. One of the other four types of concrete (from Rajo site, mostly Hematite), was found to further reduce the HVL by about 10% for both neutrons and gamma rays.(author)

  10. Axial Compression Tests on Corroded Reinforced Concrete Columns Consolidated with Fibre Reinforced Polymers

    Directory of Open Access Journals (Sweden)

    Bin Ding

    2017-06-01

    Full Text Available Reinforced concrete structure featured by strong bearing capacity, high rigidity, good integrity, good fire resistance, and extensive applicability occupies a mainstream position in contemporary architecture. However, with the development of social economy, people need higher requirements on architectural structure; durability, especially, has been extensively researched. Because of the higher requirement on building material, ordinary reinforced concrete structure has not been able to satisfy the demand. As a result, some new materials and structures have emerged, for example, fibre reinforced polymers. Compared to steel reinforcement, fibre reinforced polymers have many advantages, such as high tensile strength, good durability, good shock absorption, low weight, and simple construction. The application of fibre reinforced polymers in architectural structure can effectively improve the durability of the concrete structure and lower the maintenance, reinforcement, and construction costs in severe environments. Based on the concepts of steel tube concrete, fibre reinforced composite material confined concrete, and fibre reinforced composite material tubed concrete, this study proposes a novel composite structure, i.e., fibre reinforced composite material and steel tube concrete composite structure. The structure was developed by pasting fibre around steel tube concrete and restraining core concrete using fibre reinforced composite material and steel tubes. The bearing capacity and ultimate deformation capacity of the structure was tested using column axial compression test.

  11. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete

    OpenAIRE

    Miguel Ángel Álvarez; Jaime Lorenzo; Itziar Goicoechea; María Fenollera; José Luis Míguez

    2013-01-01

    The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the o...

  12. Experimental results on salt concrete for barrier elements made of salt concrete in a repository for radioactive waste in a salt mine

    International Nuclear Information System (INIS)

    Gutsch, Alex-W.; Preuss, Juergen; Mauke, Ralf

    2012-01-01

    The Bartensleben rock salt mine in Germany was used as a repository for low and intermediate level radioactive waste from 1971 to 1991 and from 1994 to 1998. The repository with an overall volume of about 6 million m 3 has to be closed. Salt concrete is used for the refill of the voids of the repository. The concrete mixtures contain crushed salt instead of natural aggregates as the void filling material should be as similar to the salt rock as possible. Very high requirements regarding low heat development and little or even no cracking during concrete hardening had to be fulfilled even for the barrier elements made from salt concrete which separate the radioactive waste from the environment. Requirements for the salt concrete were set up with regard to the fluidity of the fresh concrete during the hardening process and its durability. In the view of a comprehensive numerical calculations of the temperature development and thermal stresses in the massive salt concrete elements of the backfill of the voids, experimental results for material properties of the salt concrete are presented: mixture of the salt concrete, thermodynamic properties (adiabatic heat release, thermal dilatation, thermal conductivity and heat capacity), mechanical short term properties, creep (under tension, under compression), autogenous shrinkage

  13. A Review on the Development of New Materials for Construction of Prestressed Concrete Railway Sleepers

    Science.gov (United States)

    Raj, Anand; Nagarajan, Praveen; Shashikala, A. P.

    2018-03-01

    Railways form the backbone of all economies, transporting goods, and passengers alike. Sleepers play a pivotal role in track performance and safety in rail transport. This paper discusses in brief about the materials that have been used in making sleepers in the early stages of railways. Extensive studies have been carried out on the static, dynamic and impact analysis of prestressed sleepers all around the globe. It has been shown that majority of the sleepers do not last till their expected design life resulting in massive replacement and repair cost. The primary reasons leading to the failure of sleepers have been summarised. This article also highlights the use of new materials developed recently for the construction of prestressed concrete sleepers to improve the performance and life of railway sleepers. Use of geopolymer concrete and steel fibre reinforced concrete, assist in the reduction of flexural cracking, whereas rubber concrete enhances the impact resistance of concrete by three folds. This paper presents a review of state of the art of new materials for railway sleepers.

  14. Scanning electron microscopy of autoclaved aerated concrete with supplementary raw materials

    NARCIS (Netherlands)

    Straub, C.; Florea, M.V.A.; Brouwers, H.J.H.; Nisperos, Arturo G.; Pöllmann, Herbert

    Microscopy is a key analysis technology for the understanding of the achieved properties of building materials. In the case of Autoclaved Aerated Concrete (AAC) it is even more important due to the phase transformation during the hydrothermal hardening. The incorporation of substitution materials in

  15. The Future Concrete: Self-Compacting Concrete

    OpenAIRE

    Iureş, Liana; Bob, Corneliu

    2010-01-01

    The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  16. The use of waste materials in asphalt concrete mixtures.

    Science.gov (United States)

    Tuncan, Mustafa; Tuncan, Ahmet; Cetin, Altan

    2003-04-01

    The purpose of this study was to investigate (a) the effects of rubber and plastic concentrations and rubber particle sizes on properties of asphalt cement, (b) on properties of asphalt concrete specimens and (c) the effects of fly ash, marble powder, rubber powder and petroleum contaminated soil as filler materials instead of stone powder in the asphalt concrete specimens. One type of limestone aggregate and one penetration-graded asphalt cement (75-100) were used. Three concentrations of rubber and plastic (i.e. 5%, 10% and 20% of the total weight of asphalt cement), three rubber particle sizes (i.e. No. 4 [4.75mm] - 20 [0.85 mm], No. 20 [0.85mm] - 200 [0.075mm] and No. 4 [4.75mm] - 200 [0.075mm]) and one plastic particle size (i.e. No. 4 [4.75mm] - 10 [2.00mm]) were also used. It was found that while the addition of plastic significantly increased the strength of specimens, the addition of rubber decreased it. No. 4 [4.75mm] - 200 [0.075mm] rubber particles showed the best results with respect to the indirect tensile test. The Marshall stability and indirect tensile strength properties of plastic modified specimens increased. Marble powder and fly ash could be used as filler materials instead of stone powder in the asphalt concrete pavement specimens.

  17. Structural and mechanical study of concrete made from cementitious materials of low environmental impact

    Science.gov (United States)

    González, A. K.; Montaño, A. M.; González, C. P.; Santos, A.

    2017-12-01

    This work shows the results obtained by replacing Type I Portland®, by cementitious geopolymers materials, derived from minerals, in concrete mixtures. Synthesis of both geopolymers through alkaline activation of two alluminosilicates: Bentonite and Pumice with sodium silicate (Na2SiO3). XRD, SEM and XRDE are used to structural study of new geopolymers. Concrete mixtures with replacement of Portland have 10% and 30% of geopolymer. Finally, concrete mortars formed were mechanically analysed according to ICONTEC 220 at 7, 14, 28, 41, 90 and 120 days of cure. Results shows that compressive strength of concrete from Bentonite and Pumice are almost the same for the standard concrete at 28 days of cure. At 90 days of cure, compression resistance of concrete from Pumice at 10% is even higher than those that standard concrete shows.

  18. Ultimate load analysis of prestressed concrete reactor pressure vessels considering a general material law

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.

    1975-01-01

    A method of analysis is presented, by which progressive fracture processes in axisymmetric prestressed concrete pressure vessels during increasing internal pressure can be evaulated by means of a continuum calculation considering a general material law. Formulations used in the analysis concerning material behaviour are derived on one hand from appropriate results of testing small concrete specimens, and are on the other hand gained by parametric studies in order to solve questions still existing by recalulating fracture tests on concrete bodies with more complex states of stress. Due attention is focussed on investigating the behaviour of construction members subjected to high shear forces (end slabs.). (Auth.)

  19. Pervious Concrete

    OpenAIRE

    Torsvik, Øyvind André Hoff

    2012-01-01

    Pervious concrete is a material with a high degree of permeability but generally low strength. The material is primarily used for paving applications but has shown promise in many other areas of usage. This thesis investigates the properties of pervious concrete using normal Norwegian aggregates and practices. An overview of important factors when it comes to designing and producing pervious concrete is the result of this investigation. Several experiments have been performed in the concrete ...

  20. Experimental needs of high temperature concrete

    International Nuclear Information System (INIS)

    Chern, J.C.; Marchertas, A.H.

    1985-01-01

    The needs of experimental data on concrete structures under high temperature, ranging up to about 370 0 C for operating reactor conditions and to about 900 0 C and beyond for hypothetical accident conditions, are described. This information is required to supplement analytical methods which are being implemented into the finite element code TEMP-STRESS to treat reinforced concrete structures. Recommended research ranges from material properties of reinforced/prestressed concrete, direct testing of analytical models used in the computer codes, to investigations of certain aspects of concrete behavior, the phenomenology of which is not well understood. 10 refs

  1. Concrete: Too young for conservation

    NARCIS (Netherlands)

    Heineman, H.A.; Hees, R.P.J. van; Nijland, T.G.

    2008-01-01

    The 20th century built heritage is one of the new conservation challenges, due to its architectural differences from the traditional heritage and new materials. One major new material is concrete; its quantity and importance for the new heritage requires a tailored conservation approach. Until now,

  2. Calculations of concrete containment tight loss: Studies of a reinforced concrete slab with non uniform thickness

    International Nuclear Information System (INIS)

    Jamet, P.; Berriaud, C.; Humbert, J.M.; Millard, A.; Nahas, G.

    1983-01-01

    A study was carried out in order to investigate the validity of a concrete model including tensile fracture and strain-softening under compressive loading. Triaxial tests were performed on micro-concrete specimens, and the post-peak behaviour of the material was characterized. The parameters required by the model were therefore obtained. The case of a circular slab loaded up to failure was then considered, in order to compare the numerical results obtained by a finite elements analysis including the concrete model, to the experimental data. (orig.)

  3. Calculations of concrete containment tight loss: studies of a reinforced concrete SLAB with non uniform thickness

    International Nuclear Information System (INIS)

    Jamet, P.

    1983-08-01

    A study was carried out in order to investigate the validity of a concrete model including tensile fracture and strain-softening under compressive loading. Triaxial tests were performed on micro-concrete specimens, and the post-peak behaviour of the material was characterized. The parameters required by the model were therefore obtained. The case of a circular slab loaded up to failure was then considered, in order to compare the numerical results obtained by a finite elements analysis including the concrete model, to the experimental data

  4. A study on the performance of concrete containing recycled aggregates and ceramic as materials replacement

    Science.gov (United States)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Anting, N.; Mazenan, P. N.

    2017-11-01

    Natural fine aggregate materials are commonly used in development and commercial construction in Malaysia. In fact, concrete production was increased as linear with the growing Malaysia economy. However, an issue was production of concrete was to locate adequate sources of natural fine aggregates. There lot of studies have been conducted in order to replace the fine aggregate in which natural fine aggregate replace with the waste material in concrete preparation. Therefore, this study aims to utilize the Recycled Concrete Aggregate (RCA) and ceramic waste which has great potential to replace the natural aggregate in concrete mix with different type of method, admixture, and parameters. This research were focused on compressive strength and water absorption test to determine the optimum mix ratio of concrete mix. The concrete aggregate was chosen due to improvement capillary bonding mechanisms and ceramic presented similar strength compared to the conventional concrete using natural aggregate. Percent of replacement have been used in this study was at 25%, 35% and 45% of the RCA and 5%, 10% and 15% for ceramic, respectively. Furthermore, this research was conduct to find the optimum percentage of aggregate replacement, using water-cement ratio of 0.55 with concrete grade 25/30. The best percentage of replacement was the RCA35% C15% with the compressive strength of 34.72 MPa and the water absorption was satisfied.

  5. The Future Concrete: Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Liana Iureş

    2010-01-01

    Full Text Available The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  6. Concrete containments in Swedish nuclear power plants. A review of construction and material

    International Nuclear Information System (INIS)

    Roth, Thomas; Silfwerbrand, Johan; Sundquist, Haakan

    2002-12-01

    The purpose of project is the long-term accumulation of knowledge related to the status of existing structures in order to facilitate answers to questions that may arise in the future. We have visited all the power stations in Sweden and in conjunction with these visits we have gone through all the relevant documents relating to the constructional concrete. An assessment of the structural integrity, related to the question of cracking and hence seepage, has been conducted. Currently, the work has only been done on a random sampling basis as in many cases important information is still missing. Generally, it can be said that the relevant constructions are, from a structural integrity point-of-view, correctly designed and detailed and have very high safety margins for the load cases which constitute the functional demands placed upon the installation. Each containment structure (vessel) appears to have been designed and built using the best available knowledge at the time of construction. It may be of interest to note that when these structures were built there was a very high level of competence and experience of how to design, detail, and construct large concrete structures. The cement used for the majority of these large concrete structures forming nuclear power stations, namely a slowly hardening cement (LH cement), had very good properties, perhaps even better than those available today. Later structures were built with other cements and concrete mixes, although this has been partly compensated for by a choice of a higher nominal quality. The environment is favourable regarding potential degradation of the concrete, the reinforcement steel and the steel liner. Questions remain regarding the uncertainties of the methods used for continuous inspection of the cement injected prestressing steel. This is even the case for possibly insufficient injection around grouting mounting parts for manholes and other openings. Assessment of prestressing losses may also require

  7. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  8. Smart Crack Control in Concrete through Use of Phase Change Materials (PCMs): A Review.

    Science.gov (United States)

    Šavija, Branko

    2018-04-24

    Cracks in concrete structures present a threat to their durability. Therefore, numerous research studies have been devoted to reducing concrete cracking. In recent years, a new approach has been proposed for controlling temperature related cracking—utilization of phase change materials (PCMs) in concrete. Through their ability to capture heat, PCMs can offset temperature changes and reduce gradients in concrete structures. Nevertheless, they can also influence concrete properties. This paper presents a comprehensive overview of the literature devoted to using PCMs to control temperature related cracking in concrete. First, types of PCMs and ways of incorporation in concrete are discussed. Then, possible uses of PCMs in concrete technology are discussed. Further, the influences of PCMs on concrete properties (fresh, hardened, durability) are discussed in detail. This is followed by a discussion of modelling techniques for PCM-concrete composites and their performance. Finally, a summary and the possible research directions for future work are given. This overview aims to assure the researchers and asset owners of the potential of this maturing technology and bring it one step closer to practical application.

  9. Concrete

    DEFF Research Database (Denmark)

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities. Through tangible experiments the project...... specific for this to happen. And the knowledge and intention behind the drawing becomes specialised through the understanding of the fabrication processes and their affect on the materials.The structure Concrete is a result of a multi-angled kerf series in ash wood and a concrete base. The ash wood is cut...... using a 5-axis CNC router with a thin saw blade attached. The programming of the machining results in variations of kerfs that lets the ash wood twist into unique shapes.The shapes of the revolving ash ribbons continue into the concrete creating a cohesive shape. The form for the concrete itself is made...

  10. Seismic Material Properties of Reinforced Concrete and Steel Casing Composite Concrete in Elevated Pile-Group Foundation

    Directory of Open Access Journals (Sweden)

    Zhou Mi

    2015-09-01

    Full Text Available The paper focuses on the material mechanics properties of reinforced concrete and steel casing composite concrete under pseudo-static loads and their application in structure. Although elevated pile-group foundation is widely used in bridge, port and ocean engineering, the seismic performance of this type of foundation still need further study. Four scale-specimens of the elevated pile-group foundation were manufactured by these two kinds of concrete and seismic performance characteristic of each specimen were compared. Meanwhile, the special soil box was designed and built to consider soil-pile-superstructure interaction. According to the test result, the peak strength of strengthening specimens is about 1.77 times of the others and the ultimate displacement is 1.66 times of the RC specimens. Additionally, the dissipated hysteric energy capability of strengthening specimens is more than 2.15 times of the others as the equivalent viscous damping ratio is reduced by 50%. The pinching effect of first two specimens is more obvious than latter two specimens and the hysteretic loops of reinforced specimens are more plumpness. The pseudo-static tests also provided the data to quantitatively assessment the positive effect of steel casing composite concrete in aseismatic design of bridge.

  11. Ultra high performance concrete dematerialization study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    Concrete is the most widely used building material in the world and its use is expected to grow. It is well recognized that the production of portland cement results in the release of large amounts of carbon dioxide, a greenhouse gas (GHG). The main challenge facing the industry is to produce concrete in an environmentally sustainable manner. Reclaimed industrial by-proudcts such as fly ash, silica fume and slag can reduce the amount of portland cement needed to make concrete, thereby reducing the amount of GHGs released to the atmosphere. The use of these supplementary cementing materials (SCM) can also enhance the long-term strength and durability of concrete. The intention of the EcoSmart{sup TM} Concrete Project is to develop sustainable concrete through innovation in supply, design and construction. In particular, the project focuses on finding a way to minimize the GHG signature of concrete by maximizing the replacement of portland cement in the concrete mix with SCM while improving the cost, performance and constructability. This paper describes the use of Ductal{sup R} Ultra High Performance Concrete (UHPC) for ramps in a condominium. It examined the relationship between the selection of UHPC and the overall environmental performance, cost, constructability maintenance and operational efficiency as it relates to the EcoSmart Program. The advantages and challenges of using UHPC were outlined. In addition to its very high strength, UHPC has been shown to have very good potential for GHG emission reduction due to the reduced material requirements, reduced transport costs and increased SCM content. refs., tabs., figs.

  12. Preliminary assessment of the performance of concrete as a structural material for alternative low-level radioactive waste disposal technologies

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Siskind, B.; Bowerman, B.S.; Piciulo, P.L.

    1986-12-01

    The objective of this study was to develop information needed to evaluate the long-term performance of concrete and reinforced concrete as a structural material for alternative LLW disposal methods. The capability to carry out such an evaluation is required for licensing a site which employs one of these alternative methods. The basis for achieving the study objective was the review and analysis of the literature on concrete and its properties, particularly its durability. In carrying out this program, criteria for evaluating performance of concrete and factors that can effect its performance were identified. The factors are both intrinsic, i.e., associated with composition of the concrete (and thus controllable), and extrinsic, i.e., due to external environmental forces such as climatic conditions and aggressive chemicals in the soil. A section of the report is devoted to the properties of coatings and their possible use in protecting concrete from chemical attack and enhancing its useful properties. The testing of concrete, using both accelerated tests and long-term non-accelerated tests, is discussed with special reference to its application to modeling of long-term performance prediction. On the basis of the study's results, minimum acceptance criteria are recommended as an aid in the licensing of disposal sites which make sure use of alternative methods

  13. Smart Crack Control in Concrete through Use of Phase Change Materials (PCMs) : A Review

    NARCIS (Netherlands)

    Šavija, B.

    2018-01-01

    Cracks in concrete structures present a threat to their durability. Therefore, numerous research studies have been devoted to reducing concrete cracking. In recent years, a new approach has been proposed for controlling temperature related cracking—utilization of phase change materials (PCMs) in

  14. Empirical Validation of Heat Transfer Performance Simulation of Graphite/PCM Concrete Materials for Thermally Activated Building System

    Directory of Open Access Journals (Sweden)

    Jin-Hee Song

    2017-01-01

    Full Text Available To increase the heat capacity in lightweight construction materials, a phase change material (PCM can be introduced to building elements. A thermally activated building system (TABS with graphite/PCM concrete hollow core slab is suggested as an energy-efficient technology to shift and reduce the peak thermal load in buildings. An evaluation of heat storage and dissipation characteristics of TABS in graphite/PCM concrete has been conducted using dynamic simulations, but empirical validation is necessary to acceptably predict the thermal behavior of graphite/PCM concrete. This study aimed to validate the thermal behavior of graphite/PCM concrete through a three-dimensional transient heat transfer simulation. The simulation results were compared to experimental results from previous studies of concrete and graphite/PCM concrete. The overall thermal behavior for both materials was found to be similar to experiment results. Limitations in the simulation modeling, which included determination of the indoor heat transfer coefficient, assumption of constant thermal conductivity with temperature, and assumption of specimen homogeneity, led to slight differences between the measured and simulated results.

  15. A sophisticated simulation for the fracture behavior of concrete material using XFEM

    Science.gov (United States)

    Zhai, Changhai; Wang, Xiaomin; Kong, Jingchang; Li, Shuang; Xie, Lili

    2017-10-01

    The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions. In this paper, a numerical formulation, which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening, contact, friction and shear dilatation into the XFEM, is proposed to describe various crack behaviors of concrete material. An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced. The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests. It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures. The influence of mode-II parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters.

  16. STRENGTHENING CONCRETE HOLLOW SECTION GIRDER BRIDGE USING POLYURETHANE-CEMENT MATERIAL (PART B

    Directory of Open Access Journals (Sweden)

    Haleem K. Hussain

    2018-01-01

    Full Text Available This paper presents experimental study to retrofitted reinforced concrete Hollow Section Bridge. The study was carried out on the White River Bridge structure (Bai xi da Qiao / China. The effect of retrofitting on stress and strain of beams at the critical section was studied. Evaluating the bridges girder after strengthening using new material called PolyurethaneCement material (PUC as an external material .This study present the strain and deflection before and after strengthening the bridge girders. The results has shown that the overall state of the bridge structural strengthening is in good condition. The enhancement was significant in stiffness of the bridge structure. Regarding to the results of static load test, the experimental values strain and deflection are less than theoretical values, indicating that the stiffness of the structure, overall deformation and integrity satisfy the designed and standard requirements and the working performance are in good condition, and flexure capacity has a certain surplus.

  17. Comparison of performance of partial prestressed beam-column subassemblages made of reactive powder concrete and normal concrete materials using finite element models

    Science.gov (United States)

    Nurjannah, S. A.; Budiono, B.; Imran, I.; Sugiri, S.

    2016-04-01

    Research on concrete material continues in several countries and had produced a concrete type of Ultra High Performance Concrete (UHPC) which has a better compressive strength, tensile strength, flexural strength, modulus of elasticity, and durability than normal concrete (NC) namely Reactive Powder Concrete (RPC). Researches on structures using RPC material showed that the RPC structures had a better performance than the NC structures in resisting gravity and lateral cyclic loads. In this study, an experiment was conducted to apply combination of constant axial and lateral cyclic loads to a prototype of RPC interior partial prestressed beam-column subassemblage (prototype of BCS-RPC) with a value of Partial Prestressed Ratio (PPR) of 31.72% on the beam. The test results were compared with finite element model of beam-column subassemblage made of RPC by PPR of 31.72% (BCS-RPC-31.72). Furthermore, there was BCS-RPC modeling with PPR of 21.39% (BCS-RPC-21.39) and beam-column subassemblages made of NC materials modeling with a value of PPR at 21.09% (BCS-NC-21.09) and 32.02% (BCS-NC-32.02). The purpose of this study was to determine the performance of the BCS-RPC models compared to the performance of the BCS-NC models with PPR values below and above 25%, which is the maximum limit of permitted PPR. The results showed that all models of BCS-RPC had a better performance than all models of BCS-NC and the BCS-RPC model with PPR above 25% still behaved ductile and was able to dissipate energy well.

  18. Flexural Behaviour of Precast Aerated Concrete Panel (PACP with Added Fibrous Material: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul Rahim Noor Hazlin

    2017-01-01

    Full Text Available The usage of precast aerated concrete panel as an IBS system has become the main alternative to conventional construction system. The usage of this panel system contributes to a sustainable and environmental friendly construction. This paper presents an overview of the precast aerated concrete panel with added fibrous material (PACP. PACP is fabricated from aerated foamed concrete with added Polypropylene fibers (PP. The influence of PP on the mechanical properties of PACP are studied and reviewed from previous research. The structural behaviour of precast concrete panel subjected to flexure load is also reviewed. It is found that PP has significant affects on the concrete mixture’s compressive stregth, tensile strength and flexural strength. It is also found that PP manage to control the crack propagation in the concrete panel.

  19. Microwave processing of cement and concrete materials – towards an industrial reality?

    International Nuclear Information System (INIS)

    Buttress, Adam; Jones, Aled; Kingman, Sam

    2015-01-01

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination

  20. Heat Storage Performance of the Prefabricated Hollow Core Concrete Deck Element with Integrated Microencapsulated Phase Change Material

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    The paper presents the numerically calculated dynamic heat storage capacity of the prefabricated hollow core concrete deck element with and without microencapsulated phase change material (PCM). The reference deck is the ordinary deck made of standard concrete material and that is broadly used...

  1. Investigation of novel composite material based on extra-heavy concrete and basalt fiber for gamma radiation protection properties

    International Nuclear Information System (INIS)

    Romanenko, Yi.M.; Nosovs'kij, A.V.; Gulyik, V.Yi.; Golyuk, M.Yi.

    2018-01-01

    The paper presents a new composite material for radiation protection based on extra-heavy concrete reinforced by basalt fiber. Basalt fiber is a new material for concrete reinforcement, which provides improved mechanical characteristics of concrete, reduces the level of microcracks and increases the durability of concrete. Within the scope of present work, the gamma-ray radiation protection properties of concrete reinforced with basalt fiber was modeled. Two types of extra-heavy concrete were used for this paper. The main gamma-ray attenuation coefficients such as mean atomic number, mean atomic mass, mean electron density, effective atomic number, effective electron density, Murty effective atomic number were analyzed with help of WinXCom software. It has been shown that the addition of basalt fiber to concrete does not impair its gamma-ray radiation shielding properties. With increasing the basalt fiber dosage in concrete, the radiation properties against gamma radiation are improved.

  2. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    Science.gov (United States)

    Halúzová, Dušana

    2015-06-01

    For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.

  3. Steel fibre concrete, a safer material for reactor construction. A general theory for rupture prediction

    International Nuclear Information System (INIS)

    Rammant, J.P.; Van Laethem, L.; Backx, E.

    1977-01-01

    The effect of steel fibre reinforcement on the mechanical behavior of concrete reactor structures is studied. It is shown that this material leads to a higher safety factor for highly stressed concrete structures like prestressed concrete pressure vessels. The reinforcement of concrete with short steel fibres results clearly in a fundamental change of the material properties. The study comprises basic experiments, the elaboration of an expression of the material laws, the development of a general computer program and the comparison of computational results with more elaborate experiments. Basic experimental work is conducted to determine the material characteristics of the fibre reinforced concrete. It is shown how the fibre reinforcement mechanism is translated into mathematical formulae by expressing the principal characteristics as matrix relationships. These relationships describe the elasto-plastic behavior and the cracked behavior. Probabilistic principles are used to express to fibre efficiency, such that a general stress-strain relationship is incorporated in a subsequent computer program. A general finite element program is developed which includes the new matrix relationships, the pull-out of fibres and the general stress-strain equations. A nonlinear calculation method gives the propagation of the distributed cracks with increasing load untill failure of the structure. Similarly, thermal cycling conditions are accounted for. For example the crack propagation in a fibre reinforced beam was measured by the photostress coating technique: the comparison with the computed crack propagation reveals an excellent agreement. Other comparative studies on simple structural parts are also reported

  4. Aging of concrete containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.; Mori, Yasuhiro; Arndt, E.G.

    1992-01-01

    Concrete structures play a vital role in the safe operation of all light-water reactor plants in the US Pertinent concrete structures are described in terms of their importance design, considerations, and materials of construction. Degradation factors which can potentially impact the ability of these structures to meet their functional and performance requirements are identified. Current inservice inspection requirements for concrete containments are summarized. A review of the performance history of the concrete components in nuclear power plants is provided. A summary is presented. A summary is presented of the Structural Aging (SAG) Program being conducted at the Oak Ridge National Laboratory for the US Nuclear Regulatory Commission. The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved bases for their continued service. The program consists of a management task and three technical tasks: materials property data base, structural component assessment/repair technologies, and quantitiative methodology for continued service conditions. Objectives and a summary of accomplishments under each of these tasks are presented

  5. Influence of limestone waste as partial replacement material for sand and marble powder in concrete properties

    Directory of Open Access Journals (Sweden)

    Omar M. Omar

    2012-12-01

    Full Text Available Green concrete are generally composed of recycling materials as hundred or partial percent substitutes for aggregate, cement, and admixture in concrete. Limestone waste is obtained as a by-product during the production of aggregates through the crushing process of rocks in rubble crusher units. Using quarry waste as a substitute of sand in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of river and mining sands. This paper reports the experimental study undertaken to investigate the influence of partial replacement of sand with limestone waste (LSW, with marble powder (M.P as an additive on the concrete properties. The replacement proportion of sand with limestone waste, 25%, 50%, and 75% were practiced in the concrete mixes except in the concrete mix. Besides, proportions of 5%, 10% and 15% marble powder were practiced in the concrete mixes. The effects of limestone waste as fine aggregate on several fresh and hardened properties of the concretes were investigated. The investigation included testing of compressive strength, indirect tensile strength, flexural strength, modulus of elasticity, and permeability. It was found that limestone waste as fine aggregate enhanced the slump test of the fresh concretes. But the unit weight concretes were not affected. However, the good performance was observed when limestone waste as fine aggregate was used in presence of marble powder.

  6. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Winkel, B.V.

    1995-01-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in 2 mix and a 4.5 kip/in 2 mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in 2 . In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F

  7. Studies of ancient concrete as analogs of cementitious sealing materials for a repository in tuff

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D.M.; Langton, C.A.

    1989-03-01

    The durability of ancient cementitious materials has been investigated to provide data applicable to determining the resistance to weathering of concrete materials for sealing a repository for storage of high-level radioactive waste. Because tuff and volcanic ash are used in the concretes in the vicinity of Rome, the results are especially applicable to a waste repository in tuff. Ancient mortars, plasters, and concretes collected from Rome, Ostia, and Cosa dating to the third century BC show remarkable durability. The aggregates used in the mortars, plasters, and concretes included basic volcanic and pyroclastic rocks (including tuff), terra-cotta, carbonates, sands, and volcanic ash. The matrices of ancient cementitious materials have been characterized and classified into four categories: (1) hydraulic hydrated lime and hydrated lime cements, (2) hydraulic aluminous and ferruginous hydrated lime cements ({plus_minus} siliceous components), (3) pozzolana/hydrated lime cements, and (4) gypsum cements. Most of the materials investigated are in category (3). The materials were characterized to elucidate aspects of the technology that produced them and their response to the environmental exposure throughout their centuries of existence. Their remarkable properties are the result of a combination of chemical, mineralogical, and microstructural factors. Their durability was found to be affected by the matrix mineralogy, particle size, and porosity; aggregate type, grading and proportioning; and the methodology of placement. 30 refs.

  8. Let’s Get Concrete!

    DEFF Research Database (Denmark)

    Jones, Candace; Boxenbaum, Eva

    whereas in the United States market and professional logics interacted: manufacturers cooperated to create standards for concrete and appealed to architects as consumers. Our findings also illuminate that concrete was legitimated initially by imitation of stone, but this strategy soon de......-legitimated not only concrete but also stone. Concrete was perceived as merely imitative and thus inauthentic. For concrete to become a legitimate and widely adopted material, architects had to theorize concrete as unique material with distinctive aesthetic possibilities, which led to new kinds of buildings and new...... architectural styles. Our study illuminates the key role that materials and aesthetics played within architects’ professional logic and shaped processes of institutional change....

  9. Development and application of a material law for steel-fibre-reinforced concrete with regard to its use for pre-stressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.; Borgerhoff, M.

    1995-01-01

    On the basis of the evaluation of many publications on the mechanical behaviour of steel fibre reinforced concrete (SFRC) and on the results of experiments using an SFRC especially developed for pre-stressed concrete reactor vessels (PCRVs), a material law for SFRC including general multiaxial stress conditions has been developed. From fibre pull-out tests described in the literature and by use of the experimental results, relations describing the capable tensile stress in SFRC after cracking, as a function of crack width, have been derived. There is a significant increase in the biaxial compressive strength of SFRC compared with plain concrete. The improved behaviour under multiaxial stress conditions, with one of the principal stresses being tensile, is outlined in comparison with different formulations of failure envelopes of plain concrete. For the purpose of verifying the material law implemented in the computer program used, analyses have been carried out for experiments with SFRC beams. After some modification concerning the shear behaviour, load-displacement curves and realistic crack propagations which correspond well have been obtained. In the stand-tube area in the centre of a PCRV top cap the use of SFRC is advantageous because of the difficulties concerning the arrangement of reinforcement in the concrete between the tubes. (orig.)

  10. Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Pan Pan

    2017-02-01

    Full Text Available Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC. This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing–thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation.

  11. Strength development of concrete : balancing production requirements and ecological impact

    NARCIS (Netherlands)

    Onghena, S.; Grunewald, S.; Schutter, G; Jaime C., Galvez; Aguado de Cea, Antonio; Fernandez-Ordonez, David; Sakai, Koji; Reye s, Encarnación; Casati, Maria J .; Enfedaque, Alejandro; Alberti, Marcos G.; de la Fuente, Albert

    2016-01-01

    The effective production of concrete structures requires adequate control of
    strength development in order to realise the scheduled production cycles. Demoulding of elements can take place only when sufficient strength is gained and the production cycle has to be maintained with seasonal changes

  12. EI Scale: an environmental impact assessment scale related to the construction materials used in the reinforced concrete

    OpenAIRE

    Gilson Morales; Antonio Edésio Jungles; Sheila Elisa Scheidemantel Klein; Juliana Guarda

    2010-01-01

    This study aimed to create EI Scal, an environmental impact assessment scal, related to construction materials used in the reinforced concrete structure production. The main reason for that was based on the need to classify the environmental impact levels through indicators to assess the damage level process. The scale allowed converting information to estimate the environmental impact caused. Indicators were defined trough the requirements and classification criteria of impact aspects consid...

  13. Development of a Tomography Technique for Assessment of the Material Condition of Concrete Using Optimized Elastic Wave Parameters

    Directory of Open Access Journals (Sweden)

    Hwa Kian Chai

    2016-04-01

    Full Text Available Concrete is the most ubiquitous construction material. Apart from the fresh and early age properties of concrete material, its condition during the structure life span affects the overall structural performance. Therefore, development of techniques such as non-destructive testing which enable the investigation of the material condition, are in great demand. Tomography technique has become an increasingly popular non-destructive evaluation technique for civil engineers to assess the condition of concrete structures. In the present study, this technique is investigated by developing reconstruction procedures utilizing different parameters of elastic waves, namely the travel time, wave amplitude, wave frequency, and Q-value. In the development of algorithms, a ray tracing feature was adopted to take into account the actual non-linear propagation of elastic waves in concrete containing defects. Numerical simulation accompanied by experimental verifications of wave motion were conducted to obtain wave propagation profiles in concrete containing honeycomb as a defect and in assessing the tendon duct filling of pre-stressed concrete (PC elements. The detection of defects by the developed tomography reconstruction procedures was evaluated and discussed.

  14. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat....... Codes for designing prefabricated reinforced components of aircrete structures have adopted these recently developed approaches.......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  15. Evaluation of crushed concrete base strength.

    Science.gov (United States)

    2012-12-01

    This research project was conducted with two primary objectives, which include: 1) determine whether current Mississippi Department of Transportation (MDOT) requirements for recycled concrete aggregates (RCA) provide adequate materials for a roadway ...

  16. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Saito, Tetsuo

    1983-01-01

    The repair works of the shielding for the nuclear ship ''Mutsu'' were completed in August, 1982. For the primary shielding, serpentine concrete was adopted as it contains a large quantity of water required for neutron shielding, and in the secondary shielding at the upper part of the reactor containment vessel, the original shielding was abolished, and the heavy concrete (high water content, high density concrete) which is effective for neutron and gamma-ray shielding was newly adopted. In this report, the design and construction using these shielding concrete are outlined. In September, 1974, Mutsu caused radiation leak during the test, and the cause was found to be the fast neutrons streaming through a gap between the reactor pressure vessel and the primary shielding. The repair works were carried out in the Sasebo Shipyard. The outline of the repair works of the shielding is described. The design condition for the shielding, the design standard for the radiation dose outside and inside the ship, the method of shielding analysis and the performance required for shielding concrete are reported. The selection of materials, the method of construction and mixing ratio, the evaluation of the soundness and properties of concrete, and the works of placing the shielding concrete are outlined. (Kako, I.)

  17. Comparison of Crack Initiation, Propagation and Coalescence Behavior of Concrete and Rock Materials

    Science.gov (United States)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    There are many previously studies carried out to identify crack initiation, propagation and coalescence behavior of different type of rocks. Most of these studies aimed to understand and predict the probable instabilities on different engineering structures such as mining galleries or tunnels. For this purpose, in these studies relatively smaller natural rock and synthetic rock-like models were prepared and then the required laboratory tests were performed to obtain their strength parameters. By using results provided from these models, researchers predicted the rock mass behavior under different conditions. However, in the most of these studies, rock materials and models were considered as contains none or very few discontinuities and structural flaws. It is well known that rock masses naturally are extremely complex with respect to their discontinuities conditions and thus it is sometimes very difficult to understand and model their physical and mechanical behavior. In addition, some vuggy rock materials such as basalts and limestones also contain voids and gaps having various geometric properties. Providing that the failure behavior of these type of rocks controlled by the crack initiation, propagation and coalescence formed from their natural voids and gaps, the effect of these voids and gaps over failure behavior of rocks should be investigated. Intact rocks are generally preferred due to relatively easy side of their homogeneous characteristics in numerical modelling phases. However, it is very hard to extract intact samples from vuggy rocks because of their complex pore sizes and distributions. In this study, the feasibility of concrete samples to model and mimic the failure behavior vuggy rocks was investigated. For this purpose, concrete samples were prepared at a mixture of %65 cement dust and %35 water and their physical and mechanical properties were determined by laboratory experiments. The obtained physical and mechanical properties were used to

  18. Study of the performance of four repairing material systems for hydraulic structures of concrete dams

    Directory of Open Access Journals (Sweden)

    Kormann A. C. M.

    2003-01-01

    Full Text Available Four types of repairing materials are studied as function of either a conventional concrete or a reference-concrete (RefC, these are: polymer-modified cement mortar (PMor, steel fiber concrete (SFco, epoxy mortar (EMor and silica fume mortar (SFmo, to be applied in hydraulic structures surfaces subjected to a high velocity water flow. Besides the mechanical requests and wearing resistance of hydraulic concrete dam structures, especially the spillway surfaces, the high solar radiation, the environmental temperature and wet and dry cycles, contribute significantly to the reduction of their lifespan. RefC and the SFco were developed based on a usual concrete mixture used in slabs of spillways. The average RefC mixture used was 1: 1.61: 2.99: 0.376, with Pozzolan-modified Portland cement consumption of 425 kg/m³. EMor and PMor mixtures followed the information given by the manufacturers and lab experience. Tests on concrete samples were carried out in laboratory simulating normally found environmental situations in order to control the mechanical resistance and the aging imposed conditions, such as solar radiation and humidity. Also, physicochemical characterizing tests were made for all used materials. From the analyzed results, two of them presented a higher performance: the EMor and SFmo. SFco presented good adherence to the RefC and good mechanical performance. However, it also presented apparent metal corrosion in humidity tests, being indicated for use, with caution, as an intermediate layer in underwater repairs. In a general classification, considering all tests, including their field applications, the better performance material systems were EMor- SFmo> SFco> PMor.

  19. Concrete under severe conditions. Environment and loading

    International Nuclear Information System (INIS)

    2007-01-01

    The objective of the CONSEC Conferences is to focus on concrete infrastructures, either subjected to severe environment or severe loading, or any combination of severe conditions. Experience from the performance of existing concrete structures, and especially under severe environmental conditions, severe accidental loading or extended lifespan, has demonstrated the need for better integration of structural and durability design, new design concepts including reliability-based durability design, performance-based material requirements, structural robustness, and an improved basis for documentation of obtained construction quality and durability properties during concrete construction. An improved basis for operation and preventive maintenance of concrete structures including repairs and retrofitting is also very important. Premature corrosion of reinforcing steel, inadequate structural design for seismic or blast loading, are examples of reduced service life of concrete structures that not only represent technical and economical problems, but also a huge waste of natural resources and hence also, an environmental and ecological problem. Experience of structures effectively submitted to severe conditions represents a unique benchmark for quantifying the actual safety and durability margin of concrete structures. In fact for several reasons, most concrete design codes, job specifications and other requirements for concrete structures have frequently shown to yield insufficient and unsatisfactory results and ability to solve the above problems, as well as issues raised by specific very long-term or very severe requirements for nuclear and industrial waste management, or civil works of strategic relevance. Recently available high to ultra-high performance concrete may find rational and valuable application in such cases. It is very important, therefore, to bring people with different professional backgrounds together to exchange experience and develop multi

  20. Using natural local materials for developing special radiation shielding concretes, and deduction of its shielding characteristics

    International Nuclear Information System (INIS)

    Kharita, M. H.; Takeyeddin, M.; Al-Nassar, M.; Yousef, S.

    2006-06-01

    Concrete is considered as the most important material to be used for radiation shielding in facilities contain radioactive sources and radiation generating machines. The concrete shielding properties may vary depending on the construction of the concrete, which is highly relative to the composing aggregates i.e. aggregates consist about 70 - 80% of the total weight of normal concrete. In this project tow types of concrete used in Syria (in Damascus and Aleppo) had been studied and their shielding properties were defined for gamma ray from Cs-137 and Co-60 sources, and for neutrons from Am-Be source. About 10% reduction in HVL was found in the comparison between the tow concrete types for both neutrons and gammas. Some other types of concrete were studied using aggregates from different regions in Syria, to improve the shielding properties of concrete, and another 10% of reduction was achieved in comparison with Damascene concrete (20% in comparison with the concrete from Aleppo) for both neutrons and gamma rays. (author)

  1. Evaluation of waste concrete road materials for use in oyster aquaculture.

    Science.gov (United States)

    2013-02-01

    The primary objective of this study was to determine the suitability of recycled concrete : aggregate (RCA) from road projects as bottom conditioning material for on-bottom oyster : aquaculture in the Chesapeake Bay. The testing was designed to (1) e...

  2. Failure criterion of concrete type material and punching failure analysis of thick mortar plate

    International Nuclear Information System (INIS)

    Ohno, T.; Kuroiwa, M.; Irobe, M.

    1979-01-01

    In this paper falure surface of concrete type material is proposed and its validity to structural analysis is examined. The study is an introductory part of evaluation for ultimate strength of reinforced and prestressed concrete structures in reactor technology. The failure surface is expressed in a linear form in terms of octahedral normal and shear stresses. Coefficient of the latter stress is given by a trigonometric series in threefold angle of similarity. Hence, its meridians are multilinear and traces of its deviatoric sections are smooth curves having periodicity of 2π/3 around space diagonal in principal stress space. The mathematical expression of the surface has an arbitraty number of parameters so that material test results are well reflected. To confirm the effectiveness of proposed failure criterion, experiment and numerical analysis by the finite element method on punching failure of thick mortar plate in axial symmetry are compared. In the numerical procedure yield surface of the material is assumed to exist mainly in compression region, since a brittle cleavage or elastic fracture occurs in the concrete type material under stress state with tension, while a ductile or plastic fracture occurs under compressive stress state. (orig.)

  3. Probabilistic design of fibre concrete structures

    Science.gov (United States)

    Pukl, R.; Novák, D.; Sajdlová, T.; Lehký, D.; Červenka, J.; Červenka, V.

    2017-09-01

    Advanced computer simulation is recently well-established methodology for evaluation of resistance of concrete engineering structures. The nonlinear finite element analysis enables to realistically predict structural damage, peak load, failure, post-peak response, development of cracks in concrete, yielding of reinforcement, concrete crushing or shear failure. The nonlinear material models can cover various types of concrete and reinforced concrete: ordinary concrete, plain or reinforced, without or with prestressing, fibre concrete, (ultra) high performance concrete, lightweight concrete, etc. Advanced material models taking into account fibre concrete properties such as shape of tensile softening branch, high toughness and ductility are described in the paper. Since the variability of the fibre concrete material properties is rather high, the probabilistic analysis seems to be the most appropriate format for structural design and evaluation of structural performance, reliability and safety. The presented combination of the nonlinear analysis with advanced probabilistic methods allows evaluation of structural safety characterized by failure probability or by reliability index respectively. Authors offer a methodology and computer tools for realistic safety assessment of concrete structures; the utilized approach is based on randomization of the nonlinear finite element analysis of the structural model. Uncertainty of the material properties or their randomness obtained from material tests are accounted in the random distribution. Furthermore, degradation of the reinforced concrete materials such as carbonation of concrete, corrosion of reinforcement, etc. can be accounted in order to analyze life-cycle structural performance and to enable prediction of the structural reliability and safety in time development. The results can serve as a rational basis for design of fibre concrete engineering structures based on advanced nonlinear computer analysis. The presented

  4. Lightweight concrete materials and structural systems for water tanks for thermal storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buckman, R.W. Jr.; Elia, G.G.; Ichikawa, Y.

    1980-12-01

    Thermally efficient hot water storage tanks were designed, fabricated and evaluated. The tanks were made using cellular concrete at a nominal density of 100 lb/ft/sup 3/ for the structural elements and at a 30 lb/ft/sup 3/ density for the insulating elements. Thermal performance testing of the tanks was done using a static decay test since the test procedure specified in ASHRAE 94-77 was not experimentally practical. A series of composition modifications to the cellular concrete mix were investigated and the addition of alkaline resistant glass fibers was found to enhance the mechanical properties at no sacrifice in thermal behavior. Economic analysis indicated that cellular concrete provides a cost-effective insulating material. The total portability of the plant for producing cellular concrete makes cellular concrete amenable to on-site fabrication and uniquely adaptable to retrofit applications.

  5. Reduced labor and condensed schedules with cellular concrete solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lavis, D. [CEMATRIX Inc., Calgary, AB (Canada)

    2008-07-01

    This paper discussed the use of cellular concrete materials in oil sands tank base foundation systems, shallow buried utility insulation systems, roadways, slabs, and buried modules. The concrete is formed from Portland cement, water, specialized pre-formed foaming agents, and air mixed in controlled proportions. Fly ash and polypropylene or glass fibers can also be used as additions. Cellular concrete can often be used to speed up construction and minimize labour requirements. Cellular concrete can be cast-in-place, and has soil-stabilizing and self-compacting features. The concrete can be produced and placed on-site at rates exceeding 120 cubic meters per hour. Cellular concrete can be pumped into place over long distances through flexible hoses. A case study comparing the cellular concrete to traditional plastic foam insulation was used to demonstrate the equivalency and adequacy of insulation, structural properties and installation costs. The study showed that although the cellular concrete had a high installation cost, greater compressive strength was gained. The concrete was self-levelling and did not require compaction or vibration. The use of the cellular concrete resulted in an accelerated construction schedule. 6 refs., 2 tabs., 6 figs.

  6. Physical basis of destruction of concrete and other building materials

    Science.gov (United States)

    Suleymanova, L. A.; Pogorelova, I. A.; Kirilenko, S. V.; Suleymanov, K. A.

    2018-03-01

    In the article the scientifically-grounded views of authors on the physical essence of destruction process of concrete and other materials are stated; it is shown that the mechanism of destruction of materials is similar in its essence during the mechanical, thermal, physical-chemical and combined influences, and that in its basis Newton's third law lays. In all cases destruction consists in decompaction of structures, loosening of the internal bonds in materials, in the further integrity damage and their division into separate loosely-bound (full destruction) and unbound with each other (incomplete destruction) elements, which depends on the kind of external influence and perfection of materials structure.

  7. Analysis of production factors in high performance concrete

    Directory of Open Access Journals (Sweden)

    Gilberto Carbonari

    2003-01-01

    Full Text Available The incorporation of silica fume and superplasticizers in high strength and high performance concrete, along with a low water-cement ratio, leads to significant changes in the workability and the energy needed to homogenize and compact the concrete. Moreover, several aspects of concrete production that are not critical for conventional concrete are important for high strength concrete. This paper will discuss the need for controlling the humidity of the aggregates, optimizing the mixing sequence used in the fabrication, and the slump loss. The application of a silica fume concrete in typical building columns will be analyzed considering the required consolidation, the variability of the material strength within the structural element and the relation between core and molded specimen strength. Comparisons will also be made with conventional concrete.

  8. Precooling of concrete with flake ice

    International Nuclear Information System (INIS)

    Inoue, Katsuhiro; Shigenobu, Manabu; Soejima, Kenji; Noguchi, Hiroshi; Noda, Youichi; Sakaguchi, Tohru.

    1989-01-01

    The buildings in nuclear power stations are the reinforced concrete structures which are constructed with the massive members having much rein forcing bar quantity and relatively high strength due to the requirement of aseismatic capability, shielding and others. Also their scale is large, and in the case of a power station of one million kW class, concrete as much as 300,000 m 3 is used for one plant. Accordingly, at the time of construction, the case of stably supplying the concrete of high quality in large quantity by installing the facilities of manufacturing ready mixed concrete at construction sites is frequent. Moreover, electric power companies carry out thorough quality control to undergo the inspection before use by the Agency of Natural Resources and Energy from the aspects of materials, structures and strength. Since prestressed concrete containment vessels were adopted for No.3 and No.4 plants, the quality of concrete and the facilities for manufacturing ready mixed concrete were examined in detail. The precooling facilities for concrete and the effect of precooling are reported. (Kako, I.)

  9. Advanced Numerical Model for Irradiated Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, Alain B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some

  10. Analysis of concrete material through gamma ray computerized tomography

    International Nuclear Information System (INIS)

    Oliveira Junior, J.M. de

    2004-01-01

    Computerized Tomography (CT) refers to the cross sectional imaging of an object from both transmission or reflection data collected by illuminating the object from many different directions. The most important contribution of CT is to greatly improve abilities to distinguish regions with different gamma ray transmittance and to separate over-lying structures. The mathematical problem of the CT imaging is that of estimating an image from its projections. These projections can represent, for example, the linear attenuation coefficient of γ-rays along the path of the ray. In this work we will present some new results obtained by using tomographic techniques to analyze column samples of concrete to check the distribution of various materials and structural problems. These concrete samples were made using different proportions of stone, sand and cement. Another set of samples with different proportions of sand and cement were also used to verify the outcome from the CT analysis and the differences between them. Those samples were prepared at the Material Laboratory of Faculdade de Engenharia de Sorocaba, following the same procedures used in real case of concrete tests. The projections used in this work was obtained by Mini Computerized Tomograph of Uniso (MTCU), located at the Experimental Nuclear Physics Laboratory at University of Sorocaba. This tomograph operates with a gamma ray source of 241 Am (photons of 60 keV and 100 mCi of intensity) and a NaI(Tl) solid state detector. The system features translation and rotation scanning modes, a 100 mm effective field of view, and 1 mm spatial resolution. The image reconstruction problem is solved using Discrete Filtered Backprojection (FBP). (author)

  11. Investigation of Mechanical Properties of Coconut Fiber as a Concrete Admixture

    Directory of Open Access Journals (Sweden)

    Ramli M.S.

    2014-01-01

    Full Text Available The high cost of conventional construction materials is the dominating factor affecting housing systems worldwide. Because of this, further research into alternative materials in construction is required. The purpose of this study is to experimentally investigate the physical characteristics and mechanical properties of concrete produced using shredded coconut fibre composites. The following percentage amounts of fibre were tested: 0 % (control, 0.6 %, and 1.8 %. The coconut fibres were cut to a certain length according to previous studies which suggested that the most ideal length is around 30 - 60mm. The test results showed that the compressive strength of concrete decreased as the percentage of total fibre in the concrete mix increased. The experimental results also showed that coconut fibre concrete performed satisfactorily in terms of crack growth in comparison to that of conventional concrete. Finally, it was concluded that the use of coconut fibres has great potential in the production of lightweight concrete or normal concrete for use in the construction of concrete structures. As coconut fibre is a natural material that is easily available and cheap, it is a particularly good, low-cost alternative. Therefore, this material has the potential to overcome the problem of escalating costs in the industry.

  12. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO₂ Emission Reduction.

    Science.gov (United States)

    Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Sung-Bae; Mun, Sungho

    2014-08-19

    In order to reduce carbon dioxide (CO₂) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete

  13. RESTORING A DAMAGED 16-YEAR -OLD INSULATING POLYMER CONCRETE DIKE OVERLAY: REPAIR MATERIALS AND TECHNOLOGIES.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    The objective of this program was to design and formulate organic polymer-based material systems suitable for repairing and restoring the overlay panels of insulating lightweight polymer concrete (ILPC) from the concrete floor and slope wall of a dike at KeySpan liquefied natural gas (LNG) facility in Greenpoint, Brooklyn, NY, just over sixteen years ago. It also included undertaking a small-scale field demonstration to ensure that the commercial repairing technologies were applicable to the designed and formulated materials.

  14. COMPARATIVE STUDY OF GLASS FIBRE CONCRETE AND NORMAL CONCRETE

    OpenAIRE

    Mr.Yogesh S.Lanjewar*

    2018-01-01

    Concrete is basically the most important material concerning with the construction and infrastructural procedures, for which it should be of good strength and durability. Many researches are being conducted to make concrete more sustainable and of more strength and durability. Therefore keeping this in mind i have chosen to do the comparative study regarding the strength of normal concrete with the glass fibre added concrete using mix design procedure as per IS 10262-2009 for concrete. As w...

  15. Likely-clean concrete disposition at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Betts, J.A.

    2011-01-01

    material from likely-clean to clean has to date not yet been developed. This has not historically represented a significant problem because the volumes of waste concrete being generated have been low, and capacity in sand-trench storage facilities was available. Now that decommissioning has started to ramp up, and sand-trench storage is no longer available, a solution for this high volume waste stream is more urgently required. Establishing that slab concrete is likely-clean is a significant accomplishment requiring a combination of review of records and measurements of 100% of all exposed surfaces. Establishing likely-clean concrete is clean requires more effort, and based on discussions and benchmarking to date, the most promising way forward involves crushing to check for absorbed contamination. This paper will present CRL's chosen method of Concrete Crushing as a means of both completing the clearance of this material as well as preparing it for reuse as the optimum disposition. It will also discuss the progress of implementation. (author)

  16. Likely-clean concrete disposition at Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Betts, J.A. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    material from likely-clean to clean has to date not yet been developed. This has not historically represented a significant problem because the volumes of waste concrete being generated have been low, and capacity in sand-trench storage facilities was available. Now that decommissioning has started to ramp up, and sand-trench storage is no longer available, a solution for this high volume waste stream is more urgently required. Establishing that slab concrete is likely-clean is a significant accomplishment requiring a combination of review of records and measurements of 100% of all exposed surfaces. Establishing likely-clean concrete is clean requires more effort, and based on discussions and benchmarking to date, the most promising way forward involves crushing to check for absorbed contamination. This paper will present CRL's chosen method of Concrete Crushing as a means of both completing the clearance of this material as well as preparing it for reuse as the optimum disposition. It will also discuss the progress of implementation. (author)

  17. Effect of concrete strength gradation to the compressive strength of graded concrete, a numerical approach

    Science.gov (United States)

    Pratama, M. Mirza Abdillah; Aylie, Han; Gan, Buntara Sthenly; Umniati, B. Sri; Risdanareni, Puput; Fauziyah, Shifa

    2017-09-01

    Concrete casting, compacting method, and characteristic of the concrete material determine the performance of concrete as building element due to the material uniformity issue. Previous studies show that gradation in strength exists on building member by nature and negatively influence the load carrying capacity of the member. A pilot research had modeled the concrete gradation in strength with controllable variable and observed that the weakest material determines the strength of graded concrete through uniaxial compressive loading test. This research intends to confirm the recent finding by a numerical approach with extensive variables of strength disparity. The finite element analysis was conducted using the Strand7 nonlinear program. The results displayed that the increase of strength disparity in graded concrete models leads to the slight reduction of models strength. A substantial difference in displacement response is encountered on the models for the small disparity of concrete strength. However, the higher strength of concrete mix in the graded concrete models contributes to the rise of material stiffness that provides a beneficial purpose for serviceability of building members.

  18. Material characteristics and construction methods for a typical research reactor concrete containment in Iran

    International Nuclear Information System (INIS)

    Ebrahimia, Mahsa; Suha, Kune Y.; Eghbalic, Rahman; Jahan, Farzaneh Asadi malek

    2012-01-01

    Generally selecting an appropriate material and also construction style for a concrete containment due to its function and special geometry play an important role in applicability and also construction cost and duration decrease in a research reactor (RR) project. The reactor containment enclosing the reactor vessel comprises physical barriers reflecting the safety design and construction codes, regulations and standards so as to prevent the community and the environment from uncontrolled release of radioactive materials. It is the third and the last barrier against radioactivity release. It protects the reactor vessel from such external events as earthquake and aircraft crash as well. Thus, it should be designed and constructed in such a manner as to withstand dead and live loads, ground and seismic loads, missiles and aircraft loads, and thermal and shrinkage loads. This study aims to present a construction method for concrete containment of a typical RR in Iran. The work also presents an acceptable characteristic for concrete and reinforcing re bar of a typical concrete containment. The current study has evaluated the various types of the RR containments. The most proper type was selected in accordance with the current knowledge and technology of Iran

  19. Material characteristics and construction methods for a typical research reactor concrete containment in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimia, Mahsa; Suha, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of); Eghbalic, Rahman; Jahan, Farzaneh Asadi malek [School of Architecture and Urbanism, Qazvin (Iran, Islamic Republic of)

    2012-10-15

    Generally selecting an appropriate material and also construction style for a concrete containment due to its function and special geometry play an important role in applicability and also construction cost and duration decrease in a research reactor (RR) project. The reactor containment enclosing the reactor vessel comprises physical barriers reflecting the safety design and construction codes, regulations and standards so as to prevent the community and the environment from uncontrolled release of radioactive materials. It is the third and the last barrier against radioactivity release. It protects the reactor vessel from such external events as earthquake and aircraft crash as well. Thus, it should be designed and constructed in such a manner as to withstand dead and live loads, ground and seismic loads, missiles and aircraft loads, and thermal and shrinkage loads. This study aims to present a construction method for concrete containment of a typical RR in Iran. The work also presents an acceptable characteristic for concrete and reinforcing re bar of a typical concrete containment. The current study has evaluated the various types of the RR containments. The most proper type was selected in accordance with the current knowledge and technology of Iran.

  20. General Approaches and Requirements on Safety and Security of Radioactive Materials Transport in Russian Federation

    International Nuclear Information System (INIS)

    Ershov, V.N.; Buchel'nikov, A.E.; Komarov, S.V.

    2016-01-01

    Development and implementation of safety and security requirements for transport of radioactive materials in the Russian Federation are addressed. At the outset it is worth noting that the transport safety requirements implemented are in full accordance with the IAEA's ''Regulations for the Safe Transport of Radioactive Material (2009 Edition)''. However, with respect to security requirements for radioactive material transport in some cases the Russian Federation requirements for nuclear material are more stringent compared to IAEA recommendations. The fundamental principles of safety and security of RM managements, recommended by IAEA documents (publications No. SF-1 and GOV/41/2001) are compared. Its correlation and differences concerning transport matters, the current level and the possibility of harmonization are analysed. In addition a reflection of the general approaches and concrete transport requirements is being evaluated. Problems of compliance assessment, including administrative and state control problems for safety and security provided at internal and international shipments are considered and compared. (author)

  1. Improvement of performance of ultra-high performance concrete based composite material added with nano materials

    Directory of Open Access Journals (Sweden)

    Pang Jinchang

    2016-03-01

    Full Text Available Ultra-high performance concrete (UHPC, a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD, mercury intrusion porosimetry (MIP and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.

  2. Stable Failure-Inducing Micro-Silica Aqua Epoxy Bonding Material for Floating Concrete Module Connection

    Directory of Open Access Journals (Sweden)

    Jang-Ho Jay Kim

    2015-11-01

    Full Text Available Many recent studies in the development of floating concrete structures focused on a connection system made of modules. In the connection system, the modules are designed to be attached by pre-stressing (PS while floating on the water, which exposes them to loads on the surface of the water. Therefore, the development of a pre-connection material becomes critical to ensure successful bonding of floating concrete modules. Micro-silica mixed aqua-epoxy (MSAE was developed for this task. To find the proper MSAE mix proportion, 0% to 4% micro-silica was mixed in a standard mixture of aqua-epoxy for material testing. Also, the effect of micro-silica on the viscosity of the aqua epoxy was evaluated by controlling the epoxy silane at proportions of 0%, ±5%, and ±10%. After completion of the performance tests of the MSAE, we evaluated the effect of MSAE in a connected structure. The plain unreinforced concrete module joint specimens applied with MSAE at thicknesses of 5, 10, and 20 mm were prepared to be tested. Finally, we evaluated the performance of MSAE-applied reinforced concrete (RC module specimens connected by PS tendons, and these were compared with those of continuous RC and non-MSAE-applied beams. The results showed that the mix of micro-silica in the aqua-epoxy changed the performance of the aqua-epoxy and the mix ratio of 2% micro-silica gave a stable failure behavior. The flexural capacity of concrete blocks bonded with MSAE changed according to the bond thickness and was better than that of concrete blocks bonded with aqua-epoxy without micro-silica. Even though MSAE insignificantly increases the load-carrying capacity of the attached concrete module structure, the stress concentration reduction effect stabilized the failure of the structure.

  3. Development of nuclear waste concrete drum

    International Nuclear Information System (INIS)

    Wen Yinghui

    1995-06-01

    The raw materials selection and the properties for nuclear waste concrete drum, the formula and properties of the concrete, the specification and technical quality requirement of the drum were described. The manufacture essentials and technology, the experiments and checks as well as the effective quality control and quality assurance carried out in the course of production were presented. The developed nuclear waste drum has a simple structure, easily available raw materials and rational formula for concrete. The compressive strength of the drum is more than 70 MPa, the tensile strength is more than 5 MPa, the nitrogen permeability is (2.16∼3.6) x 10 -18 m 2 . The error of the drum in dimensions is +-2 mm. The external surface of the drum is smooth. The drum accords with China standards in the sandy surface, void and crack. The results shows China has the ability to develop and manufacture nuclear waste concrete container and lays the foundation for standardization and series of the nuclear waste container for packing and transporting nuclear wastes in China. (5 figs., 10 tabs.)

  4. ASSESSMENT OF RELEASE RATES FOR RADIONUCLIDES IN ACTIVATED CONCRETE.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN,T.M.

    2003-08-23

    The Maine Yankee (MY) nuclear power plant is undergoing the process of decontamination and decommissioning (D&D). Part of the process requires analyses that demonstrate that any radioactivity that remains after D&D will not cause exposure to radioactive contaminants to exceed acceptable limits. This requires knowledge of the distribution of radionuclides in the remaining material and their potential release mechanisms from the material to the contacting groundwater. In this study the concern involves radionuclide contamination in activated concrete in the ICI Sump below the containment building. Figures 1-3 are schematic representations of the ICI Sump. Figure 2 and 3 contain the relevant dimensions needed for the analysis. The key features of Figures 2 and 3 are the 3/8-inch carbon steel liner that isolates the activated concrete from the pit and the concrete wall, which is between 7 feet and 7 feet 2 inches thick. During operations, a small neutron flux from the reactor activated the carbon steel liner and the concrete outside the liner. Current MY plans call for filling the ICI sump with compacted sand.

  5. Concrete Materials with Ultra-High Damage Resistance and Self- Sensing Capacity for Extended Nuclear Fuel Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mo [Univ. of California, Irvine, CA (United States); Nakshatrala, Kalyana [Univ. of Houston, TX (United States); William, Kasper [Univ. of Houston, TX (United States); Xi, Yungping [Univ. of Colorado, Boulder, CO (United States)

    2017-02-08

    The objective of this project is to develop a new class of multifunctional concrete materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which combine ultra-high damage resistance through strain-hardening behavior with distributed multi-dimensional damage self-sensing capacity. The beauty of multifunctional concrete materials is two-fold: First, it serves as a major material component for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, reinforcement corrosion, and other common deterioration mechanisms under service conditions, and prevention from fracture failure under extreme events (e.g. impact, earthquake). This will be achieved by designing multiple levels of protection mechanisms into the material (i.e., ultrahigh ductility that provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete; intrinsic cracking control, electrochemical properties modification, reduced chemical and radionuclide transport properties, and crack-healing properties). Second, it offers capacity for distributed and direct sensing of cracking, strain, and corrosion wherever the material is located. This will be achieved by establishing the changes in electrical properties due to mechanical and electrochemical stimulus. The project will combine nano-, micro- and composite technologies, computational mechanics, durability characterization, and structural health monitoring methods, to realize new MSCs for very long-term (greater than 120 years) SNF storage systems.

  6. Reliable classification of moving waste materials with LIBS in concrete recycling.

    Science.gov (United States)

    Xia, Han; Bakker, M C M

    2014-03-01

    Effective discrimination between different waste materials is of paramount importance for inline quality inspection of recycle concrete aggregates from demolished buildings. The moving targeted materials in the concrete waste stream are wood, PVC, gypsum block, glass, brick, steel rebar, aggregate and cement paste. For each material, up to three different types were considered, while thirty particles of each material were selected. Proposed is a reliable classification methodology based on integration of the LIBS spectral emissions in a fixed time window, starting from the deployment of the laser shot. PLS-DA (multi class) and the hybrid combination PCA-Adaboost (binary class) were investigated as efficient classifiers. In addition, mean centre and auto scaling approaches were compared for both classifiers. Using 72 training spectra and 18 test spectra per material, each averaged by ten shots, only PLS-DA achieved full discrimination, and the mean centre approach made it slightly more robust. Continuing with PLS-DA, the relation between data averaging and convergence to 0.3% average error was investigated using 9-fold cross-validations. Single-shot PLS-DA presented the highest challenge and most desirable methodology, which converged with 59 PC. The degree of success in practical testing will depend on the quality of the training set and the implications of the possibly remaining false positives. © 2013 Published by Elsevier B.V.

  7. Concrete

    OpenAIRE

    Kruse Aagaard, Anders

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities.Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion as an opportunity to connect th...

  8. Photocatalytic activity of titanium dioxide modified concrete materials - influence of utilizing recycled glass cullets as aggregates.

    Science.gov (United States)

    Chen, Jun; Poon, Chi-Sun

    2009-08-01

    Combining the use of photocatalysts with cementitious materials is an important development in the field of photocatalytic air pollution mitigation. This paper presents the results of a systematic study on assessing the effectiveness of pollutant degradation by concrete surface layers that incorporate a photocatalytic material - Titanium Dioxide. The photocatalytic activity of the concrete samples was determined by photocatalytic oxidation of nitric oxide (NO) in the laboratory. Recycled glass cullets, derived from crushed waste beverage bottles, were used to replace sand in preparing the concrete surface layers. Factors, which may affect the pollutant removal performance of the concrete layers including glass color, aggregate size and curing age, were investigated. The results show a significant enhancement of the photocatalytic activity due to the use of glass cullets as aggregates in the concrete layers. The samples fabricated with clear glass cullets exhibited threefold NO removal efficiency compared to the samples fabricated with river sand. The light transmittance property of glass was postulated to account for the efficiency improvement, which was confirmed by a separate simulation study. But the influence of the size of glass cullets was not evident. In addition, the photocatalytic activity of concrete surface layers decreased with curing age, showing a loss of 20% photocatalytic activity after 56-day curing.

  9. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  10. Quality assurance of polymer concrete

    International Nuclear Information System (INIS)

    Schulz, H.

    1984-01-01

    With polymer concrete, a whole range of organisational and functional measures have to be met in order to assure the required quality with an economic expenditure. Quality assurance begins in the design and does not end in the production, rather includes all fields of the enterprise. The following deals with a particular range of the total complex, the inspection methods for assuring the quality of machine components of polymer concrete, particularly machine tool bases, this being through the control of the raw material, the production and the finished product. (orig.) [de

  11. Availability of special local rock materials for using in radiation shielding concrete

    International Nuclear Information System (INIS)

    Rammah, S.; Al-Hent, R.; Aissa, M.; Yousef, S.

    2003-11-01

    Concrete is an excellent and versatile material for using in radiation shielding of nuclear power plants, hot cells and medical facilities that deal with ionizing radiations, Because it is easy controlled with composition and density by using aggregates with high specific gravity such as Barite, Hematite, Magnetite, or minerals with high hydrogen content such as Serpentine. This research offered the essential information about local resources rocks and minerals can be used in this inclination, as aggregates for heavy/high hydrion concrete. The present work indicates that iron ores, which located in RAJO-EFREEN is better than other locations like ANTI-LEBANON or AL-KADMOUS. While the heavy beach sands in AL-BASSIT are the best compared with other locations on the Syrian seaside, because it has acceptable percentage of heavy mineral. Barite concretions were found in KALAMON, HOMS and other sites, which its percentages approach 50%, but however in small quantities. Finally, high hydrion concrete can be used by Serpentinite were found with high Serpentine percentage in BAYER and BASSIT blocks. (author)

  12. Development for low-activation concrete design reducing radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Ken-ichi; Kinno, Masaharu; Hasegawa, Akira

    2008-01-01

    activation cross section library and accurate estimation of major target elements in various raw materials for the concrete with width of uncertainty are necessary. So, development for low-activation concrete design reducing radioactive waste have been conducted in the project mentioned above. Detail survey of the selected aggregates and cements for the low-activation concrete are carried out and uncertain of the materials are obtained. Tons of execution experimental works for several types of low-activation concrete are conducted to categorize as conventional, high performance and boron added, with reduction rate of radioactivity to the ordinary concrete from 1/10 to 10000. Low-activation material development system and activation mapping system could calculate required quantities of target elements in certain area and boundary of the radioactivity level for shielding wall in decommissioning. These results contribute to optimize the design of low-activation concrete for reducing radioactive waste. This work is supported by a grant-in-aid of Innovative and Viable Nuclear Technology (IVNET) development project of Ministry of Economy, Trade and Industry, Japan. (author)

  13. Review on Characterization and Mechanical Performance of Self-cleaning Concrete

    Directory of Open Access Journals (Sweden)

    Zailan Siti Norsaffirah

    2017-01-01

    Full Text Available Self-cleaning concrete is an effective alternative to provide cleaner environment which contribute to sustainability and towards a green environment. It is in accordance with the requirements of environmental issues on huge energy consumption and air pollution from carbon dioxide (CO2 emissions. Photocatalyst in self-cleaning concrete accelerates the decomposition of organic particulates, hence pollution could be reduced through photocatalytic degradation of gaseous pollutants. Mechanical performances of self-cleaning concrete were improved by adding photocatalytic materials. Self cleaning abilities were evaluated in the photocatalytic activity test under UV light and photocatalytic degradation of gaseous pollutant was measured by depollution test. This review aims to give an overview about the characteristics of photocatalytic materials and mechanical performances of self-cleaning concrete.

  14. Optimizing of the recycling of contaminated concrete debris. Final report

    International Nuclear Information System (INIS)

    Kloeckner, J.; Rasch, H.; Schloesser, K.H.; Schon, T.

    1999-01-01

    1. Latest research: So far concrete debris from nuclear facilities has been free released or was treated as radioactive waste. 2. Objective: The objective of this study is to develop solutions and methods for recycling concrete debris. The amount of materials used in nuclear facilities should be limited and the contamination of new materials should be avoided. 3. Methods: The status of recycling was presented using examples of operating or completed decommissioning as well as available studies and literature. The quality requirements for the production of new concrete products using recycled materials has been discussed. The expected amounts of concrete debris for the next 12 years was estimated. For the proposed recycling examples, radiological and economic aspects have been considered. 4. Results: The production of qualified concrete products from concrete debris is possible by using modified receptions. Technical regulations to this are missing. There is no need for the utilization of large amounts of concrete debris for shielding walls. For the production of new shielding-containers for radioactive waste, concrete debris can be applied. Regarding the distance to a central recycling facility the use of mobile equipment can be economical. By using the concrete for filling the cavity or space in a final storage, it is possible to dispose the whole radioactive debris. 5. Application possibilities: The use of concrete debris as an inner concrete shielding in waste-containers today is already possible. For the manufacture of qualified concrete products by using recycling products, further developments and regulations are necessary. (orig.) [de

  15. Concrete Hydration Heat Analysis for RCB Basemat Considering Solar Radiation

    International Nuclear Information System (INIS)

    Lee, Seong-Cheol; Son, Yong-Ki; Choi, Seong-Cheol

    2015-01-01

    The NPP especially puts an emphasis on concrete durability for structural integrity. It has led to higher cementitious material contents, lower water-cementitious-material ratios, and deeper cover depth over reinforcing steel. These requirements have resulted in more concrete placements that are subject to high internal temperatures. The problem with high internal temperatures is the increase in the potential for thermal cracking that can decrease concrete's long-term durability and ultimate strength. Thermal cracking negates the benefits of less permeable concrete and deeper cover by providing a direct path for corrosion-causing agents to reach the reinforcing steel. The purpose of this study is to develop how to analyze and estimate accurately concrete hydration heat of the real-scale massive concrete with wide large plane. An analysis method considering concrete placement sequence was studied and solar radiation effects on the real-scale massive concrete with wide large plane were reviewed through the analytical method. In this study, the measured temperatures at the real scale structure and the analysis results of concrete hydration heat were compared. And thermal stress analysis was conducted. Through the analysis, it was found that concrete placement duration, sequence and solar radiation effects should be considered to get the accurate concrete peak temperature, maximum temperature differences and crack index

  16. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO2 Emission Reduction

    Directory of Open Access Journals (Sweden)

    Bon-Min Koo

    2014-08-01

    Full Text Available In order to reduce carbon dioxide (CO2 emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC specimens cast with Hwangtoh admixtures (with and without PET fibers possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco

  17. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO2 Emission Reduction

    Science.gov (United States)

    Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Sung-Bae; Mun, Sungho

    2014-01-01

    In order to reduce carbon dioxide (CO2) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete

  18. POROUS-MASTIC ASPHALT-CONCRETE MIXTURES AND THEIR UTILIZATION HISTORY

    Directory of Open Access Journals (Sweden)

    Khudokonenko Anton Aleksandrovich

    2017-11-01

    Full Text Available Subject: a rapid increase in the traffic intensity and freight traffic on motor roads leads to premature destruction of road surfaces. At the same time, the actual service life of asphalt-concrete pavements rarely exceeds 4-5 years and in most cases is only 2-3 years. Most intensively defects and fractures appear on asphalt-concrete pavements in the early spring. Nowadays the overhaul intervals for the road surface coverings are significantly lower than those given by the regulatory requirements. One of the main reasons for this phenomenon is the use of obsolete technologies based on traditional materials whose properties are inadequate to resist stresses and deformations arising in the coating. This is especially evident in the climatic conditions of the south of the European part of Russia, where the upper layers of the roadway experience a much wider range of temperatures. Tighter requirements for the initial road-building materials and timely repair of the coatings allow us to increase the service life of motor roads. Research objectives: the aim of the study is to develop a new type of asphalt-concrete, such as porous-mastic one. Materials and methods: the work was carried out based on observations and published sources, a method of theoretical study and analysis. Results: the domestic and foreign experience of using the given asphalt concrete for the top layer of the coating was considered. The technology of preparation and laying of a porous-mastic asphalt-concrete mixture is presented and its advantages and disadvantages are shown. Conclusions: increasing the longevity of highways is an important and urgent task and it can be solved, in particular, due to the wide use of new technologies and non-traditional building materials that allow us to improve the quality of asphalt-concrete pavement and prolong its overhaul intervals.

  19. Utilization of recycled concrete aggregates in structural concrete by applying a fraction partitioning model

    NARCIS (Netherlands)

    Wouw, van de P.M.F.; Doudart de la Grée, G.C.H.; Florea, M.V.A.; Brouwers, H.J.H.; Bilek, V.; Kersner, Z.

    2014-01-01

    The recycling of concrete waste into new structural concrete reduces the utilization of raw materials, decreases transport and production energy cost, and saves the use of limited landfill space. Currently, recycling involves the use of recycled concrete aggregates (RCA) as road base material or in

  20. Study on Basic Characteristics for the Development of Radiation Shielding High-Weight Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Young Bum; Lee, Jea Hyung; Choi, Hyun Kook [Sungshin Cement CO., Sejong (Korea, Republic of); Oh, Jeong Hwan; Choi, Soo Seok [Jeju National University, Jeju (Korea, Republic of)

    2016-05-15

    It is planned to build a power plant more than 6 units. Although the demand of a nuclear power plant is going to increase, the attention for radiation shielding is relatively in a low level. Concrete is one of the excellent and widely used shielding materials. Since the radiation shielding of a given material is proportional to density and thickness, a high-weight concrete with high-weight aggregate which is higher than normal concrete is used for radiation shielding. However, there are a few studies and references about radiation shielding concrete. Therefore, it is required to find a high-weight aggregate. The purpose of this paper is the development of a highweight concrete to improve radiation shielding capability. The radiation shielding rate of high-weight concrete is higher than that of reference concrete. It is confirmed that the density of aggregate and the unit weight of concreate is proportional to the radiation shielding rate. In addition, the chemical composition of aggregate has also has an important effect on γ-ray shielding. Therefore, high weight aggregates of higher density are essentially required to improve radiation shielding capability. The compressive strength of a high weight concrete is better than that of reference concrete. Slump and air contents, however, are slightly increased with by-product aggregates.

  1. Plant life management of the ACR-1000 Concrete containment structure

    International Nuclear Information System (INIS)

    Abrishami, H.H.; Ricciuti, R.; Elgohary, M.

    2009-01-01

    The Ageing of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. For a new plant, a Plant Life Management (PLiM) program should start in the design process and then continues through the plant operation and decommissioning. Hence, PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of the ACR-10001 (Advanced CANDU Reactor) designed by AECL. The ACR-1000 is designed for a 100-year plant life including 60-year operating life and an additional 40-year decommissioning period. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) ageing management program. During the design phase, in addition to strength and serviceability, durability, throughout the service life and decommissioning phase of the ACR-1000 structure, is a major consideration. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental conditions. In addition to addressing the design methodology and material performance requirements, a systematic approach for the ageing management program for the concrete containment structure is presented. (authors)

  2. Using Cementitious Materials Such as Fly Ash to Replace a Part of Cement in Producing High Strength Concrete in Hot Weather

    Science.gov (United States)

    Turuallo, Gidion; Mallisa, Harun

    2018-03-01

    The use of waste materials in concrete gave many advantages to prove the properties of concrete such as its workability, strength and durability; as well to support sustaianable development programs. Fly ash was a waste material produced from coal combustion. This research was conducted to find out the effect of fly ash as a part replacement of cement to produce high strength concrete. The fly ash, which was used in this research, was taken from PLTU Mpanau Palu, Central Sulawesi. The water-binder ratio used in this research was 0.3 selected from trial mixes done before. The results of this research showed that the strength of fly ash concretes were higher than concrete with PCC only. The replacement of cement with fly ash concrete could be up to 20% to produce high strength concrete.

  3. Study on Identification of Material Model Parameters from Compact Tension Test on Concrete Specimens

    Science.gov (United States)

    Hokes, Filip; Kral, Petr; Husek, Martin; Kala, Jiri

    2017-10-01

    Identification of a concrete material model parameters using optimization is based on a calculation of a difference between experimentally measured and numerically obtained data. Measure of the difference can be formulated via root mean squared error that is often used for determination of accuracy of a mathematical model in the field of meteorology or demography. The quality of the identified parameters is, however, determined not only by right choice of an objective function but also by the source experimental data. One of the possible way is to use load-displacement curves from three-point bending tests that were performed on concrete specimens. This option shows the significance of modulus of elasticity, tensile strength and specific fracture energy. Another possible option is to use experimental data from compact tension test. It is clear that the response in the second type of test is also dependent on the above mentioned material parameters. The question is whether the parameters identified within three-point bending test and within compact tension test will reach the same values. The presented article brings the numerical study of inverse identification of material model parameters from experimental data measured during compact tension tests. The article also presents utilization of the modified sensitivity analysis that calculates the sensitivity of the material model parameters for different parts of loading curve. The main goal of the article is to describe the process of inverse identification of parameters for plasticity-based material model of concrete and prepare data for future comparison with identified values of the material model parameters from different type of fracture tests.

  4. Fibre Concrete 2017

    Science.gov (United States)

    2017-09-01

    9th international conference on fibre reinforced concretes (FRC), textile reinforced concretes (TRC) and ultra-high performance concretes (UHPC) Preface The Fibre Concrete Conference series is held biennially to provide a platform to share knowledge on fibre reinforced concretes, textile concretes and ultra-high performance concretes regarding material properties and behaviour, technology procedures, topics of long-term behaviour, creep, durability; sustainable aspects of concrete including utilisation of waste materials in concrete production and recycling of concrete. The tradition of Fibre Concrete Conferences started in eighties of the last century. Nowadays the conference is organized by the Department of Concrete and Masonry Structures of the Czech Technical University in Prague, Faculty of Civil Engineering. The 9th International Conference Fibre Concrete 2017 had 109 participants from 27 countries all over the world. 55 papers were presented including keynote lectures of Professor Bažant, Professor Bartoš and Dr. Broukalová. The conference program covered wide range of topics from scientific research to practical applications. The presented contributions related to performance and behaviour of cement based composites, their long-term behaviour and durability, sustainable aspects, advanced analyses of structures from these composites and successful applications. This conference was organized also to honour Professor Zděnek P. Bažant on the occasion of his jubilee and to appreciate his merits and discoveries in the field of fibre reinforced composites, structural mechanics and engineering.

  5. Study of behavior of concrete and cement based composite materials exposed to high temperatures

    OpenAIRE

    Bodnárová, L.; Horák, D.; Válek, J.; Hela, R.; Sitek, L. (Libor)

    2013-01-01

    The paper describes possibilities of observation of behaviour of concrete and cement based composite material exposed to high temperatures. Nowadays, for large-scale tests of behaviour of concrete exposed to high temperatures, testing devices of certified fire testing stations in the Czech Republic and surrounding states are used. These tests are quite expensive. For experimental verification of smaller test specimens, a testing device was built at the Technical University in Brno, wher...

  6. Concrete longevity overview

    International Nuclear Information System (INIS)

    Chang, W.; Morreale, B.

    1991-01-01

    A number of compact host states and unaffiliated states are currently selecting appropriate disposal technology and construction materials for their planned low-level radioactive waste (LLW) disposal facilities. Concrete is one of the candidate materials under consideration for the construction of LLW disposal facilities because of its strength, durability, abundant availability, and relatively low cost. The LLW disposal facilities must maintain intruder barrier integrity for up to 500 years, without active maintenance after the first 100 years. The ability of concrete to survive for such a long time as a construction material is a critical issue. This report provides a basic understanding of the composition and workings of concrete as a structural material in LLW disposal facilities and a description of degradation factors and state-of-the-art mitigative measures available to preserve the durability and longevity of concrete. Neither the paper nor the report is intended to be a design guidance document, and neither addresses using cement as a waste solidification agent. 5 refs., 1 tab

  7. Non-Destructive Radiological Characterisation Of Contaminated And Activated Concrete

    International Nuclear Information System (INIS)

    Cantrel, E.

    2005-01-01

    The decommissioning of nuclear facilities leads to large quantities of concrete and building material wastes. Radioactivity in building structures arise from very different physical processes such as neutron activation (bioshield), diffusion of the contaminants in the material (primary coolant leakage, maintenance and fuel loading) or aerosol deposition. The variety of the building material also extends the range of faced radiological characteristics. Therefore the minimization of concrete waste generation requires extensive characterisations and the availability of different measurement tools and methods. Up to now, these measurements came from the coring and the radiological analysis of the concrete, which is a destructive, long and costly technique. Looking for alternative solutions, SCK-CEN has started to investigate in collaboration with EDF -research and development and CEA (France) several non destructive methods based on gamma spectroscopy and different spectral examinations using mathematical calibration and modelling tools available on the market. Information on in-depth activity distribution can be derived from in situ gamma spectra by modelling absorption laws (peak to peak ratios) and photons interactions (Compton front) in the bulk of the concrete. As they combine modelling and measurement, the different methodologies being evaluated involve a lot of uncertainty sources linked to the measurement environment, to the knowledge available on site (historical background, material composition), to the operator responsible for the data acquisition and to the performance of the equipment. Therefore a detailed sensitivity analysis is required to define the range of applicability and the performances of the different methods

  8. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1

  9. Concrete mix design for X-and gamma shielding

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Abdul Bakhri Muhammad; Mohd Kamal Shah Shamsuddin; Rahmad Abd Rashid

    2012-01-01

    The design of X-ray or gamma ray radiographic exposure room requires some calculations on shielding to provide safe operation of the facility and minimum exposure to radiation workers. Careful design can lead to economical installations with minimal barriers. The design depends on such factors as: maximum energy, maximum intensity, permitted full-body dosage, workload, use factor, occupancy factor, maximum dose output and shielding materials. Choice of material for a barrier depends on convenience and cost. The radiographic exposure room is usually made of normal concrete with density of about 2.3 - 2.4 g/ cc. Normal concrete is often used for construction of exposure room because of cheap and ease of construction. This paper explained and discussed the optimum mix design for normal concrete used for X-and gamma shielding. (author)

  10. Advanced concrete structures for thermal power plants

    International Nuclear Information System (INIS)

    Zerna, W.

    1982-01-01

    The author begins with an overview on the various types of power plants depending on the fuel used in them and then in particular deals with the reinforced concrete structures. Especially for reactor buildings and prestressed concrete pressure vessels concrete is the appropriate material. The methods of construction are described as a function of load and operation. Safety requirements brought new load types for such structures as e.g. airplane crash, internal pressure caused by pipe rupture. Dimensioning is done by means of nonlinear dynamical methods of calculation accounting for plasticizing. These methods are explained. Further the constructional principles of high natural-draft cooling towers are mentioned. (orig.) [de

  11. Concrete laying laboratory

    International Nuclear Information System (INIS)

    Bastlova, K.

    1986-01-01

    The task of the concrete laying laboratory established within a special department for quality control and assurance at the Dukovany nuclear power plant, is to check the composition of concrete mixes produced by the central concrete production plant on the site, and the shipment, laying and processing of concrete. The composition is given of special barite and serpentinite concretes designed for biological shields. The system of checks and of filing the results is briefly described. Esperience is summed up from the operation of the concrete laying laboratory, and conclusions are formulated which should be observed on similar large construction sites. They include the precise definition of the designer's requirements for the quality of concrete, the surface finish of concrete surfaces, the method of concreting specific structures around bushings, increased density reinforcements and various technological elements, and requirements for shipment to poorly accessible or remote places. As for the equipment of the laboratory, it should be completed with an instrument for the analysis of fresh concrete mixes, a large capacity drying kiln, etc. (Z.M.)

  12. Optimum concrete compression strength using bio-enzyme

    OpenAIRE

    Bagio Tony Hartono; Basoeki Makno; Tistogondo Julistyana; Pradana Sofyan Ali

    2017-01-01

    To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the con...

  13. Surface concrete decontamination equipment developed by Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Halter, J.M.; Sullivan, R.G.; Bevan, J.L.

    1982-08-01

    This report documents a project that the Pacific Northwest Laboratory conducted to identify and develop techniques for removing contaminated concrete surfaces. A major problem associated with nuclear facility decontamination and decommissioning is how to economically demolish and dispose of contaminated concrete. Removing only the contaminated portion of the concrete can substantially reduce costs. Evaluation of various methods for removing concrete surfaces shows that several techniques presently used require excessive manpower, time, and energy. Many times more material is removed than necessary, increasing the quantity of waste that must be handled under controlled conditions. These evaluations generated the basic criteria for developing a suitable concrete removal technique: provide a convenient method for cleaning surfaces (such as those contaminated by a small spill); reduce the contaminated waste volume that has to be placed into controlled storage; remove surfaces quickly; and minimize personal exposure to potentially harmful radiation or toxic materials. Removal to 1/4 to 1/2 in. of contaminated surface layer is sufficient for cleanup of most facilities. Two unique decontamination methods have been developed: the concrete spaller and the water cannon. The concrete spaller is the most efficient technique: it removes the concrete surface faster than the water cannons and at a lower cost (as little as $3.00/ft 2 of concrete surface). However, the .458 magnum water cannon may be well suited for small or hard-to-reach locations

  14. Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition

    Science.gov (United States)

    Chowdhury, Ershad Ullah

    In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over

  15. Concrete construction engineering handbook

    CERN Document Server

    Nawy, Edward G

    2008-01-01

    Provides coverage of concrete construction engineering and technology. This work features discussions focusing on: the advances in engineered concrete materials; reinforced concrete construction; specialized construction techniques; and, design recommendations for high performance.

  16. Design of ultra-lightweight concrete: towards monolithic concrete structures

    Directory of Open Access Journals (Sweden)

    Yu Qing Liang

    2014-04-01

    Full Text Available This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K; and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm . This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.

  17. A Comprehensive Review on the Properties of Coal Bottom Ash in Concrete as Sound Absorption Material

    Directory of Open Access Journals (Sweden)

    Ramzi Hannan Nurul Izzati Raihan

    2017-01-01

    Full Text Available The government is currently implementing policies to increase the usage of coal as fuel for electricity generation. At the same time, the dependency on gas will be reduced. In addition, coal power plants in Malaysia produce large amounts of industrial waste such as bottom ash which is collected in impoundment ponds (ash pond. However, millions of tons of coal ash (bottom ash waste are collected in ponds near power plant stations. Since bottom ash has been classified as hazardous material that threatens the health and safety of human life, an innovative and sustainable solution has been introduced to reuse or recycle industrial waste such as coal bottom ash in concrete mixtures to create a greener and more sustainable world. Bottom ash has the potential to be used as concrete material to replace fine aggregates, coarse aggregates or both. Hence, this paper provides an overview of previous research which used bottom ash as fine aggregate replacement in conventional concrete. The workability, compressive strength, flexural strength, and sound absorption of bottom ash in concrete are reviewed.

  18. Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress.

    Science.gov (United States)

    Wang, Hailong; Sun, Xiaoyan; Wang, Junjie; Monteiro, Paulo J M

    2016-03-30

    The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ).

  19. Strain rate effects for spallation of concrete

    Science.gov (United States)

    Häussler-Combe, Ulrich; Panteki, Evmorfia; Kühn, Tino

    2015-09-01

    Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property - which can be covered by rate dependent stress strain relations - or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  20. Strain rate effects for spallation of concrete

    Directory of Open Access Journals (Sweden)

    Häussler-Combe Ulrich

    2015-01-01

    Full Text Available Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property – which can be covered by rate dependent stress strain relations – or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  1. Evaluation of the effects of strain rate on material properties of the high strength concrete used in nuclear facilities

    International Nuclear Information System (INIS)

    Kawaguchi, Shohei; Shirai, Koji; Takayanagi, Hideaki

    2011-01-01

    Concrete physical properties (compressive strength, tensile strength, initial elastic modulus and maximum strain) affected by strain rate weren't fully utilize for material model in dynamic response analysis for seismic and impact load because of few reports and various difficulties of impact tests. Split Hopkinson Pressure Bar (SHPB) methods are the most popular high-speed material testing and were also applied for composite material. We applied SHPB for concrete specimen and reported the strain rate effect to the concrete physical property. We used hydraulic testing device for 10 -5 /s to 10 0 /s strain rate and SHPB methods for over 10 1 /s. Four cases of concrete tests (high (50MPa at 28days)/low (35MPa at 28days) compressive strength (based on the test of exiting nuclear power facilities) and dry/wet condition) were done. And we formulated strain rate effect about compressive strength and initial elastic modulus from comparing with previous studies. (author)

  2. Maintenance and preservation of concrete structures. Report 3: Abrasion-erosion resistance of concrete

    Science.gov (United States)

    Liu, T. C.

    1980-07-01

    This report describes a laboratory test program on abrasion-erosion resistance of concrete, including the development of a new underwater abrasion-erosion test method. This program was designed to evaluate the relative abrasion-erosion resistance of various materials considered for use in the repair of erosion-damaged concrete structures. The test program encompassed three concrete types (conventional concrete, fiber-reinforced concrete, and polymer concrete); seven aggregate types (limestone, chert, trap rock, quartzite, granite, siliceous gravel, and slag); three principal water-cement rations (0.72, 0.54, and 0.40); and six types of surface treatment (vacuum, polyurethane coating, acrylic mortar coating, epoxy mortar coating, furan resin mortar coating, and iron aggregate topping). A total of 114 specimens made from 41 batches of concrete was tested. Based on the test data obtained, a comprehensive evaluation of the effects of various parameters on the abrasion-erosion resistance of concrete was presented. Materials suitable for use in the repair of erosion-damaged concrete structures were recommended. Additional work to correlate the reported findings with field performance was formulated.

  3. Review of coal bottom ash and coconut shell in the production of concrete

    Science.gov (United States)

    Faisal, S. K.; Mazenan, P. N.; Shahidan, S.; Irwan, J. M.

    2018-04-01

    Concrete is the main construction material in the worldwide construction industry. High demand of sand in the concrete production have been increased which become the problems in industry. Natural sand is the most common material used in the construction industry as natural fine aggregate and it caused the availability of good quality of natural sand keep decreasing. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of coal bottom ash and coconut shell as partial sand replacement in production of concrete. It is able to save cost and energy other than protecting the environment. In summary, 30% usage of coal bottom ash and 25% replacement of coconut shell as aggregate replacement show the acceptable and satisfactory strength of concrete.

  4. Analysis of Possibilities for Using Recycled Concrete Aggregate in Concrete Pavement

    OpenAIRE

    R. Pernicova; D. Dobias

    2016-01-01

    The present article describes the limits of using recycled concrete aggregate (denoted as RCA) in the top layer of concrete roads. The main aim of this work is to investigate the possibility of reuse of recycled aggregates obtained by crushing the old concrete roads as a building material in the new top layers of concrete pavements. The paper is based on gathering the current knowledge about how to use recycled concrete aggregate, suitability, and modification of the properties and its standa...

  5. A Method to Estimate the Dynamic Displacement and Stress of a Multi-layered Pavement with Bituminous or Concrete Materials

    Directory of Open Access Journals (Sweden)

    Zheng LU

    2014-12-01

    Full Text Available In this research work, a method to estimate the dynamic characteristics of a multilayered pavement with bituminous or concrete materials is proposed. A mechanical model is established to investigate the dynamic displacement and stress of the multi-layered pavement structure. Both the flexible and the rigid pavements, corresponding to bituminous materials and concrete materials, respectively, are studied. The theoretical solutions of the multi-layered pavement structure are deduced considering the compatibility condition at the interface of the structural layers. By introducing FFT (Fast Fourier Transform algorithm, some numerical results are presented. Comparisons of the theoretical and experimental result implied that the proposed method is reasonable in predicting the stress and displacement of a multi-layered pavement with bituminous or concrete materials. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6071

  6. Novel dynamic thermal characterization of multifunctional concretes with microencapsulated phase change materials

    Science.gov (United States)

    Pisello, Anna Laura; Fabiani, Claudia; D'Alessandro, Antonella; Cabeza, Luisa F.; Ubertini, Filippo; Cotana, Franco

    2017-04-01

    Concrete is widely applied in the construction sector for its reliable mechanical performance, its easiness of use and low costs. It also appears promising for enhancing the thermal-energy behavior of buildings thanks to its capability to be doped with multifunctional fillers. In fact, key studies acknowledged the benefits of thermally insulated concretes for applications in ceilings and walls. At the same time, thermal capacity also represents a key property to be optimized, especially for lightweight constructions. In this view, Thermal-Energy Storage (TES) systems have been recently integrated into building envelopes for increasing thermal inertia. More in detail, numerical experimental investigations showed how Phase Change materials (PCMs), as an acknowledged passive TES strategy, can be effectively included in building envelope, with promising results in terms of thermal buffer potentiality. In particular, this work builds upon previous papers aimed at developing the new PCM-filled concretes for structural applications and optimized thermalenergy efficiency, and it is focused on the development of a new experimental method for testing such composite materials in thermal-energy dynamic conditions simulated in laboratory by exposing samples to environmentally controlled microclimate while measuring thermal conductivity and diffusivity by means of transient plane source techniques. The key findings show how the new composites are able to increasingly delay the thermal wave with increasing the PCM concentration and how the thermal conductivity varies during the course of the phase change, in both melting and solidification processes. The new analysis produces useful findings in proposing an effective method for testing composite materials with adaptive thermal performance, much needed by the scientific community willing to study building envelopes dynamics.

  7. Operational features of decorative concrete

    Science.gov (United States)

    Bazhenova, Olga; Kotelnikov, Maxim

    2018-03-01

    This article deals with the questions of creation and use of decorative and finishing concrete and mortar. It has been revealed that the most effective artificial rock-imitating stone materials are those made of decorative concrete with the opened internal structure of material. At the same time it is important that the particles of decorative aggregate should be distributed evenly in the concrete volume. It can be reached only at a continuous grain-size analysis of the aggregate from the given rock. The article tackles the necessity of natural stone materials imitation for the cement stone color to correspond to the color of the rock. The possibility of creation of the decorative concrete imitating rocks in the high-speed turbulent mixer is considered. Dependences of durability and frost resistance of the studied concrete on the pore size and character and also parameters characterizing crack resistance of concrete are received.

  8. Viscosities of corium-concrete mixtures

    International Nuclear Information System (INIS)

    Seiler, J.M.; Ganzhorn, J.

    1997-01-01

    Severe accidents on nuclear reactors involve many situations such as pools of molten core material, melt spreading, melt/concrete interactions, etc. The word 'corium' designates mixtures of materials issued from the molten core at high temperature; these mixtures involve mainly: UO2, ZrO2, Zr and, in small amounts, Ni, Cr, Ag, In, Cd. These materials, when flowing out of the reactor vessel, may interact with the concrete of the reactor building thus introducing decomposition products of concrete into the original mixture. These decomposition products are mainly: SiO 2 , FeO, MgO, CaO and Al 2 O 3 in different amounts depending on the nature of the concrete being considered. Siliceous concrete is rich in SiO 2 , limestone concrete contains both SiO 2 and CaO. Liquidus temperatures of such mixtures are generally obove 2300 K whereas solidus temperatures are ∝1400 K. (orig.)

  9. Material and elastic properties of Al-tobermorite in ancient roman seawater concrete

    KAUST Repository

    Jackson, Marie D.

    2013-05-28

    The material characteristics and elastic properties of aluminum-substituted 11 Å tobermorite in the relict lime clasts of 2000-year-old Roman seawater harbor concrete are described with TG-DSC and 29Si MAS NMR studies, along with nanoscale tomography, X-ray microdiffraction, and high-pressure X-ray diffraction synchrotron radiation applications. The crystals have aluminum substitution for silicon in tetrahedral bridging and branching sites and 11.49(3) Å interlayer (002) spacing. With prolonged heating to 350°C, the crystals exhibit normal behavior. The experimentally measured isothermal bulk modulus at zero pressure, K0, 55 ±5 GPa, is less than ab initio and molecular dynamics models for ideal tobermorite with a double-silicate chain structure. Even so, K0, is substantially higher than calcium-aluminum-silicate-hydrate binder (C-A-S-H) in slag concrete. Based on nanoscale tomographic study, the crystal clusters form a well connected solid, despite having about 52% porosity. In the pumiceous cementitious matrix, Al-tobermorite with 11.27 Å interlayer spacing is locally associated with phillipsite, similar to geologic occurrences in basaltic tephra. The ancient concretes provide a sustainable prototype for producing Al-tobermorite in high-performance concretes with natural volcanic pozzolans. © 2013 The American Ceramic Society.

  10. Performance of concrete backfilling materials for shafts and tunnels in rock formations

    International Nuclear Information System (INIS)

    Storer, G.; Mistry, N.; Galliara, J.

    1985-10-01

    This report (Part 2) describes the mathematical modelling studies carried out within a research project into the performance of concrete backfilling materials for shafts and tunnels comprising a hard rock geological disposal repository for High Level, Heat Generating Wastes (HLW/HGW) or Intermediate Level Wastes (ILW) with long lived isotopes. A complementary volume (Part 1) describes laboratory research studies into the development, manufacture and testing of a pre-placed aggregate concrete (PAC). The ongoing objective is to demonstrate that concrete will serve as a beneficial engineered barrier, part of a multi-barrier system, in isolating potentially harmful radionuclides from the biosphere. The report recognises that the backfill cannot be considered in isolation and that there are many interactions between the primary repository elements of host rock, waste and backfill. The interactions considered include mechanical, thermal, creep and moisture movement. Analyses were carried out using the ADINA finite element system, by programmed analytical formulae and using the TEMPOR program (for thermally driven moisture migration in concrete). The emphasis has been directed at establishing basic mathematical approaches to the understanding and quantification of the phenomena involved and applying them to simplified and idealised repository scenarios. The methods devised lay foundations for future work on more defined disposal scenarios. (author)

  11. LIGHTWEIGHT CONCRETE BASED GRANSHLAK

    Directory of Open Access Journals (Sweden)

    NETESA M. I.

    2016-02-01

    Full Text Available Raising of problem. Concrete advisable to obtain a low strength with local secondary resources for recycling and reduce the environmental burden on the environment. But it is important to design such concrete compositions with a reduced flow of cement. It is known that the coefficient of efficiency of use of cement in the concrete of the heavy and B10 is less than about 0.5, which is almost two times smaller than in class B15 concrete and above. Even lower coefficient of efficiency in light concrete cement low strength. Therefore, it is important to find patterns determining the composition of lightweight concrete based on local-products industry with more efficient use of cement in them. Purpose.. Based on the analysis of earlier research results, including with the use of methods of mathematical planning of experiments to determine the concrete contents, which can provide the requirements for the underlying layers of the floor, the compressive strength of which should correspond to the class B5. It is important to provide the required strength at minimum flow of the cement, which is the most expensive and energy-intensive part of concrete. Conclusion. Analysis of the test results of control samples of concrete in 28-day-old, the following laws. The required tensile strength of concrete compressive strength of 7.0 MPa can be obtained in the test range when used in formulations as a filler as the Dnieper hydroelectric power station fly ash and tailings Krivoy Rog iron ore YuGOK. To ensure providing the required characteristic strength of the concrete in the underlying layers of the floor is advisable to use a nominal composition per cubic meter of concrete: cement 160 kg granshlaka Plant named after Petrovsky, 675 kg of fly ash Dnieper HPP 390 kg, 400 kg of sand, 230 liters of water. Thus, while ensuring rational grain composition components can obtain the desired strength lightweight concrete based granshlaka plant Petrovsky, using as fillers

  12. Radiation shielding concrete

    International Nuclear Information System (INIS)

    Kunishima, Shigeru.

    1990-01-01

    The radiation shielding concretes comprise water, cement, fine aggregates consisting of serpentines and blown mist slags, coarse aggregates consisting of serpentines and kneading materials. Since serpentines containing a relatively great amount of water of crystallization in rocks as coarse aggregates and fine aggregates, the hydrogen content in the radiation shielding concretes is increased and the neutron shielding effect is improved. In addition, since serpentines are added as the fine aggregates and blown mists slags of a great specific gravity are used, the specific gravity of the shielding concretes is increased to improve the γ-ray shielding effect. Further, by the use of the kneading material having a water reducing effect and fluidizing effect, and by the bearing effect of the spherical blown mist slags used as the fine aggregates, concrete fluidity can be increased. Accordingly, workability of the radiation shielding concretes can be improved. (T.M.)

  13. Health monitoring and rehabilitation of a concrete structure using intelligent materials

    Science.gov (United States)

    Song, G.; Mo, Y. L.; Otero, K.; Gu, H.

    2006-04-01

    This paper presents the concept of an intelligent reinforced concrete structure (IRCS) and its application in structural health monitoring and rehabilitation. The IRCS has multiple functions which include self-rehabilitation, self-vibration damping, and self-structural health monitoring. These functions are enabled by two types of intelligent (smart) materials: shape memory alloys (SMAs) and piezoceramics. In this research, Nitinol type SMA and PZT (lead zirconate titanate) type piezoceramics are used. The proposed concrete structure is reinforced by martensite Nitinol cables using the method of post-tensioning. The martensite SMA significantly increases the concrete's damping property and its ability to handle large impact. In the presence of cracks due to explosions or earthquakes, by electrically heating the SMA cables, the SMA cables contract and close up the cracks. In this research, PZT patches are embedded in the concrete structure to detect possible cracks inside the concrete structure. The wavelet packet analysis method is then applied as a signal-processing tool to analyze the sensor signals. A damage index is defined to describe the damage severity for health monitoring purposes. In addition, by monitoring the electric resistance change of the SMA cables, the crack width can be estimated. To demonstrate this concept, a concrete beam specimen with reinforced SMA cables and with embedded PZT patches is fabricated. Experiments demonstrate that the IRC has the ability of self-sensing and self-rehabilitation. Three-point bending tests were conducted. During the loading process, a crack opens up to 0.47 inches. Upon removal of the load and heating the SMA cables, the crack closes up. The damage index formed by wavelet packet analysis of the PZT sensor data predicts and confirms the onset and severity of the crack during the loading. Also during the loading, the electrical resistance value of the SMA cable changes by up to 27% and this phenomenon is used to

  14. Evaluation of waste concrete road materials for use in oyster aquaculture - Phase 3.

    Science.gov (United States)

    2016-08-01

    This project was the final phase of a three-phase project. The primary objective was to determine the suitability of recycled concrete aggregate (RCA) from road projects as a bottom conditioning material for on-bottom oyster aquaculture in the Chesap...

  15. The carbonaceous concrete based on sawdust

    Directory of Open Access Journals (Sweden)

    BELOUSOVA Elena Sergeevna

    2015-06-01

    Full Text Available Today there are many requirements for strength, ecology and economy of produced concretes. The authors of the paper study attenuation of electromagnetic radiation of carbonaceous powders in the concrete composition. Carbon black was selected as a carbon powder for addition in concrete composition. Carbon black is a nanomaterial with disoriented structure of particles (average size is about 50 nm. The composition of the carbon black contains at least 90 wt.% amorphous carbon, more than 5 wt. % chemisorbed oxygen and about 4 wt.% of impurities. Materials with the addition of carbon black have electrical conductivity due to the high content of carbon. These materials are able to absorb electromagnetic radiation. For cement composition with addition of carbon black (more than 30 wt. % and water transmission coefficient of electromagnetic radiation is about –10 dB, for cement composition with 20 wt. % of carbon black the reflection coefficient is –8 dB in the frequency range 8–12 GHz. The concretes with a saturated aqueous solution of calcium chloride and 10% of carbon black possess minimal reflection coefficient (–14... –8 dB. Electromagnetic radiation shielding of concrete with the addition of sawdust was investigated. The concrete with sawdust (40 wt. % impregnated with an aqueous solution with carbon black has the reflection coefficient less than –8 dB and transmission coefficient –40 dB in the frequency range 8–12 GHz. These concretes can be used for creation of a shielded room with the technical equipment for information processing to prevent data leakage through the compromising emanations and crosstalk.

  16. Study of Influence of Composite Materials Components on Properties of Concrete Mixtures and Concrete in Time Dynamics

    Science.gov (United States)

    Butakova, M. D.; Gorbunov, S. P.

    2017-11-01

    It is accepted to call concrete a special construction mix which consists of several main components - most often, these are cement, water and various fillers. As a result of grout hardening, the artificial stone, used in many areas where durability, stability and durability are required, is formed. To improve the main characteristics of concrete, various additives are added to the mix. These substances are also capable of accelerating the speed of construction and reducing the funds expenditure. It is especially important to apply additives at the installation of coverings to airfields, at the construction of moorings, roads, at the laying of pools or during other hydraulic engineering constructions, and also at the construction of monolithic industrial facilities and houses. The article deals with the composition and quantity of complex organomineral additives, the duration and conditions for the formation of composites’ structure.

  17. Prestressed concrete. Composite material perfectly utilizing the merits of steel and concrete; Puresutoresu concrete. Ko to concreteto no tokucho wo kanzen ni ikashita fukugo sozai

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, M. [Kyokuto Kogen Concrete Shinko Co. Ltd., Tokyo (Japan)

    1996-10-15

    Since the early stage of the development of the prestressed concrete (PC) manufacturing techniques, it has been said that forming a single PC structure by uniting precast segments with PC steel material into one is a construction method making the most of the feature of PC. This paper roughly describes the history of the development of PC and concrete examples of PC, centering on the construction techniques effectively utilizing the principle of PC and its materials. Especially, a PC bridge is superior to a steel bridge with respect to noise and vibration, so that the construction works of replacing railway steel bridges and railway elevated bridges by PC bridges have come to be seen in many places recently. In order to increase the span of a PC bridge, the reduction of the weight is a major factor. Therefore, an outer cable system has come to be used so as to reduce the thickness is cross section of the web of a PC beam as much as possible. The changes of the maximum span of cable stayed bridge are listed in a table in comparison of PC bridges with steel bridges. 29 refs., 9 figs., 1 tab.

  18. ANALYSIS AND APPLICATION PROSPECTS OF EFFECTIVE RESOURCES-SAVING TECHNOLOGIES IN CONCRETE MANUFACTURE

    Directory of Open Access Journals (Sweden)

    H. P. Ivanova

    2014-10-01

    Full Text Available Purpose. Prospectivity assessments of the nano-materials usage in construction technologies at the same time meeting the requirements of environmental safety and rational use of the natural resources. Methodology. During the study the building composites, in particular concretes, which are obtained on the base of the raw materials, which are introduced in the array of micro- and nanolevels were researched and analyzed. The deformation and deterioration processes of nanostructured concrete depending on their composition and manufacture parameters were simulated. Findings. Concrete manufacture is in the direct dependence on its components. Due to the extraction and processing of these components land degradation occurs because of soil destruction with oversize pits, which threatens the ecology of the environment. In this connection there is a need for another concept of building materials receiving for concrete manufacture. The new branch of science based on nanotechnologies, nanomaterials and nanostructuring is a key to its foundation. The special features of nanostructured concretes are the nanoagents in their composition (carbon nanotubes, mechanoactivated slags of blast furnace production. The study of deformation patterns and concrete deterioration based on the mechanoactivated material will purposefully affect the structure, physical and chemical properties, as well as the mechanical and deformational ones. Originality. The researches have shown that nano-structured concrete had high fluidity. The strength of such compositions is enhanced up to 13 % without reduction of concrete consumption and up to 8.8% at 10% reduced concrete consumption. Practical value. The application of the structured concretes based on the mechanoactivated material will increase the efficiency of the industrial wastes recycling and improve the physical, mechanical and technological properties of the produced composites. From the standpoint of the economic benefits

  19. Strategy for 100-year life of the ACR-1000 concrete containment structure

    International Nuclear Information System (INIS)

    Abrishami, H.; Elgohary, M.

    2006-01-01

    The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of the ACR-1000 (Advanced CANDU Reactor) designed by AECL. The ACR-1000 is designed for 100-year plant life including 60-year operating life and additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In the design phase, in addition to strength and serviceability, durability is a major requirement during the service life and decommissioning phase of the ACR structure. Parameters affecting durability design include: a) concrete performance, b) structural application, and c) environmental conditions. Due to the complex nature of the environmental effects acting on structures during the service life of project, it is considered that true improved performance during the service life can be achieved by improving the material characteristics. Many recent innovations in advanced concrete materials technology have made it possible to produce modern concrete such as high-performance concrete with exceptional performance characteristics. In this paper, the PLiM strategy for the ACR-1000 concrete containment is presented. In addition to addressing the design methodology and material performance areas, a systematic approach for ageing management program for the concrete containment structure is presented. (author)

  20. Hot Isostatic Press (HIP) vitrification of radwaste concretes

    International Nuclear Information System (INIS)

    Siemer, D.D.; Scheetz, B.; Gougar, M.L.D.

    1995-01-01

    Properly formulated and properly ''canned'' radwaste concretes can be readily hot-isostatically-pressed (HIPed) into materials that exhibit performance equivalent to typical radwaste-type glasses. The HIPing conditions (temperature/pressure) required to turn a concrete waste form into a ''vitrified'' waste form are quite mild and therefore consistent with both safety and high productivity. This paper describes the process and its products with reference to its potential application to Idaho Chemical Processing Plant (ICPP) reprocessing wastes

  1. Tensile strength of structural concrete repaired with hi-bond polymer modified mortar

    International Nuclear Information System (INIS)

    Khaskheli, G.B.

    2009-01-01

    Repair of cracks in concrete is often required to save the concrete structures. Appearance of crack in concrete is bound with the tensile strength of concrete. Recently a cement factory in Sindh has launched a HBPMM (Hi-Bond Polymer Modified Mortar) that can be used as a concrete repairing material instead of normal OPC (Ordinary Portland Cement). It is needed to investigate its performance compared to that of OPC. In total 144 concrete cylinders (150x300mm) having strength of 3000 and 5000 psi were manufactured. These cylinders were then splitted by using a UTM (Universal Testing Machine) and their actual tensile strength was obtained. The concrete cylinders were then repaired with different applications of HBPMM and arc. The repaired samples were again splitted at different curing ages (3, 7 and 28 days) and their tensile strength after repair was obtained. The results show that the concrete cylinders repaired with HBPMM could give better tensile strength than that repaired with arc, the tensile strength of concrete cylinders after repair could increase with increase in the application of repairing material i.e. HBPMM or OPC and with curing time, and HBPMM could remain more effective in case of rich mix concrete than that of normal mix concrete. (author)

  2. Non-destructive analysis of chlorine in fly ash cement concrete

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Garwan, M.A.; Nagadi, M.M.; Maslehuddin, M.; Al-Amoudi, O.S.B.; Khateeb-ur-Rehman

    2009-01-01

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022±0.007 and 0.038±0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  3. Non-destructive analysis of chlorine in fly ash cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A.; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-08-11

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022{+-}0.007 and 0.038{+-}0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  4. Evaluation of ternary blended cements for use in transportation concrete structures

    Science.gov (United States)

    Gilliland, Amanda Louise

    This thesis investigates the use of ternary blended cement concrete mixtures for transportation structures. The study documents technical properties of three concrete mixtures used in federally funded transportation projects in Utah, Kansas, and Michigan that used ternary blended cement concrete mixtures. Data were also collected from laboratory trial batches of ternary blended cement concrete mixtures with mixture designs similar to those of the field projects. The study presents the technical, economic, and environmental advantages of ternary blended cement mixtures. Different barriers of implementation for using ternary blended cement concrete mixtures in transportation projects are addressed. It was concluded that there are no technical, economic, or environmental barriers that exist when using most ternary blended cement concrete mixtures. The technical performance of the ternary blended concrete mixtures that were studied was always better than ordinary portland cement concrete mixtures. The ternary blended cements showed increased durability against chloride ion penetration, alkali silica reaction, and reaction to sulfates. These blends also had less linear shrinkage than ordinary portland cement concrete and met all strength requirements. The increased durability would likely reduce life cycle costs associated with concrete pavement and concrete bridge decks. The initial cost of ternary mixtures can be higher or lower than ordinary portland cement, depending on the supplementary cementitious materials used. Ternary blended cement concrete mixtures produce less carbon dioxide emissions than ordinary portland cement mixtures. This reduces the carbon footprint of construction projects. The barriers associated with implementing ternary blended cement concrete for transportation projects are not significant. Supplying fly ash returns any investment costs for the ready mix plant, including silos and other associated equipment. State specifications can make

  5. Optimization of superplasticizer in portland pozzolana cement mortar and concrete

    Science.gov (United States)

    Sathyan, Dhanya; Anand, K. B.; Mini, K. M.; Aparna, S.

    2018-02-01

    Chemical Admixtures are added to concrete at the time of mixing of its constituents to impart workability. The requirement of right workability is the essence of good concrete. It has been found that the use of optimum use of admixtures is very important since low dosage may result in loss of fluidity and over dosage could lead to segregation, bleeding, excessive air entrainment etc in concrete. Hence it is essential to find optimum dosage of superplasticizer for getting good strength and workability. But large number of trial tests are required in the field to find the saturation dosage of superplasticizer in concrete which requires more materials and consume more time. The paper deals with developing a co-relation between the quantity requirements of superplasticiser in mortar to that of cement concrete to get good workability. In this work for preparing mortar and concrete 4 brands of locally available Portland pozzolana cement (PPC) and superplasticizer (SP) belonging to 4 different families namely Polycarboxylate Ether (PCE), Lignosulphate (LS), Sulfonated Naphthalene Formaldehyde (SNF) and Sulfonated Melamine Formaldehyde (SMF) are used. Two different brands of SP’s are taken from each family. Workability study on the superplasticized mortar with cement to sand ratio 1:1.5 and water cement ratio of 0.4 was performed using marsh cone and flow table test and workability study on the concrete with same cement/sand ratio and water cement ratio was done using slump cone and flow table test. Saturation dosage of superplasticizer in mortar and concrete determined experimentally was compared to study the correlation between two. Compressive strength study on concrete cubes were done on concrete mixes with a superplasticizer dosage corresponding to the saturation dosage and a comparative study were done to analyse the improvement in the compressive strength with addition of superplasticizer from different family.

  6. EI Scale: an environmental impact assessment scale related to the construction materials used in the reinforced concrete

    Directory of Open Access Journals (Sweden)

    Gilson Morales

    2010-12-01

    Full Text Available This study aimed to create EI Scal, an environmental impact assessment scal, related to construction materials used in the reinforced concrete structure production. The main reason for that was based on the need to classify the environmental impact levels through indicators to assess the damage level process. The scale allowed converting information to estimate the environmental impact caused. Indicators were defined trough the requirements and classification criteria of impact aspects considering the eco-design theory. Moreover, the scale allowed classifying the materials and processes environmental impact through four score categories which resulted in a single final impact score. It was concluded that the EI scale could be cheap, accessible, and relevant tool for environmental impact controlling and reduction, allowing the planning and material specification to minimize the construction negative effects caused in the environment.

  7. Photocatalyticpaving concrete

    OpenAIRE

    Lyapidevskaya Ol'ga Borisovna; Fraynt Mikhail Aleksandrovich

    2014-01-01

    Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year) and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in t...

  8. Damage modelling in concrete subject to sulfate attack

    Directory of Open Access Journals (Sweden)

    N. Cefis

    2014-07-01

    Full Text Available In this paper, we consider the mechanical effect of the sulfate attack on concrete. The durability analysis of concrete structures in contact to external sulfate solutions requires the definition of a proper diffusion-reaction model, for the computation of the varying sulfate concentration and of the consequent ettringite formation, coupled to a mechanical model for the prediction of swelling and material degradation. In this work, we make use of a two-ions formulation of the reactive-diffusion problem and we propose a bi-phase chemo-elastic damage model aimed to simulate the mechanical response of concrete and apt to be used in structural analyses.

  9. Performance of Lightweight Natural-Fiber Reinforced Concrete

    OpenAIRE

    Hardjasaputra Harianto; Ng Gino; Urgessa Girum; Lesmana Gabriella; Sidharta Steven

    2017-01-01

    Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC). Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material beca...

  10. Long-term heat storage in calcium sulfoaluminate cement (CSA) based concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Josef P.; Winnefeld, Frank [Empa Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland). Lab. for Concrete and Construction Chemistry

    2011-07-01

    In general, the selection of materials proposed for solar heat storage is based on one of two principal processes: sensible heat storage or latent heat storage. Sensible heat storage utilizes the specific heat capacity of a material, while latent heat storage is based on the change in enthalpy (heat content) associated with a phase change of the material. Long time sensible heat storage requires excellent thermal insulation whereas latent heat storage allows permanent (seasonal) storage without significant energy losses and any special insulation. Ettringite, one of the cement hydration products, exhibits a high dehydration enthalpy. Calcium sulfoaluminate cement based concrete containing a high amount of ettringite is henceproposed as an efficient latent heat storage material. Compared to conventional heat storage materials this innovative concrete mixture has a high loss-free storage energy density (> 100-150 kWh/m{sup 3}) which is much higher than the one of paraffin or the (loss-sensitive) sensible heat of water. Like common concrete the CSA-concrete is stable and even may carry loads. The dehydration of the CSA-concrete is achieved at temperatures below 100 C. The rehydration process occurs as soon as water (liquid or vapor) is added. In contrast to paraffin, the phase change temperature is not fixed and the latent heat may be recovered at any desired temperature. Furthermore the heat conductivity of this material is high, so that the energy transfer from/to an exchange medium is easy. Additionally CSA-concrete is not flammable and absolutely safe regarding any health aspects. The cost of such CSA-concrete isin the order of normal concrete. The main application is seen in house heating systems. Solar heat, mostly generated during the summer period by means of roof collectors, can be stored in CSA-concrete until the winter. A part or even the whole annual heatingenergy may be produced and saved locally by the householder himself. Additional applications may be

  11. PREPARATION OF ULTRA-LOW VOLUME WEIGHT AUTOCLAVED AERATED CONCRETE

    Directory of Open Access Journals (Sweden)

    Ondrej Koutny

    2016-12-01

    Full Text Available Autoclaved aerated concrete is a modern construction material that gains its popularity especially due to its thermal insulation performance resulting from low volume weight and porous structure with sufficient mechanical strength. Nowadays, there are attempts to use this material for thermal insulation purposes and to replace current systems, which have many disadvantages, mainly concerning durability. The key for improvement of thermal insulation properties is therefore obtaining a material based on autoclaved aerated concrete with extremely low volume weight (below 200 kg/m ³ ensuring good thermal isolation properties, but with sufficient mechanical properties to allow easy manipulation. This material can be prepared by foaming very fine powder materials such as silica fume or very finely ground sand. This paper deals with the possibilities of preparation and summarizes the basic requirements for successful preparation of such a material.

  12. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.

    Science.gov (United States)

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard

    2017-01-01

    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  13. Evaluation of nuclear power plant concrete to maintain continued service

    International Nuclear Information System (INIS)

    McColm, E.J.; Mukherjee, P.K.; Sato, J.A.

    1997-01-01

    Nuclear power plant concrete structures in addition to satisfying structural requirements are a major part of the safety and containment systems. As a result, the structures are required to operate satisfactorily for the life of the plant and until well after decommissioning. Successful life management requires an understanding of potential degradation mechanisms that can impact on the performance of these structures, regular well planned inspection programs and the use of specialized repair and maintenance programs. These aspects of nuclear life management are discussed with an example of inspection and repair conducted at one of Ontario Hydro's nuclear generating stations. The example is discussed in terms of the performance requirements of the containment concrete. The plant referred to has been in operation for over 20 years, making it currently the oldest operating commercial nuclear power plant in Ontario, Canada. The information on the concrete containment structures included baseline construction data on the concrete material properties and the results of periodic scheduled and other interim specialized inspections. Also available were the results of laboratory testing of concrete cores obtained from the structures. The data from these inspections and laboratory testing were used to monitor the aging characteristics of the structures and to plan appropriate repair activities. (author)

  14. Durability of recycled aggregate concrete using pozzolanic materials.

    Science.gov (United States)

    Ann, K Y; Moon, H Y; Kim, Y B; Ryou, J

    2008-01-01

    In this study, pulverized fuel ash (PFA) and ground granulated blast furnace slag (GGBS) were used to compensate for the loss of strength and durability of concrete containing recycled aggregate. As a result, 30% PFA and 65% GGBS concretes increased the compressive strength to the level of control specimens cast with natural granite gravel, but the tensile strength was still lowered at 28 days. Replacement with PFA and GGBS was effective in raising the resistance to chloride ion penetrability into the concrete body, measured by a rapid chloride ion penetration test based on ASTM C 1202-91. It was found that the corrosion rate of 30% PFA and 65% GGBS concretes was kept at a lower level after corrosion initiation, compared to the control specimens, presumably due to the restriction of oxygen and water access. However, it was less effective in increasing the chloride threshold level for steel corrosion. Hence, it is expected that the corrosion time for 30% PFA and 65% GGBS concrete containing recycled aggregate mostly equates to the corrosion-free life of control specimens.

  15. The results of the CCI-3 reactor material experiment investigating 2-D core-concrete interaction and debris coolability with a siliceous concrete crucible

    International Nuclear Information System (INIS)

    Farmer, M.T.; Basu, S.

    2006-01-01

    The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) program is conducting reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue, and to address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants and provide the technical basis for better containment designs for future plants. Despite years of international research, there are remaining uncertainties in the models that evaluate the lateral vs. axial power split during core-concrete interaction because of a lack of truly two-dimensional experiment data. As a result, there are differences in the 2-D cavity erosion predicted by codes such as MELCOR, WECHSL, and COSACO. In the continuing effort to bridge this data gap, the third in a series of large scale Core-Concrete Interaction experiments (CCI-3) has been conducted as part of the MCCI program. This test involved the interaction of a 375 kg core-oxide melt within a two-dimensional siliceous concrete crucible. The initial phase of the test was conducted under dry conditions. After a predetermined ablation depth was reached, the cavity was flooded to obtain data on the coolability of a core melt after core-concrete interaction has progressed for some time. This paper provides a summary description of the test facility and an overview of test results

  16. How Concrete is Concrete?

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2011-01-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics.Key words:  Conceret Learning Materials, School Math, Common Sense, Scaffolding, Communication DOI: http://dx.doi.org/10.22342/jme.2.1.780.1-14

  17. Frost induced damages within porous materials - from concrete technology to fuel cells technique

    Science.gov (United States)

    Palecki, Susanne; Gorelkov, Stanislav; Wartmann, Jens; Heinzel, Angelika

    2017-12-01

    Porous media like concrete or layers of membrane electrode assemblies (MEA) within fuel cells are affected by a cyclic frost exposure due to different damage mechanisms which could lead to essential degradation of the material. In general, frost damages can only occur in case of a specific material moisture content. In fuel cells, residual water is generally available after shut down inside the membrane i.e. the gas diffusion layer (GDL). During subsequent freezing, this could cause various damage phenomena such as frost heaves and delamination effects of the membrane electrode assembly, which depends on the location of pore water and on the pore structure itself. Porous materials possess a pore structure that could range over several orders of magnitudes with different properties and freezing behaviour of the pore water. Latter can be divided into macroscopic, structured and pre-structured water, influenced by surface interactions. Therefore below 0 °C different water modifications can coexist in a wide temperature range, so that during frost exposure a high amount of unfrozen and moveable water inside the pore system is still available. This induces transport mechanisms and shrinkage effects. The physical basics are similar for porous media. While the freezing behaviour of concrete has been studied over decades of years, in order to enhance the durability, the know-how about the influence of a frost attack on fuel cell systems is not fully understood to date. On the basis of frost damage models for concrete structures, an approach to describe the impact of cyclic freezing and thawing on membrane electrode assemblies has been developed within this research work. Major aim is beyond a better understanding of the frost induced mechanisms, the standardization of a suitable test procedure for the assessment of different MEA materials under such kind of attack. Within this contribution first results will be introduced.

  18. Measurements of Accelerator-Produced Leakage Neutron and Photon Transmission through Concrete

    International Nuclear Information System (INIS)

    2002-01-01

    Optimum shielding of the radiation from particle accelerators requires knowledge of the attenuation characteristics of the shielding material. The most common material for shielding this radiation is concrete, which can be made using various materials of different densities as aggregates. These different concrete mixes can have very different attenuation characteristics. Information about the attenuation of leakage photons and neutrons in ordinary and heavy concrete is, however, very limited. To increase our knowledge and understanding of the radiation attenuation in concrete of various compositions, we have performed measurements of the transmission of leakage radiation, photons and neutrons, from a Varian Clinac 2100C medical linear accelerator operating at maximum electron energies of 6 and 18 MeV. We have also calculated, using Monte Carlo techniques, the leakage neutron spectra and its transmission through concrete. The results of these measurements and calculations extend the information currently available for designing shielding for medical electron accelerators. Photon transmission characteristics depend more on the manufacturer of the concrete than on the atomic composition. A possible cause for this effect is a non-uniform distribution of the high-density aggregate, typically iron, in the concrete matrix. Errors in estimated transmission of photons can exceed a factor of three, depending on barrier thickness, if attenuation in high-density concrete is simply scaled from that of normal density concrete. We found that neutron transmission through the high-density concretes can be estimated most reasonably and conservatively by using the linear tenth-value layer of normal concrete if specific values of the tenth-value layer of the high-density concrete are not known. The reason for this is that the neutron transmission depends primarily on the hydrogen content of the concrete, which does not significantly depend on concrete density. Errors of factors of two

  19. Properties of concretes produced with waste concrete aggregate

    International Nuclear Information System (INIS)

    Topcu, Ilker Bekir; Sengel, Selim

    2004-01-01

    An environmentally friendly approach to the disposal of waste materials, a difficult issue to cope with in today's world, would only be possible through a useful recycling process. For this reason, we suggest that clearing the debris from destroyed buildings in such a way as to obtain waste concrete aggregates (WCA) to be reused in concrete production could well be a partial solution to environmental pollution. For this study, the physical and mechanical properties along with their freeze-thaw durability of concrete produced with WCAs were investigated and test results presented. While experimenting with fresh and hardened concrete, mixtures containing recycled concrete aggregates in amounts of 30%, 50%, 70%, and 100% were prepared. Afterward, these mixtures underwent freeze-thaw cycles. As a result, we found out that C16-quality concrete could be produced using less then 30% C14-quality WCA. Moreover, it was observed that the unit weight, workability, and durability of the concretes produced through WCA decreased in inverse proportion to their endurance for freeze-thaw cycle

  20. Feasibility of using phase change materials to control the heat of hydration in massive concrete structures.

    Science.gov (United States)

    Choi, Won-Chang; Khil, Bae-Soo; Chae, Young-Seok; Liang, Qi-Bo; Yun, Hyun-Do

    2014-01-01

    This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2 · 8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.

  1. Feasibility of Using Phase Change Materials to Control the Heat of Hydration in Massive Concrete Structures

    Directory of Open Access Journals (Sweden)

    Won-Chang Choi

    2014-01-01

    Full Text Available This paper presents experimental results that can be applied to select a possible phase change material (PCM, such as a latent heat material (LHM, to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH2·8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.

  2. Concrete-Design

    Directory of Open Access Journals (Sweden)

    Leczovics Péter

    2014-12-01

    Full Text Available Present paper introduces a new interpretation of concrete, demonstrating some extreme possibilities of this rigid material such as a design element. In the first part a brief overview of the previous achievements are shown. The second part of this paper focuses on the relationship between concrete and fashion.

  3. Dam safety review using non-destructive methods for reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, Alain; Saint-Pierre, Francois; Turcotte, Bernard [Le Groupe S.M. International Inc., Sherbrooke, (Canada)

    2010-07-01

    Dams built at the beginning of the twentieth century include concrete structures that were put in under rehabilitation works. In some cases, the details of the structures are not well documented. In other cases, concrete damage can be hidden under new layers of undamaged material. This requires that the dam safety review in a real investigation gather the information necessary for carrying out the hydraulic and stability studies required by the Dam Safety Act. This paper presented the process of dam safety review using non-destructive methods for reinforced concrete structures. Two reinforced concrete dams built in the 1900's, the Eustic dam on the Coaticook River and the Frontenac dam on the Magog River near Sherbrooke, were evaluated by S.M. International using non-destructive methods such as sonic and ground penetrating radar methods. The studies allowed mapping of concrete damage and provided geometric information on some non visible structure elements that were part of previous reinforcement operations.

  4. Evolution of sorption properties in large-scale concrete structures accounting for long-term physical-chemical concrete degradation - 59297

    International Nuclear Information System (INIS)

    Perko, Janez; Jacques, Diederik; Mallants, Dirk; Seetharam, Suresh

    2012-01-01

    Long-term safety of radioactive waste disposal facilities relies on the longevity of natural or engineered barriers designed to minimize the migration of contaminants from the facility into the environment. Especially near surface disposal facilities, such as planned by ONDRAF/NIRAS for the Dessel site in Belgium, long-term safety relies almost exclusively on the containment ability of the engineered barriers (EB) with concrete being the most important EB material used. Concrete is preferred over other materials mainly due to its favourable chemical properties resulting in a high chemical retention capacity, and owing to its good hydraulic isolation properties. However, due to the long time frames typically involved in safety assessment, the chemical, physical and mechanical properties of concrete evolve in time. The alterations in concrete mineralogy also cause changes in pH and sorption behaviour for many radionuclides during chemical degradation processes. Application of dynamic sorption of concrete requires an adequate knowledge of long-term concrete degradation processes, knowledge of the effect of changing mineralogy to sorption of radionuclides and knowledge of large-scale system behaviour over time. Moreover, when applied to safety assessment models, special attention is required to assure robustness and transparency of the implementation. The discussion in this paper focuses on the sorption properties of concrete; selection of data, rescaling issues and on the hypotheses used to build a robust and yet transparent dynamic model for large-scale concrete structures for assessing the long-term performance. In this paper we summarize the steps required for the appropriate use of sorption values for large-scale cementitious components accounting for long-term concrete degradation in safety assessment studies. Four steps were recognized through the safety assessment in the framework of the license application for the near-surface disposal facility in Dessel

  5. Concrete structures protection, repair and rehabilitation

    CERN Document Server

    Woodson, R Dodge

    2009-01-01

    The success of a repair or rehabilitation project depends on the specific plans designed for it. Concrete Structures: Protection, Repair and Rehabilitation provides guidance on evaluating the condition of the concrete in a structure, relating the condition of the concrete to the underlying cause or causes of that condition, selecting an appropriate repair material and method for any deficiency found, and using the selected materials and methods to repair or rehabilitate the structure. Guidance is also provided for engineers focused on maintaining concrete and preparing concrete investigation r

  6. Examination and testing requirements for concrete containment structures for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    This Standard provides the examination and testing requirements that will apply to the work of any organization participating in the construction, installation, and fabrication of parts or components of concrete containment structures, or both, that are defined as class containment. 2 tabs.

  7. Examination and testing requirements for concrete containment structures for CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1993-07-01

    This Standard provides the examination and testing requirements that will apply to the work of any organization participating in the construction, installation, and fabrication of parts or components of concrete containment structures, or both, that are defined as class containment. 2 tabs

  8. Importance of New Use of Concrete in Iraq Analysis of Development And Use of Concrete in Architecture

    Directory of Open Access Journals (Sweden)

    Mohammed Ridha Shakir Majeed

    2015-04-01

    Full Text Available Since its invention by the Ancient Romans and later developed during the mid-18th century, the concrete structure and finish, has been considered as the most powerful, practical, economic and constructional material that meets the building’s architectural and aesthetical requirements. By creating unique architectural forms, the pioneer architects used concrete widely to shape up their innovative designs and buildings.The pre-mixed ultra-high performance concrete which manufactured by Lafarge. The transparent concrete and cement that allow the light beams to pass through them, introduces remarkable well-lit architectural spaces within the same structural criteria. This product is a recyclable, sustainable, friendly environmental and cost efficient back up. Due to its characteristics, strength, flexibility, affordability and long term performance, the concert integrated and contributed in modern architecture, urbanism and civil developments. Apparently, most of the 20th Century architects employed high-tech concrete method to deliver Iconic and bespoke architectural monuments world-wide. The interaction between the architectural form and the concrete as a buildable, executable, structural and constructional material has been always the main concern for architects over generations. The formalism in architecture was first identified by the Art-Nouveau movement during the early 20 century in Europe as well as in Northern America. It formed, utilized and sculptured the concert to meet the use, function, aesthetical and spatial needs of spaces. This wave generated series of most significant, outstanding and impressive buildings in the architectural symbolized record. This was followed by the Brutalism architecture presented by Alison and Peter Smithson in England and also by Le Corbusier works in Marseille and India. However, Alvar Alto and Louis Khan have participated and established a tremendous use of concrete to erect public interest developments

  9. Permeability and pore structure connectivity of basic concrete formulations to use in near-surface repositories for radioactive wastes

    International Nuclear Information System (INIS)

    Tolentino, Evandro; Santos, Carlos Eduardo de Oliveira; Tello, Clédola Cássia Oliveira de

    2017-01-01

    The main concern of engineers who prepare concrete specifications for a particular application is to predict the deteriorative exposures that could cause concrete degradation over its intended service life. A durable concrete is able to resist destructive environmental conditions, without requiring excessive maintenance. Durability of cementitious materials largely depends on the possibilities of penetration of hazardous ions into the porous material with water as medium. Therefore, the water permeability of cementitious materials is related to its durability. Permeability and porosity should not instinctively be regarded as manifestations of the same phenomenon. Usually, when permeability increases, porosity increases as well. The connectivity of pore network exerts an important control on preferential flow into cementitious materials. This work presents results of quantitative evaluation of permeability and pore connectivity of Portland cement concretes. Two concrete mixture proportions with limestone and gneiss as coarse aggregate were produced. A modified polycarboxyl ether plasticizer GLENIUM 51 was added to one of the concrete mixtures in order to reduce the water content. Permeability tests were performed on all the specimens and a geometric modeling considering pore with cylindrical shape was applied in order to evaluate the pore network connectivity. The results showed that pore structure connectivity of concrete with plasticizer admixture decreased. The purpose of this research is to expand the knowledge concerning concrete durability and to provide the technical requirements related to the production the Brazilian near-surface repository of radioactive wastes. (author)

  10. Permeability and pore structure connectivity of basic concrete formulations to use in near-surface repositories for radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Tolentino, Evandro; Santos, Carlos Eduardo de Oliveira [Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Timóteo, MG (Brazil); Tello, Clédola Cássia Oliveira de, E-mail: tolentino@timoteo.cefetmg.br, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The main concern of engineers who prepare concrete specifications for a particular application is to predict the deteriorative exposures that could cause concrete degradation over its intended service life. A durable concrete is able to resist destructive environmental conditions, without requiring excessive maintenance. Durability of cementitious materials largely depends on the possibilities of penetration of hazardous ions into the porous material with water as medium. Therefore, the water permeability of cementitious materials is related to its durability. Permeability and porosity should not instinctively be regarded as manifestations of the same phenomenon. Usually, when permeability increases, porosity increases as well. The connectivity of pore network exerts an important control on preferential flow into cementitious materials. This work presents results of quantitative evaluation of permeability and pore connectivity of Portland cement concretes. Two concrete mixture proportions with limestone and gneiss as coarse aggregate were produced. A modified polycarboxyl ether plasticizer GLENIUM 51 was added to one of the concrete mixtures in order to reduce the water content. Permeability tests were performed on all the specimens and a geometric modeling considering pore with cylindrical shape was applied in order to evaluate the pore network connectivity. The results showed that pore structure connectivity of concrete with plasticizer admixture decreased. The purpose of this research is to expand the knowledge concerning concrete durability and to provide the technical requirements related to the production the Brazilian near-surface repository of radioactive wastes. (author)

  11. Penetration analysis of projectile with inclined concrete target

    Directory of Open Access Journals (Sweden)

    Kim S.B.

    2015-01-01

    Full Text Available This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction and CONCRETE_DAMAGE (K&C concrete models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  12. Penetration analysis of projectile with inclined concrete target

    Science.gov (United States)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  13. Special concrete shield selection using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.

    1994-01-01

    Special types of concrete radiation shields that depend on locally available materials and have improved properties for both neutron and gamma-ray attenuation were developed by using plastic materials and heavy ores. The analytic hierarchy process (AHP) is implemented to evaluate these types for selecting the best biological radiation shield for nuclear reactors. Factors affecting the selection decision are degree of protection against neutrons, degree of protection against gamma rays, suitability of the concrete as building material, and economic considerations. The seven concrete alternatives are barite-polyethylene concrete, barite-polyvinyl chloride (PVC) concrete, barite-portland cement concrete, pyrite-polyethylene concrete, pyrite-PVC concrete, pyrite-portland cement concrete, and ordinary concrete. The AHP analysis shows the superiority of pyrite-polyethylene concrete over the others

  14. Roles of concrete technology for containment of radioactive contaminants

    International Nuclear Information System (INIS)

    Kitsutaka, Yoshinori; Imamoto, Keiichi

    2014-01-01

    A large amount of radioactive materials was emitted in the environment by the reactor accident at Fukushima Daiichi Nuclear Power Plant. Nuclear debris still remains in the reactor container. An investigative committee was organized in Japan Concrete Institute to study on the containment of radioactive materials and the safe utilization of concrete materials. We have investigated the effect of the hydrogen explosion upon the property of concrete and the transfer of materials into the concrete. We also present the outline of the advice made by Japan Concrete Institute about technologies on the concrete materials for the waterproofing in buildings and for water-shielding walls. (J.P.N.)

  15. Concrete radiation shielding

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1989-01-01

    The increased use of nuclear energy has given rise to a growth in the amount of artificially produced radiation and radioactive materials. The design and construction of shielding to protect people, equipment and structures from the effects of radiation has never been more important. Experience has shown that concrete is an effective, versatile and economical material for the construction of radiation shielding. This book provides information on the principles governing the interaction of radiation with matter and on relevant nuclear physics to give the engineer an understanding of the design and construction of concrete shielding. It covers the physical, mechanical and nuclear properties of concrete; the effects of elevated temperatures and possible damage to concrete due to radiation; basic procedures for the design of concrete radiation shields and finally the special problems associated with their construction and cost. Although written primarily for engineers concerned with the design and construction of concrete shielding, the book also reviews the widely scattered data and information available on this subject and should therefore be of interest to students and those wishing to research further in this field. (author)

  16. Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete pavements

    Institute of Scientific and Technical Information of China (English)

    Yanhua GUAN; Ying GAO; Renjuan SUN; Moon C.WON; Zhi GE

    2017-01-01

    The fast-track repair of deteriorated concrete pavement requires materials that can be placed,cured,and opened to the traffic in a short period.Type Ⅲ cement and Calcium Sulfoaluminate (CSA) cement are the most commonly used fast-setting hydraulic cement (FSHC).In this study,the properties of Type Ⅲ and CSA cement concrete,including compressive strength,coefficient of thermal expansion (CTE) and shrinkage were evaluated.The test results indicate that compressive strength of FSHC concrete increased rapidly at the early age.CSA cement concrete had higher early-age and long term strength.The shrinkage of CSA cement concrete was lower than that of Type Ⅲ cement concrete.Both CSA and Type Ⅲ cement concrete had similar CTE values.Based on the laboratory results,the CSA cement was selected as the partial-depth rapid repair material for a distressed continuously reinforced concrete pavement.The data collected during and after the repair show that the CSA cement concrete had good short-term and long-term performances and,therefore,was suitable for the rapid repair of concrete pavement.

  17. Investigation on Wall Panel Sandwiched With Lightweight Concrete

    Science.gov (United States)

    Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.

    2017-08-01

    The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.

  18. Usage of Crushed Concrete Fines in Decorative Concrete

    Science.gov (United States)

    Pilipenko, Anton; Bazhenova, Sofia

    2017-10-01

    The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of

  19. Concrete density estimation by rebound hammer method

    International Nuclear Information System (INIS)

    Ismail, Mohamad Pauzi bin; Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri; Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin; Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin

    2016-01-01

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite

  20. Shielding effects of concrete and foam external pipeline coatings

    International Nuclear Information System (INIS)

    Barlo, T.J.; Werner, D.P.

    1992-01-01

    The research project began in July, 1986 and was completed in December, 1990. The objectives of the research were: To determine whether concrete and urethane foam-barrier coatings shield the pipe from cathodic-protection current, To determine whether the barrier coatings also effectively shield the pipe from the environment, thus reducing the need for cathodic protection, To determine what levels of cathodic protection will be required to overcome shielding, and To establish what types of barrier coatings are most compatible with obtaining adequate levels of cathodic protection. To achieve these objectives, laboratory experiments were conducted with five barrier coating materials. These materials were (1) 2-lb/ft 3 , closed-cell urethane foam, (2) 3-lb/ft 3 , closed-cell urethane foam, (3) concrete barrier material, (4) glass fiber-reinforced concrete barrier material, and (5) sand. The barrier materials, whole and intentionally cracked, were applied to the bare, FBE-coated, and tape-coated steel specimens. The specimens were tested in aqueous electrolytes at room temperature and 140 degree F with no protection, protection to -0.95 V, and overprotection to -1.2 V (Cu/CuSO 4 )

  1. High performance repairing of reinforced concrete structures

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.; Holschemacher, K.; Mueller, T.

    2013-01-01

    Highlights: ► Steel fibered high strength concrete is effective for repairing concrete elements. ► Changing fibers’ content, required ductility of the repaired element is achieved. ► Experiments prove previously developed design concepts for two layer beams. -- Abstract: Steel fibered high strength concrete (SFHSC) is an effective material that can be used for repairing concrete elements. Design of normal strength concrete (NSC) elements that should be repaired using SFHSC can be based on general concepts for design of two-layer beams, consisting of SFHSC in the compressed zone and NSC without fibers in the tensile zone. It was previously reported that such elements are effective when their section carries rather large bending moments. Steel fibers, added to high strength concrete, increase its ultimate deformations due to the additional energy dissipation potential contributed by fibers. When changing the fibers’ content, a required ductility level of the repaired element can be achieved. Providing proper ductility is important for design of structures to dynamic loadings. The current study discusses experimental results that form a basis for finding optimal fiber content, yielding the highest Poisson coefficient and ductility of the repaired elements’ sections. Some technological issues as well as distribution of fibers in the cross section of two-layer bending elements are investigated. The experimental results, obtained in the frame of this study, form a basis for general technological provisions, related to repairing of NSC beams and slabs, using SFHSC.

  2. Production of an economic high-density concrete for shielding megavoltage radiotherapy rooms and nuclear reactors

    International Nuclear Information System (INIS)

    Mortazavi, S. M. J.; Mosleh-Shirazi, M. A.; Maheri, M. R.; Haji-pour, A.; Yousefnia, H.; Zolghadri, S.

    2007-01-01

    In megavoltage radiotherapy rooms, ordinary concrete is usually used due to its low construction costs, although higher density concrete are sometimes used, as well. The use of high-density concrete decreases the required thickness of the concrete barrier; hence, its disadvantage is its high cost. In a nuclear reactor, neutron radiation is the most difficult to shield. A method for production of economic high-density concrete witt, appropriate engineering properties would be very useful. Materials and Methods: Galena (Pb S) mineral was used to produce of a high-density concrete. Galena can be found in many parts of Iran. Two types of concrete mixes were produced. The water-to-concrete (w/c) ratios of the reference and galena concrete mixes were 0.53 and 0.25, respectively. To measure the gamma radiation attenuation of Galena concrete samples, they were exposed to a narrow beam of gamma rays emitted from a cobalt-60 therapy unit. Results: The Galena mineral used in this study had a density of 7400 kg/m 3 . The concrete samples had a density of 4800 kg/m 3 . The measured half value layer thickness of the Galena concrete samples for cobalt 60 gamma rays was much less than that of ordinary concrete (2.6 cm compared to 6.0 cm). Furthermore, the galena concrete samples had significantly higher compressive strength (500 kg/cm 2 compared to 300 kg/cm 2 ). Conclusion: The Galena concrete samples made in our laboratories had showed good shielding/engineering properties in comparison with all samples made by using high-density materials other than depleted uranium. Based on the preliminary results, Galena concrete is maybe a suitable option where high-density concrete is required in megavoltage radiotherapy rooms as well as nuclear reactors

  3. CONCRETE MIX DESIGN FOR STRUCTURES SUBJECTED TO EXPOSURE CLASS XC1 DEPENDING ON CONCRETE COVER

    Directory of Open Access Journals (Sweden)

    O. Yu. Cherniakevich

    2016-01-01

    Full Text Available The reinforced steel corrosion which is the most important problem of reinforced concrete structures durability is generally stipulated for carbonization of concrete surrounding it. Concrete cover calculation at the design stage is predicated one because of the differences in manufacturing conditions and use of constructions. The applying of the probabilistic approaches to the carbonation process modeling allows to get predicated grade of the depth of carbonization of concrete and, thus, to settle minimum concrete cover thickness for a given projected service life of a construction. The procedures for concrete mix design for different strength classes of concrete are described in the article. Current recommendations on assignment of concrete strength class as well as concrete cover are presented. The European Standard EN 206:2013 defines the content requirements for the concrete structures operated in the exposure class XC1, including the minimum values of water-cement ratio, minimum cement content, and minimum strength class of concrete. Since the standard does not include any basis or explanations of the requirements, we made an effort to develop a scientific justification for the mentioned requirements. We developed the probabilistic models for the process of carbonation of concrete based on the concrete mix which was designed using the software VTK-Korroziya. The reinforced concrete structures with concrete cover 20–35 mm operated in the most unfavorable conditions within the exposure class XC1 were analyzed. The corresponding probabilistic calculations of the depth of carbonated concrete are described in the article. 

  4. Experimental investigations and modelling of sodium-concrete interaction

    International Nuclear Information System (INIS)

    Schultheiss, G.F.; Deeg, H.J.

    1990-01-01

    The use of sodium as a coolant in liquid metal fast breeder reactors, fusion reactors, and solar plants requires special consideration of its chemical reactivity and related safety problems in the case of sodium leckage. On contact between hot sodium and concrete an interaction takes place resulting in energy release and hydrogen generation, which may contribute to containment loading by pressurization in a hypothetical accident situation. For this reason, sodium-concrete interactions were investigated experimentally and theoretically. The experiments revealed important effects of quartzitic material within the concrete and of the sodium temperature on the interaction mechanisms, the energy release and the consequent hydrogen production. The numerical model shows good agreement with the experimental results. (orig.) [de

  5. The Results of the CCI-3 Reactor Material Experiment Investigating 2-D Core-Concrete Interaction and Debris Coolability with a Siliceous Concrete Crucible

    International Nuclear Information System (INIS)

    Farmer, M.T.; Lomperski, S.; Basu, S.

    2006-01-01

    The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) program conducted reactor materials experiments and associated analysis to achieve the following two objectives: 1) resolve the ex-vessel debris coolability issue, and 2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs of future plants. With respect to the second objective, there are remaining uncertainties in the models that evaluate the lateral vs. axial power split during core-concrete interaction because of a lack of truly two-dimensional experiment data. As a result, there are differences in the 2-D cavity erosion profiles predicted by codes such as WECHSL, COSACO, TOLBIAC, MEDICIS, and MELCOR. In the continuing effort to bridge this data gap, the third in a series of large scale Core-Concrete Interaction experiments (CCI-3) has been conducted as part of the MCCI program. This test investigated the long-term interaction of a 375 kg core-oxide melt within a two-dimensional siliceous concrete crucible. The initial phase of the test was conducted under dry conditions. After a predetermined time interval, the cavity was flooded with water to obtain data on the coolability of a core melt after core-concrete interaction has progressed for some time. This paper provides a description of the facility and an overview of results from this test. (authors)

  6. Monitoring of concrete structures by using the 14 MeV tagged neutron beams

    International Nuclear Information System (INIS)

    Sudac, D.; Nad, K.; Obhodas, J.; Valkovic, V.

    2013-01-01

    The maintenance and repair of reinforced concrete structures, especially those submerged in the sea-water require effective inspection and monitoring techniques for assessing the state of corrosion in the reinforcement material. An underwater inspection system was developed which is able to monitor the corrosion of the reinforcement. The system is composed of a remotely operating vehicle (ROV) equipped with the sealed tube neutron generator (NG). By rotating the NG and by using the associated alpha particle technique it is possible to measure the concrete cover thickness together with the reinforcing bar diameter. The possibility of estimating the carbon and chloride contents in the concrete was investigated. Iron plates of different thickness, covered by 6 cm thick concrete block, were successfully detected and the thickness of the concrete cover was estimated. In addition, reinforcing bar of one and 3 cm in diameter were identified and measured. All measurements could be performed without cleaning the concrete surface from fouling material. -- Highlights: • An underwater inspection system was developed which is able to monitor the state of reinforcement corrosion. • The system is composed of a remotely operating vehicle (ROV) equipped with the sealed tube neutron generator (NG). • All measurements could be performed without cleaning the concrete surface from fouling material

  7. Offshore concrete structures

    International Nuclear Information System (INIS)

    Lamas Pardo, M.; Carral Couce, L. M.

    2011-01-01

    In the offshore industry there are two possible materials for the construction of the hull of a structure; the steel and concrete, with the first one widely used until now, as in the rest of the shiphuidling industry of merchant ships, warships, etc. Materials such as aluminum, GRP or timber areused in small units with lengths lower than 100 m, and in less adverse conditions than in the offshore industry. Nevertheless, some ships/barges have been built of concrete in the past, but have been rather isolated cases which have not changed the practice in the industry. In the First and Second World War were built by the scarcity of materials, while the series of barges by Alfred A. Yee was a rare exception. Other units were also made in concrete, but almost anecdotal. Still, the behaviour of these concrete structures, especially in terms of maintenance, has been excellent. Therefore, the fact that the concrete has not had an adequate reception so far in shipbuilding, does not mean that in will not be the material best suited for the offshore industry in the future. The extra displacement and associated fuel costs in concrete ships have been found prohibitive in the past. But the loss of mobility of a concrete hull in relation to a steel hull can be perfectly offset by the advantages offered by the concrete, as the shipping and offshore industry have very different priorities. One of the main differences in these priorities is in terms of maintenance and resistance to fatigue, precisely where the concrete performs better. ships can easily be dry docked for maintenance and repair, while in the offshore platforms these works have to be done in situ so maintenance and fatigue are crucial to them. Besides these, the concrete has other advantages according to findings of several studies. And although they are interested in the conclusions that the makes as they came from people in the concrete industry, the fact that in recent years concrete offshore unit shave been built

  8. Effects on concrete from borated water and boric compounds cast into the concrete

    International Nuclear Information System (INIS)

    Fagerlund, Goeran

    2010-06-01

    A study has been made of the effects on concrete of its exposure to external water containing boric acid, and the effects on concrete of boric compounds cast into the concrete during its manufacture. According to information in literature boric acid is a weak Lewis acid that has no effect on concrete. Reaction between calcium hydroxide existing in concrete and boric acid might occur at the concrete surface. The reaction product formed (calcium-metaboritehexahydrate) has lower solubility than calcium hydroxide itself. Therefore, the reaction is reasonably harmless. Accelerated and non-accelerated test methods exist by which quantitative information on the effect of boric acid can be obtained. The test principles are described. Boron-containing compounds might be mixed into concrete in order to increase its resistance to neutron radiation. Pure boron minerals, as well as boron-containing residual materials from processing of natural boron minerals, might be used. Concrete might be affected with regard to the following properties: - Workability of the fresh concrete; - Stiffening and hardening of the concrete; - Strength (compression, tension); - Deformation (E-modulus, creep); - Durability (chemical, steel corrosion. Information in literature indicates that the hardening process might be severely affected also when rather small amounts of certain boron-containing materials are used. The effect seems to be small, or none, however, if materials with low solubility are used. The effect on workability seems to be marginal. Test methods exist by which it is practical possible to develop acceptable concrete recipes. The effects on mechanical properties are not well clarified by research. However, effects seem to be small when boron materials with low solubility are used. In one study, in which part of the cement was replaced by a boron containing colemanite waste, it was found that the E-modulus was very much reduced. The significance of this result is unclear. The

  9. Analysis of Environmental Impact for Concrete Using LCA by Varying the Recycling Components, the Compressive Strength and the Admixture Material Mixing

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-04-01

    Full Text Available Concrete is a type of construction material in which cement, aggregate, and admixture materials are mixed. When cement is produced, large amounts of substances that impact the environment are emitted during limestone extraction and clinker manufacturing. Additionally, the extraction of natural aggregate causes soil erosion and ecosystem destruction. Furthermore, in the process of transporting raw materials such as cement and aggregate to a concrete production company, and producing concrete in a batch plant, substances with an environmental impact are emitted into the air and water system due to energy use. Considering the fact that the process of producing concrete causes various environmental impacts, an assessment of various environmental impact categories is needed. This study used a life cycle assessment (LCA to evaluate the environmental impacts of concrete in terms of its global warming potential, acidification potential, eutrophication potential, ozone depletion potential, photochemical ozone creation potential, and abiotic depletion potential (GWP, AP, EP, ODP, POCP, ADP. The tendency was that the higher the strength of concrete, the higher the GWP, POCP, and ADP indices became, whereas the AP and EP indices became slightly lower. As the admixture mixing ratio of concrete increased, the GWP, AP, ODP, ADP, and POCP decreased, but EP index showed a tendency to increase slightly. Moreover, as the recycled aggregate mixing ratio of concrete increased, the AP, EP, ODP, and ADP decreased, while GWP and POCP increased. The GWP and POCP per unit compressed strength (1 MPa of high strength concrete were found to be about 13% lower than that for its normal strength concrete counterpart. Furthermore, in the case of AP, EP, ODP, and ADP per unit compressed strength (1 MPa, high-strength concrete was found to be about 10%~25% lower than its normal strength counterpart. Among all the environmental impact categories, ordinary cement was found to have

  10. Serviceability design load factors and reliability assessments for reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Han Bong Koo

    1998-01-01

    A reinforced concrete nuclear power plant containment structure is subjected to various random static and stochastic loads during its lifetime. Since these loads involve inherent randomness and other uncertainties, an appropriate probabilistic model for each load must be established in order to perform reliability analysis. The current ASME code for reinforced concrete containment structures are not based on probability concepts. The stochastic nature of natural hazard or accidental loads and the variations of material properties require a probabilistic approach for a rational assessment of structural safety and performance. The paper develops probability-based load factors for the limit state design of reinforced concrete containment structures. The purpose of constructing reinforced concrete containment structure is to protect against radioactive release, and so the use of a serviceability limit state against crack failure that can cause the emission of radioactive materials is suggested as a critical limit state for reinforced concrete containment structures. Load factors for the design of reinforced concrete containment structures are proposed and carried out the reliability assessments. (orig.)

  11. Development of polymer concrete for dike insulation at LNG facilities: Phase 4, Low cost materials

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E.

    1991-01-01

    Earlier GRI-sponsored work at Brookhaven National Laboratory has resulted in the development and utilization of insulating polymer concrete composites (IPC) as a means of reducing the evaporation rate of liquified natural gas in the event of a spill into a containment dike, thereby improving the safety at these sites. Although all of the required properties can be attained with the IPC, it was estimated that a low-cost replacement for the expensive organic binder would be necessary before use of the material would be cost-effective. In the current program, several latex modified cement formulations were evaluated and the most promising one identified. A mixture of two carboxylated styrene-butadiene latexes was selected for use in detailed laboratory property characterizations and a subsequent field evaluation. When compared to the properties of IPC, the latex-modified insulating materials display somewhat higher thermal conductivities, greater permeability to water, and reduced strength. However, these properties still meet most of the performance criteria, and the unit cost of the material is less than one-fifth that of IPC made with epoxy binders. When installed as a 0.75-in. thick overlay, material costs are estimated to be $1.00/ft{sup 2}.

  12. Concrete for the construction of No. 1 nuclear power generator of Tokyo Denryoku Co.'s Kashiwazaki, Kariha nuclear power station

    International Nuclear Information System (INIS)

    Suzuki, Yasuyoshi; Eguchi, Kiyoshi; Nakakomi, Akira.

    1985-01-01

    The construction of the No.1 power generator of Kariha nuclear power generator was completed on March 1985, and the installations of equipments are on their way aiming the start in October 1960. About 900,000 m 3 of concrete was produced and used for whole work and about 500,000 m 3 out of total was used for the construction of plant building. For constructing reactor building and turbin building, the concrete must have shielding property against radiation. The specific gravity no less than 2.5 was required for dry state of laid concrete. In order to supply very large amount of concrete with stable quality, preliminary investigation on raw materials including aggregates, fly-ash and surface active agents, were made. Aggregates were stored in underground bins to keep the temperature constant for the purpose of obtaining mixed concrete with constant temperature. For determining the mixing rate of concrete, physical test such as slump test, determination of air content, determinations of strengths and specific gravities of solidified concrete. Quality control committee was established to observe the optimum condition, which were confirmed by preliminary tests, of concrete preparation. As the results of detailed preliminary investigation on respective raw material and strict quality control from the source of raw material to mixed concrete, the supply of concrete with stable quality which conforms every requirement of standard, was possible. (Ishimitsu, A.)

  13. Accelerated degradation and durability of concrete in cold climates.

    Science.gov (United States)

    2011-08-01

    Degradation of aggregate in concrete can be caused by erosion or fracture, and both cementitious materials and aggregate age over time. : The specification requirements for the degradation of aggregates have been established for hot mix asphalt and f...

  14. Selected Aspects of Computer Modeling of Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Szczecina M.

    2016-03-01

    Full Text Available The paper presents some important aspects concerning material constants of concrete and stages of modeling of reinforced concrete structures. The problems taken into account are: a choice of proper material model for concrete, establishing of compressive and tensile behavior of concrete and establishing the values of dilation angle, fracture energy and relaxation time for concrete. Proper values of material constants are fixed in simple compression and tension tests. The effectiveness and correctness of applied model is checked on the example of reinforced concrete frame corners under opening bending moment. Calculations are performed in Abaqus software using Concrete Damaged Plasticity model of concrete.

  15. In situ test plan for concrete materials using low alkaline cement at Horonobe URL

    International Nuclear Information System (INIS)

    Kobayashi, Yasushi; Yamada, Tsutomu; Nakayama, Masashi; Matsui, Hiroya; Matsuda, Takeshi; Konishi, Kazuhiro; Iriya, Keishiro; Noda, Masaru

    2007-03-01

    HLW (high-level radioactive waste) repository is to be constructed at depths of over three hundred meters below the surface. Shotcrete and lining will be used for safety under construction and operational period. Concrete is a kind of composite material which is constituted by aggregate, cement and additives. Low alkaline cement has been developed from the viewpoint of long term stability of the barrier systems which would be influenced by high alkaline arising from cement material. HFSC (Highly Fly-ash contained Silica-fume Cement) is one of a low alkaline cement, which contains silica fume and coal ash. It has been developed in Japan Atomic Energy Agency (JAEA). JAEA are now implementing the construction of the under ground research laboratory (URL) at Horonobe for the purpose of research in deep geological science and repository engineering technology. This report shows the in situ test plan for shotcrete using HFSC at Horonobe URL with identifying requirements for cement materials to be used in HLW repository, and also reviews major literatures of low alkaline cement. This in situ test plan is aiming to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. (author)

  16. Concrete portable handbook

    CERN Document Server

    Woodson, R Dodge

    2011-01-01

    Whether or not, you are on the job site or back in the office, this book will help you to avoid mistakes, code violations, and wasted time and money. The book's four part treatment begins with constituent materials followed by self contained parts on Concrete Properties, Processes, and Concrete Repair and Rehabilitation. Designed to be an ""all in one"" reference, the author includes a wealth information for the most popular types of testing. This includes: Analysis of Fresh Concrete; Testing Machines; Accelerated Testing Methods; Analysis of Hardened Concrete and Mortar; Core Sampl

  17. A Review on the Use of Agriculture Waste Material as Lightweight Aggregate for Reinforced Concrete Structural Members

    Directory of Open Access Journals (Sweden)

    Kim Hung Mo

    2014-01-01

    Full Text Available The agriculture industry is one of the main industries in the Southeast Asia region due to its favourable conditions for plantations. In fact, Southeast Asia region is the world’s largest producer of palm oil and coconut. Nevertheless, vast plantation of these agriculture products leads to equally large amount of waste materials emanating from these industries. Previously, researchers have attempted to utilize the resulting waste materials such as oil palm shell, palm oil clinker, and coconut shell from these industries as lightweight aggregate to produce structural grade lightweight aggregate concrete. In order to promote the concept of using such concrete for actual structural applications, this paper reviews the use of such agriculture-based lightweight aggregate concrete in reinforced concrete structural members such as beam and slab, which were carried out by researchers in the past. The behaviour of the structural members under flexural, shear, and torsional load was also summarized. It is hoped that the knowledge attained from the paper will provide design engineers with better idea and proper application of design criteria for structural members using such agriculture waste as lightweight aggregate.

  18. Promoting the use of crumb rubber concrete in developing countries.

    Science.gov (United States)

    Batayneh, Malek K; Marie, Iqbal; Asi, Ibrahim

    2008-11-01

    The use of accumulated waste materials in third world countries is still in its early phases. It will take courage for contractors and others in the construction industry to recycle selected types of waste materials in the concrete mixes. This paper addresses the recycling of rubber tires accumulated every year in Jordan to be used in concrete mixes. The main objectives of this research were to provide more scientific evidence to support the use of legislation or incentive-based schemes to promote the reuse of accumulated waste tires. This research focused on using crumb tires as a replacement for a percentage of the local fine aggregates used in the concrete mixes in Jordan. Different concrete specimens were prepared and tested in terms of uniaxial compression and splitting tension. The main variable in the mixture was the volumetric percentage of crumb tires used in the mix. The test results showed that even though the compressive strength is reduced when using the crumb tires, it can meet the strength requirements of light weight concrete. In addition, test results and observations indicated that the addition of crumb rubber to the mix has a limited effect toward reducing the workability of the mixtures. The mechanical test results demonstrated that the tested specimens of the crumb rubber concrete remained relatively intact after failure compared to the conventional concrete specimens. It is also concluded that modified concrete would contribute to the disposal of the non-decaying scrap tires, since the amount being accumulated in third world countries is creating a challenge for proper disposal. Thus, obliging authorities to invest in facilitating the use of waste tires in concrete, a fundamental material to the booming construction industry in theses countries, serves two purposes.

  19. CF60 Concrete Composition Design and Application on Fudiankou Xijiang Super Large Bridge

    Science.gov (United States)

    Qiu, Yi Mei; Wen, Sen Yuan; Chen, Jun Xiang

    2018-06-01

    Guangxi Wuzhou City Ring Road Fudiankou Xijiang super large bridge CF60 concrete is a new multi-phase composite high-performance concrete, this paper for the Fudiankou Xijiang bridge structure and characteristics of the project, in accordance with the principle of local materials and technical specification requirements, combined with the site conditions of CF60 engineering high performance concrete component materials, proportion and the technical performance, quantify the main physical and mechanical performance index. Analysis main influencing factors of the technical indicators, reasonable adjustment of concrete mix design parameters, and the use of technical means of admixture and multi-function composite admixture of concrete, obtain the optimal proportion of good work, process, mechanical properties stability and durability of engineering properties, recommend and verification of concrete mix; to explore the CF60 high performance concrete Soil in the Fudiankou Xijiang bridge application technology, detection and tracking the quality of concrete construction, concrete structure during the construction of the key technology and control points is proposed, evaluation of CF60 high performance concrete in the actual engineering application effect and benefit to ensure engineering quality of bridge structure and service life, and super long span bridge engineering construction to provide basis and reference.

  20. Durability of coconut shell powder (CSP) concrete

    Science.gov (United States)

    Leman, A. S.; Shahidan, S.; Senin, M. S.; Shamsuddin, S. M.; Anak Guntor, N. A.; Zuki, S. S. Mohd; Khalid, F. S.; Azhar, A. T. S.; Razak, N. H. S.

    2017-11-01

    The rising cost of construction in developing countries like Malaysia has led concrete experts to explore alternative materials such as coconut shells which are renewable and possess high potential to be used as construction material. Coconut shell powder in varying percentages of1%, 3% and 5% was used as filler material in concrete grade 30 and evaluated after a curing period of 7 days and 28days respectively. Compressive strength, water absorption and carbonation tests were conducted to evaluate the strength and durability of CSP concrete in comparison with normal concrete. The test results revealed that 1%, 3% and 5% of CSP concrete achieved a compressive strength of 47.65 MPa, 45.6 MPa and 40.55% respectively. The rate of water absorption of CSP concrete was recorded as 3.21%, 2.47%, and 2.73% for 1%, 3% and 5% of CSP concrete respectively. Although CSP contained a carbon composition of 47%, the carbonation test showed that CSP no signs of carbon were detected inside the concrete. To conclude, CSP offers great prospects as it demonstrated relatively high durability as a construction material.

  1. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale. In view of the final demolition of the building, foreseen to start in the middle of 2008, a clearance methodology for the concrete from the cells into the Eurochemic building has been developed. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radionuclides. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  2. The Acoustical Properties of the Polyurethane Concrete Made of Oyster Shell Waste Comparing Other Concretes as Architectural Design Components

    Science.gov (United States)

    Setyowati, Erni; Hardiman, Gagoek; Purwanto

    2018-02-01

    This research aims to determine the acoustical properties of concrete material made of polyurethane and oyster shell waste as both fine aggregate and coarse aggregate comparing to other concrete mortar. Architecture needs aesthetics materials, so the innovation in architectural material should be driven through the efforts of research on materials for building designs. The DOE methods was used by mixing cement, oyster shell, sands, and polyurethane by composition of 160 ml:40 ml:100 ml: 120 ml respectively. Refer to the results of previous research, then cement consumption is reduced up to 20% to keep the concept of green material. This study compared three different compositions of mortars, namely portland cement concrete with gravel (PCG), polyurethane concrete of oyster shell (PCO) and concrete with plastics aggregate (PCP). The methods of acoustical tests were conducted refer to the ASTM E413-04 standard. The research results showed that polyurethane concrete with oyster shell waste aggregate has absorption coefficient 0.52 and STL 63 dB and has a more beautiful appearance when it was pressed into moulding. It can be concluded that polyurethane concrete with oyster shell aggregate (PCO) is well implemented in architectural acoustics-components.

  3. The Concrete and Pavement Challenge

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  4. Performance of Waterless Concrete

    Science.gov (United States)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  5. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  6. On the Degradation of Concrete in Marine Structures

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Hofman Frisch, P.; Freisleben, P.

    1985-01-01

    Concrete is a cheap and extremely handy material and as such used extensively also in marine structures. Everybody dealing with this material knows examples of concrete apparently of almost infinite durability but also examples where serious degradation started shortly after completion of the str......Concrete is a cheap and extremely handy material and as such used extensively also in marine structures. Everybody dealing with this material knows examples of concrete apparently of almost infinite durability but also examples where serious degradation started shortly after completion...

  7. Structural-functional integrated concrete with macro-encapsulated inorganic PCM

    Science.gov (United States)

    Mohseni, Ehsan; Tang, Waiching; Wang, Zhiyu

    2017-09-01

    Over the last few years the application of thermal energy storage system incorporating phase change materials (PCMs) to foster productivity and efficiency of buildings energy has grown rapidly. In this study, a structural-functional integrated concrete was developed using macro-encapsulated PCM-lightweight aggregate (LWA) as partial replacement (25 and 50% by volume) of coarse aggregate in control concrete. The PCM-LWA was prepared by incorporation of an inorganic PCM into porous LWAs through vacuum impregnation. The mechanical and thermal performance of PCM-LWA concrete were studied. The test results revealed that though the compressive strength of concrete with PCM-LWA was lower than the control concrete, but ranged from 22.02 MPa to 42.88 MPa which above the minimum strength requirement for structural application. The thermal performance test indicated that macro-encapsulated PCM-LWA has underwent the phase change transition reducing the indoor temperature.

  8. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Kamal, S.M.

    1994-01-01

    The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concrete shielding. Multiattribute utility theory is selected to accommodate decision maker's preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Illmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy weight heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Illmenite Serpentine concrete. (Author)

  9. Design basis and requirements for 241-SY Modular Exhauster concrete pad and retaining wall

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1994-01-01

    The purpose of this document is to serve as the design and functional requirements for a concrete pad for the new 241-SY Modular Exhauster and for a retaining wall to be built near the new ventilation systems

  10. Effect of high temperatures on cement composite materials in concrete structures

    Czech Academy of Sciences Publication Activity Database

    Bodnárová, L.; Válek, J.; Sitek, Libor; Foldyna, Josef

    2013-01-01

    Roč. 10, č. 2 (2013), s. 173-180 ISSN 1214-9705 R&D Projects: GA MŠk ED2.1.00/03.0082; GA ČR GAP104/12/1988 Institutional support: RVO:68145535 Keywords : high temperature * load resistance * concrete * reinforcing of mine works * fiber reinforcement Subject RIV: JJ - Other Materials Impact factor: 0.667, year: 2013 http://www.irsm.cas.cz/materialy/acta_content/2013_02/acta_170_06_Bodnirovi_173-180.pdf

  11. Optimum concrete compression strength using bio-enzyme

    Directory of Open Access Journals (Sweden)

    Bagio Tony Hartono

    2017-01-01

    Full Text Available To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the concrete. Concrete with bio-enzyme 200 ml/m3, 400 ml/m3, 600 ml/m3, 800 ml/m3, 1000 ml/m3 and normal concrete. Refer to the crushing test result, its tends to the mathematical model using 4th degree polynomial regression (least quartic, as represent on the attached data series, which is for the design mix fc′ = 25 MPa generate optimum value for 33,98 MPa, on the bio-additive dosage of 509 ml bio enzymes.

  12. Shielding concretes for liquid sodium cooled nuclear reactors

    International Nuclear Information System (INIS)

    Massa, G.; De Stefano, R.; Chatterji, S.; Maniscalco, V.

    1983-01-01

    The scope of the research was to develop concretes with low water loss and high strength with time during continuing operation in relatively high temperature environment. The required physical properties of the concrete are: - density greater than or equal to 3.8 t/m 3 - 28 days compressive strength greater than 500 kg/cm 2 - retained water at 200 0 C higher than 10 litres per cubic meter. The optimum mixture is determined by the following processes: - selection of materials capable of yielding concretes of the required density, - chemical/physical analysis of the mix components, - optimization/determination of required sieve analyses with quantitative analysis of each sieve group, - determination of the fineness modulus drawn from the selected sieve analyses, - preparation of various mixtures with the criteria of minimizing water content, obtaining high workability (to meet the needs of the various casting operations) and 28 days compressive strength of at least 500 kilograms per square centimeter, and achieving retention of the required physical properties at 200 degrees centigrades, - study of mixture response to variations in temperature with the scope of determining the modulus of elasticity. (orig./HP)

  13. Use of recycled plastics in concrete: A critical review.

    Science.gov (United States)

    Gu, Lei; Ozbakkaloglu, Togay

    2016-05-01

    Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Ultrafine particles in concrete: Influence of ultrafine particles on concrete properties and application to concrete mix design

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten

    2010-07-01

    In this work, the influence of ultrafine particles on concrete properties was investigated. In the context of this work, ultrafine particles (reactive and inert materials) are particles finer than cement. Due to the development of effective superplasticizers, the incorporation of ultrafine particles in concrete is nowadays possible. Different minerals, usually considered inert, were tested. These minerals were also used in combination with reactive silica fume. The modified Andreassen model was used to optimise the particle size distribution and thus the packing density of the complete mix composition. Heat of hydration, compressive strength, shrinkage, frost resistance and the microstructure were investigated.The influence of different ultrafine inert materials on the cement hydration was investigated. The results show that most of the minerals have an accelerating effect. They provide nucleation sites for hydration products and contribute in that way to a faster dissolution of cement grains. Minerals containing calcium were found to influence the early stage of hydration as well. These minerals shortened the dormant period of the cement hydration, the effect is known from limestone filler in self-compacting concrete. In a first test series on concrete, different ultrafine inert particles were used to replace cement. That was done in several ways; with constant water content or constant w/c. The results from this test series show that the best effect is achieved when cement is replaced by suitable ultrafines while the w/c is kept constant. In doing so, the compressive strength can be increased and shrinkage can be reduced. The microstructure is improved and becomes denser with improved packing at microlevel. Efficiency factors (k values) for the ultrafine inert materials were calculated from the compressive strength results. The k values are strongly dependent on the mode of cement replacement, fineness and type of the replacement material and curing time. Drying

  15. Concrete pavement mixture design and analysis (MDA) : assessment of air void system requirements for durable concrete.

    Science.gov (United States)

    2012-06-01

    Concrete will suffer frost damage when saturated and subjected to freezing temperatures. Frost-durable concrete can be produced if a : specialized surfactant, also known as an air-entraining admixture (AEA), is added during mixing to stabilize micros...

  16. Prevention of concrete structures from collapsing

    Directory of Open Access Journals (Sweden)

    Cechmanek R.

    2018-01-01

    Full Text Available At the end of the 20th century requirements on using electrical properties of building materials emerged for application in heating of trafficable surfaces, grounding of electrostatic charges in floors, shielding of electro-magnetic fields and diagnosis of concrete structure state in the course of time. For this reason, it was necessary to design special fibre-cement elements able to transfer any mechanical impulse to an electricallymeasured signal detected as a change in electrical resistance with computer outputs. Regarding previous research studies, it was concluded that special fibre-cement composites are able to conduct electric current under specific conditions. This property is ensured by using of various kinds of carbon materials. Though carbon fibres are less conductive than metal fibres, composites with carbon fibres were evaluated as better current conductors than the composites with metal fibres. By means of various kinds of carbon particles and fibres it is possible to design cement composites with an ability to monitor changes in electrical conductivity of concretes. The designed composites are assembled with conductive wires and connected with a special electronic equipment for monitoring of changes in alternate voltage passing through the tensometer within mechanical loading of a concrete element in which the composite is integrated. The tensometers are placed preferably into parts of the concrete elements subjected to compression, such as simple reinforced columns or upper parts of longitudinal beams. Several tests of repeated loading and simultaneous monitoring of vertical as well as horizontal prefabricated concrete elements were carried out and evaluated.

  17. Immobilisation of active concrete debris using soluble sodium silicates

    International Nuclear Information System (INIS)

    Field, S.N.; Jull, S.P.

    1991-01-01

    Demolition of concrete biological shields will generate large quantities of active demolition debris. The size distribution of such concrete may range from pieces of size less than one tonne down to dust. Handling and disposal methods for this material are still the subject of current research. Although the literature indicates that the mechanisms of silicate/concrete interaction are not well understood, successful setting of the smaller size fraction of concrete demolition debris can be achieved at laboratory scale. Hardened properties of the set slurry are also acceptable. A study of the full scale process has resulted in an outline design for a suitable on-site plant. Estimated capital costs of the equipment are of the order of pounds 1.1M. The project has shown that the material of less than 5mm particle size can be set by this technique. Whilst this meets the original objectives of immobilising dust, it had been hoped that the 10mm size material, (which will require removal from the larger debris before grouting can take place) could also be disposed of by the slurry setting technique. Co-disposal of slurry and large active items in the same container is unlikely to be worthwhile. 14 tabs., 5 figs., 30 refs

  18. REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION

    International Nuclear Information System (INIS)

    XU, X. George; Zhang, X.C.

    2002-01-01

    Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field using gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities

  19. Determination of the buckling safety of reinforced concrete shells considering the nonlinear material-behavior

    International Nuclear Information System (INIS)

    Zerna, W.; Mungan, I.; Steffen, W.

    1980-01-01

    The equations of the bending and stability theories for the orthotropic shell are solved using the FEM. A biaxial material law for concrete and a nearly bilinear stress-strain diagram for reinforcing steel were considered. Taking a layered ring element the influence of bending moments together with the membrane forces can be followed under increasing load up to failure of concrete or steel. At each level the bucking factor can be calculated considering the stress dependent buckling stiffness. The method of calculation is applied to a cooling tower shell under dead load acting simultaneously with an axi-symmetric loading to compensate for the wind effect. Due to orthotropy and descending tangent modulus at the ultimate load the buckling load factor drops to the half of the value obtained assuming a linear elastic behaviour. Additional parametric studies demonstrate the effect of some hypothetic cracks of different position and depth of the bifurcation results. The variation of the safety factors against buckling and ultimate load is obtained by changing the shell thickness. For the shell investigated it turns out that the buckling safety is influenced much more than the safety against material failure if the wall thickness is varied. It is recommended to split the buckling analysis of reinforced concrete shells in two parts. For shells of parts of a shell under only slightly disturbed membrane stress state the buckling analysis governs, otherwise the ultimate state considering the geometric and material nonlinearities is decisive to obtain not only the wall thickness but also the amount of reinforced necessary. (orig./HP) [de

  20. Concrete waste reduction of 50%

    International Nuclear Information System (INIS)

    Vos, R.M. de; Van der Wagt, K.M.; Van der Kruk, E.; Meeussen, H.W.

    2016-01-01

    During decommissioning quite a volume of concrete waste is produced. The degree of activation of the waste can range from clearly activated material to slightly activated or contaminated concrete. The degree of activation influences the applicable waste management processes that can be applied. The subsequent waste management processes can be identified for concrete waste are; disposal, segregation, re-use, conditional release and release. With each of these steps, the footprint of radioactive decommissioning waste is reduced. Future developments for concrete waste reduction can be achieved by applying smart materials in new build facilities (i.e. fast decaying materials). NRG (Nuclear Research and consultancy Group) has investigated distinctive waste management processes to reduce the foot-print of concrete waste streams resulting from decommissioning. We have investigated which processes can be applied in the Netherlands, both under current legislation and with small changes in legislation. We have also investigated the separation process in more detail. Pilot tests with a newly patented process have been started in 2015. We expect that our separation methods will reduce the footprint reduction of concrete waste by approximately 50% due to release or re-use in the nuclear sector or in the conventional industry. (authors)

  1. Modeling and analysis of aging behavior of concrete structures in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, J.Y.R.; James, R.J.; Dunham, R.S. [ANATECH (United States)

    2011-07-01

    As nuclear power plants approach the end of their original design life and begin to transition to the life extension phase, consideration has to be given to the effects of structural aging when evaluating the extended operation of reinforced or pre-stressed concrete structures. The behavior of concrete is highly nonlinear, having low tensile strength, shear stiffness and strength that depend on crack widths, and a confinement-dependent compressive elasto-plasticity. A concrete material model is described having the appropriate capabilities required for evaluating structural aging. The model treats reinforced concrete as a three-phase composite: plain concrete material as a three-dimensional continuum phase, steel reinforcement (rebar) as a uni-directional phase, and a rebar-concrete interaction phase. Structural aging is defined as the combined effects of time dependent material properties degradation and service induced changes in loading and operational conditions. Three broad categories of structural aging, and the interaction between them, are considered: 1) Aging effects due to expected time dependent changes in material properties, 2) Aging effects due to unexpected time dependent material degradation, and 3) Aging effects due to operational environment and loading. Example analyses are presented which illustrate the value of using advanced modeling and simulation in evaluating expected and unusual structural behavior. This is particularly important for safety structures that are approaching the end of their design life and are facing the prospect of re-licensing for extended operation

  2. Investigation on dynamic performance of concrete column crumb rubber steel and fiber concrete

    Science.gov (United States)

    Siti Nurul Nureda, M. Z.; Mariyana, A. K.; Khiyon, M. Iqbal; Rahman, M. S. Abdul; Nurizaty, Z.

    2017-11-01

    In general the Normal Concrete (NC) are by quasi-brittle failure, where, the nearly complete loss of loading capacity, once failure is initiated especially under dynamic loadings. The significance of this study is to improve the damping properties of concrete structure by utilization of the recycled materials from waste tires to be used in concrete as structural materials that improve seismic performance. In this study, the concrete containing 10% of fine crumb rubber and 1 % volume fraction of steel fiber from waste tires is use to investigate the dynamic performance (natural frequency and damping ratio).A small scale column were fabricated from Treated Crumb Rubber and Steel Fiber Concrete (TCRSFC) and NC were cast and cured for 28 days to investigate the dynamic performance. Based on analysis, dynamic modulus, damping ratio and natural frequency of TCRSFC has improved considerably by 5.18%, 109% and 10.94% when compared with NC. The TCRSFC producing concrete with the desired properties as well as to introduce the huge potential as dynamic resistance structure from severe damage especially prevention on catastrophic failure.

  3. The influence of recycled concrete aggregates in pervious concrete

    Directory of Open Access Journals (Sweden)

    L. M. TAVARES

    Full Text Available The expansion of urban areas under constant changes in the hydrological cycle directly affects the drainage of rainwater. The problems of urban drainage become major engineering problems to be solved in order to avoid negative consequences for local populations. Another urban problem is the excessive production of construction and demolition waste (CDW, in which , even with a increasingly policy of waste management , have been an end up being thrown in inappropriate disposal sites. Alternatively aiming to a minimization of the problems presented, we propose the study of permeable concrete using recycled concrete aggregate. In this study, there were evaluated the performance of concrete by means of permeability, consistency, strength, and interface conditions of the materials . Satisfactory relationships of resistance/permeability of concrete with recycled aggregate in relation to the concrete with natural aggregates was obtained, showing their best potential.

  4. Concrete structures

    CERN Document Server

    Setareh, Mehdi

    2017-01-01

    This revised, fully updated second edition covers the analysis, design, and construction of reinforced concrete structures from a real-world perspective. It examines different reinforced concrete elements such as slabs, beams, columns, foundations, basement and retaining walls and pre-stressed concrete incorporating the most up-to-date edition of the American Concrete Institute Code (ACI 318-14) requirements for the design of concrete structures. It includes a chapter on metric system in reinforced concrete design and construction. A new chapter on the design of formworks has been added which is of great value to students in the construction engineering programs along with practicing engineers and architects. This second edition also includes a new appendix with color images illustrating various concrete construction practices, and well-designed buildings. The ACI 318-14 constitutes the most extensive reorganization of the code in the past 40 years. References to the various sections of the ACI 318-14 are pro...

  5. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  6. Life Cycle Assessment of Completely Recyclable Concrete.

    Science.gov (United States)

    De Schepper, Mieke; Van den Heede, Philip; Van Driessche, Isabel; De Belie, Nele

    2014-08-21

    Since the construction sector uses 50% of the Earth's raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW) is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC) is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C) principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA) needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.

  7. Life Cycle Assessment of Completely Recyclable Concrete

    Directory of Open Access Journals (Sweden)

    Mieke De Schepper

    2014-08-01

    Full Text Available Since the construction sector uses 50% of the Earth’s raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.

  8. Thick Concrete Specimen Construction, Testing, and Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoegh, Kyle [Univ. of Minnesota, Minneapolis, MN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-03-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations. A preliminary report detailed some of the challenges associated with thick reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures for using in NDE evaluation comparisons. This led to the construction of the concrete specimen presented in this report, which has sufficient reinforcement density and cross-sectional size to represent an NPP containment wall. Details on how a suitably thick concrete specimen was constructed are presented, including the construction materials, final nominal design schematic, as well as formwork and rigging required to safely meet the desired dimensions of the concrete structure. The report also details the type and methods of forming the concrete specimen as well as information on how the rebar and simulated defects were embedded. Details on how the resulting specimen was transported, safely anchored, and marked to allow access for systematic comparative NDE testing of defects in a representative NPP containment wall concrete specimen are also given. Data collection using the MIRA Ultrasonic NDE equipment and

  9. Comparison of the performance of concrete-filled steel tubular and hollow steel diagrid buildings

    Science.gov (United States)

    Peter, Minu Ann; S, Sajith A.; Nagarajan, Praveen

    2018-03-01

    In the recent construction scenario, diagrid structures are becoming a popular high-rise building structural system. Diagrid structures consist of diagonals in the perimeter and an interior core. The corner and interior vertical columns are not required due to the structural efficiency of diagrid structural systems. Steel and concrete are commonly used material for diagrid. An alternate material for diagrid is concrete-filled steel tube (CFST). CFST incorporates the advantages of both steel and concrete. In CFST, the inward buckling of the steel tube is effectively prevented by the filled concrete. The compressive strength of concrete increases due to the tri-axial state of stress in concrete induced by the steel tube. The longitudinal as well as lateral reinforcement to the concrete core is also provided by the steel tube. This paper compares the performance of CFST and steel diagrid buildings using linear static analysis. For this purpose, a 12 storey and 36 storey building are analysed using finite element method and CFST diagrid building is found to perform better.

  10. Performance of Lightweight Natural-Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Hardjasaputra Harianto

    2017-01-01

    Full Text Available Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC. Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material because the fibers are derived from waste. These wastes, which are available in large quantities in Asia, have to be extracted from the husk of coconut fruits and must pass a mechanical process before being added to a concrete mixture. The Super Lightweight Concrete was made by mixing concrete paste with foam agent that can reduce the overall weight of concrete up to 60% with compressive strength up to 6 MPa. The Super Lightweight Concrete is intended to be used for non-structural walls, as alternative conventional construction materials such as brick walls. The influence of coconut fibers content in increasing the flexural tensile strength of Super Lightweight Concrete was studied in this research. The fiber content studied include 0%, 0.1%, 0.175%, and 0.25% by weight of cement content. Sixteen specimens of SLNFRC mini beams of 60 mm x 60 mm x 300 mm were tested to failure to investigate their flexural strengths. The optimum percent fibers yielding higher tensile strength was found to be 0.175%

  11. Special protective concretes

    International Nuclear Information System (INIS)

    Bouniol, P.

    2001-01-01

    Concrete is the most convenient material when large-scale radiation protection is needed. Thus, special concretes for nuclear purposes are used in various facilities like reactors, reprocessing centers, storage sites, accelerators, hospitals with nuclear medicine equipment, food ionization centers etc.. The recent advances made in civil engineering for the improvement of concrete durability and compactness are for a large part transposable to protection concretes. This article presents the basic knowledge about protection concretes with the associated typological and technological aspects. A large part is devoted to the intrinsic properties of concretes and to their behaviour in irradiation and temperature conditions: 1 - definition and field of application of special protective concretes; 2 - evolution of concepts and technologies (durability of structures, techniques of formulation, new additives, market evolution); 3 - design of protective structures (preliminary study, radiation characteristics, thermal constraints, damping and dimensioning, mechanical criteria); 4 - formulation of special concretes (general principles, granulates, hydraulic binders, pulverulent additives, water/cement ratio, reference composition of some special concretes); 5 - properties of special concretes (damping and thermo-mechanical properties); 6 - induced-irradiation and temperature phenomena (activation, radiolysis, mineralogical transformations, drying, shrinking, creep, corrosion of reinforcement). (J.S.)

  12. Impact of crushed mineral aggregate on the pumpability of concrete during transport and placement

    Directory of Open Access Journals (Sweden)

    Topličić-Ćurčić Gordana

    2016-01-01

    Full Text Available In the spirit of the sustainable buildings, and with the goal of protection of river courses, in the near future an already announced directive ordering closing down of a large number of river aggregate dredging operations will be adopted. For that reason, usage of crushed mineral aggregate in concrete mixes is increasing. Irrespective of downsides of the fined crushed mineral aggregate, such as the presence of fine particles bordering the upper permissible limit and the unfavorable shape of the grain of the course aggregate for obtaining liquid consistency required for the pumpable concrete, the demanded pumpability of concrete during transport and placement has been achieved. By adding admixtures to concrete, the required concrete properties, such as: frost resistance, simultaneous frost and salt resistance and water tightness have been achieved. [Projekat Ministarstva nauke Republike Srbije, br. TR 36017: Utilization of by - products and recycled waste materials in concrete composites in the scope of sustainable construction development in Serbia: investigation and environmental assessment of possible applications

  13. Sequestering Lead in Paint by Utilizing Deconstructed Masonry Materials as Recycled Aggregate in Concrete. Revision 1

    Science.gov (United States)

    2008-05-27

    blocks were purchased from H. L. Munn Lumber Co., Ames, IA (masonry A) and Glen -Gary Corporation, Des Moines, IA (masonry B). One type of clay brick...approximately 1,100 lbs in total) was donated by an individual in Ames, IA (masonry C), and the other was purchased from Glen -Gary Corporation, Des...appeared to be clay brick, not concrete block, which is probably due to the fact that the clay bricks were a more brittle material than concrete blocks

  14. Towards assuring the continued performance of safety-related concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.; Mori, Y.; Arndt, E.G.

    1993-01-01

    The Structural Aging (SAG) Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved technical bases for their continued service. Pertinent concrete structures are described in terms of their importance, design considerations, and materials of construction. Degradation factors which can potentially impact the ability of these structures to meet their functional and performance requirements are identified. A review of the performance history of the concrete components in nuclear power plants is provided. Accomplishments of the SLAG Program are summarized, i.e., development of the structural materials information center, development of a structural aging assessment methodology, evaluation of models for predicting the remaining life of in-service concrete, review of in-service inspection methods, and development of a methodology for reliability-based condition assessment and life prediction of concrete structures. On-going activities are also described

  15. Determination of rheological properties of fresh concrete and similar materials in a vibration rheometer

    Directory of Open Access Journals (Sweden)

    Sandra Juradin

    2012-02-01

    Full Text Available A vibration rheometer has been developed for the purpose of determining the viscosity coefficient and the yield value of fresh concrete under vibration. The main parts of the apparatus, a test specimen and a vibration source form a unitary oscillatory system whose parameters can be measured with sufficient precision. Two types of fine grained reference material have been prepared and examined; one with a high coefficient of viscosity and the other with a high yield value. The rheological properties of reference materials have been determined in a capillary tube viscometer. Since there is no analytical solution to the flow in the vibration rheometer, the constants of the vibration rheometer have been determined by experiment, for each position of the apparatus piston within the measuring range. The parameters of the flow depend on the maximum acceleration of the vibration source. An increase in acceleration causes an increase in the yield value as well as a reduction in the plastic viscosity coefficient of the material specimen. A testing of fresh mortar has been carried out as well. The obtained results have been compared with the impact on reference materials, which makes the results of our research applicable to fresh vibrated concrete.

  16. Bulk Building Material Characterization and Decontamination Using a Concrete Floor and Wall Contamination Profiling Technology

    International Nuclear Information System (INIS)

    Aggarwal, S.; Charters, G.; Blauvelt, D.

    2002-01-01

    The concrete profiling technology, RadPro(trademark) has four major components: a drill with a specialized cutting and sampling head, drill bits, a sample collection unit and a vacuum pump. The equipment in conjunction with portable radiometric instrumentation produces a profile of radiological or chemical contamination through the material being studied. The drill head is used under hammer action to penetrate hard surfaces. This causes the bulk material to be pulverized as the drill travels through the radioactive media efficiently transmitting to the sampling unit a representative sample of powdered bulk material. The profiling equipment is designed to sequentially collect all material from the hole. The bulk material samples are continuously retrieved by use of a specially designed vacuumed sample retrieval unit that prevents cross contamination of the clean retrieved samples. No circulation medium is required with this profiling process; therefore, the only by-product from drilling is the sample. The data quality, quantity, and representativeness may be used to produce an activity profile from the hot spot surface into the bulk building material. The activity data obtained during the profiling process is reduced and transferred to building drawings as part of a detailed report of the radiological problem. This activity profile may then be expanded to ultimately characterize the facility and expedite waste segregation and facility closure at a reduced cost and risk

  17. Long-term behaviors of phosphate-based rapid repairing material for concrete shafts in coal mines.

    Science.gov (United States)

    Lei, Feng; Zhen-Ya, Zhang; Xiao-Dong, Wen; Chao, Xin; Dong-Yuan, Hu

    2018-04-01

    Concrete structures in shaft linings are apt to deteriorate prematurely and therefore prompt restoration is required. In considering this, desulphurization fly ash and machine-made tuff sand are employed to fabricate a phosphate-based rapid repairing material. The long-term efficiency of the material is evaluated based on combined factors, so drying shrinkage, interfacial bonding strength, corrosion resistance, and combustibility of the specimens are tested and researched in this paper. Experimental results showed that, under a dry circumstance, the material goes through a minor expansion at an early stage. It goes into a stage of rapid contraction after one day and a stable contraction after seven days. After 28 days, the total deformation is 67 micro-strains. On the other hand, the fabricated material manifests an excellent mechanical property. The one hour bending strength and compressive strength were 9.2 MPa and 32.6 MPa, respectively. A long-term mine water flushing simulation demonstrates that only 10% bending strength is lost and the corrosion resistance coefficient stays above 0.8, so a very good corrosion resistance is thus achieved. What is more, this repairing material retains its stability even at a high temperature of 1000°C, revealing its good thermo-stability. All these prominent properties make it a good prospective material for real restoration applications.

  18. Layered double hydroxide-like materials: nanocomposites for use in concrete

    International Nuclear Information System (INIS)

    Raki, L.; Beaudoin, J.J.; Mitchell, L.

    2004-01-01

    Nitrobenzoic acid (NBA), naphthalene-2, 6-disulfonic acid (26NS), and naphthalene-2 sulfonic acid (2NS) salts were intercalated into a layered double hydroxide-like host material (LDH). The intercalation process was achieved by anion exchange of nitrates in the host material, Ca 2 Al(OH) 6 NO 3 , nH 2 O (CaAl LDH), which was prepared by a coprecipitation technique. The resulting organo derivatives CaAlNBA LDH, CaAl26NS LDH, and CaAl2NS LDH produced a tilted orientation of NBA and 26NS anions in the interlayer space, while 2NS anions induced a perpendicular bilayer arrangement. Materials characterization was carried out using X-ray diffraction (XRD), IR-spectroscopy, thermal analysis, and scanning electron microscopy (SEM). These preliminary results open up a new direction towards the synthesis of nanocomposites using polymeric entities and layered materials for future applications in cement and concrete science, e.g., control of the effect of admixtures on the kinetics of cement hydration by programming their temporal release

  19. Effect of the selected seismic energy dissipation capacity on the materials quantity for reinforced concrete walls

    Directory of Open Access Journals (Sweden)

    José Miguel Benjumea Royero

    2017-02-01

    Full Text Available Context: Regarding their design of reinforced concrete structural walls, the Colombian seismic design building code allows the engineer to select one of the three seismic energy dissipation capacity (ordinary, moderate, and special depending on the seismic hazard of the site. Despite this, it is a common practice to choose the minor requirement for the site because it is thought that selecting a higher requirement will lead to larger structural materials amounts and, therefore, cost increments.  Method: In this work, an analytical study was performed in order to determine the effect of the selected energy dissipation capacity on the quantity of materials and ductility displacement capacity of R/C walls. The study was done for a region with low seismic hazard, mainly because this permitted to explore and compare the use of the three seismic energy dissipations capacities. The effect of different parameters such as the wall total height and thickness, the tributary loaded area, and the minimum volumetric steel ratio were studied. Results: The total amount of steel required for the walls with moderate and special energy dissipation capacity corresponds, on average, to 77% and 89%, respectively, of the quantity required for walls with minimum capacity. Conclusions: it is possible to achieve reductions in the total steel required weight when adopting either moderated or special seismic energy dissipation instead of the minimum capacity.  Additionally, a significant increment in the seismic ductility displacements capacity of the wall was obtained.

  20. Protocol for development of authorized release limits for concrete at U.S. Department of Energy sites

    International Nuclear Information System (INIS)

    Arnish, J.; Kamboj, S.; Chen, S.-Y.; Parker, F. L.; Smith, A. M.; Meservey, R. H.; Tripp, J. L.

    2000-01-01

    The purpose of this protocol is to assist US Department of Energy (DOE) sites in releasing concrete for reuse. Current regulations allow the sites to release surface-contaminated materials if their radioactivity falls below certain levels and to possibly release materials with volumetric contamination or higher levels of surface contamination on a case-by-case basis. In all cases, an ALARA (as low as reasonably achievable) analysis that evaluates the risks of releasing volumetrically contaminated concrete or concrete with higher levels of surface contamination is required as a basis for proposing and setting new release limits that allow for reuse of the concrete material. To evaluate the dose impacts of reusing radioactively contaminated material, the measured radiation levels (pCi/g or disintegrations per minute [dpm]/100 cm 2 ) must be converted to the estimated dose (mrem/yr) that would be received by affected individuals. The dose depends on the amounts and types of isotopes present and the time, distance, and method of exposure (e.g., inhalation or external exposure). For each disposition alternative, the protocol provides a systematic method to evaluate the impact of the dose on the affected individuals. The cost impacts of reusing concrete also need to be evaluated. They too depend on the disposition alternative and the extent and type of contamination. The protocol provides a method to perform a detailed analysis of these factors and evaluate the dose and cost impacts for various disposition alternatives. Once the dose and cost impacts of the various alternatives have been estimated, the protocol outlines the steps required to propose new release standards that allow release and reuse of the concrete material

  1. DETERMINATION OF ADHESIVE STRENGTH LAYER’S ROLLER COMPACTED CONCRETE THE METHOD AXIAL EXTENSION

    Directory of Open Access Journals (Sweden)

    Tang Van Lam

    2017-07-01

    Full Text Available Roller compacted concrete for the construction of hydraulic and hydroelectric buildings is a composite material, which consists of a binder, fine aggregate (sand, coarse aggregate (gravel or crushed stone, water and special additives that provide the desired concrete workability and impart the required concrete performance properties. Concrete mixture is prepared at from concrete mixing plants strictly metered quantities of cement, water, additives and graded aggregates, whereupon they are delivered to the site laying Mixer Truck and sealing layers with each stack layer. The advantages of roller compaction technology should include the reduction of construction time, which allows fast commissioning construction projects, as well as reduce the amount of investment required. One of the main problems encountered in the process of roller compaction of the concrete mix is the need to provide the required adhesion strength between layers of concrete. This paper presents a method for determining the strength of adhesion between the concrete layers of different ages roller compacted concrete using axial tension. This method makes it possible to obtain objective and accurate results with a total thickness of layers of compacted concrete of up to 300…400 mm. Results from this method, studies have shown that the value of strength between the concrete layers in addition to the composition of the concrete and adhesion depends on the quality and the parallel end surfaces of the cylinder-models, which are mounted steel plates for axial tension, as well as the state of the contact surfaces of the concrete layer. The method can be used to determine the strength of interlayer adhesion in roller compacted concrete, which are used in the construction of dams and other hydraulic structures.

  2. Feasibility of surface sampling in automated inspection of concrete aggregates during bulk transport on a conveyor

    NARCIS (Netherlands)

    Bakker, M.C.M.; Di Maio, F.; Lotfi, S.; Bakker, M.; Hu, M.; Vahidi, A.

    2017-01-01

    Automated optic inspection of concrete aggregates for pollutants (e.g. wood, plastics, gypsum and brick) is required to establish the suitability for reuse in new concrete products. Inspection is more efficient when directly sampling the materials on the conveyor belt instead of feeding them in a

  3. Damping characteristics of reinforced concrete structures

    International Nuclear Information System (INIS)

    Hisano, M.; Nagashima, I.; Kawamura, S.

    1987-01-01

    Reinforced concrete structures in a nuclear power plant are not permitted to go far into the inelasticity generally, even when subjected to strong ground motion. Therefore it is important to evaluate the damping appropriately in linear and after cracking stage before yielding in the dynamic response analysis. Next three dampings are considered of reinforced concrete structures. 1) Internal damping in linear range material damping of concrete without cracks;2) Hysteretic damping in inelastic range material hysteretic damping of concrete due to cracking and yielding;3) Damping due to the energy dissipation into the ground. Among these damping material damping affects dynamic response of a nuclear power plant on hard rock site where damping due to energy dissipation into the ground is scarcely expected. However material damping in linear and slightly nonlinear range have only been assumed without enough experimental data. In this paper such damping is investigated experimentally by the shaking table tests of reinforced concrete box-walls which modeled roughly the outer wall structure of a P.W.R. type nuclear power plant

  4. Uncertainties Concerning the Free Vibration of Inhomogeneous Orthotropic Reinforced Concrete Plates

    Science.gov (United States)

    Shahsavar, Vahid Lal; Tofighi, Samira

    2014-09-01

    Analyzing nearly collapsed and broken structures gives good insights into possible architectural and engineering design mistakes and faults in the detailing and mismanagement of a construction by building contractors. Harmful vibration effects of construction operations occur frequently. The background reviews have demonstrated that the problem of the vibration serviceability of long-span concrete floors in buildings is complex and interdisciplinary in nature. In public buildings, floor vibration control is required in order to meet Serviceability Limit States that ensure the comfort of the users of a building. In industrial buildings, machines are often placed on floors. Machines generate vibrations of various frequencies, which are transferred to supporting constructions. Precision machines require a stable floor with defined and known dynamic characteristics. In recent years there has been increasing interest in the motion of elastic bodies whose material properties (density, elastic moduli, etc.) are not constant, but vary with their position, perhaps in a random manner. Concrete is a non-homogeneous and anisotropic material. Modeling the mechanical behavior of reinforced concrete (RC) is still one of the most difficult challenges in the field of structural engineering. One of several methods for determining the dynamic modulus of the elasticity of engineering materials is the vibration frequency procedure. In this method, the required variables except for the modulus of elasticity are accurately and certainly determined. In this research, the uncertainly analysis of the free vibration of inhomogeneous orthotropic reinforced concrete plates has been investigated. Due to the numerous outputs obtained, the software package has been written in Matlab, and an analysis of the data and drawing related charts has been done.

  5. Phase II evaluation of waste concrete road materials for use in oyster aquaculture - field test.

    Science.gov (United States)

    2015-02-01

    The overall objective of this study was to determine the suitability of recycled concrete aggregate : (RCA) from road projects as bottom conditioning material for on-bottom oyster aquaculture in the : Chesapeake Bay. During this Phase of the study, t...

  6. Phase II evaluation of waste concrete road materials for use in oyster aquaculture - field test.

    Science.gov (United States)

    2014-11-01

    The overall objective of this study was to determine the suitability of recycled concrete : aggregate (RCA) from road projects as bottom conditioning material for on-bottom oyster : aquaculture in the Chesapeake Bay. During this Phase of the study, t...

  7. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    International Nuclear Information System (INIS)

    Baumann, S.; Teunckens, L.; Walthery, R.; Lewandowski, P.; Millen, D.

    2002-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale and will continue till the end of 2005. In view of the final demolition of the building, a clearance methodology has to be proposed. Application of the methodology applied for the storage buildings of the pilot project is complicated for several reasons. Although this methodology is not rejected as such, an alternative has been studied thoroughly. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radioactivity. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  8. Compressive strength of concrete and mortar containing fly ash

    Science.gov (United States)

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  9. Transitional Thermal Creep of Early Age Concrete

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Anders Boe; Damkilde, Lars; Freiesleben Hansen, Per

    1999-01-01

    Couplings between creep of hardened concrete and temperature/water effects are well-known. Both the level and the gradients in time of temperature or water content influence the creep properties. In early age concrete the internal drying and the heat development due to hydration increase the effect...... of these couplings. The purpose of this work is to set up a mathematical model for creep of concrete which includes the transitional thermal effect. The model govern both early age concrete and hardened concrete. The development of the material properties in the model are assumed to depend on the hydration process...... termed the microprestresses, which reduces the stiffness of the concrete and increase the creep rate. The aging material is modelled in an incremental way reflecting the hydration process in which new layers of cement gel solidifies in a stress free state and add stiffness to the material. Analysis...

  10. Life Cycle Assessment of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sjunnesson, Jeannette

    2005-09-15

    This is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA). The study is done for two types of concrete, ordinary and frost-resistant concrete, and has an extra focus on the superplasticizers used as admixtures. The utilization phase is not included in this study since the type of construction for which the concrete is used is not defined and the concrete is assumed to be inert during this phase. The results show that it is the production of the raw material and the transports involved in the life cycle of concrete that are the main contributors to the total environmental load. The one single step in the raw material production that has the highest impact is the production of cement. Within the transportation operations the transportation of concrete is the largest contributor, followed by the transportation of the cement. The environmental impact of frost-resistant concrete is between 24-41 % higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4-10.4 % of the total environmental impact of concrete, the least to the global warming potential (GWP) and the most to the photochemical ozone creation potential (POCP). Also the toxicity of the superplasticizers is investigated and the conclusion is that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and for humans.

  11. Plant Life Management of the EC6 Concrete Containment Structure

    Energy Technology Data Exchange (ETDEWEB)

    Abrishami, Homayoun; Ricciuti, Rick; Khan, Azhar [CANDU Energy Inc., Mississauga (Canada)

    2012-03-15

    Aging of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. Due to the complex nature of safety-related structures in nuclear power plants in comparison to other structures, they possess a number of characteristics that make them comparison to other structures, they possess a number of characteristics that make them unique. These characteristics are: thick concrete cross-sections, heavy reinforcement, often one-side access only, subjected to such ageing stresses as irradiation and elevated temperature, in addition to other typical ageing mechanisms (i. e., exposure to freeze/thaw cycles, aggressive chemicals, etc.) that typically affects other types of non-nuclear structures. For a new plant, the Plant Life Management Program (PLiM) should start in the design process and then continues through construction, plant operation and decommissioning. Hence PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and the design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of EC6 (Enhanced CANDU 6) Nuclear Power Plant designed by CANDU Energy Inc. The EC6 is designed for 100-year plant life including a 60-year operating life and an additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In addition to strength and serviceability, durability is a major consideration during the design phase, service life and up to the completion of decommissioning. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental

  12. Plant Life Management of the EC6 Concrete Containment Structure

    International Nuclear Information System (INIS)

    Abrishami, Homayoun; Ricciuti, Rick; Khan, Azhar

    2012-01-01

    Aging of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. Due to the complex nature of safety-related structures in nuclear power plants in comparison to other structures, they possess a number of characteristics that make them comparison to other structures, they possess a number of characteristics that make them unique. These characteristics are: thick concrete cross-sections, heavy reinforcement, often one-side access only, subjected to such ageing stresses as irradiation and elevated temperature, in addition to other typical ageing mechanisms (i. e., exposure to freeze/thaw cycles, aggressive chemicals, etc.) that typically affects other types of non-nuclear structures. For a new plant, the Plant Life Management Program (PLiM) should start in the design process and then continues through construction, plant operation and decommissioning. Hence PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and the design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of EC6 (Enhanced CANDU 6) Nuclear Power Plant designed by CANDU Energy Inc. The EC6 is designed for 100-year plant life including a 60-year operating life and an additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In addition to strength and serviceability, durability is a major consideration during the design phase, service life and up to the completion of decommissioning. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental

  13. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Science.gov (United States)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  14. Toxicity and environmental and economic performance of fly ash and recycled concrete aggregates use in concrete: A review

    Directory of Open Access Journals (Sweden)

    Rawaz Kurda

    2018-04-01

    Full Text Available This paper presents an overview of previous studies on the environmental impact (EI and toxicity of producing recycled concrete aggregates (RCA, fly ash (FA, cement, superplasticizer, and water as raw materials, and also on the effect of replacing cement and natural aggregates (NA with FA and RCA, respectively, on the mentioned aspects. EI and toxicity were analysed simultaneously because considering concrete with alternative materials as sustainable depends on whether their risk assessment is high. Therefore, this study mainly focuses on the cradle-to-gate EI of one cubic meter of concrete, namely abiotic depletion potential (ADP, global warming potential (GWP, ozone depletion potential (ODP, photochemical ozone creation (POCP, acidification potential (AP, eutrophication potential (EP, non-renewable energy (PE-NRe and renewable energy (PE-Re. In terms of toxicity, leachability (chemical and ecotoxicological characterization was considered. The results also include the economic performance of these materials, and show that the incorporation of FA in concrete significantly decreases the EI and cost of concrete. Thus, the simultaneous incorporation of FA and RCA decrease the EI, cost, use of landfill space and natural resources extraction. Nonetheless, the leaching metals of FA decrease when they are incorporated in concrete. Relative to FA, the incorporation of RCA does not significantly affect the EI and cost of concrete, but it significantly reduces the use of landfill space and the need of virgin materials. Keywords: Materials science, Environmental science, Industry, Economics, Safety engineering

  15. Concrete aggregate durability study.

    Science.gov (United States)

    2009-06-01

    There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...

  16. The technology of concrete in the disposal of radioactive waste

    International Nuclear Information System (INIS)

    Hironaga, Michihiko

    2000-01-01

    The fuel policy of Japan with poor energy resources requires for establishment of nuclear fuel cycle, where uranium fuel once used at a nuclear power station is effectively used at a form of cycling by its reprocessing and its reuse at a fast breeder reactor. At present, 51 units of nuclear power plants are under operation in Japan, of which power generation is 302.1 billion kWh corresponding to 34.6 % of annual power generation in Japan. Radioactive waste is a wasted material containing radioactive materials forming at operation of the nuclear power station and at reprocessing process and so forth carried out at the nuclear fuel cycle. It is required for isolation from human biosphere environment because of its characteristic. Concrete is expected for a play to control leakage of radioactive materials and transfer to biosphere environment as a structural and barrier material constructing a disposal facility of radioactive wastes. Here were described on play, present state, and future problem of concrete mainly used for civil engineering and structural materials and with a strong common recognition at a viewpoint of the 'disposal of radioactive wastes'. (G.K.)

  17. Annual energy analysis of concrete containing phase change materials for building envelopes

    International Nuclear Information System (INIS)

    Thiele, Alexander M.; Jamet, Astrid; Sant, Gaurav; Pilon, Laurent

    2015-01-01

    Highlights: • Adding PCM to concrete walls can significantly reduce the cooling needs of buildings. • Climate, season, and wall orientation strongly affect energy and cost savings. • The PCM melting temperature should be near the desired indoor temperature. • Benefits are maximum for outdoor temperature oscillating around set indoor temperature. • Adding PCM had little effect on heating energy needs and associated cost savings. - Abstract: This paper examines the annual energy and cost savings potential of adding microencapsulated phase change material to the exterior concrete walls of an average-sized single family home in California climate zones 3 (San Francisco, CA) and 9 (Los Angeles, CA). The annual energy and cost savings were larger for South- and West-facing walls than for other walls. They were also the largest when the phase change temperature was near the desired indoor temperature. The addition of microencapsulated phase change material to the building walls reduced the cooling load in summer substantially more than the heating load in winter. This was attributed to the cold winter temperatures resulting in nearly unidirectional heat flux on many days. The annual cooling load reduction in an average-sized single family home in San Francisco and in Los Angeles ranged from 85% to 100% and from 53% to 82%, respectively, for phase change material volume fraction ranging from 0.1 to 0.3. The corresponding annual electricity cost savings ranged from $36 to $42 in San Francisco and from $94 to $143 in Los Angeles. From an energy standpoint, the best climate for using building materials containing uniformly distributed microencapsulated phase change material would have outdoor temperature oscillations centered around the desired indoor temperature for the entire year

  18. Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC: a review of material properties and design procedures

    Directory of Open Access Journals (Sweden)

    T. E. T. Buttignol

    Full Text Available ABSTRACT This paper does a review of the recent achievements on the knowledge of UHPFRC properties and in the development of design procedures. UHPFRC is defined as a new material, with unique properties (high ductility, low permeability, very high strength capacity in compression, higher toughness in comparison to conventional concrete. It is important to know both material and mechanical properties to fully take advantage of its outstanding properties for structural applications. However, since this is a new material, the current design codes are not well suited and should be reviewed before being applied to UHPFRC. In the first part, the following material properties are addressed: hydration process; permeability; fibers role; mix design; fiber-matrix bond properties workability; mixing procedure; and curing. In the second part, the mechanical properties of the material are discussed, together with some design recommendations. The aspects herein examined are: size effect; compressive and flexural strength; tensile stress-strain relation; shear and punching shear capacity; creep and shrinkage; fracture energy; steel bars anchorage and adherence. Besides, the tensile mechanical characterization is described using inverse analysis based on bending tests data. In the last part, material behavior at high temperature is discussed, including physical-chemical transformations of the concrete, spalling effect, and transient creep. In the latter case, a new Load Induced Thermal Strain (LITS semi-empirical model is described and compared with UHPC experimental results.

  19. Processing and discarding method for contaminated concrete wastes

    International Nuclear Information System (INIS)

    Yamamoto, Kazuo; Konishi, Masao; Matsuda, Atsuo; Iwamoto, Yoshiaki; Yoshikane, Toru; Koie, Toshio; Nakajima, Yoshiro

    1998-01-01

    Contaminated concrete wastes are crashed into granular concrete wastes having a successive grain size distribution. They are filled in a contamination processing vessel and made hardenable in the presence of a water-hardenable material in the granular concrete wastes. When underground water intrudes into the contamination processing vessel filled with the granular concrete wastes upon long-term storage, the underground water reacts with the water-hardenable material to be used for the solidification effect. Accordingly, leaching of contaminated materials due to intrusion of underground water can be suppressed. Since the concrete wastes have a successive grain size distribution, coarse grains can be used as coarse aggregates, medium grains can be used as fine aggregates and fine grains can be used as a solidifying material. Accordingly, the amount of wastes after processing can be remarkably reduced, with no supply of a solidifying material from outside. (T.M.)

  20. Influence of silica fume on the strength of high strength concrete

    International Nuclear Information System (INIS)

    Akram, T.; Memon, S.A.; Khan, S.A.

    2007-01-01

    HSC (High Strength Concrete) does not become evident by a sudden change in the behavior of 'ordinary strength' concrete. There is a gradual effect that becomes more noticeable when the strength level exceeds about 40-45 MPa. There cannot be a precise level of strength which defines this change in effect. The effects are on strength and workability, requiring us to take into account in our mix proportioning, the ramifications of fineness of cement on workability and of type of aggregate and aggregate/cement ratio on strength. In fact, the selection of materials becomes more critical as the concrete strength increases and that if very high strength is required (100 MPa and higher), relatively few materials may be suitable. An experimental investigation is carried out to evaluate the feasibility of producing HSC using locally available materials and to study the influence of silica fume on the strength of HSC. The main variables in this research is amount of silica fume. The parameters that are kept constant are the amount of cement equal to 580 kg/m3, dosage of HRWRA (High Range Water Reducing Admictures) equal to 4 % by weight of cementitious materials and the ratio of fine aggregate to coarse aggregate (1:2.3). Test results revealed that it is feasible to produce HSC using locally available materials. The optimum percentage of silica fume was found to be 15 % by weight of cement. (author)

  1. Investigation of Mechanism of Action of Modifying Admixtures Based on Products of Petrochemical Synthesis on Concrete Structure

    Science.gov (United States)

    Tukhareli, V. D.; Tukhareli, A. V.; Cherednichenko, T. F.

    2017-11-01

    The creation of composite materials for generating structural elements with the desired properties has always been and still remains relevant. The basis of a modern concrete technology is the creation of a high-quality artificial stone characterized by low defectiveness and structure stability. Improving the quality of concrete compositions can be achieved by using chemical admixtures from local raw materials which is a very promising task of modern materials’ science for creation of a new generation of concretes. The new generation concretes are high-tech, high-quality, multicomponent concrete mixes and compositions with admixtures that preserve the required properties in service under all operating conditions. The growing complexity of concrete caused by systemic effects that allow you to control the structure formation at all stages of the technology ensures the obtaining of composites with "directional" quality, compositions, structure and properties. The possibility to use the organic fraction of oil refining as a multifunctional hydrophobic-plasticizing admixture in the effective cement concrete is examined.

  2. SIMULATION MODELS OF RESISTANCE TO CONCRETE MOVEMENT IN THE CONCRETE CONVEYING PIPE OF THE AUTOCONCRETE PUMP

    OpenAIRE

    Anofriev, P. G.

    2015-01-01

    Purpose. In modern construction the placing of concrete is often performed using distribution equipment of concrete pumps. Increase of productivity and quality of this construction work requires improvement of both concrete pumps and their tooling. The concrete pumps tooling consists of standardized concrete conveying pipes and connector bends radius of up to 2 m. A promising direction of tooling improvement is the reduce of resistance to movement of the concrete in the concrete conveying pip...

  3. Proportioning of light weight concrete

    DEFF Research Database (Denmark)

    Palmus, Lars

    1996-01-01

    Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory......Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory...

  4. High-strength concrete and the design of power plant structures

    International Nuclear Information System (INIS)

    Puttonen, J.

    1991-01-01

    Based on the literature, the design of high-strength concrete structures and the suitability of high-strength concrete for the power plant structures have been studied. Concerning the behavior of structures, a basic difference between the high-strength concrete and the traditional one is that the ductility of the high-strength concrete is smaller. In the design, the non-linear stress-strain relationship of the high-strength concrete has to be taken into account. The use of the high-strength concrete is economical if the strength of the material can be utilized. In the long term, the good durability and wear resistance of the high-strength concrete increases the economy of the material. Because of the low permeability of the high-strength concrete, it is a potential material in the safety-related structures of nuclear power plants. The study discovered no particular power plant structure which would always be economical to design of high-strength concrete. However, the high-strength concrete was found to be a competitive material in general

  5. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  6. Toxicity and environmental and economic performance of fly ash and recycled concrete aggregates use in concrete: A review.

    Science.gov (United States)

    Kurda, Rawaz; Silvestre, José D; de Brito, Jorge

    2018-04-01

    This paper presents an overview of previous studies on the environmental impact (EI) and toxicity of producing recycled concrete aggregates (RCA), fly ash (FA), cement, superplasticizer, and water as raw materials, and also on the effect of replacing cement and natural aggregates (NA) with FA and RCA, respectively, on the mentioned aspects. EI and toxicity were analysed simultaneously because considering concrete with alternative materials as sustainable depends on whether their risk assessment is high. Therefore, this study mainly focuses on the cradle-to-gate EI of one cubic meter of concrete, namely abiotic depletion potential (ADP), global warming potential (GWP), ozone depletion potential (ODP), photochemical ozone creation (POCP), acidification potential (AP), eutrophication potential (EP), non-renewable energy (PE-NRe) and renewable energy (PE-Re). In terms of toxicity, leachability (chemical and ecotoxicological characterization) was considered. The results also include the economic performance of these materials, and show that the incorporation of FA in concrete significantly decreases the EI and cost of concrete. Thus, the simultaneous incorporation of FA and RCA decrease the EI, cost, use of landfill space and natural resources extraction. Nonetheless, the leaching metals of FA decrease when they are incorporated in concrete. Relative to FA, the incorporation of RCA does not significantly affect the EI and cost of concrete, but it significantly reduces the use of landfill space and the need of virgin materials.

  7. ASTM STANDARD GUIDE FOR EVALUATING DISPOSAL OPTIONS FOR REUSE OF CONCRETE FROM NUCLEAR FACILITY DECOMMISSIONING

    International Nuclear Information System (INIS)

    Phillips, Ann Marie; Meservey, Richard H.

    2003-01-01

    Within the nuclear industry, many contaminated facilities that require decommissioning contain huge volumes of concrete. This concrete is generally disposed of as low-level waste at a high cost. Much of the concrete is lightly contaminated and could be reused as roadbed, fill material, or aggregate for new concrete, thus saving millions of dollars. However, because of the possibility of volumetric contamination and the lack of a method to evaluate the risks and costs of reusing concrete, reuse is rarely considered. To address this problem, Argonne National Laboratory-East (ANL-E) and the Idaho National Engineering and Environmental Laboratory teamed to write a ''concrete protocol'' to help evaluate the ramifications of reusing concrete within the U.S. Department of Energy (DOE). This document, titled the Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Site (1) is based on ANL-E's previously developed scrap metal recycle protocols; on the 10-step method outlined in DOE's draft handbook, Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material (2); and on DOE Order 4500.5, Radiation Protection of the Public and the Environment (3). The DOE concrete protocol was the basis for the ASTM Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning, which was written to make the information available to a wider audience outside DOE. The resulting ASTM Standard Guide is a more concise version that can be used by the nuclear industry worldwide to evaluate the risks and costs of reusing concrete from nuclear facility decommissioning. The bulk of the ASTM Standard Guide focuses on evaluating the dose and cost for each disposal option. The user calculates these from the detailed formulas and tabulated data provided, then compares the dose and cost for each disposal option to select the best option that meets regulatory requirements. With this information

  8. Mass transfer in water-saturated concretes

    International Nuclear Information System (INIS)

    Atkinson, A.; Claisse, P.A.; Harris, A.W.; Nickerson, A.K.

    1990-01-01

    Cements and concretes are often considered as components of barriers for the containment of radioactive waste. The performance of such materials as mainly physical barriers to the transport of dissolved radionuclides depends on the mass transfer characteristics of the material. In particular the diffusion and sorption behavior of the radionuclides and the water permeability are important. These parameters also influence how the chemistry of the concrete is imposed on the repository. In addition, the transport of gas through concrete controls the way in which gases escape from the repository. Diffusion and gas transport have been measured in a variety of cementitious materials, covering both structural concretes and cementitious backfills; all possible repository construction materials. Measurements have been made using aqueous iodide, strontium and caesium ions and tritiated water as diffusants. The results show that the diffusion of tritiated water is more rapid than that of other species, whilst the transport of strontium and caesium is hindered by sorption; particularly in materials containing blast furnace slag. The transport of gas in these materials has been found to be very sensitive to the degree of water saturation and is extremely low in fully saturated structural concretes. Cementitious backfills have, nevertheless, been identified that have appreciable gas transport even when almost water saturated. The consequences of the results for the performance of cementitious barriers are discussed

  9. Achieving Mixtures of Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Mircea POPA

    2013-07-01

    Full Text Available Ultra-High Performance Concrete (UHPC is a relatively new concrete. According to [11] UHPC is that concrete which features compressive strength over C100/115 class. Up to this point standards for this type of concrete were not adopted, although its characteristic strength exceeds those specified in [33]. Its main property is high compressive strength. This provides the possibility of reducing the section of elements (beams or columns made of this type of concrete, while the load capacity remains high. The study consists in blending mixtures of UHPC made of varying proportions of materials. The authors have obtained strengths of up to 160 MPa. The materials used are: Portland cement, silica fume, quartz powder, steel fibers, superplasticiser, sand and crushed aggregate for concrete - andesite.

  10. Modeling basic creep in concrete at early-age under compressive and tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, Adrien, E-mail: adrien.hilaire@ens-cachan.fr [ENS Cachan/CNRS UMR8535/UPMC/PRES UniverSud Paris, Cachan (France); Benboudjema, Farid; Darquennes, Aveline; Berthaud, Yves [ENS Cachan/CNRS UMR8535/UPMC/PRES UniverSud Paris, Cachan (France); Nahas, Georges [ENS Cachan/CNRS UMR8535/UPMC/PRES UniverSud Paris, Cachan (France); Institut de radioprotection et de sureté nucléaire, Fontenay-aux-Roses (France)

    2014-04-01

    A numerical model has been developed to predict early age cracking for massive concrete structures, and especially concrete nuclear containment vessels. Major phenomena are included: hydration, heat diffusion, autogenous and thermal shrinkage, creep and cracking. Since studied structures are massive, drying is not taken into account. Such modeling requires the identification of several material parameters. Literature data is used to validate the basic creep model. A massive wall, representative of a concrete nuclear containment, is simulated; predicted cracking is consistent with observation and is found highly sensitive to the creep phenomenon.

  11. ADVANCEMENTS IN CONCRETE TECHNOLOGY

    OpenAIRE

    Shri Purvansh B. Shah; Shri Prakash D. Gohil; Shri Hiren J. Chavda; Shri Tejas D. Khediya

    2015-01-01

    Developing and maintaining world’s infrastructure to meet the future needs of industrialized and developing countries is necessary to economically grow and improve the quality of life. The quality and performance of concrete plays a key role for most of infrastructure including commercial, industrial, residential and military structures, dams, power plants. Concrete is the single largest manufactured material in the world and accounts for more than 6 billion metric tons of materials annual...

  12. The use of waste materials for concrete production in construction applications

    Science.gov (United States)

    Teara, Ashraf; Shu Ing, Doh; Tam, Vivian WY

    2018-04-01

    To sustain the environment, it is crucial to find solutions to deal with waste, pollution, depletion and degradation resources. In construction, large amounts of concrete from buildings’ demolitions made up 30-40 % of total wastes. Expensive dumping cost, landfill taxes and limited disposal sites give chance to develop recycled concrete. Recycled aggregates were used for reconstructing damaged infrastructures and roads after World War II. However, recycled concrete consists fly ash, slag and recycled aggregate, is not widely used because of its poor quality compared with ordinary concrete. This research investigates the possibility of using recycled concrete in construction applications as normal concrete. Methods include varying proportion of replacing natural aggregate by recycled aggregate, and the substitute of cement by associated slag cement with fly ash. The study reveals that slag and fly ash are effective supplementary elements in improving the properties of the concrete with cement. But, without cement, these two elements do not play an important role in improving the properties. Also, slag is more useful than fly ash if its amount does not go higher than 50%. Moreover, recycled aggregate contributes positively to the concrete mixture, in terms of compression strength. Finally, concrete strength increases when the amount of the RA augments, related to either the high quality of RA or the method of mixing, or both.

  13. Nano-modified cement composites and its applicability as concrete repair material

    Science.gov (United States)

    Manzur, Tanvir

    Nanotechnology or Nano-science, considered the forth industrial revolution, has received considerable attention in the past decade. The physical properties of a nano-scaled material are entirely different than that of bulk materials. With the emerging nanotechnology, one can build material block atom by atom. Therefore, through nanotechnology it is possible to enhance and control the physical properties of materials to a great extent. Composites such as concrete materials have very high strength and Young's modulus but relatively low toughness and ductility due to their covalent bonding between atoms and lacking of slip systems in the crystal structures. However, the strength and life of concrete structures are determined by the microstructure and mass transfer at nano scale. Cementitious composites are amenable to manipulation through nanotechnology due to the physical behavior and size of hydration products. Carbon nanotubes (CNT) are nearly ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. So there is a great potential to utilize CNT in producing new cement based composite materials. It is evident from the review of past literature that mechanical properties of nanotubes reinforced cementitious composites have been highly variable. Some researches yielded improvement in performance of CNT-cement composites as compared to plain cement samples, while other resulted in inconsequential changes in mechanical properties. Even in some cases considerable less strengths and modulus were obtained. Another major difficulty of producing CNT reinforced cementitious composites is the attainment of homogeneous dispersion of nanotubes into cement but no standard procedures to mix CNT within the cement is available. CNT attract more water to adhere to their surface due to their high aspect ratio which eventually results in less workability of the cement mix. Therefore, it is extremely important to develop a suitable mixing technique and an

  14. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability.

    Science.gov (United States)

    Wang, Jianyun; Ersan, Yusuf Cagatay; Boon, Nico; De Belie, Nele

    2016-04-01

    The beneficial effect of microbially induced carbonate precipitation on building materials has been gradually disclosed in the last decade. After the first applications of on historical stones, promising results were obtained with the respect of improved durability. An extensive study then followed on the application of this environmentally friendly and compatible material on a currently widely used construction material, concrete. This review is focused on the discussion of the impact of the two main applications, bacterial surface treatment and bacteria based crack repair, on concrete durability. Special attention was paid to the choice of suitable bacteria and the metabolic pathway aiming at their functionality in concrete environment. Interactions between bacterial cells and cementitious matrix were also elaborated. Furthermore, recommendations to improve the effectiveness of bacterial treatment are provided. Limitations of current studies, updated applications and future application perspectives are shortly outlined.

  15. Production of Controlled Low Strength Material Utilizing Waste Paper Sludge Ash and Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Azmi A. N.

    2016-01-01

    Full Text Available Recently, the best method to make the concrete industry more sustainable was using the waste materials to replace the natural resources. Currently waste paper sludge is a major economic and environmental problem in this country. In this research, the alternative method is to dwindle the usage of natural resources and the usage of cement in the construction. This method is to replace the usage of cement with the waste paper sludge ash (WPSA and to use the recycle aggregate collected from the construction is used. The WPSA has ingredient likely cement such as self-cementation but for a low strength. The research was conducted at heavy laboratory UITM Pulau Pinang. Meanwhile, the WPSA is collected at MNI Industries at Mentakab, Pahang. The recycle aggregate is a separated half, which were fine aggregate and the coarse aggregate with the specific size. In this research, the ratio is divided into two (2 which is 1:1 and 1:2 for the aggregate and difference percentage levels of WPSA. The percentage levels of WPSA that use in this research are 10%, 20%, 30%, 40%, 50%, and 60%. A total of 36 cubes were prepared. Aim of this research is to develop a simple design approach for the mixture proportioning of WPSA and recycle concrete aggregate (RCA within the concrete and to assess the effect of concrete mix with different percentage of WPSA and RCA ratio on the properties. It is found that the best design mix that achieves control low strength material (CLSM is on 30% of WPSA with the ratio 1:2 on day 28 of compression test.

  16. Drilling waste makes concrete

    International Nuclear Information System (INIS)

    Rosfjord, A.

    1993-01-01

    The article deals with a method of drilling waste reclamation by utilizing the converted oil-containing cuttings from the North Sea in the concrete production in Norway. The oil content is to be removed in an incineration process by heating the cuttings to about 800 o C. The output capacity from the exhaust gas water cooling system is 7500 kW/hour, and is to be used in different industrial heating processes. The remaining content of pollutants in the cleaned exhaust gas outlet corresponds to the required limits with the exception of SO 2 and HCl. In addition, an exhaust gas washing plant is to be installed in the near future designed for the further reduction of pollutants by 90%. The converted raw materials are used as a supplement for lessening the demand of sand and cement in the production of concrete-made pipes. 1 fig

  17. TYPES OF STEEL AND CONCRETE COMPOSITE CABLE SPACE FRAMES

    Directory of Open Access Journals (Sweden)

    G. M. Gasii

    2016-12-01

    Full Text Available Purpose. Modern terms of the construction generate the need to find new structures, including roof systems that would meet modern requirements. An important aspect in finding constructive solutions for new structures is the use of reliable and advanced materials. Considering this, the decision to develop the new space structures to a wide implementation in practice of domestic and foreign construction are relevant and perspective direction of building structures development. Methodology. Given the results of previously conducted theoretical research of existing types of space roof structures find promising areas of improvement or creation of new structures that should be devoid of weaknesses and imperfections of analogs and they should have an economic effect through rational use of materials. Findings. Types of steel and concrete composite cable space frames and structural features of its elements are developed and considered. The steel and concrete composite cable space frame is a completely new kind of space structure system that has the original structural concept and it was designed to cover large-span industrial and public buildings. The basic elements of that structure system are modular element of the bottom chord and space steel and concrete composite module that consists of tubular rods and reinforced concrete slab. All modular elements are made in the factory. With bottom chord modular elements and space steel and concrete composite modules can be assembled three types of longitudinal elements. It is the beam element, arched element and hanging element. Also with the modules can be assembled various structure system and their combinations. Number of space steel and concrete composite modules and bottom chord modular elements, which is needed to collect steel and concrete composite cable space frames, is determined by calculation and optimal designing. Recommended dimensions of the modular elements of the steel and concrete composite

  18. Experimental investigation of interface conditions between oxidic melt and ablating concrete during MCCI by means of simulating material experiments: the Artemis program

    International Nuclear Information System (INIS)

    Veteau, J.M.

    2005-01-01

    Full text of publication follows: In the frame work of R and D on Severe Accidents in PWR plants, an estimation by codes of time of basemat melt-through by Corium is required. For this, the heat flux distribution along the cavity wall must be properly modelled. Hence the knowledge of the heat transfer coefficient as well as the temperature at the interface between the melt and the solid become key issues. Phase diagram of the melt and composition governs the interface temperature which controls, at least partly, the thickness of the Corium crust formed on the molten concrete. Crust behaviour (time evolution of thickness, mechanical interaction with gas) implies a release mode of molten concrete in Corium which in turn alters the melt composition. Clearly, the molten corium-concrete interaction (MCCI) phenomenon is the result of a strong coupling between physico-chemistry and thermohydraulics. The main goal of the first test series of the Artemis program is to make a link between the interface temperature and the physico-chemistry of the melt (phase diagram) through tests conducted with simulating materials and to provide an insight on the existence, the behaviour and the composition of the crust. This test series considers 1D MCCI using a non eutectic LiCl-BaCl 2 mixture poured at 1000 deg. C in a cylindrical test section (internal diameter 0.3 m) to interact with the 0.35 m deep basemat made of the same salt mixture at the eutectic composition. This 'concrete' was especially manufactured with sintered granulates to allow gas flow from the bottom (argon), then simulating gas released by concrete in the reactor case. Constant power is applied in the pool with an helical coil and 1D MCCI is ensured by counterbalancing heat losses by controlled heating at the lateral walls and at the top of the test section. Concrete ablation is followed from the output of 45 0.5 mm diameter thermocouples. An instrumented rod periodically investigates the temperature and the position

  19. Techniques and materials for internal water curing of concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Lura, Pietro

    2006-01-01

    This paper gives an overview of different techniques for incorporation of internal curing water in concrete. Internal water curing can be used to mitigate self-desiccation and selfdesiccation shrinkage. Some concretes may need 50 kg/m3 of internal curing water for this purpose. The price...

  20. Applications of Foamed Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Mohd Sari Kamarul Aini

    2017-01-01

    Full Text Available Application of foamed concrete is increasing at present due to high demand on foamed concrete structures with good mechanical and physical properties. This paper discusses on the use of basic raw materials, their characteristics, production process, and their application in foamed lightweight concrete with densities between 300 kg/m3 and 1800 kg/m3. It also discusses the factors that influence the strengths and weaknesses of foamed concrete based on studies that were conducted previously.

  1. Influence of High Temperatures on the Workability of Fresh Ready-Mixed Concrete

    Directory of Open Access Journals (Sweden)

    Victor Sampebulu'

    2012-04-01

    Full Text Available Properties of fresh concrete made in tropical countries, which is mixed, transported (with agitation, placed and initially cured in places where the temperature ranges from about 20oC to 40oC and relative humidity above 60%, are not completely understood. Applicable requirements also differ from country to country and government agencies and private enterprises have their own specifications. Assuming such temperature and relative humidity conditions, the present study is an attempt at evaluating the properties of hot weather concrete in fresh state with using a method of ready–mixed concrete. The fresh concrete was mixed and agitated at varying concrete and ambient temperatures. Three groups of the component materials, each material having such temperature as to bring resulting temperature of the fresh concrete to about 20oC, 30oC, 35oC, were chosen. The temperature of cement was conditioned to about20o, 40oC and 60oC for each of groups respectively. The aggregate was made warm enough to simulate the condition of outdoor pile in ready-mixed concrete plant. The temperature of tap water was always 20oC as it was easily controlled and unlikely affected by outdoor temperature. With the fresh concrete prevented from evaporation, slump loss is caused solely by increased temperature of concrete. During agitation, the slump loss increases rapidly during the first 30 minutes but moderately during the remaining period. Concrete-placing temperature (upon arrival at the work site could be estimated by a proposed formula derived from this study. Besides the freshly mixed concrete temperature, this formula also takes into consideration the ambient temperature, agitating time in transit and hydration heat. The achievement as described in this study may be useful to control concrete quality in terms of strength, shrinkage and other properties of concrete to be placed in hot-humid environment.

  2. Effects of using blended binder of RHA and GGBS on the properties of concrete: A review

    Science.gov (United States)

    Ishak, Nuril Izzeaty; Johari, Megat Azmi Megat; Hashim, Syed Fuad Saiyid

    2017-10-01

    Concern about protecting and preserving the environment has driven many researchers to innovate the concrete materials in pursuing better mechanical and physical properties of the fresh and hardened concrete. This paper presents an overview of the microstructural properties, workability, and strength performance of concrete incorporated with mineral admixtures from rice husk ash (RHA) and ground granulated blast-furnace slag (GGBS). The substitution of these supplementary cementitious materials as a ternary blended binder concrete has also been included. It was found that, the average of RHA replacement in concrete is about 10%, while for GGBS is in the range of 40 to 50 % replacement of Portland cement. The results from previous studies yield to a better strength and could potentially be used as high performance concrete, but the high replacement with RHA decreased workability and required more water demand due to the micro porous character, high specific surface area and higher in carbon content of the material. Thus, the necessity of using superlasticizer is crucial to improve the workability and strength. The collection of comprehensive literatures elaborated that the usage of RHA and GGBS enhanced the properties of concrete while gives a better solution for the plenteous of waste produced from the agricultural and industrial sectors.

  3. Lightweight self-compacting concrete reinforced with fibres for slab rehabilitation

    International Nuclear Information System (INIS)

    Klein, N. S.; Fuente, A. de la; Aguado, A.; Maso, D.

    2011-01-01

    The slabs of some buildings in Barcelona are formed by unidirectional beams, with a ceramic arch in between, which are filled with broken pottery or construction waste. These structures often present problems such as displacement of the tiles arranged over it due to the lack of stiffness of the filling material. This supposes a risk to the user and could also cause durability problems. In order to rehabilitate it, a lightweight self-compacting concrete reinforced with fibres (HLACF) has been designed to be used as a filling material, improving the stiffness of the structure. This paper presents a structural analysis of a standard case and the results of an experimental campaign. The concrete showed a density of 1665 kg/m3, a slump flow of 605 mm and a compressive strength of 22.3 MPa, at 28 days. These results are in agreement with the requirements, overcoming common lightweight concrete segregation problems. (Author) 24 refs.

  4. Disperse reinforced concrete used in obtaining prefabricated elements for roads

    Directory of Open Access Journals (Sweden)

    Bogdan MEZEI

    2014-07-01

    Full Text Available Concrete is the most used material in construction. By improving the performance of materials and of technologies, concretes with outstanding performances were also developed, in the past two decades. Concrete with dispersed reinforcement represents a new generation of reinforced concrete that combines a good behavior of concrete compressive strength with an increased tensile strength of steel fibers. Using this material, monolithic and prefabricated concrete elements with high mechanical strengths and high durability can be obtained. Technological processes for preparation of concrete with dispersed reinforcement are similar to the conventional methods and do not involve using additional equipment for dosing the dispersed reinforcement. The study aimed the development of road plates made with optimized disperse- reinforced concrete. The first tests were done on plates from the gutter roadway, having a classic reinforcement, using different percentages of fibre reinforcement in the concrete composition, leading to the development of a new optimized economical solution. The results prove the enhanced characteristics of the disperse-reinforced concrete versus conventional concrete, and hence of the developed concrete plates.

  5. Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete.

    Science.gov (United States)

    Sorlini, Sabrina; Collivignarelli, Maria Cristina; Abbà, Alessandro

    2017-09-01

    The aim of this work was to assess the leaching behaviour of the bottom ash derived from municipal solid waste incineration (MSWI) used in concrete production. In particular, the release of pollutants was evaluated by the application of different leaching tests, both on granular materials and monolithic samples (concrete mixtures cast with bottom ash). The results confirmed that, according to Italian regulations, unwashed bottom ashes present critical issues for the use as alternative aggregates in the construction sector due to the excessive release of pollutants; instead, the leachate from washed bottom ashes was similar to natural aggregates. The concentration of pollutants in the leachate from concrete mixtures was lower than regulation limits for reuse. The crushing process significantly influenced the release of pollutants: this behaviour was due both to the increase in surface area and the release of contaminants from cement. Moreover, the increase in contact time (up to 64 days) involved more heavy metals to be released.

  6. Experimental study of a laboratory concrete material representative of containment buildings: desorption isotherms and permeability determination

    International Nuclear Information System (INIS)

    Semete, P.; Fevrier, B.; Delorme, J.; Sanahuja, J.; Desgree, P.; Le Pape, Y.

    2015-01-01

    The isotherm sorption curve is a first order parameter for the calculations of concrete drying and/or creep using Finite Element Analysis. An experimental campaign was undertaken by EDF MMC in order to characterize the first desorption isotherm at room temperature of a laboratory material representative of concrete containment buildings. Long term drying tests were carried out on cement paste and on three samples geometries on concrete (with radial and axial one-dimensional drying on thin disks and multi-dimensional drying on Representative Elementary Volumes). The measurements results (porosity, densities and mass loss curves) are provided and the isotherms obtained for the four different configurations are compared. Several analyses of the results are proposed including the assessment of a criterion for the determination of the moisture content final balance (estimation of the asymptotic mass loss) and the back-analysis of equivalent permeability. (authors)

  7. Relating the structural strength of concrete sewer pipes and material properties retrieved from core samples

    NARCIS (Netherlands)

    Stanic, N.; Langeveld, J.G.; Salet, Theo; Clemens, F.H.L.R.

    2016-01-01

    Drill core samples are taken in practice for an analysis of the material characteristics of concrete pipes in order to improve the quality of the decision-making on rehabilitation actions. Earlier research has demonstrated that core sampling is associated with a significant uncertainty. In this

  8. Material equations for the calculations of steel fiber reinforced concrete members

    International Nuclear Information System (INIS)

    Jonas, W.

    1993-01-01

    Steel fiber reinforced concrete (SFRC) is made by the addition of steel fibers to fresh concrete. Usually the fibers are about 0.4-0.8mm in diameter and 25-80mm long. The addition of about 50-120 kg/m 3 is a practical and useful amount. That is about 0.6-1.5% by volume. The fibers are uniformly dispersed with a suitable concrete mix, so that clusters and uneven concentrations are prevented. The tensile strength of steel fiber reinforced concrete is scarcely better compared to that of plain concrete, but the fibers are very effective at preventing the propagation of tensile cracks. Thereby the tensile strength of fiber reinforced concrete is a reliable value. The addition of steel fibers also leads to a considerable increase of plastic deformations in the post cracking region, in comparison to plain concrete members. For nuclear power plant construction the use of steel fiber concrete with additional reinforcement of normal or prestressing steel is of special interest. The finished members exhibit good crack behaviour, increased shear strength and a considerable ability to absorb mechanical energy. These are valuable properties for members providing protection against extreme load cases (e.g. aircraft crash, earthquake, blast caused by explosion, debris due to hurricane, internal pressure loads or debris due to bursting of vessels or pipes). The behaviour of a reinforced concrete beam with steel fiber reinforced concrete against that of a reinforced beam without is shown. Until now the use of steel fiber reinforced concrete in civil engineering has been restricted because of the lack of design rules. For the preparation of fundamental principles and for the development of design rules HOCHTIEF has undertaken a series of tests on steel fiber reinforced concrete members with and without additional bar reinforcement. For this purpose HOCHTIEF has carried out several series of tests using either static, impact or cyclic loadings. In section 2 of this paper the elements

  9. Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete

    Science.gov (United States)

    Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.

    2018-03-01

    This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.

  10. Hydration of Concrete: The First Steps.

    Science.gov (United States)

    Thissen, Peter; Natzeck, Carsten; Giraudo, Nicolas; Weidler, Peter; Wöll, Christof

    2018-04-12

    Concrete is the most important construction material used by mankind and, at the same time, one of the most complex substances known in materials science. Since this mineral compound is highly porous, a better understanding of its surface chemistry, and in particular the reaction with water, is urgently required to understand and avoid corrosion of infrastructure like buildings and bridges. We have gained insight into proton transfer from concrete upon contact with water by applying the so-called Surface Science approach to a well-defined mineral, Wollastonite. Data from IR (infrared) spectroscopy reveal that exposure of this calcium-silicate (CS) substrate to H 2 O leads to dissociation and the formation of OH-species. This proton transfer is a chemical reaction of key importance, since on the one hand it triggers the conversion of cement into concrete (a calcium-silicate-hydrate phase), but on the other hand also governs the corrosion of concrete. Interestingly, we find that no proton transfer takes place when the same surface is exposed to methanol. In order to understand this unexpected difference, the analysis of the spectroscopic data obtained was aided by a detailed, first-principles computational study employing density functional theory (DFT). The combined experimental and theoretical effort allows derivation of a consistent picture of proton transfer reactions occurring in CS and CSH phases. Implications for strategies to protect this backbone of urban infrastructure from corrosion in harsh, aqueous environments will be discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Corrosion Behavior of Carbon Steel in Concrete Material Composed of Tin Slag Waste in Aqueous Chloride Solution

    Science.gov (United States)

    Rustandi, Andi; Cahyadi, Agung; Taruli Siallagan, Sonia; Wafa' Nawawi, Fuad; Pratesa, Yudha

    2018-01-01

    Tin slag is a byproduct of tin ore smelting process which is rarely utilized. The main purpose of this work is to investigate the use of tin slag for concrete cement material application compared to the industrial Ordinary Portland Cement (OPC). Tin slag composition was characterized by XRD and XRF analysis. The characterization results showed the similar chemical composition of tin slag and OPC. It also revealed the semi crystalline structure of tin slag sample. Several electrochemical tests were performed to evaluate corrosion behavior of tin slag, OPC and various mixed composition of both materials and the addition of CaO. The corrosion behavior of OPC and tin slag were evaluated by using Cyclic Polarization, Electrochemical Impedance Spectroscopy (EIS) and Electrochemical Frequency Modulation (EFM) methods. Aqueous sodium chloride (NaCl) solution with 3.5% w.t concentration which similar to seawater was used as the electrolyte in this work. The steel specimen used as the reinforce bar (rebar) material of the concrete was carbon steel AISI 1045. The rebar was embedded in the concrete cement which composed of OPC and the various composition of tin slag including slag without addition of CaO and slag mixed with addition of 50 % CaO. The electrochemical tests results revealed that tin slag affected its corrosion behavior which becoming more active and increasing the corrosion rate as well as decreasing the electrochemical impedance.

  12. Porous Network Concrete : A bio-inspired building component to make concrete structures self-healing

    NARCIS (Netherlands)

    Sangadji, S.

    2015-01-01

    The high energy consumption, its corresponding emission of CO2 and financial losses due to premature failure are the pressing sustainability issues which must be tackled by the concrete infrastructure industry. Enhancement of concrete materials and durability of structures (designing new

  13. Studies of historic concrete

    International Nuclear Information System (INIS)

    Jull, S.P.; Lees, T.P.

    1990-01-01

    Underground concrete repositories for nuclear waste will have to maintain their integrity for hundreds of years. This study examines ancient concretes and assesses the suitability of equivalent modern materials for underground storage. Thirty four ancient samples have been obtained from Great Britain, Austria and Italy. One 19th century sample was also collected. The samples were examined using a variety of analytical techniques (including scanning electron microscopy, optical microscopy, chemical analysis and pH determination). The samples were also subjected to a range of physical tests. Most of the samples examined were very weak and porous although they had retained full structural integrity. With the exception of the 19th century sample, none of the concretes had maintained pH alkaline enough to immobilize radionuclides. Hydrated calcium silicates have been detected in some samples which are similar to those observed in modern Portland cement concretes. These stable cementitious species have endured for almost two thousand years. All the ancient concretes and mortars examined contained natural pozzolanic material or crushed burnt clay. This may have had some effect on the reduction in alkalinity although the main reason was full carbonation of calcium hydroxide

  14. Comparative study of the shield of concrete blocks with hematite in relation to common concrete blocks

    International Nuclear Information System (INIS)

    Costa, Paulo R.; Buerger, Andre A.; Naccache, Veronica K.; Priszkulnik, Simao

    2012-01-01

    The present work shows results of an empirical evaluation of the transmission properties of two radioprotection materials: an ordinary concrete and an ordinary concrete mixed with hematite. It was used techniques of x-ray spectroscopy and measurements of the air-kerma transmitted through these two materials in order to compare the transmission properties for each one. (author)

  15. Engineering properties of scoria concrete as a construction material ...

    African Journals Online (AJOL)

    The weight and cost of plain concrete are part of the setbacks in its use for construction purposes especially in low-cost housing delivery. This paper reports the experimental results of samples of concrete produced from a mix combination of cement, fine aggregate (sand) and volcanic scoria as coarse aggregate. The scoria ...

  16. Experimental characterization of the concrete behaviour under high confinement: influence of the saturation ratio and of the water/cement ratio

    International Nuclear Information System (INIS)

    Vu, X.H.

    2007-08-01

    The objective of this thesis is to experimentally characterize the influence of the saturation ratio and of the water/cement ratio of concrete on its behaviour under high confinement. This thesis lies within a more general scope of the understanding of concrete behaviour under severe loading situations (near field detonation or ballistic impacts). A near field detonation or an impact on a concrete structure generate very high levels of stress associated with complex loading paths in the concrete material. To validate concrete behaviour models, experimental results are required. The work presented in this thesis concerns tests conducted using a static triaxial press that allows to obtain stress levels of the order of the giga Pascal. The porous character of concrete and the high confinement required on the one hand, a development of a specimen protection device, and on the other hand, a development of an instrumentation with strain gauges, which is unprecedented for such high confinements. Hydrostatic and triaxial tests, conducted on the one hand on model materials and on the other hand on concrete, allowed to validate the developed experimental procedures as well as the technique of strain and stress measurements. The studies concerning the influence of the saturation ratio and of the water/cement ratio of concrete on its behaviour required the formulation of a plain baseline concrete and of two modified concretes with different water/cement ratios. The analysis of triaxial tests performed on the baseline concrete shows that the saturation ratio of concrete has a major influence on its static behaviour under high confinement. This influence is particularly marked for the concrete loading capacity and for the shape of limit state curves for saturation ratios greater than 50%. The concrete loading capacity increases with the confinement pressure for tests on dry concrete whereas beyond a given confinement pressure, it remains limited for wet or saturated concrete

  17. Comprehensive analysis of shielding effectiveness for HDPE, BPE and concrete as candidate materials for neutron shielding

    International Nuclear Information System (INIS)

    Dhang, Prosenjit; Verma, Rishi; Shyam, Anurag

    2015-01-01

    In the compact accelerator based DD neutron generator, the deuterium ions generated by the ion source are accelerated after the extraction and bombarded to a deuterated titanium target. The emitted neutrons have typical energy of ∼2.45MeV. Utilization of these compact accelerator based neutron generators of yield up to 10 9 neutron/second (DD) is under active consideration in many research laboratories for conducting active neutron interrogation experiments. Requirement of an adequately shielded laboratory is mandatory for the effective and safe utilization of these generators for intended applications. In this reference, we report the comprehensive analysis of shielding effectiveness for High Density Polyethylene (HDPE), Borated Polyethylene (BPE) and Concrete as candidate materials for neutron shielding. In shielding calculations, neutron induced scattering and absorption gamma dose has also been considered along with neutron dose. Contemporarily any material with higher hydrogenous concentration is best suited for neutron shielding. Choice of shielding material is also dominated by practical issues like economic viability and availability of space. Our computational analysis results reveal that utilization of BPE sheets results in minimum wall thickness requirement for attaining similar range of attenuation in neutron and gamma dose. The added advantage of using borated polyethylene is that it reduces the effect of both neutron and gamma dose by absorbing neutron and producing lithium and alpha particle. It has also been realized that for deciding upon optimum thickness determination of any shielding material, three important factors to be necessarily considered are: use factor, occupancy factor and work load factor. (author)

  18. Low-pH concrete plug for sealing the KBS-3V deposition tunnels

    International Nuclear Information System (INIS)

    Malm, Richard

    2012-01-01

    In SKB's main alternative for final repository of radioactive material, KBS-3V, the backfilled deposition tunnels will be separated from the remaining tunnel system with concrete plugs. These concrete plugs will be designed for a life span of 100 years and their function shall maintain until the transport tunnels outside the plug are backfilled and the natural geohydrological conditions have been restored. The purpose of this report is to document the results and the evaluation from this project and motivate the choice of the most appropriate design for closing the deposition tunnels in the spent fuel repository. The purpose has also been to investigate and present the loads acting on the plug system and determine the load capacity of the concrete plug. This report is the result of a project conducted between 2009-01-01 - 2010-12-31 and the project group has made its assessment based on the conditions and requirements that are present today. The entire design of the plug system is part of this project, where the plug system consists of a filter, a bentonite seal and a cast-in-place concrete plug. Two different conceptual design alternatives for the concrete plug have been studied in this report, one long tapered plug and one dome shaped plug. The results in this report focus on the choice of the conceptual design for the concrete plug and its possibility to assist the entire plug system to satisfy its requirements. It is a complicated task to dispose the radioactive waste and it sets high technical requirements on the design and the production of the backfill and the closing of the deposition tunnels. The aim of this project is to design and develop a plug system suitable for production. This is done by the means of numerical calculations and analyses. The primary function of the concrete plug is to act as a resistance to the external loads originated from the axial expansion of the backfill and the water pressure. However, the entire plug system has a requirement

  19. Low-pH concrete plug for sealing the KBS-3V deposition tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Malm, Richard (Vattenfall Power Consultant AB (Sweden))

    2012-01-15

    In SKB's main alternative for final repository of radioactive material, KBS-3V, the backfilled deposition tunnels will be separated from the remaining tunnel system with concrete plugs. These concrete plugs will be designed for a life span of 100 years and their function shall maintain until the transport tunnels outside the plug are backfilled and the natural geohydrological conditions have been restored. The purpose of this report is to document the results and the evaluation from this project and motivate the choice of the most appropriate design for closing the deposition tunnels in the spent fuel repository. The purpose has also been to investigate and present the loads acting on the plug system and determine the load capacity of the concrete plug. This report is the result of a project conducted between 2009-01-01 - 2010-12-31 and the project group has made its assessment based on the conditions and requirements that are present today. The entire design of the plug system is part of this project, where the plug system consists of a filter, a bentonite seal and a cast-in-place concrete plug. Two different conceptual design alternatives for the concrete plug have been studied in this report, one long tapered plug and one dome shaped plug. The results in this report focus on the choice of the conceptual design for the concrete plug and its possibility to assist the entire plug system to satisfy its requirements. It is a complicated task to dispose the radioactive waste and it sets high technical requirements on the design and the production of the backfill and the closing of the deposition tunnels. The aim of this project is to design and develop a plug system suitable for production. This is done by the means of numerical calculations and analyses. The primary function of the concrete plug is to act as a resistance to the external loads originated from the axial expansion of the backfill and the water pressure. However, the entire plug system has a

  20. Conductive concrete wins Popular Science prize

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-06-01

    A conductive concrete developed by a research team at IRC (Institute for Research in Construction, National Research Council of Canada) has won a prize in the home technology category because of its possible use in heating homes. Following the award, there have been a number of inquiries regarding possible applications for the concrete. Greatest interests in the concrete have been in its potential to heat buildings by using it as flooring. Other possible applications included de-icing pavements to building warming pads for parking aircraft. Essentially, carbon fibres and conductive particles are added to a concrete mix in such a quantity that they form a network within the mix, ensuring high electrical conductivity. A demonstration project is underway to build a 20 by 80 foot conductive concrete pad to test the material`s capability as a snow removal and de-icing tool.

  1. Pre-operational proof and leakage rate testing requirements for concrete containment structures for CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1994-02-01

    This Standard provides the requirements for pre-operational proof tests and leakage rate tests of concrete containment structures of a containment system designed as Class Containment components. 1 fig

  2. Nondestructive evaluation of dissipative behavior of reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Luong, M.P. [Ecole Polytechnique, LMS, CNRS, 91 - Palaiseau (France)

    2001-07-01

    Current technological developments tend toward increased exploitation of materials strengths and toward tackling extreme loads and environmental actions such as offshore structures subject to wind and wave loading, or buildings in seismic area. Concrete is widely used as a construction material because of its high strength-cost ratio in many applications. Experience of earthquakes and laboratory tests has shown that well designed and detailed reinforced concrete is suitable for earthquake resistant structures. The most severe likely earthquake can be survived if the members are sufficiently ductile to absorb and dissipate seismic energy by inelastic deformation. This requires a designer to assess realistically the acceptable levels of strength and to ensure adequate dissipation. This paper proposes the use of infrared thermography as a nondestructive, noncontact and real-time technique to examine diverse mechanisms of dissipation and to illustrate the onset of damage process, stress concentration and heat dissipation localization in loaded zone. In addition, this technique can be used as a nondestructive method for evaluating the fatigue limit of concrete structure subject to repeated loading.

  3. Nondestructive evaluation of dissipative behavior of reinforced concrete structure

    International Nuclear Information System (INIS)

    Luong, M.P.

    2001-01-01

    Current technological developments tend toward increased exploitation of materials strengths and toward tackling extreme loads and environmental actions such as offshore structures subject to wind and wave loading, or buildings in seismic area. Concrete is widely used as a construction material because of its high strength-cost ratio in many applications. Experience of earthquakes and laboratory tests has shown that well designed and detailed reinforced concrete is suitable for earthquake resistant structures. The most severe likely earthquake can be survived if the members are sufficiently ductile to absorb and dissipate seismic energy by inelastic deformation. This requires a designer to assess realistically the acceptable levels of strength and to ensure adequate dissipation. This paper proposes the use of infrared thermography as a nondestructive, noncontact and real-time technique to examine diverse mechanisms of dissipation and to illustrate the onset of damage process, stress concentration and heat dissipation localization in loaded zone. In addition, this technique can be used as a nondestructive method for evaluating the fatigue limit of concrete structure subject to repeated loading

  4. Natural aggregate totally replacement by mechanically treated concrete waste

    Directory of Open Access Journals (Sweden)

    Junak Jozef

    2015-06-01

    Full Text Available This paper presents the results obtained from the research focused on the utilization of crushed concrete waste aggregates as a partial or full replacement of 4/8 and 8/16 mm natural aggregates fraction in concrete strength class C 16/20. Main concrete characteristics such as workability, density and compressive strength were studied. Compressive strength testing intervals for samples with recycled concrete aggregates were 2, 7, 14 and 28 days. The amount of water in the mixtures was indicative. For mixture resulting consistency required slump grade S3 was followed. Average density of all samples is in the range of 2250 kg/m3 to 2350 kg/m3. The highest compressive strength after 28 days of curing, 34.68 MPa, reached sample, which contained 100% of recycled material in 4/8 mm fraction and 60% of recycled aggregates in 8/16 mm fraction. This achieved value was only slightly different from the compressive strength 34.41 MPa of the reference sample.

  5. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches.

    Science.gov (United States)

    Chung, Sang-Yeop; Abd Elrahman, Mohamed; Sikora, Pawel; Rucinska, Teresa; Horszczaruk, Elzbieta; Stephan, Dietmar

    2017-11-25

    Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM), X-ray computed tomography (CT), and automated image analysis (RapidAir). The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates.

  6. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Chung

    2017-11-01

    Full Text Available Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM, X-ray computed tomography (CT, and automated image analysis (RapidAir. The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates.

  7. Nuclear radiation and the properties of concrete

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1983-08-01

    Concrete is used for structures in which the concrete is exposed to nuclear radiation. Exposure to nuclear radiation may affect the properties of concrete. The report mentions the types of nuclear radiation while radiation damage in concrete is discussed. Attention is also given to the effects of neutron and gamma radiation on compressive and tensile strength of concrete. Finally radiation shielding, the attenuation of nuclear radiation and the value of concrete as a shielding material is discussed

  8. The bacterial corrosion of concretes

    International Nuclear Information System (INIS)

    Tache, G.

    1998-01-01

    Concrete is a material very sensitive to aging effects and to permanent aggressions. It is an evolutive material in which internal hydration reactions and exchange reactions with the external medium are produced. Moreover, its characteristics tightly depends on factors which are bound to its formulation, to the appropriate choice of materials in which it is constituted, to their qualities and to the conditions of its use. Its aging depends then in a large extent of these different factors and of the adequation between its final characteristics and the solicitations in which it is submitted: physical, mechanical, thermal.. or environmental. This chapter deals particularly with the influence of the bacterial phenomena on concrete. Some recalls are at first given on the principles which govern the concrete durability. Then are approached the phenomena mechanisms. (O.M.)

  9. concrete5 for developers

    CERN Document Server

    Uzayr, Sufyan bin

    2014-01-01

    Whether you have had some previous experience with concrete5 or are entirely new to it, this book will help you understand all that you need to know in order to get started with concrete5 development. A background in PHP is required; some knowledge of HTML/CSS is needed in order to fully grasp the concepts underlying concrete5 theme development.

  10. The repair and protection of reinforced concrete with migrating corrosion inhibitors

    International Nuclear Information System (INIS)

    Stefanescu, D.

    2016-01-01

    The concrete is a very durable construction material and his use is based on the principle that concrete is an ideal environment for steel if properly proportioned and placed. In general, reinforced concrete has proved to be successful in terms of both structural performance and durability. However, there are instances of premature failure of reinforced concrete components due to corrosion of the reinforcement. Experience has shown that there are certain portions of exposed concrete structures more vulnerable than others. Methodology for concrete repair it addresses to suggestions of the types of repair methods and materials and a detailed description of the uses, limitations, materials, and procedures for Repair of Concrete. At same the time the methodology presents recommendation on materials, methods of mixing, application, curing and precautions to be exercised during placement. This work presents guidelines for managing reinforced concrete components and specifies the repair strategy with inhibitors incorporating. (authors)

  11. Improved Concrete Materials with Hydrogel-Based Internal Curing Agents

    Directory of Open Access Journals (Sweden)

    Matthew J. Krafcik

    2017-11-01

    Full Text Available This research article will describe the design and use of polyelectrolyte hydrogel particles as internal curing agents in concrete and present new results on relevant hydrogel-ion interactions. When incorporated into concrete, hydrogel particles release their stored water to fuel the curing reaction, resulting in reduced volumetric shrinkage and cracking and thus increasing concrete service life. The hydrogel’s swelling performance and mechanical properties are strongly sensitive to multivalent cations that are naturally present in concrete mixtures, including calcium and aluminum. Model poly(acrylic acid(AA-acrylamide(AM-based hydrogel particles with different chemical compositions (AA:AM monomer ratio were synthesized and immersed in sodium, calcium, and aluminum salt solutions. The presence of multivalent cations resulted in decreased swelling capacity and altered swelling kinetics to the point where some hydrogel compositions displayed rapid deswelling behavior and the formation of a mechanically stiff shell. Interestingly, when incorporated into mortar, hydrogel particles reduced mixture shrinkage while encouraging the formation of specific inorganic phases (calcium hydroxide and calcium silicate hydrate within the void space previously occupied by the swollen particle.

  12. Inorganic material candidates to replace a metallic or non-metallic concrete containment liner

    Energy Technology Data Exchange (ETDEWEB)

    Seni, C [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Mills, R H [Toronto Univ., ON (Canada)

    1994-12-31

    Internal liners for concrete containments are generally organic or metals. They have to be able to inhibit radioactive leakage into the environment, but both types have shortcomings. The results of research to develop a better liner are published in this paper. The best material found was fibre-reinforced mortar. Of the fibres considered, steel, kevlar and glass were the best, each showing advantages and disadvantages. 1 ref., 9 tabs., 12 figs.

  13. Inorganic material candidates to replace a metallic or non-metallic concrete containment liner

    International Nuclear Information System (INIS)

    Seni, C.; Mills, R.H.

    1994-01-01

    Internal liners for concrete containments are generally organic or metals. They have to be able to inhibit radioactive leakage into the environment, but both types have shortcomings. The results of research to develop a better liner are published in this paper. The best material found was fibre-reinforced mortar. Of the fibres considered, steel, kevlar and glass were the best, each showing advantages and disadvantages. 1 ref., 9 tabs., 12 figs

  14. Radiation damage evaluation on concrete within a facility for Selective Production of Exotic Species (SPES Project), Italy

    International Nuclear Information System (INIS)

    Pomaro, B.; Salomoni, V.A.; Gramegna, F.; Prete, G.; Majorana, C.E.

    2011-01-01

    Highlights: → We present the effect of radiation on concrete as shielding material. → The coupling between hydro-thermal-mechanical fields and radiation damage is shown. → Attention is focused on numerical modelling of concrete in 3D domains. → A new estimate of the radiation damage parameter is given. → A risk assessment of concrete-radiation interactions is developed. - Abstract: Concrete is commonly used as a biological shield against nuclear radiation. As long as, in the design of nuclear facilities, its load carrying capacity is required together with its shielding properties, changes in the mechanical properties due to nuclear radiation are of particular significance and may have to be taken into account in such circumstances. The study presented here allows for reaching first evidences on the behavior of concrete when exposed to nuclear radiation in order to evaluate the consequent effect on the mechanical field, by means of a proper definition of the radiation damage, strictly connected with the strength properties of the building material. Experimental evidences on the decay of the mechanical modulus of concrete have allowed for implementing the required damage law within a 3D F.E. research code which accounts for the coupling among moisture, heat transfer and the mechanical field in concrete treated as a fully coupled porous medium. The development of the damage front in a concrete shielding wall is analyzed under neutron radiation and results within the wall thickness are reported for long-term radiation spans and several concrete mixtures in order to discuss the resulting shielding properties.

  15. A historical examination of concrete

    International Nuclear Information System (INIS)

    Mallinson, L.G.; Li Davies, I.

    1987-01-01

    The requirement that concrete in radioactive waste repositories be stable physically and chemically for very long times has initiated studies of ancient and old concretes. This report is a contribution to this effort. After a description of the history of cement and concrete, the published literature relating to the analysis of old and ancient concrete is reviewed. A series of samples spanning the history of concrete has been obtained; a variety of physical and chemical techniques have been employed to characterize these samples. Reasons for survival of ancient concretes, and for durability of early, reinforced concretes are identified. Recommendations for further studies are given. 132 refs

  16. Time-dependent behavior of concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Tanabe, Tada-aki

    1992-01-01

    This paper is a condensed version of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The paper discusses the recent research of time-dependent behavior of concrete in the past few years. 6 refs

  17. The Effect of Various Waste Materials' Contents on the Attenuation Level of Anti-Radiation Shielding Concrete.

    Science.gov (United States)

    Azeez, Ali Basheer; Mohammed, Kahtan S; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul

    2013-10-23

    Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137 Cs and ⁶⁰Co radioactive elements with photon energies of 0.662 MeV for 137 Cs and two energy levels of 1.17 and 1.33 MeV for the ⁶⁰Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10 -3 for 137 Cs and 0.92 ± 1.57 × 10 -3 for ⁶⁰Co. Substantial improvement in attenuation performance by 20%-25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%-30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities.

  18. Advance Organizers: Concret Versus Abstract.

    Science.gov (United States)

    Corkill, Alice J.; And Others

    1988-01-01

    Two experiments examined the relative effects of concrete and abstract advance organizers on students' memory for subsequent prose. Results of the experiments are discussed in terms of the memorability, familiarity, and visualizability of concrete and abstract verbal materials. (JD)

  19. Depleted uranium concrete container feasibility study

    International Nuclear Information System (INIS)

    Haelsig, R.T.

    1994-09-01

    The purpose of this report is to consider the feasibility of using containers constructed of depleted uranium aggregate concrete (DUCRETE) to store and transport radioactive materials. The method for this study was to review the advantages and disadvantages of DUCRETE containers considering design requirements for potential applications. The author found that DUCRETE is a promising material for onsite storage containers, provided DUCRETE vessels can be certified for one-way transport to disposal sites. The author also found that DUCRETE multipurpose spent nuclear fuel storage/transport packages are technically viable, provided altered temperature acceptance limits can be developed for DUCRETE

  20. Investigation on Failures of Composite Beam and Substrate Concrete due to Drying Shrinkage Property of Repair Materials

    Science.gov (United States)

    Pattnaik, Rashmi Ranjan

    2017-06-01

    A Finite Element Analysis (FEA) and an experimental study was conducted on composite beam of repair material and substrate concrete to investigate the failures of the composite beam due to drying shrinkage property of the repair materials. In FEA, the stress distribution in the composite beam due to two concentrate load and shrinkage of repair materials were investigated in addition to the deflected shape of the composite beam. The stress distributions and load deflection shapes of the finite element model were investigated to aid in analysis of the experimental findings. In the experimental findings, the mechanical properties such as compressive strength, split tensile strength, flexural strength, and load-deflection curves were studied in addition to slant shear bond strength, drying shrinkage and failure patterns of the composite beam specimens. Flexure test was conducted to simulate tensile stress at the interface between the repair material and substrate concrete. The results of FEA were used to analyze the experimental results. It was observed that the repair materials with low drying shrinkage are showing compatible failure in the flexure test of the composite beam and deform adequately in the load deflection curves. Also, the flexural strength of the composite beam with low drying shrinkage repair materials showed higher flexural strength as compared to the composite beams with higher drying shrinkage value of the repair materials even though the strength of those materials were more.

  1. Properties of backfilling material for solidifying miscellaneous waste using recycled cement from waste concrete

    International Nuclear Information System (INIS)

    Matsuda, Atsuo; Yamamoto, Kazuo; Konishi, Masao; Iwamoto, Yoshiaki; Yoshikane, Toru; Koie, Toshio; Nakashima, Yoshio.

    1997-01-01

    A large reduction of total radioactive waste is expected, if recycled cement from the waste concrete of decommissioned nuclear power plants would be able to be used the material for backfilling mortar among the miscellaneous waste. In this paper, we discuss the hydration, strength and consistency of recycled cement compared with normal portland cement. The strength of recycled cement mortar is lower than that of normal portland cement mortar on the same water to cement ratio. It is possible to obtain the required strength to reduce the water to cement ratio by using of high range water-reducing AE agent. According to reducing of water to cement ratio, the P-type funnel time of mortar increase with the increase of its viscosity. However, in new method of self-compactability for backfilling mortar, it became evident that there was no difference between the recycled cement and normal portland cement on the self-compactability. (author)

  2. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report C : shear behavior of HVFA reinforced concrete.

    Science.gov (United States)

    2012-10-01

    Concrete is the most widely used man-made material on the planet. Unfortunately, producing Portland cement generates carbon dioxide (a greenhouse gas) at roughly a pound for pound ratio. High-volume fly ash (HVFA) concrete concrete with at least ...

  3. The use of a concrete additive to eliminate returned concrete waste volumes

    Directory of Open Access Journals (Sweden)

    Bester Johannes

    2017-01-01

    Full Text Available This paper investigates the effects of the use of a recently developed two-component powdered product made from polymers and inorganic compounds that can be mechanically mixed into returned fresh ready-mix concrete to allow for the separation of the concrete into fine and coarse aggregates. This allows for the re-use of the returned concrete as aggregates in the manufacturing of new concrete. The returned concrete waste can therefore be eliminated, thus reducing virgin aggregate usage, as well as reducing the environmental impact of returned concrete. In this study, the treated recycled fresh concrete was separated into fine and coarse aggregates, and then used at replacement levels of 0%, 25%, 50%, 75% and 100%. The effect of the product on the material classification, and on important fresh and hardened properties of the concrete for the above-mentioned replacement values was tested. For the fine aggregate, the results indicate minimal changes in both the fresh and hardened properties. For the coarse aggregate, the results show a marked improvement of flexural strength with an increase in replacement value when coarse aggregates are used. Very high replacement levels may be used with very little effect on the quality of the new concrete.

  4. Repair in Mourao power plant spillway: application of recycled material concrete admixtures - stage one; Reparos no vertedouro da UHE Mourao: aplicacao de concretos com adicao de material reciclado - 1a. parte

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Jose Carlos Alves; Portella, Kleber Franke; Joukoski, Alex; Mendes, Roberto [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)], Emails: jose.galvao@lactec.org.br, portella@lactec.org.br, alex@lactec.org.br; roberto.mendes@lactec.org.br; Ferreira, Elizeu Santos [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil)], Email: elizeu.sf@copel.com

    2009-10-15

    The Mourao hydroelectric power plant located in the city of Campo Mourao, in the state of Parana, southern region of Brazil, was inaugurated in 1964, with 7500 kW of installed power. Defects in the spillway surface of the dam had been identified throughout the time. With the purpose of recovering the concrete hydraulic surface, repair materials were proposed in this paper, considering technology development and environment conservation. Concrete mixtures containing recycled materials - low-density polyethylene (LDPE), polyethylene terephthalate (PET) and waste tires - had its performance tested in laboratory. Mechanical properties, such as compressive strength, tensile strength and adherence were evaluated using cylindrical concrete specimens. Results were appraised and the best compositions were selected to be tested on spillway surface of Mourao dam. (author)

  5. LEO 1.0. An assistant software for maintenance of corroded reinforced concrete structures

    International Nuclear Information System (INIS)

    Gerard, B.; Petre-Lazar, I.

    1998-04-01

    The reinforced concrete structures capacity to fulfill the users requirements decreases in time and a constant preoccupation for the maintenance is required at EDF. In order to ease up the site investigations, a computer program - LEO - is developed. Its general layout is proposed in this document. LEO 1.0 is developed to be applied to corroded reinforced concrete structures. A simplified model based on the main mechanisms of the steel corrosion in concrete has been developed. It can quantify the influence of the reinforcement corrosion on the structure performances. A probabilistic calculus which takes into account the variability of the input data (material properties, environment, etc.) was also performed using PROBAN computer code. This type of analysis quantifies the time evolution of the structure (incubation, initiation, propagation, collapse). (author)

  6. Radionuclide Retention in Concrete Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  7. Methane biofiltration using autoclaved aerated concrete as the carrier material.

    Science.gov (United States)

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, Pascal; Ho, Adrian; Boon, Nico

    2015-09-01

    The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was obtained when calcium chloride was not added during bacterial inoculation step and 10-mm-thick AAC specimens were used. The immobilized MOB could remove methane at low concentration (~1000 ppmv) in a biofilter setup for 127 days at average removal efficiency (RE) of 28.7 %. Unlike a plug flow reactor, increasing the total volume of the filter by adding a biofilter in series did not result in higher total RE. MOB also exhibited a higher abundance at the bottom of the filter, in proximity with the methane gas inlet where a high methane concentration was found. Overall, an efficient methane biofilter performance could be obtained using AAC as the carrier material.

  8. Production and quality control of concrete for the Rajasthan Atomic Power Station - [Part 1

    International Nuclear Information System (INIS)

    Singha Roy, P.K.; Sukhtankar, K.D.; Prasad, K.

    1975-01-01

    The production and quality control of concrete and concrete materials for the construction of the twin-reactor Rajasthan Atomic Power Station with its 400 MW net capacity posed many challenges since many of the requirements for the properties of concrete were new and were being laid down for the first time in India. Some of the conditions for the concrete included leak-tightness against gas pressure, total absence of shrinkage in the containment even when the ambient temperature during concreting was as high as 45degC, placing concrete at a temperature as low as 8degC, the use of non-shrink and high strength grout, absolute impermeability against water, high density for radiation shielding, controlled modulus of elasticity for large machine foundations, high strength with high slump for the prestressed concrete dome, etc. Though the total quantity of concrete was not very much compared with a large river valley or steel plant project, (e.g., about 1.2 X 10 6 m 3 for a 2-million tonne steel plant) it was quite significant, being about 70,000 m 3 of normal density and 2,100 m 3 of high density concrete. The production of these quantities entailed intensive material study and investigation, development of new mixes with additives not tried out before in the country, and design and quality control techniques which were unique in many respects. The paper deals with the production and quality control of concrete, including grouts used in the projects, but the actual concreting and construction operations are not discussed. (author)

  9. Possibilities in concrete industry towards circular economy through industrial symbiosis

    Directory of Open Access Journals (Sweden)

    Bjegović Dubravka

    2014-01-01

    Full Text Available Major challenges of traditional linear concrete industry are utilisation of large amount of non-renewable resources and significant air emissions during production, utilisation and demolition of concrete structures. At the same time, concrete industry has a high potential for a positive shift towards more sustainable production and lower ecological footprint. One of the strategies is to use waste materials and byproducts from other industries as valuable raw materials in concrete industry. This loop can be closed only by taking into account properties of a certain waste material and using them for preparation of special purpose concrete products, in which these properties are favourable. Other strategy is designing concrete tailored for certain environment and service life, making it optimised for that specific purpose. The paper presents some of the available waste and recycled materials in Croatia and research focused on their potential application in civil engineering. The possibilities of utilisation are first explored in laboratory conditions, with the results presented in this paper as an outcome. Based on the obtained results some of the potential areas of application are proposed, in which concrete prepared with these waste materials becomes alternative to classical concrete. Both original scientific research results are presented, but also prototype of products produced based on the scientific research.

  10. Design of ecological concrete by particle packing optimization

    NARCIS (Netherlands)

    Fennis, S.A.A.M.

    2011-01-01

    The goal of this research project on Ecological Concrete was to reduce the CO2-emission of concrete and to reuse secondary materials form concrete production and other industries simultaneously. This also minimizes the use of natural resources and the production costs. To replace cement in concrete

  11. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method.

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-12-07

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs.

  12. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-01-01

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs. PMID:27941617

  13. Engineering properties of fly ash concrete

    International Nuclear Information System (INIS)

    Hilmi Mahmud

    1999-01-01

    This paper presents some of the engineering properties of Malaysian fly ash concrete. Workability, compressive, flexural, tensile splitting, drying shrinkage, elastic modulus and non destructive tests were performed on fly ash and control OPC concrete specimens. Data show that concrete containing 25% fly ash replacement of cement exhibit superior or similar engineering properties to that normal concrete without fly ash. These encouraging results demonstrated the technical merits of incorporating fly ash in concrete and should pave the way for wide scale use of this versatile material in the Malaysian construction industry. (author)

  14. Review of palm oil fuel ash and ceramic waste in the production of concrete

    Science.gov (United States)

    Natasya Mazenan, Puteri; Sheikh Khalid, Faisal; Shahidan, Shahiron; Shamsuddin, Shamrul-mar

    2017-11-01

    High demand for cement in the concrete production has been increased which become the problems in the industry. Thus, this problem will increase the production cost of construction material and the demand for affordable houses. Moreover, the production of Portland cement leads to the release of a significant amount of CO2 and other gases leading to the effect on global warming. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of palm oil fuel ash and ceramic waste as partial cement replacement in the production of concrete. Using both of this waste in the concrete production would benefit in many ways. It is able to save cost and energy other than protecting the environment. In short, 20% usage of palm oil fuel ash and 30% replacement of ceramic waste as cement replacement show the acceptable and satisfactory strength of concrete.

  15. A study of concrete properties using phyllite as coarse aggregates

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Afrifa, Russell Owusu

    2010-01-01

    Nowadays, industrial activities generate a huge amount of waste. One such activity is underground mining which generates phyllite wastes that are recycled as coarse aggregates for use in concrete production. Aggregate use in concrete is dependent on availability. This paper reports of an experimental study on some of the physical and mechanical properties of phyllite aggregate concrete as compared to granite (conventional) aggregate concrete. The obtained physical and mechanical properties of both aggregates for specific gravity, water absorption (%), dry density, aggregate impact value (%), aggregate crushing value (%), 10% fines, elongation index (%), flakiness index (%) and Los Angeles abrasion values satisfied minimum requirements for aggregates suitable for concrete production. Five mixes of concrete mix proportions designated M1, M2, M3, M4 and M5 were cast using phyllite and granite aggregates. A total of 400 concrete cubes and 210 modulus of rupture beams were cast and cured by total submerging in water for ages 3, 7, 14, 28, 56, 90, 180 and 360 days before compression and bending tests were performed. The results show that the trends in the development of compressive and bending strengths of plain phyllite concrete were similar to those in granite (conventional) aggregate concrete. However the compressive and bending strengths of phyllite concrete mixes were on the average 15-20% lower than those of the corresponding granite concrete mixes at all ages. The same concrete mix proportions gave lower concrete classes for phyllite compared to granite with the exception of the lowest grade. This was probably because the flakiness and elongation properties coupled with reactive materials in phyllite aggregates affect the absorption and bond characteristics of its concrete.

  16. Ageing management of CANDUtm concrete containment buildings

    International Nuclear Information System (INIS)

    Philipose, K.E.; Gregor, F.E.

    2009-01-01

    The containment system in a Nuclear Power Plant (NPP) provides the final physical barrier against release of radioactive materials to the external environment. Even though there are different physical configurations to meet this fundamental safety function in various reactor types, a common feature is the use of a thick-walled concrete structure as part of the containment system commonly referred to as 'Concrete Containment Building'. In order for the concrete containment buildings to continue to provide the required safety function, it has to maintain its structural integrity. As well, its leak rates under test pressures must be maintained below acceptable limits. As some of the containment buildings of the CANDU nuclear power plants are approaching their fourth decade of successful operation, questions regarding the impact of ageing on their ultimate useful service life emerge. Ageing Management has become the tool for addressing those questions. In this paper, the ageing and ageing management of the CANDU concrete containments are discussed, including the specific programs being implemented to monitor and trend the ageing conditions. Specifically, the usefulness of the embedded strain gauges as a tool for the assessment of the condition of the containment concrete structure is discussed. Some of the operational and test data accumulated over the last 30 years have been evaluated and trended to provide some results and conclusions regarding the satisfactory long-term behaviour of the concrete containment buildings. (authors)

  17. The effect of steel slag as a coarse aggregate and Sinabung volcanic ash a filler on high strength concrete

    Science.gov (United States)

    Karolina, R.; Putra, A. L. A.

    2018-02-01

    The Development of concrete technology is continues to grow. The requisite for efficient constructions that are often viewed in terms of concrete mechanical behavior, application on the field, and cost estimation of implementation increasingly require engineers to optimize construction materials, especially for concrete materials. Various types of concrete have now been developed according to their needs, such as high strength concrete. On high strength concrete design, it is necessary to consider several factors that will affect the reach of the quality strength, Those are cement, water cement ratio (w/c), aggregates, and proper admixture. In the use of natural mineral, it is important for an engineer to keep an eye on the natural conditions that have been explored. So the selection of aggregates as possible is a material that is not causing nature destruction. On this experiment the use of steel slag from PT.Growth Sumatra Industry as a substitute of coarse and fine aggregate, and volcanic ash of mount Sinabung as microsilka in concrete mixture substituted to create high strength concrete that is harmless for the environment. The use of mount sinabung volcanic ash as microsilika coupled with the use of Master Glenium Sky 8614 superplasticizer. This experiment intend to compare high strength concrete based slag steel as the main constituent aggregates and high strength concrete with a conventional mixture. The research result for 28 days old concrete shows that conventional concrete compressive strength is 67.567 MPa, slag concrete 75.958 Mpa, conventional tensile strength 5.435 Mpa while slag concrete 5.053 Mpa, conventional concrete bending strength 44064.96 kgcm while concrete slag 51473.94 kgcm and modulus of conventional concrete fracture 124.978 kg / cm2 while slag concrete 145.956 kg / cm2. Both concrete slump values shows similar results due to the use of superplasticizer.

  18. Stress wave communication in concrete: I. Characterization of a smart aggregate based concrete channel

    International Nuclear Information System (INIS)

    Siu, Sam; Wu, Wenhao; Zhi Ding; Ji, Qing; Song, Gangbing

    2014-01-01

    In this paper, we explore the characteristics of a concrete block as a communication medium with piezoelectric transducers. Lead zirconate titanate (PZT) is a piezoceramic material used in smart materials intended for structural health monitoring (SHM). Additionally, a PZT based smart aggregate (SA) is capable of implementing stress wave communications which is utilized for investigating the properties of an SA based concrete channel. Our experiments characterize single-input single-output and multiple-input multiple-output (MIMO) concrete channels in order to determine the potential capacity limits of SAs for stress wave communication. We first provide estimates and validate the concrete channel response. Followed by a theoretical upper bound for data rate capacity of our two channels, demonstrating a near-twofold increase in channel capacity by utilizing multiple transceivers to form an MIMO system. Our channel modeling techniques and results are also helpful to researchers using SAs with regards to SHM, energy harvesting and stress wave communications. (paper)

  19. The characteristics of ultra-high performance concrete and cracking behavior of reinforced concrete tensile specimens

    Directory of Open Access Journals (Sweden)

    H.A. Rahdar

    2016-09-01

    Full Text Available The tensile behavior of concrete depends on some factors such as member dimensions, reinforcement ratio, diameter of rebar, strength and elasticity modulus of material. In this research the experimental method is used to examine the characteristics and the behavior of ultra-high performance concrete on the tensile behavior of concrete members reinforced by steel rebar. The results show that increasing the rebar cover on diameter rebar ratio (C/d increases the initial stiffening before the cracking stage in concrete. Also, by increasing of reinforcement ratio the cracking space decreased.

  20. Overview of Activities in U.S. Related to Continued Service of Nuclear Power Plant Concrete Structures

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2011-01-01

    Safety-related nuclear power plant concrete structures are described and commentary on continued service assessments of these structures is provided. In-service inspection and testing requirements in the U.S. are summarized. The license renewal process in the U.S. is outlined and its current status noted. A summary of operating experience related to U.S. nuclear power plant concrete structures is presented. Several candidate areas are identified where additional research would be of benefit to aging management of NPP concrete structures. Finally current ORNL activities related to aging-management of concrete structures are outlined: development of operating experience database, application of structural reliability theory, and compilation of elevated temperature concrete material property data and information.

  1. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials

    International Nuclear Information System (INIS)

    Wongkeo, Watcharapong; Thongsanitgarn, Pailyn; Pimraksa, Kedsarin; Chaipanich, Arnon

    2012-01-01

    Highlights: ► Autoclaved aerated concrete were produced using coal bottom ash as a cement replacement material. ► Coal bottom ash was found to enhance concrete strengths. ► Thermal conductivity of concrete was not significantly affected. ► X-ray diffraction and thermal analysis show tobermorite formation. -- Abstract: The bottom ash (BA) from Mae Moh power plant, Lampang, Thailand was used as Portland cement replacement to produce lightweight concrete (LWC) by autoclave aerated concrete method. Portland cement type 1, river sand, bottom ash, aluminium powder and calcium hydroxide (Ca(OH) 2 ) were used in this study. BA was used to replace Portland cement at 0%, 10%, 20% and 30% by weight and aluminium powder was added at 0.2% by weight in order to produce the aerated concrete. Compressive strength, flexural and thermal conductivity tests were then carried out after the concrete were autoclaved for 6 h and left in air for 7 days. The results show that the compressive strength, flexural strength and thermal conductivity increased with increased BA content due to tobermorite formation. However, approximately, 20% increase in both compressive (up to 11.61 MPa) and flexural strengths (up to 3.16 MPa) was found for mixes with 30% BA content in comparison to just around 6% increase in the thermal conductivity. Thermogravimetry analysis shows C–S–H formation and X-ray diffraction confirm tobermorite formation in bottom ash lightweight concrete. The use of BA as a cement replacement, therefore, can be seen to have the benefit in enhancing strength of the aerated concrete while achieving comparatively low thermal conductivity when compared to the results of the control Portland cement concrete.

  2. EFFECT OF HCL CONCENTRATION ON NORMAL CONCRETE AND ADMIXTURED CONCRETE MADE WITH AND WITHOUT MANUFACTURED SAND

    OpenAIRE

    K. Pradeep*, K. Ramudu

    2017-01-01

    Concrete is considered to be the most widely used and versatile material of construction all over the world. One of the important ingredients of conventional concrete is natural sand or river sand, which is on the verge of exhausting due to abundant usage. In India, the conventional concrete is produced by using natural sand obtained from riverbeds as fine aggregate. However, due to the increased use of concrete in almost all types of construction works, the demand of natural or river sand ha...

  3. Concrete durability

    OpenAIRE

    Gaspar Tébar, Demetrio

    1991-01-01

    The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of rese...

  4. Fiber reinforced concrete: an advanced technology for LL/ML radwaste conditioning and disposal

    International Nuclear Information System (INIS)

    Tchemitcheff, E.; Verdier, A.

    1993-01-01

    Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by Cogema culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber concrete containers satisfy all French safety requirements relating to waste immobilization and disposal, and have been certified by Andra, the national radioactive waste management agency. The fiber concrete containers have been fabricated on a production scale since July 1990 by Sogefibre. (author). 3 refs., 5 figs., 7 tabs

  5. Suitability of geopolymeric concretes for nuclear waste disposal

    International Nuclear Information System (INIS)

    Ipatti, A.; Kallio, L.

    1991-12-01

    Concrete barriers are in essential role in most of the disposal concepts for nuclear waste. As to the binders, the used high-quality, strong and dense concretes may be based both on the present types of cements and on new types of special cements. One feasible special cement discussed in this literature report is the geopolymeric cement, which is, at its cleanest, a completely lime-free binder composed mainly of aluminium silicates. However, in 1990 the lime-free aluminium silicate cement had not yet reached the stage of development required of a widely marketed factory product. On the other hand, as an applicable product the development work started as early as in the 70s in France and in the USA has reached a blended cement consisting both of geopolymeric and Portland cements. The main advantages of the geopolymeric concrete compared to the ordinary Portland cement concrete are based on richer and stronger chemical bonds of the cement stone. The strong three-dimensional networks of bonds make the geopolymeric concrete stronger, denser and, above all, more ductile. The geopolymeric concrete is particularly suitable for hazardous waste applications, since hazardous materials have been found to be locked inside the geopolymeric networks. The properties of the geopolymeric cements and concretes and the implemented applications seem to be highly promising, but as to the nuclear waste applications there is not sufficient amount of reliable experimental information available yet. The domestic cement and concrete industry will be in key position in accumulation of information and operating experiences. (orig.)

  6. Preliminary studies on steel slag as a substitute for coarse aggregate on concrete

    Directory of Open Access Journals (Sweden)

    Karolina Rahmi

    2017-01-01

    Full Text Available The development of science and technology in the field of construction that is rapidly increasing, is always followed by the growing community needs for infrastructure facilities, such as buildings, bridges and other construction. One of the key element in that development is concrete. Due to the rapid development of science and technology in the field of construction, it’s required a building material which has better advantage than the materials of the existing building. To obtain a better building materials, one alternative is the use of waste as aggregate in concrete mixture. In this study the authors using waste steel waste (steel slag as a substitute for coarse aggregate. Steel slag used is steel waste from PT. Growth Sumatra Industry. The gravel substitution variations is 0%, 15%, and 25% and the testing was done by the slump test, compressive strength and flexural strength of concrete. From the test results obtained optimum compressive strength variation occurs in 25% substitution of steel slag gravel amounted to 40.481 MPa, whereas for the optimum bending capacity contained in variations of 25% substitution of steel slag gravel amounted to 19.592 N / mm2. And for optimum slump value obtained on the variation of normal concrete. This shows the workability of the concrete normally higher than the other variation.

  7. Leaching assessment of concrete made of recycled coarse aggregate: physical and environmental characterisation of aggregates and hardened concrete.

    Science.gov (United States)

    Galvín, A P; Agrela, F; Ayuso, J; Beltrán, M G; Barbudo, A

    2014-09-01

    Each year, millions of tonnes of waste are generated worldwide, partially through the construction and demolition of buildings. Recycling the resulting waste could reduce the amount of materials that need to be manufactured. Accordingly, the present work has analysed the potential reuse of construction waste in concrete manufacturing by replacing the natural aggregate with recycled concrete coarse aggregate. However, incorporating alternative materials in concrete manufacturing may increase the pollutant potential of the product, presenting an environmental risk via ground water contamination. The present work has tested two types of concrete batches that were manufactured with different replacement percentages. The experimental procedure analyses not only the effect of the portion of recycled aggregate on the physical properties of concrete but also on the leaching behaviour as indicative of the contamination degree. Thus, parameters such as slump, density, porosity and absorption of hardened concrete, were studied. Leaching behaviour was evaluated based on the availability test performed to three aggregates (raw materials of the concrete batches) and on the diffusion test performed to all concrete. From an environmental point of view, the question of whether the cumulative amount of heavy metals that are released by diffusion reaches the availability threshold was answered. The analysis of concentration levels allowed the establishment of different groups of metals according to the observed behaviour, the analysis of the role of pH and the identification of the main release mechanisms. Finally, through a statistical analysis, physical parameters and diffusion data were interrelated. It allowed estimating the relevance of porosity, density and absorption of hardened concrete on diffusion release of the metals in study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Properties of ambient cured blended alkali activated cement concrete

    Science.gov (United States)

    Talha Junaid, M.

    2017-11-01

    This paper presents results of the development and strength properties of ambient-cured alkali activated geopolymer concrete (GPC). The study looks at the strength properties, such as compressive strength, splitting tensile strength, and elastic modulus of such concretes and its dependency on various parameters. The parameters studied in this work are the type and proportions of pre-cursor materials, type of activator and their respective ratios and the curing time. Two types of pre-cursor material; low calcium fly ash (FA) and ground granulated blast furnace slag (GGBFS) were activated using different proportions of sodium silicate and sodium hydroxide solutions. The results indicate that ambient cured geopolymer concrete can be manufactured to match strength properties of ordinary Portland cement concrete (OPC). The strength properties of GPC are dependent on the type and ratio of activator and the proportion of GGBFS used. Increasing the percentage of GGBFS increased the compressive and tensile strengths, while reducing the setting time of the mix. The effect of GGBFS on strength was more pronounced in mixes that contained sodium silicate as activator solution. Unlike OPC, ambient-cured GPC containing sodium silicate gain most of their strength in the first 7 days and there is no change in strength thereafter. However, GPC mixes not containing sodium silicate only achieve a fraction of their strength at 7 days and extended curing is required for such concretes to gain full strength. The results also indicate that the elastic modulus values of GPC mixes without sodium silicate are comparable to OPC while mixes with sodium silicate have elastic modulus values much lower than ordinary concrete.

  9. Experimental Studies on the Fire Behaviour of High Performance Concrete Thin Plates

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2015-01-01

    In recent decades, the use of structural high performance concrete (HPC) sandwich panels made with thin plates has increased as a response to modern environmental challenges. Fire endurance is a requirement in structural HPC elements, as for most structural elements. This paper presents experimen......In recent decades, the use of structural high performance concrete (HPC) sandwich panels made with thin plates has increased as a response to modern environmental challenges. Fire endurance is a requirement in structural HPC elements, as for most structural elements. This paper presents....... The parametric assessment of the specimen performance included: thickness of the specimen, testing apparatus, and concrete mix (both with and without polypropylene fibres). The results verified the ability of H-TRIS to impose an equivalent thermal boundary condition to that imposed during a standard furnace test......, with good repeatability, and at comparatively low economic and temporal costs. The results demonstrated that heat induced concrete spalling occurred 1 to 5 min earlier, and in a more destructive manner, for thinner specimens. An analysis is presented combining the thermal material degradation, vapour pore...

  10. Experimental investigation of interface conditions between oxidic melt and ablating concrete during MCCI by means of simulating material experiments: the Artemis program

    Energy Technology Data Exchange (ETDEWEB)

    Veteau, J.M. [Commissariat a l' Energie Atomique, DEN/DTN/SE2T/LPTM, 17 rue des Martyrs 38 - Grenoble cedex 9 (France)

    2005-07-01

    Full text of publication follows: In the frame work of R and D on Severe Accidents in PWR plants, an estimation by codes of time of basemat melt-through by Corium is required. For this, the heat flux distribution along the cavity wall must be properly modelled. Hence the knowledge of the heat transfer coefficient as well as the temperature at the interface between the melt and the solid become key issues. Phase diagram of the melt and composition governs the interface temperature which controls, at least partly, the thickness of the Corium crust formed on the molten concrete. Crust behaviour (time evolution of thickness, mechanical interaction with gas) implies a release mode of molten concrete in Corium which in turn alters the melt composition. Clearly, the molten corium-concrete interaction (MCCI) phenomenon is the result of a strong coupling between physico-chemistry and thermohydraulics. The main goal of the first test series of the Artemis program is to make a link between the interface temperature and the physico-chemistry of the melt (phase diagram) through tests conducted with simulating materials and to provide an insight on the existence, the behaviour and the composition of the crust. This test series considers 1D MCCI using a non eutectic LiCl-BaCl{sub 2} mixture poured at 1000 deg. C in a cylindrical test section (internal diameter 0.3 m) to interact with the 0.35 m deep basemat made of the same salt mixture at the eutectic composition. This 'concrete' was especially manufactured with sintered granulates to allow gas flow from the bottom (argon), then simulating gas released by concrete in the reactor case. Constant power is applied in the pool with an helical coil and 1D MCCI is ensured by counterbalancing heat losses by controlled heating at the lateral walls and at the top of the test section. Concrete ablation is followed from the output of 45 0.5 mm diameter thermocouples. An instrumented rod periodically investigates the temperature

  11. Carbonation Coefficients from Concrete Made with High-Absorption Limestone Aggregate

    Directory of Open Access Journals (Sweden)

    Eric I. Moreno

    2013-01-01

    Full Text Available Normal aggregates employed in concrete have absorption levels in the range of 0.2% to 4% for coarse aggregate and 0.2 to 2% for fine aggregate. However, some aggregates have absorption levels above these values. As the porosity of concrete is related to the porosity of both the cement paste and the aggregate and the carbonation rate is a function, among other things, of the porosity of the material, there is concern about the effect of this high porosity material in achieving good quality concrete from the durability point of view. Thus, the objective of this investigation was to study the carbonation rates of concrete specimens made with high-absorption limestone aggregate. Four different water/cement ratios were used, and cylindrical concrete specimens were exposed to accelerated carbonation. High porosity values were obtained for concrete specimens beyond the expected limits for durable concrete. However, carbonation coefficients related to normal quality concrete were obtained for the lowest water/cement ratio employed suggesting that durable concrete may be obtained with this material despite the high porosity.

  12. Investigation of Properties of Asphalt Concrete Containing Boron Waste as Mineral Filler

    Directory of Open Access Journals (Sweden)

    Cahit GÜRER

    2016-05-01

    Full Text Available During the manufacture of compounds in the boron mining industry a large quantity of waste boron is produced which has detrimental effects on the environment. Large areas have to be allocated for the disposal of this waste. Today with an increase in infrastructure construction, more efficient use of the existing sources of raw materials has become an obligation and this involves the recycling of various waste materials. Road construction requires a significant amount of raw materials and it is possible that substantial amounts of boron-containing waste materials can be recycled in these applications. This study investigates the usability of boron wastes as filler in asphalt concrete. For this purpose, asphalt concrete samples were produced using mineral fillers containing 4%, 5%, 6%, 7% and 8% boron waste as well as a 6% limestone filler (6%L as the control sample. The Marshall Design, mechanical immersion and Marshall Stability test after a freeze-thaw cycle and indirect tensile stiffness modulus (ITSM test were performed for each of the series. The results of this experimental study showed that boron waste can be used in medium and low trafficked asphalt concrete pavements wearing courses as filler.

  13. Preparation and properties of high-strength recycled concrete in cold areas

    Directory of Open Access Journals (Sweden)

    Haitao, Y.

    2015-06-01

    Full Text Available Concrete waste was processed into recycled coarse aggregate (RCA, subsequently used to prepare high-strength (> 50 MPa recycled concrete. The resulting material was tested for mechanical performance (ULS. The recycled concrete was prepared to the required design strength by adjusting the water/cement ratio. Concrete containing 0, 20, 50, 80 and 100% recycled aggregate was prepared and studied for workability, deformability and durability. The ultimate aim of the study was to prepare high-strength recycled concrete apt for use in cold climates as a theoretical and experimental basis for the deployment of recycled high-strength concrete in civil engineering and building construction.En este estudio se preparó un hormigón de altas resistencias (> 50 MPa utilizando residuos de hormigón como árido grueso reciclado (RCA. El material resultante se ensayó para determinar sus prestaciones mecánicas (ULS. Para adaptarse a los requerimientos resistentes, se ajustó la relación agua/cemento del hormigón reciclado. Se estudió la trabajabilidad, deformabilidad y durabilidad del hormigón con contenidos del 0, 20, 50, 80 y 100% de árido reciclado. El objetivo final del estudio fue preparar hormigón reciclado de altas resistencias apto para su uso en climas fríos como base teórica y experimental para el desarrollo de este tipo de materiales en obra civil y edificación.

  14. Performance of geopolymer concrete in fire

    OpenAIRE

    Zhao, Ren

    2017-01-01

    Portland cement concrete is a world-wide used construction material. However, when Portland cement concrete is exposed to fire, its mechanical properties are deteriorated. The deterioration of concrete is generally caused by the decomposition of the Portland cement hydrate or the thermal incompatibility between cement paste and aggregate. Spalling, which is a violent or non-violent breaking off of layers or pieces of concrete from the surface of a structural element, may also occur when the c...

  15. Experimental studies on effect of cow dung ash (pozzolanic binder) and coconut fiber on strengthproperties of concrete

    Science.gov (United States)

    Venkatasubramanian, C.; Muthu, D.; Aswini, G.; Nandhini, G.; Muhilini, K.

    2017-07-01

    The studies on durability of concrete have attracted attention in the recent years and its long term strength depends on quality of ingredients used in production of concrete. Now a days, the availability of ingredients is limited and in order to overcome this problem, research studies focuses on some alternate materials in the concrete production process. Also, Incorporation of waste materials consumes less energy leading to reduction of emission of green house gases. The application of fly ash and cow dung ash as a pozzolanic binder instead of cement and coir fibers finds extensive application in the manufacturing process of building materials. In this project an attempt has been made to utilize cow dung ash and coconut fiber as a replacement material of cement in the production of concrete. The cement is partially replaced with cow dung ash by about 2.5, 3 & 3.5 % by weight and with 1% of coconut fiber. The Compressive and Tensile strengths of concrete were found at different curing periods (7,14 & 28 days). From this study, it is inferred that these replacements will have a reasonable improvement in the strength properties of concrete by about 55-70%. The substitution of CDA, CF is economical in terms of cost and this usage eliminates the problem of landfills, reducing the environmental risk, maintaining the ecological balance, which is very much required for our nation.

  16. Evaluation of microbially-influenced degradation of massive concrete structures

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Zolynski, M.; Veeh, R.

    1996-01-01

    Many low level waste disposal vaults, both above and below ground, are constructed of concrete. One potential contributing agent to the destruction of concrete structures is microbially-influenced degradation (MID). Three groups of bacteria are known to create conditions that are conducive to destroying concrete integrity. They are sulfur oxidizing bacteria, nitrifying bacteria, and heterotrophic bacteria. Research is being conducted at the Idaho National Engineering Laboratory to assess the extent of naturally occurring microbially influenced degradation (MID) and its contribution to the deterioration of massive concrete structures. The preliminary steps to understanding the extent of MID, require assessing the microbial communities present on degrading concrete surfaces. Ultimately such information can be used to develop guidelines for preventive or corrective treatments for MID and aid in formulation of new materials to resist corrosion. An environmental study was conducted to determine the presence and activity of potential MID bacteria on degrading concrete surfaces of massive concrete structures. Scanning electron microscopy detected bacteria on the surfaces of concrete structures such as bridges and dams, where corrosion was evident. Enumeration of sulfur oxidizing thiobacilli and nitrogen oxidizing Nitrosomonas sp. and Nitrobacter sp. from surface samples was conducted. Bacterial community composition varied between sampling locations, and generally the presence of either sulfur oxidizers or nitrifiers dominated, although instances of both types of bacteria occurring together were encountered. No clear correlation between bacterial numbers and degree of degradation was exhibited

  17. Self-compacting fibre-reinforced concrete

    NARCIS (Netherlands)

    Grunewald, S.; Walraven, J.C.

    2001-01-01

    The project 'self-compacting fibre-reinforced concrete (SCFRC)' is part of the Dutch STW/PPM program - 'cement-bonded materials' - DCT.4010. Subproject III to which the project ,SCFRC' belongs deals with the development of new high performance concretes. The project 'SCFRC' aims at investigating the

  18. Evaluation of using crushed brick as coarse aggregate in concrete layer within rigid highway pavement

    Directory of Open Access Journals (Sweden)

    Alwash Ali

    2018-01-01

    Full Text Available Most of the present studies related to the field of highway pavement construction technique tend to make use of the local available materials as substitutes for the imported and necessary materials for some of the practical application. For this reason this research aims at looking for the prospect of used locally available aggregate such as crushed clay bricks for the aim of producing proper concrete with suitable thermal and mechanical properties. Experimental investigations have been carried out to asses the effect of partial replacement of coarse aggregate by free manually crushed Brick with percentages (10, 20, 30 and 40% of virgin coarse aggregate in concrete mix for highway rigid pavement. While the percentage (0% replacement represent reference mix. Mix proportion based on the target of compressive strength for all replacement percentage of (33 MPa at (28 days to achieve AASHTO requirement for highway concrete rigid pavement .The results of flexural strength, modulus of elasticity, density and thermal conductivity refers to better performance (less thickness of concrete layer with large spacing between contraction or expansion joints and less stresses due to warping induced concrete layer for concrete mix with 20% crushed brick as replacement of coarse aggregate.

  19. Alkali-activated concrete with Serbian fly ash and its radiological impact.

    Science.gov (United States)

    Nuccetelli, Cristina; Trevisi, Rosabianca; Ignjatović, Ivan; Dragaš, Jelena

    2017-03-01

    The present paper reports the results of a study on different types of fly ash from Serbian coal burning power plants and their potential use as a binder in alkali-activated concrete (AAC) depending on their radiological and mechanical properties. Five AAC mixtures with different types of coal burning fly ash and one type of blast furnace slag were designed. Measurements of the activity concentrations of 40 K, 226 Ra and 232 Th were done both on concrete constituents (fly ash, blast furnace slag and aggregate) and on the five solid AAC samples. Experimental results were compared by using the activity concentration assessment tool for building materials - the activity concentration index I, as introduced by the EU Basic Safety Standards (CE, 2014). All five designed alkali-activated concretes comply with EU BSS screening requirements for indoor building materials. Finally, index I values were compared with the results of the application of a more accurate index - I(ρd), which accounts for thickness and density of building materials (Nuccetelli et al., 2015a). Considering the actual density and thickness of each concrete sample index - I(ρd) values are lower than index I values. As an appendix, a synthesis of main results concerning mechanical and chemical properties is provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Desarrollo de hormigones con aglomerante cal-puzolana fina como material cementicio suplementario Development of concrete mixtures with fine lime-pozzolan binder as supplementary cementitious material

    Directory of Open Access Journals (Sweden)

    Juan José Dopico

    2008-01-01

    size between 0.1-lOum, can fill the gaps between cement grains, while the larger pozzolan particles, having size between 10-lOQim, can fill the gaps between fine aggregate grains; this results in a much denser matrix. The addition of lime during concrete mixing also increases the Ca+2 and OH ion concentration, which results in a better and faster hydration of both ordinary portland cement (OPC and pozzolanic reaction products. The use of LPB as an active addition in some ultra-high performance concretes could lowe the cost of the product for equivalent strength and durability performance, through the use of less cement, thus improving the ecologic profile of the material. Results from an initial series of tests are examined in this paper; further testing is required to establish the benefits of the use of LPC in High Performance Concrete. Examples of applications of this work in concretes are also presented.

  1. Reinforced concrete bridges: effects due to corrosion and concrete young modulus variation

    Directory of Open Access Journals (Sweden)

    P. T. C. Mendes

    Full Text Available Most of the Brazilian bridges of federal road network are made of reinforced concrete and are more than 30 years old, with little information about the mechanical properties of their constitutive materials. Along the service life of these bridges much modification occurred on vehicles load and geometry and in design standard. Many of them show signs of concrete and steel deterioration and their stability conditions are unknown. With the aim of contributing to the structural evaluation of reinforced concrete bridges it was decided to analyze the stresses in reinforced concrete bridge sections to verify the effects due to reinforcement corrosion and variation of the concrete Young modulus on the stress distribution regarding several load patterns and cracking effects in a representative bridge of the Brazilian road network with different longitudinal reinforcement taxes and two concrete Young modulus, Ec and 0.5Ec, and with different percentage of reinforcement corrosion. The analysis considered two finite element models: frame and shell elements as well as solid elements. The results indicate that these variation effects are more significant in reinforcement bars than in concrete.

  2. Evaluation of the particle size of aggregates used in high density micro-concretes on the gamma-ray linear attenuation coefficient

    International Nuclear Information System (INIS)

    Andrello, Avacir Casanova; Albuquerque, Sergio

    2011-01-01

    Full text: When a component for protecting against ionizing radiation is designed, the main aim to be accomplished is to attenuate radiations to acceptable values, within tolerable limits. Several materials and arrangements can be utilized as protection, among which we can name concrete, steel, lead plates and mortars. Where low-energy radiations (some dozens of keVs) are involved, the main interaction between radiation and the material is the photoelectric effect, whose radiation absorption depends on the photon and specific atomic number of the absorbent. High-density concretes are made by mixing several materials, and the granulometric mixture and proportion of these will determine the physical and chemical features of the product. When the aim is to develop a concrete trace to be utilized as a protection against gamma and X-ray ionizing radiations in low energies, not only aspects of the structural behavior of the component or material must be evaluated, but also the behavior of the composing materials in face of radiation flow must be studied and known in order to develop a concrete with proper performance and that can meet application requirements; among such requirements we can mention the homogeneity of the applied concrete, which directly affects the effective linear attenuation rate of the component and can assure a good performance in face of demands. In this work, our aim was to evaluate what influence the particle size of the aggregates used for producing of assayed concretes has on the variation of the linear attenuation coefficient at different points of the same sample, results which can be used to obtain the inhomogeneity rate of each case of the analyzed concretes. The concrete samples were prepared with small thicknesses, ten millimeters (10 mm) and to perform the assays, a source of Americium-241 was used to transmit gamma-rays in order to determine the variation that existed in the linear attenuation coefficient of each sample. The following

  3. Very heavy iron-punching concretes

    International Nuclear Information System (INIS)

    Dubois, F.

    1966-01-01

    The present report deals with all the heavy iron-punching concretes, metallic wastes produced by the transformation industry. After a detailed description of the physical properties of metallic aggregates, a classification of heavy mortars is given, into three main categories: steel-shot grouts d = 5,3 - 6; steel-shot grouts mixed with a mineral d = 3,7 - 4,2; injection heavy grouts d = 3,5 - 4. The following chapter describes iron-punching concretes the most used in the atomic industry: iron-punching concretes mixed with cast-iron - iron-punching concretes mixed with magnetite; iron-punching concretes mixed with barite; iron-punching concretes mixed with limonite; iron-punching concretes mixed with boron. The compositions of these concretes are given together with their physical and mechanical characteristics. Numerous diagrams make it possible to find rapidly the proportions of the constituents of these concretes as a function of the required density. Technical advice and specifications are given in an appendix together with a bibliography of these heavy concretes. (author) [fr

  4. Material problems in accident analysis of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Bazant, Z.P.

    1977-01-01

    Due to their very high energy absorption capability, as well as their inherent safety advantages, prestressed concrete reactor vessels are presently being keenly studied as the basic barrier to contain hypothetical core disruptive accidents in a fast breeder reactor. One problem investigated is the nonlinear constitutive behavior and failure criteria for concrete. Previously, a comprehensive theory, called endochronic theory, has been shown to satisfy all basic currently known features of test data. Nevertheless uncertainty still exists with regard to non-proportional loading paths, for which good test data are lacking at present. An extension of the endochronic theory which correlates best with general experimental evidence and includes fracturing terms is given, and a comparison with vertex-type hardening in plasticity is made. A second problem which must be analysed in accident situations is the high temperature shock on the concrete walls (due to liquid sodium, up to 850 0 C). Refining a previous crude formulation, a rational model for calculating moisture and heat transfer and pore pressures in concrete subjected to thermal shock is presented. In conclusion, a new design concept, in which the concrete vessel is completely dehydrated and kept hot throughout its service life in order to substantially improve its response to thermal shock as well as liquid sodium contact, is described. (Auth.)

  5. Diffusion and Leaching Behavior of Radionuclides in Category 3 Waste Encasement Concrete and Soil Fill Material – Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Clayton, Libby N.; Powers, Laura; Recknagle, Kurtis P.; Wood, Marcus I.

    2011-08-31

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed, and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Some of the mobilization scenarios include (1) potential leaching of waste form before permanent closure cover is installed; (2) after the cover installation, long-term diffusion of radionuclides from concrete waste form into surrounding fill material; (3) diffusion of radionuclides from contaminated soils into adjoining concrete encasement and clean fill material. Additionally, the rate of

  6. The possibility of using high strength reinforced concrete

    International Nuclear Information System (INIS)

    Miura, Nobuaki

    1991-01-01

    There is recently much research about and developments in reinforced concrete using high strength concrete and reinforcement. As a result, some high-rise buildings and nuclear buildings have been constructed with such concrete. Reinforced concrete will be stronger in the future, but there is a limit to its strength defined by the character of the materials and also by the character of the reinforced concrete members made of the concrete and reinforcement. This report describes the merits and demerits of using high strength reinforced concrete. (author)

  7. AN EXPERIMENTAL STUDY ON STRENGTH AND PERMEABILITY PROPERTIES OF HIGH STRENGTH CONCRETE

    OpenAIRE

    Yedla Venkatesh * & G. Kalyan

    2017-01-01

    Concrete is the most important engineering material and the addition of some other materials may change the properties of concrete. Mineral additions which are also known as mineral admixtures have been used with cements for many years. There are two types of materials crystalline and non crystalline. High performance concrete (HPC) exceeds the properties and constructability of normal concrete. Micro silica or silica fume is very fine non crystalline material. Silica fume is produced in elec...

  8. Effect of various supplementary cementitious materials on rheological properties of self-consolidating concrete

    OpenAIRE

    Saleh Ahari, Reza; Erdem, Tahir Kemal; Ramyar, Kambiz

    2015-01-01

    In design of self-consolidating concrete (SCC) for a given application, the mixture's rheological parameters should be adjusted to achieve a given profile of yield stress and plastic viscosity. Supplementary cementitious materials (SCM) can be useful for this adjustment in addition to their other advantages. In this study, the rheological properties of 57 SCC mixtures with various SCM were investigated for a constant slump flow value. For this aim, various amounts of silica fume (SF), metakao...

  9. Shock characterization of an ultra-high strength concrete

    International Nuclear Information System (INIS)

    Erzar, B.; Pontiroli, C.; Buzaud, E.

    2016-01-01

    Nowadays, the design of protective structures may imply ultra-high performance concretes. These materials present a compressive strength 5 times higher than standard concretes. However, few reliable data on the shock response of such materials are available in the literature. Thus, a characterization of an ultra-high strength concrete has been conducted by means of hydrostatic and triaxial tests in the quasi-static regime, and plate impact experiments for shock response. Data have been gathered up to 6 GPa and a simple modelling approach has been applied to get a reliable representation of the shock compression of this concrete. (authors)

  10. Applications of Nano palm oil fuel ash and Nano fly ash in concrete

    Science.gov (United States)

    Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.

    2018-04-01

    This paper discusses the applications of Nano waste materials including palm oil fuel ash and fly ash in the concrete production. The implementation of nanotechnology has been instrumental in the development of significant interest among the stakeholders to improve the mechanical and chemical properties of materials involved in the production of concrete. Although many researchers have shown the potential of nanomaterials to increase strength and durability of concrete and improve its physical and chemical properties, there is still a knowledge gap regarding the preparation of Nano waste materials from agricultural waste to use as cement replacement instead of non-renewable materials. Therefore, it should be focused on to study Nano- waste materials to benefit from these characteristics during preparation of concrete mixtures. Therefore, this paper highlights the potential of waste materials in the Nano size to partially replace cement in concrete and achieve the same or better result than the traditional concrete. This paper recommends to conduct further experimental works to improve the concrete material properties by investigating the properties of waste materials in Nano size.

  11. Application of Non-pressure Reinforced Concrete Pipes in Modern Construction and Reconstruction of Highways

    Science.gov (United States)

    Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.

    2017-11-01

    Modern highway construction technologies provide for the quality water discharge systems to increase facilities’ service life. Pipeline operating conditions require the use of durable and reliable materials and structures. The experience in using reinforced concrete pipes for these purposes shows their utilization efficiency. The present paper considers the experience in the use of non-pressure reinforced concrete pipes manufactured by the German company SCHLOSSER-PFEIFFER under the Ural region geological and climatic conditions. The authors analyzed the actual operation of underground pipelines and effective loads upon them. A detailed study of the mechanical properties of reinforced concrete pipes is necessary to improve their production technology and to enhance their serviceability. The use of software-based methods helped to develop a mathematical model and to estimate the strength and crack resistance of reinforced concrete pipes at different laying depths. The authors carried out their complex research of the strain-stress behaviour of reinforced concrete pipes and identified the most hazardous sections in the structure. The calculations performed were confirmed by the results of laboratory tests completed in the construction materials, goods, and structures test center. Based on the completed research, the authors formulated their recommendations to improve the design and technology of non-pressure reinforced concrete pipes.

  12. The selection of disposition of precast concrete industrial building

    Directory of Open Access Journals (Sweden)

    Goleš Danica

    2014-01-01

    Full Text Available Design of precast concrete industrial building is a complex iterative procedure by which, from a set of known possible solutions, is found the one, that in optimal way meets the set requirements and limitations. By proper selection of the disposition of the building, number of possible solutions is reduced at an early stage of design. This paper presents the main requirements and limitations faced by the structure of precast concrete industrial building, as well as parameters that can be defined in dispositional solution: dimensions, orientation and position of the object, materials, structural system, geometric characteristics, foundation system, the way of decomposition of the structure to prefabricated elements, their bearings and connections, and others. Special emphasis is given to the proper selection of the parameters of disposition in function of set requirements and constraints. The work is intended for graduates and young engineers, to help them to properly systematize and apply the knowledge gained during education, and select the optimal dispositional solution the exact way.

  13. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    International Nuclear Information System (INIS)

    Naus, Dan J.; Mattus, Catherine H.; Dole, Leslie Robert

    2007-01-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a 'primer' on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a 'bench-scale' laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the 'primer,' a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures

  14. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Mattus, Catherine H [ORNL; Dole, Leslie Robert [ORNL

    2007-06-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a "primer" on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a "bench-scale" laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the "primer," a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures.

  15. Rapid Strengthening of Full-Sized Concrete Beams with Powder-Actuated fastening Systems and Fiber-Reinforced Polymer (FRP) Composite Materials

    National Research Council Canada - National Science Library

    Bank, Lawrence

    2002-01-01

    A research study was conducted to determine if the method of retrofitting reinforced concrete beams with powder-actuated fasteners and composite materials was applicable to full-scale flexural members...

  16. SU-E-T-264: New Concrete Designed and Evaluation for Megavoltage X Radiotherapy Facilities (CONTEK-RFH2).

    Science.gov (United States)

    Mera, M; Pereira, L; Mera, M; Pereira, L; Meilán, E; Moral, F Del; Teijeiro, A; Salgado, M; Andrade, B; Gomez, F; Fuentes-Vázquez, V; Caruncho, J; Medina, A

    2012-06-01

    The most common material for shielding is concrete, which can be made using various materials of different densities as aggregates. New techniques in radiotherapy, as IMRT and VMAT, require more monitor units and it is important to develop specifically designed shielding materials. Arraela S.L. has developed new concrete (CONTEK®-RFH2), which is made from an arid with a high percentage in iron (> 60%), and using the suitable sieve size, enables optimum compaction of the material and a high mass density, about 4.1-4.2 g/cm 3 . Moreover, aluminate cement, used as base, gives high resistance to high temperatures what makes this product be structurally resistant to temperatures up to 1200 ° C. The measurements were made in a LINAC Elekta SL18 to energies 6MV and 15 MV with a field size of 10×10 cm 2 for concrete samples in the form of tile 25cm×25cm with variable thickness. The linear attenuation coefficient, μm, was determined for each energy by fitting the data to Eq. 1, where Xxm is the exposure in air behind a thickness xm of the material, and X0 is the exposure in the absence of shielding. These results are compared with the ordinary concrete (2.35 g cm-3) for 6MV and 15MV energies (Ref. NCRP Report No.151). Results are tabulated in Table1. Results of attenuation are compared with ordinary concrete in Fig. 1. The new concrete CONTEK®-RFH2 increases photon attenuation and reduces the size of a shielded wall. A very high percentage in iron and a suitablesieve size approximately double the density of ordinary concrete. High mass attenuation coefficient makes this concrete an extremely desirable material for use in radiation facilities as shielding material for photon beam, and for upgrading facilities designed for less energy or less workload. © 2012 American Association of Physicists in Medicine.

  17. Performance of shcc with bacteria for concrete patch repair

    NARCIS (Netherlands)

    Sierra Beltran, M.G.; Jonkers, H.M.; Schlangen, E.

    2014-01-01

    The overall performance of concrete patch repair systems depends on the durability of and compatibility between the concrete substrate and the repair material. This paper investigates the performance of a new type of SHCC material with embedded bacteria as a repair material. The bacteria are a

  18. The Effect of a Plasticizing Admixture on the Properties of Hardened Concrete

    Directory of Open Access Journals (Sweden)

    Anastasija Abasova

    2012-11-01

    Full Text Available Concrete is material obtained mixing matrix material, coarse and small aggregates and water along with additives acquiring necessary properties of hardening. The quality and properties of raw material used for manufacturing concrete, V/C ratio and the uniformity of the compaction of the mixture lead to the fundamental properties of concrete. The compressive strength of concrete is one of the most important properties of concrete. The article deals with the impact of plasticizers on the structural properties of concrete choosing an optimal content of additives. Concrete plasticizers increasing the content of additive increase the strength of samples, the density and ultrasonic pulse of velocity and decrease absorption. Test results have revealed that a plasticizing admixture under dosing or overdosing can reduce the properties of concrete.

  19. Interim Report on Concrete Degradation Mechanisms and Online Monitoring Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neal, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The existing nuclear power plants in the United States have initial operating licenses of 40 years, though most of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. The research on online monitoring of concrete structures conducted under the Advanced Instrumentation, Information, and Control Systems Technologies Pathway of the Light Water Reactor Sustainability Program at Idaho National Laboratory will develop and demonstrate concrete structures health monitoring capabilities. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code margins of safety. Therefore, structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses available techniques and ongoing challenges in each of the four elements of the proposed framework with emphasis on degradation mechanisms and online monitoring techniques.

  20. Green options for anti-corrosion of high strength concrete incorporating ternary pozzolan materials

    Directory of Open Access Journals (Sweden)

    Chen Yuan-Yuan

    2017-01-01

    Full Text Available This paper applied the densified mixture design algorithm(DMDA method by incorporating ternary pozzolans (fly ash, slag and silica fume; mix I and mix II to design high strength concrete (HSC mixtures with w/cm ratios from 0.24 to 0.30. Concrete without pozzolans was used as a control group (mix III, w/c from 0.24 to 0.30, and silica fume (5% was added as a substitute for part of the cement and set as mix IV. Experiments performed compressive strength, four-point resistance meter to measure the conductivity, and rapid chloride ion penetrability tests (ASTM C1202 were assessed the anti-corrosion. The life cycle inventory of LEED suggested by the PCA indicated the green options for cementitious materials. Results showed that mix I and II indicated cement used, CO2 reduction, raw materials and energy consumption all decreased more 50% than mix III, and mix IV was 5% less. The compressive strength and anti-corrosion levels showed that mix I and II were better than mix III and IV, and with ternary pozzolans could enhance the long-term durability (92 days due to a resistivity greater 20 KΩ-cm and a charge passed lower than 2000 Coulombs. HSC with an appropriate design could reduce the carbon footprint and improve the durability.