WorldWideScience

Sample records for concrete flexural members

  1. Cracking in Flexural Reinforced Concrete Members

    DEFF Research Database (Denmark)

    Rasmussen, Annette Beedholm; Fisker, Jakob; Hagsten, Lars German

    2017-01-01

    The system of cracks developing in reinforced concrete is in many aspects essential when modelling structures in both serviceability- and ultimate limit state. This paper discusses the behavior concerning crack development in flexural members observed from tests and associates it with two different...... existing models. From the investigations an approach is proposed on how to predict the crack pattern in flexural members involving two different crack systems; primary flexural cracks and local secondary cracks. The results of the approach is in overall good agreement with the observed tests and captures...... the pronounced size effect associated with flexural cracking in which the crack spacing and crack widths are approximately proportional to the depth of the member....

  2. Fatigue Strength of Reinforced Concrete Flexural Members | Kuryllo ...

    African Journals Online (AJOL)

    It is well known that reinforced concrete flexural members subjected to cyclic loads behave differently compared with static bending and can collapse due to the fatigue of concrete, reinforcement or both when maximum fatigue stresses of concrete and steel are well below the corresponding static strengths. But up till now ...

  3. Tension stiffening in partially prestressed concrete flexural members

    International Nuclear Information System (INIS)

    Oukaili, K. N.

    2000-01-01

    Concrete tensile strength is not being zero, cracking does not extend to the neutral axis as assumed in standard cracked section analysis. In addition, un cracked concrete, which exists above the crack tip in the tension zone, contributes to the stiffness of the member. This paper discusses the influence of concrete tensile stress below the neut ural axis position at the cracked section on the tension stiffening phenomenon and deflection of progressively cracking partially prestressed concrete flexural members. The computation of the neutral axis location, which takes into consideration the effect of concrete in tension, can be achieved by solving iteratively tow simultaneous equation derived from forces and moments equilibrium, strain compatibility and linear stress - strain relationship in concrete across the section depth. Once the section depth after cracking is known, it can be used to calculate the effective moment of inertia for deflection analysis. (author). 13 refs., 3 figs., 1 table

  4. Flexural reinforced concrete member with FRP reinforcement

    OpenAIRE

    Putzolu, Mariana

    2017-01-01

    One of the most problematic point in construction is the durability of the concrete especially related to corrosion of the steel reinforcement. Due to this problem the construction sector, introduced the use of Fiber Reinforced Polymer, the main fibers used in construction are Glass, Carbon and Aramid. In this study, the author aim to analyse the flexural behaviour of concrete beams reinforced with FRP. This aim is achieved by the analysis of specimens reinforced with GFRP bars, with theoreti...

  5. An Experimental Study on Strengthening of Reinforced Concrete Flexural Members using Steel Wire Mesh

    Directory of Open Access Journals (Sweden)

    Al Saadi Hamza Salim Mohammed

    2017-01-01

    Full Text Available One of the major challenges and contemporary research in the field of structural engineering is strengthening of existing structural elements using readily available materials in the market. Several investigations were conducted on strengthening of various structural components using traditional and advanced materials. Many researchers tried to enhance the reinforced concrete (RC beams strength using steel plate, Glass and Carbon Fibre Reinforced Polymers (GFRP & CFRP. For the reason that high weight to the strength ratio and compatibility in strength between FRP composites and steel bars, steel plates and GFRP and CFRP composites are not used for strengthening works practically. Hence, in this present work the suitability of using wire mesh for the purpose of strengthening the RC flexural members is studied by conducting experimental works. New technique of strengthening system using wire mesh with a view to improve sectional properties and subsequently flexural strength of RC beams is adopted in this work. The results for experimental and theoretical analysis were compared and found that good correlation exists between them. The experimental results indicate that RC beams strengthened with steel wire mesh are easy technique for strengthening of existing flexural members.

  6. Flexural Cracking Behavior Of Steel Fiber Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ashraf Abdalkader

    2017-08-01

    Full Text Available Steel fibers are added to concrete due to its ability to improve the tensile strength and control propagation of cracks in reinforced concrete members. Steel fiber reinforced concrete is made of cement fine water and coarse aggregate in addition to steel fibers. In this experimental work flexural cracking behavior of reinforced concrete beams contains different percentage of hooked-end steel fibers with length of 50 mm and equivalent diameter of 0.5 mm was studied. The beams were tested under third-point loading test at 28 days. First cracking load maximum crack width cracks number and load-deflection relations were investigated to evaluate the flexural cracking behavior of concrete beams with 34 MPa target mean strength. Workability wet density compressive and splitting tensile strength were also investigated. The results showed that the flexural crack width is significantly reduced with the addition of steel fibers. Fiber contents of 1.0 resulted in 81 reduction in maximum crack width compared to control concrete without fiber. The results also showed that the first cracking load and maximum load are increased with the addition of steel fibers.

  7. An experimental study of crack development in flexural reinforced concrete members

    DEFF Research Database (Denmark)

    Rasmussen, Annette Beedholm; Hagsten, Lars German; Würst Sørensen, Bjarke

    2017-01-01

    This paper presents the results of an experimental program of eight reinforced concrete beams carried out in order to investigate the development of cracks related to flexure. To be able to investigate possible size effects with respect to cracking, beams of two different depths were tested...

  8. Studying of Compressive, Tensile and Flexural Strength of Concrete by Using Steel Fibers

    Directory of Open Access Journals (Sweden)

    Muslim Abdul-Ameer

    2016-12-01

    Full Text Available This research aims to study the effect of adding steel fibers on the mechanical properties of concrete. Steel fiber has a very significant effect on concrete because it delays the propagation of micro cracks that generate due to loading on concrete members such as beams and slabs, therefore ,it increases the strength of concrete. The steel fiber was used in this study as a percentage of the volume of concrete. Mix proportion was 1: 2:4 (cement: sand: gravel by volume for all mixes and using 0% as (control mix,0.1 %,0.2%,0.5 % and 1.0% of steel fibers, these ratios leads to increase the compressive, tensile ,and flexural strength of concrete, where the improvement in flexural strength was significant

  9. Evaluation of tension stiffening effect on the crack width calculation of flexural RC members

    Directory of Open Access Journals (Sweden)

    Said M. Allam

    2013-06-01

    Full Text Available Building codes consider the tension stiffening when calculating the crack width of the flexural members. A simple analytical procedure is proposed for the determination of forces, stresses and strains acting on a reinforced concrete section subjected to flexure considering the concrete contribution in tension up to tensile concrete strain corresponding to the cracking strength of concrete. This analytical method gives the minimum value (lower bound of tension stiffening. Also, a commercial Finite Element Program (ABAQUS 2007 was used to perform non-linear analysis in order to evaluate the total contribution of the tensioned concrete in carrying loads which may be considered as the upper bound of tension stiffening. In addition, a comparison is carried out among the different codes using four reinforced concrete rectangular models to compare and evaluate the tension stiffening with proposed analytical lower bound tension stiffening and upper bound as obtained by ABAQUS. The models include different percentages of flexural steel ratio. The comparison revealed that the codes’ equations always consider tension stiffening lying between lower and upper bound of tension stiffening proposed in this study. Also, the study showed that the tension stiffening decreases with the increase of the percentage of the flexural reinforcement ratio.

  10. STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS

    International Nuclear Information System (INIS)

    Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

    2001-01-01

    This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits

  11. Flexural strength of structural concrete repaired with HBPMM cement

    International Nuclear Information System (INIS)

    Memon, G.H.; Khaskheli, G.B.; Kumar, A.

    2009-01-01

    To repair damaged concrete structures, Dadabhoy Cement Factory in Sindh has launched a product known as HBPMM (Hi-Bond Polymer Modified Mortar) cement. HBPMM is used to repair various concrete structures in Pakistan but the experimental back up regarding the real performance of the product, as far as flexural strength of concrete is concerned, is not well known yet. This study is thus aimed to investigate the flexural strength of structural concrete repaired with HBPMM compared to that repaired with OPC (Ordinary Portland Cement). In total 32 concrete beams (6x6x18) having compressive strength of 3000 and 5000 psi were manufactured. To obtain flexural strength of the beams, these were splitted by using a UTM (Universal Testing Machine). Beams were then repaired with different applications of HBPMM and OPC. After 28 days of curing, the repaired beams were re-splitted to determine the flexural strength of repaired beams. Results show that both HBPMM and OPC are not very effective. However, the performance of HBPMM remained slightly better than that of OPC. Both OPC and HBPMM remained more efficient in case of 5000 psi concrete than that of 3000 psi concrete. Flexural strength of repaired beams could be increased by increasing application of the repairing material. (author)

  12. Flexural strengthening of reinforced lightweight polystyrene aggregate concrete beams with near-surface mounted GFRP bars

    Energy Technology Data Exchange (ETDEWEB)

    Tang, W.C.; Balendran, R.V.; Nadeem, A.; Leung, H.Y. [City University of Hong Kong (China). Department of Building and Construction

    2006-10-15

    Application of near-surface mounted (NSM) fibre reinforced polymer (FRP) bars is emerging as a promising technology for increasing flexural and shear strength of deficient reinforced concrete (RC) members. In order for this technique to perform effectively, the structural behaviour of RC elements strengthened with NSM FRP bars needs to be fully characterized. This paper focuses on the characterization of flexural behaviour of RC members strengthened with NSM glass-FRP bars. Totally, 10 beams were tested using symmetrical two-point loads test. The parameters examined under the beam tests were type of concretes (lightweight polystyrene aggregate concrete and normal concrete), type of reinforcing bars (GFRP and steel), and type of adhesives. Flexural performance of the tested beams including modes of failure, moment-deflection response and ultimate moment capacity are presented and discussed in this paper. Results of this investigation showed that beams with NSM GFRP bars showed a reduction in ultimate deflection and an improvement in flexural stiffness and bending capacity, depending on the PA content of the beams. In general, beams strengthened with NSM GFRP bars overall showed a significant increase in ultimate moment ranging from 23% to 53% over the corresponding beams without NSM GFRP bars. The influence of epoxy type was found conspicuously dominated the moment-deflection response up to the peak moment. Besides, the ultimate moment of concrete beams reinforced with GFRP bars could be predicted satisfactorily using the equation provided in ACI 318-95 Building Code. (author)

  13. Flexural Behavior of Corroded Reinforced Recycled Aggregate Concrete Beams

    Directory of Open Access Journals (Sweden)

    Taoping Ye

    2018-01-01

    Full Text Available Recycling concrete not only reduces the use of virgin aggregate but also decreases the pressure on landfills. As a result, recycled coarse aggregate (RCA is extensively recommended for new construction projects. However, the flexural behavior of corroded reinforced recycled aggregate concrete (RAC beams is uncertain. The experimental research presented in this paper was performed to investigate the flexural behavior of corroded reinforced RAC beams compared to that of corroded reinforced natural aggregate concrete (NAC beams and consequently explore the possibility of using RAC beams in corrosive environments. Four different percentages of RCA in total mass of coarse aggregate in concrete mixtures (0%, 33%, 66%, and 100% and two different concrete strengths (C30, C60 were the governing parameters. The electrochemical method was adopted to accelerate steel corrosion. Full-scale tests were performed on eight simply supported beams until the failure load was reached. Comparison of load-deflection behavior, crack patterns, failure modes, ductility, and ultimate flexural capacity of corroded reinforced NAC and RAC beams was made based on the experimental results obtained. The comparison results show that the flexural behavior of corroded reinforced RAC beams with an appropriate percentage of RCA is satisfactory compared to the behavior of NAC beams.

  14. Study on reinforced lightweight coconut shell concrete beam behavior under flexure

    International Nuclear Information System (INIS)

    Gunasekaran, K.; Annadurai, R.; Kumar, P.S.

    2013-01-01

    Highlights: ► Use of coconut shell as aggregate in concrete. ► Behavior of coconut shell concrete under flexure. ► SEM images of cement, sand, coconut shell and coconut shell aggregate concrete. ► Coconut shell hollow blocks and precast slabs are used in practice. - Abstract: Coconut shell has been used as coarse aggregate in the production of concrete. The flexural behavior of reinforced concrete beam made with coconut shell is analyzed and compared with the normal control concrete. Twelve beams, six with coconut shell concrete and six with normal control concrete, were fabricated and tested. This study includes the moment capacity, deflection, cracking, ductility, corresponding strains in both compression and tension, and end rotation. It was found that the flexural behavior of coconut shell concrete is comparable to that of other lightweight concretes. The results of concrete compression strain and steel tension strain showed that coconut shell concrete is able to achieve its full strain capacity under flexural loadings. Under serviceability condition, deflection and cracking characteristics of coconut shell concrete are comparable with control concrete. However, the failure zones of coconut shell concrete were larger than for control concrete beams. The end rotations of the coconut shell concrete beams just prior to failure values are comparable to other lightweight concretes. Coconut shell concrete was used to produce hollow blocks and precast slab in 2007 and they are being subjected to some practical loading till today without any problems such as deflection, bending, cracks, and damages for the past five years

  15. Flexural behavior of bonded post-tensioned concrete beams under strand corrosion

    International Nuclear Information System (INIS)

    Zhang, Xuhui; Wang, Lei; Zhang, Jianren; Ma, Yafei; Liu, Yongming

    2017-01-01

    Highlights: • Flexural behavior of bonded PT beams with strand corrosion is experimental tested. • Cracking, stiffness, ultimate strength, failure & ductility of beams are clarified. • A coefficient is proposed to measure incompatible strain between strand & concrete. - Abstract: An experimental test is performed to investigate the flexural behavior of bonded post-tensioned concrete beams under strand corrosion. Eight beams are designed and subjected to accelerated method to different corrosion levels. The initial stiffness of beams is observed by cyclic loading-unloading test during the corrosion procedure. Corrosion effects on concrete cracking, post-cracking stiffness, ultimate strength, failure mode and ductility are then clarified by the flexural test. And, a coefficient is introduced to quantify the incompatible strain between corroded strand and concrete. Results show that the prestress force loss of strand has almost the linear relation with corrosion loss. Strand corrosion affects slightly the initial stiffness of beam before flexural cracking, but degrades significantly the post-cracking stiffness of beam as the corrosion loss exceeds 27.0%. Slight corrosion of strand has little effects on beams flexural behavior. The severe corrosion, however, decreases the number of crack, changes the failure mode form the concrete crushing to strand rupture, degrades the ductility and the ultimate strength of beams, and leads to the incompatible strain between strand and concrete. In the present test, the incompatible strain decreases about 20% of the flexural strength as the corrosion loss exceeds 27.0%.

  16. Flexural behavior of bonded post-tensioned concrete beams under strand corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuhui [College of Civil Engineering and Mechanics, Xiangtan University, 411105 Xiangtan (China); School of Civil Engineering and Architecture, Changsha University of Science & Technology, 410114 Changsha (China); Industry Key Laboratory of Traffic Infrastructure Security Risk Management (CSUST), 410114 Changsha (China); Wang, Lei, E-mail: leiwlei@hotmail.com [School of Civil Engineering and Architecture, Changsha University of Science & Technology, 410114 Changsha (China); Industry Key Laboratory of Traffic Infrastructure Security Risk Management (CSUST), 410114 Changsha (China); Zhang, Jianren; Ma, Yafei [School of Civil Engineering and Architecture, Changsha University of Science & Technology, 410114 Changsha (China); Industry Key Laboratory of Traffic Infrastructure Security Risk Management (CSUST), 410114 Changsha (China); Liu, Yongming [School for Engineering of Matter, Transport and Energy, Arizona State University, 85281 Tempe, AZ (United States)

    2017-03-15

    Highlights: • Flexural behavior of bonded PT beams with strand corrosion is experimental tested. • Cracking, stiffness, ultimate strength, failure & ductility of beams are clarified. • A coefficient is proposed to measure incompatible strain between strand & concrete. - Abstract: An experimental test is performed to investigate the flexural behavior of bonded post-tensioned concrete beams under strand corrosion. Eight beams are designed and subjected to accelerated method to different corrosion levels. The initial stiffness of beams is observed by cyclic loading-unloading test during the corrosion procedure. Corrosion effects on concrete cracking, post-cracking stiffness, ultimate strength, failure mode and ductility are then clarified by the flexural test. And, a coefficient is introduced to quantify the incompatible strain between corroded strand and concrete. Results show that the prestress force loss of strand has almost the linear relation with corrosion loss. Strand corrosion affects slightly the initial stiffness of beam before flexural cracking, but degrades significantly the post-cracking stiffness of beam as the corrosion loss exceeds 27.0%. Slight corrosion of strand has little effects on beams flexural behavior. The severe corrosion, however, decreases the number of crack, changes the failure mode form the concrete crushing to strand rupture, degrades the ductility and the ultimate strength of beams, and leads to the incompatible strain between strand and concrete. In the present test, the incompatible strain decreases about 20% of the flexural strength as the corrosion loss exceeds 27.0%.

  17. FLEXURAL TOUGHNESS OF STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Fehmi ÇİVİCİ

    2006-02-01

    Full Text Available Fiber concrete is a composite material which has mechanical and physical characteristics unlike plain concrete. One of the important mechanical characteristics of fiber concrete is its energy absorbing capability. This characteristics which is also called toughness, is defined as the total area under the load-deflection curve. A number of composite characteristics such as crack resistance, ductility and impact resistance are related to the energy absorbtion capacity. According to ASTM C 1018 and JSCE SF-4 the calculation of toughness is determined by uniaxial flexural testing. Fiber concrete is often used in plates such as bridge decks, airport pavements, parking areas, subjected to cavitation and erosion. In this paper, toughness has been determined according to ASTM C 1018 and JSCE SF-4 methods by testing beam specimens. Energy absorbing capacities of plain and steel fiber reinforced concrete has been compared by evaluating the results of two methods. Also plain and steel fiber reinforced plate specimens behaviors subjected to biaxial flexure are compared by the loaddeflection curves of each specimen.

  18. Flexural Behavior of RC Members Using Externally Bonded Aluminum-Glass Fiber Composite Beams

    Directory of Open Access Journals (Sweden)

    Ki-Nam Hong

    2014-03-01

    Full Text Available This study concerns improvement of flexural stiffness/strength of concrete members reinforced with externally bonded, aluminum-glass fiber composite (AGC beams. An experimental program, consisting of seven reinforced concrete slabs and seven reinforced concrete beams strengthened in flexure with AGC beams, was initiated under four-point bending in order to evaluate three parameters: the cross-sectional shape of the AGC beam, the glass fiber fabric array, and the installation of fasteners. The load-deflection response, strain distribution along the longitudinal axis of the beam, and associated failure modes of the tested specimens were recorded. It was observed that the AGC beam led to an increase of the initial cracking load, yielding load of the tension steels and peak load. On the other hand, the ductility of some specimens strengthened was reduced by more than 50%. The A-type AGC beam was more efficient in slab specimens than in beam specimens and the B-type was more suitable for beam specimens than for slabs.

  19. The optimum content of rubber ash in concrete: flexural strength

    Science.gov (United States)

    Senin, M. S.; Shahidan, S.; Shamsuddin, S. M.; Ariffin, S. F. A.; Othman, N. H.; Rahman, R.; Khalid, F. S.; Nazri, F. M.

    2017-11-01

    Discarded scrap tyres have become one of the major environmental problems nowadays. Several studies have been carried out to reuse waste tires as an additive or sand replacement in concrete with appropriate percentages of tire rubber, called as rubberized concrete to solve this problem. The main objectives of this study are to investigate the flexural strength performance of concrete when adding the rubber ash and also to analyse the optimum content of rubber ash in concrete prisms. The performance total of 30 number of concrete prisms in size of 100mm x 100mm x 500 mm were investigated, by partially replacement of rubber ash with percentage of 0%, 3%, 5%, 7% and 9% from the volume of the sand. The flexural strength is increased when percentage of rubber ash is added 3% from control concrete prism, RA 0 for both concrete prism age, 7 days and 28 days with value 1.21% and 0.976% respectively. However, for RA 5, RA 7 and RA 9, the flexural strength was decreased compared to the control for both age, 7 days and 28 days. In conclusion, 3% is the optimum content of rubber ash in concrete prism for both concrete age

  20. Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2016-03-01

    Full Text Available The flexural failure of plain concrete beam occurs along with development of flexural crack on beam. In this paper by using ABAQUS, mechanism failure of plain concrete beam under three steps have been simulated. The cracking moment has been analytically calculated and applied on the both sides of the fixed beam, and flexural crack has been simulated on beam. Displacement, von Mises, load reaction, displacementcrack length, von Mises-crack length and von Mises-displacement of beams have been graphical depicted. Results indicated that, the flexural crack governs beam mechanism failure and its effects on beam resistance failure. It has been found that the flexural crack in initial stage it developed slowly and changes to be fast at the final stage of collapsing beam due to reduction of the flexural resistance of beam. Increasing mechanical properties of concrete, collapse displacement is reduced.

  1. An experimental study on flexural strength enhancement of concrete by means of small steel fibers

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2013-10-01

    Full Text Available Cost effective improvement of the mechanical performances of structural materials is an important goal in construction industry. To improve the flexural strength of plain concrete so as to reduce construction costs, the addition of fibers to the concrete mixture can be adopted. The addition of small steel fibers with different lengths and proportion have experimentally been analyzed in terms of concrete flexural strength enhancement. The main objectives of the present study are related to the evaluation of the influence of steel fibers design on the increase of concrete flexural characteristics and on the mode of failure. Two types of beams have been investigated. The force level, deflection and time to failure of beams have been measured. The shear crack, flexural crack and intermediate shear-flexural crack have been studied. The steel fiber content controlled crack morphology. Flexural strength and time to failure of fiber reinforce concrete could be further enhanced if, instead of smooth steel fibers, corrugated fibers were used.

  2. comparative evaluation of the flexural strength of concrete and colcrete

    African Journals Online (AJOL)

    concrete and polymer concrete, from continuous researches being carried out on. 13 ... COMPARATIVE EVALUATION OF THE FLEXURAL STRENGTH OF CONCRETE AND COLCRETE advantage of being able to use larger sizes of ... and low permeability, colcrete has found applications in tunnel linings, dams, bridges.

  3. Flexural Behavior of GFRP Tubes Filled with Magnetically Driven Concrete.

    Science.gov (United States)

    Xie, Fang; Chen, Ju; Dong, Xinlong; Feng, Bing

    2018-01-08

    Experimental investigation of GFRP (glass fiber reinforced polymer) tubes that were filled with magnetically driven concrete was carried out to study the flexural behavior of specimens under bending. Specimens having different cross section and lengths were tested. The test specimens were fabricated by filling magnetically driven concrete into the GFRP tubes and the concrete was vibrated using magnetic force. Specimens vibrated using vibrating tube were also tested for comparison. In addition, specimens having steel reinforcing bars and GFRP bars were both tested to study the effect of reinforcing bars on the magnetically driven concrete. The load-displacement curves, load-strain curves, failure mode, and ultimate strengths of test specimens were obtained. Design methods for the flexural stiffness of test specimens were also discussed in this study.

  4. An experimental study on the flexural and shear behavior of steel plate concrete—reinforced concrete connected structures

    International Nuclear Information System (INIS)

    Hwang, K.M.; Lee, K.J.; Yang, H.J.; Kim, W.K.

    2013-01-01

    Highlights: ► This paper confirmed the structural behavior of the connection plane between a RC and a SC member. ► Out-of-plane flexural load tests verified the appropriateness of the ductile non-contact splice length. ► The test results for the in-plane shear load showed the needlessness of horizontal bars in the SC member. ► In order to consider dynamic loads such as earthquakes, cyclic loading tests were carried out. ► Numerical analysis was carried out to verify test results and its results was compared with them. -- Abstract: This paper describes an experimental study on the structural behavior of the joint plane between a RC (reinforced concrete) wall and a SC (steel plate concrete) wall under out-of-plane flexural loads and in-plane shear loads. L- and I-shaped test specimens were produced to efficiently assess the flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquakes, cyclic loading tests were carried out. The out-of-plane flexural test conducted on the short development length L-shaped specimen with a non-contact splice length exhibited a ductile failure mode that surpassed the nominal strength, verifying the validity of the splice length used in its design. The in-plane shear test was conducted on two I-shaped specimens varying the compositional presence of horizontal bars in the SC member. The test results showed that the capacity of the specimens was more than their nominal strength regardless of the compositional presence of horizontal bars. The shear friction tests of the RC–SC member connection conducted on the other L-shaped specimen caused the failure of the SC member and verified a shear resistance of at least 85.5% compared to the theoretical value

  5. Flexural Performance of Transparent Plastic Bar Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Byoungil Kim

    2018-02-01

    Full Text Available In this study, experiments were conducted to derive a mix design for improving the flexural performance of light transparent concrete, which is attracting much attention and interest as an interior and exterior material for buildings, so that it could be easily applied in the field as a non-structural element by securing a lightweight, workability, and economic efficiency through the improvement of the concrete mix design and the use of economical materials for promoting its practical use. It was found that the mixing of polyvinyl alcohol (PVA fiber was effective in improving the consistency by preventing the aggregate from floating due to the mixing of lightweight aggregate with a low specific gravity. The flexural performance test results showed that the load transfer factor (LTF from the concrete matrix to the fiber was highest in the test specimens without plastic bars, followed by those with 5 and 10 mm plastic bars, respectively.

  6. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    Science.gov (United States)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  7. Long-Term Flexural Behaviors of GFRP Reinforced Concrete Beams Exposed to Accelerated Aging Exposure Conditions

    Directory of Open Access Journals (Sweden)

    Yeonho Park

    2014-06-01

    Full Text Available This study investigates the impact of accelerated aging conditions on the long-term flexural behavior and ductility of reinforced concrete (RC members with glass fiber-reinforced polymer (GFRP bars (RC-GFRP specimen and steel bars (RC-steel specimen. A total of thirty six specimens were designed with different amounts of reinforcement with three types of reinforcing bars (i.e., helically wrapped GFRP, sand-coated surface GFRP and steel. Eighteen specimens were subjected to sustained loads and accelerated aging conditions (i.e., 47 °C and 80% relative humidity in a chamber. The flexural behavior of specimens under 300-day exposure was compared to that of the companion specimens without experiencing accelerated aging conditions. Results indicate that the accelerated aging conditions reduced flexural capacity in not only RC-steel, but also RC-GFRP specimens, with different rates of reduction. Different types of GFRP reinforcement exhibited different rates of degradation of the flexural capacity when embedded in concrete under the same exposure conditions. Several existing models were compared with experimental results for predicting the deflection and deformability index for specimens. Bischoff and Gross’s model exhibited an excellent prediction of the time-dependent deflections. Except for the deformability index proposed by Jaeger, there was no general trend related to the aging duration. This study recommends the need for further investigation on the prediction of the deformability index.

  8. Ductility of Reinforced Concrete Structures in Flexure

    DEFF Research Database (Denmark)

    Hestbech, Lars

    2013-01-01

    In this thesis, a rotational capacity model for flexural reinforced concrete elements is presented. The model is based on the general assumption, that any other failure mode than bending is prevented by proper design. This includes failure due to shear, anchorage, concentrated loads etc. Likewise...... are not necessarily so. An example shows the applicability of the model and a parametric study shows the advantages of the model compared with code provisions. Finally, improvements of the compression zone modelling is performed in order to include a better performance when concrete crushing is the failure criterion...

  9. Flexural and Shear Behavior of FRP Strengthened AASHTO Type Concrete Bridge Girders

    Directory of Open Access Journals (Sweden)

    Nur Yazdani

    2016-01-01

    Full Text Available Fiber-reinforced polymers (FRP are being increasingly used for the repair and strengthening of deteriorated or unsafe concrete structures, including structurally deficient concrete highway bridges. The behavior of FRP strengthened concrete bridge girders, including failure modes, failure loads, and deflections, can be determined using an analytical finite element modeling approach, as outlined in this paper. The differences in flexural versus shear FRP strengthening and comparison with available design guidelines are also beneficial to design professionals. In this paper, a common AASHTO type prestressed concrete bridge girder with FRP wrapping was analyzed using the ANSYS FEM software and the ACI analytical approach. Both flexural and shear FRP applications, including vertical and inclined shear strengthening, were examined. Results showed that FRP wrapping can significantly benefit concrete bridge girders in terms of flexure/shear capacity increase, deflection reduction, and crack control. The FRP strength was underutilized in the section selected herein, which could be addressed through decrease of the amount of FRP and prestressing steel used, thereby increasing the section ductility. The ACI approach produced comparable results to the FEM and can be effectively and conveniently used in design.

  10. Probabilistic Flexural Fatigue in Plain and Fiber-Reinforced Concrete.

    Science.gov (United States)

    Ríos, José D; Cifuentes, Héctor; Yu, Rena C; Ruiz, Gonzalo

    2017-07-07

    The objective of this work is two-fold. First, we attempt to fit the experimental data on the flexural fatigue of plain and fiber-reinforced concrete with a probabilistic model (Saucedo, Yu, Medeiros, Zhang and Ruiz, Int. J. Fatigue, 2013, 48, 308-318). This model was validated for compressive fatigue at various loading frequencies, but not for flexural fatigue. Since the model is probabilistic, it is not necessarily related to the specific mechanism of fatigue damage, but rather generically explains the fatigue distribution in concrete (plain or reinforced with fibers) for damage under compression, tension or flexion. In this work, more than 100 series of flexural fatigue tests in the literature are fit with excellent results. Since the distribution of monotonic tests was not available in the majority of cases, a two-step procedure is established to estimate the model parameters based solely on fatigue tests. The coefficient of regression was more than 0.90 except for particular cases where not all tests were strictly performed under the same loading conditions, which confirms the applicability of the model to flexural fatigue data analysis. Moreover, the model parameters are closely related to fatigue performance, which demonstrates the predictive capacity of the model. For instance, the scale parameter is related to flexural strength, which improves with the addition of fibers. Similarly, fiber increases the scattering of fatigue life, which is reflected by the decreasing shape parameter.

  11. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Science.gov (United States)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  12. Flexural behaviour of reinforced concrete beams with discrete steel – polypropylene fibres

    Directory of Open Access Journals (Sweden)

    Amizah Wan Jusoh Wan

    2017-01-01

    Full Text Available This paper discusses the experimental results on the flexural test of concrete containing different proportions of steel fibre (SF and polypropylene fibre (PPF. The flexural test was carried out under 4-point bending load and followed the relevant standards to FRC. Hooked-end deformed SF fibre with 60 mm length and fibrillated virgin PPF fibre with 19 mm length were used in this study. Meanwhile, the concrete was designed for high strength concrete of C60. The mixture included both single SF and PPF, and also the combination of both fibres; Control beam (PC, beam with 75%SF, beam with 75%SF + 25%PPF and beam with 25%PPF. The total fibre volume fraction (Vf was fixed at 1.5%. The experimental results show that the percentage proportion of combined SF-PPF at 75-25% had the best performance for its flexural capacity. Mixture with single PPF was also found not effective in delaying the onset of tension cracks and to increase the tensile strength of the concrete. Experimental result also shows beam with 75%SF +25%PPF had their structural stiffness improved the most as compared with the others. For the compressive strength, beam with 75%SF + 25%PPF also revealed comparable performance with the control for high strength composite concrete.

  13. Compressive and flexural strength of concrete containing palm oil biomass clinker and polypropylene fibres

    Science.gov (United States)

    Ibrahim, M. H. Wan; Mangi, Sajjad Ali; Burhanudin, M. K.; Ridzuan, M. B.; Jamaluddin, N.; Shahidan, S.; Wong, YH; Faisal, SK; Fadzil, M. A.; Ramadhansyah, P. J.; Ayop, S. S.; Othman, N. H.

    2017-11-01

    This paper presents the effects of using palm oil biomass (POB) clinker with polypropylene (PP) fibres in concrete on its compressive and flexural strength performances. Due to infrastructural development works, the use of concrete in the construction industry has been increased. Simultaneously, it raises the demand natural sand, which causes depletion of natural resources. While considering the environmental and economic benefits, the utilization of industrial waste by-products in concrete will be the alternative solution of the problem. Among the waste products, one of such waste by-product is the palm oil biomass clinker, which is a waste product from burning processes of palm oil fibres. Therefore, it is important to utilize palm oil biomass clinker as partial replacement of fine aggregates in concrete. Considering the facts, an experimental study was conducted to find out the potential usage of palm oil fibres in concrete. In this study, total 48 number of specimens were cast to evaluate the compressive and flexural strength performances. Polypropylene fibre was added in concrete at the rate of 0.2%, 0.4% and 0.6%, and sand was replaced at a constant rate of 10% with palm oil biomass clinker. The flexural strength of concrete was noticed in the range of 2.25 MPa and 2.29 MPa, whereas, the higher value of flexural strength was recorded with 0.4% polypropylene fibre addition. Hence, these results show that the strength performances of concrete containing POB clinker could be improved with the addition of polypropylene fibre.

  14. Photogrammetric Assessment of Flexure Induced Cracking of Reinforced Concrete Beams under Service Loads

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Geiker, Mette Rica; Stang, Henrik

    2006-01-01

    Reinforced concrete structures are known to crack due to restrained shrinkage, temperature gradients, application of load, and expansive reactions. Cracks provide paths for rapid ingress of moisture, chlorides, and other aggressive substances, which may affect the long-term durability...... of the structure. For example, concrete cracks located at the reinforcing steel may contribute to a rapid corrosion initiation and propagation. Previous research has shown that cracked reinforced concrete under static flexural loading may have an increased ingress of chloride ions along the reinforcement....../concrete interface. The aim of this paper is to provide a detailed description of the development of cracks in reinforced concrete under flexural load. Cracking at both realistic service load levels (1.0-1.8 times estimated cracking load) and unrealistically high service load levels (> 0.5 times beam capacity) has...

  15. Prediction of Mean and Design Fatigue Lives of Self Compacting Concrete Beams in Flexure

    Science.gov (United States)

    Goel, S.; Singh, S. P.; Singh, P.; Kaushik, S. K.

    2012-02-01

    In this paper, result of an investigation conducted to study the flexural fatigue characteristics of self compacting concrete (SCC) beams in flexure are presented. An experimental programme was planned in which approximately 60 SCC beam specimens of size 100 × 100 × 500 mm were tested under flexural fatigue loading. Approximately 45 static flexural tests were also conducted to facilitate fatigue testing. The flexural fatigue and static flexural strength tests were conducted on a 100 kN servo-controlled actuator. The fatigue life data thus obtained have been used to establish the probability distributions of fatigue life of SCC using two-parameter Weibull distribution. The parameters of the Weibull distribution have been obtained by different methods of analysis. Using the distribution parameters, the mean and design fatigue lives of SCC have been estimated and compared with Normally vibrated concrete (NVC), the data for which have been taken from literature. It has been observed that SCC exhibits higher mean and design fatigue lives compared to NVC.

  16. Predicting Flexural Strength of Concretes Incorporating River Gravel ...

    African Journals Online (AJOL)

    In most of these cases the cause of the collapse could be traced to the strength of the construction materials which is usually concrete. Secondly, experimental ... The flexural strength predictions were compared with predictions from an alternative model based on regression analysis. The results of the study show that for the ...

  17. Long-term deflection and flexural behavior of reinforced concrete beams with recycled aggregate

    International Nuclear Information System (INIS)

    Choi, Won-Chang; Yun, Hyun-Do

    2013-01-01

    Highlights: • Long-term deformation of recycled aggregate concrete beams was examined. • Three beams were monitored for over 380 days. • Influence of recycled aggregate on the long-term performance. • Comparison of that between normal and recycled aggregate concrete beams. - Abstract: This paper presents experimental results on the long-term deformations of recycled aggregate concrete (RAC) beams for over 1 year (380 days) and flexural behavior of RAC beams after exposure to sustained loading. Three reinforced concrete (RC) beam specimens were fabricated with replacement percentage of aggregate (100% natural aggregate, 100% recycled coarse aggregate, and 50% recycled fine aggregate) and subjected to sustained loading that is 50% of the nominal flexural capacity. During the sustained loading period (380 days), the long-term deflection due to creep and shrinkage was recorded and compared with predicted behavior that was determined based on current specifications (ACI 318 Code). After measuring the long-term deflection for 380 days, four-point bending tests were conducted to investigate the flexural behavior of RC beams after exposure to sustained loading and determine any reduction in flexural capacity. A modified equation to predict the long-term deflection values for RC beams with recycled aggregate is proposed, and the experimental results are compared with the predictions calculated using the ACI 318 Code provisions

  18. Flexural Behaviour of Precast Aerated Concrete Panel (PACP with Added Fibrous Material: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul Rahim Noor Hazlin

    2017-01-01

    Full Text Available The usage of precast aerated concrete panel as an IBS system has become the main alternative to conventional construction system. The usage of this panel system contributes to a sustainable and environmental friendly construction. This paper presents an overview of the precast aerated concrete panel with added fibrous material (PACP. PACP is fabricated from aerated foamed concrete with added Polypropylene fibers (PP. The influence of PP on the mechanical properties of PACP are studied and reviewed from previous research. The structural behaviour of precast concrete panel subjected to flexure load is also reviewed. It is found that PP has significant affects on the concrete mixture’s compressive stregth, tensile strength and flexural strength. It is also found that PP manage to control the crack propagation in the concrete panel.

  19. Investigation on the flexural behaviour of reinforced concrete beams using phyllite aggregates from mining waste

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Afrifa, Russell Owusu

    2011-01-01

    Highlights: → Most parts of the world's geology is underlain by phyllite rocks. → Crack widths not well predicted so may not be used in water retaining structures. → Shear failure mode and low displacement ductility often observed in beams. → Concrete shear capacity observed lower than code values. -- Abstract: This paper investigated the flexural behaviour of 12 reinforced concrete (RC) beams made of phyllite coarse aggregates produced as by-product of underground gold mining activity. The beams were tested to failure under four point test. Collapse of the beams which were adequately designed against shear failure occurred mostly through either flexural-shear failure and/or diagonal tension failure. The experimental failure loads averaged approximately 115% of the theoretical failure loads. It was observed that the beams developed early shear cracks and higher flexural crack widths than allowable at service loads. Deflections compared reasonably well with the design code requirement but displacement ductility was low. It is recommended that British Standard (BS) 8110 design concrete shear stress values be multiplied by 0.8 to assure that the predicted shear capacity of phyllite concrete would be low and reasonable as compared to flexural capacity. In that case, BS 8110 can be used to provide adequate load factor against flexural failure for under-reinforced RC beams made of phyllite coarse aggregates.

  20. Mechanical properties and flexure behaviour of lightweight foamed concrete incorporating coir fibre

    Science.gov (United States)

    Mohamad, Noridah; Afif Iman, Muhamad; Othuman Mydin, M. A.; Samad, A. A. A.; Rosli, J. A.; Noorwirdawati, A.

    2018-04-01

    This paper presents an experimental investigation on the mechanical properties and flexural behaviour of lightweight foamed concrete (LFC) with added coir fibre as filler. The compressive strength (Pt), tensile strength (Ft), modulus of elasticity (E), ultimate load and crack pattern of the foamed concrete were determined. The coir fibre was added to the foamed concrete mixture at 0.1%, 0.2% and 0.3% of the total weight of cement. Effects of various percentage of coir fibre used on foam concrete’s mechanical and properties and flexural behaviour were studied and analysed. It was found that the increase percentage of fibre resulted in increase in compressive strength, tensile strength and modulus of elasticity of LFC mixture. LFC with added coir of 0.3% experienced the smallest crack propagation.

  1. the response prediction of the flexural strength of concrete made

    African Journals Online (AJOL)

    COMPAQ

    2013-07-02

    Jul 2, 2013 ... Using these aggregates, sixty concrete beams of dimensions 600 mm X 150mm X 150 mm were made, .... The sieving was performed by a sieve shaker. .... Table 3a: Regression Analysis of the Flexural Strength Tests Results.

  2. Fresh Properties and Flexural Strength of Self-Compacting Concrete Integrating Coal Bottom Ash

    Directory of Open Access Journals (Sweden)

    Jamaluddin Norwati

    2016-01-01

    Full Text Available This paper presents the effect of using coal bottom ash as a partial replacement of fine aggregates in self-compacting concrete (SCC on its fresh properties and flexural strength. A comparison between SCC with various replacements of fine aggregates with coal bottom ash showed that SCC obtained flexural strength decrease on increase of water cement ratio from 0.35 to 0.45. The natural sand was replaced with coal bottom ash up to 30% volumetrically. The fresh properties were investigated by slump flow, T500 spread time, L-box test and sieve segregation resistance in order to evaluate its self-compatibility by compared to control samples embed with natural sand. The results revealed that the flowability and passing ability of SCC mixtures are decreased with higher content of coal bottom ash replacement. The results also showed that the flexural strength is affected by the presence of coal bottom ash in the concrete. In addition, the water cement ratios are influence significantly with higher binder content in concrete.

  3. fatigue strength of reinforced concrete flexural members

    African Journals Online (AJOL)

    Dr Obe

    1980-03-01

    Mar 1, 1980 ... cyclic loads behave differently compared with static bending and can collapse due to the fatigue of concrete, reinforcement or both when maximum fatigue stresses of ... under low and medium load levels, than under high load ...

  4. Fatigue life prediction of fiber reinforced concrete under flexural load

    DEFF Research Database (Denmark)

    Zhang, Jun; Stang, Henrik; Li, Victor

    1999-01-01

    This paper presents a semi-analytical method to predict fatigue behavior in flexure of fiber reinforced concrete (FRC) based on the equilibrium of force in the critical cracked section. The model relies on the cyclic bridging law, the so-called stress-crack width relationship under cyclic tensile...

  5. The Effect of Different Shape and Perforated rHDPE in Concrete Structures on Flexural Strength

    Science.gov (United States)

    Yuhazri, MY; Hafiz, KM; Myia, YZA; Jia, CP; Sihombing, H.; Sapuan, SM; Badarulzaman, NA

    2017-10-01

    This research was carried out to develop a reinforcing structure from recycled HDPE plastic lubricant containers to be embedded in concrete structure. Different forms and shapes of recycled HDPE plastic are designed as reinforcement incorporate with cement. In this study, the reinforcing structure was prepared by washing, cutting, dimensioning and joining of the waste HDPE containers (direct technique without treatment on plastic surface). Then, the rHDPE reinforced concrete was produced by casting based on standard of procedure in civil engineering technique. Eight different shapes of rHDPE in concrete structure were used to determine the concrete’s ability in terms of flexural strength. Embedded round shape in solid and perforated of rHDPE in concrete system drastically improved flexural strength at 17.78 % and 13.79 %. The result would seem that the concrete with reinforcing rHDPE structure exhibits a more gradual or flexible properties than concrete beams without reinforcement that has the properties of fragile.

  6. Flexural behaviour of RCC beams with externally bonded FRP

    Science.gov (United States)

    Vignesh, S. Arun; Sumathi, A.; Saravana Raja Mohan, K.

    2017-07-01

    The increasing use of carbon and glass fibre reinforced polymer (FRP) sheets for strengthening existing reinforced concrete beams has generated considerable interest in understanding the behavior of the FRP sheets when subjected to bending. The study on flexure includes various parameters like percentage of increase in strength of the member due to the externally bonded Fiber reinforced polymer, examining the crack patterns, reasons of debonding of the fibre from the structure, scaling, convenience of using the fibres, cost effectiveness etc. The present work aims to study experimentally about the reasons behind the failure due to flexure of an EB-FRP concrete beam by studying the various parameters. Deflection control may become as important as flexural strength for the design of FRPreinforced concrete structures. A numerical model is created using FEM software and the results are compared with that of the experiment.

  7. Determination of Bond Capacity in Reinforced Concrete Beam and Its Influence on the Flexural Strength

    Directory of Open Access Journals (Sweden)

    Mohammad Rashidi

    2016-05-01

    Full Text Available This paper presents results of an experimental investigation of actual performance of the reinforced concrete beam in bond under flexure, when reinforced with tension steel is going to consider. In this experiment four specimens of beam and a bar in the middle of the width of the beam has been used and 2.5 cm of concrete cover has been considered from the center of the bar. In addition, transverse bars have been used to reassure lack of shear yield at the two ends of the beam. Flexural bar has been put in the middle of the beam symmetrically and the length of the flexural bar in each of the samples shall be: 15, 20, 30 and 40 cm. Three cylindrical samples were made in order to determine f’c and were examined at 28 days and the compressive strength of concrete used in this study was about 35 MPa. The beam samples were examined after 28 days via two-point loading system. Based on the results, increasing the length of bar causes increase of flexural strength. The presence of longitudinal rebar resulted in the ultimate momentum to be more than the crack momentum of the cross-section in parts which have broken at the point of longitudinal bar cut.

  8. Flexural Strength Of Prestressed Concrete Beams With Openings And Strengthened With CFRP Sheets

    Directory of Open Access Journals (Sweden)

    Dr. Mustafa B. Dawood

    2015-06-01

    Full Text Available Abstract This paper presents an experimental investigation of flexural strength of pretensioned prestressed concrete beams with openings and strengthened with CFRP sheets tested as simply supported span subjected under two-point loading. The experimental work includes testing of nine prestressed concrete beams specimens with dimensions effective length 1800mm depth 300mm width 130mm two of which were without openings as a control beams one without and the other with strengthening by CFRP three were with openings and the remaining four with openings and strengthened with CFRP sheets. The opening was made at square shape 100100 mm in flexure zone at mid span of beam. Several design parameters were varied such as opening width opening depth and strengthening of openings of beams by CFRP sheets at compression and tension zone. Experimental results showed that the presence of square opening with ratio hH 0.333 and rectangular opening with ratio hH from 0.333-0.5 at mid span of beams decreased the ultimate load about 5.5 and 5.5-33.1 respectively when compared with beam without openings control beam. The externally strengthened prestressed concrete beams with bonded CFRP sheets showed a significant increase at the ultimate load this increase was about 10.9-28.8 for flexure beams when compared with the unstrengthened beams. Moreover the load-deflection curves for flexure beams strengthened with CFRP sheets were stiffer than the unstrengthened beams. Therefore this results gave a good indication about using CFRP sheets in improvement of deflection.

  9. The Statistical Analysis of Relation between Compressive and Tensile/Flexural Strength of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Kępniak M.

    2016-12-01

    Full Text Available This paper addresses the tensile and flexural strength of HPC (high performance concrete. The aim of the paper is to analyse the efficiency of models proposed in different codes. In particular, three design procedures from: the ACI 318 [1], Eurocode 2 [2] and the Model Code 2010 [3] are considered. The associations between design tensile strength of concrete obtained from these three codes and compressive strength are compared with experimental results of tensile strength and flexural strength by statistical tools. Experimental results of tensile strength were obtained in the splitting test. Based on this comparison, conclusions are drawn according to the fit between the design methods and the test data. The comparison shows that tensile strength and flexural strength of HPC depend on more influential factors and not only compressive strength.

  10. Study of technological features of tubular compressed concrete members in concreting

    Directory of Open Access Journals (Sweden)

    Voskobiinyk Olena

    2017-01-01

    Full Text Available The technological features of core concreting were analyzed as the main factor in ensuring of strength and reliability of compressed concrete-filled steel tubular (CFST members. We have conducted the analysis of existing concreting methods of CFST members. In this respect, the most dangerous types of possible technological defects of concrete core of CFST members are inhomogeneity along the height, voids, caverns, and concrete “weak spots”. The authors considered the influence of such technological factors of concreting: placeability, time, concrete mixture compaction method, concreting height on the concrete core strength of CFST members. Based on the experimental studies conducted we suggested the regression correlations for determining the concrete strength of CFST members of different length depending on the movability of concrete mixture and a time for its compaction. The authors performed the correlation analysis of technological factors of concreting on the strength of the concrete core. We carried out the comparison of data on the concrete core strength of CFST members, that were determined by non-destructive methods (sclerometer test results, ultrasonic method and direct compression strength tests. We experimentally proved that using movable mixtures with the slump of about 4 – 9 cm the overall variation coefficient of concrete core strength of CFST members along the height reaches nearly 13%. Based on the experimental studies conducted we suggested the guidelines on optimal regimes of concrete compaction during manufacturing CFST members at a construction site environment.

  11. Flexural toughness of steel fiber reinforced high performance concrete containing nano-SiO2 and fly ash.

    Science.gov (United States)

    Zhang, Peng; Zhao, Ya-Nan; Li, Qing-Fu; Wang, Peng; Zhang, Tian-Hang

    2014-01-01

    This paper aims to clarify the effect of steel fiber on the flexural toughness of the high performance concrete containing fly ash and nano-SiO2. The flexural toughness was evaluated by two methods, which are based on ASTM C1018 and DBV-1998, respectively. By means of three-point bending method, the flexural toughness indices, variation coefficients of bearing capacity, deformation energy, and equivalent flexural strength of the specimen were measured, respectively, and the relational curves between the vertical load and the midspan deflection (P(V)-δ) were obtained. The results indicate that steel fiber has great effect on the flexural toughness parameters and relational curves (P(V)-δ) of the three-point bending beam specimen. When the content of steel fiber increases from 0.5% to 2%, the flexural toughness parameters increase gradually and the curves are becoming plumper and plumper with the increase of steel fiber content, respectively. However these flexural toughness parameters begin to decrease and the curves become thinner and thinner after the steel fiber content exceeds 2%. It seems that the contribution of steel fiber to the improvement of flexural toughness of the high performance concrete containing fly ash and nano-SiO2 is well performed only when the steel fiber content is less than 2%.

  12. Flexural and Shear Behavior of RC Concrete Beams Reinforced with Fiber Wire Mesh

    Directory of Open Access Journals (Sweden)

    Rafea Flaih Hassan

    2018-02-01

    Full Text Available This work aims to study  the effect of using fiber wire mesh on the flexural and shear properties of RC concrete beams. Six reinforced concrete beams (120*180*1220mm were tested under two load points. Fiber wire mesh was applied with two manners, first one is three layers as U shape around the section of the beam, the second one is four layers around overall section of beam. The test results indicated that using of fiber wire mesh as additional reinforcement can increase the ultimate load of about (1.85-3.58% in the case of flexural and (17.7-23.7% in case of shear. Also,  results showed that an increasing in  first cracking  load is obtained from  (42.8-85.7% in case of flexural and from (41.2-76.5% in case of shear. Also the shear behavior of beams becomes more ductile when the fiber wire mesh was used in beams. The cracks of shrinkage was disappeared when the fiber wire mesh surround the section of the beam. 

  13. Flexural Behaviour Of Reinforced Concrete Beams Containing Expanded Glass As Lightweight Aggregates

    Directory of Open Access Journals (Sweden)

    Khatib Jamal

    2015-12-01

    Full Text Available The flexural properties of reinforced concrete beams containing expanded glass as a partial fine aggregate (sand replacement are investigated. Four concrete mixes were employed to conduct this study. The fine aggregate was replaced with 0%, 25%, 50% and 100% (by volume expanded glass. The results suggest that the incorporation of 50% expanded glass increased the workability of the concrete. The compressive strength was decreasing linearly with the increasing amount of expanded glass. The ductility of the concrete beam significantly improved with the incorporation of the expanded glass. However, the load-carrying capacity of the beam and load at which the first crack occurs was reduced. It was concluded that the inclusion of expanded glass in structural concrete applications is feasible.

  14. Fracture toughness of ultra high performance concrete by flexural performance

    Directory of Open Access Journals (Sweden)

    Manolova Emanuela

    2016-01-01

    Full Text Available This paper describes the fracture toughness of the innovative structural material - Ultra High Performance Concrete (UHPC, evaluated by flexural performance. For determination the material behaviour by static loading are used adapted standard test methods for flexural performance of fiber-reinforced concrete (ASTM C 1609 and ASTM C 1018. Fracture toughness is estimated by various deformation parameters derived from the load-deflection curve, obtained by testing simple supported beam under third-point loading, using servo-controlled testing system. This method is used to be estimated the contribution of the embedded fiber-reinforcement into improvement of the fractural behaviour of UHPC by changing the crack-resistant capacity, fracture toughness and energy absorption capacity with various mechanisms. The position of the first crack has been formulated based on P-δ (load- deflection response and P-ε (load - longitudinal deformation in the tensile zone response, which are used for calculation of the two toughness indices I5 and I10. The combination of steel fibres with different dimensions leads to a composite, having at the same time increased crack resistance, first crack formation, ductility and post-peak residual strength.

  15. THE COMPRESSIVE AND FLEXURAL STRENGTHS OF SELF-COMPACTING CONCRETE USING RAW RICE HUSK ASH

    Directory of Open Access Journals (Sweden)

    MD NOR ATAN

    2011-12-01

    Full Text Available This study investigates the compressive and flexural strengths of self-compacting concrete incorporating raw rice husk ash, individually and in combination with other types of mineral additives, as partial cement replacement. The additives paired with raw rice husk ash were fine limestone powder, pulverized fuel ash and silica fumes. The mix design was based on the rational method where solid constituents were fixed while water and superplasticizer contents were adjusted to produce optimum viscosity and flowability. All mixes were designed to achieve SF1 class slump-flow with conformity criteria ≥ 520 mm and ≤ 700 mm. Test results show that 15% replacement of cement using raw rice husk ash produced grade 40 concrete. It was also revealed that 30% and 45% cement replacements using raw rice husk ash combined with limestone powder and raw rice husk ash combined with limestone powder and silica fume respectively, produced comparable compressive strength to normal concrete and improved flexural strengths.

  16. Pretreatment of Woven Jute FRP Composite and Its Use in Strengthening of Reinforced Concrete Beams in Flexure

    Directory of Open Access Journals (Sweden)

    Tara Sen

    2013-01-01

    Full Text Available Environmental awareness motivates researchers worldwide to perform studies of natural fibre reinforced polymer composites, as they come with many advantages and are primarily sustainable. The present study aims at evaluating the mechanical characteristics of natural woven jute fibre reinforced polymer (FRP composite subjected to three different pretreatments, alkali, benzyl chloride, and lastly heat treatment. It was concluded that heat treatment is one of the most suitable treatment methods for enhancing mechanical properties of jute FRP. Durability studies on Jute FRP pertaining to some common environmental conditions were also carried out such as effect of normal water and thermal aging on the tensile strength of jute FRP followed by fire flow test. The heat treated woven jute FRP composites were subsequently used for flexural strengthening of reinforced concrete beams in full and strip wrapping configurations. The study includes the effect of flexural strengthening provided by woven jute FRP, study of different failure modes, load deflection behavior, effect on the first crack load, and ultimate flexural strength of concrete beams strengthened using woven jute FRP subjected to bending loads. The study concludes that woven jute FRP is a suitable material which can be used for flexural upgradation of reinforced concrete beams.

  17. A Review on the Use of Agriculture Waste Material as Lightweight Aggregate for Reinforced Concrete Structural Members

    Directory of Open Access Journals (Sweden)

    Kim Hung Mo

    2014-01-01

    Full Text Available The agriculture industry is one of the main industries in the Southeast Asia region due to its favourable conditions for plantations. In fact, Southeast Asia region is the world’s largest producer of palm oil and coconut. Nevertheless, vast plantation of these agriculture products leads to equally large amount of waste materials emanating from these industries. Previously, researchers have attempted to utilize the resulting waste materials such as oil palm shell, palm oil clinker, and coconut shell from these industries as lightweight aggregate to produce structural grade lightweight aggregate concrete. In order to promote the concept of using such concrete for actual structural applications, this paper reviews the use of such agriculture-based lightweight aggregate concrete in reinforced concrete structural members such as beam and slab, which were carried out by researchers in the past. The behaviour of the structural members under flexural, shear, and torsional load was also summarized. It is hoped that the knowledge attained from the paper will provide design engineers with better idea and proper application of design criteria for structural members using such agriculture waste as lightweight aggregate.

  18. Behaviour of partially composite precast concrete sandwich panels under flexural and axial loads

    Science.gov (United States)

    Tomlinson, Douglas George

    Precast concrete sandwich panels are commonly used on building exteriors. They are typically composed of two concrete wythes that surround rigid insulation. They are advantageous as they provide both structural and thermal resistance. The structural response of sandwich panels is heavily influenced by shear connectors that link the wythes together. This thesis presents a study on partially composite non-prestressed precast concrete wall panels. Nine flexure tests were conducted on a wall design incorporating 'floating' concrete studs and Glass Fibre Reinforced Polymer (GFRP) connectors. The studs encapsulate and stiffen the connectors, reducing shear deformations. Ultimate loads increased from 58 to 80% that of a composite section as the connectors' reinforcement ratio increased from 2.6 to 9.8%. This design was optimized by reinforcing the studs and integrating them with the structural wythe; new connectors composed of angled steel or Basalt-FRP (BFRP) were used. The load-slip response of the new connector design was studied through 38 double shear push-through tests using various connector diameters and insertion angles. Larger connectors were stronger but more likely to pull out. Seven flexure tests were conducted on the new wall design reinforced with different combinations of steel and BFRP connectors and reinforcement. Composite action varied from 50 to 90% depending on connector and reinforcement material. Following this study, the axial-bending interaction curves were established for the new wall design using both BFRP and steel connectors and reinforcement. Eight panels were axially loaded to predesignated loads then loaded in flexure to failure. A technique is presented to experimentally determine the effective centroid of partially composite sections. Beyond the tension and compression-controlled failure regions of the interaction curve, a third region was observed in between, governed by connector failure. Theoretical models were developed for the bond

  19. Determining the Compressive, Flexural and Splitting Tensile Strength of Silica Fume Reinforced Lightweight Foamed Concrete

    OpenAIRE

    Mydin M.A.O.; Sani N. Md.; Mohd Yusoff M.A.; Ganesan S.

    2014-01-01

    This study investigated the performance of the properties of foamed concrete in replacing volumes of cement of 10%, 15% and 20% by weight. A control unit of foamed concrete mixture made with ordinary Portland cement (OPC) and 10%, 15% and 20% silica fume was prepared. Three mechanical property parameters were studied such as compressive strength, flexural strength and splitting tensile of foamed concrete with different percentages of silica fume. Silica fume is commonly used to increase the m...

  20. Confinement Effect on Material Properties of RC Beams Under Flexure

    Science.gov (United States)

    Kulkarni, Sumant; Shiyekar, Mukund Ramchandra; Shiyekar, Sandip Mukund

    2017-12-01

    In structural analysis, especially in indeterminate structures, it becomes essential to know the material and geometrical properties of members. The codal provisions recommend elastic properties of concrete and steel and these are fairly accurate enough. The stress-strain curve for concrete cylinder or a cube specimen is plotted. The slope of this curve is modulus of elasticity of plain concrete. Another method of determining modulus of elasticity of concrete is by flexural test of a beam specimen. The modulus of elasticity most commonly used for concrete is secant modulus. The modulus of elasticity of steel is obtained by performing a tension test of steel bar. While performing analysis by any software for high rise building, cross area of plain concrete is taken into consideration whereas effects of reinforcement bars and concrete confined by stirrups are neglected. Present aim of study is to determine elastic properties of reinforced cement concrete beam. Two important stiffness properties such as AE and EI play important role in analysis of high rise RCC building idealized as plane frame. The experimental program consists of testing of beams (model size 150 × 150 × 700 mm) with percentage of reinforcement varying from 0.54 to 1.63% which commensurate with existing Codal provisions of IS:456-2000 for flexural member. The effect of confinement is considered in this study. The experimental results are verified by using 3D finite element techniques.

  1. Experimental Study on Flexural Strength of Reinforced Geopolymer Concrete Beams

    OpenAIRE

    Khoa Tan Nguyen; Tuan Anh Le; Kihak Lee

    2016-01-01

    This paper presents the flexural response of Reinforced Geopolymer Concrete (RGPC) beams. A commercial finite element (FE) software ABAQUS has been used to perform a structural behavior of RGPC beams. Using parameters such: stress, strain, Young’s modulus, and Poisson’s ratio obtained from experimental results, a beam model has been simulated in ABAQUS. The results from experimental tests and ABAQUS simulation were compared. Due to friction forces at the supports and loading rollers; slip occ...

  2. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials

    International Nuclear Information System (INIS)

    Wongkeo, Watcharapong; Thongsanitgarn, Pailyn; Pimraksa, Kedsarin; Chaipanich, Arnon

    2012-01-01

    Highlights: ► Autoclaved aerated concrete were produced using coal bottom ash as a cement replacement material. ► Coal bottom ash was found to enhance concrete strengths. ► Thermal conductivity of concrete was not significantly affected. ► X-ray diffraction and thermal analysis show tobermorite formation. -- Abstract: The bottom ash (BA) from Mae Moh power plant, Lampang, Thailand was used as Portland cement replacement to produce lightweight concrete (LWC) by autoclave aerated concrete method. Portland cement type 1, river sand, bottom ash, aluminium powder and calcium hydroxide (Ca(OH) 2 ) were used in this study. BA was used to replace Portland cement at 0%, 10%, 20% and 30% by weight and aluminium powder was added at 0.2% by weight in order to produce the aerated concrete. Compressive strength, flexural and thermal conductivity tests were then carried out after the concrete were autoclaved for 6 h and left in air for 7 days. The results show that the compressive strength, flexural strength and thermal conductivity increased with increased BA content due to tobermorite formation. However, approximately, 20% increase in both compressive (up to 11.61 MPa) and flexural strengths (up to 3.16 MPa) was found for mixes with 30% BA content in comparison to just around 6% increase in the thermal conductivity. Thermogravimetry analysis shows C–S–H formation and X-ray diffraction confirm tobermorite formation in bottom ash lightweight concrete. The use of BA as a cement replacement, therefore, can be seen to have the benefit in enhancing strength of the aerated concrete while achieving comparatively low thermal conductivity when compared to the results of the control Portland cement concrete.

  3. Flexural behavior of reinforced concrete beam with polymer coated pumice

    Science.gov (United States)

    Nainggolan, Christin Remayanti; Wijatmiko, Indradi; Wibowo, Ari

    2017-09-01

    Sustainable development has become an important issue due to the increasing consideration of preserving the nature. Many alternative for coarse aggregate replacement have been investigated ranging from natural and fabricated aggregates. In this study, natural aggregate pumice was investigated since it offers lower density that give paramount benefit in reducing total building weight and hence reducing the earthquake excitation effect and optimizing the structural dimension. However, the characteristic of porous surfaces of pumice causes excessive water absorption during concrete mixing process. Therefore, to reduce the additional water, the pumice aggregates were coated with polymer. The tested specimens consisted of normal concrete beams (NCB), uncoated pumice aggregate concrete beam (UPA) and polymer coated pumice aggregate concrete beam (PCP). The objective of the research was to obtain the effect of coating on the pumice aggregate to the flexural behavior of concrete beams. The lateral load-displacement behavior, ductility and collapse mechanism were studied. The results showed that there were only marginal drop on the load-carrying capacity of the pumice aggregate beam compared to those of normal beam. Additionally, the ductility coefficient of specimens UPA and PCP decreased of 11,97% and 14,03% respectively compared to NCB, and the ultimate load capacity decreased less than 1%. Overall, the pumice aggregate showed good characteristic for replacing normal coarse aggregate.

  4. Feasibility of Reducing the Fiber Content in Ultra-High-Performance Fiber-Reinforced Concrete under Flexure.

    Science.gov (United States)

    Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook

    2017-01-28

    In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths ( l f ) of 13, 19.5, and 30 mm and four different volume fractions ( v f ) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers ( l f of 13 mm) with longer fibers ( l f of 19.5 mm and 30 mm).

  5. FLEXURAL TESTING OF WOOD-CONCRETE COMPOSITE BEAM MADE FROM KAMPER AND BANGKIRAI WOOD

    Directory of Open Access Journals (Sweden)

    Fengky Satria Yoresta

    2015-07-01

    Full Text Available Certain wood has a tensile strength that almost equal with steel rebar in reinforced concrete beams. This research aims to understand the capacity and flexural behavior of concrete beams reinforced by wood (wood-concrete composite beam. Two different types of beams based on placement positions of wood layers are proposed in this study. Two kinds of wood used are consisted of Bangkirai (Shorea laevifolia and Kamper (Cinnamomum camphora, meanwhile the concrete mix ratio for all beams is 1 cement : 2 fine aggregates : 3 coarse aggregates. Bending test is conducted by using one-point loading method. The results show that composite beam using Bangkirai wood is stronger than beams using Kamper wood. More thicker wood layer in tensile area will increase the flexural strength of beams. Crack patterns identified could be classified into flexural cracks, shear cracks, and split on wood layer   Beberapa jenis kayu tertentu memiliki kekuatan tarik yang hampir sama dengan tulangan baja pada balok beton bertulang. Penelitian ini bertujuan memahami kapasitas dan perilaku lentur balok beton bertulang yang diperkuat menggunakan kayu (balok komposit beton-kayu. Dua tipe balok yang berbeda berdasarkan posisi penempatan kayu digunakan dalam penelitian ini. Dua jenis kayu yang digunakan adalah kayu Bangkirai (Shorea laevifolia and Kamper (Cinnamomum camphora, sementara itu rasio campuran beton untuk semua balok menggunakan perbandingan 1 semen : 2 agregat halus : 3 agregat kasar. Pengujian lentur dilakukan menggunakan metode one-point loading. Hasil penelitian menunjukkan bahwa balok komposit dengan kayu Bangkirai lebih kuat dibandingkan balok dengan kayu Kamper. Semakin tebal lapisan kayu yang berada di daerah tarik akan meningkatkan kekuatan lentur balok. Pola kerusakan yang teridentifikasi dapat diklasifikasikan menjadi retak lentur, retak geser, dan pecah pada kayu REFERENCES Boen T. (2010. Retrofitting Simple Buildings Damaged by Earthquakes. World Seismic

  6. Flexural pivot device

    International Nuclear Information System (INIS)

    Flaherty, Robert.

    1986-01-01

    A flexural pivot device or rotational actuator comprises first and sceond tubular members connected by flexural members of shape-memory-alloy. These are curved in the austenitic phase at a first temperature and after cooling to the martensitic phase are flattened. On heating one of the flexural members, it bends causing relative rotation of the tubular members. Heating of another member can produce opposite rotation. Heating is electrical or by hot gas. The device may be used in a nuclear reactor. (author)

  7. Flexural Behaviour of Reinforced Fibrous Concrete Beams: Experiments and Analytical Modelling

    International Nuclear Information System (INIS)

    Hameed, R.; Sellier, A.; Turatsinze, A.; Duprat, F.

    2013-01-01

    Flexural behaviour of reinforced fibrous concrete beams was investigated in this research study. Two types of metallic fibers were studied: amorphous metallic fibers (FibraFlex fibers), and carbon steel hooked-end fibers (Dramix fibers). Four types of reinforced concretes were made: one control (without fibers) and three fibrous. Among three reinforced fibrous concretes, two contained fibers in mono form and one contained fibers in hybrid form. The total quantity of fibers in mono and hybrid forms was 20 kg/m3 and 40 kg/m3, respectively. Three point bending tests were performed according to European standards NF EN 14651 on beams of 150 x 150 mm cross section and length of 550 mm. The results showed that due to positive synergetic interaction between the two metallic fibers used, reinforced fibrous concret (RFC) beams containing fibers in hybrid form exhibited better response at all loading stages. Analytical model to predict ultimate moment capacity of the RFC beam of rectangular section was developed and is presented in this paper. Analytical results for ultimate moment were found to be in good agreement with experimental results. (author)

  8. Performance evaluation of HSC beams with low flexural reinforcement

    Directory of Open Access Journals (Sweden)

    T.M. Elrakib

    2013-04-01

    Full Text Available The main objective of the current research is to establish experimental data for minimum flexural reinforcement, ρmin, of high strength concrete (HSC rectangular beams. Nine full-scale singly reinforced beams with flexural reinforcement ratios varying from 50% to 100% of the minimum limit specified by the ACI 363R-35were tested in flexure. Concrete compressive strengths of 52, 73 and 96.5 MPa were used. The test results including crack patterns, deflections and strains in the tensile flexural steel bars show that a 25% reduction of the ACI 363R-35 limit for the ρmin would result in a satisfactory flexural beam behavior with a reserve flexural parameter (Py,/Pcr ⩾ 1.29 and a displacement ductility index λΔ > 5 for all concrete grades which may lead to good savings in the amount of the flexural reinforcement. Also, it was noted that the displacement ductility index λΔ increased as the concrete compressive strength increased for the same ratio (ρ/ρmin up to 75 MPa and then decreases as fcu increases. For the same concrete compressive strength with low values of flexural reinforcement ratio, ρ, the displacement ductility index λΔ increased as ρ increased. The experimental results of this study were compared with the limits specified by available codes and researches.

  9. Thermal effects in concrete members

    International Nuclear Information System (INIS)

    Kar, A.K.

    1977-01-01

    The proposed method of analysis for concrete members subjected to temperature changes is consistent with the requirements of ultimate strength design. This also facilitates the provision of the same safety margin as for other loads. Due to cracks and creep in concrete, thermal stresses are nonlinear; they are dependent on the effective member stiffness, which in turn vary with the magnitude of loading. Therefore it is inconsistent to have an ultimate strength design in conjunction with an analysis based on the linear elastic theory. It is proposed that when the requirements of serviceability are met, the neutral axis corresponding to the ultimate load capacity conditions be considered for temperature-induced loadings. This conforms with the fact that the thermal load, because of creep and formation of cracks in the member, can be self-relieving as the failure load condition or ultimate capacity is approached. The maximum thermal load that can develop in dependent on the effective cross section of the member. Recommendations are made for determining the average effective member stiffness, which lies between the stiffness corresponding to the cracked (at ultimate condition) and the uncracked sections. In the proposed method, thermal stresses are not considered completely self-relieving. The stresses are considered simultaneously with stresses resulting from other causes. A step-by-step approach is presented for analysis and design of concrete members subjected to temperature changes

  10. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  11. Behaviour of concrete beams reinforced withFRP prestressed concrete prisms

    Science.gov (United States)

    Svecova, Dagmar

    The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the

  12. Thermal effects in concrete members

    International Nuclear Information System (INIS)

    Kar, A.K.

    1977-01-01

    When subjected to temperature changes and restrained from free movement, a member develops stresses. Restrained members are sometimes assumed to act independently of other members. A method of analysis and design for thermal stresses in such members is provided. The method of analysis, based on the ultimate strength concept, greatly reduces the computational efforts for determining thermal effects in concrete members. Available charts and tables and the recommendations given herein simplify the design. (Auth.)

  13. Flexural and Thermal Properties of Novel Energy Conservation Slotted Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Gao Ma

    2016-01-01

    Full Text Available Conventional solid reinforced concrete (RC beams were modified to slotted beams for consideration as thermal insulation structural components. The slotted beam consisted of an outer and an inner beam, respectively, with a slot located near the middle of the beam along its width direction for filling thermal insulation material. Flexural and thermal behavior of the slotted beams were investigated. Three RC reference solid beams and six slotted beams were fabricated and tested under four-point bending tests. The test results indicated that the failure mode of both slotted beams and the solid beams was flexural failure. However, the damage process of the slotted beams was different from that of the solid beams at the final loading stage. The moment curvature analysis indicated that the tensile reinforcement ratio of the outer and inner beams had an important effect on the flexural behavior, especially the ductility of the slotted beams. Thermal study indicated that the heat transfer coefficient of the slotted beam was greatly reduced and the thermal inertia factor increased a lot, compared with the solid beam. In addition, FE simulation results showed that a new frame structure using slotted beams exhibited obvious and attractive thermal insulation property.

  14. Design of reinforced concrete members based on structural mechanics

    International Nuclear Information System (INIS)

    Diaz, B.E.; Schulz, M.

    1984-01-01

    Up to now the design of reinforced concrete linear members is performed with the help of an inconsistent design theory, which nevertherless is sufficiently safe and simple to be used in the practice. The purpose of this paper is to present a rational reinforced concrete design method which is not too dissimilar to the present design rules, but is capable of defining consistently internal stresses along a reinforced concrete section. The present status of the completed computer procedures allows the analysis of linear reinforced concrete members formed by laminar reinforced concrete plates presenting variable thickness. A practical approach is presented for which the concrete and steel section is constant along the member axis. In this case, the concept of the equivalent section is introduced, which allows a simple analysis of the stress pattern along the member section. (Author) [pt

  15. Thermomechanical responses of concrete members strengthened with cfrp sheets

    Science.gov (United States)

    Alqurashi, Abdulaziz

    Strengthening structural members means to be able to carry additional loads. Since, 1990s, a lot of materials and techniques have been established to not only increasing the capacity of member but also facing deterioration. Deterioration has become one of the worst highly maintenance cost. According to The ASCE, 27.1% of all bridges in the United States are not effectual. This is because the high traffic reflects negatively to structural members and cause deterioration of these members. This problem has been cost a lot of money. In addition, FRP has approved that it can increase the capacity of member and overcome some disadvantages such as deterioration. Therefore, CFRP sheet has become widely used. However, high temperatures affect the performance of externally bonded CFRP sheet negatively. Investigation should be carried out on relaxation and flexural performance of members under different temperatures. Therefore, this thesis focus on analyzing and investigating the performance of strengthened members exposed to elevated temperatures (25 to 175 °C). The experimental program was divided to two main parts. First, 144 strengthen concrete blocks 100mm X 150mm X 75mm has been exposed to elevated temperatures. These blocks have two main categories, which are different CFRP sheet width, and different CFRP sheet length. Different CFRP width has three types, which are type 0.25B (25mm x 100mm), type 0.5B (50mm x 100mm) and type 0.75B (75mm x 100mm). Also, Different CFRP length has three types, which are type L e (bonded area of 50 mm by 90mm), 1.25 Le (area of 50mm by 125mm) and type 1.5Le (50mm by 137 mm). Second, studying the performance of RC beams exposed to elevated temperatures.

  16. Influence of Tension Stiffening on the Flexural Stiffness of Reinforced Concrete Circular Sections.

    Science.gov (United States)

    Morelli, Francesco; Amico, Cosimo; Salvatore, Walter; Squeglia, Nunziante; Stacul, Stefano

    2017-06-18

    Within this paper, the assessment of tension stiffening effects on a reinforced concrete element with the circular sections subjected to axial and bending loads is presented. To this purpose, an enhancement of an analytical model already present within the actual technical literature is proposed. The accuracy of the enhanced method is assessed by comparing the experimental results carried out in past research and the numerical ones obtained by the model. Finally, a parametric study is executed in order to study the influence of axial compressive force on the flexural stiffness of reinforced concrete elements that are characterized by a circular section, comparing the secant stiffness evaluated at yielding and at maximum resistance, considering and not considering the effects of tension stiffness.

  17. Influence of Tension Stiffening on the Flexural Stiffness of Reinforced Concrete Circular Sections

    Directory of Open Access Journals (Sweden)

    Francesco Morelli

    2017-06-01

    Full Text Available Within this paper, the assessment of tension stiffening effects on a reinforced concrete element with the circular sections subjected to axial and bending loads is presented. To this purpose, an enhancement of an analytical model already present within the actual technical literature is proposed. The accuracy of the enhanced method is assessed by comparing the experimental results carried out in past research and the numerical ones obtained by the model. Finally, a parametric study is executed in order to study the influence of axial compressive force on the flexural stiffness of reinforced concrete elements that are characterized by a circular section, comparing the secant stiffness evaluated at yielding and at maximum resistance, considering and not considering the effects of tension stiffness.

  18. Analysis of Flexural Fatigue Strength of Self Compacting Fibre Reinforced Concrete Beams

    Science.gov (United States)

    Murali, G.; Sudar Celestina, J. P. Arul; Subhashini, N.; Vigneshwari, M.

    2017-07-01

    This study presents the extensive statistical investigation ofvariations in flexural fatigue life of self-compacting Fibrous Concrete (FC) beams. For this purpose, the experimental data of earlier researchers were examined by two parameter Weibull distribution.Two methods namely Graphical and moment wereused to analyse the variations in experimental data and the results have been presented in the form of probability of survival. The Weibull parameters values obtained from graphical and method of moments are precise. At 0.7 stress level, the fatigue life shows 59861 cyclesfor areliability of 90%.

  19. Study on Flexural Behaviour of Ternary Blended Reinforced Self Compacting Concrete Beam with Conventional RCC Beam

    Science.gov (United States)

    Marshaline Seles, M.; Suryanarayanan, R.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    The conventional concrete when used for structures having dense congested reinforcement, the problems such as external compaction and vibration needs special attention. In such case, the self compacting concrete (SCC) which has the properties like flow ability, passing and filling ability would be an obvious answer. All those SCC flow behavior was governed by EFNARC specifications. In present study, the combination type of SCC was prepared by replacing cement with silica fume (SF) and metakaolin (MK) along with optimum dosages of chemical admixtures. From the fresh property test, cube compressive strength and cylinder split tensile strength, optimum ternary mix was obtained. In order to study the flexural behavior, the optimum ternary mix was taken in which beam specimens of size 1200 mm x 100 mm x 200 mm was designed as singly reinforced section according to IS: 456-2000, Limit state method. Finally the comparative experimental analysis was made between conventional RCC and SCC beams of same grade in terms of flexural strength namely yield load & ultimate load, load- deflection curve, crack size and pattern respectively.

  20. Calculating the Carrying Capacity of Flexural Prestressed Concrete Beams with Non-Metallic Reinforcement

    Directory of Open Access Journals (Sweden)

    Mantas Atutis

    2011-04-01

    Full Text Available The article reviews moment resistance design methods of prestressed concrete beams with fibre-reinforced polymer (FRP reinforcement. FRP tendons exhibit linear elastic response to rupture without yielding and thus failure is expected to be brittle. The structural behaviour of beams prestressed with FRP tendons is different from beams with traditional steel reinforcement. Depending on the reinforcement ratio, the flexural behaviour of the beam can be divided into several groups. The numerical results show that depending on the nature of the element failure, moment resistance calculation results are different by using reviewed methods. It was found, that the use of non-metallic reinforcement in prestressed concrete structures is effective: moment capacity is about 5% higher than that of the beams with conventional steel reinforcement.Article in Lithuanian

  1. Determining the Compressive, Flexural and Splitting Tensile Strength of Silica Fume Reinforced Lightweight Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Mydin M.A.O.

    2014-01-01

    Full Text Available This study investigated the performance of the properties of foamed concrete in replacing volumes of cement of 10%, 15% and 20% by weight. A control unit of foamed concrete mixture made with ordinary Portland cement (OPC and 10%, 15% and 20% silica fume was prepared. Three mechanical property parameters were studied such as compressive strength, flexural strength and splitting tensile of foamed concrete with different percentages of silica fume. Silica fume is commonly used to increase the mechanical properties of concrete materials and it is also chosen due to certain economic reasons. The foamed concrete used in this study was cured at a relative humidity of 70% and a temperature of ±28°C. The improvement of mechanical properties was due to a significant densification in the microstructure of the cement paste matrix in the presence of silica fume hybrid supplementary binder as observed from micrographs obtained in the study. The overall results showed that there is a potential to utilize silica fume in foamed concrete, as there was a noticeable enhancement of thermal and mechanical properties with the addition of silica fume.

  2. Basic principles of concrete structures

    CERN Document Server

    Gu, Xianglin; Zhou, Yong

    2016-01-01

    Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compa...

  3. Towards Rational Design Method for Strengthening of Concrete Structures by External Bonding

    Directory of Open Access Journals (Sweden)

    Furuuchi H.

    2012-01-01

    Full Text Available Many infrastructures need to be repaired or strengthened due to various reasons, such as unexpected deterioration and changes in performance requirement. This paper presents the following recent achievements by the authors’ group on design method for flexural strengthening of concrete structures by external bonding; (i fracture characteristics of interface between substrate concrete and cementitious overlay, (ii crack spacing of flexural strengthened beams, which affects debonding strength, (iii strengths of intermediate crack (IC debonding and end peeling, (iv strength of concrete cover separation, and (v effectiveness of strengthening by external bonding. A unified approach for flexural strengthening by steel plate, fiber reinforced polymer lami¬nate and cementitious overlay, for both intermediate crack (IC debonding, including end peeling, and concrete cover separation is pre¬sented with consideration of crack spacing in the streng¬thened members. Appropriate interfacial rough¬¬¬ness to achieve efficient interface bond property is clari¬fied and the concept of effectiveness of strengthen¬ing is proposed for better strengthening design.

  4. Markov chain modeling of evolution of strains in reinforced concrete flexural beams

    Directory of Open Access Journals (Sweden)

    Anoop, M. B.

    2012-09-01

    Full Text Available From the analysis of experimentally observed variations in surface strains with loading in reinforced concrete beams, it is noted that there is a need to consider the evolution of strains (with loading as a stochastic process. Use of Markov Chains for modeling stochastic evolution of strains with loading in reinforced concrete flexural beams is studied in this paper. A simple, yet practically useful, bi-level homogeneous Gaussian Markov Chain (BLHGMC model is proposed for determining the state of strain in reinforced concrete beams. The BLHGMC model will be useful for predicting behavior/response of reinforced concrete beams leading to more rational design.A través del análisis de la evolución de la deformación superficial observada experimentalmente en vigas de hormigón armado al entrar en carga, se constata que dicho proceso debe considerarse estocástico. En este trabajo se estudia la utilización de cadenas de Markov para modelizar la evolución estocástica de la deformación de vigas flexotraccionadas. Se propone, para establecer el estado de deformación de estas, un modelo con distribución gaussiana tipo cadena de Markov homogénea de dos niveles (BLHGMC por sus siglas en inglés, cuyo empleo resulta sencillo y práctico. Se comprueba la utilidad del modelo BLHGMC para prever el comportamiento de estos elementos, lo que determina a su vez una mayor racionalidad a la hora de su cálculo y diseño

  5. mathematical model for mathematical model for prediction of flexural

    African Journals Online (AJOL)

    eobe

    The paper examined the optimization of flexural strength of a five-component ... flexural strength of concrete was increased by ..... High Performance Concrete”, Fire Safety Journal, Vol. ... Storage, PhD Thesis, University of Nigeria, Nsukka,.

  6. Elasticity Modulus and Flexural Strength Assessment of Foam Concrete Layer of Poroflow

    Science.gov (United States)

    Hajek, Matej; Decky, Martin; Drusa, Marian; Orininová, Lucia; Scherfel, Walter

    2016-10-01

    Nowadays, it is necessary to develop new building materials, which are in accordance to the principles of the following provisions of the Roads Act: The design of road is a subject that follows national technical standards, technical regulations and objectively established results of research and development for road infrastructure. Foam concrete, as a type of lightweight concrete, offers advantages such as low bulk density, thermal insulation and disadvantages that will be reduced by future development. The contribution focuses on identifying the major material characteristics of foam concrete named Poroflow 17-5, in order to replace cement-bound granular mixtures. The experimental measurements performed on test specimens were the subject of diploma thesis in 2015 and continuously of the dissertation thesis and grant research project. At the beginning of the contribution, an overview of the current use of foam concrete abroad is elaborated. Moreover, it aims to determine the flexural strength of test specimens Poroflow 17-5 in combination with various basis weights of the underlying geotextile. Another part of the article is devoted to back-calculation of indicative design modulus of Poroflow based layers based on the results of static plate load tests provided at in situ experimental stand of Faculty of Civil Engineering, University of Žilina (FCE Uniza). Testing stand has been created in order to solve problems related to research of road and railway structures. Concern to building construction presents a physical homomorphic model that is identical with the corresponding theory in all structural features. Based on the achieved material characteristics, the tensile strength in bending of previously used road construction materials was compared with innovative alternative of foam concrete and the suitability for the base layers of pavement roads was determined.

  7. Fracture mechanical analysis of strengthened concrete tension members with one crack

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Stang, Henrik

    2012-01-01

    A concrete tension member strengthened 2 with fiber reinforced polymer plates on two sides 3 is analyzed with non-linear fracture mechanics. The 4 analysis of the strengthened tension member incorpo5 rates cohesive properties for both concrete and inter6 face between concrete and strengthening...... the structural classification parameters, is inves13 tigated in a non-dimensional analysis, and found to 14 depend strongly on the ratio between interfacial and 15 concrete fracture energies....

  8. Flexural strength of self compacting fiber reinforced concrete beams using polypropylene fiber: An experimental study

    Science.gov (United States)

    Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen

    2017-11-01

    One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.

  9. Influence of steel fibers on the shear and flexural performance of high-strength concrete beams tested under blast loads

    Science.gov (United States)

    Algassem, O.; Li, Y.; Aoude, H.

    2017-09-01

    This paper presents the results of a study examining the effect of steel fibres on the blast behaviour of high-strength concrete beams. As part of the study, a series of three large-scale beams built with high-strength concrete and steel fibres are tested under simulated blast loading using the shock-tube testing facility at the University of Ottawa. The specimens include two beams built with conventional high-strength concrete (HSC) and one beam built with high-strength concrete and steel fibres (HSFRC). The effect of steel fibres on the blast behaviour is examined by comparing the failure mode, mid-span displacements and, overall blast resistance of the specimens. The results show that the addition of steel fibres in high-strength concrete beams can prevent shear failure and substitute for shear reinforcement if added in sufficient quantity. Moreover, the use of steel fibres improves flexural response under blast loading by reducing displacements and increasing blast capacity. Finally, the provision of steel fibres is found to improve the fragmentation resistance of high-strength concrete under blast loads.

  10. A solution approach for non-linear analysis of concrete members

    International Nuclear Information System (INIS)

    Hadi, N. M.; Das, S.

    1999-01-01

    Non-linear solution of reinforced concrete structural members, at and beyond its maximum strength poses complex numerical problems. This is due to the fact that concrete exhibits strain softening behaviour once it reaches its maximum strength. This paper introduces an improved non-linear solution capable to overcome the numerical problems efficiently. The paper also presents a new concept of modeling discrete cracks in concrete members by using gap elements. Gap elements are placed in between two adjacent concrete elements in tensile zone. The magnitude of elongation of gap elements, which represents the width of the crack in concrete, increases edith the increase of tensile stress in those elements. As a result, transfer of local from one concrete element to adjacent elements reduces. Results of non-linear finite element analysis of three concrete beams using this new solution strategy are compared with those obtained by other researchers, and a good agreement is achieved. (authors). 13 refs. 9 figs.,

  11. Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete

    International Nuclear Information System (INIS)

    Blunt, J.; Jen, G.; Ostertag, C.P.

    2015-01-01

    Highlights: • Reinforced concrete beams were subjected to cyclic flexural loading. • Hybrid fiber reinforced composites were effective in reducing corrosion rates. • Crack resistance due to fibers increased corrosion resistance of steel rebar. • Galvanic corrosion measurements underestimated corrosion rates. • Polarization resistance measurements predicted mass loss more accurately. - Abstract: Service loads well below the yield strength of steel reinforcing bars lead to cracking of reinforced concrete. This paper investigates whether the crack resistance of Hybrid Fiber Reinforced Concrete (HyFRC) reduces the corrosion rate of steel reinforcing bars in concrete after cyclic flexural loading. The reinforcing bars were extracted to examine their surface for corrosion and compare microcell and macrocell corrosion mass loss estimates against direct gravimetric measurements. A delay in corrosion initiation and lower active corrosion rates were observed in the HyFRC beam specimens when compared to reinforced specimens containing plain concrete matrices cycled at the same flexural load

  12. Finite element modeling of reinforced concrete beams with a hybrid combination of steel and aramid reinforcement

    International Nuclear Information System (INIS)

    Hawileh, R.A.

    2015-01-01

    Highlights: • Modeling of concrete beams reinforced steel and FRP bars. • Developed finite element models achieved good results. • The models are validated via comparison with experimental results. • Parametric studies are performed. - Abstract: Corrosion of steel bars has an adverse effect on the life-span of reinforced concrete (RC) members and is usually associated with crack development in RC beams. Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and superior corrosion resistance properties. However, FRP materials are brittle in nature, thus RC beams reinforced with such materials would exhibit a less ductile behavior when compared to similar members reinforced with conventional steel reinforcement. Recently, researchers investigated the performance of concrete beams reinforced with a hybrid combination of steel and Aramid Fiber Reinforced Polymer (AFRP) reinforcement to maintain a reasonable level of ductility in such members. The function of the AFRP bars is to increase the load-carrying capacity, while the function of the steel bars is to ensure ductility of the flexural member upon yielding in tension. This paper presents a three-dimensional (3D) finite element (FE) model that predicted the load versus mid-span deflection response of tested RC beams conducted by other researchers with a hybrid combination of steel and AFRP bars. The developed FE models account for the constituent material nonlinearities and bond–slip behavior between the reinforcing bars and adjacent concrete surfaces. It was concluded that the developed models can accurately capture the behavior and predicts the load-carrying capacity of such RC members. In addition, a parametric study is conducted using the validated models to investigate the effect of AFRP bar size, FRP material type, bond–slip action, and concrete compressive strength on the performance of concrete beams when reinforced

  13. Damage Model of Reinforced Concrete Members under Cyclic Loading

    Science.gov (United States)

    Wei, Bo Chen; Zhang, Jing Shu; Zhang, Yin Hua; Zhou, Jia Lai

    2018-06-01

    Based on the Kumar damage model, a new damage model for reinforced concrete members is established in this paper. According to the damage characteristics of reinforced concrete members subjected to cyclic loading, four judgment conditions for determining the rationality of damage models are put forward. An ideal damage index (D) is supposed to vary within a scale of zero (no damage) to one (collapse). D should be a monotone increasing function which tends to increase in the case of the same displacement amplitude. As for members under large displacement amplitude loading, the growth rate of D should be greater than that of D under small amplitude displacement loading. Subsequently, the Park-Ang damage model, the Niu-Ren damage model, the Lu-Wang damage model and the proposed damage model are analyzed for 30 experimental reinforced concrete members, including slabs, walls, beams and columns. The results show that current damage models do not fully matches the reasonable judgment conditions, but the proposed damage model does. Therefore, a conclusion can be drawn that the proposed damage model can be used for evaluating and predicting damage performance of RC members under cyclic loading.

  14. Modeling and characterization of strengthened concrete tension members

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Stang, Henrik

    2011-01-01

    The structural potential for cracking of externally strengthened concrete tension members, can be predicted with three parameters, describing the structural cracking potential based on fracture mechanical properties of the of concrete and interface between concrete and strengthening medium....... With these parameters, it is possible to design reinforcement and obtain a required cracking behavior of a given structure. Design recommendations for single and multiple cracking of the tension specimen are given in terms of fracture mechanical parameters, and a structural stiffness parameter....

  15. Evaluation of the environmental, material, and structural performance of recycled aggregate concrete

    Science.gov (United States)

    Michaud, Katherine Sarah

    Concrete is the most commonly used building material in the construction industry, and contributes to 52% of construction and demolition waste in Canada. Recycled concrete aggregate (RCA) is one way to reduce this impact. To evaluate the performance of coarse and granular (fine and coarse) RCA in structural concrete applications, four studies were performed: an environmental assessment, a material testing program, a shear performance study, and a flexural performance study. To determine the environmental benefits of recycled aggregate concrete (RAC), three case studies were investigated using different populations and proximities to city centres. Environmental modelling suggested that RCA replacement could result in energy savings and greenhouse gas emission reductions, especially in remote areas. Tests were performed to determine if the volumetric replacement of up to 30% coarse RCA and 20% granular RCA is suitable for structural concrete applications in Canada. Fresh, hardened, and durability properties were evaluated. All five (5) of the RCA mixes showed equivalent material performance to the control mixes and met the requirements for a structural concrete mix. The five (5) RAC mixes were also used in structural testing. One-way reinforced concrete slab specimens were tested to failure to evaluate the shear and flexural performance of the RAC members. Peak capacities of and crack formation within each member were analyzed to evaluate the performance of RAC compared to conventional concrete. The shear capacity of specimens made from four (4) of the five (5) RAC mixtures was higher or equivalent to the control specimens. Specimens of the concrete mixture containing the highest content of recycled aggregate, 20% volumetric replacement of granular RCA, had shear capacities 14.1% lower, and exhibited cracking at lower loads than the control. The average flexural capacities of all RAC specimens were within 3.7% of the control specimens. Results from this research

  16. Rapid Strengthening of Full-Sized Concrete Beams with Powder-Actuated fastening Systems and Fiber-Reinforced Polymer (FRP) Composite Materials

    National Research Council Canada - National Science Library

    Bank, Lawrence

    2002-01-01

    A research study was conducted to determine if the method of retrofitting reinforced concrete beams with powder-actuated fasteners and composite materials was applicable to full-scale flexural members...

  17. Uniaxial Tension Test of Slender Reinforced Early Age Concrete Members

    Directory of Open Access Journals (Sweden)

    Wenbo Zhang

    2011-08-01

    Full Text Available The present study aims to obtain the tensile properties of early age concrete based on a uniaxial tension test employing RC slender members. First, the paper shows that concrete strain is equal to the strain of rebar at the mid-span of the RC member. The tensile Young’s modulus and the strain capacity of early age concrete are estimated using strain measurements. The experiment indicated that the tensile Young’s modulus at an early age is higher than the compressive modulus. This observation was similar to one found in a previous investigation which used a direct tension test of early age concrete. Moreover, the paper describes how an empirical equation for mature concrete can be applied to the relation between uniaxial tensile strength and splitting tensile strength even in early age concrete. Based on a uniaxial tension test, the paper proposes an empirical equation for the relationship between standard bond stresses and relative slip.

  18. Reactor vessel supported by flexure member

    International Nuclear Information System (INIS)

    Crawford, J.D.; Pankow, B.

    1975-01-01

    A description is given of a reactor pressure vessel which is provided with vertical support means in the form of circumferentially spaced columns upon which the vessel is mounted. The columns are adapted to undergo flexure in order to accommodate the thermally induced displacements experienced by the vessel during operational transients

  19. Reinforced flexural elements for TEMP-STRESS Program

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kennedy, J.M.; Pfeiffer, P.A.

    1987-06-01

    The implementation of reinforced flexural elements into the thermal-mechanical finite element program TEMP-STRESS is described. With explicit temporal integration and dynamic relaxation capabilities in the program, the flexural elements provide an efficient method for the treatment of reinforced structures subjected to transient and static loads. The capability of the computer program is illustrated by the solution of several examples: the simulation of a reinforced concrete beam; simulations of a reinforced concrete containment shell which is subjected to internal pressurization, thermal gradients through the walls, and transient pressure loads. The results of this analysis are relevant in the structural design/safety evaluations of typical reactor containment structures. 22 refs., 13 figs

  20. Steel fiber reinforced concrete behavior, modelling and design

    CERN Document Server

    Singh, Harvinder

    2017-01-01

    This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to d...

  1. Material equations for the calculations of steel fiber reinforced concrete members

    International Nuclear Information System (INIS)

    Jonas, W.

    1993-01-01

    Steel fiber reinforced concrete (SFRC) is made by the addition of steel fibers to fresh concrete. Usually the fibers are about 0.4-0.8mm in diameter and 25-80mm long. The addition of about 50-120 kg/m 3 is a practical and useful amount. That is about 0.6-1.5% by volume. The fibers are uniformly dispersed with a suitable concrete mix, so that clusters and uneven concentrations are prevented. The tensile strength of steel fiber reinforced concrete is scarcely better compared to that of plain concrete, but the fibers are very effective at preventing the propagation of tensile cracks. Thereby the tensile strength of fiber reinforced concrete is a reliable value. The addition of steel fibers also leads to a considerable increase of plastic deformations in the post cracking region, in comparison to plain concrete members. For nuclear power plant construction the use of steel fiber concrete with additional reinforcement of normal or prestressing steel is of special interest. The finished members exhibit good crack behaviour, increased shear strength and a considerable ability to absorb mechanical energy. These are valuable properties for members providing protection against extreme load cases (e.g. aircraft crash, earthquake, blast caused by explosion, debris due to hurricane, internal pressure loads or debris due to bursting of vessels or pipes). The behaviour of a reinforced concrete beam with steel fiber reinforced concrete against that of a reinforced beam without is shown. Until now the use of steel fiber reinforced concrete in civil engineering has been restricted because of the lack of design rules. For the preparation of fundamental principles and for the development of design rules HOCHTIEF has undertaken a series of tests on steel fiber reinforced concrete members with and without additional bar reinforcement. For this purpose HOCHTIEF has carried out several series of tests using either static, impact or cyclic loadings. In section 2 of this paper the elements

  2. Flexural Behavior of RC Slabs Strengthened in Flexure with Basalt Fabric-Reinforced Cementitious Matrix

    Directory of Open Access Journals (Sweden)

    Sugyu Lee

    2018-01-01

    Full Text Available This paper presents both experimental and analytical research results for predicting the flexural capacity of reinforced concrete (RC slabs strengthened in flexure with basalt fabric-reinforced cementitious matrix (FRCM. A total of 13 specimens were fabricated to evaluate the flexural behavior of RC slabs strengthened with basalt FRCM composite and were tested under four-point loading. The fiber type, tensile reinforcement ratio, and the number of fabric layers were chosen as experimental variables. The maximum load of FRCM-strengthened specimens increased from 11.2% to 98.2% relative to the reference specimens. The energy ratio and ductility of the FRCM-strengthened specimens decreased with the higher amount of fabric and tensile reinforcement. The effective stress level of FRCM fabric can be accurately predicted by a bond strength of ACI 549 and Jung’s model.

  3. Probabilistic Analysis of Structural Member from Recycled Aggregate Concrete

    Science.gov (United States)

    Broukalová, I.; Šeps, K.

    2017-09-01

    The paper aims at the topic of sustainable building concerning recycling of waste rubble concrete from demolition. Considering demands of maximising recycled aggregate use and minimising of cement consumption, composite from recycled concrete aggregate was proposed. The objective of the presented investigations was to verify feasibility of the recycled aggregate cement based fibre reinforced composite in a structural member. Reliability of wall from recycled aggregate fibre reinforced composite was assessed in a probabilistic analysis of a load-bearing capacity of the wall. The applicability of recycled aggregate fibre reinforced concrete in structural applications was demonstrated. The outcomes refer to issue of high scatter of material parameters of recycled aggregate concretes.

  4. Properties of high-workability concrete with recycled concrete aggregate

    OpenAIRE

    Safiuddin,; Alengaram,Ubagaram Johnson; Salam,Abdus; Jumaat,Mohd Zamin; Jaafar,Fahrol Fadhli; Saad,Hawa Binti

    2011-01-01

    This study presents the effects of recycled concrete aggregate (RCA) on the key fresh and hardened properties of concrete. RCA was used to produce high-workability concrete substituting 0-100% natural coarse aggregate (NCA) by weight. The slump and slump flow of fresh concretes were determined to ensure high workability. In addition, the compressive, flexural and splitting tensile strengths, modulus of elasticity, and permeable voids of hardened concretes were determined. The test results rev...

  5. Flexure Behavior of Hybrid Continuous Deep Beam Strengthened by Carbon Fiber Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Hayder M.K.Al-Mutairee

    2017-08-01

    Full Text Available This study present an experimental investigation for overall flexure behavior of reinforced concrete continuous deep beams (RCCDB made of hybrid concrete, normal strength concrete (NSC and high strength concrete (HSC at different location and percentage. The experimental work includes testing of sixteen specimens of RCCDB under two points loads. The effects of HSC layer thickness and CFRP on strength of RCCDB had been studied. The experimental results showed that the strengthening of RCCDB by HSC layer from top is better than from bottom, where the increment in the ultimate flexural strength increased by (14,21,27% for top strengthening and (12,15,13% for bottom strengthening for (25,50,75% thickness of total depth of beam respectively. The optimal strengthening of RCCDB by HSC layer at top was of 25%. The results also proved that the strengthening of hybrid RCCDB by (10,15cm CFRP strip at the bottom for flexure gave increment in the ultimate strength by (32, 29% respectively, and the strengthening by CFRP strip for flexure at the bottom is better than at top for hybrid RCCDB. The shear strengthening of hybrid RCCDB increases the ultimate strength by 23.4% and 13.8% if the strengthening has O and U shape respectively

  6. New research directions in flexural member failure at an interior support (Interaction of web crippling and bending moment)

    NARCIS (Netherlands)

    Hofmeyer, H.; Kerstens, J.G.M.; Snijder, H.H.; Bakker, M.C.M.

    1996-01-01

    Design rules describing failure at an interior support of cold-formed steel flexural members are of an empirical nature. This is probably due to the complex character of the failure mechanisms, which makes an analytical approach difficult. An overview of research on this subject has been made. The

  7. Mechanical behaviour of fibre reinforced concrete using soft - drink can

    Science.gov (United States)

    Ilya, J.; Cheow Chea, C.

    2017-11-01

    This research was carried out to study the behaviour of concrete, specifically compressive and flexural strength, by incorporating recycled soft drink aluminium can as fibre reinforcement in the concrete. Another aim of the research is to determine the maximum proportion of fibres to be added in the concrete. By following standard mix design, Ordinary Portland Cement (OPC) concrete was made to have a target mean strength of 30 N/mm2 with not more than 30 mm of slump. Having the same workability, OPC concrete with 0%, 1% and 2% of soft drink can aluminium fibre was prepared based on weight of cement. The specimens were tested for compressive strength and flexural strength. Laboratory test results based on short term investigation reveals that the compressive strength and flexural strength of concrete containing fibre are higher than of normal OPC concrete. Among two volume fractions, concrete with 1% of soft drink can fibre have performed better result in compressive strength and flexural strength compared with 2% amount of soft drink can fibre. The optimum proportion of aluminium fibre to be added in the concrete as fibre reinforcement is 1% fibre content by weight of cement which gave all the positive response from all the tests conducted.

  8. Shear design and assessment of reinforced and prestressed concrete beams based on a mechanical model

    OpenAIRE

    Marí Bernat, Antonio Ricardo; Bairán García, Jesús Miguel; Cladera Bohigas, Antoni; Oller Ibars, Eva

    2016-01-01

    Safe and economical design and assessment of reinforced (RC) and prestressed concrete (PC) beams requires the availability of accurate but simple formulations which adequately capture the structural response. In this paper, a mechanical model for the prediction of the shear-flexural strength of PC and RC members with rectangular, I, or T sections, with and without shear reinforcement, is presented. The model is based on the principles of concrete mechanics and on assumptions supported by the ...

  9. Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete

    Science.gov (United States)

    He, Dongqing; Wu, Min; Jie, Pengyu

    2017-12-01

    Several common high elastic modulus fibers (steel fibers, basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%. Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit ‘negative confounding effect’ on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.

  10. Properties of concrete containing foamed concrete block waste as fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Budiea, A. M. A.; Zaidan, A. L. F.; Rasid, M. H.; Hazimmah, D. S.

    2017-11-01

    Environmental degradation due to excessive sand mining dumping at certain places and disposal of foamed concrete block waste from lightweight concrete producing industry are issues that should be resolved for a better and cleaner environment of the community. Thus, the main intention of this study is to investigate the potential of foamed concrete block waste as partial sand replacement in concrete production. The foamed concrete waste (FCW) used in this research that were supplied by a local lightweight concrete producing industry. The workability and compressive strength of concrete containing various percentage of foamed concrete waste as partial sand replacement has been investigated. Prior to the use, the foamed concrete waste were crushed to produce finer particles. Six concrete mixes containing various content of crushed foamed concrete waste that are 0%, 10%, 20%, 30%, 40% and 50% were used in this experimental work. Then the prepared specimens were placed in water curing until the testing age. Compressive strength test and flexural strength tests were conducted at 7, 14 and 28 days. The result shows that integration of crushed foamed concrete waste as partial sand replacement in concrete reduces the mix workability. It is interesting to note that both compressive strength and flexural strength of concrete improves when 30% crushed foamed concrete waste is added as partial sand replacement.

  11. Experimental Study on Full-Scale Beams Made by Reinforced Alkali Activated Concrete Undergoing Flexure.

    Science.gov (United States)

    Monfardini, Linda; Minelli, Fausto

    2016-08-30

    Alkali Activated Concrete (AAC) is an alternative kind of concrete that uses fly ash as a total replacement of Portland cement. Fly ash combined with alkaline solution and cured at high temperature reacts to form a binder. Four point bending tests on two full scale beams made with AAC are described in this paper. Companion small material specimens were also casted with the aim of properly characterizing this new tailored material. The beam's length was 5000 mm and the cross section was 200 mm × 300 mm. The AAC consisted of fly ash, water, sand 0-4 mm and coarse aggregate 6-10 mm; and the alkaline solution consisted of sodium hydroxide mixed with sodium silicate. No cement was utilized. The maximum aggregate size was 10 mm; fly ash was type F, containing a maximum calcium content of 2%. After a rest period of two days, the beam was cured at 60 °C for 24 h. Data collected and critically discussed included beam deflection, crack patterns, compressive and flexural strength and elastic modulus. Results show how AAC behavior is comparable with Ordinary Portland Cement (OPC) based materials. Nonlinear numerical analyses are finally reported, promoting a better understanding of the structural response.

  12. Prediction on flexural strength of encased composite beam with cold-formed steel section

    Science.gov (United States)

    Khadavi, Tahir, M. M.

    2017-11-01

    A flexural strength of composite beam designed as boxed shaped section comprised of lipped C-channel of cold-formed steel (CFS) facing each other with reinforcement bars is proposed in this paper. The boxed shaped is kept restrained in position by a profiled metal decking installed on top of the beam to form a slab system. This profiled decking slab is cast by using self-compacting concrete where the concrete is in compression when load is applied to the beam. Reinforcement bars are used as shear connector between slab and CFS as beam. A numerical analysis method proposed by EC4 is used to predict the flexural strength of the proposed composite beam. It was assumed that elasto-plastic behaviour is developed in the cross -sectional of the proposed beam. The calculated predicted flexural strength of the proposed beam shows reasonable flexural strength for cold-formed composite beam.

  13. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    Directory of Open Access Journals (Sweden)

    Francisco Carrión

    2014-01-01

    Full Text Available Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate, and waste aggregates (basalt and limestone coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%, and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  14. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    Science.gov (United States)

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  15. Copolymer natural latex in concrete: Dynamic evaluation through energy dissipation of polymer modified concrete

    Science.gov (United States)

    Andayani, Sih Wuri; Suratman, Rochim; Imran, Iswandi; Mardiyati

    2018-05-01

    Portland cement concrete have been used in construction due to its strength and ecomical value. But it has some limitations, such low flexural strength, low tensile strength, low chemical resistant and etc. Due to its limitations in flexural and tensile strength, Portland cement concrete more susceptible by seismic force. There are some methods for improving its limitations. Polymer addition into concrete mixture could be one of solution for improving the flexural and tensile strength, in aiming to get erthquake resistant properties. Also, the eartquake resistant could be achieved by improving energy dissipation capacity. In this research, the earthquake resistant evalution was approached from dynamic evaluation through energy dissipation capacity, after polymer addition as concrete additives. The polymers were natural latex (Indonesian naural resource) grafted with styrene and methacrylate, forming copolymer - natural latex methacrylate (KOLAM) and copolymer - natural latex styrene (KOLAS). They were added into concrete mixture resulting polymer modified concrete. The composition of polymer are 1%, 5% and 10% weight/weight of cement. The higher capacity of energy dissipation will give more capability in either absorbing or dissipating energy, and it was predicted would give better earthquake resistant.. The use of KOLAM gave better performance than KOLAS in energy dissipation capacity. It gave about 46% for addition of 1% w/w compared to Portland cement concrete. But for addition 5% w/w and 10% w/w, they gave about 7% and 5% higher energy dissipation capacity. The KOLAM addition into concrete mixture would reduce the maximum impact load with maximumabout 35% impact load reducing after 1% w/w addition. The higher concentration of KOLAM in concrete mixture, lower reducing of impact load, they were about 4% and 3% for KOLAM 5% and 10%. For KOLAS addition in any compositions, there were no positive trend either in energy dissipation capacity or impact load properties

  16. Serviceability behavior of Reinforcement Concrete beams with polypropylene and steel fibers

    OpenAIRE

    NaserKabashi; Cenë Krasniqi

    2015-01-01

    Serviceability Limit States (SLS) may lead to the design of concrete elements internally reinforced with Fiber Reinforced Polymer (FRP).In many types of concrete structure loss the serviceability due to wide cracks, number of cracks or large deflection is not uncommon behaviour in concrete structures or concrete beams.The flexural ductility affects the serviceability deflection of RC beams once flexural cracking take place.Imprvement will be focused on the use of polypropilene fib...

  17. Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress.

    Science.gov (United States)

    Wang, Hailong; Sun, Xiaoyan; Wang, Junjie; Monteiro, Paulo J M

    2016-03-30

    The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ).

  18. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    The durability of MOC concrete compositions against extreme environmental conditions viz. heating–cooling, freezing–thawing, wetting–drying and penetration and deposition of salts etc were investigated. The results reveal that MOC concrete has high compressive strength associated with high flexural strength and the ...

  19. Experimental on moisture migration and pore pressure formation of concrete members subjected to high temperature

    International Nuclear Information System (INIS)

    Nagao, Kakuhiro; Nakane, Sunao

    1993-01-01

    The experimental studies concerning temperature, moisture migration, and pore pressure of mass concrete mock-up specimens heated up to high temperature at 110degC to 600degC, were performed, so as to correctly estimate the moisture migration behaviour of concrete members subjected to high temperature, which is considered significantly influenced on physical properties of concrete. As a results, it is confirmed that the moisture migration behavior of concrete members can be explained by temperature and pore pressure, and indicate the characteristics both sealed condition (dissipation of moisture is prevented) and unsealed condition (dissipation of moisture occur). (author)

  20. FLEXURAL CAPACITY OF THE PRECAST RC BEAM-COLUMN CONNECTION USING CFRP SHEET

    OpenAIRE

    Djamaluddin, Rudy; Rante, Harmonis; Irmawaty, Rita

    2016-01-01

    Precast concrete have advantages in quality and shorter construction time. The connection of a precast concrete structures is important for the successful construction. This paper presents an experimental investigation of the flexural capacity of the portal system beam-column connection of precast concrete using CFRP sheet. The study was conducted to develop a connection system using CFRP sheet on a precast concrete frame of a highway bridges. A series of specimens with parameter of CFRP shee...

  1. Flexural behaviour of partially bonded carbon fibre reinforced polymers strengthened concrete beams: Application to fire protection systems design

    International Nuclear Information System (INIS)

    Firmo, J.P.; Arruda, M.R.T.; Correia, J.R.; Tiago, C.

    2015-01-01

    Highlights: • The mechanical behaviour of partially bonded CFRP strengthened beams was modelled. • Two dimensional non-linear finite element models were developed. • Partially bonded beams can present similar flexural strength to fully bonded ones. • Relations between the bonded length and the strength reduction were proposed. • The proposed relations were used for the design of fire protection systems. - Abstract: Recent fire resistance tests on reinforced concrete (RC) beams strengthened with carbon fibre reinforced polymers (CFRP) laminates showed that it is possible to attain considerable fire endurance provided that thermal insulation is applied at the anchorage zones of the strengthening system. With such protection, although the CFRP laminate prematurely debonds in the central part of the beam, it transforms into a cable fixed at the extremities until one of the anchorage zones loses its bond strength. The main objective of this paper is to propose a simplified methodology for the design of fire protection systems for CFRP strengthened-RC beams, which is based on applying thicker insulation at the anchorage zones (promoting the above mentioned “cable behaviour”) and a thinner one at the current zone (avoiding tensile rupture of the carbon fibres). As a first step towards the validation of this methodology, finite element (FE) models were developed to simulate the flexural behaviour at ambient temperature of full-scale RC beams strengthened with CFRP laminates according to the externally bonded reinforcement (EBR) and near surface mounted (NSM) techniques, in both cases fully or partially bonded (the latter simulating the cable). The FE models were calibrated with results of 4-point bending tests on small-scale beams and then extended for different beam geometries, with spans (L) varying from 2 m to 5 m, in which the influence of the CFRP bonded length (l b ) and the loading type (point or uniformly distributed) on the strength reduction was

  2. Performance of Retrofitted Self-Compacting Concrete-Filled Steel Tube Beams Using External Steel Plates

    Directory of Open Access Journals (Sweden)

    Ahmed A. M. AL-Shaar

    2018-01-01

    Full Text Available Self-compacting concrete-filled steel tube (SCCFST beams, similar to other structural members, necessitate retrofitting for many causes. However, research on SCCFST beams externally retrofitted by bolted steel plates has seldom been explored in the literature. This paper aims at experimentally investigating the retrofitting performance of square self-compacting concrete-filled steel tube (SCCFST beams using bolted steel plates with three different retrofitting schemes including varied configurations and two different steel plate lengths under flexure. A total of 18 specimens which consist of 12 retrofitted SCCFST beams, three unretrofitted (control SCCFST beams, and three hollow steel tubes were used. The flexural behaviour of the retrofitted SCCFST beams was examined regarding flexural strength, failure modes, and moment versus deflection curves, energy absorption, and ductility. Experimental results revealed that the implemented retrofitting schemes efficiently improve the moment carrying capacity and stiffness of the retrofitted SCCFST beams compared to the control beams. The increment in flexural strength ranged from 1% to 46%. Furthermore, the adopted retrofitting schemes were able to restore the energy absorption and ductility of the damaged beams in the range of 35% to 75% of the original beam ductility. Furthermore, a theoretical model was suggested to predict the moment capacity of the retrofitted SCCFST beams. The theoretical model results were in good agreement with the test results.

  3. Development of partial safety factors for the design of partially prestressed rectangular sections in biaxial flexure

    International Nuclear Information System (INIS)

    Chatterjee, Aritra; Bhattacharya, Baidurya; Agrawal, Gunjan; Mondal, Apurba

    2011-01-01

    Partial safety factors (PSFs) used in reliability-based design are intended to account for uncertainties in load, material and mathematical modeling while ensuring that the target reliability is satisfied for the relevant class of structural components in the given load combination and limit state. This paper describes the methodology in detail for developing a set of optimal reliability-based PSFs for the design of rectangular partially prestressed concrete sections subjected to biaxial flexure. The mechanical formulation of the flexural limit state is based on the principle behind prestressed concrete design recommended by IS 1343 and SP16 and failure is defined as tensile cracking of concrete extending beyond the depth of cover. The applied moments are combined according to Wood's criteria. The optimization of the PSFs is based on reliability indices obtained from first order reliability analysis of the structural components; Monte Carlo simulations are performed in each run to determine the capacity statistics and dependence between capacity and applied loads (effected through the axial loads influencing moment capacity corresponding to cracking). Numerical examples involving flexural design of partially prestressed concrete shell elements in nuclear power plant containments under accidental pressure load combination are provided. (author)

  4. Characterization and modeling of fiber reinforced concrete for structural applications in beams and plates

    DEFF Research Database (Denmark)

    Paegle, Ieva

    (i.e., stirrups) is investigated in detail using digital image correlation (DIC) measurement technique. The use of steel fibers to replace traditional shear reinforcement is not without precedent in current reinforced concrete design codes. However, more detailed information is provided......Fiber reinforced concrete (FRC) with discrete, short and randomly distributed fibers can be specified and designed for structural applications in flexural members. In certain cases, fibers are used as the only reinforcement, while in other cases fibers are used in combination with a reduced amount...... are considered in structural design, the work presented in this thesis analyzes in detail many commonly used test methods on three types of FRC, including Polypropylene Fiber Reinforced Concrete (PP-FRC), Polyvinyl Alcohol Fiber Reinforced Concrete called Engineered Cementitious Composite (ECC) and Steel Fiber...

  5. Mechanical properties of polymer-modified porous concrete

    Science.gov (United States)

    Ariffin, N. F.; Jaafar, M. F. Md.; Shukor Lim, N. H. Abdul; Bhutta, M. A. R.; Hussin, M. W.

    2018-04-01

    In this research work, polymer-modified porous concretes (permeable concretes) using polymer latex and redispersible polymer powder with water-cement ratio of 30 %, polymer-cement ratios of 0 to 10 % and cement content of 300 kg/m3 are prepared. The porous concrete was tested for compressive strength, flexural strength, water permeability and void ratio. The cubes size of specimen is 100 mm ×100 mm × 100 mm and 150 mm × 150 mm × 150 mm while the beam size is 100 mm × 100 mm × 500 mm was prepared for particular tests. The tests results show that the addition of polymer as a binder to porous concrete gives an improvement on the strength properties and coefficient of water permeability of polymer-modified porous concrete. It is concluded from the test results that increase in compressive and flexural strengths and decrease in the coefficient of water permeability of the polymer-modified porous concrete are clearly observed with increasing of polymer-cement ratio.

  6. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    OpenAIRE

    Carrión, F.; Montalban Domingo, Maria Laura; Real Herráiz, Julia Irene; Real, T.

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate) and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strenght, flexural strength, modulus of elasticity,...

  7. Experimental study on the cracking behavior of reinforced concrete hollow cylinders subjected to temperature gradient and the assessment of decrease in flexural rigidity due to cracking

    International Nuclear Information System (INIS)

    Aoyagi, Yukio; Onuma, Hiroshi; Okazawa, Takao

    1976-01-01

    Altough the consideration of thermal stress constitutes one of the primary factors governing the design of the hollow cylindrical structures made of reinforced concrete and subjected to temperature gradient, such as radiation-shielding walls and reactor containment vessels, the method of rationally evaluating the safety to such stress has not been established so far. The purposes of this study are to investigate the conditions under which cracks initiate in reinforced concrete structures due to temperature gradient, and to evaluate the decreases in the flexural rigidity after cracking, mainly on the basis of experiment. Three hollow cylinders with top and bottom slabs, 120 cm height and 100 cm outside diameter, were tested. The cylinders were externally cooled by being immersed in water, and internally heated by circulating hot water through the cavities. The maximum temperature difference of 65 deg C was attained. The strain was measured, and the crack patterns were observed. A reinforced concrete beam of 3.8 m length was subjected to temperature difference of 65 deg C. Horizontal cracks appeared first at 27 deg C, and vertical cracks followed at 31 deg C difference at the middle of cylindrical walls. It was assumed that the first cracks appear at the tensile strain of 100 x 10 -6 , and the calculated result was agreed fairly well with the observed temperature difference. The rational method for evaluating the decrease in flexural rigidity due to cracking was proposed by the authors. (Kako, I.)

  8. prediction of flexural strength of chikoko pozzolana blended cement

    African Journals Online (AJOL)

    user

    optimize the flexural strength of chikoko pozzolana blended cement concrete using Osadebe's regression function. The ... such as cement [1-3]. Nigeria is blessed with abundance of local building and construction materials such as stones, sand, laterite and timber. However ...... Soil Stabilization”, International Journal of.

  9. Mechanical properties of recycled PET fibers in concrete

    Directory of Open Access Journals (Sweden)

    Fernando Pelisser

    2012-08-01

    Full Text Available Fiber-reinforced concrete represents the current tendency to apply more efficient crack-resistant concrete. For instance, polyethylene terephthalate (PET is a polyester polymer obtained from recyclable bottles; it has been widely used to produce fibers to obtain cement-based products with improved properties. Therefore, this paper reports on an experimental study of recycled-bottle-PET fiber-reinforced concrete. Fibers with lengths of 10, 15 and 20 mm and volume fractions of 0.05, 0.18 and 0.30% related to the volume of the concrete were used. Physical and mechanical characterization of the concrete was performed, including the determination of compressive strength, flexural strength, Young's modulus and fracture toughness as well as analysis using mercury intrusion porosimetry (MIP and scanning electron microscopy (SEM. Flexure and impact tests were performed after 28 and 150 days. No significant effect of the fiber addition on the compressive strength and modulus of elasticity was observed. However, the Young's modulus was observed to decrease as the fiber volume increased. At 28 days, the concrete flexural toughness and impact resistance increased with the presence of PET fibers, except for the 0.05 vol.% sample. However, at 150 days, this improvement was no longer present due to recycled-bottle-PET fiber degradation in the alkaline concrete environment, as visualized by SEM observations. An increase in porosity also has occurred at 365 days for the fiber-reinforced concrete, as determined by MIP.

  10. Sand Cement Brick Containing Recycled Concrete Aggregate as Fine-Aggregate Replacement

    Directory of Open Access Journals (Sweden)

    Sheikh Khalid Faisal

    2017-01-01

    Full Text Available Nowadays, the usage amount of the concrete is increasing drastically. The construction industry is a huge consumer of natural consumer. It is also producing the huge wastage products. The usage of concrete has been charged to be not environmentally friendly due to depletion of reserve natural resources, high energy consumption and disposal issues. The conservation of natural resources and reduction of disposal site by reuse and recycling waste material was interest possibilites. The aim of this study is to determine the physical and mechanical properties of sand cement brick containing recycled concrete aggregate and to determine the optimum mix ratio containing recycled concrete aggregate. An experiment done by comparing the result of control specimen using 100% natural sand with recycled concrete aggregate replacement specimen by weight for 55%, 65%, and 75%. The sample was tested under density, compressive strength, flexural strength and water absorption to study the effect of using recycled concrete aggregate on the physical and mechanical properties of bricks. The result shows that the replacement of natural sand by recycled concrete aggregate at the level of 55% provide the highest compressive and flexural strength compared to other percentage and control specimen. However, if the replacement higher than 55%, the strength of brick was decreased for compressive and flexural strength, respectively. The relationship of compressive-flexural strength is determined from statistical analysis and the predicted result can be obtained by using equation ff,RCA = 0.5375 (fc0.3272.

  11. Crack widths in concrete with fibers and main reinforcement

    DEFF Research Database (Denmark)

    Christensen, Frede; Ulfkjær, Jens Peder; Brincker, Rune

    2015-01-01

    The main object of the research work presented in this paper is to establish design tools for concrete structures where main reinforcement is combined with addition of short discrete steel fibers. The work is concerned with calculating and measuring crack widths in structural elements subjected...... to bending load. Thus, the aim of the work is to enable engineers to calculate crack widths for flexural concrete members and analyze how different combinations of amounts of fibers and amounts of main reinforcement can meet a given maximum crack width requirement. A mathematical model including...... the ductility of the fiber reinforced concrete (FRC) is set up and experimental work is conducted in order to verify the crack width model. The ductility of the FRC is taken into account by using the stress crack width relation. The constitutive model for the FRC is based on the idea that the initial part...

  12. Flexural performance of steel fiber reinforced concrete (SFRC) ribbed slab with various topping thicknesses

    Science.gov (United States)

    Rahman, Fadhillah Abdul; Bakar, Afidah Abu; Hashim, Mohd Hisbany Mohd; Ahmad, Hazrina

    2017-11-01

    Ribbed slab provides lighter slab than an equivalent solid slab which helps in reducing the weight with its voids. However, in order to overcome the drawbacks in the construction process, the application of steel fibre reinforcement concrete (SFRC) is seen as an alternative material to be used in the slab. This study is performed to investigate the behaviour of SFRC as the main material in ribbed slab, omitting the conventional reinforcements, under four-point bending test. Three equivalent samples of ribbed slabs were prepared for this study with variations in the topping thickness of 100, 75 and 50 mm. The flexural strength of ribbed slab with 100 mm topping shows similar loading carrying capacity with the 75mm topping while 50 mm gave the lowest ultimate loading. First cracks for all slabs occurred at the topping. The cracks began from the external ribs and propagates toward the internal rib. Incorporation of steel fibres help in giving a longer deflection softening than a sudden brittle failure, thus proves its ability to increase energy absorption capacity and improving cracking behaviour.

  13. Polymer concrete reinforced with recycled-tire fibers: Mechanical properties

    Science.gov (United States)

    Martínez-Cruz, E.; Martínez-Barrera, G.; Martínez-López, M.

    2013-06-01

    Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.

  14. Polymer concrete reinforced with recycled-tire fibers: Mechanical properties

    International Nuclear Information System (INIS)

    Martínez-Cruz, E; Martínez-López, M; Martínez-Barrera, G

    2013-01-01

    Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.

  15. Behavior of reinforced concrete beams reinforced with GFRP bars

    Directory of Open Access Journals (Sweden)

    D. H. Tavares

    Full Text Available The use of fiber reinforced polymer (FRP bars is one of the alternatives presented in recent studies to prevent the drawbacks related to the steel reinforcement in specific reinforced concrete members. In this work, six reinforced concrete beams were submitted to four point bending tests. One beam was reinforced with CA-50 steel bars and five with glass fiber reinforced polymer (GFRP bars. The tests were carried out in the Department of Structural Engineering in São Carlos Engineering School, São Paulo University. The objective of the test program was to compare strength, reinforcement deformation, displacement, and some anchorage aspects between the GFRP-reinforced concrete beams and the steel-reinforced concrete beam. The results show that, even though four GFRP-reinforced concrete beams were designed with the same internal tension force as that with steel reinforcement, their capacity was lower than that of the steel-reinforced beam. The results also show that similar flexural capacity can be achieved for the steel- and for the GFRP-reinforced concrete beams by controlling the stiffness (reinforcement modulus of elasticity multiplied by the bar cross-sectional area - EA and the tension force of the GFRP bars.

  16. Performance of self-consolidating concrete in prestressed girders.

    Science.gov (United States)

    2010-04-01

    A structural investigation of self-consolidating concrete (SCC) in AASHTO Type I precast, : prestressed girders was performed. Six test girders were subjected to transfer length and : flexural testing. Three separate concrete mixtures, two girders pe...

  17. Performance of "Waterless Concrete"

    Science.gov (United States)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  18. Mechanical performance of porous concrete pavement containing nano black rice husk ash

    Science.gov (United States)

    Ibrahim, M. Y. Mohd; Ramadhansyah, P. J.; Rosli, H. Mohd; Ibrahim, M. H. Wan

    2018-01-01

    This paper presents an experimental research on the performance of nano black rice husk ash on the porous concrete pavement properties. The performance of the porous concrete pavement mixtures was investigated based on their compressive strength, flexural strength, and splitting tensile strength. The results indicated that using nano material from black rice husk ash improved the mechanical properties of porous concrete pavement. In addition, the result of compressive, flexural, and splitting tensile strength was increased with increasing in curing age. Finally, porous concrete pavement with 10% replacement levels exhibited an excellent performance with good strength compared to others.

  19. New Trends for Reinforced Concrete Structures: Some Results of Exploratory Studies

    Directory of Open Access Journals (Sweden)

    Ricardo N. F. Carmo

    2017-10-01

    Full Text Available Today, the concrete sector is being pushed to innovate in order to better address current challenges with higher competitiveness and more sustainable solutions. Different research studies have been conducted all over the world in which novel approaches and paths were proposed. It is important to spread information to define new strategies for the future of this industry. The enhancement of concrete properties and the impact of these changes in structural design are some of the topics analysed in those studies. This paper presents four experimental studies conducted by the authors where different types of concrete and structural members were tested. The common goal of these studies was to develop innovative solutions with high performance and low environmental impact. The scope of the first study was the structural behaviour of members produced with lightweight aggregate concrete (LWAC. Results of several beams, ties, and slabs are herein presented and analysed. The advantage of using glass fibre–reinforced polymer (GFRP rebars was addressed in a second study, and main results obtained with this type of rebar are also herein presented. Recent advances in nanotechnology led to the development of concretes incorporating nanoparticles into the binder matrix. Typically, these nanoparticles have a diameter of 10–300 nanometers and are added to the mixture to reduce the porosity and increase the density of the binder matrix, improving the mechanical properties and durability. To analyse their influence on steel-to-concrete bonding and on the shear and flexural behaviour of the beams was the main goal of the third study herein described. Finally, a new concept to produce reinforced concrete members with high durability using a special concrete cover, which was the goal of the fourth study, is also herein presented.

  20. Reuse of waste iron as a partial replacement of sand in concrete.

    Science.gov (United States)

    Ismail, Zainab Z; Al-Hashmi, Enas A

    2008-11-01

    One of the major environmental issues in Iraq is the large quantity of waste iron resulting from the industrial sector which is deposited in domestic waste and in landfills. A series of 109 experiments and 586 tests were carried out in this study to examine the feasibility of reusing this waste iron in concrete. Overall, 130 kg of waste iron were reused to partially replace sand at 10%, 15%, and 20% in a total of 1703 kg concrete mixtures. The tests performed to evaluate waste-iron concrete quality included slump, fresh density, dry density, compressive strength, and flexural strength tests: 115 cubes of concrete were molded for the compressive strength and dry density tests, and 87 prisms were cast for the flexural strength tests. This work applied 3, 7, 14, and 28 days curing ages for the concrete mixes. The results confirm that reuse of solid waste material offers an approach to solving the pollution problems that arise from an accumulation of waste in a production site; in the meantime modified properties are added to the concrete. The results show that the concrete mixes made with waste iron had higher compressive strengths and flexural strengths than the plain concrete mixes.

  1. The Investigation on Flexural Toughness of Partially Steel Fiber Reinforced Concrete Immersed by Simulated Sea-Water

    Directory of Open Access Journals (Sweden)

    Feng GAO

    2017-11-01

    Full Text Available In order to investigate the corrosive resistance of partially steel fiber reinforced concrete (PSFRC, the flexural toughness experiment of nine specimens subjected to corrosion by alternating wet and dry cycles in a simulated marine environment were conducted, which aims at investigating the effect of corrosion time, steel fiber volume fraction and SFRC thickness on PSFRC toughness. The experimental results showed that both the mechanical and ductile characteristics of PSFRC got worse due to corrosion even if increasing the steel fiber volume. Additionally, the effect of steel fiber content on the toughness and ultimate load are greater than PSFRC thickness (t. The increase of 56.6% and 171% could be obtained in the mean ultimate load and I10 if the increase of steel fiber volume is from 0.5 % to 2.0%, respectively. This paper could offer a reference to the application of PSFRC in sea-water environment.DOI: http://dx.doi.org/10.5755/j01.ms.23.4.17049

  2. Restrained Shrinkage Cracking of Fiber-Reinforced High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Ashkan Saradar

    2018-02-01

    Full Text Available Concrete shrinkage and volume reduction happens due to the loss of moisture, which eventually results in cracks and more concrete deformation. In this study, the effect of polypropylene (PP, steel, glass, basalt, and polyolefin fibers on compressive and flexural strength, drying shrinkage, and cracking potential, using the ring test at early ages of high-strength concrete mixtures, was investigated. The restrained shrinkage test was performed on concrete ring specimens according to the ASTM C1581 standard. The crack width and age of restrained shrinkage cracking were the main parameters studied in this research. The results indicated that the addition of fiber increases the compressive strength by 16%, 20%, and 3% at the age of 3, 7, and 28 days, respectively, and increases the flexural toughness index up to 7.7 times. Steel and glass fibers had a better performance in flexural strength, but relatively poor action in the velocity reduction and cracking time of the restrained shrinkage. Additionally, cracks in all concrete ring specimens except for the polypropylene-containing mixture, was developed to a full depth crack. The mixture with polypropylene fiber indicated a reduction in crack width up to 62% and an increasing age cracking up to 84%.

  3. Fiber Reinforced Concrete (FRC) for High Rise Construction: Case Studies

    Science.gov (United States)

    Gharehbaghi, Koorosh; Chenery, Rhea

    2017-12-01

    Due to its material element, Fiber Reinforced Concrete (FRC) could be stronger than traditional Concrete. This is due to FRC internal material compounds and elements. Furthermore, FRC can also significantly improve flexural strength when compared to traditional Concrete. This improvement in flexural strength can be varied depending on the actual fibers used. Although not new, FRC is gradually gaining popularity in the construction industry, in particular for high rise structures. This is due to its flexural strength, especially for high seismic zones, as it will provide a better solution then reinforced Concrete. The main aim of this paper is to investigate the structural importance of FRC for the high rise construction. Although there has been numerous studies and literature in justifying the FRC for general construction; this paper will consider its use specifically for high rise construction. Moreover, this paper will closely investigate eight case studies from Australian and United States as a part of the FRC validation for high rise construction. In doing so, this paper will examine their Structural Health Monitoring (SHM) to determine their overall structural performance.

  4. Mechanical design of deformation compensated flexural pivots structured for linear nanopositioning stages

    Science.gov (United States)

    Shu, Deming; Kearney, Steven P.; Preissner, Curt A.

    2015-02-17

    A method and deformation compensated flexural pivots structured for precision linear nanopositioning stages are provided. A deformation-compensated flexural linear guiding mechanism includes a basic parallel mechanism including a U-shaped member and a pair of parallel bars linked to respective pairs of I-link bars and each of the I-bars coupled by a respective pair of flexural pivots. The basic parallel mechanism includes substantially evenly distributed flexural pivots minimizing center shift dynamic errors.

  5. Effect of Hybrid Fibers on the Mechanical Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Hamid H. Hussein, Saeed K. Rejeb Hayder T. Abd

    2014-04-01

    Full Text Available In this study, high strength concrete of 75 MPa compressive strength was investigated. The experimental program was designed to study the effect of fibers and hybrid fibers (steel and polypropylene fibers on the fresh (workability and wet density and hardened properties (compressive strength, splitting strength, flexural strength and dry density of high strength concrete. Results show that decreases in slump flow of all concrete mixtures containing steel, polypropylene and hybrid fibers compared with control mix (0% fiber. Hybrid high strength concrete with steel and polypropylene fibers showed superior compressive, splitting, flexural strengths over the others concrete without or with single fibers content. The test results indicate that the maximum increase in compressive and flexural strengths are obtains with the hybridization ratio (70%steel + 30% polypropylene and were equal to 14.54% and 23.34% respectively, compared with the control mix. While, the maximum increase in splitting tensile strength with (100% steel fiber + 0 polypropylene is 21.19%. 

  6. Properties of Concrete partially replaced with Coconut Shell as Coarse aggregate and Steel fibres in addition to its Concrete volume

    Science.gov (United States)

    Kalyana Chakravarthy, P. R.; Janani, R.; Ilango, T.; Dharani, K.

    2017-03-01

    Cement is a binder material with various composition of Concrete but instantly it posses low tensile strength. The study deals with mechanical properties of that optimized fiber in comparison with conventional and coconut shell concrete. The accumulation of fibers arbitrarily dispersed in the composition increases the resistance to cracking, deflection and other serviceability conditions substantially. The steel fiber in extra is one of the revision in coconut shell concrete and the outcome of steel fiber in coconut shell concrete was to investigate and compare with the conventional concrete. For the given range of steel fibe from 0.5 to 2.0%, 12 beams and 36 cylindrical specimens were cast and tested to find the mechanical properties like flexural strength, split tensile, impact resistance and the modulus of elasticity of both conventional and coconut shell concrete has been studied and the test consequences are compared with the control concrete and coconut shell concrete for M25 Grade. It is fulfilled that, the steel fibers used in this venture has shown significant development in all the properties of conventional and coconut shell concrete while compared to controlled conventional and coconut shell concrete like, Flexural strength by 6.67 % for 1.0 % of steel fiber in conventional concrete and by 5.87 % for 1.5 % of steel fiber in coconut shell concrete.

  7. Weak-axis flexural buckling of cellular and castellated columns

    NARCIS (Netherlands)

    Sonck, D.; Belis, J.L.I.F.

    Cellular and castellated members are usually produced by performing cutting and rewelding operations on a hot-rolled I-section member. As illustrated in previous work, these operations will influence the residual stresses present in the members in a manner which is detrimental for the flexural

  8. Fracture toughness and failure mechanism of high performance concrete incorporating carbon nanotubes

    Directory of Open Access Journals (Sweden)

    A. Khitab

    2017-10-01

    Full Text Available Cement and concrete composites are inherently brittle and exhibit very less tensile/flexural strength capacity as compared to their compressive strength. Use of thoroughly dispersed carbon nanotubes in the concrete matrix is one of the possible solution for enhancing mechanical properties in tension/flexure. In the present research work, small fractions of multiwall carbon nanotube (MWCNTs i.e. 0.05 and 0.10 wt% of cement have been integrated into the cement concrete to study their effect on the mechanical properties of the resultant concrete mixtures. The enhanced performance of the whole mix lies on a single point that MWCNTs must be thoroughly disperse in the mixture. Hence, special arrangement through usage of high energy sonication along with amended acrylic based polymer (performing as a surfactant was made to have a uniform dispersion of MWCNTs in the concrete mix. The testing of concrete samples includes i.e., flexure, splitting tensile and compressive strengths after 3, 7, 28 and 56 days of curing. After having comparison with the control mix cured for 28 days, it was observed that the addition of 0.05 wt% MWCNTs increased the splitting tensile strength by 20.58%, flexural strength by 26.29% and compressive strength by 15.60%. Through above results, which verify the increase in concrete mix strength after adding MWCNTs, these MWCNTs may be incorporated in the treatment of Nano/micro cracks completed through process of connecting, branching and pinning. Similarly, as proved in threepoint bending tests, MWCNTs also enhances the breaking strains as well as the fracture energy of the concrete mixes, besides, imparting increase to the strength. The investigations have shown that incorporating lesser amounts of MWCNTs i.e., 0.05 and 0.10 wt% of cement to the concrete mixes after insuring there complete dispersion, unusually improve their properties like mechanical strengths and fracture behavior

  9. Engineering properties of fly ash concrete

    International Nuclear Information System (INIS)

    Hilmi Mahmud

    1999-01-01

    This paper presents some of the engineering properties of Malaysian fly ash concrete. Workability, compressive, flexural, tensile splitting, drying shrinkage, elastic modulus and non destructive tests were performed on fly ash and control OPC concrete specimens. Data show that concrete containing 25% fly ash replacement of cement exhibit superior or similar engineering properties to that normal concrete without fly ash. These encouraging results demonstrated the technical merits of incorporating fly ash in concrete and should pave the way for wide scale use of this versatile material in the Malaysian construction industry. (author)

  10. Concrete with onyx waste aggregate as aesthetically valued structural concrete

    Science.gov (United States)

    Setyowati E., W.; Soehardjono, A.; Wisnumurti

    2017-09-01

    The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.

  11. Evaluation of Reinforced Concrete Structural Members under Uniform Loads Using Truss Model

    Directory of Open Access Journals (Sweden)

    Houshang Dabbagh

    2016-03-01

    Full Text Available Truss model is an analytical approach to predict the strength of reinforced concrete members with geometric or statical discontinuous regions. This study investigates the use of truss model to predict the structural behavior of reinforced concrete members with discontinuity areas under monotonic loading. The estimated failure load and its corresponding deformation are the main objective of this research. Twenty and three samples including short shear walls, short columns and deep beams tested by other researchers throughout the literature have been selected. Then their truss models as well as their three dimensional finite element models are analyzed using ABAQUS software. The comparison of experimental and analytical results shows fair correlation between them. Also, the structural response of samples estimated by truss model analysis is fairly acceptable.

  12. Bonding techniques for flexural strengthening of R.C. beams using CFRP laminates

    Directory of Open Access Journals (Sweden)

    Alaa Morsy

    2013-09-01

    Full Text Available This paper presents an experimental study of an alternative method of attaching FRP laminates to reinforced concrete beams by the way of fasting steel rivets through the FRP laminate and concrete substrate. Five full scale R.C. beams were casted and strengthened in flexural using FRP laminate bonded with conventional epoxy and compared with other beams strengthened with FRP laminate and bonded with fastener “steel rivets” of 50 mm length and 10 mm diameter. Based on experimental evidence the beam strengthened with conventional bonding methods failed due to de-bonding with about 13% increase over the un-strengthened beam. On the other hand, the beams strengthened with FRP laminate and bonded by four steel fastener rivets only failed by de-bonding also but at higher flexural capacity with increase 19% over the un-strengthened beam.

  13. Study on the influence of Alkali-Silica reaction on structural behavior of reinforced concrete members

    International Nuclear Information System (INIS)

    Murazumi, Y.; Watanabe, Y.; Matsumoto, N.; Mitsugi, S.; Takiguchi, K.; Masuda, Y.

    2005-01-01

    Expansion produced by alkali-silica reaction (ASR) has been observed in the turbine generator foundation of the unit 1, Ikata nuclear power station, Japan. The foundation is a reinforced concrete frame structure. This paper, as a part of the series of investigation and experiments, discusses tests on structural behavior of concrete members affected by ASR. The purpose of the study is to obtain experimental results on the effects of ASR on bending and shear behavior of reinforced concrete beams and shear walls, and compare with the calculated results by present evaluation methods for normal concrete structures For the experiments on bending/shear behavior of beam, bending test models with a small amount of rebar and shear test models with larger amount were made of concrete in which ASR was induced by adding alkali or concrete without ASR. It was found from the results that bending strength of the bending test models and shear strength of the shear test models did not fall, nor was it lower than the calculated strength for concrete members without ASR. In the shear wall test, the two test models were made of either concrete with ASR or one without it. Horizontal load was applied with actuators on the test model fixed on the test floor, while vertical load was applied with oil jacks. The results did not indicate that ASR lowered the stiffness or strength of the wall test models, showing the strength was able to be calculated with the same formula for reinforced concrete wall without ASR. (authors)

  14. Properties of Pervious Concrete Containing Scrap Tyre Tubes

    Directory of Open Access Journals (Sweden)

    Boon Koh Heng

    2017-01-01

    Full Text Available There is a huge quantity of waste tyre tubes generated every year due to the increasing of motorcycle user. Therefore, recycling of the waste tyre tubes is become mandatory. The aim of this research was to study the properties of pervious concrete containing scrap tyre tube (STT rubber particles with percentages of 3%, 5% and 7% of the cement content. The properties studied are void content, compressive strength measured at 7, 14 and 28 days, flexural strength and flow rate which were determined at 28 day. The experimental results showed that, there were increased in void content and flow rate of pervious concrete containing STT. Both compressive strength and flexural strength of pervious concrete containing STT showed a lower value compared to the control mix without STT. The reductions of the mechanical strengths are likely due to the increase of void content. Overall, pervious concrete which contains 7% STT has shown an increment of mechanical strengths and flow rate compared to other STT pervious concrete. Nonetheless, the results indicate that there are potentials for use of STT in pervious concrete, especially for use in pervious concrete applications such as pavements, driveways and parking lots.

  15. Design optimization of continuous partially prestressed concrete beams

    Science.gov (United States)

    Al-Gahtani, A. S.; Al-Saadoun, S. S.; Abul-Feilat, E. A.

    1995-04-01

    An effective formulation for optimum design of two-span continuous partially prestressed concrete beams is described in this paper. Variable prestressing forces along the tendon profile, which may be jacked from one end or both ends with flexibility in the overlapping range and location, and the induced secondary effects are considered. The imposed constraints are on flexural stresses, ultimate flexural strength, cracking moment, ultimate shear strength, reinforcement limits cross-section dimensions, and cable profile geometries. These constraints are formulated in accordance with ACI (American Concrete Institute) code provisions. The capabilities of the program to solve several engineering problems are presented.

  16. Experimental and Numerical Evaluation of Direct Tension Test for Cylindrical Concrete Specimens

    Directory of Open Access Journals (Sweden)

    Jung J. Kim

    2014-01-01

    Full Text Available Concrete cracking strength can be defined as the tensile strength of concrete subjected to pure tension stress. However, as it is difficult to apply direct tension load to concrete specimens, concrete cracking is usually quantified by the modulus of rupture for flexural members. In this study, a new direct tension test setup for cylindrical specimens (101.6 mm in diameter and 203.2 mm in height similar to those used in compression test is developed. Double steel plates are used to obtain uniform stress distributions. Finite element analysis for the proposed test setup is conducted. The uniformity of the stress distribution along the cylindrical specimen is examined and compared with rectangular cross section. Fuzzy image pattern recognition method is used to assess stress uniformity along the specimen. Moreover, the probability of cracking at different locations along the specimen is evaluated using probabilistic finite element analysis. The experimental and numerical results of the cracking location showed that gravity effect on fresh concrete during setting time might affect the distribution of concrete cracking strength along the height of the structural elements.

  17. flexural improvement of plain concrete beams strengthened

    African Journals Online (AJOL)

    Muhammad Nura Isa

    Results show significant improvement in both stiffness and load bearing capacity of plain concrete ... Various methods have been developed to increase their strength capacity by using .... obtained by carrying out uniaxial direct tensile strength.

  18. Performance of Lightweight Natural-Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Hardjasaputra Harianto

    2017-01-01

    Full Text Available Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC. Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material because the fibers are derived from waste. These wastes, which are available in large quantities in Asia, have to be extracted from the husk of coconut fruits and must pass a mechanical process before being added to a concrete mixture. The Super Lightweight Concrete was made by mixing concrete paste with foam agent that can reduce the overall weight of concrete up to 60% with compressive strength up to 6 MPa. The Super Lightweight Concrete is intended to be used for non-structural walls, as alternative conventional construction materials such as brick walls. The influence of coconut fibers content in increasing the flexural tensile strength of Super Lightweight Concrete was studied in this research. The fiber content studied include 0%, 0.1%, 0.175%, and 0.25% by weight of cement content. Sixteen specimens of SLNFRC mini beams of 60 mm x 60 mm x 300 mm were tested to failure to investigate their flexural strengths. The optimum percent fibers yielding higher tensile strength was found to be 0.175%

  19. An improved model for considering strain rate effects on reinforced concrete elements behavior under dynamic loads

    International Nuclear Information System (INIS)

    Sim, J.; Soroushian, P.

    1989-01-01

    An improved model for predicting the reinforced concrete element behavior under dynamic strain rates was developed using the layer modeling technique. The developed strain rate sensitive model for axial/flexural analysis of reinforced concrete elements was used to predict the test results, performed at different loading rates, and the predictions were reasonable. The developed analysis technique was used to study the loading rate sensitivity of reinforced concrete beams and columns with different geometry and material properties. Two design formulas for computing the loading rate dependent axial and flexural strengths of reinforced concrete sections are suggested

  20. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash

    Science.gov (United States)

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-01-01

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability. PMID:28793518

  1. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash.

    Science.gov (United States)

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-08-21

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.

  2. Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO2 nanoparticles

    International Nuclear Information System (INIS)

    Nazari, Ali; Riahi, Shadi

    2010-01-01

    Research highlights: → TiO 2 nanoparticles effects on flexural strength of self compacting concrete. → Physical and microstructural consideration. → Mechanical tests. → Thermal analysis. → Porosimetry. - Abstract: In the present study, flexural strength, thermal properties and microstructure of self compacting concrete with different amount of SiO 2 nanoparticles has been investigated. SiO 2 nanoparticles with the average particle size of 15 nm were partially added to self compacting concrete and various behaviors of the specimens have been measured. The results indicate that SiO 2 nanoparticles are able to improve the flexural strength of self compacting concrete and recover the negative effects of superplasticizer on flexural strength of the specimens. SiO 2 nanoparticle as a partial replacement of cement up to 4 wt% could accelerate C-S-H gel formation as a result of the increased crystalline Ca(OH) 2 amount at the early ages of hydration. The increased the SiO 2 nanoparticles' content more than 4 wt%, causes the reduced the flexural strength because of unsuitable dispersion of nanoparticles in the concrete matrix. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of peaks related to hydrated products in X-ray diffraction results, all also indicate that SiO 2 nanoparticles up to 4 wt% could improve the mechanical and physical properties of the specimens. Finally, SiO 2 nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and few-harm pores.

  3. Finite Element Simulation of GFRP Reinforced Concrete Beam Externally Strengthened With CFRP Plates

    Directory of Open Access Journals (Sweden)

    Salleh Norhafizah

    2017-01-01

    Full Text Available The construction technology now has become more and more advanced allowing the development of new technologies or material to replace the previous one and also solved some of the troubles confronted by construction experts. The Glass Fibre Reinforced Polymer (GFRP composite is an alternative to replace the current usage of steel as it is rust proof and stronger in terms of stiffness compared to steel. Furthermore, GFRP bars have a high strength-to-weight ratio, making them attractive as reinforcement for concrete structures. However, the tensile behavior of GFRP bars is characterized by a linear elastic stress–strain relationship up to failure and, therefore, concrete elements reinforced with GFRP reinforcement exhibit brittle failure without warning. Design codes encourage over-reinforced GFRP design since it is more progressive and leads to a less catastrophic failure with a higher degree of deformability. Moreover, because of GFRP low modulus of elasticity, GFRP reinforced concrete members exhibit larger deflections and wider cracks width than steel reinforced concrete. This aims of this paper is to developed 2D Finite Element (FE models that can accurately simulate the respond on an improvement in the deflection of GFRP reinforced concrete beam externally strengthened with CFRP plates on the tension part of beam. The prediction of flexural response according to RCCSA software was also discussed. It was observed that the predicted FE results are given similar result with the experimental measured test data. Base on this good agreement, a parametric study was the performed using the validation FE model to investigate the effect of flexural reinforcement ratio and arrangement of the beams strengthened with different regions of CFRP plates.

  4. Flexural behaviour and punching shear of selfcompacting concrete ribbed slab reinforced with steel fibres

    Directory of Open Access Journals (Sweden)

    Ahmad Hazrina

    2017-01-01

    Full Text Available This paper investigates the effects of steel fibres as a replacement to the conventional reinforcement under flexural behaviour and punching shear in self-compacting (SCC ribbed slab reinforced with steel fibres. Four ribbed slabs with similar dimensions of 2.8 m length × 1.2 m width and 0.2m thickness were constructed. Two of the samples were considered as control samples (conventionally reinforced with reinforcement bars and welded mesh while another two samples were fully reinforced with 1% (80 kg/m3 volume of steel fibres incorporated to the SCC mix. For the flexural behaviour study, the ribbed slab samples were subjected to two line loads under four point bending. Meanwhile, for the punching shear analysis, the ribbed slab samples were subjected to a point load to simulate loading from the column. The analysis of the experimental results displayed that steel fibres incorporation had been found to effectively delay the first crack occurrence under both flexural and punching shear. The steel fibre replacement has been proven to be able to sustain up to 80% and 73% of the ultimate load resistance for flexural and punching shear, respectively, in comparison to conventionally reinforced ribbed slab structure. The visual observation carried out during the experiment exhibited similar failure mode for both steel fibre reinforced and control samples. This was observed for both flexural and punching shear samples. Overall, it can be concluded that the steel fibres had displayed a promising potential to effectively replace the conventional reinforcements.

  5. Hysteretic Models Considering Axial-Shear-Flexure Interaction

    Science.gov (United States)

    Ceresa, Paola; Negrisoli, Giorgio

    2017-10-01

    Most of the existing numerical models implemented in finite element (FE) software, at the current state of the art, are not capable to describe, with enough reliability, the interaction between axial, shear and flexural actions under cyclic loading (e.g. seismic actions), neglecting crucial effects for predicting the nature of the collapse of reinforced concrete (RC) structural elements. Just a few existing 3D volume models or fibre beam models can lead to a quite accurate response, but they are still computationally inefficient for typical applications in earthquake engineering and also characterized by very complex formulation. Thus, discrete models with lumped plasticity hinges may be the preferred choice for modelling the hysteretic behaviour due to cyclic loading conditions, in particular with reference to its implementation in a commercial software package. These considerations lead to this research work focused on the development of a model for RC beam-column elements able to consider degradation effects and interaction between the actions under cyclic loading conditions. In order to develop a model for a general 3D discrete hinge element able to take into account the axial-shear-flexural interaction, it is necessary to provide an implementation which involves a corrector-predictor iterative scheme. Furthermore, a reliable constitutive model based on damage plasticity theory is formulated and implemented for its numerical validation. Aim of this research work is to provide the formulation of a numerical model, which will allow implementation within a FE software package for nonlinear cyclic analysis of RC structural members. The developed model accounts for stiffness degradation effect and stiffness recovery for loading reversal.

  6. High strength oil palm shell concrete beams reinforced with steel fibres

    Directory of Open Access Journals (Sweden)

    S. Poh-Yap

    2017-10-01

    Full Text Available The utilization of lightweight oil palm shell to produce high strength lightweight sustainable material has led many researchers towards its commercialization as structural concrete. However, the low tensile strength of Oil Palm Shell Concrete (OPSC has hindered its development. This study aims to enhance the mechanical properties and flexural behaviours of OPSC by the addition of steel fibres of up to 3% by volume, to produce oil palm shell fibre-reinforced concrete (OPSFRC. The experimental results showed that the steel fibres significantly enhanced the mechanical properties of OPSFRC. The highest compressive strength, splitting tensile and flexural strengths of 55, 11.0 and 18.5 MPa, respectively, were achieved in the OPSFRC mix reinforced with 3% steel fibres. In addition, the flexural beam testing on OPSFRC beams with 3% steel fibres showed that the steel fibre reinforcement up to 3% produced notable increments in the moment capacity and crack resistance of OPSFRC beams, but accompanied by reduction in the ductility.

  7. Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Ali, E-mail: alinazari84@aut.ac.ir [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of); Riahi, Shadi [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of)

    2010-11-15

    Research highlights: {yields} TiO{sub 2} nanoparticles effects on flexural strength of self compacting concrete. {yields} Physical and microstructural consideration. {yields} Mechanical tests. {yields} Thermal analysis. {yields} Porosimetry. - Abstract: In the present study, flexural strength, thermal properties and microstructure of self compacting concrete with different amount of SiO{sub 2} nanoparticles has been investigated. SiO{sub 2} nanoparticles with the average particle size of 15 nm were partially added to self compacting concrete and various behaviors of the specimens have been measured. The results indicate that SiO{sub 2} nanoparticles are able to improve the flexural strength of self compacting concrete and recover the negative effects of superplasticizer on flexural strength of the specimens. SiO{sub 2} nanoparticle as a partial replacement of cement up to 4 wt% could accelerate C-S-H gel formation as a result of the increased crystalline Ca(OH){sub 2} amount at the early ages of hydration. The increased the SiO{sub 2} nanoparticles' content more than 4 wt%, causes the reduced the flexural strength because of unsuitable dispersion of nanoparticles in the concrete matrix. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of peaks related to hydrated products in X-ray diffraction results, all also indicate that SiO{sub 2} nanoparticles up to 4 wt% could improve the mechanical and physical properties of the specimens. Finally, SiO{sub 2} nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and few-harm pores.

  8. A Comparison Among Plastic Deformation Capacities of RC Members According to International Codes

    International Nuclear Information System (INIS)

    Tripepi, C.; Failla, G.; Santini, A.; Nucera, F.

    2008-01-01

    The aim is to compare plastic deformation capacities of flexure-controlled reinforced concrete members, as predicted by the Italian Seismic Code, Eurocode 8 and FEMA356. For completeness, recent studies in the literature are also referred to. The comparison is pursued in context with a nonlinear static analysis run on 2D frame structures. This allows to assess whether and to which extent plastic deformation capacities may be affected by variations in those quantities, such as shear span and/or axial load, depending on which plastic deformation capacities are generally given

  9. Flexural Behavior of Self-Compacting RC Continuous Beams Strengthened by CFRP Sheets

    Directory of Open Access Journals (Sweden)

    Sabih Z. Al-Sarraf

    2018-01-01

    Full Text Available This search presented an experimental study of the flexural behavior of self-compacting reinforced concrete continuous beams externally strengthened by carbon fiber reinforced polymer (CFRP Sheets. The practical study contained eight self-compacting reinforced concrete continuous beams (with two span, each span had (1500 mm length and (150x250 mm cross sectional dimensions. Seven of these beams strengthened externally by CFRP sheets with and without external anchorage. The experimental variables included location of CFRP sheets and anchor type and location. The results, shows that the beams strengthened externally by CFRP sheets provided improvement in ultimate loads reached (60.71%. The usage of CFRP in the anchorage zone indicated an effective method in comparison to increasing the CFRP sheets lengths or extending them up to the support or under the loading points. Test results also showed that side strengthening provided an effective tool for increasing the load at the cracking stage and also the load capacity and reducing flexural crack widths.

  10. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    Science.gov (United States)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  11. Automatic design of the flexural strengthening of reinforced concrete beams using fiber reinforced polymers (FRP - doi: 10.4025/actascitechnol.v34i2.8318

    Directory of Open Access Journals (Sweden)

    Rafael Alves de Souza

    2012-03-01

    Full Text Available Changing the functions of a building, the presence of some design or construction errors, the incidence of seismic actions and even the updating of design codes may demand the strengthening of certain structures. In the specific case of reinforced concrete structures it is desirable the application of a technique of strengthening which is fast, economic and efficient, in order to provide advantages when an intervention is necessary. The technique of strengthening chosen must provide less disorder as possible as well as the guaranty of safety. Taking into account this scenery, fiber reinforced polymers have been working as a very attractive alternative for rehabilitating in-service structures. In that way, the present study aims at presenting the main properties of this new material as well as the design routines for flexural strengthening of reinforced concrete beams. Finally, a package-software developed into the MATLAB platform is presented, intending to generate a simple tool for the automatic design using fiber reinforced polymers.

  12. Mechanical properties of steel/kenaf (hybrid) fibers added into concrete mixtures

    Science.gov (United States)

    Baarimah, A. O.; Syed Mohsin, S. M.

    2018-04-01

    This paper investigates the potential advantages of adding hybrid steel-kenaf fibers to concrete mixtures. Compression and flexural test were conducted on six concrete mixtures at 28 days to investigate the mechanical properties of the concrete. The experimental work consists of six concrete mixtures, in which the first mixture was a control mixture without adding any fiber. The following five concrete mixtures contain a total of 1% of volume fraction for steel, kenaf and a mixture of steel-kenaf (hybrid) fibers. Three ratios were considered for hybrid fibers with the ratios of 0.25/0.75, 0.5/0.5 and 0.75/0.25 for steel and kenaf fibers, respectively. From the investigation, it was observed that fibers have minimal effect on compressive strength of the concrete. However, the findings suggest promising improvement on the flexural strength of the concrete added with hybrid fiber (up to 86%) as well as manages to change the mode of failure of the beam from brittle to a more ductile manner.

  13. Properties of Fiber Reinforced Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Marinela Bărbuţă

    2008-01-01

    Full Text Available Polymer concrete is a composite material realized with resin and aggregates. In the present study the epoxy resin was used for binding the aggregates. In the composition were introduced near the fly ash, used as filler, the cellulose fibers. The mechanical characteristics such as compressive strength, flexural strength and split tensile strength of polymer concrete with fibers were investigated. The fiber percentage was constant, the epoxy resin and the filler dosages were varied. The cellulose fiber had not improved the mechanical characteristics of the polymer concrete in comparison to that of polymer concrete without cellulose fibers.

  14. Upgrading offshore pipelines concrete coated by silica fume additive against aggressive mechanical laying

    Directory of Open Access Journals (Sweden)

    M.I. Abdou

    2016-06-01

    Full Text Available Studies have been carried out to investigate the possibility of utilizing a broad range of micro-silica partial additions with cement in the production of concrete coating. This study investigated the strength properties and permeability of micro-silica concrete to achieve resistance toward concrete cracking and damage during laying. The chemical composition of micro-silica (silica fume was determined, and has been conducted on concrete mixes with additions of 3 up to 25% by weight of cement in concrete. Properties of hardened concrete such as compressive strength, flexural strength, and permeability have been assessed and analyzed. Cubic specimens and beams were produced and cured in a curing tank for 7 and 28 days. Testing results have shown that additions of silica fume to cement between 5% and 7%, which acts as a filler and cementations material, developed high flexural and compressive strength with reduction of permeability.

  15. Optimizing the Flexural Strength of Beams Reinforced with Fiber Reinforced Polymer Bars Using Back-Propagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Bahman O. Taha

    2015-06-01

    Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.

  16. Development of realistic concrete models including scaling effects

    International Nuclear Information System (INIS)

    Carpinteri, A.

    1989-09-01

    Progressive cracking in structural elements of concrete is considered. Two simple models are applied, which, even though different, lead to similar predictions for the fracture behaviour. Both Virtual Crack Propagation Model and Cohesive Limit Analysis (Section 2), show a trend towards brittle behaviour and catastrophical events for large structural sizes. A numerical Cohesive Crack Model is proposed (Section 3) to describe strain softening and strain localization in concrete. Such a model is able to predict the size effects of fracture mechanics accurately. Whereas for Mode I, only untieing of the finite element nodes is applied to simulate crack growth, for Mixed Mode a topological variation is required at each step (Section 4). In the case of the four point shear specimen, the load vs. deflection diagrams reveal snap-back instability for large sizes. By increasing the specimen sizes, such instability tends to reproduce the classical LEFM instability. Remarkable size effects are theoretically predicted and experimentally confirmed also for reinforced concrete (Section 5). The brittleness of the flexural members increases by increasing size and/or decreasing steel content. On the basis of these results, the empirical code rules regarding the minimum amount of reinforcement could be considerably revised

  17. Influence of wollastonite on mechanical properties of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Renu Mathur; A.K. Misra; Pankaj Goel

    2007-12-15

    Studies were made on cement concrete and cement-fly ash concrete mixes incorporating wollastonite as partial substitute of cementitious material and sand respectively. Improvements in compressive (28-35%) and flexural strength (36-42%) at 28 and 56 days respectively were observed by incorporation of wollastonite (10%) in concrete mixes. By incorporation of wollastonite, reduction in water absorption, drying-shrinkage and abrasion loss of concrete, and enhancement in durability against alternate freezing-thawing and sulphate attack were observed. Because of high concrete strength and abrasion resistance, a better utilization of concrete cross section is possible. Alternatively, thickness of pavement slab can be reduced by incorporation of wollastonite micro-fibres in concrete mixes.

  18. Laboratory Investigations on Mechanical Properties of High Volume Fly Ash Concrete and Composite Sections

    OpenAIRE

    Aravindkumar B. Harwalkar; S. S. Awanti

    2013-01-01

    Use of fly ash as a supplementary cementing material in large volumes can bring both technological and economic benefits for concrete industry. In this investigation mix proportions for high volume fly ash concrete were determined at cement replacement levels of 50%, 55%, 60% and 65% with low calcium fly ash. Flexural and compressive strengths of different mixes were measured at ages of 7, 28 and 90 days. Flexural strength of composite section prepared from pavement quali...

  19. Flexural Toughness of Ring-Shaped Waste Bottle Fiber Concrete

    Directory of Open Access Journals (Sweden)

    Faisal S. K.

    2016-01-01

    Full Text Available Polyethylene terephthalate (PET bottles are plastic containers that are typically discarded, and thus, cause environmental pollution. To solve this problem, PET bottles are recycled incorporating with concrete. A ring-shaped PET (RPET fiber are introduced in this study and designed with a special shape to mobilize fiber yielding rather than fiber pullout. Therefore, aim of this paper is to investigate the influence of RPET bottles fibre in terms of toughness strength. The width of RPET fibers is fixed at 5 and 10 mm and the loads were applied to the third points of the specimen. The experiment indicates that RPET-5 and RPET-10 FC presented an increase in the toughness index of I20 on averages of 23.1% and 39.9% respectively, compared to normal specimens. It can conclude that incorporating RPET fiber in concrete presents significant improved of concrete properties.

  20. Effect of waste banner as fiber on mechanical properties of concrete

    Science.gov (United States)

    Rahmawati, Anis; Saputro, Ida Nugroho

    2017-06-01

    Banner is broadly used as advertisement media and event backdrop that is usually only used at one moment, resulting to a lot of waste banners. Banner made from nylon fiber is covered by polyvinyl. Nylon is well known as a material with high tensile strength. This research was done as a preliminary investigation on the opportunity of using the waste banner as fiber material of concrete by evaluating its mechanical properties, namely compressive and flexural strength. Research conducted by making cylinder shape specimens of 15 mm in diameter and 300 mm in height for the compressive strength test. While the specimen shape for flexural strength test was a rectangular prism with dimension of 150 mm in height, 150 mm in width, and 600 mm in length. Fiber generated from waste banner was added in concrete mixtures with percentage of 0.00%, 0.20%, 0.40%, 0.60%, 0.80%, and 1.00% by weight of concrete. The concrete strength was tested at 28 days after standard moisture and temperature curing. Experimental results indicated that the addition of 0.20% of waste banner obtained the highest compressive strength that was 21.967 Mpa, while 0.40% of waste banner obtained the highest flexural strength of 4.663 Mpa.

  1. Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation

    Science.gov (United States)

    Doru, Zdrenghea

    2017-10-01

    The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater

  2. Reliability Analysis of Corroded Reinforced Concrete Beams Using Enhanced HL-RF Method

    Directory of Open Access Journals (Sweden)

    Arash Mohammadi Farsani

    2015-12-01

    Full Text Available Steel corrosion of bars in concrete structures is a complex process which leads to the reduction of the cross-section bars and decreasing the resistance of the concrete and steel materials. In this study, reliability analysis of a reinforced concrete beam with corrosion defects under the distributed load was investigated using the enhanced Hasofer-Lind and Rackwitz-Fiessler (EHL-RF method based on relaxed approach. Robustness of the EHL-RF algorithm was compared with the HL-RF using a complicated example. It was seen that the EHL-RF algorithm is more robust than the HL-RF method. Finally, the effects of corrosion time were investigated using the EHL-RF algorithm for a reinforced concrete beam based on flexural strength in the pitting and general corrosion. The model uncertainties were considered in the resistance and load terms of flexural strength limit state function. The results illustrated that increasing the corrosion time-period leads to increase in the failure probability of the corroded concrete beam.

  3. Time-dependent evolution of strand transfer length in pretensioned prestressed concrete members

    Science.gov (United States)

    Caro, L. A.; Martí-Vargas, J. R.; Serna, P.

    2013-11-01

    For design purposes, it is generally considered that prestressing strand transfer length does not change with time. However, some experimental studies on the effect of time on transfer lengths show contradictory results. In this paper, an experimental research to study transfer length changes over time is presented. A test procedure based on the ECADA testing technique to measure prestressing strand force variation over time in pretensioned prestressed concrete specimens has been set up. With this test method, an experimental program that varies concrete strength, specimen cross section, age of release, prestress transfer method, and embedment length has been carried out. Both the initial and long-term transfer lengths of 13-mm prestressing steel strands have been measured. The test results show that transfer length variation exists for some prestressing load conditions, resulting in increased transfer length over time. The applied test method based on prestressing strand force measurements has shown more reliable results than procedures based on measuring free end slips and longitudinal strains of concrete. An additional factor for transfer length models is proposed in order to include the time-dependent evolution of strand transfer length in pretensioned prestressed concrete members.

  4. Processing and Mechanical Properties of Macro Polyamide Fiber Reinforced Concrete.

    Science.gov (United States)

    Jeon, Joong Kyu; Kim, WooSeok; Jeon, Chan Ki; Kim, Jin Cheol

    2014-11-26

    This study developed a macro-sized polyamide (PA) fiber for concrete reinforcement and investigated the influence of the PA fiber on flexural responses in accordance with ASTM standards. PA fibers are advantageous compared to steel fibers that are corrosive and gravitated. The macro-sized PA fiber significantly improved concrete ductility and toughness. Unlike steel fibers, the PA fibers produced two peak bending strengths. The first-peaks occurred near 0.005 mm of deflection and decreased up to 0.5 mm of deflection. Then the bending strength increased up to second-peaks until the deflections reached between 1.0 and 1.5 mm. The averaged flexural responses revealed that PA fiber content did not significantly influence flexural responses before L /600, but had significant influence thereafter. Toughness performance levels were also determined, and the results indicated more than Level II at L /600 and Level IV at others.

  5. Unified model to predict flexural shear behavior of externally bonded RC beams

    International Nuclear Information System (INIS)

    Colotti, V.; Spadea, G.; Swamy, R.N.

    2006-01-01

    Structural strengthening with externally bonded reinforcement is now recognized as a cost-effective, structurally sound and practically efficient method of rehabilitating deteriorating and damaged reinforced concrete beams. There is now an urgent need to develop a sound engineering basis which can predict the failure loads of all such strengthened beams in a reliable and consistent manner. Existing models to predict the behavior at ultimate of strengthened beams suffer from many limitations and weaknesses. This paper presents a unified global model, based on the Strut-and-Tie approach, to predict the failure loads of reinforced concrete beams strengthened for flexure and/or shear. This structural model is based on rational engineering principles, considers all the possible failure modes, and incorporates the load transfer mechanism bond to reflect the debonding phenomena which has a dominant influence on the failure process of plated beams. The model is validated against about 200 strengthened beam test reported in the literature and failing in flexure and/or shear, involving a large number of structural variables and steel, carbon and glass fiber reinforced polymer laminates as reinforcing medium. (author)

  6. Structural behavior of lightweight bamboo reinforced concrete slab with EPS infill panel

    Science.gov (United States)

    Wibowo, Ari; Wijatmiko, Indradi; Nainggolan, Christin Remayanti

    2017-09-01

    Eco-friendly, green, and natural materials have become increasingly important issues in supporting sustainable development, for the substitution of nonrenewable materials such as steel. Bamboo has been considered in many studies to replace steel in reinforced concrete elements. Further investigation has been carried out to obtain lightweight and eco-friendly reinforced concrete slabs by using bamboo bars as reinforcement and recycled materials such as EPS (expanded polystyrene) as infill panel. The flexural loading test on full scale one-way slabs test has been conducted. The results showed that the flexural strength of specimens decreased marginally of about 6% but with the weight advantage of 27% less compared with those of steel rebar reinforced concrete slab with the same dimension. Two type shear-connectors comprising of concrete and bamboo studs were also investigated which showed that the bamboo stud provided better ductility compared to that of slab with concrete as shear connector. Overall, the reinforced concrete slab with bamboo reinforcement and EPS infill panel showed reasonably good performance compared to slabs with steel rebar.

  7. Precast self-compacting concrete (PSCC) panel with added coir fiber: An overview

    Science.gov (United States)

    Afif Iman, Muhamad; Mohamad, Noridah; Samad, Abdul Aziz Abdul; Goh, W. I.; Othuman Mydin, M. A.; Afiq Tambichik, Muhamad; Bosro, Mohamad Zulhairi Mohd; Wirdawati, A.; Jamaluddin, N.

    2018-04-01

    Self-compacting concrete (SCC) is the alternative way to reduce construction time and improve the quality and strength of concrete. The panel system fabricated from SCC contribute to the IBS system that is sustainable and environmental friendly. The precast self-compacting concrete (PSCC) panel with added coir fiber will be overview in this paper. The properties of SCC and coir fiber are studied and reviewed from the previous researches. Finite element analysis is used to support the experimental results by conduction parametric simulation study on PSCC under flexure load. In general, it was found that coir fiber has a significant influence on the flexural load and crack propagation. Higher fiber incorporated in SCC resulted with higher ultimate load of PSCC.

  8. Investigations on the tensile strength of high performance concrete incorporating silica fume

    International Nuclear Information System (INIS)

    Santanu Bhanja; Bratish Sengupta

    2005-01-01

    Though the literature is rich in reporting on silica fume concrete the technical data on tensile strength is quite limited. The present paper is directed towards developing a better understanding on the isolated contribution of silica fume on the tensile strengths of High Performance Concrete. Extensive experimentation was carried out over water-binder ratios ranging from 0.26 to 0.42 and silica fume binder ratios from 0.0 to 0.3. For all the mixes compressive, flexural and split tensile strengths were determined at 28 days. The results of the present investigation indicate that silica fume incorporation results in significant improvements in the tensile strengths of concrete. It is also observed that the optimum replacement percentage, which led to maximization of strength, is not a constant one but depends on the water- cementitious material ratio of the mix. Compared to split tensile strengths, flexural strengths have exhibited greater percentage gains in strength. Increase in split tensile strength beyond 15% silica fume replacement is almost insignificant whereas sizeable gains in flexural tensile strength have occurred even up to 25% replacements. For the present investigation transgranular failure of concrete was observed which indicate that silica fume incorporation results in significant improvements in the strength of both paste and transition zone. (authors)

  9. Preliminary Studies on the Use of Natural Fibers in Sustainable Concrete

    International Nuclear Information System (INIS)

    Awad, E.; Mabsout, M.; Hamad, B.; Khatib, H.

    2011-01-01

    The paper reports on preliminary tests performed to produce a sustainable 'green' concrete material using natural fibers such as industrial hemp, palm, and banana leaves fibers. Such material would increse the service life and reduce the life cost of the structure, and would have a positive effect on social life and social economy. The demand for the agricultural fibers for concrete production would be a major incentive to Lebanese farmers to benefit from the social impact on the habitat level of living. In the preliminary program reported in this paper, cubes and standard flexural beams were tested to evaluate the structural and physical performance of concrete mixes prepared with different volumetric ratios of added fibers and diffeent proportions of aggregates. Test results indicated that the case of natural fibers resulted in reducing the coarse aggregate quantity without affecting the flexural performance of concrete. However, no clear trend was determined in the cubes compressive strength test results.(author)

  10. Influence of Aggregate Coated with Modified Sulfur on the Properties of Cement Concrete

    Directory of Open Access Journals (Sweden)

    Swoo-Heon Lee

    2014-06-01

    Full Text Available This paper proposes the mixing design of concrete having modified sulfur-coated aggregate (MSCA to enhance the durability of Portland cement concrete. The mechanical properties and durability of the proposed MSCA concrete were evaluated experimentally. Melting-modified sulfur was mixed with aggregate in order to coat the aggregate surface at a speed of 20 rpm for 120 s. The MSCA with modified sulfur corresponding to 5% of the cement weight did not significantly affect the flexural strength in a prism concrete beam specimen, regardless of the water-cement ratio (W/C. However, a dosage of more than 7.5% decreased the flexural strength. On the other hand, the MSCA considerably improved the resistance to the sulfuric acid and the freezing-thawing, regardless of the sulfur dosage in the MSCA. The coating modified sulfur of 5% dosage consequently led to good results for the mechanical properties and durability of MSCA concrete.

  11. Evaluation of acceptance strength tests for concrete pavements.

    Science.gov (United States)

    2005-06-30

    The North Carolina Department of Transportation has used traditionally flexural strength tests for acceptance : testing of Portland cement concrete pavements. This report summarizes a research project implemented to : investigate the feasibility of u...

  12. HYDRO-ABRASIVE RESISTANCE AND MECHANICAL PROPERTIES OF CONCRETE WITH ADDED FLY ASH

    OpenAIRE

    Ristić, Nenad; Grdić, Zoran; Topličić-Ćurčić, Gordana

    2015-01-01

    The durability of hydraulic engineering structures mostly depends on the resistance of their concrete surfaces to mechanical abrasion. In this paper, we study the hydro-abrasive resistance and mechanical properties of concrete in which cement is partially replaced with fly ash in various proportions. To evaluate these concretes, we measured their compressive strength, flexural strength, static modulus of elasticity, ultrasound velocity through concrete, and sclerometer rebound. The hydro-abra...

  13. Acoustic emission monitoring of recycled aggregate concrete under bending

    Science.gov (United States)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  14. Durable fiber reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Corinaldesi, V.; Moriconi, G.

    2004-01-01

    In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strains due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture

  15. Waste tyre rubberized concrete: properties at fresh and hardened state.

    Science.gov (United States)

    Aiello, M A; Leuzzi, F

    2010-01-01

    The main objective of this paper is to investigate the properties of various concrete mixtures at fresh and hardened state, obtained by a partial substitution of coarse and fine aggregate with different volume percentages of waste tyres rubber particles, having the same dimensions of the replaced aggregate. Workability, unit weight, compressive and flexural strength and post-cracking behaviour were evaluated and a comparison of the results for the different rubcrete mixtures were proposed in order to define the better mix proportions in terms of mechanical properties of the rubberized concrete. Results showed in this paper were also compared to data reported in literature. Moreover, a preliminary geometrical, physical and mechanical characterization on scrap tyre rubber shreds was made. The rubberized concrete mixtures showed lower unit weight compared to plain concrete and good workability. The results of compressive and flexural tests indicated a larger reduction of mechanical properties of rubcrete when replacing coarse aggregate rather than fine aggregate. On the other hand, the post-cracking behaviour of rubberized concrete was positively affected by the substitution of coarse aggregate with rubber shreds, showing a good energy absorption and ductility indexes in the range observed for fibrous concrete, as suggested by standard (ASTM C1018-97, 1997). 2010 Elsevier Ltd. All rights reserved.

  16. Reinforced sulphur concrete

    NARCIS (Netherlands)

    2014-01-01

    Reinforced sulphur concrete wherein one or more metal reinforcing members are in contact with sulphur concrete is disclosed. The reinforced sulphur concrete comprises an adhesion promoter that enhances the interaction between the sulphur and the one or more metal reinforcing members.

  17. Effect of the Fiber Type and Axial Stiffness of FRCM on the Flexural Strengthening of RC Beams

    Directory of Open Access Journals (Sweden)

    Abdulla Jabr

    2017-01-01

    Full Text Available The use of externally-bonded fiber-reinforced polymer (FRP sheets has been successfully used in the repair and strengthening of both the shear and flexural capacities of reinforced concrete (RC beams, slabs and columns since the 1990s. However, the externally-bonded FRP reinforcements still present many disadvantages, such as poor performance in elevated temperature and fire, lack of permeability and strength degradation when exposed to ultraviolet radiation. To remedy such drawbacks, the fiber-/fabric-reinforced cementitious matrix (FRCM has been recently introduced. The FRCM system consists of a fiber mesh or grid embedded in a cementitious bonding material. The present research investigates the flexural strengthening of reinforced concrete (RC beams with FRCM. The experimental testing included eight large-scale concrete beams, 150 mm × 250 mm × 2400 mm, internally reinforced with steel bars and strengthened in flexure with FRCM. The investigated parameters were the internal steel reinforcement ratio and the FRCM systems. Two steel reinforcement ratios of 0.18 and 0.36 of the balanced reinforcement ratio, as well as three FRCM systems using glass, carbon and PBO fibers were investigated. Test results are presented in terms of load-deflection, load-strain and load-crack width relationships. The test results indicated that the PBO FRCM significantly increased the ultimate capacity of the strengthened RC beams with both low and moderate internal reinforcement ratios compared to the glass and carbon FRCM.

  18. Flexural fatigue behavior of steel fiber reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, G.I.; Chai, W.K.; Park, C.W.; Min, I.K.

    1993-01-01

    In this thesis, the fatigue tests are performed on a series of SFRC (steel fiber reinforced concrete) to investigate the fatigue behavior of SFRC varing with the steel fiber contents and the steel fiber aspect ratios. Thirty SFRC beams are used in this test. The relationships between repeated loading cycle and mid-span deflection of the beams are observed under the three-point loading system. From the test results, the effects of the fiber content and the fiber aspect ratio on the concrete fatigue behavior were studied. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams are also suggested. (author)

  19. Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete

    Directory of Open Access Journals (Sweden)

    Sun-Woo Kim

    2015-10-01

    Full Text Available Conventional concrete production that uses ordinary Portland cement (OPC as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO2 emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO2 emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO2 intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO2 emissions reduction and resources and energy conservation in the concrete industry.

  20. Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete.

    Science.gov (United States)

    Kim, Sun-Woo; Jang, Seok-Joon; Kang, Dae-Hyun; Ahn, Kyung-Lim; Yun, Hyun-Do

    2015-10-30

    Conventional concrete production that uses ordinary Portland cement (OPC) as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO₂) emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS) from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO₂ emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO₂ intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO₂ emissions reduction and resources and energy conservation in the concrete industry.

  1. A review on the suitability of rubberized concrete for concrete bridge decks

    Science.gov (United States)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Radziah Abdullah, Siti; Anting Guntor, Nickholas; Syazani Leman, Alif

    2017-11-01

    Road authorities manage a large population of ageing bridges, a substantial number of which fail to meet the current requirements either due to deterioration and other structural deficiencies or as a result of the escalating demands imposed by increased traffic. This problem is related to the dynamic load from vehicles. This problem can be solved by producing a type of concrete that can reduce the amplitude of oscillation or vibration such as rubberized concrete. Green construction has been a very important aspect in concrete production field in the last decade. One of the most problematic waste materials is scrap tires. The use of scrap tires in civil engineering is increasing by producing rubberized concrete. Rubberized concrete is a type of concrete that is mixed with rubber. The purpose of this review is to justify the suitability of rubberized concrete for concrete bridge decks. Several parameters named physical, chemical and mechanical properties were measured to ensure the suitability of rubberized concrete for concrete bridge decks. Rubberized concrete has similar workability to normal concrete. The rubber reduced the density and compressive strength of the concrete while increased the flexural strength, water absorption and damping ratio. The used of rubber in concrete beyond 20% is not recommended due to decreasing in compressive strength. Rubberized concrete recommended to be used in circumstances where vibration damping was required such as in bridge construction as shock-wave absorber.

  2. Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites.

    Science.gov (United States)

    Arefi, Mohammad Reza; Rezaei-Zarchi, Saeed

    2012-01-01

    In the present study, the mechanical properties of self-compacting concrete were investigated after the addition of different amounts of ZnO nanoparticles. The zinc oxide nanoparticles, with an average particle size of about 30 nm, were synthesized and their properties studied with the help of a scanning electron microscope (SEM) and X-ray diffraction. The prepared nanoparticles were partially added to self-compacting concrete at different concentrations (0.05, 0.1, 0.2, 0.5 and 1.0%), and the mechanical (flexural and split tensile) strength of the specimens measured after 7, 14, 21 and 28 days, respectively. The present results have shown that the ZnO nanoparticles were able to improve the flexural strength of self-compacting concrete. The increased ZnO content of more than 0.2% could increase the flexural strength, and the maximum flexural and split tensile strength was observed after the addition of 0.5% nanoparticles. Finally, ZnO nanoparticles could improve the pore structure of the self-compacted concrete and shift the distributed pores to harmless and less-harmful pores, while increasing mechanical strength.

  3. The use of a concrete additive to eliminate returned concrete waste volumes

    Directory of Open Access Journals (Sweden)

    Bester Johannes

    2017-01-01

    Full Text Available This paper investigates the effects of the use of a recently developed two-component powdered product made from polymers and inorganic compounds that can be mechanically mixed into returned fresh ready-mix concrete to allow for the separation of the concrete into fine and coarse aggregates. This allows for the re-use of the returned concrete as aggregates in the manufacturing of new concrete. The returned concrete waste can therefore be eliminated, thus reducing virgin aggregate usage, as well as reducing the environmental impact of returned concrete. In this study, the treated recycled fresh concrete was separated into fine and coarse aggregates, and then used at replacement levels of 0%, 25%, 50%, 75% and 100%. The effect of the product on the material classification, and on important fresh and hardened properties of the concrete for the above-mentioned replacement values was tested. For the fine aggregate, the results indicate minimal changes in both the fresh and hardened properties. For the coarse aggregate, the results show a marked improvement of flexural strength with an increase in replacement value when coarse aggregates are used. Very high replacement levels may be used with very little effect on the quality of the new concrete.

  4. Experimental, numerical, and analytical studies on the seismic response of steel-plate concrete (SC) composite shear walls

    Science.gov (United States)

    Epackachi, Siamak

    The seismic performance of rectangular steel-plate concrete (SC) composite shear walls is assessed for application to buildings and mission-critical infrastructure. The SC walls considered in this study were composed of two steel faceplates and infill concrete. The steel faceplates were connected together and to the infill concrete using tie rods and headed studs, respectively. The research focused on the in-plane behavior of flexure- and flexure-shear-critical SC walls. An experimental program was executed in the NEES laboratory at the University at Buffalo and was followed by numerical and analytical studies. In the experimental program, four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure- and flexure-shear critical. The progression of damage in the four walls was identical, namely, cracking and crushing of the infill concrete at the toes of the walls, outward buckling and yielding of the steel faceplates near the base of the wall, and tearing of the faceplates at their junctions with the baseplate. A robust finite element model was developed in LS-DYNA for nonlinear cyclic analysis of the flexure- and flexure-shear-critical SC walls. The DYNA model was validated using the results of the cyclic tests of the four SC walls. The validated and benchmarked models were then used to conduct a parametric study, which investigated the effects of wall aspect ratio, reinforcement ratio, wall thickness, and uniaxial concrete compressive strength on the in-plane response of SC walls. Simplified analytical models, suitable for preliminary analysis and design of SC walls, were

  5. Influence of increasing amount of recycled concrete powder on mechanical properties of cement paste

    Science.gov (United States)

    Topič, Jaroslav; Prošek, Zdeněk; Plachý, Tomáš

    2017-09-01

    This paper deals with using fine recycled concrete powder in cement composites as micro-filler and partial cement replacement. Binder properties of recycled concrete powder are given by exposed non-hydrated cement grains, which can hydrate again and in small amount replace cement or improve some mechanical properties. Concrete powder used in the experiments was obtained from old railway sleepers. Infrastructure offer more sources of old concrete and they can be recycled directly on building site and used again. Experimental part of this paper focuses on influence of increasing amount of concrete powder on mechanical properties of cement paste. Bulk density, shrinkage, dynamic Young’s modulus, compression and flexural strength are observed during research. This will help to determine limiting amount of concrete powder when decrease of mechanical properties outweighs the benefits of cement replacement. The shrinkage, dynamic Young’s modulus and flexural strength of samples with 20 to 30 wt. % of concrete powder are comparable with reference cement paste or even better. Negative effect of concrete powder mainly influenced the compression strength. Only a 10 % cement replacement reduced compression strength by about 25 % and further decrease was almost linear.

  6. Lightweight concrete with Algerian limestone dust: Part I: Study on 30% replacement to normal aggregate at early age

    Directory of Open Access Journals (Sweden)

    S. Kitouni

    2013-12-01

    Full Text Available The mechanical characteristics of the lightweight aggregate concretes (LWAC strongly depend on the proportions of aggregates in the formulation. In particular, because of their strong porosity, the lightweight aggregates are much more deformable than the cementations matrix and their influence on concrete strength is complex. This paper focuses on studying the physical performance of concrete formulated with substitution of 30% of coarse aggregates by limestone dust. In this article an attempt is made to provide information on the elastic properties of lightweight concrete (LWC from tests carried out under uniaxial compression conditions. The results of Young modulus, Poisson's ratio, and compressive and flexural tensile strength tests on concrete are presented. The concretes obtained present good mechanical performances reaching 34.99 MPa compressive strength, 6.39 MPa flexural tensile strength and in front of 36 MPa Young modulus.

  7. Study on Mechanical Properties of Concrete Using Plastic Waste as an Aggregate

    Science.gov (United States)

    Jaivignesh, B.; Sofi, A.

    2017-07-01

    Disposal of large quantity of plastic causes land, water and air pollution etc.., so a study is conducted to recycle the plastic in concrete. This work investigates about the replacement of natural aggregate with non-biodegradable plastic aggregate made up of mixed plastic waste in concrete. Several tests are conducted such as compressive strength of cube, split tensile strength of cylinder, flexural strength test of prism to identify the properties and behavior of concrete using plastic aggregate. Replacement of fine aggregate weight by 10%, 15%, 20% with Plastic fine (PF) aggregate and for each replacement of fine aggregate 15%, 20%, 25% of coarse aggregate replacement also conducted with Plastic Coarse(PC) aggregate. In literatures reported that the addition of plastic aggregate in concrete causes the reduction of strength in concrete due to poor bonding between concrete and plastic aggregate, so addition of 0.3% of steel fiber by weight of cement in concrete is done to improve the concrete strength. Totally 60 cubes, 60 cylinders and 40 prisms are casted to identify the compressive strength, split tensile strength and flexural strength respectively. Casted specimens are tested at 7 and 28 days. The identified results from concrete using plastic aggregate are compared with conventional concrete. Result shows that reduction in mechanical properties of plastic aggregate added concrete. This reduction in strength is mainly due to poor bond strength between cement and plastic aggregate.

  8. Comparative analysis of the properties of concrete produced with ...

    African Journals Online (AJOL)

    Compressive and flexural strength values of concrete produced with PLC grade 42.5R were higher than values obtained with grade 32.5. The 28 day compressive strength values of concrete produced with PLC grade 42.5R were, 28.0, 30.0, 35.0, and 40.0 N/mm,2 while values of 22.0, 28.0, 33.0 and 35.0 were obtained ...

  9. Mechanical properties of self-compacted fiber concrete mixes

    Directory of Open Access Journals (Sweden)

    Mounir M. Kamal

    2014-04-01

    Full Text Available Increased productivity and improved working environment have had high priority in the development of concrete construction over the last decade. The major impact of the introduction of self-compacting concrete (SCC is connected to the production process. The productivity is drastically improved through the elimination of vibration compaction and process reorganization. The working environment is significantly enhanced through avoidance of vibration induced damages, reduced noise and improved safety. Additionally, SCC technology has improved the performance in terms of hardened concrete properties like surface quality, strength and durability. The main objective of this research was to determine the optimum content of fibers (steel and polypropylene fibers used in SCC. The effect of different fibers on the fresh and hardened properties was studied. An experimental investigation on the mechanical properties, including compressive strength, flexural strength and impact strength of fiber reinforced self-compacting concrete was performed. The results of the investigation showed that: the optimum dosage of steel and polypropylene fiber was 0.75% and 1.0% of the cement content, respectively. The impact performance was also improved due to the use of fibers. The control mix specimen failed suddenly in flexure and impact, the counterpart specimens contain fibers failed in a ductile manner, and failure was accompanied by several cracks.

  10. Some engineering properties of heavy concrete added silica fume

    International Nuclear Information System (INIS)

    Akkaş, Ayşe; Başyiğit, Celalettin; Esen, Serap

    2013-01-01

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes’ added Silica fume have been investigated

  11. Determination of service stresses in pretensioned beams, final report, December 2009.

    Science.gov (United States)

    2009-12-01

    This report presents research on the evaluation of service flexural stresses and cracking moment in prestressed concrete members and on the minimum reinforcement requirements that are currently controlled by the flexural cracking moment. In prestress...

  12. Impact of Steel Fiber Size and Shape on the Mechanical Properties of Ultra-High Performance Concrete

    Science.gov (United States)

    2015-08-01

    characteristics of steel fiber reinforcement to the mechanical properties of high-strength concretes , this study investigated four commercially available...Standard test method for flexural performance of fiber - reinforced concrete (using beam with third-point loading). Designation: C1609/1609M. West...STEEL FIBERS are low-carbon, drawn w ire for reinforced concrete . NYCON-SF fibers distribute stresses within the concrete and provide improvement

  13. Strain rate dependent energy absorption capacity of reinforced concrete members under aircraft impact

    International Nuclear Information System (INIS)

    Brandes, K.; Limberger, E.; Herter, J.

    1983-01-01

    The safety analysis of nuclear power plants includes the impact of an aircraft on the reinforced concrete containment structure. The load characteristics of this event are more or less standardized. In order to reduce the construction costs and to come to a realistic design of anti-impact structures, it is of interest to take advantage of the potential plastic behaviour of reinforced concrete structural members under impact and impulsive loading. But up to now gaps in the knowledge in this field restrain a realistic design. To close these gaps a R and D-programme supported by the governments has been initiated in the Federal Republic of Germany. Some work in this respect carried out since 1977 in BAM is part of this programme. (orig./WL)

  14. ANALYSIS OF PROPERTIES OF CONCRETE USING DRIED BANANA PEEL POWDER AS ADMIXTURE

    OpenAIRE

    Vishal Gadgihalli; MeenaY.R; Sindhu Shankar; Raghavendra Prasad Havanje Dinakar

    2017-01-01

    Ingredients other than cement, water& aggregates that import a specific quality to either plastic(fresh)mix or the hardened concrete (ASTMC 496) is called concrete admixture. In this paper analysis of properties of concrete using banana peel as admixture is studied and verified the strength of concrete and temperature emitted due to chemical reaction to the normal Portland cement. As banana’s peel is rich in natural fiber and it is well known source of potassium. The flexural strength of conc...

  15. The effects of ZnO2 nanoparticles on properties of concrete using ground granulated blast furnace Slag as binder

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2011-09-01

    Full Text Available In the present study, flexural strength together with pore structure, thermal behavior and microstructure of concrete containing ground granulated blast furnace slag with different amount of ZnO2 nanoparticles has been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impact the properties of concrete, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt. (%. ZnO2 nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of 45 wt. (% of ground granulated blast furnace slag and physical and mechanical properties of the specimens was measured. ZnO2 nanoparticle as a partial replacement of cement up to 3 wt. (% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH2 amount at the early age of hydration and hence increase flexural strength of concrete. The increased the ZnO2 nanoparticles' content more than 3 wt. (%, causes the reduced the flexural strength because of the decreased crystalline Ca(OH2 content required for C-S-H gel formation together with unsuitable dispersion of nanoparticles in the concrete matrix. ZnO2 nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and few-harm pores.

  16. Synthesis of Zinc Oxide Nanoparticles and Their Effect on the Compressive Strength and Setting Time of Self-Compacted Concrete Paste as Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Arefi

    2012-04-01

    Full Text Available In the present study, the mechanical properties of self-compacting concrete were investigated after the addition of different amounts of ZnO nanoparticles. The zinc oxide nanoparticles, with an average particle size of about 30 nm, were synthesized and their properties studied with the help of a scanning electron microscope (SEM and X-ray diffraction. The prepared nanoparticles were partially added to self-compacting concrete at different concentrations (0.05, 0.1, 0.2, 0.5 and 1.0%, and the mechanical (flexural and split tensile strength of the specimens measured after 7, 14, 21 and 28 days, respectively. The present results have shown that the ZnO nanoparticles were able to improve the flexural strength of self-compacting concrete. The increased ZnO content of more than 0.2% could increase the flexural strength, and the maximum flexural and split tensile strength was observed after the addition of 0.5% nanoparticles. Finally, ZnO nanoparticles could improve the pore structure of the self-compacted concrete and shift the distributed pores to harmless and less-harmful pores, while increasing mechanical strength.

  17. Experimental study on the performance of pervious concrete

    Science.gov (United States)

    Liu, Haojie; Liu, Rentai; Yang, Honglu; Ma, Chenyang; Zhou, Heng

    2018-02-01

    With the construction of sponge city, the pervious concrete material has been developed rapidly. A high-performance pervious concrete is developed by using cement, silica fume (SF) and superplasticizer (SP). The effects of SF, SP, aggregate size, water-cement ration and aggregate-cement ratio on the permeability coefficient, compressive strength and flexural strength are studied by controlling variables, and exploring the corrosion resistance and abrasion resistance of pervious concrete. The results show that using 0.5% SP, 5% SF and small aggregate can greatly improve the strength. There is an optimum value for water-cement ratio to make the strength and permeability coefficient maximum. Compared to ordinary pervious concrete, the corrosion resistance and abrasion resistance of this pervious concrete are very good.

  18. Mechanical properties of cement concrete composites containing nano-metakaolin

    Science.gov (United States)

    Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana

    2017-11-01

    The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.

  19. engineering properties of scoria concrete as a construction material

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    2015-08-11

    Aug 11, 2015 ... The scoria concrete so produced in mix ratio 1:2:4 was tested for compressive strength, flexural strength and water absorption capacity. Empirical values of those factors that affect ... Scoria obtained from Wurukum market was.

  20. The effects of adding waste plastic fibers on some properties of roller compacted concrete

    Directory of Open Access Journals (Sweden)

    Abed Adil

    2018-01-01

    Full Text Available An attempt to produce of roller compacted concrete (RCC improved by adding waste plastic fibers (WPFs resulting from cutting the PET beverage bottles was recorded in this study. The method which is used for production of RCC is an approved design method for ACI committee (5R-207,1980[1]. WPF was added by volumetric percentages ranging between (0.5 to 2 % and reference concrete mix was produced for comparison reason. Many tests were conducted on the models produced by rolling compacted concrete like compressive strength, flexural strength, modulus of elasticity, dry density, water absorption and ultrasonic pulse velocity. The analysis of the results showed that the use of plastic waste fibers (1% had led to improvement in the properties of each of the compressive strength and flexural strength compared with reference concrete. Results also showed that the addition of these, fibers increase water absorption and reduce the speed of Ultrasonic pulse velocity.

  1. Repairing reinforced concrete slabs using composite layers

    International Nuclear Information System (INIS)

    Naghibdehi, M. Ghasemi; Sharbatdar, M.K.; Mastali, M.

    2014-01-01

    There are several strengthening methods for rehabilitation of RC structural elements. The efficiency of these methods has been demonstrated by many researchers. Due to their mechanical properties, using fibrous materials in rehabilitation applications is growing fast. Therefore, this study presents rehabilitation of slabs in such a way that plain concrete layers on top, on bottom, on the entire cross section are replaced by reinforced concrete layers. In order to reinforce the concrete, Polypropylene (PP) and steel fibers were used by 0.5%, 1% and 2% fiber volume fractions. Nineteen slabs were studied under flexural loadings and fibrous material effects on the initial crack force, the maximum loading carrying capacity, absorbed energy and ductility were investigated. The obtained results demonstrated that increasing the fiber volume fraction or using reinforced concrete layer on top, bottom, or at the entire cross section of the slabs not only always leads to improvement in the slab performance, but also sometimes debilitates the slab performance. Hence, this study will propose the best positioning of reinforced concrete layer, fiber volume fraction and fiber type to achieve the best flexural performance of slabs. - Highlights: • Using PP fibers at the bottom layer led to the best slab performance in bending. • Using steel fiber at the top layer and entire cross-section led to the best slab performance. • Maximum increase in the initial crack force and loading were obtained at 2% steel fiber. • Maximum increase in the initial crack force and loading were obtained at 1% PP fiber

  2. Behaviour of glued fibre composite sandwich structure in flexure: Experiment and Fibre Model Analysis

    International Nuclear Information System (INIS)

    Manalo, Allan; Aravinthan, Thiru

    2012-01-01

    Highlights: ► Fibre Model Analysis is used to examine the flexural behaviour of sandwich beams. ► Theoretical prediction using FMA is in good agreement with the experiment. ► Using the constituent materials in FMA predicted accurately the beam’s behaviour. ► FMA can be used for analysing sandwich beams with high-strength core in flexure. -- Abstract: The behaviour of glued composite sandwich beams in flexure was investigated with a view of using this material for structural and civil engineering applications. The building block of this glue-laminated beam is a new generation composite sandwich structure made up of glass fibre reinforced polymer skins and a high strength phenolic core material. A simplified Fibre Model Analysis (FMA) usually used to analyse a concrete beam section is adopted to theoretically describe the flexural behaviour of the innovative sandwich beam structure. The analysis included the flexural behaviour of the glued sandwich beams in the flatwise and the edgewise positions. The FMA accounted for the non-linear behaviour of the phenolic core in compression, the cracking of the core in tension and the linear elastic behaviour of the fibre composite skin. The results of the FMA showed a good agreement with the experimental data showing the efficiency and practical applications of the simplified FMA in analysing and designing sandwich structures with high strength core material.

  3. Experimental research on the residual mechanical properties of an ordinary concretes after fire

    OpenAIRE

    Santos, C.C.; Rodrigues, J.P.

    2015-01-01

    This paper summarizes the results of an experimental research to assess the residual mechanical properties of an ordinary concrete after fire. It was studied the influence of the cooling process, the maximum temperature that the concrete was subjected to and the loading level on the residual mechanical properties of calcareous and granite aggregate concretes. The properties studied were the residual compressive, tensile, splitting and flexural strengths and modulus of elasticit...

  4. Flexural properties of reinforced date palm fibres concrete in Sahara climate

    Science.gov (United States)

    Abani, S.; Kriker, A.; Khenfer, M. M.

    2018-05-01

    The mechanical characteristics of fibres reinforced concrete depend on many factors which are; the conditions of the work, the dosage, the distance between fibres and their orientation and distribution in the concrete. There are also other factors concerns the fibres themselves such as: the proportion of the length of the fibres to their diameter, their nature, the mechanical characteristics and the geometrical form. The main objective of our work is to contribute in the estimation of the vegetable fibres of the palm-trees that exist too much in our region and to introduce them scientifically in the domain of construction with taking into consideration the climatic conditions of the use. In this work, we will study the effect of the palm fibres on the mechanical characteristics of the concrete, such as: the strength of tensile by flexion.

  5. Performance of Kaolin Clay on the Concrete Pavement

    Science.gov (United States)

    Abdullah, M. E.; Jaya, R. P.; Shahafuddin, M. N. A.; Yaacob, H.; Ibrahim, M. H. Wan; Nazri, F. M.; Ramli, N. I.; Mohammed, A. A.

    2018-05-01

    This paper investigates the performance of concrete pavement containing kaolin clay with their engineering properties and to determine the optimum kaolin clay content. The concrete used throughout the study was designed as grade 30 MPa strength with constant water to cement ratio of 0.49. The compressive strength, flexural strength and water absorption test was conducted in this research. The concrete mix designed with kaolin clay as cement replacement comprises at 0%, 5%, 10% and 15% by the total weight of cement. The results indicate that the strength of pavement concrete decreases as the percentage of kaolin clay increases. It also shows that the water absorption increases with the percentage of cement replacement. However, 5% kaolin clay is found to be the optimum level to replace cement in a pavement concrete.

  6. Tensile strength of concrete under static and intermediate strain rates: Correlated results from different testing methods

    International Nuclear Information System (INIS)

    Wu Shengxing; Chen Xudong; Zhou Jikai

    2012-01-01

    Highlights: ► Tensile strength of concrete increases with increase in strain rate. ► Strain rate sensitivity of tensile strength of concrete depends on test method. ► High stressed volume method can correlate results from various test methods. - Abstract: This paper presents a comparative experiment and analysis of three different methods (direct tension, splitting tension and four-point loading flexural tests) for determination of the tensile strength of concrete under low and intermediate strain rates. In addition, the objective of this investigation is to analyze the suitability of the high stressed volume approach and Weibull effective volume method to the correlation of the results of different tensile tests of concrete. The test results show that the strain rate sensitivity of tensile strength depends on the type of test, splitting tensile strength of concrete is more sensitive to an increase in the strain rate than flexural and direct tensile strength. The high stressed volume method could be used to obtain a tensile strength value of concrete, free from the influence of the characteristics of tests and specimens. However, the Weibull effective volume method is an inadequate method for describing failure of concrete specimens determined by different testing methods.

  7. Behaviour of fibre reinforced concrete using steel slag coarse aggregate produced in Qatar

    Directory of Open Access Journals (Sweden)

    Alnahhal Wael

    2017-01-01

    Full Text Available The state of Qatar suffers from the shortage of natural resources needed for concrete production. Therefore, it is essential to investigate the feasibility of using by-product recycled materials as aggregates to maintain the concrete construction industry. Several types of recyclable materials are currently used in concrete. One of the potential resources of recycled concrete is steel slag. Knowing that Steel slag is the most significant solid waste generated by Qatar Steel Company in Qatar, replacing of natural coarse aggregate with steel slag aggregate will have a significant environmental and economic impact to the state of Qatar. This paper presents the compression and flexural test results of different concrete mixes made of steel slag coarse aggregate combined with a newly developed basalt chopped fibres. The parameters investigated included the volume fraction of the fibre used and the type of coarse aggregates (natural aggregates “Gabbro” and steel slag aggregates. Plain concrete specimens containing natural coarse aggregates and steel slag aggregates with no fibres added were also tested to serve as control. Test results showed that adding the basalt chopped fibres to the concrete mixes enhanced their flexural tensile strengths at different percentages. In addition, the compressive strength of concrete made with steel slag aggregate was higher than that made with natural gabbro aggregate. Test results clearly showed that steel slag aggregates can be used as sustainable and eco-friendly alternative materials in concrete structures.

  8. Investigation of Limit States Specified for Reinforced Concrete Column Members in TEC–2007

    Directory of Open Access Journals (Sweden)

    Umut HASGÜL

    2016-01-01

    Full Text Available In this study, the deformation based limit states stipulated for reinforced concrete members in the Turkish Earthquake Code (TEC were experimentally investigated. Thus four RC cantilever columns which have low concrete compressive strengths and have not adequate confinement, were subjected to constant axial load and cyclic lateral load history. In the study, firstly, the strain values representing the damage limits were converted to top of the column lateral displacements by using fundamentals of structural mechanics. Subsequently the column damages corresponding to the displacement demands were observed, hence limit states were evaluated. After conducting all column tests, it was noted that no column damage was observed for the immediate occupancy (IO performance level defined in the code. For the life safety (LS and collapse prevention (CP performance levels, though somewhat residual deformations occurred on the critical regions, the column members can pretty much sustain their lateral load capacities. It was also observed for all columns that significant damages and strength losses occurred beyond the collapse prevention level. The results of experimental study indicate that the evaluation procedure in the TEC is still in good relationship with the limit states even if the columns have not adequate compressive strength and confinement.

  9. Strengthening of Steel Columns under Load: Torsional-Flexural Buckling

    Directory of Open Access Journals (Sweden)

    Martin Vild

    2016-01-01

    Full Text Available The paper presents experimental and numerical research into the strengthening of steel columns under load using welded plates. So far, the experimental research in this field has been limited mostly to flexural buckling of columns and the preload had low effect on the column load resistance. This paper focuses on the local buckling and torsional-flexural buckling of columns. Three sets of three columns each were tested. Two sets corresponding to the base section (D and strengthened section (E were tested without preloading and were used for comparison. Columns from set (F were first preloaded to the load corresponding to the half of the load resistance of the base section (D. Then the columns were strengthened and after they cooled, they were loaded to failure. The columns strengthened under load (F had similar average resistance as the columns welded without preloading (E, meaning the preload affects even members susceptible to local buckling and torsional-flexural buckling only slightly. This is the same behaviour as of the tested columns from previous research into flexural buckling. The study includes results gained from finite element models of the problem created in ANSYS software. The results obtained from the experiments and numerical simulations were compared.

  10. A study on the fracture energy of Steel Fiber Reinforced Concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong-Il; Sim Jongsung; Chai, Won-Kyu; Lee, Myeong-Gu

    1991-01-01

    Fracture test is performed in order to investigate the fracture behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Thirty six SFRC beams are used in this test. The relationships between loading, strain, and mid-span deflection of the beams are observed under the three point loading system. From the test results, the effects of the fiber content, the fiber aspect ratio and the initial crack ratio on the concrete fracture behavior were studied, and the flexural strength and the fracture energy of SFRC beams were also calculated. According to the regression technique, some empirical formulae for predicting the flexural strength and the fracture energy of SFRC beams are also suggested. (author)

  11. Crack classification in concrete beams using AE parameters

    Science.gov (United States)

    Bahari, N. A. A. S.; Shahidan, S.; Abdullah, S. R.; Ali, N.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Rahim, M. A.

    2017-11-01

    The acoustic emission (AE) technique is an effective tool for the evaluation of crack growth. The aim of this study is to evaluate crack classification in reinforced concrete beams using statistical analysis. AE has been applied for the early monitoring of reinforced concrete structures using AE parameters such as average frequency, rise time, amplitude counts and duration. This experimental study focuses on the utilisation of this method in evaluating reinforced concrete beams. Beam specimens measuring 150 mm × 250 mm × 1200 mm were tested using a three-point load flexural test using Universal Testing Machines (UTM) together with an AE monitoring system. The results indicated that RA value can be used to determine the relationship between tensile crack and shear movement in reinforced concrete beams.

  12. Influence of Torsion Effect on the Mechanical Characteristics of Reinforced Concrete Column

    Science.gov (United States)

    Wang, Debin; Fan, Guoxi

    2017-11-01

    The purpose of this paper is to study the effect of torsional effect and loading rate on the flexural capacity of RC members. Based on the fiber model of finite element software ABAQUS, a model has been established with the consideration of the strain rate sensitivity of steel and concrete. The model is used to reflect the influence of the rotational component of ground motion by applying the initial angular displacement. The mechanical properties of RC columns under monotonic loads are simulated. The simulation results show that there has been a decrease in the carrying capacity and initial stiffness of RC columns for high initial torsion angle. With the increase of initial torsion angle, the influence of loading rate on RC columns gradually increases.

  13. Production of lightweight Geopolymer concrete using artificial local lightweight aggregate

    Directory of Open Access Journals (Sweden)

    Abbas Waleed

    2018-01-01

    Full Text Available Due to the rapid depletion of natural resources, the use of waste materials and by-products from different industries of building construction has been gaining increased attention. Geopolymer concrete based on Pozzolana is a new material that does not need the presence of Portland cement as a binder. The main focus of this research is to produce lightweight geopolymer concrete (LWGPC using artificial coarse lightweight aggregate which produced from locally available bentonite clays. In this investigation, the binder is low calcium fly ash (FA and the alkali activator is sodium hydroxide and sodium silicate in different molarities. The experimental tests including workability, fresh density, also, the compressive strength, splitting tensile strength, flexural strength, water absorption and ultrasonic pulse velocity at the age of 7, 28 and 56 days were studied. The oven dry density and thermal conductivity at 28 days age are investigated. The results show that it is possible to produce high strength lightweight geopolymer concrete successfully used as insulated structural lightweight concrete. The 28-day compressive strength, tensile strength, flexural strength, dry density, and thermal conductivity of the produced LWGPC are 35.8 MPa, 2.6MPa, 5.5 MPa, 1835kg/m3, and 0.9567 W/ (m. K, respectively.

  14. Study on the Effect of Straw Fiber on the Performance of Volcanic Slag Concrete

    Science.gov (United States)

    Xiao, Li-guang; Liu, Xi-xu

    2018-03-01

    In this paper, the effects of straw fiber on the working performance, mechanical properties and frost resistance of volcanic slag lightweight aggregate concrete were studied. The experimental results show that the straw fiber is subjected to surface carbonization treatment and mixed into the volcanic slag light aggregate concrete. The flexural strength and fracture pressure ratio of volcanic slag lightweight aggregate concrete are improved obviously Improved volcanic slag lightweight aggregate concrete brittleness improves toughness. Carbonized straw fiber greatly improves the frost resistance of volcanic slag lightweight aggregate concrete. So that the volcanic slag light aggregate concrete freeze-thaw cycle can reach 300 times.

  15. Mechanical Properties of Lightweight Concrete Using Recycled Cement-Sand Brick as Coarse Aggregates Replacement

    Science.gov (United States)

    Joohari, Ilya; Farhani Ishak, Nor; Amin, Norliyati Mohd

    2018-03-01

    This paper presents the result of replacing natural course aggregate with recycled cement-sand brick (CSB) towards the mechanical properties of concrete. Natural aggregates were used in this study as a control sample to compare with recycled coarse aggregates. This study was also carried to determine the optimum proportion of coarse aggregates replacement to produce lightweight concrete. Besides, this study was conducted to observe the crack and its behaviour development during the mechanical testing. Through this study, four types of concrete mixed were prepared, which were the control sample, 25%, 50% and 75% replacement of CSB. The test conducted to determine the effectiveness of recycled CSB as coarse aggregates replacement in this study were slump test, density measurement, compression test, and flexural test and. The strength of concrete was tested at 7 days and 28 days of curing. From the results obtained, the optimum proportion which produced the highest strength is 25% replacement of recycled CSB. The compressive and flexural strength has decreased by 10%-12% and 4%-34% respectively compared to the control sample. The presence of recycled coarse aggregates in sample has decreased the density of concrete by 0.8%-3% compared to the control sample.

  16. Estimating flexural rigidity and load magnitude required for formation of Ross Island flexure moat

    Science.gov (United States)

    Jha, S.; Harry, D. L.; Wenman, C. P.

    2017-12-01

    Lithospheric flexural subsidence around Ross Island in West Antarctica led to formation of the Ross Island flexure moat. This subsidence was caused by two major volcanic phases on Ross Island. The first phase saw the first surficial expression of Ross Island and volcanism at Mt. Bird to the north of Ross Island, which lasted from 5.2 - 2.9 Ma. The second phase lasted from 1.78 Ma to present and is comprised of eruptions from Mt. Terror to the east, Mt. Erebus to the west and Hut Point Peninsula (HPP) to the south of Ross Island. Flexural subsidence of the lithosphere due to volcanism on Ross Island led to formation of a sedimentary moat around the island, which is preserved in stratigraphy imaged on seismic reflection profiles. We identified 5 unconformities (from deepest upward Ri, RMU1, RMU2, RMU3, RMU4) in the seismic surveys which correspond to flexural subsidence episodes around Ross Island since early Pliocene. Ri (4.4 Ma) lies near the bottom of the flexural moat and RMU4 near the seafloor and top of the moat fill. These unconformities were used to make isopach maps to constrain flexure modeling of the area. Isopach maps show circular or semi-circular flexure basins around Ross Island which is approximated using a continuous plate, point load flexure model. We used Ri - sea floor isopach to constrain flexure models for 5 profiles centered on 4 volcanic centers and trending radially out of Ross Island. Flexure models along two profiles beginning on Mt. Bird and one profile off HPP show a flexural rigidity range of 1.47 - 6.44 x 1018 Nm with load center of mass on Mt. Bird and on HPP, respectively. A similar model along a profile initiating on Mt. Terror, passing through Mt Erebus and extending west of Ross Island across the moat, yielded a higher flexural rigidity estimate of 2.03 x 1019 Nm with load centered at Mt. Erebus. A flexure model to the north east of Ross Island along a profile beginning at Mt Terror and trending north, provide the highest flexural

  17. Impact analyses for negative flexural responses (hogging) in railway prestressed concrete sleepers

    International Nuclear Information System (INIS)

    Kaewunruen, S; Ishida, T; Remennikov, AM

    2016-01-01

    By nature, ballast interacts with railway concrete sleepers in order to provide bearing support to track system. Most train-track dynamic models do not consider the degradation of ballast over time. In fact, the ballast degradation causes differential settlement and impact forces acting on partial and unsupported tracks. Furthermore, localised ballast breakages underneath railseat increase the likelihood of centrebound cracks in concrete sleepers due to the unbalanced support under sleepers. This paper presents a dynamic finite element model of a standard-gauge concrete sleeper in a track system, taking into account the tensionless nature of ballast support. The finite element model was calibrated using static and dynamic responses in the past. In this paper, the effects of centre-bound ballast support on the impact behaviours of sleepers are highlighted. In addition, it is the first to demonstrate the dynamic effects of sleeper length on the dynamic design deficiency in concrete sleepers. The outcome of this study will benefit the rail maintenance criteria of track resurfacing in order to restore ballast profile and appropriate sleeper/ballast interaction. (paper)

  18. Impact analyses for negative flexural responses (hogging) in railway prestressed concrete sleepers

    Science.gov (United States)

    Kaewunruen, S.; Ishida, T.; Remennikov, AM

    2016-09-01

    By nature, ballast interacts with railway concrete sleepers in order to provide bearing support to track system. Most train-track dynamic models do not consider the degradation of ballast over time. In fact, the ballast degradation causes differential settlement and impact forces acting on partial and unsupported tracks. Furthermore, localised ballast breakages underneath railseat increase the likelihood of centrebound cracks in concrete sleepers due to the unbalanced support under sleepers. This paper presents a dynamic finite element model of a standard-gauge concrete sleeper in a track system, taking into account the tensionless nature of ballast support. The finite element model was calibrated using static and dynamic responses in the past. In this paper, the effects of centre-bound ballast support on the impact behaviours of sleepers are highlighted. In addition, it is the first to demonstrate the dynamic effects of sleeper length on the dynamic design deficiency in concrete sleepers. The outcome of this study will benefit the rail maintenance criteria of track resurfacing in order to restore ballast profile and appropriate sleeper/ballast interaction.

  19. Use of metallic fibers in concretes

    Directory of Open Access Journals (Sweden)

    Kherbache Souad

    2014-04-01

    Full Text Available The addition of a waste (fibers in construction materials, particularly, the concretes is a technique increasingly used, for several reasons, either ecological, or economic, or to improve some properties in a fresh or hardened state. In our work we studied the behavior of the concrete and the mortar containing metallic fibers resulting from the unit BCR which is in Bordj-Menaiel in Algeria (metallic fibers resulting from the rejection at the end of the domestic operation of silvering of the tools and which is stored in plastic bags which are preserved in metal containers. Our work consists to study the behavior of the concretes and the mortars containing these fibers of cement substitution. We noted that the use of these fibers in the concretes in substitution of cement decreases its of compressive strength and flexural strength but to 10% of waste these strength remain acceptable.

  20. Fabrication and mechanical properties of clay/epoxy nanocomposite and its polymer concrete

    International Nuclear Information System (INIS)

    Shokrieh, Mahmood M.; Kefayati, Amir R.; Chitsazzadeh, Majid

    2012-01-01

    Highlights: ► Obtaining optimum sonication power and time to fabricate clay/epoxy nanocomposites. ► Improving the tensile and flexural moduli of clay/epoxy nanocomposites. ► Increasing the fracture toughness and compressive strength of nanocomposites. ► Nanoclay enhanced the tensile and compressive strengths of polymer concrete. ► Improving the fracture toughness of polymer concrete by addition of nanoclay. -- Abstract: In this research, the effects of adding modified nanoclay (Cloisite 30B) on the mechanical properties (tensile, compression, flexural and fracture toughness) of epoxy polymer (ML-506) were investigated. Subsequently, the mechanical properties of polymer concrete (PC) made of nanoclay/epoxy were also studied. The nanoclay dispersion was achieved by sonication technique. Therefore, optimum sonication output power and time for achieving the highest d-spacing of nanoclay layers were obtained. The X-ray diffraction (XRD) results indicated that changing sonication output power and time during fabrication process did not have any remarkable effects on increasing the d-spacing of clay layers. In all production processes, the d-spacing was increased from 18.4Å to about 42Å and thus the intercalated nanocomposites were fabricated. In addition to XRD, the dispersion state and the d-spacing of nanoclay particles were observed using a transmission electron microscope (TEM). Also, the effects of various filler contents on the mechanical properties, i.e., tensile, compression, flexural and fracture toughness of nanocomposite were investigated. The results of mechanical testing showed that enhancement in the tensile and flexural moduli, compressive strength and fracture toughness were gained by 12.5%, 13.3%, 7.4% and 25.5% respectively. On the other hand, tensile and flexural strengths as well as strain to failure were decreased. Scanning electron microscope (SEM) was also used to study the fracture mechanism of nanocomposites. Finally, by adding the

  1. STRENGTHENING OF A REINFORCED CONCRETE BRIDGE WITH PRESTRESSED STEEL WIRE ROPES

    Directory of Open Access Journals (Sweden)

    Kexin Zhang

    2017-10-01

    Full Text Available This paper describes prestressed steel wire ropes as a way to strengthen a 20-year-old RC T-beam bridge. High strength, low relaxation steel wire ropes with minor radius, high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel wire ropes—including wire rope measuring, extruding anchor heads making, anchorage installing, tensioning steel wire ropes and pouring mortar was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on the concrete structure theory. The flexural strength of RC T-beam bridges strengthened with prestressed steel wire ropes was governed by the failure of concrete crushing. To investigate effectiveness of the strengthening method, fielding-load tests were carried out before and after strengthening. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved. The crack width measurement also indicates that this technique could increase the durability of the bridge. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

  2. Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete

    International Nuclear Information System (INIS)

    Michel, A.; Solgaard, A.O.S.; Pease, B.J.; Geiker, M.R.; Stang, H.; Olesen, J.F.

    2013-01-01

    Highlights: •Cracked plain and steel fibre reinforced concrete flexural beams were investigated. •“Instrumented rebars” provided location- and time-dependent corrosion measurements. •Interfacial condition can be used as a reliable indicator to quantify the risk of corrosion. •Simulated interfacial conditions are in very good agreement with all experimental observations. -- Abstract: Cracks in covering concrete are known to hasten initiation of steel corrosion in reinforced concrete structures. To minimise the impact of cracks on the deterioration of reinforced concrete structures, current approaches in (inter)national design codes often limit the concrete surface crack width. Recent investigations however, indicate that the concrete-reinforcement interfacial condition is a more fundamental criterion related to reinforcement corrosion. This work investigates the relation between macroscopic damage at the concrete-steel interface and corrosion initiation of reinforcement embedded in plain and fibre reinforced concrete. Comparisons of experimental and numerical results indicate a strong correlation between corrosion initiation and interfacial condition

  3. Prestressing Effects on the Performance of Concrete Beams with Near-surface-mounted Carbon-fiber-reinforced Polymer Bars

    Science.gov (United States)

    Hong, Sungnam; Park, Sun-Kyu

    2016-07-01

    The effects of various prestressing levels on the flexural behavior of concrete beams strengthened with prestressed near-surface-mounted (NSM) carbon-fiber-reinforced polymer (CFRP) bars were investigated in this study. Four-point flexural tests up to failure were performed using a total of six strengthened prestressed and nonprestressed concrete beams. The nonprestressed strengthened beam failed by premature debonding at the interface of concrete and the epoxy adhesive, but the prestressed one failed owing due to rupture of the CFRP bar. As the prestressing level of the CFRP bar increased, the cracking and yield loads of the prestressed beams increased, but its effect on their deflections was insignificant. The ultimate load was constant regardless of prestressing level, but the ultimate deflection was almost inversely proportional to the level.

  4. The Effect of Type and Volume Fraction (Vf) of Steel Fiber on the Mechanical Properties of Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Ghanbarpour, S.; Mazaheripour, H.; Mirmoradi, S. H.

    2010-01-01

    is to investigate the effects of type and volume fraction of steel fiber on the compressive strength, split tensile strength, flexural strength and modulus of elasticity of steel fiber reinforced self-compacting concrete (SFRSCC). Design/methodology/approach – For this purpose, Micro wire and Wave type steel fibers......Purpose – Self-compacting concrete (SCC) offers several economic and technical benefits; the use of steel fibers extends its possibilities. Steel fibers bridge cracks, retard their propagation, and improve several characteristics and properties of the SCC. The purpose of this paper...... – It was found that, inclusion of steel fibers significantly affect the split tensile and flexural strength of SCC accordance with type and vf. Besides, mathematical expressions were developed to estimate the flexural, modulus of elasticity and split tensile strength of SFRSCCs regarding of compressive strength...

  5. Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

    Science.gov (United States)

    Smarzewski, Piotr; Stolarski, Adam

    2017-10-01

    Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.

  6. Mechanical Properties of High Performance Concrete Containing Waste Plastic as Aggregate

    Directory of Open Access Journals (Sweden)

    Abdulkader Ismail Al-Hadithi

    2015-08-01

    Full Text Available The world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET waste , got by shredded PET bottles. The mechanical properties (compressive, splitting tensile, and flexural strength evaluated at the ages of (7 ,28, 56 and 91 days while the static modulus of elasticity tested at (28 and 91 days . The results indicated that HPC containing PET-aggregate presented lower compressive strength and static elasticity . The splitting strength displayed an arising trend at the initial stages, however, they have a tendency to decrease after a while. On the other hand, flexural strength results gave better modulus of rapture at all ages of curing , as compared with reference concrete specimens.

  7. Reactor vessel supported by flexure member

    International Nuclear Information System (INIS)

    Crawford, J.D.; Pankow, B.

    1977-01-01

    According to the present invention there is provided an improved arrangement for supporting a reactor vessel within a containment structure against static and dynamic vertical loadings capable of being imposed as a result of a serious accident as well as during periods of normal plant operation. The support arrangement of the invention is, at the same time, capable of accommodating radial displacements that normally occur between the reactor vessel and the containment structure due to operational transients. The arrangement comprises a plurality of vertical columns connected between the reactor vessel and a support base within the containment structure. The columns are designed to accommodate relative displacements between the vessel and the containment structure by flexing. This eliminates the need for relative sliding movements and thus enables the columns to be securely fixed to the vessel. This elimination of a provision for relative sliding movements avoids the spaces or gaps between the retention members and the retained elements as occurred in prior art arrangements and, concomitantly, the danger of establishing impact forces on the retention members in the event of an accident is reduced. (author)

  8. A constitutive model for concrete under dynamic loading

    International Nuclear Information System (INIS)

    Suaris, W.; Shah, S.P.

    1983-01-01

    A continuous damage theory for the quasistatic and dynamic behaviour of concrete is presented. The continuous damage theory is rational choice for use in predicing the dynamic behaviour of concrete as the strain-rate effects that have been observed for concrete can to a large extent be attributed to the rate-sensitivity of the microcracking process. A vectorial representation is adopted for the damage to account for the planar nature of the microcracks in concrete. Damage is treated as an internal state variable influencing the free energy of the material and the constitutive equations and the damage evolution equations are derived consistently using thermodynamic considerations. The developed constitutive model is then calibrated by using test results in flexure and compression over a range of strain-rates. The constitutive model is also shown to be capable of predicting certain other experimentally observed characteristics of the dynamic response of concrete. (orig./HP)

  9. Effect of concrete strength gradation to the compressive strength of graded concrete, a numerical approach

    Science.gov (United States)

    Pratama, M. Mirza Abdillah; Aylie, Han; Gan, Buntara Sthenly; Umniati, B. Sri; Risdanareni, Puput; Fauziyah, Shifa

    2017-09-01

    Concrete casting, compacting method, and characteristic of the concrete material determine the performance of concrete as building element due to the material uniformity issue. Previous studies show that gradation in strength exists on building member by nature and negatively influence the load carrying capacity of the member. A pilot research had modeled the concrete gradation in strength with controllable variable and observed that the weakest material determines the strength of graded concrete through uniaxial compressive loading test. This research intends to confirm the recent finding by a numerical approach with extensive variables of strength disparity. The finite element analysis was conducted using the Strand7 nonlinear program. The results displayed that the increase of strength disparity in graded concrete models leads to the slight reduction of models strength. A substantial difference in displacement response is encountered on the models for the small disparity of concrete strength. However, the higher strength of concrete mix in the graded concrete models contributes to the rise of material stiffness that provides a beneficial purpose for serviceability of building members.

  10. Lightweight Concrete Using Oil Palm Boiler Clinker (OPBC – A Review

    Directory of Open Access Journals (Sweden)

    Hartono Herry

    2016-01-01

    Full Text Available Lightweight concrete can be effectively produced by replacing normal aggregates (60% to 75% of concrete volume with a lighter alternative. With depleting natural resources, utilising waste materials, such as oil palm boiler clinker (OPBC, in concrete for structural use is one way to mitigate environmental concerns raised by the construction industry. This paper presents a review of the mechanical properties, structural behaviour and performance of OPBC concrete. Lightweight concrete using OPBC can be designed to achieve different compressive strengths with different mixes. The different OPBC concrete mixes result in different densities and workability. The degree of content and the type of OPBC substitutes used affect the flexural strength and 28-day splitting tensile strength of OPBC concrete. A different effect was observed in the modulus of elasticity as the drying shrinkage and water absorption of OPBC concrete are also impacted. This review study also compares the structural performance of OPBC concrete to that of conventional concrete.

  11. Flexural behavior and design of steel-plate composite (SC) walls for accident thermal loading

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Peter N., E-mail: boothpn@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Sener, Kadir C., E-mail: ksener@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Malushte, Sanjeev R. [Bechtel Corp., Frederick, MD (United States)

    2015-12-15

    Modular steel-plate composite (SC) safety-related nuclear power plant structures must be designed to resist accident thermal and mechanical loads. The design accident thermal load represents the condition where high pressure and temperature steam is released as result of a mechanical failure and applied against the surfaces of power plant structural walls. The effect of heating and pressure can have both short and long term effects on the mechanical integrity of SC structures including degradation and cracking of concrete infill, residual stresses, and out-of-plane deformations. The purpose of this research is to study the effects of thermal and mechanical loads on the out-of-plane flexural response of SC walls and to develop simplified equations that can be used to predict behavior. Four experimental beam tests are reported that represent full-scale cross-sections of SC walls subjected to combinations of mechanical and thermal loads. The study determined that thermal loads reduce the out-of-plane flexural stiffness of SC walls. For the ambient condition, the flexural stiffness closely matches a conventional elastic cracked-transformed model, and at elevated temperatures, the stiffness is reduced to a fully-cracked flexural stiffness that only takes into account the stiffness of the steel faceplates. A method is presented for estimating the thermal curvature, ϕ{sub th}, and thermal moment, M{sub th}, resulting from unequal heating of opposing faces of an SC wall. Based on the tests in this study, the application of accident thermal loads did not result in a reduction of the flexural strength of the SC section.

  12. Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, D.I.

    1995-01-01

    Fracture and fatigue tests were performed in order to investigate the fracture and fatigue behavior of steel-fibre-reinforced concrete (SFRC) structures. 33 SFRC beams were used in the fracture and fatigue tests. The relationship between loading, strain and midspan deflection of the beams was observed under the three-point loading system.From the test results, the effects of the fiber content, fiber aspect ratio and notch-to-depth ratio on the concrete fracture and fatigue behavior were studied, and the fatigue strengths of SFRC beams were calculated. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams were also suggested. (orig.)

  13. Utilisation of Waste Marble Dust as Fine Aggregate in Concrete

    Science.gov (United States)

    Vigneshpandian, G. V.; Aparna Shruthi, E.; Venkatasubramanian, C.; Muthu, D.

    2017-07-01

    Concrete is the important construction material and it is used in the construction industry due to its high compressive strength and its durability. Now a day’s various studies have been conducted to make concrete with waste material with the intention of reducing cost and unavailability of conventional materials. This paper investigates the strength properties of concrete specimens cast using waste marble dust as replacement of fine aggregate. The marble pieces are finely crushed to powdered and the gradation is compared with conventional fine aggregate. Concrete specimen were cast using wmd in the laboratory with different proportion (25%, 50% and 100%) by weight of cement and from the studies it reveals that addition of waste marble dust as a replacement of fine aggregate marginally improves compressive, tensile and flexural strength in concrete.

  14. Experimental analysis of reinforced concrete beams strengthened in bending with carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    M. M. VIEIRA

    Full Text Available The use of carbon fiber reinforced polymer (CFRP has been widely used for the reinforcement of concrete structures due to its practicality and versatility in application, low weight, high tensile strength and corrosion resistance. Some construction companies use CFRP in flexural strengthening of reinforced concrete beams, but without anchor systems. Therefore, the aim of this study is analyze, through an experimental program, the structural behavior of reinforced concrete beams flexural strengthened by CFRP without anchor fibers, varying steel reinforcement and the amount of carbon fibers reinforcement layers. Thus, two groups of reinforced concrete beams were produced with the same geometric feature but with different steel reinforcement. Each group had five beams: one that is not reinforced with CFRP (reference and other reinforced with two, three, four and five layers of carbon fibers. Beams were designed using a computational routine developed in MAPLE software and subsequently tested in 4-point points flexural test up to collapse. Experimental tests have confirmed the effectiveness of the reinforcement, ratifying that beams collapse at higher loads and lower deformation as the amount of fibers in the reinforcing layers increased. However, the increase in the number of layers did not provide a significant increase in the performance of strengthened beams, indicating that it was not possible to take full advantage of strengthening applied due to the occurrence of premature failure mode in the strengthened beams for pullout of the cover that could have been avoided through the use of a suitable anchoring system for CFRP.

  15. Effect of mineral additives on structure and properties of concrete for pavements

    Science.gov (United States)

    Sobol, Khrystyna; Markiv, Taras; Hunyak, Oleksii

    2017-12-01

    Concrete pavements is an attractive alternative to asphalt pavements because of its lower cost and higher durability. Major contribution to sustainable development can be made by partial replacement of cement in concrete pavement with supplementary cementitious materials of different nature and origin. In this paper, the effect of natural zeolite and perlite additives in complex with chemical admixtures on the structure and properties of concrete for pavement was studied. Compressive and flexural strength test was used to study the mechanical behavior of designed concrete under load. Generally, the compressive strength of both control concrete and concrete containing mineral additives levels at the later ages of hardening. The microstructure analysis of concrete with mineral additives of different nature activity showed the formation of additional amount of hydration products such as tobermorite type calcium hydrosilicate which provide self-reinforcement of hardening concrete system.

  16. Flexural Strengthening of RC Slabs with Prestressed CFRP Strips Using Different Anchorage Systems

    Directory of Open Access Journals (Sweden)

    José Sena-Cruz

    2015-10-01

    Full Text Available Externally Bonded Reinforcement (EBR technique has been widely used for flexural strengthening of concrete structures by using carbon fiber-reinforced polymers (CFRP. EBR technique offers several structural advantages when the CFRP material is prestressed. This paper presents an experimental and numerical study on reinforced (RC slabs strengthened in flexure with prestressed CFRP strips as a structural strengthening system. The strips are applied as an externally bonded reinforcement (EBR and anchored with either a mechanical or a gradient anchorage. The former foresees metallic anchorage plates fixed to the concrete substrate, while the latter is based on an accelerated epoxy resin curing followed by a segment-wise prestress force decrease at the strip ends. Both anchorage systems, in combination with different CFRP strip geometries, were subjected to static loading tests. It could be demonstrated that the composite strip’s performance is better exploited when prestressing is used, with slightly higher overall load carrying capacities for mechanical anchorages than for the gradient anchorage. The performed investigations by means of a cross-section analysis supported the experimental observation that in case a mechanical anchorage is used, progressive strip debonding changes the fully bonded configuration to an unbonded end-anchored system. The inclusion of defined debonding criteria for both the anchorage zones and free length between the anchorage regions allowed to precisely capture the ultimate loading forces.

  17. Micromechanical analysis of polyacrylamide-modified concrete for improving strengths

    Energy Technology Data Exchange (ETDEWEB)

    Sun Zengzhi [School of Materials Science and Engineering, Chang' an University, Xi' an 710064 (China)], E-mail: zz-sun@126.com; Xu Qinwu [Pavement research, Transtec Group Inc., Austin 78731 (United States)], E-mail: qinwu_xu@yahoo.com

    2008-08-25

    This paper studies how polyacrylamide (PAM) alters the physicochemical and mechanical properties of concrete. The microstructure of PAM-modified concrete and the physicochemical reaction between PAM and concrete were studied through scanning electron microscope (SEM), differential thermal analysis (DTA), thermal gravimetric analysis (TGA), and infrared spectrum analysis. Meanwhile, the workability and strengths of cement paste and concrete were tested. PAM's modification mechanism was also discussed. Results indicate that PAM reacts with the Ca{sup 2+} and Al{sup 3+} cations produced by concrete hydration to form the ionic compounds and reduce the crystallization of Ca(OH){sub 2}, acting as a flexible filler and reinforcement in the porosity of concrete and, therefore, improving concrete's engineering properties. PAM also significantly alters the microstructure at the aggregate-cement interfacial transition zone. Mechanical testing results indicate that the fluidity of cement paste decreases initially, then increases, and decreases again with increasing PAM content. PAM can effectively improve the flexural strength, bonding strength, dynamic impact resistance, and fatigue life of concrete, though it reduces the compressive strength to some extent.

  18. Micromechanical analysis of polyacrylamide-modified concrete for improving strengths

    International Nuclear Information System (INIS)

    Sun Zengzhi; Xu Qinwu

    2008-01-01

    This paper studies how polyacrylamide (PAM) alters the physicochemical and mechanical properties of concrete. The microstructure of PAM-modified concrete and the physicochemical reaction between PAM and concrete were studied through scanning electron microscope (SEM), differential thermal analysis (DTA), thermal gravimetric analysis (TGA), and infrared spectrum analysis. Meanwhile, the workability and strengths of cement paste and concrete were tested. PAM's modification mechanism was also discussed. Results indicate that PAM reacts with the Ca 2+ and Al 3+ cations produced by concrete hydration to form the ionic compounds and reduce the crystallization of Ca(OH) 2 , acting as a flexible filler and reinforcement in the porosity of concrete and, therefore, improving concrete's engineering properties. PAM also significantly alters the microstructure at the aggregate-cement interfacial transition zone. Mechanical testing results indicate that the fluidity of cement paste decreases initially, then increases, and decreases again with increasing PAM content. PAM can effectively improve the flexural strength, bonding strength, dynamic impact resistance, and fatigue life of concrete, though it reduces the compressive strength to some extent

  19. Effect of shear span, concrete strength and strrup spacing on behavior of pre-stressed concrete beams

    International Nuclear Information System (INIS)

    Ahmad, S.; Bukhari, I.A.

    2007-01-01

    The shear strength of pre-stressed concrete beams is one of the most important factors to be considered in their design. The available data on shear behavior of pre-tensioned prestressed concrete beams is very limited. In this experimental study, pre-tensioned prestressed concrete I-beams are fabricated with normal and high- strength concretes, varying stirrup spacing and shear span-to-depth ratios. 1Wenty one I-beam specimens that are 300 mm deep and 3745-4960mm long are tested up to failure while deflections, cracking pattern, cracking and failure loads were recorded. The research results are compared with ACI 318-02 and Structure Analysis Program, Response 2000. It was observed that with the decrease in concrete strength, failure mode of prestressed concrete beams changes from flexure shear to web shear cracking for values of shear span-to-depth ratio less than 4.75. Increase in stirrup spacing decreased the effectiveness of stirrups in transmitting shear across crack as a result of which failure mode is changed to web shear cracking especially for beams with lower values of shear span-to-depth ratios. ACI code underestimates the shear carrying capacity of prestressed concrete beams with lower values of shear span- to-depth ratios. Response 2000 can be used more effectively in predicting shear behavior of normal strength prestressed concrete beams. (author)

  20. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    Science.gov (United States)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  1. Investigation on Failures of Composite Beam and Substrate Concrete due to Drying Shrinkage Property of Repair Materials

    Science.gov (United States)

    Pattnaik, Rashmi Ranjan

    2017-06-01

    A Finite Element Analysis (FEA) and an experimental study was conducted on composite beam of repair material and substrate concrete to investigate the failures of the composite beam due to drying shrinkage property of the repair materials. In FEA, the stress distribution in the composite beam due to two concentrate load and shrinkage of repair materials were investigated in addition to the deflected shape of the composite beam. The stress distributions and load deflection shapes of the finite element model were investigated to aid in analysis of the experimental findings. In the experimental findings, the mechanical properties such as compressive strength, split tensile strength, flexural strength, and load-deflection curves were studied in addition to slant shear bond strength, drying shrinkage and failure patterns of the composite beam specimens. Flexure test was conducted to simulate tensile stress at the interface between the repair material and substrate concrete. The results of FEA were used to analyze the experimental results. It was observed that the repair materials with low drying shrinkage are showing compatible failure in the flexure test of the composite beam and deform adequately in the load deflection curves. Also, the flexural strength of the composite beam with low drying shrinkage repair materials showed higher flexural strength as compared to the composite beams with higher drying shrinkage value of the repair materials even though the strength of those materials were more.

  2. Self-curing concrete with different self-curing agents

    Science.gov (United States)

    Gopala krishna sastry, K. V. S.; manoj kumar, Putturu

    2018-03-01

    Concrete is recognised as a versatile construction material globally. Properties of concrete depend upon, to a greater extent, the hydration of cement and microstructure of hydrated cement. Congenial atmosphere would aid the hydration of cement and hence curing of concrete becomes essential, till a major portion of the hydration process is completed. But in areas of water inadequacy and concreting works at considerable heights, curing is problematic. Self-Curing or Internal Curing technique overcomes these problems. It supplies redundant moisture, for more than sufficient hydration of cement and diminish self-desiccation. Self-Curing agents substantially help in the conservation of water in concrete, by bringing down the evaporation during the hydration of Concrete. The present study focuses on the impact of self-curing agents such as Poly Ethylene Glycol (PEG), Poly Vinyl Alcohol (PVA) and Super Absorbent Polymer (SAP) on the concrete mix of M25 grade (reference mix). The effect of these agents on strength properties of Concrete such as compressive strength, split tensile strength and flexural strength was observed on a comparative basis which revealed that PEG 4000 was the most effective among all the agents.

  3. Physical, mechanical and thermal properties of Crushed Sand Concrete containing Rubber Waste

    Directory of Open Access Journals (Sweden)

    Mohamed Guendouz

    2018-01-01

    Full Text Available Over the past twenty years, the rubber wastes are an important part of municipal solid waste. This work focuses on the recycling of rubber waste, specifically rubber waste of used shoes discharged into the nature and added in the mass of crushed sand concrete with percentage (10%, 20%, 30% and 40%. The physical (workability, fresh density, mechanical (compressive and flexural strength and thermal (thermal conductivity of different crushed sand concrete made are analyzed and compared to the respective controls. The use of rubber waste in crushed sand concrete contributes to reduce the bulk density and performance of sand concrete. Nevertheless, the use of rubber aggregate leads to a significant reduction in thermal conductivity, which improves the thermal insulation of crushed sand concrete.

  4. Self-compacting geopolymer concrete-a review

    Science.gov (United States)

    Ukesh Praveen, P.; Srinivasan, K.

    2017-11-01

    In this construction world, Geopolymer concrete is a special concrete which doesn’t requires the Ordinary Portland Cement and also reduces the emission of carbon-dioxide. The Geopolymer Concrete is made up of industrial by-products (which contains more Silica and Alumina) and activated with the help of Alkaline solution (combination of sodium hydroxide & sodium silicate or potassium hydroxide & potassium silicate). The high viscosity nature of Geopolymer Concrete had the ability to fail due to lack of compaction. In improvising the issue, Self Compacting Geopolymer Concrete has been introduced. The SCGC doesn’t require any additional compaction it will flow and compacted by its own weight. This concrete is made up of industrial by-products like Fly ash, GGBFS and Silica Fume and activated with alkaline solution. The earlier research was mostly on Fly ash based SCGC. In few research works Fly ash was partially replaced with GGBS and Silica Fume. They evaluated the compressive strength of concrete with varying molarities of NaOH; curing time and curing temperature. The flexural behaviour of the concrete also examined. The Fly ash based SCGC was got high compressive strength in heat curing as well as low compressive strength in ambient curing. The presence of GGBS improves the strength in ambient curing. For aiming the high strength in ambient curing Fly ash will be completely replace and examine with different mineral admixtures.

  5. Corrosion-induced bond strength degradation in reinforced concrete-Analytical and empirical models

    International Nuclear Information System (INIS)

    Bhargava, Kapilesh; Ghosh, A.K.; Mori, Yasuhiro; Ramanujam, S.

    2007-01-01

    The present paper aims to investigate the relationship between the bond strength and the reinforcement corrosion in reinforced concrete (RC). Analytical and empirical models are proposed for the bond strength of corroded reinforcing bars. Analytical model proposed by Cairns.and Abdullah [Cairns, J., Abdullah, R.B., 1996. Bond strength of black and epoxy-coated reinforcement-a theoretical approach. ACI Mater. J. 93 (4), 362-369] for splitting bond failure and later modified by Coronelli [Coronelli, D. 2002. Corrosion cracking and bond strength modeling for corroded bars in reinforced concrete. ACI Struct. J. 99 (3), 267-276] to consider the corroded bars, has been adopted. Estimation of the various parameters in the earlier analytical model has been proposed by the present authors. These parameters include corrosion pressure due to expansive action of corrosion products, modeling of tensile behaviour of cracked concrete and adhesion and friction coefficient between the corroded bar and cracked concrete. Simple empirical models are also proposed to evaluate the reduction in bond strength as a function of reinforcement corrosion in RC specimens. These empirical models are proposed by considering a wide range of published experimental investigations related to the bond degradation in RC specimens due to reinforcement corrosion. It has been found that the proposed analytical and empirical bond models are capable of providing the estimates of predicted bond strength of corroded reinforcement that are in reasonably good agreement with the experimentally observed values and with those of the other reported published data on analytical and empirical predictions. An attempt has also been made to evaluate the flexural strength of RC beams with corroded reinforcement failing in bond. It has also been found that the analytical predictions for the flexural strength of RC beams based on the proposed bond degradation models are in agreement with those of the experimentally

  6. Mechanical Properties of Steel Fiber Reinforced all Lightweight Aggregate Concrete

    Science.gov (United States)

    Yang, Y. M.; Li, J. Y.; Zhen, Y.; Nie, Y. N.; Dong, W. L.

    2018-05-01

    In order to study the basic mechanical properties and failure characteristics of all lightweight aggregate concrete with different volume of steel fiber (0%, 1%, 2%), shale ceramsite is used as light coarse aggregate. The shale sand is made of light fine aggregate and mixed with different volume of steel fiber, and the mix proportion design of all lightweight aggregate concrete is carried out. The cubic compressive strength, axial compressive strength, flexural strength, splitting strength and modulus of elasticity of steel fiber all lightweight aggregate concrete were studied. Test results show that the incorporation of steel fiber can restrict the cracking of concrete, improve crack resistance; at the same time, it shows good plastic deformation ability and failure morphology. It lays a theoretical foundation for further research on the application of all lightweight aggregate concrete in structural systems.

  7. Effect of mineral additives on structure and properties of concrete for pavements

    Directory of Open Access Journals (Sweden)

    Sobol Khrystyna

    2017-12-01

    Full Text Available Concrete pavements is an attractive alternative to asphalt pavements because of its lower cost and higher durability. Major contribution to sustainable development can be made by partial replacement of cement in concrete pavement with supplementary cementitious materials of different nature and origin. In this paper, the effect of natural zeolite and perlite additives in complex with chemical admixtures on the structure and properties of concrete for pavement was studied. Compressive and flexural strength test was used to study the mechanical behavior of designed concrete under load. Generally, the compressive strength of both control concrete and concrete containing mineral additives levels at the later ages of hardening. The microstructure analysis of concrete with mineral additives of different nature activity showed the formation of additional amount of hydration products such as tobermorite type calcium hydrosilicate which provide self-reinforcement of hardening concrete system.

  8. Effect of kenaf fiber in reinforced concrete slab

    Science.gov (United States)

    Syed Mohsin, S. M.; Baarimah, A. O.; Jokhio, G. A.

    2018-04-01

    The effect of kenaf fibers in reinforced concrete slab with different thickness is discusses and presented in this paper. Kenaf fiber is a type of natural fiber and is added in the reinforced concrete slab to improve the structure strength and ductility. For this study, three types of mixtures were prepared with fiber volume fraction of 0%, 1% and 2%, respectively. The design compressive strength considered was 20 MPa. Six cubes were prepared to be tested at 7th and 28th day. A total of six reinforced concrete slab with two variances of thickness were also prepared and tested under four-point bending test. The differences in the thickness is to study the potential of kenaf fiber to serve as part of shear reinforcement in reinforced concrete slab that was design to fail in shear. It was observed that, addition of kenaf fiber in reinforced concrete slab improves the flexural strength and ductility of the reinforced concrete slab. In the slab with reduction in thickness, the mode of failure change from brittle to ductile with the inclusion of kenaf fiber.

  9. Basalt Fiber for Volcanic Slag Lightweight Aggregate Concrete Research on the Impact of Performance

    Science.gov (United States)

    Xiao, Li-guang; Li, Gen-zhuang

    2018-03-01

    In order to study the effect of basalt fiber on the mechanical properties and durability of volcanic slag lightweight aggregate concrete, the experimental study on the flexural strength, compressive strength and freeze-thaw resistance of volcanic slag concrete with different basalt fiber content were carried out, the basalt fiber was surface treated with NaOH and water glass, the results show that the surface treatment of basalt fiber can significantly improve the mechanical properties, durability and other properties of volcanic slag lightweight aggregate concrete.

  10. Flexures for large stroke electrostatic actuation in MEMS

    International Nuclear Information System (INIS)

    Krijnen, B; Brouwer, D M

    2014-01-01

    The stroke of a microelectromechanical systems (MEMS) stage suspended by a flexure mechanism and actuated by electrostatic comb-drives is limited by pull-in. A method to analyze the electrostatic stability of a flexure mechanism and to optimize the stroke with respect to the footprint of flexure mechanisms is presented. Four flexure mechanisms for large stroke are investigated; the standard folded flexure, the slaved folded flexure, the tilted folded flexure and the Watt flexure. Given a certain stroke and load force, the flexures are optimized to have a minimum wafer footprint. From these optimizations it is concluded that the standard folded flexure mechanism is the best flexure mechanism for relatively small strokes (up to ±40 μm) and for larger strokes it is better to use the tilted folded flexure. Several optimized flexure mechanisms have been fabricated and experimentally tested to reach a stroke of ±100 μm. The displacement of the fabricated stages as a function of the actuation voltage could be predicted with 82% accuracy, limited by the fairly large tolerances of our fabrication process. (paper)

  11. Application of nanotechnology in self-compacting concrete design

    International Nuclear Information System (INIS)

    Maghsoudi, A. A.; Arabpour Dahooei, F.

    2009-01-01

    In this study, first, different mix design of four types of Self-Compacting Concrete, 1. Self-Compacting Concrete consisted of only nano silica, 2. Self-Compacting Concrete included only micro silica, 3. Self-Compacting Concrete consisted of both micro silica and nano silica and 4. Self-Compacting Concrete without micro silica and nano silica called as control mix, were casted and tested to find out the values of the Slump Flow, L-Box and 7 and 28 days compressive strength. Then, based on the results obtained and as yet there is no universally accepted standard for characterizing of Self-Compacting Concrete, the most suitable four concrete mixes were selected for further investigation of fresh and hardened concrete. For selected mixes, the fresh concrete properties such as values of the Slump Flow, L-Box, V-Funnel, J-Ring and hardened engineering properties such as compressive and flexural strength, shrinkage and swelling values were investigated for three curing conditions at short and long term. The results showed that the engineering properties of Self-Compacting Concrete mixes could not be improved by adding only nano silica. However, a satisfactory behavior can be achieved using micro silica in the Self-Compacting Concrete mixes. However, by adding both micro silica and nano silica to the Self-Compacting Concrete mixtures, the best effect on the engineering properties was reported while comparing to the control mixes.

  12. Behaviour of smart reinforced concrete beam with super elastic shape memory alloy subjected to monotonic loading

    Science.gov (United States)

    Hamid, Nubailah Abd; Ibrahim, Azmi; Adnan, Azlan; Ismail, Muhammad Hussain

    2018-05-01

    This paper discusses the superelastic behavior of shape memory alloy, NiTi when used as reinforcement in concrete beams. The ability of NiTi to recover and reduce permanent deformations of concrete beams was investigated. Small-scale concrete beams, with NiTi reinforcement were experimentally investigated under monotonic loads. The behaviour of simply supported reinforced concrete (RC) beams hybrid with NiTi rebars and the control beam subject to monotonic loads were experimentally investigated. This paper is to highlight the ability of the SMA bars to recover and reduce permanent deformations of concrete flexural members. The size of the control beam is 125 mm × 270 mm × 1000 mm with 3 numbers of 12 mm diameter bars as main reinforcement for compression and 3 numbers of 12 mm bars as tension or hanger bars while 6 mm diameter at 100 mm c/c used as shear reinforcement bars for control beam respectively. While, the minimal provision of 200mm using the 12.7mm of superelastic Shape Memory Alloys were employed to replace the steel rebar at the critical region of the beam. In conclusion, the contribution of the SMA bar in combination with high-strength steel to the conventional reinforcement showed that the SMA beam has exhibited an improve performance in term of better crack recovery and deformation. Therefore the usage of hybrid NiTi with the steel can substantially diminish the risk of the earthquake and also can reduce the associated cost aftermath.

  13. Mechanical Characterization of Lightweight Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Marcin Kozłowski

    2018-01-01

    Full Text Available Foamed concrete shows excellent physical characteristics such as low self weight, relatively high strength and superb thermal and acoustic insulation properties. It allows for minimal consumption of aggregate, and by replacement of a part of cement by fly ash, it contributes to the waste utilization principles. For many years, the application of foamed concrete has been limited to backfill of retaining walls, insulation of foundations and roof tiles sound insulation. However, during the last few years, foamed concrete has become a promising material for structural purposes. A series of tests was carried out to examine mechanical properties of foamed concrete mixes without fly ash and with fly ash content. In addition, the influence of 25 cycles of freezing and thawing on the compressive strength was investigated. The apparent density of hardened foamed concrete is strongly correlated with the foam content in the mix. An increase of the density of foamed concrete results in a decrease of flexural strength. For the same densities, the compressive strength obtained for mixes containing fly ash is approximately 20% lower in comparison to the specimens without fly ash. Specimens subjected to 25 freeze-thaw cycles show approximately 15% lower compressive strengths compared to the untreated specimens.

  14. Experimental Study on the Characteristics of Polymer Concrete With Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Maria Harja Ioniţă

    2008-01-01

    Full Text Available In the paper are presented the results of some experimental researches concerning polymer mortars and concretes realized of epoxy resin, silica fume and crushed aggregates. The mechanical characteristics of hardened concrete were determined. The silica fume content varied between 6.5% and 30% to polymer mortar and 6.4% and 9.6% to polymer concrete. The obtained results show maximum characteristics for a dosage of 24% resin and maximum dosage of silica fume to the polymer mortar, and for the polymer concrete the mechanical characteristics are influenced by all mixture factors: the compressive strength increases with the increase of silica fume dosage, and the flexure strength and split strength increase with the decreasing of silica fume dosage.

  15. Dynamic behavior of reinforced concrete beam subjected to impact load

    International Nuclear Information System (INIS)

    Ito, Chihiro; Ohnuma, Hiroshi; Sato, Koichi; Takano, Hiroshi

    1984-01-01

    The purpose of this report is to find out the impact behavior of reinforced concrete beams by means of experiment. The reinforced concrete is widely used for such an important structure as the building facilities of the nuclear power plant, and so the impact behavior of the reinforced concrete structures must be examined to estimate the resistance of concrete containment against impact load and to develope the reasonable and reliable design procedure. The impact test on reinforced concrete beam which is one of the most basic elements in the structure was conducted. Main results are summarized as follows. 1) Bending failure occured on static test. On the other hand, shear failure occured in the case of high impact velocity on impact test. 2) Penetration depth and residual deflection are approximately proportional to V 2 (V: velocity at impact). 3) Flexural wave propagates about at the speed of 2000 m/s. 4) The resistance of reinforced concrete beam against the impact load is fairly good. (author)

  16. Behavior of prestressed concrete subjected to low temperatures and cyclic loading

    International Nuclear Information System (INIS)

    Berner, D.E.

    1984-01-01

    Concrete has exhibited excellent behavior in cryogenic containment vessels for several decades under essentially static conditions. Tests were conducted to determine the response of prestressed lightweight concrete subjected to high-intensity cyclic loading and simultaneous cryogenic thermal shock, simulating the relatively dynamic conditions encountered offshore or in seismic areas. Lightweight concrete has several attractive properties for cryogenic service including: (1) very low permeability, (2) good strain capacity, (3) relatively low thermal conductivity, and (4) a low modulus of elasticity. Experimental results indicated that the mechanical properties of plain lightweight concrete significantly increase with moisture content at low temperatures, while cyclic loading fatigue effects are reduced at low temperatures. Also, tests on uniaxially and on biaxially prestressed lightweight concrete both indicate that the test specimens performed well under severe cyclic loading and cryogenic thermal shock with only moderate reduction in flexural stiffness. Supplementary tests conducted in this study indicate that conventionally reinforced concrete degrades significantly faster than prestressed concrete when subjected to cyclic loading and thermal shock

  17. Use of coal ash in production of concrete containing contaminated sand

    International Nuclear Information System (INIS)

    Ezeldin, A.S.

    1991-01-01

    There are between 2 to 3.5 million underground storage tanks located throughout the nation. Most of these tanks, which store oils and gasolines, are leaking making them one of the primary sources of soil contamination. Adding coal ash or cement to contaminated soil has been used to obtain stationary and inert wastecrete. By using this procedure, stabilization (limiting the solubility and mobility of the contaminants) and solidification (producing a solid waste block) of contaminated soils are successfully achieved. This paper investigates another re-use option of coal ash and contaminated soils. An experimental study evaluating the effectiveness of using coal ash with oil contaminated sand in concrete production is presented. A control mix made of clean sand was designed to yield 500 psi of compressive strength. Sand, artificially contaminated with 3% by weight of motor oil, was used as clean sand replacement. Six concrete mixtures were tested in compression and flexure. The six mixtures were obtained by increasing the ratio of contaminated sand to clean sand, namely; 10%, 20% and 40% and by introducing coal ash to the concrete mixture, namely; 20% of the cement weight. The test results indicate that the inclusion of oil contaminated sand in concrete reduces the compressive and flexural strengths. However, this decrease in strength is compensated by introducing coal ash in the mixture. Regaining that strength offers the possibility of using such concrete as a construction material in special structural applications. More research is required to establish better understanding of that composite and suggest feasible applications

  18. The characteristics of ultra-high performance concrete and cracking behavior of reinforced concrete tensile specimens

    Directory of Open Access Journals (Sweden)

    H.A. Rahdar

    2016-09-01

    Full Text Available The tensile behavior of concrete depends on some factors such as member dimensions, reinforcement ratio, diameter of rebar, strength and elasticity modulus of material. In this research the experimental method is used to examine the characteristics and the behavior of ultra-high performance concrete on the tensile behavior of concrete members reinforced by steel rebar. The results show that increasing the rebar cover on diameter rebar ratio (C/d increases the initial stiffening before the cracking stage in concrete. Also, by increasing of reinforcement ratio the cracking space decreased.

  19. Study on the causes and methods of influencing concrete deflection

    Science.gov (United States)

    Zhou, Ying; Zhou, Xiang; Tang, Jinyu

    2017-09-01

    Under the long-term effect of static load on reinforced concrete beam, the stiffness decreases and the deformation increases with time. Therefore, the calculation of deflection is more complicated. According to the domestic and foreign research results by experiment the flexural deflection of reinforced concrete, creep, age, the thickness of the protective layer, the relative slip, the combination of steel yielding factors of reinforced concrete deflection are summarized, analyzed the advantages and disadvantages of the traditional direct measurement of deflection, that by increasing the beam height, increasing the moment of inertia, ncrease prestressed reinforcement ratio, arching, reduce the load, and other measures to reduce the deflection of prestressed construction, improve the reliability of structure.

  20. Carbonation-Related Microstructural Changesin Long-Term Durability Concrete

    Directory of Open Access Journals (Sweden)

    Cláudio A. Rigo da Silva

    2002-09-01

    Full Text Available This paper discusses the effects of carbonation on the microstructure of Portland cement concrete for long-term durability applications. A class C40 concrete (characteristic compression strength between 40 MPa and 44 MPa on the 28th day, according to Brazilian standard NBR 8953 was chosen for the experimental study of the carbonation effects, from which test samples were molded for accelerated test under a 100%-CO2 atmosphere after physical and mechanical characterization. It was observed that carbonation provoked a reduction of 5% to 12% of the concrete open porosity accessible to water. Flexural strength values obtained after the carbonation tests revealed a decrease of 12% and 25% in relation to the values obtained before tests on the 28th and 91st days, respectively.

  1. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    Science.gov (United States)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  2. Durability of heavyweight concrete containing barite

    International Nuclear Information System (INIS)

    Binici, Hanifi

    2010-01-01

    The supplementary waste barite aggregates deposit in Osmaniye, southern Turkey, has been estimated at around 500 000 000 tons based on 2007 records. The aim of the present study is to investigate the durability of concrete incorporating waste barite as coarse and river sand (RS), granule blast furnace slag (GBFS), granule basaltic pumice (GBP) and ≤ 4 mm granule barite (B) as fine aggregates. The properties of the fresh concrete determined included the air content, slump, slump loss and setting time. They also included the compressive strength, flexural and splitting tensile strengths and Young's modulus of elasticity, resistance to abrasion and sulphate resistance of hardened concrete. Besides these, control mortars were prepared with crushed limestone aggregates. The influence of waste barite as coarse aggregates and RS, GBFS, GBP and B as fine aggregates on the durability of the concretes was evaluated. The mass attenuation coefficients were calculated at photon energies of 1 keV to 100 GeV using XCOM and the obtained results were compared with the measurements at 0.66 and 1.25 MeV. The results showed the possibility of using these waste barite aggregates in the production of heavy concretes. In several cases, some of these properties have been improved. Durability of the concrete made with these waste aggregates was improved. Thus, these materials should be preferably used as aggregates in heavyweight concrete production. (orig.)

  3. Intermediate Crack Induced Debonding in Concrete Beams Strengthened with CFRP Plates - An Experimental Study

    DEFF Research Database (Denmark)

    Rusinowski, Piotr Michal; Täljsten, Björn

    2009-01-01

    , ductility and even durability. Design of structural strengthening applications using externally bonded FRP composites is usually based on conventional design approaches with improvement to account for the presence and characteristics of the FRP material. Non-conventional design issues that are specific...... of the strengthening method. End-peeling has governed a large interest and several debonding models have been presented. However, interfacial peeling at flexural cracks has not attained the same focus – even though this debonding failure is most likely more common. This paper presents laboratory tests of concrete...... beams strengthened in flexure with CFRP epoxy bonded plates. Wrapping with CFRP sheets was applied in order to try to localize the failure initiation. Concrete cracking as well as debonding initiation and propagation was possible to observe with help of advanced optical measuring system and high speed...

  4. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  5. Numerical modeling of hybrid fiber-reinforced concrete (hyfrc)

    International Nuclear Information System (INIS)

    Hameed, R.; Turatsinze, A.

    2015-01-01

    A model for numerical simulation of mechanical response of concrete reinforced with slipping and non slipping metallic fibers in hybrid form is presented in this paper. Constitutive law used to model plain concrete behaviour is based on plasticity and damage theories, and is capable to determine localized crack opening in three dimensional (3-D) systems. Behaviour law used for slipping metallic fibers is formulated based on effective stress carried by these fibers after when concrete matrix is cracked. A continuous approach is proposed to model the effect of addition of non-slipping metallic fibers in plain concrete. This approach considers the constitutive law of concrete matrix with increased fracture energy in tension obtained experimentally in direct tension tests on Fiber Reinforced Concrete (FRC). To simulate the mechanical behaviour of hybrid fiber-reinforced concrete (HyFRC), proposed approaches to model non-slipping metallic fibers and constitutive law of plain concrete and slipping fibers are used simultaneously without any additive equation. All the parameters used by the proposed model have physical meanings and are determined through experiments or drawn from literature. The model was implemented in Finite Element (FE) Code CASTEM and tested on FRC prismatic notched specimens in flexure. Model prediction showed good agreement with experimental results. (author)

  6. Application of Ultra High Performance Fiber Reinforced Concrete – The Malaysia Perspective

    OpenAIRE

    Voo - Yen Lei; Behzad Nematollahi; Abu Bakar Mohamed Said; Balamurugan A Gopal; Tet Shun Yee

    2012-01-01

    One of the most significant breakthroughs in concrete technology at the end of the 20th century was the development of ultra-high performance fiber reinforced concrete (UHPFRC) with compressive strength and flexure strength beyond 160 MPa and 30 MPa, respectively; remarkable improvement in workability; durability resembled to natural rocks; ductility and toughness comparable to steel. While over the last two decades a tremendous amount of research works have been undertaken by academics and e...

  7. Behavior of bonded and unbonded prestressed normal and high strength concrete beams

    Directory of Open Access Journals (Sweden)

    O.F. Hussien

    2012-12-01

    This paper presents an experimental program conducted to study the behavior of bonded and unbounded prestressed normal strength (NSC and high strength concrete (HSC beams. The program consists of a total of nine beams; two specimens were reinforced with non-prestressed reinforcement, four specimens were reinforced with bonded tendons, and the remaining three specimens were reinforced with unbonded tendons. The overall dimensions of the beams are 160 × 340 × 4400-mm. The beams were tested under cyclic loading up to failure to examine its flexural behavior. The main variables in this experimental program are nominal concrete compressive strength (43, 72 and 97 MPa, bonded and unbonded tendons and prestressing index (0%, 70% and 100%. Theoretical analysis using rational approach was also carried out to predict the flexural behavior of the specimens. Evaluation of the analytical work is introduced and compared to the results of the experimental work.

  8. Seismic performance of interior precast concrete beam-column connections with T-section steel inserts under cyclic loading

    Science.gov (United States)

    Ketiyot, Rattapon; Hansapinyo, Chayanon

    2018-04-01

    An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core, under reversed cyclic loading. Six 2/3-scale interior beam-column subassemblies, one monolithic concrete specimen and five precast concrete specimens were tested. One precast specimen was a simple connection for a gravity load resistant design. Other precast specimens were developed with different attributes to improve their seismic performance. The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior. Failure of columns and joints could be prevented, and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends, close to the column faces. For the precast specimens, the splitting crack along the longitudinal lapped splice was a major failure. The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models. However, the dowel bars connected to the steel inserts were too short to develop a bond. The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.

  9. Application of a Reinforced Self-Compacting Concrete Jacket in Damaged Reinforced Concrete Beams under Monotonic and Repeated Loading

    Directory of Open Access Journals (Sweden)

    Constantin E. Chalioris

    2013-01-01

    Full Text Available This paper presents the findings of an experimental study on the application of a reinforced self-compacting concrete jacketing technique in damaged reinforced concrete beams. Test results of 12 specimens subjected to monotonic loading up to failure or under repeated loading steps prior to total failure are included. First, 6 beams were designed to be shear dominated, constructed by commonly used concrete, were initially tested, damaged, and failed in a brittle manner. Afterwards, the shear-damaged beams were retrofitted using a self-compacting concrete U-formed jacket that consisted of small diameter steel bars and U-formed stirrups in order to increase their shear resistance and potentially to alter their initially observed shear response to a more ductile one. The jacketed beams were retested under the same loading. Test results indicated that the application of reinforced self-compacting concrete jacketing in damaged reinforced concrete beams is a promising rehabilitation technique. All the jacketed beams showed enhanced overall structural response and 35% to 50% increased load bearing capacities. The ultimate shear load of the jacketed beams varied from 39.7 to 42.0 kN, whereas the capacity of the original beams was approximately 30% lower. Further, all the retrofitted specimens exhibited typical flexural response with high values of deflection ductility.

  10. Flexural eczema versus atopic dermatitis

    DEFF Research Database (Denmark)

    Jacob, Sharon E; Goldenberg, Alina; Nedorost, Susan

    2015-01-01

    Flexural eczema and atopic dermatitis are frequently synonymized. As respiratory atopy is rarely tested for and found in these patients, systematically equating a flexural distribution of dermatitis with atopic dermatitis may too frequently result in misclassified diagnoses and potentially missed...... opportunity for intervention toward improving patients' symptoms and quality of life. We present a critical review of the available evidence for the atopic dermatitis diagnosis and discuss the similarities between atopic dermatitis and allergic contact dermatitis. Because neither flexural predilection nor...... atopy is specific for atopic dermatitis, we conclude that the term atopic dermatitis is a misnomer and propose an etymologic reclassification of atopic dermatitis to "atopy-related" dermatitis. Allergic contact dermatitis can induce an atopic dermatitis-like phenotype, and thus, flexural dermatitis...

  11. Influence of Waste Brick Powder in the Mechanical Properties of Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Viviana Letelier

    2018-03-01

    Full Text Available Brick and concrete are the main materials contributing to demolition and construction waste. Considering this precedent, the effects of using both residuals in medium strength concretes are analyzed. Waste brick powder is used as a cement replacement in three different levels: 5%, 10%, and 15%, and it is tested in concretes with no recycled aggregates and concretes with 30% of recycled coarse aggregates replacing natural ones. The compressive strength, the flexural strength, and modulus of elasticity are calculated and compared to a control concrete with no brick powder and no recycled aggregates. The effects of the simultaneous use of both residuals on the physical properties of the recycled concrete are highlighted. Results show that 15% of cement can be replaced by waste brick powder together with 30% of recycled aggregates without suffering significant losses in the strength of the final material when compared to a control concrete.

  12. Effect of unground oil palm ash as mixing ingredient towards properties of concrete

    Science.gov (United States)

    Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.

    2018-04-01

    Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.

  13. Mechanical properties of lightweight aerated concrete with different aluminium powder content

    Directory of Open Access Journals (Sweden)

    Shabbar Rana

    2017-01-01

    Full Text Available Aerated concrete is produced by introducing gas into a concrete, the amount dependent upon the requirements for strength. One method to achieve this is by using powdered aluminium which reacts with the calcium hydroxide produced upon hydration of the cement. The aim of the current study was to investigate the influence of the powder content on the mechanical properties of aerated concrete namely; compressive and flexural strengths, modulus of elasticity, density and porosity. The results indicated that an increase in aluminium content caused a decrease in the compressive and tensile strengths. It also produced a decrease in the modulus of elasticity. When the aluminium content increased, the density decreased and the porosity increased.

  14. Ultimate stress increase in unbonded tendons in post-tensioned indeterminate I-beams cast with high strength normal and self compacting concrete

    Directory of Open Access Journals (Sweden)

    Yousef Askari Dolatabad

    2018-06-01

    Full Text Available The use of un-bonded tendons is prevalent in post-tensioned concrete structures. Equations for prediction of stress in un-bonded tendons of post-tensioned normal (vibrating concrete flexural members have been given in various codes. They are based on experience and don’t account all of important parameters such as concrete strength (normal and high strength and its type (vibrating and non-vibrating concrete. Since self-compacting concrete (SCC is nearly a new innovation therefore, understanding the implementation of this type of non-vibrating concrete on the ultimate unbonded tendon stress is critical. For this aim, in this paper there are presented experimental results of six continuous un-bonded post-tensioned I-beams in two groups were casted and monitored by different electrical strain gauges. In the first tested group, the beams (UPN1-12, UPN1-18, UPN1-22 were consisting of high strength normal concrete (HSNC where as in the second group (UPS1-12, UPS1-18, UPS1-22 high strength self-compacting concrete (HSSCC were tested. The variables included the type of concrete and percentage of bounded non-prestressed steel. Experimental monitored results of ultimate stress increase in unbonded tendons are compared with predicted equations of different researchers and standards. It was found that, the proposed equation is in better agreement with the test results. The results of standard error of estimate Sy/x, indicates that for two types of HSCs, the ACI 318-2011 provides better estimates than AASHTO-2010 model whereas this model provides better estimates than BS 8110-97. Keywords: Post-tensioned, Unbonded tendons, Stress increase, High strength normal and self-compacting concrete, Continuous beams

  15. A Review of the Mechanical Properties of Concrete Containing Biofillers

    Science.gov (United States)

    Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Khalid, Nur Hafizah A.

    2016-11-01

    Sustainable construction is a rapidly increasing research area. Investigators of all backgrounds are using industrial and agro wastes to replace Portland cement in concrete to reduce greenhouse emissions and the corresponding decline in general health. Many types of wastes have been used as cement replacements in concrete including: fly ash, slag and rice husk ash in addition to others. This study investigates the possibility of producing a sustainable approach to construction through the partial replacement of concrete using biofillers. This will be achieved by studying the physical and mechanical properties of two widely available biological wastes in Malaysia; eggshell and palm oil fuel ash (POFA). The mechanical properties tests that were studied and compared are the compression, tensile and flexural tests.

  16. Study on reinforced concrete beams with helical transverse reinforcement

    Science.gov (United States)

    Kaarthik Krishna, N.; Sandeep, S.; Mini, K. M.

    2018-02-01

    In a Reinforced Concrete (R.C) structure, major reinforcement is used for taking up tensile stresses acting on the structure due to applied loading. The present paper reports the behavior of reinforced concrete beams with helical reinforcement (transverse reinforcement) subjected to monotonous loading by 3-point flexure test. The results were compared with identically similar reinforced concrete beams with rectangular stirrups. During the test crack evolution, load carrying capacity and deflection of the beams were monitored, analyzed and compared. Test results indicate that the use of helical reinforcement provides enhanced load carrying capacity and a lower deflection proving to be more ductile, clearly indicating the advantage in carrying horizontal loads. An analysis was also carried out using ANSYS software in order to compare the test results of both the beams.

  17. Tensile strength and durability characteristics of high-performance fiber reinforced concrete

    International Nuclear Information System (INIS)

    Ramadoss, P.; Nagamani, K.

    2008-01-01

    This paper presents investigations towards developing a better understanding of the contribution of steel fibers to the tensile strength of high-performance fiber reinforced concrete (HPFRC). For 32 series of mixes, flexural and splitting tensile strengths were determined at 28 days. The variables investigated were fiber volume fraction (0%, 0.5%, 1% and 1.5% with an aspect of 80), silica fume replacement level (SF/CM=0.05 and 0.10) and matrix composition (w/cm ratios ranging from 0.25 t 0.40). The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Comparative studies were performed on the tensile behavior of SFRC measured by two different loading tests: flexural test and splitting test. Based on the test results, using the least square method, empirical expressions were developed to predict 28-day tensile strength of HPFRC in terms of fiber reinforcing index. Durability tests were carried out to examine the performance of the SFRC. Relationship between flexural and splitting tensile strengths has been developed using regression analysis. The experimental values of previous researchers were compared with the values predicted by the empirical equations and the absolute variation obtained was within 6% and 5% for flexural and splitting tensile strengths respectively. (author)

  18. Behavior of Plain Concrete of a High Water-Cement Ratio after Freeze-Thaw Cycles

    OpenAIRE

    Shang, Huai-Shuai; Yi, Ting-Hua; Song, Yu-Pu

    2012-01-01

    An experimental study of plain concrete specimens of water-cement ratio 0.55, subjected to 0, 15, 25, 40, 50 and 75 cycles of freeze-thaw was completed. The dynamic modulus of elasticity (DME), weight loss, compressive strength, tensile strength, flexural strength, cleavage strength and stress-strain relationships of plain concrete specimens suffering from freeze-thaw cycles were measured. The experimental results showed that the strength decreased as the freeze-thaw cycles were repeated. A c...

  19. The Mechanical Properties of Foamed Concrete containing Un-processed Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Awang H.

    2014-01-01

    Full Text Available For many years, supplementary cementation materials have been utilized as cement or filler replacements to heighten the properties of concrete. The objective of this paper is to demonstrate the effects of un-processed blast furnace slag (RS on the compressive, splitting tensile and flexural strengths of foam concrete over periods of 7, 14 and 28 days. The introduction of slag to the cement begins at 30% and rises to 70% of the total content. Six mixes, which include the control mix with a similar mix ratio (1:2:0.45 and a dry density of 1300 kg/m3 is generated. Taking into consideration, from the total weight of the cementation material, 1% of super- plasticizer (PS-1 is added to the mixes with slag content. Test results revealed that the most favourable (optimum replacement level of un-processed slag in foam concrete is 30%. This represents a commercial advantage as the cement requirement is reduced from 414 Kg/m3 to 290 Kg/m3. On the 28th day, the optimum mix showed higher values than the control mix by 32% for compressive strength, 46.5% for splitting tensile strength and 61% for flexural strength.

  20. Utilisation of Oil Palm Ash in Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Awang H.

    2014-01-01

    Full Text Available This study is a part of an on-going research examining the properties of foam concrete when replacing the cement with semi-processed Oil Palm Ash (OPA. Replacements range from 25% to 65% were used for a mix having the mix ratio of (1:2:0.45 and having the target density of 1300kg/m3. All mixes were tested for their strength using the compressive, splitting tensile and flexural strengths up to the age of 28 days. Results show that a 25% replacement level exhibited higher compressive and splitting tensile strength than that of the control mix at the age of 28 days. However, the same replacement level exhibited a close strength to that of the control mix when tested for the flexural strength at the same age.

  1. EFFECT OF SEA WATER ON THE STRENGTH OF POROUS CONCRETE CONTAINING PORTLAND COMPOSITE CEMENT AND MICROFILAMENT POLYPROPYLENE FIBER

    OpenAIRE

    TJARONGE, M.W

    2011-01-01

    The aim of this research is to study the influence of sea water on the strength of porous concrete containing Portland Composite cement and micro monofilament polypropylene fibre. The specimens of porous concrete were immersed in the sea water up to 28 days. The compressive strength test and flexural strength test were carried out at 3, 7 and 28 days in order to investigate the strength development. The test result indicated that the strength of porous concrete can develop in t...

  2. The Effects of Substitution of The Natural Sand by Steel Slag in The Properties of Eco-Friendly Concrete with The 1:2:3 Ratio Mixing Method

    Science.gov (United States)

    Rahmawati, A.; Saputro, I. N.

    2018-03-01

    This study was motivated by the need for the development of eco-friendly concrete, and the use of large quantities of steel slag as an industrial waste which is generated from the steel manufacturers. This eco-friendly concrete was developed with steel slag as a substitute for natural sand. Properties of concrete which used waste slag as the fine aggregate with the 1 cement: 2 sand : 3 coarse aggregate ratio mixing method were examined. That ratio was in volume. Then a part of natural sand replaced with steel slag sand in six variations percentages that were 0 %, 20 %, 40 %, 60 %, 80 % and 100 %. The compressive strength, tensile strength, and flexural strength of concrete specimens were determined after curing for 28 days. The research results demonstrate that waste steel slag can increase the performance of concrete. The optimal percentage substitution natural sand by steel slag sand reached of slag on the percentage of 20 % which reached strength ratios of steel slag concrete to the strength of conventional concrete with natural sandstone were 1.37 for compressive strength and 1.13 for flexural strength. While the tensile strength reached a higher ratio of concrete with steel slag sand to the concrete with natural sand on the 80% substitution of natural sand with steel slag sand.

  3. Estimation of fracture energy of plain and reinforced concrete members

    International Nuclear Information System (INIS)

    Singh, Rajesh K.; Singh, R.K.; Kant, T.

    2012-01-01

    Modeling the complex behaviour of Reinforced concrete (RC), which is both non-homogenous and anisotropic, is a difficult task in finite element analysis of civil engineering structures. The application of fracture mechanics to plain and reinforced concrete has opened up a new field for modelling of phenomena that have often been treated empirically in the past. Cohesive crack model proposed by Hillerborg and crack band model Bazant et al with localization limiters are frequently used to study of tension failure of concrete. (author)

  4. Predicting camber, deflection, and prestress losses in prestressed concrete members.

    Science.gov (United States)

    2011-07-01

    Accurate predictions of camber and prestress losses for prestressed concrete bridge girders are essential to minimizing the frequency and cost of construction problems. The time-dependent nature of prestress losses, variable concrete properties, and ...

  5. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates.

    Science.gov (United States)

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

  6. Effect of textile waste on the mechanical properties of polymer concrete

    Directory of Open Access Journals (Sweden)

    João Marciano Laredo dos Reis

    2009-03-01

    Full Text Available The mechanical behavior of polymer concrete reinforced with textile trimming waste was investigated. Two series of polymer concrete formulations were studied, with different resin/sand (i.e. binder/fine aggregate weight ratios. In each series, recycled textile chopped fibers at 1 and 2% of the total weight was used. Flexural and compressive tests were performed at room temperature and load vs. displacement curves were plotted up to failure. In the study, both the influence of fiber content and resin/sand weight ratio were considered relative to the behavior of polymer concrete reinforced with textile fibers. A decrease in properties was observed as function of textile fibers content. When specific properties were considered, this tendency was kept. However, higher textile fibers content lead to a smoother failure, unlike brittleness failure behavior of unreinforced polymer concrete.

  7. Strengthening Reinforced Concrete Beams with CFRP and GFRP

    Directory of Open Access Journals (Sweden)

    Mehmet Mustafa Önal

    2014-01-01

    Full Text Available Concrete beams were strengthened by wrapping the shear edges of the beams twice at 45° in opposite directions by either carbon fiber reinforced polymer (CFRP or glass fiber reinforced polymer (GFRP. The study included 3 CFRP wrapped beams, 3 GFRP wrapped beams, and 3 control beams, all of which were 150 × 250 × 2200 mm and manufactured with C20 concrete and S420a structural steel at the Gazi University Technical Education Faculty labs, Turkey. Samples in molds were cured by watering in the open air for 21 days. Four-point bending tests were made on the beam test specimens and the data were collected. Data were evaluated in terms of load displacement, bearing strength, ductility, and energy consumption. In the CFRP and GFRP reinforced beams, compared to controls, 38% and 42%, respectively, strength increase was observed. In all beams, failure-flexural stress occurred in the center as expected. Most cracking was observed in the flexural region 4. A comparison of CFRP and GFRP materials reveals that GFRP enforced parts absorb more energy. Both materials yielded successful results. Thicker epoxy application in both CFRP and GFRP beams was considered to be effective in preventing break-ups.

  8. Effect of Chopped Basalt Fibers on the Mechanical Properties and Microstructure of High Performance Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Tehmina Ayub

    2014-01-01

    Full Text Available This paper presents the mechanical properties and the microstructure of the high performance fiber reinforced concrete (HPFRC containing up to 3% volume fraction of chopped Basalt fibers. Three types of the concrete were prepared, out of which, the first type was prepared by utilizing 100% cement content. The other two types of the concrete were prepared by replacing 10% cement content with silica fume and the locally produced metakaolin. Using each concrete type, four mixes were prepared in which Basalt fibers were added in the range of 0–3%; that is, total twelve mixes of the HPFRC concrete were prepared. From each of the twelve concrete mixes, total twelve specimens were cast to determine the mechanical properties of the HPFRC including compressive strength (cube and cylinder, splitting tensile strength, and the flexural strength. In this way, a total of 108 specimens were cast and tested in this study. Test results showed that the addition of the Basalt fibers significantly increased the tensile splitting strength and the flexural strength of the HPFRC, while there was slight improvement in the compressive strength with the addition of Basalt fibers. The microstructure of HPFRC was examined to determine the interfacial transition zone (ITZ between the aggregates and the paste by using field emission scanning electron microscope (FESEM, which showed the improvement of the ITZ due to the addition of the Basalt fibers.

  9. Improved concrete properties to resist the saline water using environmental by-product

    Directory of Open Access Journals (Sweden)

    Mohamed Anwar

    2013-10-01

    Full Text Available This paper investigates the influence of using environmental by-product materials (silica fume and fly ash in concrete on the chloride ion permeability of concrete. Nine concrete mixtures were designed to have the same degree of workability and air content with water/cementitious material ratio of 0.4. The studied parameters include the main fresh and hardened concrete properties such as slump, air content, unit weight, compressive strength, tensile strength, flexural strength, static Young's modulus, and dynamic elastic modulus. Concrete samples were kept in water for 28 days, then immersed in artificial sea water for 5 months. The total and soluble chloride contents were measured through the concrete using the potentiometric titration analysis. The obtained test results indicated that the use of ternary systems in concrete improved the different characteristics of the product concrete and showed a significant resistance to chloride penetration. The weights of chloride in mix 9 (10% silica fume and 25% fly ash at depths from the concrete surface to 30 mm were less than the weights of control mix 1 (100% ordinary Portland cement by about 60%. Further, the ternary systems can be used in concrete industry with considerable proportions.

  10. Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete

    Science.gov (United States)

    Yildizel, S. A.; Timur, O.; Ozturk, A. U.

    2018-05-01

    The potential use of waste glass fibers in roller-compacted concrete (RCC) was investigated with the aim to improve its performance and reduce environmental effects. The research was focused on the abrasion resistance and compressive and flexural strengths of the reinforced concrete relative to those of reference mixes without fibers. The freeze-thaw resistance of RCC mixes was also examined. It was found that the use of waste glass fibers at a rate of 2 % increased the abrasion resistance of the RCC mixes considerably.

  11. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.

    Science.gov (United States)

    Collivignarelli, Carlo; Sorlini, Sabrina

    2002-01-01

    This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete.

  12. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    Science.gov (United States)

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  13. Flexural eczema versus atopic dermatitis.

    Science.gov (United States)

    Jacob, Sharon E; Goldenberg, Alina; Nedorost, Susan; Thyssen, Jacob P; Fonacier, Luz; Spiewak, Radoslaw

    2015-01-01

    Flexural eczema and atopic dermatitis are frequently synonymized. As respiratory atopy is rarely tested for and found in these patients, systematically equating a flexural distribution of dermatitis with atopic dermatitis may too frequently result in misclassified diagnoses and potentially missed opportunity for intervention toward improving patients' symptoms and quality of life. We present a critical review of the available evidence for the atopic dermatitis diagnosis and discuss the similarities between atopic dermatitis and allergic contact dermatitis. Because neither flexural predilection nor atopy is specific for atopic dermatitis, we conclude that the term atopic dermatitis is a misnomer and propose an etymologic reclassification of atopic dermatitis to "atopy-related" dermatitis. Allergic contact dermatitis can induce an atopic dermatitis-like phenotype, and thus, flexural dermatitis cannot be assumed as atopic without further testing. Patch testing should at least be considered in cases of chronic or recurrent eczema regardless of the working diagnosis.

  14. Experimental Study for Structural Behaviour of Precast Lightweight Panel (PLP) Under Flexural Load

    Science.gov (United States)

    Goh, W. I.; Mohamad, N.; Tay, Y. L.; Rahim, N. H. A.; Jhatial, A. A.; Samad, A. A. A.; Abdullah, R.

    2017-06-01

    Precast lightweight concrete slab is first fabricated in workshop or industrial before construction and then transported to site and installed by skilled labour. It can reduce construction time by minimizing user delay and time for cast-in-situ to increase workability and efficiency. is environmental friendly and helps in resource reduction. Although the foamed concrete has low compressive strength compared to normal weight concrete but it has excellent thermal insulation and sound absorption. It is environmental friendly and helps in resource reduction. To determine the material properties of foamed concrete, nine cubes and six cylindrical specimens were fabricated and the results were recorded. In this study, structural behaviour of precast lightweight panel (PLP) with dry density of 1800 kg/m3 was tested under flexural load. The results were recorded and analysed in terms of ultimate load, crack pattern, load-deflection profiles and strain distribution. Linear Voltage Displacement Transducers (LVDT) and strain gauges were used to determine the deflection and strain distribution of PLP. The theoretical and experimental ultimate load of PLP was analysed and recorded to be 70 and 62 kN respectively, having a difference of 12.9%. Based on the results, it can be observed that PLP can resist the adequate loading. Thus, it can be used in precast industry for construction purposes.

  15. Mechanical and Physical Performance of Concrete Including Waste Electrical Cable Rubber

    Science.gov (United States)

    Taner Yildirim, Salih; Pelin Duygun, Nur

    2017-10-01

    Solid wastes are important environmental problem all over the World. Consumption of the plastic solid waste covers big portion within the total solid waste. Although a numerous plastic material is subjected to the recycling process, it is not easy to be destroyed by nature. One of the recommended way to prevent is to utilize as an aggregate in cement-based material. There are many researches on use of recycling rubber in concrete. However, studies on recycling of waste electrical cable rubber (WECR) in concrete is insufficient although there are many research on waste tyre rubbers in concrete. In this study, fine aggregate was replaced with WECR which were 5%, 10%, and 15 % of the total aggregate volume in the concrete and researched workability, unit weight, water absorption, compressive strength, flexural strength, ultrasonic pulse velocity, modulus of elasticity, and abrasion resistance of concrete. As a result of experimental studies, increase of WECR amount in concrete increases workability due to lack of adherence between cement paste and WECR, and hydrophobic structure of WECR while it influences negatively mechanical properties of concrete. It is possible to use WECR in concrete taking into account the reduction in mechanical properties.

  16. Porous concrete mixtures for pervious urban pavements

    Directory of Open Access Journals (Sweden)

    Castro, J.

    2007-08-01

    Full Text Available The present study aimed to analyze the hydraulic and mechanical behaviour of a series of roller-compacted, laboratory porous concrete mixtures. The mix design variables examined were the actual void ratio in the hardened concrete and the water/cement ratio. From these results the better dosages from the mechanical and hydraulical behaviour point of view were determined. One of the designs developed was found to exhibit excellent hydraulic capacity and 20% greater strength than the mixtures recommended in the literature. Moreover, concrete with an actual void ratio of only 14% was observed to meet permeability requirements. Maximum flexural strength of concretes with different w/c ratios was achieved with a cement paste content of 250 l/m3. Relationships were found between the void ratio and both 28-day concrete permeability and flexural strength. Finally, the doses exhibiting the best mechanical and hydraulic performance were identified.El trabajo realizado en este estudio consistió en analizar el comportamiento de diferentes dosificaciones de mezclas de hormigón poroso, fabricadas en laboratorio y compactadas con rodillo pesado para simular las condiciones de terreno. Las variables consideradas para el diseño de las mezclas fueron el porcentaje real de huecos en el hormigón endurecido y la razón agua/cemento. A partir de estos resultados se determinaron las dosificaciones que presentan mejor comportamiento desde el punto de vista mecánico e hidráulico. Los resultados muestran que existe una dosificación de hormigón poroso, distinta a las encontradas actualmente en la literatura internacional, que permite obtener resistencias hasta 20% más altas, manteniendo todavía una excelente capacidad hidráulica. Se determinó que una permeabilidad suficiente se puede obtener con un porcentaje real de huecos de 14%, y que agregar pasta de cemento en una proporción de 250 l/m3 permite maximizar la resistencia a flexotracción de hormigones que

  17. Retempering of Concrete made by using Manufactured Sand

    Science.gov (United States)

    Pethkar, A. R.; Deshmukh, G.

    2014-06-01

    Retempering is defined as, " Addition of water and remixing of concrete or mortar which has lost enough workability to become unplaceable". Retempering inevitably results in some loss of strength compared with the original concrete [1]. Adding water to a plastic mix to increase slump is an extremely common practice, even though it is not recommended because it increases the porosity of concrete. Concrete often arrives on site more than half an hour after initial mixing. Placement operations can take anywhere from 10 to 60 min, depending on the field conditions and the size of the load. When the slump decreases to an unacceptable level during the operations, water is added to the mix [1]. In this work, an attempt is made to study the strength characteristics of retempered concrete made by using manufactured sand. Usually the retempering process is there with normal and ready mixed concrete; hence an attempt is made to check the compressive and flexural strength of normal retempered concrete with an addition of retarder 0.2, 0.4 and 0.6 % at retempering time from 15 to 90 min. There is scarcity of natural sand due to various factors, which is replaced by the manufactured sand. The concept of manufactured sand is nothing but breaking stone into smaller and smaller particles in such way that the gradation of particle will match with zone-II of I.S.

  18. Strain Capacity of Reinforced Concrete Members Subjected to Uniaxial Tension

    DEFF Research Database (Denmark)

    Hagsten, Lars German; Rasmussen, Annette Beedholm; Fisker, Jakob

    2017-01-01

    The aim of this paper is to set up a method to determine the strain capacity of tension bars of reinforced concrete (RC) subjected to pure tension. Due to the interaction between reinforcement and concrete and due to the presence of cracks, the stresses in both reinforcement and concrete...... are varying along the length of the tension bar. The strain capacity of the tension bar is seen as the average strain in the reinforcement at the load level corresponding to the ultimate stress capacity of the reinforcement at the cracks. The result of the approach is in overall good agreement when comparing...

  19. Glass Fiber Reinforced Polymer (GFRP Bars for Enhancing the Flexural Performance of RC Beams Using Side-NSM Technique

    Directory of Open Access Journals (Sweden)

    Md. Akter Hosen

    2017-05-01

    Full Text Available Reinforced concrete (RC structures require strengthening for numerous factors, such as increased load, modification of the structural systems, structural upgrade or errors in the design and construction stages. The side near-surface mounted (SNSM strengthening technique with glass fiber-reinforced polymer (GFRP bars is a relatively new emerging technique for enhancing the flexural capacities of existing RC elements. Nine RC rectangular beams were flexurally strengthened with this technique and tested under four-point bending loads until failure. The main goal of this study is to optimize the structural capacity of the RC beams by varying the amount of strengthening reinforcement and bond length. The experimental test results showed that strengthening with SNSM GFRP bars significantly enhanced the flexural responses of the specimens compared with the control specimen. The first cracking and ultimate loads, energy absorption capacities, ductility and stiffness were remarkably enhanced by the SNSM technique. It was also confirmed that the bond length of the strengthened reinforcement greatly influences the energy absorption capacities, ductility and stiffness. The effect of the bond length on these properties is more significant compared to the amount of strengthening reinforcement.

  20. An experimental investigation on mechanical behaviour of eco - friendly concrete

    Science.gov (United States)

    Narender Reddy, A.; Meena, T.

    2017-11-01

    Fly ash (FA) and Alccofine are the eco-friendly materials that can be used in the production of concrete composites. Initially, concrete mixes of M30 grade with replacement of cement by 0%, 5%, 10%, 15%, 20% and 25% by weight of Fly ash were prepared. They were subjected to compression test so as to select the optimum replacement percentage of FA. Keeping this optimum percentage of FA as constant, additional replacement of cement with Alccofine was done varying its replacement in the range of 8%, 10%, 12% and 14%. The mechanical properties such as compressive, split tensile and flexural strengths of these mixes were computed for 7, 14 and 28 days. The results of Eco-Friendly Concrete (EFC) are compared with those of control concrete. It was observed that EFC mixes exhibited superior qualities like quick setting and enhanced workability, their mechanical properties were found to be higher than that of the conventional concrete. This goes to prove that the combination of FA and Alccofine together as replacement for cement would enhance the properties of EFC.

  1. Influence of surface modified basalt fiber on strength of cinder lightweight aggregate concrete

    Science.gov (United States)

    Xiao, Liguang; Li, Jiheng; Liu, Qingshun

    2017-12-01

    In order to improve the bonding and bridging effect between volcanic slag lightweight aggregate concrete cement and basalt fiber, The basalt fiber was subjected to etching and roughening treatment by NaOH solution, and the surface of the basalt fiber was treated with a mixture of sodium silicate and micro-silica powder. The influence of modified basalt fiber on the strength of volcanic slag lightweight aggregate concrete was systematically studied. The experimental results show that the modified basalt fiber volcanic slag lightweight aggregate concrete has a flexural strength increased by 47%, the compressive strength is improved by 16% and the toughness is increased by 27% compared with that of the non-fiber.

  2. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates

    Science.gov (United States)

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B.

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA. PMID:26161440

  3. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates

    Directory of Open Access Journals (Sweden)

    Gideon Siringi

    2015-01-01

    Full Text Available Tire derived aggregate (TDA has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

  4. Engineering properties of inorganic polymer concretes (IPCs)

    International Nuclear Information System (INIS)

    Sofi, M.; Deventer, J.S.J. van; Mendis, P.A.; Lukey, G.C.

    2007-01-01

    This paper presents the engineering properties of inorganic polymer concretes (IPCs) with a compressive strength of 50 MPa. The study includes a determination of the modulus of elasticity, Poisson's ratio, compressive strength, and the splitting tensile strength and flexural strength of IPCs, formulated using three different sources of Class-F fly ash. Six IPC mix designs were adopted to evaluate the effects of the inclusion of coarse aggregates and granulated blast furnace slag into the mixes. A total of 90 cylindrical and 24 small beam specimens were investigated, and all tests were carried out pursuant to the relevant Australian Standards. Although some variability between the mixes was observed, the results show that, in most cases, the engineering properties of IPCs compare favorably to those predicted by the relevant Australian Standards for concrete mixtures

  5. Flexural behavior of concrete beam with mechanical splices of reinforcement subjected to cyclic loading

    International Nuclear Information System (INIS)

    Nab, H. S.; Kim, W. B.

    2008-01-01

    In nuclear power plant structures, the mechanical rebar splices are designated and constructed on the basis of ACI and ASME code. Regardless of good performance on mechanical rebar splices, these splicing methods that did not be registered on ASME code have not restricted to apply to construction site. In this study, the main candidate splice is cold roll formed parallel threaded splice. This was registered newly in ASME Section III division 2 CC 4333 'Mechanical Splices' in 2004. To compare the traditional rebar splice with mechanical rebar splices, concrete beams were made to evaluate the ductility of spliced reinforcing bars. Based on Experimental results, it was identified that the mechanical rebar splices by parallel threaded coupler had better accumulated dissipation energy capacity to resist seismic behavior than the traditional lapping splices. It showed that concrete specimens with D36 reinforcing bar coupler are 1.8 times better performance and that concrete specimens with D22 reinforcing bar coupler are 2.8 times better performance. (authors)

  6. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    Directory of Open Access Journals (Sweden)

    Muhammad Fadhil Nuruddin

    2014-01-01

    Full Text Available The mechanical properties of high-strength ductile concrete (HSDC have been investigated using Metakaolin (MK as the cement replacing material and PVA fibers. Total twenty-seven (27 mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  7. Determination of the dynamic elastic constants of recycled aggregate concrete

    Science.gov (United States)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    Nowadays, construction and demolition waste constitutes a major portion of the total solid waste production in the world. Due to both environmental and economical reasons, an increasing interest concerning the use of recycled aggregate to replace aggregate from natural sources is generated. This paper presents an investigation on the properties of recycled aggregate concrete. Concrete mixes are prepared using recycled aggregates at a substitution level between 0 and 100% of the total coarse aggregate. The influence of this replacement on strengthened concrete's properties is being investigated. The properties estimated are: density and dynamic modulus of elasticity at the age of both 7 and 28 days. Also, flexural strength of 28 days specimens is estimated. The determination of the dynamic elastic modulus was made using the ultrasonic pulse velocity method. The results reveal that the existence of recycled aggregates affects the properties of concrete negatively; however, in low levels of substitution the influence of using recycled aggregates is almost negligible. Concluding, the controlled use of recycled aggregates in concrete production may help solve a vital environmental issue apart from being a solution to the problem of inadequate concrete aggregates.

  8. Investigation of reinforced concrete beams in serviceability limit state

    DEFF Research Database (Denmark)

    Rasmussen, Annette Beedholm; Hagsten, Lars German

    2016-01-01

    This paper investigates how cracking influence the stiffness of flexural members. Stress levels and crack development under service loads are highly dependent on the reinforcement arrangement, which is often based on the ultimate limit state design. Furthermore, practical design of the serviceabi......This paper investigates how cracking influence the stiffness of flexural members. Stress levels and crack development under service loads are highly dependent on the reinforcement arrangement, which is often based on the ultimate limit state design. Furthermore, practical design...... of the serviceability limit state is often based on empirical and conservative estimates where the influence of certain dominating mechanisms is ignored, such as tension-stiffening. The reinforcement arrangement is, therefore, frequently modified, involving an increase in the amount of reinforcement, to meet...

  9. Cyclic behavior of non-seismically designed interior reinforced concrete beam-column connections

    Directory of Open Access Journals (Sweden)

    Amorn Pimanmas

    2008-05-01

    Full Text Available This paper presents a test of non-seismically detailed reinforced concrete beam-column connections under reversedcyclic load. The tested specimens represented those of the actual mid-rise reinforced concrete frame buildings, designedaccording to the non-seismic provisions of the ACI building code. The evaluation of 10 existing reinforced concrete frameswas conducted to identify key structural and geometrical indices. It was found that there existed correlation VS structuraland geometrical characteristics and the column tributary area. Hence, the column tributary area was chosen as a parameterfor classifying the specimens. The test results showed that specimens representing small and medium column tributary areafailed by brittle joint shear, while specimen representing large column tributary area failed by ductile flexure, even thoughno ductile seismic details were provided.

  10. Overview of studies on the effect of recycled aggregates sourced from tested cylinders on concrete material and structural properties

    Directory of Open Access Journals (Sweden)

    Bilal Hamad

    2017-01-01

    Full Text Available The paper presents an overview of a two-phase research program that was designed at the American University of Beirut (AUB to investigate the effect of replacing different percentages of natural coarse aggregates (NCA with recycled coarse aggregates (RCA on the properties of the produced concrete. The source of RCA was tested cylinders in batching plants which would help recycling and reusing portion of the waste products of the concrete industry. In the first phase, the fresh and hardened mechanical properties of the produced concrete mix were investigated. The variables were the concrete strength (28 or 60 MPa and the percentage replacement of NCA with RCA from crushed tested cylinders [0 (control, 20, 40, 60, 80, or 100%. Normal strength tested cylinders were used as source of the recycled aggregates for the normal strength concrete (NSC mix and high strength tested cylinders were used for the high strength concrete (HSC mix. Tests included plastic state slump and hardened state mechanical properties including cylinder compressive strength, cylinder splitting tensile strength, modulus of elasticity, and standard beams flexural strength. The results indicated no significant effect on the slump and around 10% average reduction in the hardened mechanical properties for both investigated levels of concrete compressive strength. In the second phase, the structural behavior of normal strength concrete (NSC reinforced concrete beams prepared by replacing different percentages of NCA with RCA from tested concrete cylinders was studied. For each of three modes of failure (flexural, shear, or bond splitting, three beams with different percentages replacement [0 (control, 40, or 100 percent] were tested. One replicate was prepared for each beam to validate the test results. Results indicated no significant difference in the ultimate load reached or load-deflection behavior that could be related to the percentage replacement of NCA with RCA.

  11. Laboratory Investigation for the Effects of Using Fiber Reinforcement in Rigid Pavements on Compressive and Flexural Properties

    Directory of Open Access Journals (Sweden)

    Ahmed Abbas Jasim Alsabbagh

    2016-03-01

    Full Text Available Rigid pavements provide durable service life and have remarkable application under heavy traffic loading. But, though the rigid pavements have several advantages, it suffers from some disadvantages that are relating with concrete is brittle material. One solution have been carried out in order to overcome this problem is using fibers reinforced to improve tensile strength and provides ductility. The main objective of this study is to investigating the effects of using fiber reinforced concrete (Polyvinyl alcohol and steel fiber in Rigid Pavements on Compressive and Flexural Properties. The study results shown the compressive strength has been increased by (20% when adding (0.5% of Polyvinyl alcohol concrete mixture. While modulus of elasticity has been decreasing by (23% when adding the same content of Polyvinyl alcohol. On the other hand, the study results show that using steel fiber (1.5% in concrete mixtures increase compressive strength by more than 145%.However modulus of elasticity slightly decrease. Also the addition of PVA fiber by 0.5% increase of about (51% in the Modulus of Rupture, while using steel fiber (1.5% increase Modulus of Rupture by more than (24%.

  12. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar.

    Science.gov (United States)

    Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing

    2018-01-22

    The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens.

  13. Influence of Kaolin in Fly Ash Based Geopolymer Concrete: Destructive and Non-Destructive Testing

    Science.gov (United States)

    Yahya, Z.; Abdullah, M. M. A. B.; Ramli, N. Mohd; Burduhos-Nergis, D. D.; Razak, R. Abd

    2018-06-01

    Development of geopolymer concrete is mainly to reduce the production of ordinary Portland cement (OPC) that adverse the natural effect. Fly ash is a by-product collected from electrical generating power plant which resulted from burning pulverized coal. Since fly ash is waste materials, it can be recycled for future advantages particularly as pozzolanic materials in construction industry. This study focused on the feasibility of fly ash based geopolymer concrete to which kaolin has been added. The main constituents of geopolymer production for this study were class F fly ash, sodium silicate and sodium hydroxide (NaOH) solution. The concentration of NaOH solution was fixed at 12 Molar, ratio of fly ash/alkaline activator and sodium silicate/NaOH fixed at 1.5 and 2.5, respectively. Kaolin was added in range 5% to 15% from the mass of fly ash and all the samples were cured at room temperature. Destructive and non-destructive test were performed on geopolymer concrete to evaluate the best mix proportions that yield the highest strength as well as the quality of the concrete. Compressive strength, flexural strength, rebound hammer and ultrasonic pulse velocity (UPV) result have been obtained. It shown that 5% replacement of kaolin contributed to maximum compressive strength and flexural strength of 40.4 MPa and 12.35 MPa at 28 days. These result was supported by non-destructive test for the same mix proportion.

  14. Coefficient αcc in design value of concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Goleš Danica

    2016-01-01

    Full Text Available Coefficient αcc introduces the effects of rate and duration of loading on compressive strength of concrete. These effects may be partially or completely compensated by the increase in concrete strength over time. Selection of the value of this coefficient, in recommended range between 0.8 and 1.0, is carried out through the National Annexes to Eurocode 2. This paper presents some considerations related to the introduction of this coefficient and its value adopted in some European countries. The article considers the effect of the adoption of conservative value αcc=0.85 on design value of compressive and flexural resistance of rectangular cross-section made of normal and high strength concrete. It analyzes the influence of different values of coefficient αcc on the area of reinforcement required to achieve the desired resistance of cross-section.

  15. Influence of Glass Fiber on Fresh and Hardened Properties of Self Compacting Concrete

    Science.gov (United States)

    Bharathi Murugan, R.; Haridharan, M. K.; Natarajan, C.; Jayasankar, R.

    2017-07-01

    The practical need of self-compacting concrete (SCC) is increasing due to increase in the infrastructure competence all over the world. The effective way of increasing the strength of concrete and enhance the behaviour under extreme loading (fire) is the keen interest. Glass fibers were added for five different of volume fractions (0%, 0.1%, 0.3%, 0.5% and 0.6%) to determine the optimum percentage of glass fiber without compensating the fresh properties and enhanced hardened properties of SCC concrete. The fresh state of concrete is characterized by slump flow, T-50cm slump flow, and V-funnel and L- box tests. The results obtained in fresh state are compared with the acceptance criteria of EFNARC specification. Concrete specimens were casted to evaluate the hardened properties such as compressive strength, split tensile strength, flexural strength and modulus of elasticity. Incorporation the glass fiber into SCC reduces the workability but within the standard specification. The hardened properties of SCC glass fiber reinforced concrete were enhanced, due to bridging the pre-existing micro cracks in concrete by glass fiber addition.

  16. Properties of concretes and wood composites using a phosphate-based binder

    Science.gov (United States)

    Hong, Luong Thanh

    Magnesium potassium phosphate ceramics are from the family of phosphate-based cements which can be used as alternatives to Portland cements. In this study, concretes and wood composites were produced using magnesium potassium phosphate ceramic binders and supplementary materials including fly ash, sand, silica fume and sawdust. Bentonite, Delvo Stabilizer and baking soda were used as additives to increase the workability and the setting time of the fresh mixutres and decrease the density of the hardened products. The materials were then reinforced with chopped glass-fibers or textile glass-fabrics to increase their hardened properties. At 50% fly ash by total mass of the binder, the concretes had compressive strength and density of 33 MPa and 2170 kg/m3, respectively, after 90 days of simple curing. At 20% fly ash by total mass of the binder, the wood composites had compressive strength and density of 13 MPa and 1320 kg/m3, respectively, after 90 days. The flexural strengths were about 10% to 47% of the corresponding cylinder compressive strengths for these mixes. Increases in both compressive and flexural strengths for these mixes were observed with the addition of chopped glass-fibers or textile glass-fabrics.

  17. Flexural Behavior of High-Volume Steel Fiber Cementitious Composite Externally Reinforced with Basalt FRP Sheet

    Directory of Open Access Journals (Sweden)

    Seungwon Kim

    2016-01-01

    Full Text Available High-performance fiber-reinforced cementitious composites (HPFRCCs are characterized by unique tensile strain hardening and multiple microcracking behaviors. The HPFRCC, which demonstrates remarkable properties such as strength, ductility, toughness, durability, stiffness, and thermal resistance, is a class of fiber cement composite with fine aggregates. It can withstand tensile stresses by forming distributed microcracks owing to the embedded fibers in the concrete, which improve the energy absorption capacity and apparent ductility. This high energy absorbing capacity can be enhanced further by an external stiff fiber-reinforced polymer (FRP. Basalt fabric is externally bonded as a sheet on concrete materials to enhance the durability and resistance to fire and other environmental attacks. This study investigates the flexural performance of an HPFRCC that is externally reinforced with multiple layers of basalt FRP. The HPFRCC considered in the study contains steel fibers at a volume fraction of 8%.

  18. FRP Composites Strengthening of Concrete Columns under Various Loading Conditions

    Directory of Open Access Journals (Sweden)

    Azadeh Parvin

    2014-04-01

    Full Text Available This paper provides a review of some of the progress in the area of fiber reinforced polymers (FRP-strengthening of columns for several loading scenarios including impact load. The addition of FRP materials to upgrade deficiencies or to strengthen structural components can save lives by preventing collapse, reduce the damage to infrastructure, and the need for their costly replacement. The retrofit with FRP materials with desirable properties provides an excellent replacement for traditional materials, such as steel jacket, to strengthen the reinforced concrete structural members. Existing studies have shown that the use of FRP materials restore or improve the column original design strength for possible axial, shear, or flexure and in some cases allow the structure to carry more load than it was designed for. The paper further concludes that there is a need for additional research for the columns under impact loading senarios. The compiled information prepares the ground work for further evaluation of FRP-strengthening of columns that are deficient in design or are in serious need for repair due to additional load or deterioration.

  19. Use of selected waste materials in concrete mixes

    International Nuclear Information System (INIS)

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures

  20. Use of selected waste materials in concrete mixes.

    Science.gov (United States)

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  1. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete

    International Nuclear Information System (INIS)

    Beigi, Morteza H.; Berenjian, Javad; Lotfi Omran, Omid; Sadeghi Nik, Aref; Nikbin, Iman M.

    2013-01-01

    Highlights: • We investigate combine effects of fibers and nanosilica on SCC. • The mechanical, rheological, and durability properties were tested and compared. • Microstructural properties of concrete were assessed using AFM and XRD techniques. • Nanosilica and fibers can improve the mechanical properties and durability of SCC. - Graphical abstract: - Abstract: Previous studies have shown that application of fibers in concrete enhances scratching, flexural and tensile strength. Self-Compacting Concrete (SCC) is a highly flowable and coherent concrete able to self-compact under its own weight. On the other hand, nanosilica particles and artificial pozzolans possessing high efficiency in concrete technology can improve structural properties of cement-based materials. Previous studies have suggested self-compacting and fiber-reinforced concretes for more stable and efficient buildings. Therefore, the present study aimed to evaluate the effects of nanosilica and different concrete reinforcing fibers including steel, polypropylene and glass on the performance of concrete. In this study mechanical (compressive, splitting tensile and flexural strength, toughness and modulus of elasticity), rheological (L-Box, slump flow, T50) and durability (resist chloride ion penetration (RCPT) and water absorption) properties are assessed. In addition, microstructural properties of concrete were assessed using Atomic Force Microscopy (AFM) and X-Ray Diffraction (XRD) techniques. Totally, 40 concrete mixes , labeled as A, B, C and D, with nanosilica contents of 0, 2, 4 and 6 weight percent (wt.%) of cement, respectively and three types of reinforcing fibers (steel: 0.2, 0.3 and 0.5 volume percent (v%) and polypropylene: 0.1, 0.15 and 0.2 v% and glass: 0.15, 0.2 and 0.3 v%) were evaluated. The results of the study showed that the presence of both nanosilica and reinforcing fibers in optimal percentages, can improve the mechanical properties and durability of self

  2. Efficacy of Thermally Conditioned Sisal FRP Composite on the Shear Characteristics of Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Tara Sen

    2013-01-01

    Full Text Available The development of commercially viable composites based on natural resources for a wide range of applications is on the rise. Efforts include new methods of production and the utilization of natural reinforcements to make biodegradable composites with lignocellulosic fibers, for various engineering applications. In this work, thermal conditioning of woven sisal fibre was carried out, followed by the development of woven sisal fibre reinforced polymer composite system, and its tensile and flexural behaviour was characterized. It was observed that thermal conditioning improved the tensile strength and the flexural strength of the woven sisal fibre composites, which were observed to bear superior values than those in the untreated ones. Then, the efficacy of woven sisal fibre reinforced polymer composite for shear strengthening of reinforced concrete beams was evaluated using two types of techniques: full and strip wrapping techniques. Detailed analysis of the load deflection behaviour and fracture study of reinforced concrete beams strengthened with woven sisal under shearing load were carried out, and it was concluded that woven sisal FRP strengthened beams, underwent very ductile nature of failure, without any delamination or debonding of sisal FRP, and also increased the shear strength and the first crack load of the reinforced concrete beams.

  3. The Dynamic Performance of Flexural Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Andrew Feeney

    2018-01-01

    Full Text Available Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  4. Recovery and residual stress of SMA wires and applications for concrete structures

    International Nuclear Information System (INIS)

    Choi, Eunsoo; Cho, Sung-Chul; Park, Taehyo; Hu, Jong Wan; Chung, Young-Soo

    2010-01-01

    In general, NiTi shape memory alloys are used for applications in civil structures. NiTi SMAs show good superelasticity and shape memory effect properties. However, for application of the shape memory effect, it is desirable for SMAs to show a wide temperature hysteresis, especially for civil structures which are exposed to severe environmental conditions. NiTiNb SMAs, in general, show a wider temperature hysteresis than NiTi SMAs and are more applicable for civil structures. This study examines the temperature hysteresis of NiTiNb and NiTi SMAs, and their recovery and residual stress are investigated. In addition, the tensile behaviors of SMA wires under residual stress are evaluated. This study explains the possible applications for concrete structures with the shape memory effect and illustrates two experimental results of concrete cylinders and reinforced concrete columns. For both tests, SMA wires of NiTiNb and NiTi are used to confine concrete using residual stress. The SMA wire jackets on the concrete cylinders increase the peak strength and the ductility compared to the plain concrete cylinders. In addition, the SMA wire jackets on reinforced concrete columns increase the ductility greatly without flexural strength degradation

  5. Prevention of shrinkage cracking in tight concrete structures

    International Nuclear Information System (INIS)

    Alvaredo, A.M.; Wittmann, F.H.

    1995-01-01

    It is shown that crack formation and propagation in concrete members subjected to restrained shrinkage can be realistically predicted by means of a comprehensive approach including a diffusion analysis and fracture mechanics considerations. The conditions for stable crack propagation regarding dimensions of the concrete member, degree of restraint to the imposed deformation and material properties are discussed. Guidelines on the prevention of shrinkage cracking of concrete structures are given. (author). 10 refs., 5 figs

  6. Strengthening Performance of PALF-Epoxy Composite Plate on Reinforced Concrete Beams

    Science.gov (United States)

    Chin, Siew C.; Tong, Foo S.; Doh, Shu I.; Gimbun, Jolius; Ong, Huey R.; Serigar, Januar P.

    2018-03-01

    This paper presents the effective strengthening potential of pineapple leaves fiber (PALF)-epoxy composite plate on reinforced concrete (RC) beam. At first the PALF is treated with alkali (NaOH) and its morphology is observed via scanning electron microscope (SEM). The composite plates made of PALF and epoxy with fiber loading ranging from 0.1 to 0.4 v/v was tested for its flexural behaviour. The composite was then used for external RC beam strengthening. The structural properties of RC beams were evaluated and all the beams were tested under four-point bending. It was found that the flexural strength increased as the fiber volume ratio increases. The maximum flexural strength (301.94 MPa) was obtained at the fiber volume ratio of 40%. The beam strengthened with PALF-epoxy composite plate has a 7% higher beam capacity compared to the control beam. Cracks formed at the edge of the plate of PALF-strengthened beams resulted in diagonal cracking. Result from this work shows that the PALF-epoxy composite plate has the potential to be used as external strengthening material for RC beam.

  7. The effects of pressure dependent constitutive model to simulate concrete structures failure under impact loads

    Science.gov (United States)

    Mokhatar, S. N.; Sonoda, Y.; Kamarudin, A. F.; Noh, M. S. Md; Tokumaru, S.

    2018-04-01

    The main objective of this paper is to explore the effect of confining pressure in the compression and tension zone by simulating the behaviour of reinforced concrete/mortar structures subjected to the impact load. The analysis comprises the numerical simulation of the influences of high mass low speed impact weight dropping on concrete structures, where the analyses are incorporated with meshless method namely as Smoothed Particle Hydrodynamics (SPH) method. The derivation of the plastic stiffness matrix of Drucker-Prager (DP) that extended from Von-Mises (VM) yield criteria to simulate the concrete behaviour were presented in this paper. In which, the displacements for concrete/mortar structures are assumed to be infinitesimal. Furthermore, the influence of the different material model of DP and VM that used numerically for concrete and mortar structures are also discussed. Validation upon existing experimental test results is carried out to investigate the effect of confining pressure, it is found that VM criterion causes unreal impact failure (flexural cracking) of concrete structures.

  8. Experimental Assessment on the Flexural Bonding Performance of Concrete Beam with GFRP Reinforcing Bar under Repeated Loading

    Directory of Open Access Journals (Sweden)

    Minkwan Ju

    2015-01-01

    Full Text Available This study intends to investigate the flexural bond performance of glass fiber-reinforced polymer (GFRP reinforcing bar under repeated loading. The flexural bond tests reinforced with GFRP reinforcing bars were carried out according to the BS EN 12269-1 (2000 specification. The bond test consisted of three loading schemes: static, monotonic, and variable-amplitude loading to simulate ambient loading conditions. The empirical bond length based on the static test was 225 mm, whereas it was 317 mm according to ACI 440 1R-03. Each bond stress on the rib is released and bonding force is enhanced as the bond length is increased. Appropriate level of bond length may be recommended with this energy-based analysis. For the monotonic loading test, the bond strengths at pullout failure after 2,000,000 cycles were 10.4 MPa and 6.5 MPa, respectively: 63–70% of the values from the static loading test. The variable loading test indicated that the linear cumulative damage theory on GFRP bonding may not be appropriate for estimating the fatigue limit when subjected to variable-amplitude loading.

  9. Engineering Performance of High Strength Concrete Containing Steel Fibre Reinforcement

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2013-09-01

    Full Text Available The development and utilization of the high strength concrete in the construction industry have been increasing rapidly. Fiber reinforced concrete is introduced to overcome the weakness of the conventional concrete because concrete normally can crack under a low tensile force and it is known to be brittle. Steel fibre is proved to be the popular and best combination in the high strength concrete to result the best in the mechanical and durability properties of high strength concrete with consideration of curing time, steel fibre geometry, concrete grade and else more. The incorporation of steel fibre in the mortar mixture is known as steel fibre reinforced concrete have the potential to produce improvement in the workability, strength, ductility and the deformation of high strength concrete. Besides that, steel fibre also increases the tensile strength of concrete and improves the mechanical properties of the steel fibre reinforced concrete. The range for any high strength concrete is between 60MPa-100MPa. Steel fibre reinforced concrete which contains straight fibres has poorer physical properties than that containing hooked end stainless steel fibre due to the length and the hooked steel fibre provide a better effective aspects ratio. Normally, steel fibre tensile strength is in the range of 1100MPa-1700MPa. Addition of less steel fibre volumes in the range of 0.5% to 1.0% can produce better increase in the flexural fatigue strength. The strength can be increased with addition of steel fibre up to certain percentage. This paper will review and present some basic properties of steel fibre reinforced concrete such as mechanical, workability and durability properties.

  10. The Effect of Adding Different Types of Natural Fibers on Mechanical Properties and Impact Resistance of Concrete

    OpenAIRE

    Sarmed Fadhil; Mohanad Yaseen

    2015-01-01

    The purpose of this study is to evaluate the effect of natural fibers: sisal and palm fibers on the different properties of concrete have been investigated through a number of tests. The properties investigated include compressive strength, flexural strength, splitting tensile strength and impact resistance of concrete. Sisal fiber has been used at three percentages of total mixture volume (0.6, 1.20 and 1.8%, respectively), while the palm fiber has been added in (2.5, 5.0 and 7.5%, respectiv...

  11. Study some mechanical properties of self-compacting concrete with nano silica under severe saline environment conditions

    Directory of Open Access Journals (Sweden)

    Habeeb Ghalib

    2018-01-01

    Full Text Available The main aim of this research is to evaluate the performance of Nano silica self-compacting concrete which is subjected to severe saline conditions that contain sulfates and chlorides at concentrations similar to those existing in the soils and ground water of the middle and southern parts of Iraq. For this purpose, ordinary and sulfate resistant Portland cement without and with 3% Nano silica addition by weight of cementitious materials were used. Splitting tensile strength, flexural strength, static modulus of elasticity and ultrasonic pulse velocity were investigated for all exposure conditions and all types of mixes of self-compacting concrete at ages of 28, 60, 90, 120 and 180 days. Test results revealed that the inclusion of Nano Silica in concrete mixes improved clearly the mechanical properties of self-compacting concrete compared with reference concrete.

  12. Long-Term Bending Creep Behavior of Thin-Walled CFRP Tendon Pretensioned Spun Concrete Poles

    Directory of Open Access Journals (Sweden)

    Giovanni P. Terrasi

    2014-07-01

    Full Text Available This paper discusses the long-term behavior of a series of highly-loaded, spun concrete pole specimens prestressed with carbon fiber-reinforced polymer (CFRP tendons, which were subjected to outdoor four-point bending creep tests since 1996 in the frame of collaboration with the Swiss precast concrete producer, SACAC (Società Anonima Cementi Armati Centrifugati. The 2 m span cylindrical beams studied are models for lighting poles produced for the last 10 years and sold on the European market. Five thin-walled pole specimens were investigated (diameter: 100 mm; wall-thickness: 25–27 mm. All specimens were produced in a pretensioning and spinning technique and were prestressed by pultruded CFRP tendons. Initially, two reference pole specimens were tested in quasi-static four-point bending to determine the short-term failure moment and to model the short-term flexural behavior. Then, three pole specimens were loaded to different bending creep moments: while the lowest loaded specimen was initially uncracked, the second specimen was loaded with 50% of the short-term bending failure moment and exhibited cracking immediately after load introduction. The highest loaded pole specimen sustained a bending moment of 72% of the short-term bending failure moment for 16.5 years before failing in July 2013, due to the bond failure of the tendons, which led to local crushing of the high-performance spun concrete (HPSC. Besides this, long-term monitoring of the creep tests has shown a limited time- and temperature-dependent increase of the deflections over the years, mainly due to the creep of the concrete. A concrete creep-based model allowed for the calculation of the long-term bending curvatures with reasonable accuracy. Furthermore, the pole specimens showed crack patterns that were stable over time and minimal slippage of the tendons with respect to the pole’s end-faces for the two lower load levels. The latter proves the successful and durable

  13. Performance of concrete blended with pozzolanic materials in marine environment

    Directory of Open Access Journals (Sweden)

    Khan Asad-ur-Rehman

    2017-01-01

    Full Text Available Reinforced concretes structures located at or near the coast line needs to be repaired more frequently when compared to structures located elsewhere. This study is continuation of previous studies carried out at the Department of Civil Engineering, NED University of Engineering and Technology, Karachi, Pakistan to study the performance of concrete made up of cements blended by pozzolonic materials. Different pozzolanic materials (blast furnace slag, fly ash and silica fume were used in the study. Tests conducted during the study to compare the performance of samples cast from concrete of different mix designs were Compressive Strength Test (ASTM C 39, Flexural Strength Test (ASTM C 293, Rapid Migration Test (NT Build 492, Absorptivity of the oven-dried samples (ASTM C 642 and Half Cell Potential (ASTM C 876. Use of cements blended with pozzolanic materials, used during the study, proved to be effective in enhancing the performance of the concrete exposed to marine environment. Use of pozzolans in concrete not only provides a sustainable and feasible solution to the durability problems in coastal areas, it also helps in conservation of natural resources and reduction of pollution and energy leading to a green environment.

  14. Mechanical characteristics of hardened concrete with different mineral admixtures: a review.

    Science.gov (United States)

    Ayub, Tehmina; Khan, Sadaqat Ullah; Memon, Fareed Ahmed

    2014-01-01

    The available literature identifies that the addition of mineral admixture as partial replacement of cement improves the microstructure of the concrete (i.e., porosity and pore size distribution) as well as increasing the mechanical characteristics such as drying shrinkage and creep, compressive strength, tensile strength, flexural strength, and modulus of elasticity; however, no single document is available in which review and comparison of the influence of the addition of these mineral admixtures on the mechanical characteristics of the hardened pozzolanic concretes are presented. In this paper, based on the reported results in the literature, mechanical characteristics of hardened concrete partially containing mineral admixtures including fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA) are discussed and it is concluded that the content and particle size of mineral admixture are the parameters which significantly influence the mechanical properties of concrete. All mineral admixtures enhance the mechanical properties of concrete except FA and GGBS which do not show a significant effect on the strength of concrete at 28 days; however, gain in strength at later ages is considerable. Moreover, the comparison of the mechanical characteristics of different pozzolanic concretes suggests that RHA and SF are competitive.

  15. Effect of Elevated Temperature on Mechanical Assets of Metakaolin Base Steel Fiber Reinforced Concrete

    Science.gov (United States)

    Vijay Anand, M.; Ibrahim, Azmi; Patil, Anand A.; Muthu, K. U.

    2017-06-01

    The fact of vast usage of concrete leads to important problems regarding its design and preparation of eco-friendly to obtain an economic cost of the product on varieties of time periods. Conventional ordinary Portland concrete may not able to meet its functional requisites as it found inconsistency in high temperature. The exposing of concrete structure to elevated temperature may be in case of rocket launching space ships, nuclear power plants. In this experiment, to enhance the high temperature resistance, pozzolanic materials and steel fibres are added to preserve the strength characteristics of concrete structure. In this analysis, the pozzolanic admixture MK is used as partial replacement of cementatious materials. The volume fraction of steel fibre is varied 0.25%, 0.5%, 0.75% and 1% by preserving MK as stationary for 10% replacement of cement. The strength parameters of concrete such as compressive strength, split tensile strength and flexural strength are studied.

  16. Time-variant flexural reliability of RC beams with externally bonded CFRP under combined fatigue-corrosion actions

    International Nuclear Information System (INIS)

    Bigaud, David; Ali, Osama

    2014-01-01

    Time-variant reliability analysis of RC highway bridges strengthened with carbon fibre reinforced polymer CFRP laminates under four possible competing damage modes (concrete crushing, steel rupture after yielding, CFRP rupture and FRP plate debonding) and three degradation factors is analyzed in terms of reliability index β using FORM. The first degradation factor is chloride-attack corrosion which induces reduction in steel area and concrete cover cracking at characteristic key times (corrosion initiation, severe surface cover cracking). The second degradation factor considered is fatigue which leads to damage in concrete and steel rebar. Interaction between corrosion and fatigue crack growth in steel reinforcing bars is implemented. The third degradation phenomenon is the CFRP properties deterioration due to aging. Considering these three degradation factors, the time-dependent flexural reliability profile of a typical simple 15 m-span intermediate girder of a RC highway bridge is constructed under various traffic volumes and under different corrosion environments. The bridge design options follow AASHTO-LRFD specifications. Results of the study have shown that the reliability is very sensitive to factors governing the corrosion. Concrete damage due to fatigue slightly affects reliability profile of non-strengthened section, while service life after strengthening is strongly related to fatigue damage in concrete. - Highlights: • We propose a method to follow the time-variant reliability of strengthened RC beams. • We consider multiple competing failure modes of CFRP strengthened RC beams. • We consider combined degradation mechanisms (corrosion, fatigue, ageing of CFRP)

  17. Servo Reduces Friction In Flexure Bearing

    Science.gov (United States)

    Clingman, W. Dean

    1991-01-01

    Proposed servocontrol device reduces such resistive torques as stiction, friction, ripple, and cogging in flexure bearing described in LAR-14348, "Flexure Bearing Reduces Startup Friction". Reduces frictional "bump" torque encountered when bearing ball runs into buildup of grease on bearing race. Also used as cable follower to reduce torque caused by cable and hoses when they bend because of motion of bearing. New device includes torquer across ball race. Torquer controlled by servo striving to keep flexure at null, removing torque to outer ring. In effect, device is inner control loop reducing friction, but does not control platforms or any outer-control-loop functions.

  18. Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix

    Directory of Open Access Journals (Sweden)

    Sanjay Mundra

    2016-09-01

    Full Text Available The study investigates the use of crushed rock sand as viable alternative to Natural River sand that is being conventionally used as fine aggregate in cement concrete. Various mix designs were developed for different grades of concrete based on IS, ACI and British codes using Natural River sand and crushed rock sand. In each case, the cube compressive strength test, and beam flexure tests were conducted. The results of the study show that, the strength properties of concrete using crushed rock sand are nearly similar to the conventional concrete. The study has shown that crushed stone sand can be used as economic and readily available alternative to river sand and can therefore help to arrest the detrimental effects on the environment caused due to excessive mining of river sand.

  19. A review of nanoclay applications in the pervious concrete pavement

    Science.gov (United States)

    Shakrani, Shahrul Azwan; Ayob, Afizah; Rahim, Mohd Asri Ab

    2017-09-01

    In recent years, the use of nanoclay has received various interests in order to enhance the properties of construction materials which can also be eligible for pavement technology and engineering application. This review paper summarizes the effect of nanoclay as cement replacement and additive to the performance of pervious concrete pavement. The addition of nanoclay to pervious concrete has demonstrated improvements in strength properties such as compressive and flexural strength, durability such as freeze-thaw and chloride penetration resistance, shrinkage, and denser microstructure but at the same time reduced the porosity, permeability and water absorption properties. This enhancement is due to the roles of nanoclay as nanoreinforcements, nanofillers, nucleation site, and reactive pozzolans in order to promote hydration and improve material properties.

  20. Effects of Reinforcing Fiber and Microsilica on the Mechanical and Chloride Ion Penetration Properties of Latex-Modified Fiber-Reinforced Rapid-Set Cement Concrete for Pavement Repair

    Directory of Open Access Journals (Sweden)

    Woong Kim

    2018-01-01

    Full Text Available This study evaluated the influence of reinforcement fiber type and microsilica content on the performance of latex-modified fiber-reinforced roller-compacted rapid-hardening cement concrete (LMFRCRSC for a concrete pavement emergency repair. Experimental variables were the microsilica substitution ratio (1, 2, 3, and 4%, and the reinforcement fiber (jute versus macrosynthetic fiber. In the tests, compressive, flexural, and splitting tensile strength; chloride ion penetration resistance; and abrasion resistance were assessed. From the compressive and flexural strength tests with microsilica substitution, the 4-hour curing strength decreased as the microsilica substitution ratio increased. From the chloride ion penetration test, as the microsilica substitution ratio increased, chloride ion penetration decreased. The abrasion resistances increased with the substitution ratio of microsilica increase. Based on these test results, microsilica at a substitution ratio of 3% or less and macrosynthetic fiber as the reinforcement improved the performance of LMFRCRSC for a concrete pavement emergency repair and satisfied all of the target strength requirements.

  1. Nonlinear micromechanics-based finite element analysis of the interfacial behaviour of FRP-strengthened reinforced concrete beams

    Science.gov (United States)

    Abd El Baky, Hussien

    This research work is devoted to theoretical and numerical studies on the flexural behaviour of FRP-strengthened concrete beams. The objectives of this research are to extend and generalize the results of simple experiments, to recommend new design guidelines based on accurate numerical tools, and to enhance our comprehension of the bond performance of such beams. These numerical tools can be exploited to bridge the existing gaps in the development of analysis and modelling approaches that can predict the behaviour of FRP-strengthened concrete beams. The research effort here begins with the formulation of a concrete model and development of FRP/concrete interface constitutive laws, followed by finite element simulations for beams strengthened in flexure. Finally, a statistical analysis is carried out taking the advantage of the aforesaid numerical tools to propose design guidelines. In this dissertation, an alternative incremental formulation of the M4 microplane model is proposed to overcome the computational complexities associated with the original formulation. Through a number of numerical applications, this incremental formulation is shown to be equivalent to the original M4 model. To assess the computational efficiency of the incremental formulation, the "arc-length" numerical technique is also considered and implemented in the original Bazant et al. [2000] M4 formulation. Finally, the M4 microplane concrete model is coded in FORTRAN and implemented as a user-defined subroutine into the commercial software package ADINA, Version 8.4. Then this subroutine is used with the finite element package to analyze various applications involving FRP strengthening. In the first application a nonlinear micromechanics-based finite element analysis is performed to investigate the interfacial behaviour of FRP/concrete joints subjected to direct shear loadings. The intention of this part is to develop a reliable bond--slip model for the FRP/concrete interface. The bond

  2. An experimental investigation into the behavior of concrete elements rerofitted with NSM composite strips at elevated temperatures

    Science.gov (United States)

    Namrou, Abdul Rahman

    Near-surface-mounted (NSM) fiber reinforced polymer (FRP) is another strengthening alternative of externally bonded fiber reinforced polymers. NSM FRP is a promising alternative technology that has emerged for enhancing the strength capacity of concrete structures. Most laboratory researches have focused mainly on the overall member performance and/or the bonding performance of the NSM bars or strips. Limited research has focused on the effect of temperature exposure on NSM FRP performance. The results of an experimental program performed on forty-eight (48) concrete block specimen with NSM carbon-fiber reinforced polymer (CFRP) strengthening systems at elevated temperatures that reaches to 200°C [392°F] to investigate flexural performance. The effect of using two different adhesive systems (epoxy anchoring system) with manufacturer recommendation at ordinary and high temperature exposures is also studied. The adhesive was injected in a NSM groove size (25 mm [1 in] deep x 13 mm [0.5 in] wide) the width and depth of the groove were greater than 3 and 1.5 times the CFRP thickness and width, respectively. Test results show that the interfacial strength of the specimens bonded with the ordinary epoxy is maintained until 75°C [167°F] is reached, while the strength noticeably decreases with an increasing temperature above this limit. The specimens with the high-temperature epoxy preserve interfacial capacity up to 200°C [392°F] despite a trend of strength-decrease being observed. The failure of the test specimens is brittle irrespective of adhesive type. Interfacial damage is localized along the bond-line with the presence of hairline cracks that further develop when interfacial failure is imminent. This thesis also presents an experimental result concerning the bond performance of concrete-adhesive at elevated temperatures that reaches to 200°C [392°F] applied for three hours. Then, the concrete prisms were tested under three point flexural loading. The

  3. Wet versus dry cement pastes and concretes: a mathematical approach to their strength and fracture properties

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2006-12-01

    The fracture process of a continuous matrix in a porous medium under the combined effect of filtration and external mechanical loads is considered. Taking into account the differences between the failure mechanisms of cement paste under tension and its failure mechanisms under compression, an analytical approach to the relation between water flow and fracture in saturated porous Portland cement pastes is developed. The well known differences in behaviour between the flexural and compressive strengths of wet and dry Portland cement pastes is explained. The extension of the obtained results to the flexural and compressive strength of normal concrete is briefly discussed, including suggestions for further experimental and digital simulation work

  4. THE EFFECT OF PLASTICIZER ON MECHANICAL PROPERTIES OF THE CEMENT PASTE WITH FINE GROUND RECYCLED CONCRETE

    Directory of Open Access Journals (Sweden)

    Jaromír Hrůza

    2017-11-01

    Full Text Available This article deals with the usage of recycled concrete, which arises from the demolition of concrete structures. The work is focused on the development of mechanical properties (Young's modulus, compressive and flexural strength depending amount of plasticizer in the mixture. In the experiment were prepared three sets of samples with different amounts of plasticizer (0, 0.5 and 1.0 wt. % of cement. Each pair always contained reference samples (only cement and 35 wt. % of fine ground recycled concrete. One of the main reasons for the use of finely ground recycled concrete was a certain substitution of cement in the mixture, which is the most expensive component. Development of Young's modulus was measured by the nondestructive method. The aim of the experiment was to determine the effect of plasticizer on the resulting physical and mechanical properties of cement pastes with fine ground recycled concrete.

  5. Recycled lightweight concrete made from footwear industry waste and CDW.

    Science.gov (United States)

    Lima, Paulo Roberto Lopes; Leite, Mônica Batista; Santiago, Ediela Quinteiro Ribeiro

    2010-06-01

    In this paper two types of recycled aggregate, originated from construction and demolition waste (CDW) and ethylene vinyl acetate (EVA) waste, were used in the production of concrete. The EVA waste results from cutting off the EVA expanded sheets used to produce insoles and innersoles of shoes in the footwear industry. The goal of this study was to evaluate the influence of the use of these recycled aggregates as replacements of the natural coarse aggregate, upon density, compressive strength, tensile splitting strength and flexural behavior of recycled concrete. The experimental program was developed with three w/c ratios: 0.49, 0.63 and 0.82. Fifteen mixtures were produced with different aggregate substitution rates (0%, 50% EVA, 50% CDW, 25% CDW-25% EVA and 50% CDW-50% EVA), by volume. The results showed that it is possible to use the EVA waste and CDW to produce lightweight concrete having semi-structural properties. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters.

    Science.gov (United States)

    Chowdhury, S; Maniar, A; Suganya, O M

    2015-11-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  7. Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete

    Science.gov (United States)

    Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.

    2018-03-01

    This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.

  8. Elastic Composite, Reinforced Lightweight Concrete as a Type of Resilient Composite Systems

    OpenAIRE

    Esmaeili, Kamyar

    2015-01-01

    . A kind of "Elastic Composite, Reinforced Lightweight Concrete (ECRLC)" with the mentioned specifics is a type of "Resilient Composite Systems (RCS)" in which, contrary to the basic geometrical assumption of flexure theory in Solid Mechanics, "the strain changes in the beam height during bending" is typically "Non-linear". . Through employing this integrated structure, with significant high strain capability and modulus of resilience in bending, we could constructively achieve high bearing c...

  9. Performance evaluation of corrosion-affected reinforced concrete ...

    Indian Academy of Sciences (India)

    M B Anoop

    Abstract. A methodology for performance evaluation of reinforced concrete bridge girders in corrosive ... concrete (RC) members of infrastructural systems, espe- ... bility will be useful for making engineering decisions for ...... Water-cement ratio.

  10. Improving rubber concrete by waste organic sulfur compounds.

    Science.gov (United States)

    Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien

    2010-01-01

    In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly.

  11. Flexural phonon limited phonon drag thermopower in bilayer graphene

    Science.gov (United States)

    Ansari, Mohd Meenhaz; Ashraf, SSZ

    2018-05-01

    We investigate the phonon drag thermopower from flexural phonons as a function of electron temperature and carrier concentration in the Bloch-Gruneisen regime in non-strained bilayer graphene using Boltzmann transport equation approach. The flexural phonons are expected to be the major source of intrinsic scattering mechanism in unstrained bilayer graphene due to their large density. The flexural phonon modes dispersion relation is quadratic so these low energy flexural phonons abound at room temperature and as a result deform the bilayer graphene sheet in the out of plane direction and affects the transport properties. We also produce analytical result for phonon-drag thermopower from flexural phonons and find that phonon-drag thermopower depicts T2 dependence on temperature and n-1 on carrier concentration.

  12. Characterization of polymer concrete with natural fibers

    Science.gov (United States)

    Barbuta, M.; Serbanoiu, A. A.; Teodorescu, R.; Rosca, B.; Mitroi, R.; Bejan, G.

    2017-09-01

    In the study are presented the experimental results obtained for polymer concrete prepared with epoxy resin, aggregates, fly ash as filler and two types of fibers: wool and hemp. The influence of type and dosage of fibers were studied. The density and mechanical characteristics were determined: compressive strength, flexural strength and split tensile strength. For both types of fibers, with increasing the fiber dosage the density decreases. The studied dosages had not an important influence on mechanical strengths. The fibers improved especially the tensile strength and the compressive strength presented generally smaller values than the control mix.

  13. Detecting alkali-silica reaction in thick concrete structures using linear array ultrasound

    Science.gov (United States)

    Bull Ezell, N. Dianne; Albright, Austin; Clayton, Dwight; Santos-Villalobos, Hector

    2018-03-01

    Commercial nuclear power plants (NPPs) depend heavily on concrete structures, making the long-term performance of these structures crucial for safe operation, especially with license period extensions to 60 years and possibly beyond. Alkali-silica reaction (ASR) is a reaction that occurs over time in concrete between alkaline cement paste and reactive, noncrystalline silica (aggregates). In the presence of water, an expansive gel is formed within the aggregates, which results in microcracks in aggregates and adjacent cement paste. ASR can potentially affect concrete properties and performance characteristics such as compressive strength, modulus of elasticity, flexural stiffness, shear strength, and tensile strength. Currently, no nondestructive evaluation methods have proven effective in identifying ASR before surface cracks form. ASR is identified visibly or by petrographic analysis. Although ASR definitely impacts concrete material properties, the performance of concrete structures exhibiting ASR depends on whether or not the concrete is unconfined or confined with reinforcing bars. Confinement by reinforcing bars restrainsthe expansion of ASR-affected concrete, similar to prestressing, thus improving the performance of a structure. Additionally, there is no direct correlation between the mechanical properties of concrete sample cores and the in-situ properties of the concrete. The University of Tennessee-Knoxville, Oak Ridge National Laboratory, and a consortium of universities have developed an accelerated ASR experiment. Three large concrete specimens, representative of NPP infrastructure, were constructed containing both embedded and surface instruments. This paper presents preliminary analysis of these specimens using a frequency-banded synthetic aperture focusing technique.

  14. A Modified Model for Deflection Calculation of Reinforced Concrete Beam with Deformed GFRP Rebar

    Directory of Open Access Journals (Sweden)

    Minkwan Ju

    2016-01-01

    Full Text Available The authors carried out experimental and analytical research to evaluate the flexural capacity and the moment-deflection relationship of concrete beams reinforced with GFRP bars. The proposed model to predict the effective moment of inertia for R/C beam with GFRP bars was developed empirically, based on Branson’s equation to have better accuracy and a familiar approach to a structural engineer. For better prediction of the moment-deflection relationship until the ultimate strength is reached, a nonlinear parameter (k was also considered. This parameter was introduced to reduce the effect of the cracked moment of inertia for the reinforced concrete member, including a lower reinforcement ratio and modulus of elasticity of the GFRP bar. In a comparative study using six equations suggested by others, the proposed model showed better agreement with the experimental test results. It was confirmed that the empirical modification based on Branson’s equation was valid for predicting the effective moment of inertia of R/C beams with GFRP bar in this study. To evaluate the generality of the proposed model, a comparative study using previous test results from the literature and the results from this study was carried out. It was found that the proposed model had better accuracy and was a familiar approach to structural engineers to predict and evaluate the deflection behavior.

  15. The possibility of using high strength reinforced concrete

    International Nuclear Information System (INIS)

    Miura, Nobuaki

    1991-01-01

    There is recently much research about and developments in reinforced concrete using high strength concrete and reinforcement. As a result, some high-rise buildings and nuclear buildings have been constructed with such concrete. Reinforced concrete will be stronger in the future, but there is a limit to its strength defined by the character of the materials and also by the character of the reinforced concrete members made of the concrete and reinforcement. This report describes the merits and demerits of using high strength reinforced concrete. (author)

  16. Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete

    Science.gov (United States)

    Memon, Fareed Ahmed; Nuruddin, Muhd Fadhil; Shafiq, Nasir

    2013-02-01

    The effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete (SCGC) was investigated in this paper. The work focused on the concrete mixes with a fixed water-to-geopolymer solid (W/Gs) ratio of 0.33 by mass and a constant total binder content of 400 kg/m3. The mass fractions of silica fume that replaced fly ash in this research were 0wt%, 5wt%, 10wt%, and 15wt%. The workability-related fresh properties of SCGC were assessed through slump flow, V-funnel, and L-box test methods. Hardened concrete tests were limited to compressive, splitting tensile and flexural strengths, all of which were measured at the age of 1, 7, and 28 d after 48-h oven curing. The results indicate that the addition of silica fume as a partial replacement of fly ash results in the loss of workability; nevertheless, the mechanical properties of hardened SCGC are significantly improved by incorporating silica fume, especially up to 10wt%. Applying this percentage of silica fume results in 4.3% reduction in the slump flow; however, it increases the compressive strength by 6.9%, tensile strength by 12.8% and flexural strength by 11.5%.

  17. Flexible concrete link slabs used as expansion joints in bridge decks

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor

    2011-01-01

    of water through the expansion joint and subsequent corrosion of girders and girder bearings. Investigations on joint-less superstructures using conventional steel reinforcement in so-called concrete link slabs indicate improved performance and economic feasibility. However, this concept requires...... relatively large amounts of steel reinforcement for crack control purposes and consequently provides a relatively large flexural stiffness and negative moment capacity at the joint between the spans. These contradicting requirements and effects in existing replacement concepts for damaged mechanical bridge...... joints are currently unresolved. In the proposed system described in this paper, a ductile cement-based composite section reinforced with Glass Fiber Reinforced Polymers (GFRP) replaces the damaged expansion joint. The combination of this ductile concrete together with corrosion resistant GFRP...

  18. Mechanical behaviour of steel fibre-reinforced alkali activated slag concrete

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2009-03-01

    Full Text Available This study addressed the mechanical behaviour of a steel fibre-reinforced alternative concrete made from waterglass (Na2SiO3.nH2O+NaOH- activated Colombian blast furnace slag. The mixes studied were prepared with 400 kg of cement and the fibres were added in proportions of 40 and 120 kg per cubic metre of concrete. 7-, 14- and 28-day concrete was tested for compressive, splitting tensile and flexural strength. The results obtained showed that adding steel fibre to alkaline concrete lowered early age compressive strength, and that this decline was more intense with rising volumes of steel. Flexural and splitting tensile strength grew, however, enhancing the toughness of the material. As a general rule, the mechanical strength of the plain and fibre-reinforced alkaline concretes studied was higher than exhibited by conventional ordinary Portland cement concrete prepared with similar proportions of cement and fibre.En este estudio se investigó el comportamiento mecánico de hormigones alternativos reforzados con fibras de acero, basados en una escoria siderúrgica colombiana activada alcalinamente con waterglass (Na2SiO3.nH2O+NaOH. Las mezclas en estudio fueron preparadas con 400 kg de cemento y las fibras fueron incorporadas en proporciones de 40 kg y 120 kg por metro cúbico de hormigón, respectivamente. Se evaluó el comportamiento mecánico de los hormigones frente a esfuerzos de compresión, tracción indirecta y flexión a edades de curado de 7, 14 y 28 días. Los resultados obtenidos indican que la incorporación de fibras de acero en los hormigones alcalinos reduce la resistencia a la compresión a edades tempranas siendo superior la pérdida de resistencia a mayores volúmenes de fibra incorporados, mientras que la resistencia a la flexión y tracción indirecta se incrementan significativamente, mejorando la tenacidad del material. En términos generales, es posible concluir que el comportamiento mecánico exhibido por los hormigones

  19. Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer

    International Nuclear Information System (INIS)

    Akbarzadeh, H.; Maghsoudi, A.A.

    2010-01-01

    Carbon and glass fiber reinforced polymer (CFRP and GFRP) are two materials suitable for strengthening the reinforced concrete (RC) beams. Although many in situ RC beams are of continuous constructions, there has been very limited research on the behavior of such beams with externally applied FRP laminate. In addition, most design guidelines were developed for simply supported beams with external FRP laminates. This paper presents an experimental program conducted to study the flexural behavior and redistribution in moment of reinforced high strength concrete (RHSC) continuous beams strengthened with CFRP and GFRP sheets. Test results showed that with increasing the number of CFRP sheet layers, the ultimate strength increases, while the ductility, moment redistribution, and ultimate strain of CFRP sheet decrease. Also, by using the GFRP sheet in strengthening the continuous beam reduced loss in ductility and moment redistribution but it did not significantly increase ultimate strength of beam. The moment enhancement ratio of the strengthened continuous beams was significantly higher than the ultimate load enhancement ratio in the same beam. An analytical model for moment-curvature and load capacity are developed and used for the tested continuous beams in current and other similar studies. The stress-strain curves of concrete, steel and FRP were considered as integrity model. Stress-strain model of concrete is extended from Oztekin et al.'s model by modifying the ultimate strain. Also, new parameters of equivalent stress block are obtained for flexural calculation of RHSC beams. Good agreement between experiment and prediction values is achieved.

  20. Performance polymeric concrete with synthetic fiber reinforcement against reflective cracking in rigid pavement overlay

    International Nuclear Information System (INIS)

    Khan, N.U.; Khan, B.

    2012-01-01

    Cement concrete pavements are used for heavy traffic loads throughout the world owing to its better and economical performance. Placing of a concrete overlay on the existing pavement is the most prevalent rehabilitating method for such pavements, however, the problem associated with the newly placed overlay is the occurrence of reflective cracking. This paper presents an assessment of the performance of polymeric concrete with synthetic fiber reinforcement against reflective cracking in an overlay system. The performance of polymeric concrete with synthetic fibers as an overlay material is measured in terms of the load-deflection, strain-deflection and load-strain behavior of beams of the polymeric concrete. For this purpose, five types of beams having different number of fiber wires and position are tested for flexure strength. Deflection/strains for each increment of load are recorded. In addition, cubes of plain concrete and of concrete with synthetic fiber needles were tested after 7 and 28 days for compressive strengths. Finite element models in ANSYS software for the beams have also been developed. Beams with greater number of longitudinal fiber wires displayed relatively better performance against deflection whilst beams with synthetic fiber needles showed better performance against strains. Thus, polymeric concrete overlay with fiber reinforcement will serve relatively better against occurrence of reflective cracking. (author)

  1. Punching shear in reinforced concrete flat slabs with hole adjacent to the column and moment transfer

    Directory of Open Access Journals (Sweden)

    D. C. Oliveira

    Full Text Available The structural behavior and the ultimate punching shear resistance of internal reinforced concrete flat slab-column connections, with one hole adjacent to the column, with or without flexural moment transfer of the slab to the column was investigated. Main variables were: the existence whether or not hole, flexural reinforcement layout and ratio, the direction and sense of the moment transferred and the eccentricity of the load (M (moment transferred to column / V (shear ratio at the connection - 0,50 m or 0,25 m. Seven internal slab-column joining were tested and ultimate loads, cracking, deflections, concrete and reinforcement strains were analyzed. The existence of hole adjacent to the smaller column dimension, the hole dimension, flexural reinforcement rate and placing, the variation of relation Mu/Vu in function of the load, and, than, of eccentricity of the load, influenced the slabs behavior and rupture load. Test results were compared with the estimations from CEB-FIP/MC1990 [7], EC2/2004 [12], ACI-318:2011 [1] and NBR 6118:2007 [5]. ACI [1] and EC2 [12] presented most conservative estimates, although have presented some non conservative estimates. Brazilian NBR [5], even though being partly based in EC2 [12], presented smaller conservative estimates and more non conservative estimates. A modification on all codes is proposed for taking in account the moment caused by the eccentricity at the critical perimeter for slabs with holes.

  2. Strength and Microstructure of Concrete with Iron Ore Tailings as Replacement for River Sand

    Directory of Open Access Journals (Sweden)

    Umara Shettima Ali

    2018-01-01

    Full Text Available River Sand is one of the basic ingredients used in the production of concrete. Consequently, continuous consumption of sand in construction industry contributes significantly to depletion of natural resources. To achieve more sustainable construction materials, this paper reports the use of iron ore tailings (IOT as replacement for river sand in concrete production. IOT is a waste product generated from the production of iron ore and disposed to land fill without any economic value. Concrete mixtures containing different amount of IOT were designed for grade C30 with water to cement ratio of 0.60. The percentage ratios of the river sand replacements by IOT were 25%, 50%, 75% and 100%. Concrete microstructure test namely, XRD and Field Emission Scanned Electron Microscopic/Energy dispersive X-ray Spectroscopy (FESEM/EDX were conducted for control and IOT concretes in order to determine the interaction and performance of the concrete containing IOT. Test results indicated that the slump values of 130 mm and 80 to 110 mm were recorded for the control and IOT concretes respectively. The concrete sample of 50% IOT recorded the highest compressive strength of 37.7 MPa at 28 days, and the highest flexural strength of 5.5 MPa compared to 4.7 MPa for reference concrete. The texture of the IOT is rough and angular which was able to improve the strength of the concrete.

  3. Strength and Microstructure of Concrete with Iron Ore Tailings as Replacement for River Sand

    Science.gov (United States)

    Umara Shettima, Ali; Ahmad, Yusof; Warid Hussin, Mohd; Zakari Muhammad, Nasiru; Eziekel Babatude, Ogunbode

    2018-03-01

    River Sand is one of the basic ingredients used in the production of concrete. Consequently, continuous consumption of sand in construction industry contributes significantly to depletion of natural resources. To achieve more sustainable construction materials, this paper reports the use of iron ore tailings (IOT) as replacement for river sand in concrete production. IOT is a waste product generated from the production of iron ore and disposed to land fill without any economic value. Concrete mixtures containing different amount of IOT were designed for grade C30 with water to cement ratio of 0.60. The percentage ratios of the river sand replacements by IOT were 25%, 50%, 75% and 100%. Concrete microstructure test namely, XRD and Field Emission Scanned Electron Microscopic/Energy dispersive X-ray Spectroscopy (FESEM/EDX) were conducted for control and IOT concretes in order to determine the interaction and performance of the concrete containing IOT. Test results indicated that the slump values of 130 mm and 80 to 110 mm were recorded for the control and IOT concretes respectively. The concrete sample of 50% IOT recorded the highest compressive strength of 37.7 MPa at 28 days, and the highest flexural strength of 5.5 MPa compared to 4.7 MPa for reference concrete. The texture of the IOT is rough and angular which was able to improve the strength of the concrete.

  4. Properties of dune sand concrete containing coffee waste

    Directory of Open Access Journals (Sweden)

    Mohamed Guendouz

    2018-01-01

    Full Text Available In the last years, an increase of coffee beverages consumption has been observed all over the world; and its consumption increases the waste coffee grounds which will become an environmental problems. Recycling of this waste to produce new materials like sand concrete appears as one of the best solutions for reduces the problem of pollution. This work aims to study the possibility of recycling waste coffee grounds (Spent Coffee Grounds (SCG as a fine aggregate by replacing the sand in the manufacturing of dune sand concrete. For this; sand concrete mixes were prepared with substitution of sand with the spent coffee grounds waste at different percentage (0%, 5%, 10%, 15% and 20% by volume of the sand in order to study the influence of this wastes on physical (Workability, bulk density and porosity, mechanical (compressive and flexural strength and Thermal (Thermal conductivity and thermal diffusivity properties of dune sand concrete. The results showed that the use of spent coffee grounds waste as partial replacement of natural sand contributes to reduce workability, bulk density and mechanical strength of sand concrete mixes with an increase on its porosity. However, the thermal characteristics are improved and especially for a level of 15% and 20% of substitution. So, it is possible to obtain an insulating material which can be used in the various types of structural components. This study ensures that reusing of waste coffee grounds in dune sand concrete gives a positive approach to reduce the cost of materials and solve some environmental problems.

  5. Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties.

    Science.gov (United States)

    Akhtar, Ali; Sarmah, Ajit K

    2018-03-01

    In this study, biochar, a carbonaceous solid material produced from three different waste sources (poultry litter, rice husk and pulp and paper mill sludge) was utilized to replace cement content up to 1% of total volume and the effect of individual biochar mixed with cement on the mechanical properties of concrete was investigated through different characterization techniques. A total of 168 samples were prepared for mechanical testing of biochar added concrete composites. The results showed that pulp and paper mill sludge biochar at 0.1% replacement of total volume resulted in compressive strength close to the control specimen than the rest of the biochar added composites. However, rice husk biochar at 0.1% slightly improved the splitting tensile strength with pulp and papermill sludge biochar produced comparable values. Biochar significantly improved the flexural strength of concrete in which poultry litter and rice husk biochar at 0.1% produced optimum results with 20% increment than control specimens. Based on the findings, we conclude that biochar has the potential to improve the concrete properties while replacing the cement in minor fractions in conventional concrete applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Behaviour of Nano Silica in Tension Zone of High Performance Concrete Beams

    Science.gov (United States)

    Jaishankar, P.; Vivek, D.

    2017-07-01

    High performance concrete (HPC) is similar to High strength concrete (HSC).It is because of lowering of water to cement ratio, which is needed to attain high strength and generally improves other properties. This concrete contains one or more cementitious materials such as fly ash, Silica fume or ground granulated blast furnace slag and usually a super plasticizer. The term ‘high performance’ is somewhat different because the essential feature of this concrete is that it’s ingredients and proportions are specifically chosen so as to have particularly appropriate properties for the expected use of the structure such as high strength and low permeability. Usage of nano scale properties such as Nano SiO2 can result in dramatically improved properties from conventional grain size materials of same chemical composition. This project is more interested in evaluate the behaviour of nano silica in concrete for 5%, 10%, and 15% volume fraction of cement. Flexural test for beams were conducted with two point loads, at different percentage as mentioned above. From results interpolated, Nano silica with higher order replacement gives optimized results compared to control specimens.

  7. Fatigue testing of wood-concrete composite beams.

    Science.gov (United States)

    2013-05-01

    Currently, wood-concrete composite structural members are usually applied in building structures. There are a relatively small number (in the low 100s) of known bridge applications involving wood-concrete composites. A problem with using these novel ...

  8. Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls

    Science.gov (United States)

    Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu

    2017-10-01

    In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.

  9. 49 CFR 572.85 - Lumbar spine flexure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Lumbar spine flexure. 572.85 Section 572.85... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES 9-Month Old Child § 572.85 Lumbar spine flexure. (a) When subjected to continuously applied force in accordance with paragraph (b...

  10. Mechanical properties of self-compacting concrete state-of-the-art report of the RILEM technical committee 228-MPS on mechanical properties of self-compacting concrete

    CERN Document Server

    Schutter, Geert

    2014-01-01

    The State-of-the-Art Report of RILEM Technical Committee 228-MPS on Mechanical properties of Self-Compacting Concrete (SCC) summarizes an extensive body of information related to mechanical properties and mechanical behaviour of SCC. Due attention is given to the fact that the composition of SCC varies significantly. A wide range of  mechanical properties are considered, including compressive strength, stress-strain relationship, tensile and flexural strengths, modulus of elasticity, shear strength, effect of elevated temperature, such as fire spalling and residual properties after fire, in-situ properties, creep, shrinkage, bond properties, and structural behaviour. A chapter on fibre-reinforced SCC is included, as well as a chapter on specialty SCC, such as light-weight SCC, heavy-weight SCC, preplaced aggregate SCC, special fibre reinforced SCC, and underwater concrete.

  11. An Investigation into the Use of Manufactured Sand as a 100% Replacement for Fine Aggregate in Concrete

    Directory of Open Access Journals (Sweden)

    Martins Pilegis

    2016-06-01

    Full Text Available Manufactured sand differs from natural sea and river dredged sand in its physical and mineralogical properties. These can be both beneficial and detrimental to the fresh and hardened properties of concrete. This paper presents the results of a laboratory study in which manufactured sand produced in an industry sized crushing plant was characterised with respect to its physical and mineralogical properties. The influence of these characteristics on concrete workability and strength, when manufactured sand completely replaced natural sand in concrete, was investigated and modelled using artificial neural networks (ANN. The results show that the manufactured sand concrete made in this study generally requires a higher water/cement (w/c ratio for workability equal to that of natural sand concrete due to the higher angularity of the manufactured sand particles. Water reducing admixtures can be used to compensate for this if the manufactured sand does not contain clay particles. At the same w/c ratio, the compressive and flexural strength of manufactured sand concrete exceeds that of natural sand concrete. ANN proved a valuable and reliable method of predicting concrete strength and workability based on the properties of the fine aggregate (FA and the concrete mix composition.

  12. An Investigation into the Use of Manufactured Sand as a 100% Replacement for Fine Aggregate in Concrete.

    Science.gov (United States)

    Pilegis, Martins; Gardner, Diane; Lark, Robert

    2016-06-02

    Manufactured sand differs from natural sea and river dredged sand in its physical and mineralogical properties. These can be both beneficial and detrimental to the fresh and hardened properties of concrete. This paper presents the results of a laboratory study in which manufactured sand produced in an industry sized crushing plant was characterised with respect to its physical and mineralogical properties. The influence of these characteristics on concrete workability and strength, when manufactured sand completely replaced natural sand in concrete, was investigated and modelled using artificial neural networks (ANN). The results show that the manufactured sand concrete made in this study generally requires a higher water/cement (w/c) ratio for workability equal to that of natural sand concrete due to the higher angularity of the manufactured sand particles. Water reducing admixtures can be used to compensate for this if the manufactured sand does not contain clay particles. At the same w/c ratio, the compressive and flexural strength of manufactured sand concrete exceeds that of natural sand concrete. ANN proved a valuable and reliable method of predicting concrete strength and workability based on the properties of the fine aggregate (FA) and the concrete mix composition.

  13. Note on nonlinear seismic response of reinforced concrete structures with low initial periods

    International Nuclear Information System (INIS)

    Sozen, M.A.

    1985-01-01

    This note was prepared to illustrate by specific examples an opinion on the seismic response of reinforced concrete structures with low initial periods. The object is to point out what the writer considers to be important in relation to the behavior of such structures at levels of ground shaking higher than indicated by design criteria. Structures of concern are assumed to have low initial periods. A structure with a low initial period is assumed to have both of two attributes: (a) its flexural stiffness is high so that its total overall lateral deformation is not dominated by flexural deformation and (b) its calculated period is below the one at which the calculated response spectrum may be idealized to change from the nearly-constant acceleration to the nearly-constant velocity response range

  14. Numerical Study Of The Effects Of Preloading, Axial Loading And Concrete Shrinkage On Reinforced Concrete Elements Strengthened By Concrete Layers And Jackets

    International Nuclear Information System (INIS)

    Lampropoulos, A. P.; Dritsos, S. E.

    2008-01-01

    In this study, the technique of seismic strengthening existing reinforced concrete columns and beams using additional concrete layers and jackets is examined. The finite element method and the finite element program ATENA is used in this investigation. When a reinforced jacket or layer is being constructed around a column it is already preloaded due to existing service loads. This effect has been examined for different values of the axial load normalized to the strengthened column. The techniques of strengthening with a concrete jacket or a reinforced concrete layer on the compressive side of the column are examined. Another phenomenon that is examined in this study is the shrinkage of the new concrete of an additional layer used to strengthen an existing member. For this investigation, a simply supported beam with an additional reinforced concrete layer on the tensile side is examined. The results demonstrate that the effect of preloading is important when a reinforced concrete layer is being used with shear connectors between the old and the new reinforcement. It was also found that the shrinkage of the new concrete reduces the strength of the strengthened beam and induces an initial sliding between the old and the new concrete

  15. Evaluate the capability and accuracy of response-2000 program in prediction of the shear capacities of reinforced and prestressed concrete members

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Metwally

    2012-08-01

    Member response analysis and sectional analysis were both used in Response-2000 to predict the behavior of the beams. Member response calculates the full member behavior including the deflection and curvature along the member length, as well as predicted failure modes. The analysis was performed by specifying the length subjected to shear and any constant moment region. Response-2000 provided a very good prediction of experimental behavior when compared to a database of 534 beams tested in shear. These include prestressed and reinforced sections, very large footing-like sections, sections made with very high strength concrete and elements with unusual geometry. All are predicted well. The results include that Response-2000 can predict the failure shear with an average experimental over predicted shear ratio of 1.05 with a coefficient of variation of 12%. This compares favorably to the ACI 318-08 [2] Code prediction ratios that have an average of 1.20 and a coefficient of variation of 32%.

  16. Flexural Properties of Activated Carbon Filled Epoxy Nano composites

    International Nuclear Information System (INIS)

    Khalil, H.P.S.A.; Khalil, H.P.S.A.; Alothman, O.Y.; Paridah, M.T.; Zainudin, E.S.

    2014-01-01

    Activated carbon (AC) filled epoxy nano composites obtained by mixing the desired amount of nano AC viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nano composites with 1 %, and 5 % filler loading were measured. In terms of flexural strength and modulus, a significant increment was observed with addition of 1 % vol and 5 % vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium hydroxide and phosphoric acid) on the flexural properties of epoxy nano composites were also investigated. Flexural strength of activated carbon-bamboo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy nano composites showed almost same value in case of 5 % potassium hydroxide activated carbon. Flexural strength of potassium hydroxide activated carbon-based epoxy nano composites was higher than phosphoric acid activated carbon. The flexural toughness of both the potassium hydroxide and phosphoric acid activated carbon reinforced composites range between 0.79 - 0.92 J. It attributed that developed activated carbon filled epoxy nano composites can be used in different applications. (author)

  17. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters

    Directory of Open Access Journals (Sweden)

    S. Chowdhury

    2015-11-01

    Full Text Available In this study, Wood Ash (WA prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45 and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20% including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM, strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  18. Cyclic behavior, development, and characteristics of a ductile hybrid fiber-reinforced polymer (DHFRP) for reinforced concrete members

    Science.gov (United States)

    Hampton, Francis Patrick

    Reinforced concrete (R/C) structures especially pavements and bridge decks that constitute vital elements of the infrastructure of all industrialized societies are deteriorating prematurely. Structural repair and upgrading of these structural elements have become a more economical option for constructed facilities especially in the United States and Canada. One method of retrofitting concrete structures is the use of advanced materials. Fiber reinforced polymer (FRP) composite materials typically are in the form of fabric sheets or reinforcing bars. While the strength and stiffness of the FRP is high, composites are inherently brittle, with limited or no ductility. Conventional FRP systems cannot currently meet ductility demand, and therefore, may fail in a catastrophic failure mode. The primary goal of this research was to develop an optimized prototype 10-mm diameter DHFRP bar. The behavior of the bar under full load reversals to failure was investigated. However, this bar first needed to be designed and manufactured in the Fibrous Materials Research at Drexel University. Material properties were determined through testing to categorize the strength properties of the DHFRP. Similitude was used to demonstrate the scaling of properties from the original model bars. The four most important properties of the DHFRP bars are sufficient strength and stiffness, significant ductility for plasticity to develop in the R/C section, and sufficient bond strength for the R/C section to develop its full strength. Once these properties were determined the behavior of reinforced concrete members was investigated. This included the testing of prototype-size beams under monotonic loading and model and prototype beam-columns under reverse cyclic loading. These tests confirmed the large ductility exhibited by the DHFRP. Also the energy absorption capacity of the bar was demonstrated by the hysteretic behavior of the beam-columns. Displacement ductility factors in the range of 3

  19. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    Directory of Open Access Journals (Sweden)

    Cuizhen Xue

    2016-01-01

    Full Text Available The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, and antipermeability and antifrost performances. Also the effects of CWCPM on the morphology, hydration products, and pore structure characteristics of the cement-based materials were analyzed. The results are encouraging. Although CWCPM slightly decreases the mechanical properties of the C20 concrete and the 7 d compressive strengths of the C25 and C30 concretes, the 28 d compressive strength and the 90 d flexural strength of the C25 and C30 concretes are improved when CWCPM has a dosage less than 30%; CWCPM improves the antipermeability and antifrost performances of the concretes due to its filling and pozzolanic effects; the best improvement is obtained at CWCPM dosage of 30%; CWCPM optimizes cement hydration products, refines concrete pore structure, and gives rise to reasonable pore size distribution, therefore significantly improving the durability of the concretes.

  20. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst.

    Science.gov (United States)

    Gurdián, Hebé; García-Alcocel, Eva; Baeza-Brotons, Francisco; Garcés, Pedro; Zornoza, Emilio

    2014-04-21

    The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash) and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes.

  1. A Review on the Development of New Materials for Construction of Prestressed Concrete Railway Sleepers

    Science.gov (United States)

    Raj, Anand; Nagarajan, Praveen; Shashikala, A. P.

    2018-03-01

    Railways form the backbone of all economies, transporting goods, and passengers alike. Sleepers play a pivotal role in track performance and safety in rail transport. This paper discusses in brief about the materials that have been used in making sleepers in the early stages of railways. Extensive studies have been carried out on the static, dynamic and impact analysis of prestressed sleepers all around the globe. It has been shown that majority of the sleepers do not last till their expected design life resulting in massive replacement and repair cost. The primary reasons leading to the failure of sleepers have been summarised. This article also highlights the use of new materials developed recently for the construction of prestressed concrete sleepers to improve the performance and life of railway sleepers. Use of geopolymer concrete and steel fibre reinforced concrete, assist in the reduction of flexural cracking, whereas rubber concrete enhances the impact resistance of concrete by three folds. This paper presents a review of state of the art of new materials for railway sleepers.

  2. Evaluating The Performance of Asphalt Concrete Mixes by Utilizing Carbon Black as Asphalt Modifier

    Directory of Open Access Journals (Sweden)

    Aliaa Faleh Al.ani

    2018-02-01

    Full Text Available Carbon black produced from several factories in Iraq is expected to provide a reinforcing agent for asphalt paving materials. Carbon black has many characteristics that distinguish  it from conventional mineral fillers, as well as their different function in pavement mixtures. Theory and exercise advanced  in the inclusive utilize of carbon black as a reinforcing agent for rubber has led to concept of asphalt reinforcement. The very fine particles of micro filler added in different contents will be dispersed in asphalt cement improving the mechanical properties of asphalt concrete mixes. In this Four percentages rates were utilized; 0, 3, 6, and 9 percent adding to asphalt grade (60-70. Mixes of asphalt concrete were destined at their optimum asphalt content (OAC then experienced to assess their engineering characteristics that contain moisture of damage, permanent deformation, modulus of resilient and characteristics of fatigue. These characteristics have been assessed utilizing indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixtures improved with carbon black were existed to have amended permanent deformation and fatigue characteristics, else exhibited high resilient modulus and lower moisture susceptibility. Result showed that a rate changed from 3 to 9 percent has shown an increase in resilient modulus for increment of carbon black and modulus of resilient for mixes with 9 percent carbon black was 1.4 times that for mixes with 0 percent carbon black. The altering of carbon black from a range (3-9 percent has modified the fatigue property of the asphalt concrete mixes as determined by flexural test, Significantly, to modify the asphalt concrete manner taken the  percent of carbon black 6, and to produce the mixes more durable , higher resistance to distresses by adding the local knowledge.

  3. Effects of aggregate grading on the properties of steel fibre-reinforced concrete

    Science.gov (United States)

    Acikgens Ulas, M.; Alyamac, K. E.; Ulucan, Z. C.

    2017-09-01

    This study investigates the effects of changing the aggregate grading and maximum aggregate size (D max ) on the workability and mechanical properties of steel fibre-reinforced concrete (SFRC). Four different gradations and two different D max were used to produce SFRC mixtures with constant cement dosages and water/cement ratios. Twelve different concrete series were tested. To observe the properties of fresh concrete, slump and Ve-Be tests were performed immediately after the mixing process to investigate the effects of time on workability. The hardened properties, such as the compressive, splitting tensile and flexural strengths, were also evaluated. In addition, the toughness of the SFRC was calculated. Based on our test results, we can conclude that the grading of the aggregate and the D max have remarkable effects on the properties of fresh and hardened SFRC. In addition, the toughness of the SFRC was influenced by changing the grading of the aggregate and the D max .

  4. Application of concrete filled steel bearing wall to inner concrete structure fro PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sekimoto, Hisashi; Tanaka, Mamoru; Inoue, Kunio; Fukihara, Masaaki; Akiyama, Hiroshi.

    1992-01-01

    'Concrete filled steel bearing wall', applied to the inner concrete structure for PWR nuclear power plant, was developed for rationalization of construction procedure at site. It was concluded through preliminary studies that this new type of wall, where concrete is placed between steel plates, is best suited for the strength members of the above structure, due to the high strength and ductility of surface steel plates and the confinement effect of filled concrete. To verify the behavior from the elastic range to the inelastic range, the ultimate strength and the failure mechanism, and to clarify experimentally the structural integrity of the inner concrete structure, which was composed of a concrete filled steel bearing wall, against seismic lateral loads, horizontal loading tests using a 1/10th scale model of the inner concrete structure for PWR nuclear power plant were conducted. As a result of the tests, the inner concrete structure composed of a concrete filled steel bearing wall appeared to have a larger load carrying capacity and a higher ductility as compared with that composed of a reinforced concrete wall. (author)

  5. Impact Resistance of Rubberized Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Eehab Khalil

    2015-04-01

    Full Text Available Impact loads due to ship collision on irrigation structures is significantly decreasing their durability. Loss of material and degradation are quite common problems facing lock walls and piers. In the current research, rubberized self-compacting concrete (SCC was used to investigate problems associated with impact. SCC with cement kiln dust cement replacement was used for that purpose. Concrete specimens were prepared with different crumb rubber ratios of 10% (RSCC-10, 20% (RSCC-20, 30% (RSCC-30, and 40% (RSCC-40 sand replacement by volume. Standard compressive, flexure, and splitting strength tests were conducted to monitor the effect of the added rubber on concrete behavior. Moreover, impact testing program was applied to specific specimens, cylinder of diameter 200 mm and thickness 50 mm, according to ACI committee 544 procedures. The number of blows to first and ultimate cracks was determined. The relationship between the mechanical properties and impact resilience is also presented. With the increase in rubber percentage the resistance to impact increased, but there was a decrease in specimen strength and modulus of elasticity. The variation in results was discussed and mix RSCC-30 exhibited the best impact resistance, 3 times over control mix with 40% reduction of compressive strength.

  6. Experimental testing of a self-sensing FRP-concrete composite beam using FBG sensors

    Science.gov (United States)

    Wang, Yanlei; Hao, Qingduo; Ou, Jinping

    2009-03-01

    A new kind of self-sensing fiber reinforced polymer (FRP)-concrete composite beam, which consists of a FRP box beam combined with a thin layer of concrete in the compression zone, was developed by using two embedded FBG sensors in the top and bottom flanges of FRP box beam at mid-span section along longitudinal direction, respectively. The flexural behavior of the proposed self-sensing FRP-concrete composite beam was experimentally studied in four-point bending. The longitudinal strains of the composite beam were recorded using the embedded FBG sensors as well as the surfacebonded electric resistance strain gauges. Test results indicate that the FBG sensors can faithfully record the longitudinal strain of the composite beam in tension at bottom flange of the FRP box beam or in compression at top flange over the entire load range, as compared with the surface-bonded strain gauges. The proposed self-sensing FRP-concrete composite beam can monitor its longitudinal strains in serviceability limit state as well as in strength limit state, and will has wide applications for long-term monitoring in civil engineering.

  7. Properties of Recycled Aggregate Concrete Reinforced with Polypropylene Fibre

    Directory of Open Access Journals (Sweden)

    Wan Mohammad Wan Nur Syazwani

    2016-01-01

    Full Text Available This research work is aimed to investigate how the addition of various proportion of polypropylene fibre affects the mechanical strength and permeability characteristics of recycled aggregate concrete (RAC which has been produced with treated coarse recycled concrete aggregate (RCA. Further research on RAC properties and their applications is of great importance as the scarcity of virgin aggregate sources in close proximity to major urban centers is becoming a worldwide problem. In this study, the hardened RAC properties at the curing age of 7 and 28 days such as compressive strength, flexural strength, ultrasonic pulse velocity (UPV, water absorption and total porosity were evaluated and compare with control specimens. Experimental result indicates that although the inclusion of the treated coarse RCA can enhance the mechanical strength and permeability properties of RAC, Further modification by addition of polypropylene fibre can optimize the results.

  8. The Influence of the Prestress of Reinforced Steel on the Behaviour of the Flexural Elements of Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Aidas Jokūbaitis

    2013-12-01

    Full Text Available This article briefly discusses the essence of prestressed concrete,its advantages and disadvantages. The analysis of prestress lossesis done according to different standards. The paper explainspretensioning force and selection of its eccentricity as well asanalyzes the influence of beam cracking according to limitationson concrete tensile and compressive stresses.

  9. The Structure and Flexural Properties of Typha Leaves

    Directory of Open Access Journals (Sweden)

    Jingjing Liu

    2017-01-01

    Full Text Available The Typha leaf has a structure of lightweight cantilever beam, exhibiting excellent mechanical properties with low density. Especially, the leaf blade evolved high strength and low density with high porosity. In this paper, the structure of Typha leaf was characterized by microcomputed tomography (Micro-CT and scanning electron microscopy (SEM, and the relationship with flexural properties was analyzed. The three-point bending test was performed on leaves to examine flexural properties, which indicated that the flexural properties vary from the base to the apex in gradient. The cross-sectional geometry shape of the leaf blade presented a strong influence on the optimized flexural stiffness. The load carrying capacity of the leaf depended on the development level of the epidermal tissue, the vascular bundle, the mechanical tissue, and the geometric properties. The investigation can be the basis for lightweight structure design and the application in the bionic engineering field.

  10. Evaluation of using crushed brick as coarse aggregate in concrete layer within rigid highway pavement

    Directory of Open Access Journals (Sweden)

    Alwash Ali

    2018-01-01

    Full Text Available Most of the present studies related to the field of highway pavement construction technique tend to make use of the local available materials as substitutes for the imported and necessary materials for some of the practical application. For this reason this research aims at looking for the prospect of used locally available aggregate such as crushed clay bricks for the aim of producing proper concrete with suitable thermal and mechanical properties. Experimental investigations have been carried out to asses the effect of partial replacement of coarse aggregate by free manually crushed Brick with percentages (10, 20, 30 and 40% of virgin coarse aggregate in concrete mix for highway rigid pavement. While the percentage (0% replacement represent reference mix. Mix proportion based on the target of compressive strength for all replacement percentage of (33 MPa at (28 days to achieve AASHTO requirement for highway concrete rigid pavement .The results of flexural strength, modulus of elasticity, density and thermal conductivity refers to better performance (less thickness of concrete layer with large spacing between contraction or expansion joints and less stresses due to warping induced concrete layer for concrete mix with 20% crushed brick as replacement of coarse aggregate.

  11. Experimental study on flexural members strengthened with variable bonded pre-stressed CFRP plates

    Science.gov (United States)

    Zhang, Baojing; Shang, Shouping

    2017-08-01

    Aiming at the problem that the structural adhesive between CFRP and concrete interface is aging with time and then lost the bond strength, the concept of variable bond prestressed CFRP is put forward. In order to obtain the bearing capacity and failure pattern of the beam strengthened with variable bonding prestressed CFRP plate, three concrete beams of 5.6m long were strengthened by the technology of non-bonding, bonding and variable bonding strengthened with prestressed CFRP plates respectively, the mechanical properties and crack changes of the test beams under three conditions had been compared and analyzed. Test results show that the variable bond strengthened with prestressed CFRP plates with unbonded prestressed CFRP, cracking load was increased by 36%, yield load increased by 4%, the ultimate load increased by 12%; The reinforcement technology of variable bonding prestressed CFRP plate has the characteristics of non-bonding and bonding prestressed CFRP plate reinforcement, which is similar to that of the bonded reinforcement in the early stage of the development of the cracks, then is gradually developing into the non-bonding prestressed reinforcement, the crack spacing and width have the same characteristics as the bonding reinforcement (both crack spacing and width are small), which is more conducive to enhance the durability of the structure.

  12. Lightweight concrete with Algerian limestone dust. Part II: study on 50% and 100% replacement to normal aggregate at timely age

    Directory of Open Access Journals (Sweden)

    S. Kitouni

    2015-12-01

    Full Text Available Abstract A control lightweight concrete (LWC mixture made with 50% and 100% of limestone as a replacement of coarse aggregates in weight was prepared. Limestone is used for economical and environmental concern. The concrete samples were cured at 65% relative humidity at 20 ºC. The compressive and flexural tensile strengths, elastic modulus and Poisson's ratio of hardened concrete were measured. Laboratory compressive and tensile strength tests results showed that LWC can be produced by the use of limestone. The aim of this study is twofold: one is to design a lightweight concrete with the use of limestone that will provide an advantage of reduction in dead weight of a structure; and second is to obtain a more economical LWC mixture with the use of limestone.

  13. Effects of Basalt Fibres on Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    El-Gelani A. M.

    2018-01-01

    Full Text Available This paper presents the results of an experimental program carried out to investigate the effects of Basalt Fibre Reinforced Polymers (BFRP on some fundamental mechanical properties of concrete. Basalt fibres are formed by heating crushed basalt rocks and funnelling the molten basalt through a spinneret to form basalt filaments. This type of fibres have not been widely used till recently. Two commercially available chopped basalt fibres products with different aspect ratios were investigated, which are dry basalt (GeoTech Fibre and basalt pre-soaked in an epoxy resin (GeoTech Matrix .The experimental work included compression tests on 96 cylinders made of multiple batches of concrete with varying amounts of basalt fibre additives of the two mentioned types, along with control batches containing no fibres. Furthermore, flexural tests on 24 prisms were carries out to measure the modulus of rupture, in addition to 30 prisms for average residual strength test. Results of the research indicated that use of basalt fibres has insignificant effects on compressive strength of plain concrete, where the increase in strength did not exceed about 5%. On the other hand, results suggest that the use of basalt fibres may increase the compressive strength of concrete containing fly as up top 40%. The rupture strength was increased also by 8% to 28% depending on mix and fibre types and contents. Finally, there was no clear correlation between the average residual strength and ratios of basalt fibres mixed with the different concrete batches.

  14. Retrofitting of Reinforced Concrete Beams using Reactive Powder Concrete (RPC)

    Science.gov (United States)

    Karthik, S.; Sundaravadivelu, Karthik

    2017-07-01

    Strengthening of existing damaged structures is one of the leading studies in civil engineering. The purpose of retrofitting is to structurally treat the member with an aim to restore the structure to its original strength. The focus of this project is to study the behaviour of damaged Reinforced Concrete beam retrofitted with Reactive Powder Concrete (RPC) Overlay. Reinforced concrete beams of length 1200 mm, width 100 mm and depth 200 mm were casted with M30 grade of concrete in the laboratory and cured for 28 days. One beam is taken as control and are tested under two point loading to find out ultimate load. Remaining beams are subjected to 90 % ultimate load of control beams. The partially damaged beams are retrofitted with Reactive Powder Concrete Overlay at the full tension face of the beam and side overlay depends upon the respectable retrofitting techniques with 10 mm and 20 mm thick layer to find optimum. Materials like steel fibres are added to enhance the ductility by eliminating coarse particle for homogeneity of the structure. Finally, the modes of failure for retrofitted beams are analysed experimentally under two point loading & compared the results with Control beam.

  15. Feasibility Assessment of Incorporating Copper Slag as a Sand Substitute to Attain Sustainable Production Perspective in Concrete

    Directory of Open Access Journals (Sweden)

    Akshaykumar M. Bhoi

    2018-01-01

    Full Text Available Motivated by the sustainable production perspective, a laboratory testing program is exercised to ascertain the feasibility of utilizing copper slag in place of the natural fine aggregate in concrete. Totally, fifteen concrete mixtures were prepared to incorporate copper slag in place of the fine aggregate in concrete. The attributes of concrete specimens made with varying proportions of copper slag were compared (ranging from 0% to 100% substitution at a w/c ratio of 0.44, and the optimum percentage of copper slag was decided. The w/c ratio in the mix containing optimum copper slag percentage was then varied (from 0.42 to 0.36 to examine the influence of the change in the quantity of available water on the strength attributes of concrete. Concrete specimens were assessed for workability, density, compressive strength, flexural strength, and split tensile strength. SEM images and X-ray diffractograms of concrete specimens were also studied. The results obtained indicated a significant increase in workability and a small rise in the bulk density of concrete. The study concludes that substituting 60% sand with copper slag results in better compressive strength compared to control concrete and can be improved further by reducing the w/c ratio in the mix.

  16. An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.

    Science.gov (United States)

    Park, Seung Bum; Jang, Young Il; Lee, Jun; Lee, Byung Jae

    2009-07-15

    This study evaluates quality properties and toxicity of coal bottom ash coarse aggregate and analyzes mechanical properties of porous concrete depending on mixing rates of coal bottom ash. As a result, soundness and resistance to abrasion of coal bottom ash coarse aggregate were satisfied according to the standard of coarse aggregate for concrete. To satisfy the standard pertaining to chloride content, the coarse aggregates have to be washed more than twice. In regards to the result of leaching test for coal bottom ash coarse aggregate and porous concrete produced with these coarse aggregates, it was satisfied with the environment criteria. As the mixing rate of coal bottom ash increased, influence of void ratio and permeability coefficient was very little, but compressive and flexural strength decreased. When coal bottom ash was mixed over 40%, strength decreased sharply (compressive strength: by 11.7-27.1%, flexural strength: by maximum 26.4%). Also, as the mixing rate of coal bottom ash increased, it was confirmed that test specimens were destroyed by aggregate fracture more than binder fracture and interface fracture. To utilize coal bottom ash in large quantities, it is thought that an improvement method in regards to strength has to be discussed such as incorporation of reinforcing materials and improvement of aggregate hardness.

  17. Analytical Study on the Flexural Behavior of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates

    International Nuclear Information System (INIS)

    Woo, S. K.; Song, Y. C.; Lee, H. P.; Byun, K. J.

    2007-01-01

    This study aims to predict the behavior of concrete structures strengthened with prestressed CFRP plates with more reliability, and then develop a nonlinear structural analysis model that can be applied more effectively in reinforcement designs, after examining the behavior characteristics of CFRP plates and epoxy, and the behavior of the boundary layer between CFRP plates and concrete

  18. Strength and fracture energy of foamed concrete incorporating rice husk ash and polypropylene mega-mesh 55

    Science.gov (United States)

    Jaini, Z. M.; Rum, R. H. M.; Boon, K. H.

    2017-10-01

    This paper presents the utilization of rice husk ash (RHA) as sand replacement and polypropylene mega-mesh 55 (PMM) as fiber reinforcement in foamed concrete. High pozzolanic reaction and the ability to become filler make RHA as a strategic material to enhance the strength and durability of foamed concrete. Furthermore, the presence of PMM optimizes the toughness of foamed concrete in resisting shrinkage and cracking. In this experimental study, cube and cylinder specimens were prepared for the compression and splitting-tensile tests. Meanwhile, notched beam specimens were cast for the three-point bending test. It was found that 40% RHA and 9kg/m3 PMM contribute to the highest strength and fracture energy. The compressive, tensile and flexural strengths are 32MPa, 2.88MPa and 6.68MPa respectively, while the fracture energy achieves 42.19N/m. The results indicate high potential of RHA and PMM in enhancing the mechanical properties of foamed concrete.

  19. Comparison of Flexural Strength of Different CAD/CAM PMMA-Based Polymers.

    Science.gov (United States)

    Alp, Gülce; Murat, Sema; Yilmaz, Burak

    2018-01-28

    To compare the flexural strength of different computer-aided design/computer-aided manufacturing (CAD/CAM) poly(methyl methacrylate)-based (PMMA) polymers and conventional interim resin materials after thermocycling. Rectangular-shaped specimens (n = 15, for each material) (25 × 2 × 2 mm 3 ) were fabricated from 3 CAD/CAM PMMA-based polymers (Telio CAD [T]; M-PM-Disc [M]; Polident-PMMA [P]), 1 bis-acrylate composite resin (Protemp 4 [PT]), and 1 conventional PMMA (ArtConcept Artegral Dentine [C]) according to ISO 10477:2004 Standards (Dentistry-Polymer-Based Crown and Bridge Materials). The specimens were subjected to 10,000 thermocycles (5 to 55°C). Three-point flexural strength of the specimens was tested in a universal testing machine at a 1.0 mm/min crosshead speed, and the flexural strength data (σ) were calculated (MPa). The flexural strength values were statistically analyzed using 1-way ANOVA, and Tukey HSD post-hoc test for multiple comparisons (α = 0.05). Flexural strength values ranged between 66.1 ± 13.1 and 131.9 ± 19.8 MPa. There were significant differences among the flexural strengths of tested materials, except for between T and P CAD/CAM PMMA-based polymers (p > 0.05). CAD/CAM PMMA-based polymer M had the highest flexural strength and conventional PMMA had the lowest (p CAD/CAM PMMA-based T and P polymers had significantly higher flexural strength than the bis-acrylate composite resin (p CAD/CAM PMMA-based M (p CAD/CAM PMMA-based polymers was greater than the flexural strength of bis-acrylate composite resin, which had a greater flexural strength compared to conventional PMMA resin. © 2018 by the American College of Prosthodontists.

  20. Mechanical properties of two-way different configurations of prestressed concrete members subjected to axial loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaobi; Chen, Jian Yun; Xu, Qiang; Li, Jing [School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian (China)

    2015-08-15

    In order to analyze the mechanical properties of two-way different configurations of prestressed concrete members subjected to axial loading, a finite element model based on the nuclear power plant containments is demonstrated. This model takes into account the influences of different principal stress directions, the uniaxial or biaxial loading, and biaxial loading ratio. The displacement-controlled load is applied to obtain the stress-strain response. The simulated results indicate that the differences of principal stress axes have great effects on the stress-strain response under uniaxial loading. When the specimens are subjected to biaxial loading, the change trend of stress with the increase of loading ratio is obviously different along different layout directions. In addition, correlation experiments and finite element analyses were conducted to verify the validity and reliability of the analysis in this study.

  1. Recycling of waste glass as a partial replacement for fine aggregate in concrete.

    Science.gov (United States)

    Ismail, Zainab Z; Al-Hashmi, Enas A

    2009-02-01

    Waste glass creates serious environmental problems, mainly due to the inconsistency of waste glass streams. With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal. The properties of concretes containing waste glass as fine aggregate were investigated in this study. The strength properties and ASR expansion were analyzed in terms of waste glass content. An overall quantity of 80 kg of crushed waste glass was used as a partial replacement for sand at 10%, 15%, and 20% with 900 kg of concrete mixes. The results proved 80% pozzolanic strength activity given by waste glass after 28 days. The flexural strength and compressive strength of specimens with 20% waste glass content were 10.99% and 4.23%, respectively, higher than those of the control specimen at 28 days. The mortar bar tests demonstrated that the finely crushed waste glass helped reduce expansion by 66% as compared with the control mix.

  2. Compliance and control characteristics of an additive manufactured-flexure stage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, ChaBum; Tarbutton, Joshua A. [Department of Mechanical Engineering, University of South Carolina, 300 Main St., Columbia, South Carolina 29208 (United States)

    2015-04-15

    This paper presents a compliance and positioning control characteristics of additive manufactured-nanopositioning system consisted of the flexure mechanism and voice coil motor (VCM). The double compound notch type flexure stage was designed to utilize the elastic deformation of two symmetrical four-bar mechanisms to provide a millimeter-level working range. Additive manufacturing (AM) process, stereolithography, was used to fabricate the flexure stage. The AM stage was inspected by using 3D X-ray computerized tomography scanner: air-voids and shape irregularity. The compliance, open-loop resonance peak, and damping ratio of the AM stage were measured 0.317 mm/N, 80 Hz, and 0.19, respectively. The AM stage was proportional-integral-derivative positioning feedback-controlled and the capacitive type sensor was used to measure the displacement. As a result, the AM flexure mechanism was successfully 25 nm positioning controlled within 500 μm range. The resonance peak was found approximately at 280 Hz in closed-loop. This research showed that the AM flexure mechanism and the VCM can provide millimeter range with high precision and can be a good alternative to an expensive metal-based flexure mechanism and piezoelectric transducer.

  3. Compliance and control characteristics of an additive manufactured-flexure stage

    International Nuclear Information System (INIS)

    Lee, ChaBum; Tarbutton, Joshua A.

    2015-01-01

    This paper presents a compliance and positioning control characteristics of additive manufactured-nanopositioning system consisted of the flexure mechanism and voice coil motor (VCM). The double compound notch type flexure stage was designed to utilize the elastic deformation of two symmetrical four-bar mechanisms to provide a millimeter-level working range. Additive manufacturing (AM) process, stereolithography, was used to fabricate the flexure stage. The AM stage was inspected by using 3D X-ray computerized tomography scanner: air-voids and shape irregularity. The compliance, open-loop resonance peak, and damping ratio of the AM stage were measured 0.317 mm/N, 80 Hz, and 0.19, respectively. The AM stage was proportional-integral-derivative positioning feedback-controlled and the capacitive type sensor was used to measure the displacement. As a result, the AM flexure mechanism was successfully 25 nm positioning controlled within 500 μm range. The resonance peak was found approximately at 280 Hz in closed-loop. This research showed that the AM flexure mechanism and the VCM can provide millimeter range with high precision and can be a good alternative to an expensive metal-based flexure mechanism and piezoelectric transducer

  4. Mechanical Properties of High Volume Fly Ash Concrete Reinforced with Hybrid Fibers

    Directory of Open Access Journals (Sweden)

    Rooban Chakravarthy

    2016-01-01

    Full Text Available Fly ash substitution to cement is a well-recognized approach to reduce CO2 emissions. Although fly ash concrete is prone to brittle behavior, researchers have shown that addition of fibers could reduce brittle behavior. Previous research efforts seem to have utlised a single type of fiber or two types of fibers. In this research, three types of fibers, steel, polypropylene, and basalt as 0%, 0.50%, 0.75%, and 1% by volume of concrete, were mixed in varying proportions with concrete specimens substituted with 50% fly ash (class F. All specimens were tested for compressive strength, indirect tensile strength, and flexural strength over a period of 3 to 56 days of curing. Test results showed that significant improvement in mechanical properties could be obtained by a particular hybrid fiber reinforcement combination (1% steel fiber, 0.75% polypropylene fiber, and 0.75% basalt fiber. The strength values were observed to exceed previous research results. Workability of concrete was affected when the fiber combination exceeded 3%. Thus a limiting value for adding fibers and the combination to achieve maximum strengths have been identified in this research.

  5. Mechanical Properties and Durability of "Waterless Concrete"

    Science.gov (United States)

    Toutanji, Houssam; Grugel, Richard N.

    2008-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and by oxidation soil iron and sulfur can be produced. Iron can be used to reinforce the sulfur concrete. Sulfur concrete specimens were cycled between liquid nitrogen (approximately 191 C) and room temperature (approximately 21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (approximately 21 C) and approximately 101 C. Test results showed that due to temperature cycling, compressive strength of cycled specimens was 20% of those non-cycled. Microscopic examination of the fracture surfaces from the cycled samples showed clear de-bonding of the sulfur from the aggregate material whereas it was seen well bonded in those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibers. The glass fibers from lunar regolith simulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to 1 hour. Glass fibers were cast from the melt into graphite crucibles and were annealed for a couple of hours at 600 C. Glass fibers and small rods were pulled from the melt. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The glass fibers were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Prisms beams strengthened with glass fibers were tested in 4-point bending test. Beams strengthened with glass fiber showed to

  6. Rotation capacity of self-compacting steel fibre reinforced concrete beams

    NARCIS (Netherlands)

    Schumacher, P.; Walraven, J.C.; Den Uijl, J.A.; Bigaj-van Vliet, A.

    2009-01-01

    Steel fibres are known to enhance the toughness of concrete in compression and in tension. Steel fibres also improve the bond properties between concrete matrix and reinforcing steel bars. In order to investigate the effect of steel fibres on the rotation capacity of reinforced concrete members,

  7. Development of Concrete Paving Blocks Prepared from Waste Materials without Portland Cement

    Directory of Open Access Journals (Sweden)

    Charin NAMARAK

    2018-02-01

    Full Text Available This experiment used three types of waste materials: calcium carbide residue, fly ash, and recycled concrete aggregate to develop concrete paving blocks. The blocks had calcium carbide residue and fly ash as a binder without ordinary Portland cement (OPC and combined with 100 % of recycled concrete aggregate. The concrete paving blocks were 10 × 10 × 20 cm and were formed using a pressure of 6 or 8 MPa. The binder-to-aggregate ratio was held constant at 1:3 by weight, while the water-to-binder ratios were 0.30, 0.35, and 0.40. The effects of the water-to-binder ratios and fineness of the binder on the compressive strength, flexural strength, abrasion resistance, and water absorption of the concrete paving blocks were determined and compared with those of TIS 827 and ASTM C1319 standards. The results revealed that by applying this procedure, we were able to produce an excellence concrete paving block without using OPC. The compressive strength of the concrete paving blocks made from these waste materials was 41.4 MPa at 28 days and increased to 45.3 MPa at 60 days. Therefore, these waste materials can be used as raw materials to manufacture concrete paving blocks without OPC that meet the requirements of 40 MPa and 35 MPa specified by the TIS 827 and ASTM C1319 standards, respectively.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17566

  8. Effect of alkali–silica reaction on the shear strength of reinforced concrete structural members. A numerical and statistical study

    Energy Technology Data Exchange (ETDEWEB)

    Saouma, Victor E.; Hariri-Ardebili, Mohammad Amin [Department of Civil Engineering, University of Colorado, Boulder, CO 80305 (United States); Le Pape, Yann, E-mail: lepapeym@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Balaji, Rajagopalan [Department of Civil Engineering, University of Colorado, Boulder, CO 80305 (United States)

    2016-12-15

    Highlights: • Alkali–silica reaction (ASR) affects reinforced structures shear strength. • Statistical analysis indicates large scattering of post-ASR strength losses/gains. • Competitive structural and materials mechanisms affect the residual shear strength. - Abstract: The residual structural shear resistance of concrete members without shear reinforcement and subject to alkali–aggregate reaction (ASR) is investigated by finite element analysis. A parametric numerical study of 648 analyses considering various structural members’ geometries, boundary conditions, ASR-induced losses of materials properties, ASR expansions and reinforcement ratios is conducted. As a result of competitive mechanisms (e.g., ASR-induced prestressing caused by the longitudinal reinforcement) and loss of concrete materials properties, important scatter in terms of gain or loss of shear strength is observed: about 50% of the studied configurations lead to a degradation of structural performance. The range of variation in terms of post-ASR shear resistance is extremely scattered, in particular, when ASR results in out-of-plane expansion only. Influencing factors are derived by two methods: (i) visual inspection of boxplots and probability distributions, and (ii) information criteria within multiple-linear regression analysis.

  9. Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates

    Directory of Open Access Journals (Sweden)

    Bilal S. Hamad

    2017-12-01

    Full Text Available The paper reports on a research program that was designed at the American University of Beirut (AUB to investigate the fresh and hardened mechanical properties of a high performance concrete mix produced with partial or full substitution of crushed natural lime-stone aggregates with recycled aggregates from crushed tested cylinders in batching plants. Choosing crushed cylinders as source of recycling would result in reusing portion of the waste products of the concrete production industry. An extensive concrete batching and testing program was conducted to achieve two optimum normal and high strength concrete mixes. The variables were the nominal concrete strength (28 or 60 MPa and the percentage replacement of natural coarse aggregates with recycled aggregates from crushed tested cylinders (0, 20, 40, 60, 80, or 100%. Normal strength tested cylinders were used as source of the recycled aggregates for the normal strength concrete (NSC mix and high strength tested cylinders were used for the high strength concrete (HSC mix. Tests on the trial batches included plastic state slump and hardened state mechanical properties including cylinder compressive strength, cylinder splitting tensile strength, modulus of elasticity, and standard beams flexural strength. The results indicated no significant effect on the slump and around 10% average reduction in the hardened mechanical properties for both investigated levels of concrete compressive strength.

  10. Study on Strength and Durability Characteristics of Concrete with Ternary Blend

    Science.gov (United States)

    Nissi Joy, C.; Ramakrishnan, K.; Snega, M.; Ramasundram, S.; Venkatasubramanian, C.; Muthu, D.

    2017-07-01

    In the present scenario to fulfill the demands of sustainable construction, concrete made with multi-blended cement system of Ordinary Portland Cement (OPC) and different mineral admixtures is the wise choice for the construction industry. In this research work, M20 grade mix of concrete (with water - binder ratio as 0.48) is adopted with glass powder (GP) and Sugar Cane Bagasse Ash (SCBA) as partial replacement of cement. GP is an inert material, they occupy the landfill space for considerable amount of time unless there is a potential for recycling. Such glass wastes in the crushed form have a good potential in the infrastructure industry. Replacement of cement by GP from 30% to 0% by weight of cement in step of 5% and by SCBA from 0% to 30% in step of 5% respectively was adopted. In total, seven different combinations of mixes were studied at two different ages of concrete namely 7 and 28 days. Compressive strength of cubes for various percentage of replacement were investigated and compared with conventional concrete to find out the maximum mix ratio. Flexural strength of concrete for the maximum mix ratio was found out and durability parameters viz., water absorption and sorptivity were studied. From the experimental study, 20% SCBA and 10% GP combination was found to be the maximum mix ratio.

  11. Experimental Studies on the Behavior of a Newly-Developed Type of Self-Insulating Concrete Masonry Shear Wall under in-Plane Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Abu-Bakre Abdelmoneim Elamin Mohamad

    2017-04-01

    Full Text Available This study aimed to investigate the inelastic behavior of a newly-developed type of self-insulating concrete masonry shear wall (SCMSW under in-plane cyclic loading. The new masonry system was made from concrete blocks with special configurations to provide a stronger bond between units than ordinary concrete masonry units. A total of six fully-grouted SCMSWs were prepared with different heights (1.59 to 5.78 m and different vertical steel configurations. The developed masonry walls were tested under in-plane cyclic loading and different constant axial load ratios. In addition, the relationship between the amount of axial loading, the amount of the flexural reinforcement and the wall aspect ratios and the nonlinear hysteretic response of the SCMSW was evaluated. The results showed that the lateral load capacity of SCMSW increases with the amount of applied axial load and the amount of vertical reinforcement. However, the lateral load capacity decreases as the wall aspect ratio increases. The existence of the boundary elements at the SCMSW ends increases the ductility and the lateral load capacity. Generally, the SCMSW exhibited predominantly flexural behavior. These results agreed with those reported in previous research for walls constructed with ordinary units.

  12. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst

    Directory of Open Access Journals (Sweden)

    Hebé Gurdián

    2014-04-01

    Full Text Available The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes.

  13. Influence of limestone waste as partial replacement material for sand and marble powder in concrete properties

    Directory of Open Access Journals (Sweden)

    Omar M. Omar

    2012-12-01

    Full Text Available Green concrete are generally composed of recycling materials as hundred or partial percent substitutes for aggregate, cement, and admixture in concrete. Limestone waste is obtained as a by-product during the production of aggregates through the crushing process of rocks in rubble crusher units. Using quarry waste as a substitute of sand in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of river and mining sands. This paper reports the experimental study undertaken to investigate the influence of partial replacement of sand with limestone waste (LSW, with marble powder (M.P as an additive on the concrete properties. The replacement proportion of sand with limestone waste, 25%, 50%, and 75% were practiced in the concrete mixes except in the concrete mix. Besides, proportions of 5%, 10% and 15% marble powder were practiced in the concrete mixes. The effects of limestone waste as fine aggregate on several fresh and hardened properties of the concretes were investigated. The investigation included testing of compressive strength, indirect tensile strength, flexural strength, modulus of elasticity, and permeability. It was found that limestone waste as fine aggregate enhanced the slump test of the fresh concretes. But the unit weight concretes were not affected. However, the good performance was observed when limestone waste as fine aggregate was used in presence of marble powder.

  14. Flexure Based Linear and Rotary Bearings

    Science.gov (United States)

    Voellmer, George M. (Inventor)

    2016-01-01

    A flexure based linear bearing includes top and bottom parallel rigid plates; first and second flexures connecting the top and bottom plates and constraining exactly four degrees of freedom of relative motion of the plates, the four degrees of freedom being X and Y axis translation and rotation about the X and Y axes; and a strut connecting the top and bottom plates and further constraining exactly one degree of freedom of the plates, the one degree of freedom being one of Z axis translation and rotation about the Z axis.

  15. Research on the Fatigue Flexural Performance of RC Beams Attacked by Salt Spray

    Science.gov (United States)

    Mao, Jiang-hong; Xu, Fang-yuan; Jin, Wei-liang; Zhang, Jun; Wu, Xi-xi; Chen, Cai-sheng

    2018-04-01

    The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method effectively simulates real-world salt spray and fatigue loading exerted by RC components on sea bridges. Four RC beams that have different stress amplitudes were tested. It is found that deterioration by corrosion and fatigue loading reduces the fatigue life of the RC and decreases the ability of deformation. The fatigue life and deflection ability could be reduced by increasing the stress amplitude and the corrosion duration time. The test result demonstrates that this experimental method can couple corrosion deterioration and fatigue loading reasonably. This procedure may be applied to evaluate the fatigue life and concrete durability of RC components located in a natural salt spray environment.

  16. Effect of Using Metakaolin on Chloride Ion Penetration in High Performance Steel Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Adnan Mohammed Shihab

    2016-03-01

    Full Text Available This paper attempts to reduce the penetrability of high performance steel fiber reinforced concrete to chloride ions originating from external sources, by using High Reactivity Metakaolin (HRM as a highly active pozzolanic material, in order to prolong the time to initiation of the steel fibers corrosion and to minimize concrete damage that may occur due to the exposure to chloride ion penetration. According to pozzolanic activity index (P.A.I., 8% content of HRM was used as a partial replacement by weight of cement with 2% steel fibers by volume of concrete. During the exposure period of 300 days in 4.5% of NaCl solution, the total and free chloride contents (Cltotal, Clfree with the chloride profiles at the ages of 28 and 300 days were investigated. Also the rapid chloride penetrability test (RCPT, compressive and flexural strengths tests were conducted at the ages of 28, 90, 180 and 300 days. Results showed that the incorporation of 8% HRM caused a reduction in the (Clfree/Cltota ratio, the chloride penetration depth and the electrical conductivity with percentages of 21%, 40% and 43% respectively after 300 days exposure to chloride solution in comparing with the mix of 0% HRM. Results also indicated that the losses in compressive and flexural strengths after exposure of 300 days to chloride solution for the mix incorporating 8% HRM were by 5% and 5.8% respectively while they reached 9.5% and 11% respectively for the mix without HRM in relation to the correspondent test specimens cured in tap water.

  17. Recycling of Reclaimed Asphalt Pavement in Portland Cement Concrete

    Directory of Open Access Journals (Sweden)

    Salim Al-Oraimi

    2009-06-01

    Full Text Available Reclaimed Asphalt Pavement (RAP is the result of removing old asphalt pavement material. RAP consists of high quality well-graded aggregate coated with asphalt cement. The removal of asphalt concrete is done for reconstruction purposes, resurfacing, or to obtain access to buried utilities. The disposal of RAP represents a large loss of valuable source of high quality aggregate. This research investigates the properties of concrete utilizing recycled reclaimed asphalt pavement (RAP. Two control mixes with normal aggregate were designed with water cement ratios of 0.45 and 0.5. The control mixes resulted in compressive strengths of 50 and 33 MPa after 28 days of curing. The coarse fraction of RAP was used to replace the coarse aggregate with 25, 50, 75, and 100% for both mixtures. In addition to the control mix (0%, the mixes containing RAP were evaluated for slump, compressive strength, flexural strength, and modulus of elasticity. Durability was evaluated using surface absorption test.

  18. High strength fused silica flexures manufactured by femtosecond laser

    Science.gov (United States)

    Bellouard, Yves; Said, Ali A.; Dugan, Mark; Bado, Philippe

    2009-02-01

    Flexures are mechanical elements used in micro- and precision-engineering to precisely guide the motion of micro-parts. They consist of slender bodies that deform elastically upon the application of a force. Although counter-intuitive at first, fused silica is an attractive material for flexure. Pending that the machining process does not introduce surface flaws that would lead to catastrophic failure, the material has a theoretically high ultimate tensile strength of several GPa. We report on high-aspect ratio fused silica flexures manufactured by femtosecond laser combined with chemical etching. Notch-hinges with thickness as small as twenty microns and aspect ratios comparable to aspect ratios obtained by Deep- Reactive-Ion-Etching (DRIE) were fabricated and tested under different loading conditions. Multiple fracture tests were performed for various loading conditions and the cracks morphologies were analyzed using Scanning Electron Microscopy. The manufactured elements show outstanding mechanical properties with flexural strengths largely exceeding those obtained with other technologies and materials. Fused silica flexures offer a mean to combine integrated optics with micro-mechanics in a single monolithic substrate. Waveguides and mechanical elements can be combined in a monolithic devices opening new opportunities for integrated opto-mechatronics devices.

  19. Comparison of performance of partial prestressed beam-column subassemblages made of reactive powder concrete and normal concrete materials using finite element models

    Science.gov (United States)

    Nurjannah, S. A.; Budiono, B.; Imran, I.; Sugiri, S.

    2016-04-01

    Research on concrete material continues in several countries and had produced a concrete type of Ultra High Performance Concrete (UHPC) which has a better compressive strength, tensile strength, flexural strength, modulus of elasticity, and durability than normal concrete (NC) namely Reactive Powder Concrete (RPC). Researches on structures using RPC material showed that the RPC structures had a better performance than the NC structures in resisting gravity and lateral cyclic loads. In this study, an experiment was conducted to apply combination of constant axial and lateral cyclic loads to a prototype of RPC interior partial prestressed beam-column subassemblage (prototype of BCS-RPC) with a value of Partial Prestressed Ratio (PPR) of 31.72% on the beam. The test results were compared with finite element model of beam-column subassemblage made of RPC by PPR of 31.72% (BCS-RPC-31.72). Furthermore, there was BCS-RPC modeling with PPR of 21.39% (BCS-RPC-21.39) and beam-column subassemblages made of NC materials modeling with a value of PPR at 21.09% (BCS-NC-21.09) and 32.02% (BCS-NC-32.02). The purpose of this study was to determine the performance of the BCS-RPC models compared to the performance of the BCS-NC models with PPR values below and above 25%, which is the maximum limit of permitted PPR. The results showed that all models of BCS-RPC had a better performance than all models of BCS-NC and the BCS-RPC model with PPR above 25% still behaved ductile and was able to dissipate energy well.

  20. Flexural fatigue life prediction of closed hat-section using materially nonlinear axial fatigue characteristics

    Science.gov (United States)

    Razzaq, Zia

    1989-01-01

    Straight or curved hat-section members are often used as structural stiffeners in aircraft. For instance, they are employed as stiffeners for the dorsal skin as well as in the aerial refueling adjacent area structure in F-106 aircraft. The flanges of the hat-section are connected to the aircraft skin. Thus, the portion of the skin closing the hat-section interacts with the section itself when resisting the stresses due to service loads. The flexural fatigue life of such a closed section is estimated using materially nonlinear axial fatigue characteristics. It should be recognized that when a structural shape is subjected to bending, the fatigue life at the neutral axis is infinity since the normal stresses are zero at that location. Conversely, the fatigue life at the extreme fibers where the normal bending stresses are maximum can be expected to be finite. Thus, different fatigue life estimates can be visualized at various distances from the neural axis. The problem becomes compounded further when significant portions away from the neutral axis are stressed into plastic range. A theoretical analysis of the closed hat-section subjected to flexural cyclic loading is first conducted. The axial fatigue characteristics together with the related axial fatigue life formula and its inverted form given by Manson and Muralidharan are adopted for an aluminum alloy used in aircraft construction. A closed-form expression for predicting the flexural fatigue life is then derived for the closed hat-section including materially nonlinear action. A computer program is written to conduct a study of the variables such as the thicknesses of the hat-section and the skin, and the type of alloy used. The study has provided a fundamental understanding of the flexural fatigue life characteristics of a practical structural component used in aircraft when materially nonlinear action is present.

  1. Concrete with supplementary cementitious materials

    OpenAIRE

    Jensen, Ole M; Kovler, Konstantin; De Belie, Nele

    2016-01-01

    This volume contains the proceedings of the MSSCE 2016 conference segment on “Concrete with Supplementary Cementitious Materials” (SCM). The conference segment is organized by the RILEM technical committee TC 238-SCM: Hydration and microstructure of concrete with supplementary cementitious materials. TC 238-SCM started activities in 2011 and has about 50 members from all over the world. The main objective of the committee is to support the increasing utilisation of hydraulic...

  2. Properties of High Strength Concrete Applied on Semarang - Bawen Highway

    Science.gov (United States)

    Setiyawan, Prabowo; Antonius; Wedyowibowo, R. Hawik Jenny

    2018-04-01

    To fulfill the needs of highway construction then a high quality concrete is expected to be produced by a short time and high workability, therefore the addition of additive chemicals needs to be conducted. The objective of the study was to find out the properties of high quality concrete including slump value, compressive strength, flexural strength, elasticity modulus and stress-strain diagrams with the addition of fly ash and superplasticizer. There were five types of mixtures were made in this study with a fas (cement water factor) was 0,41 and an additional 15% of fly ash and a varied superplasticizer of 0%, 0.5%, 1%, 2% towards the weight/volume and cement/water. Test samples of cylinders and prisms or beams were tested in the laboratory at 1, 3, 7, 14, and 28 days. The test results were then compared with the test results made without additional additives. Based on the result of this research, it can be concluded that the increase of slump value due to the addition of 15% fly ash is 0,53 cm of the base slump value. The use of superplasticizer causes the weight of the type to be greater. The optimum dose of superplasticizer is 1,2%, it is still in the usage level according to the F-type admixture brochure (water reducing, high-range admixture) such as 0,6 % -1,5 %. All mixture types which use addition materials for flexural strength (fr'=45kg/cm2) can be achieved at 3 days.

  3. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, Brian A.; Patil, Anjali N.; Klis, Jeffrey M. [Brigham Young University, Department of Electrical and Computer Engineering, Provo, Utah, 84602 (United States); Hurd, Randy C.; Truscott, Tadd T. [Brigham Young University, Department of Mechanical Engineering, Provo, Utah, 84602 (United States); Guthrie, W. Spencer [Brigham Young University, Department of Civil and Environmental Engineering, Provo, Utah, 84602 (United States)

    2014-02-18

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work, numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials.

  4. Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes

    OpenAIRE

    You, Ilhwan; Yoo, Doo-Yeol; Kim, Soonho; Kim, Min-Jae; Zi, Goangseup

    2017-01-01

    This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC) with and without carbon nanotubes (CNTs). For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher ...

  5. The steel–concrete interface

    DEFF Research Database (Denmark)

    Angst, Ueli M.; Geiker, Mette Rica; Michel, Alexander

    2017-01-01

    Although the steel–concrete interface (SCI) is widely recognized to influence the durability of reinforced concrete, a systematic overview and detailed documentation of the various aspects of the SCI are lacking. In this paper, we compiled a comprehensive list of possible local characteristics....... It was found that the SCI exhibits significant spatial inhomogeneity along and around as well as perpendicular to the reinforcing steel. The SCI can differ strongly between different engineering structures and also between different members within a structure; particular differences are expected between...

  6. A Modified Model for Deflection Calculation of Reinforced Concrete Beam with Deformed GFRP Rebar

    OpenAIRE

    Ju, Minkwan; Oh, Hongseob; Lim, Junhyun; Sim, Jongsung

    2016-01-01

    The authors carried out experimental and analytical research to evaluate the flexural capacity and the moment-deflection relationship of concrete beams reinforced with GFRP bars. The proposed model to predict the effective moment of inertia for R/C beam with GFRP bars was developed empirically, based on Branson’s equation to have better accuracy and a familiar approach to a structural engineer. For better prediction of the moment-deflection relationship until the ultimate strength is reached,...

  7. Precooling of concrete with flake ice

    International Nuclear Information System (INIS)

    Inoue, Katsuhiro; Shigenobu, Manabu; Soejima, Kenji; Noguchi, Hiroshi; Noda, Youichi; Sakaguchi, Tohru.

    1989-01-01

    The buildings in nuclear power stations are the reinforced concrete structures which are constructed with the massive members having much rein forcing bar quantity and relatively high strength due to the requirement of aseismatic capability, shielding and others. Also their scale is large, and in the case of a power station of one million kW class, concrete as much as 300,000 m 3 is used for one plant. Accordingly, at the time of construction, the case of stably supplying the concrete of high quality in large quantity by installing the facilities of manufacturing ready mixed concrete at construction sites is frequent. Moreover, electric power companies carry out thorough quality control to undergo the inspection before use by the Agency of Natural Resources and Energy from the aspects of materials, structures and strength. Since prestressed concrete containment vessels were adopted for No.3 and No.4 plants, the quality of concrete and the facilities for manufacturing ready mixed concrete were examined in detail. The precooling facilities for concrete and the effect of precooling are reported. (Kako, I.)

  8. Technical viability of self-compacting concretes with by-products from crushed coarse aggregate production

    Directory of Open Access Journals (Sweden)

    Edgar Bacarji

    Full Text Available Abstract The main objective of this work is to present the technical viability of Self Compacting Concretes (SCC containing by-products from crushed coarse aggregate production. For this purpose, a vast characterization of these by-products was made; six mixtures of SCC were produced using two different aggregates: granite and mica schist. The binder/dry aggregate (b/agg ratio by mass was 1:3. The following properties were analyzed: compressive strength, direct tensile strength, flexural tensile strength and splitting tensile strength. Granite presented the best mechanical performance. The replacement of natural sand by granite sand generated concretes with the same level of compressive strength and caused an increase in tensile strength values. The incorporation of silica fume into concrete with granite produced an increase of 17% in compressive strength. So, the use of these by-product materials can provide a technically feasible solution that is also consistent with the aims of sustainable development and preservation of the environment.

  9. Shear behavior of concrete beams externally prestressed with Parafil ropes

    Directory of Open Access Journals (Sweden)

    A.H. Ghallab

    2013-03-01

    Full Text Available Although extensive work has been carried out investigating the use of external prestressing system for flexural strengthening, a few studies regarding the shear behavior of externally prestressed beams can be found. Five beams, four of them were externally strengthened using Parafil rope, were loaded up to failure to investigate the effect of shear span/depth ratio, external prestressing force and concrete strength on their shear behavior. Test results showed that the shear span to depth ratio has a significant effect on both the shear strength and failure mode of the strengthened beams and the presence of external prestressing force increased the ultimate load of the tested beams by about 75%. Equations proposed by different codes for both the conventional reinforced concrete beams and for ordinary prestressed beams were used to evaluate the obtained experimental results. In general, codes equations showed a high level of conservatism in predicting the shear strength of the beams. Also, using the full strength rather than half of the concrete shear strength in the Egyptian code PC-method improves the accuracy of the calculated ultimate shear strength.

  10. Internal inspection of reinforced concrete for nuclear structures using shear wave tomography

    International Nuclear Information System (INIS)

    Scott, David B.

    2013-01-01

    Highlights: • Aging of reinforced concrete used for worldwide nuclear structures is increasing and necessitating evaluation. • Nondestructive evaluation is a tool for assessing the condition of reinforced concrete of nuclear structures. • Ultrasonic shear wave tomography as a stress wave technique has begun to be utilized for investigation of concrete material. • A study using ultrasonic shear wave tomography indicates anomalies vital to the long-term operation of the structure. • The use of this technique has shown to successfully evaluate the internal state of reinforced concrete members. - Abstract: Reinforced concrete is important for nuclear related structures. Therefore, the integrity of structural members consisting of reinforced concrete is germane to the safe operation and longevity of these facilities. Many issues that reduce the likelihood of safe operation and longevity are not visible on the surface of reinforced concrete material. Therefore, an investigation of reinforced concrete material should include techniques which will allow peering into the concrete member and determining its internal state. The performance of nondestructive evaluations is pursuant to this goal. Some of the categories of nondestructive evaluations are electrochemical, magnetism, ground penetrating radar, and ultrasonic testing. A specific ultrasonic testing technique, namely ultrasonic shear wave tomography, is used to determine presence and extent of voids, honeycombs, cracks perpendicular to the surface, and/or delamination. This technique, and others similar to it, has been utilized in the nuclear industry to determine structural conditions

  11. The relationship between compressive strength and flexural strength of pavement geopolymer grouting material

    Science.gov (United States)

    Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.

    2018-01-01

    To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.

  12. Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios

    International Nuclear Information System (INIS)

    Albano, C.; Camacho, N.; Hernandez, M.; Matheus, A.; Gutierrez, A.

    2009-01-01

    The goal of this work was to study the mechanical behavior of concrete with recycled Polyethylene Therephtalate (PET), varying the water/cement ratio (0.50 and 0.60), PET content (10 and 20 vol%) and the particle size. Also, the influence of the thermal degradation of PET in the concrete was studied, when the blends were exposed to different temperatures (200, 400, 600 o C). Results indicate that PET-filled concrete, when volume proportion and particle size of PET increased, showed a decrease in compressive strength, splitting tensile strength, modulus of elasticity and ultrasonic pulse velocity; however, the water absorption increased. On the other hand, the flexural strength of concrete-PET when exposed to a heat source was strongly dependent on the temperature, water/cement ratio, as well as on the PET content and particle size. Moreover, the activation energy was affected by the temperature, PET particles location on the slabs and water/cement ratio.

  13. Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios.

    Science.gov (United States)

    Albano, C; Camacho, N; Hernández, M; Matheus, A; Gutiérrez, A

    2009-10-01

    The goal of this work was to study the mechanical behavior of concrete with recycled Polyethylene Therephtalate (PET), varying the water/cement ratio (0.50 and 0.60), PET content (10 and 20 vol%) and the particle size. Also, the influence of the thermal degradation of PET in the concrete was studied, when the blends were exposed to different temperatures (200, 400, 600 degrees C). Results indicate that PET-filled concrete, when volume proportion and particle size of PET increased, showed a decrease in compressive strength, splitting tensile strength, modulus of elasticity and ultrasonic pulse velocity; however, the water absorption increased. On the other hand, the flexural strength of concrete-PET when exposed to a heat source was strongly dependent on the temperature, water/cement ratio, as well as on the PET content and particle size. Moreover, the activation energy was affected by the temperature, PET particles location on the slabs and water/cement ratio.

  14. Man-made vitreous fiber produced from incinerator ash using the thermal plasma technique and application as reinforcement in concrete.

    Science.gov (United States)

    Yang, Sheng-Fu; Wang, To-Mai; Lee, Wen-Cheng; Sun, Kin-Seng; Tzeng, Chin-Ching

    2010-10-15

    This study proposes using thermal plasma technology to treat municipal solid waste incinerator ashes. A feasible fiberization method was developed and applied to produce man-made vitreous fiber (MMVF) from plasma vitrified slag. MMVF were obtained through directly blending the oxide melt stream with high velocity compressed air. The basic technological characteristics of MMVF, including morphology, diameter, shot content, length and chemical resistance, are described in this work. Laboratory experiments were conducted on the fiber-reinforced concrete. The effects of fibrous content on compressive strength and flexural strength are presented. The experimental results showed the proper additive of MMVF in concrete can enhance its mechanical properties. MMVF products produced from incinerator ashes treated with the thermal plasma technique have great potential for reinforcement in concrete. 2010 Elsevier B.V. All rights reserved.

  15. Improvement of the cooldown time of LSF 9599 flexure bearing SADA cooler

    NARCIS (Netherlands)

    Mullié, J.; Groep, van der W.; Bruins, P.; Benschop, T.; Koning, de A.; Dam, J.A.M.; Andresen, B.F.; Fulop, G.F.; Norton, P.R.

    2006-01-01

    Thales Cryogenics has presented the LSF 9599 SADA II flexure cooler in 2005. Based on Thales' well-known moving magnet flexure technology, the LSF 9599 complies with the SADA II specification with respect to performance, envelope and mass. Being the first manufacturer offering a full flexure-bearing

  16. Improved monolithic reinforced concrete construction for nuclear power stations

    International Nuclear Information System (INIS)

    Guenther, P.; Fischer, K.

    1983-01-01

    Experience has shown that in applying monolithic reinforced concrete in nuclear power plant construction the following auxiliary means are useful: measuring sheets in assembling, welding gauges for reaching high tolerance accuracies of prefabricated reinforced concrete members, suitable lining materials, formwork anchorage and formwork release agents, concrete workability agents, mechanized procedures for finishing and assembling. These means were successfully tested in constructing the Greifswald nuclear power station

  17. Analytical model for shear strength of end slabs of prestressed concrete nuclear reactor vessels

    International Nuclear Information System (INIS)

    Abdulrahman, H.O.; Sozen, M.A.; Schnobrich, W.C.

    1979-04-01

    The results are presented of an investigation of the behavior and strength of flat end slabs of cylindrical prestressed concrete nuclear reactor vessels. The investigation included tests of ten small-scale pressure vessels and development of a nonlinear finite-element model to simulate the deformation response and strength of the end slabs. Because earlier experimental studies had shown that the flexural strength of the end slab could be calculated using intelligible procedures, the emphasis of this investigation was on shear strength

  18. Experimental and theoretical assessment of flexural properties of hybrid natural fibre composites

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Toftegaard, Helmuth Langmaack; Markussen, Christen Malte

    2014-01-01

    The concept of hybridization of natural fibre composites with synthetic fibres is attracting increasing scientific attention. The present study addresses the flexural properties of hybrid flax/glass/epoxy composites to demonstrate the potential benefits of hybridization. The study covers both...... experimental and theoretical assessments. Composite laminates with different hybrid fibre mixing ratios and different layer configurations were manufactured, and their volumetric composition and flexural properties were measured. The relationship between volume fractions in the composites is shown to be well...... predicted as a function of the hybrid fibre mixing ratio. The flexural modulus of the composites is theoretically assessed by using micromechanical models and laminate theory. The model predictions are compared with the experimentally determined flexural properties. Both approaches show that the flexural...

  19. Introduction to TAFI - A Matlab® toolbox for analysis of flexural isostasy

    Science.gov (United States)

    Jha, S.; Harry, D. L.; Schutt, D.

    2016-12-01

    The isostatic response of vertical tectonic loads emplaced on thin elastic plates overlying inviscid substrate and the corresponding gravity anomalies are commonly modeled using well established theories and methodologies of flexural analysis. However, such analysis requires some mathematical and coding expertise on part of users. With that in mind, we designed a new interactive Matlab® toolbox called Toolbox for Analysis of Flexural Isostasy (TAFI). TAFI allows users to create forward models (2-D and 3-D) of flexural deformation of the lithosphere and resulting gravity anomaly. TAFI computes Green's Functions for flexure of the elastic plate subjected to point or line loads, and analytical solution for harmonic loads. Flexure due to non-impulsive, distributed 2-D or 3-D loads are computed by convolving the appropriate Green's function with a user-supplied spatially discretized load function. The gravity anomaly associated with each density interface is calculated by using the Fourier Transform of flexural deflection of these interfaces and estimating the gravity in the wavenumber domain. All models created in TAFI are based on Matlab's intrinsic functions and do not require any specialized toolbox, function or library except those distributed with TAFI. Modeling functions within TAFI can be called from Matlab workspace, from within user written programs or from the TAFI's graphical user interface (GUI). The GUI enables the user to model the flexural deflection of lithosphere interactively, enabling real time comparison of model fit with observed data constraining the flexural deformation and gravity, facilitating rapid search for best fitting flexural model. TAFI is a very useful teaching and research tool and have been tested rigorously in graduate level teaching and basic research environment.

  20. A Comprehensive Review on the Properties of Coal Bottom Ash in Concrete as Sound Absorption Material

    Directory of Open Access Journals (Sweden)

    Ramzi Hannan Nurul Izzati Raihan

    2017-01-01

    Full Text Available The government is currently implementing policies to increase the usage of coal as fuel for electricity generation. At the same time, the dependency on gas will be reduced. In addition, coal power plants in Malaysia produce large amounts of industrial waste such as bottom ash which is collected in impoundment ponds (ash pond. However, millions of tons of coal ash (bottom ash waste are collected in ponds near power plant stations. Since bottom ash has been classified as hazardous material that threatens the health and safety of human life, an innovative and sustainable solution has been introduced to reuse or recycle industrial waste such as coal bottom ash in concrete mixtures to create a greener and more sustainable world. Bottom ash has the potential to be used as concrete material to replace fine aggregates, coarse aggregates or both. Hence, this paper provides an overview of previous research which used bottom ash as fine aggregate replacement in conventional concrete. The workability, compressive strength, flexural strength, and sound absorption of bottom ash in concrete are reviewed.

  1. Dynamic Fracture Behavior of Steel Fiber Reinforced Self-Compacting Concretes (SFRSCCs

    Directory of Open Access Journals (Sweden)

    Xiaoxin Zhang

    2017-11-01

    Full Text Available Three-point bending tests on notched beams of three types of steel fiber-reinforced self-compacting concrete (SFRSCC have been performed by using both a servo-hydraulic machine and a drop-weight impact instrument. The lo ading rates had a range of six orders of magnitude from 2.20 × 10−3 mm/s (quasi-static to 2.66 × 103 mm/s. These SFRSCCs had the same matrix, but various types of steel fiber (straight and hooked-end and contents (volume ratios, 0.51%, 0.77% and 1.23%, respectively. The results demonstrate that the fracture energy and the flexural strength increase as the loading rate increases. Moreover, such tendency is relatively moderate at low rates. However, at high rates it is accentuated. For the 0.51% fiber content, the dynamic increase factors of the flexural strength and the fracture energy are approximately 6 and 3, while for the 1.23% fiber content, they are around 4 and 2, respectively. Thus, the higher the fiber content the less rate sensitivity there is.

  2. Effects of Low Volume Fraction of Polyvinyl Alcohol Fibers on the Mechanical Properties of Oil Palm Shell Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Ming Kun Yew

    2015-01-01

    Full Text Available This paper presents the effects of low volume fraction (Vf of polyvinyl alcohol (PVA fibers on the mechanical properties of oil palm shell (OPS high strength lightweight concrete mixtures. The slump, density, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity under various curing conditions have been measured and evaluated. The results indicate that an increase in PVA fibers decreases the workability of the concrete and decreases the density slightly. The 28-day compressive strength of oil palm shell fiber-reinforced concrete (OPSFRC high strength lightweight concrete (HSLWC subject to continuous moist curing was within the range of 43–49 MPa. The average modulus of elasticity (E value is found to be 16.1 GPa for all mixes, which is higher than that reported in previous studies and is within the range of normal weight concrete. Hence, the findings of this study revealed that the PVA fibers can be used as an alternative material to enhance the properties of OPS HSLWC for building and construction applications.

  3. Study on the Utilization of Paper Mill Sludge as Partial Cement Replacement in Concrete

    Directory of Open Access Journals (Sweden)

    Nazar A.M. Md

    2014-03-01

    Full Text Available A major problem arising from the widespread use of forestry biomass and processed timber waste as fuel is related to the production of significant quantities of ash as a by-product from the incineration of such biomasses. A major portion (approximately 70% of the wood waste ash produced is land-filled as a common method of disposal. If the current trend continues with waste products, such as paper mill sludge landfills, a large amount of space would be required by 2020. A revenue study was conducted as a result of investigations into the use of paper mill sludge as recycled materials and additives in concrete mixes for use in construction projects. The study had to provide the assurance that the concrete produced had the correct mechanical strength. Concrete mixes containing paper mill sludge were prepared, and their basic strength characteristics such as the compressive strength, flexural strength, ultra pulse velocity and dynamic modulus elasticity were tested. Four concrete mixes, i.e. a control mix, and a 10%, 20%, and 30% mix of paper mill sludge as cement replacement for concrete were prepared with a DoE mix design by calculating the weight of cement, sand and aggregate. The performance of each concrete specimen was compared with the strength of the control mix. As a result, when the percentage of paper mill sludge in the concrete increased, the strength decreased. Overall, a high correlation was observed between density and strength of the concrete containing paper mill sludge.

  4. The Application of PVA Fiber to Improve the Mechanical Properties of Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Manfaluthy Muhammad Lutfi

    2017-01-01

    Full Text Available This paper presents an experimental investigation on the improvement of geopolymer concrete properties through the use of polyvinyl alcohol (PVA fibers mixed in the fresh concrete. For the purpose of obtaining the optimum mechanical properties, the volume fraction of PVA fibers was varied at 0%; 0.3%; 0.5%; ad 0.8%. All mixtures were cast by mixing fly ash, alkali activator, and aggregates. The activator used in this study was a combination of sodium silicate (Na2SiO3 and sodium hydroxide (NaOH. The mechanical properties of geopolymer concrete were obtained from the results of compressive strength, splitting strength, uniaxial tensile strength, elastic modulus, and flexural strength. It is found that the variation of 0.8% PVA fibers resulted in the highest strength for overall test. The utilization of 0.8% PVA fibers also contributed to increasing the direct tensile up to 50%. However, it is noticed that the elastic modulus was more prone to decrease as the fiber content in the mixture increased.

  5. Characterization of High Temperature Modulus of Elasticity of Lightweight Foamed Concrete under Static Flexural and Compression: An Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper focused on an experimental works that have been performed to examine the young’s modulus of foamed concrete at elevated temperatures up to 600°C. Foamed concrete of 650 and 1000 kg/m3 density were cast and tested under compression and bending. The experimental results of this study consistently demonstrated that the loss in stiffness for cement based material like foamed concrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffness-temperature relationships are very similar.

  6. Flexural behavior of the fibrous cementitious composites (FCC) containing hybrid fibres

    Science.gov (United States)

    Ramli, Mahyuddin; Ban, Cheah Chee; Samsudin, Muhamad Fadli

    2018-02-01

    In this study, the flexural behavior of the fibrous cementitious composites containing hybrid fibers was investigated. Waste materials or by product materials such as pulverized fuel ash (PFA) and ground granulated blast-furnace slag (GGBS) was used as supplementary cement replacement. In addition, barchip and kenaf fiber will be used as additional materials for enhance the flexural behavior of cementitious composites. A seven mix design of fibrous cementitious composites containing hybrid fiber mortar were fabricated with PFA-GGBS as cement replacement at 50% with hybridization of barchip and kenaf fiber between 0.5% and 2.0% by total volume weight. The FCC with hybrid fibers mortar will be fabricated by using 50 × 50 × 50 mm, 40 × 40 × 160 mm and 350 × 125 × 30 mm steel mold for assessment of mechanical performances and flexural behavior characteristics. The flexural behavior and mechanical performance of the PFA-GGBS with hybrid fiber mortar block was assessed in terms of load deflection response, stress-strain response, crack development, compressive and flexural strength after water curing for 28 days. Moreover, the specimen HBK 1 and HBK 2 was observed equivalent or better in mechanical performance and flexural behavior as compared to control mortar.

  7. Effect of silver nano particles on flexural strength of acrylic resins.

    Science.gov (United States)

    Sodagar, Ahmad; Kassaee, Mohammad Zaman; Akhavan, Azam; Javadi, Negar; Arab, Sepideh; Kharazifard, Mohammad Javad

    2012-04-01

    Poly(methyl methacrylate), PMMA, is widely used for fabrication of removable orthodontic appliances. Silver nano particles (AgNps) have been added to PMMA because of their antimicrobial properties. The aim of this study is to investigate the effect of AgNps on the flexural strength of PMMA. Acrylic liquid containing 0.05% and 0.2% AgNps was prepared for two kinds of acrylic resins: Rapid Repair &Selecta Plus. Two groups without AgNps were used as control groups. For each one, flexural strength was investigated via Three Point Bending method for the 15 acrylic blocks. Two-way ANOVA, one way ANOVA and Tukey tests were used for statistical analysis. Rapid Repair without AgNps showed the highest flexural strength. Addition of 0.05% AgNps to Rapid Repair, significantly decreased its flexural strength while, continuing the addition up to 0.2% increased it nearly up to its primary level. In contrast, addition of AgNps to Selecta Plus increased its flexural strength but addition of 0.05% nano particles was more effective than 0.2%. The effect of AgNps on flexural strength of PMMA depends on several factors including the type of acrylics and the concentrations of nano particles. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  8. Rotation flexure with temperature controlled modal frequency

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Theodore E.; Barney, Patrick S.; Ison, Aaron M.; Akau, Ronald L; Weir, Nathan

    2017-09-12

    A flexure bearing includes an inner race, an outer race, and a plurality of substantially planar radially extending blades coupled between the inner and outer race. The blades have a thickness that is thinner than a thickness of the inner and outer races. The inner race, outer race, and blades have substantially the same height. At least one heating element is coupled to the inner race and/or the outer race. The heating element is configured to apply heat to the race that it is coupled to in order to tune the flexure bearing.

  9. Preliminary studies on steel slag as a substitute for coarse aggregate on concrete

    Directory of Open Access Journals (Sweden)

    Karolina Rahmi

    2017-01-01

    Full Text Available The development of science and technology in the field of construction that is rapidly increasing, is always followed by the growing community needs for infrastructure facilities, such as buildings, bridges and other construction. One of the key element in that development is concrete. Due to the rapid development of science and technology in the field of construction, it’s required a building material which has better advantage than the materials of the existing building. To obtain a better building materials, one alternative is the use of waste as aggregate in concrete mixture. In this study the authors using waste steel waste (steel slag as a substitute for coarse aggregate. Steel slag used is steel waste from PT. Growth Sumatra Industry. The gravel substitution variations is 0%, 15%, and 25% and the testing was done by the slump test, compressive strength and flexural strength of concrete. From the test results obtained optimum compressive strength variation occurs in 25% substitution of steel slag gravel amounted to 40.481 MPa, whereas for the optimum bending capacity contained in variations of 25% substitution of steel slag gravel amounted to 19.592 N / mm2. And for optimum slump value obtained on the variation of normal concrete. This shows the workability of the concrete normally higher than the other variation.

  10. Strengths and Failure Characteristics of Self-Compacting Concrete Containing Recycled Waste Glass Aggregate

    Directory of Open Access Journals (Sweden)

    Rahman Khaleel AL-Bawi

    2017-01-01

    Full Text Available The effects of different proportions of green-colored waste glass (WG cullet on the mechanical and fracture properties of self-compacting concrete (SCC were experimentally investigated. Waste bottles were collected, washed, crushed, and sieved to prepare the cullet used in this study. Cullet was incorporated at different percentages (0%, 20%, 40%, 60%, 80%, and 100% by weight instead of natural fine aggregate (NFA and/or natural coarse aggregate (NCA. Three SCC series were designed with a constant slump flow of 700±30 mm, total binder content of 570 kg/m3 and at water-to-binder (w/b ratio of 0.35. Moreover, fly ash (FA was used in concrete mixtures at 20% of total binder content. Mechanical aspects such as compressive, splitting tensile, and net flexural strengths and modulus of elasticity of SCC were investigated and experimentally computed at 28 days of age. Moreover, failure characteristics of the concretes were also monitored via three-point bending test on the notched beams. The findings revealed that the mechanical properties as well as fracture parameters were adversely influenced by incorporating of WG cullet. However, highest reduction of compressive strength did not exceed 43% recorded at 100% WG replacement level. Concretes containing WG showed less brittle behavior than reference concrete at any content.

  11. Experimental Study On Flexural Behaviour Of Beams Reinforced With GFRP Rebars

    Science.gov (United States)

    Naveen Kumar, G.; Sundaravadivelu, Karthik

    2017-07-01

    In saline, moisture and cold conditions corrosion of steel is inevitable and the lot of economy is used for rehabilitation works. Corrosion of steel is nothing but oxidation of iron in moisture conditions and this corrosion leads to the spalling of concrete which intern reduces the strength of the structure. To reduce this corrosion effects, new materials with resistance against corrosion have to be introduced. Many experiments are going on using Glass Fiber Reinforced Polymer (GFRP) as alternate material for steel due to its non-corrosive nature, weight of GFRP is nearly one third of steel and ultimate tensile strength is higher than steel. In this paper, six beams are casted in which three beams are casted with steel as main and shear reinforcement and another three beams are casted with GFRP as main reinforcement with steel as shear reinforcing material. All beams casted are of same dimensions with variation in reinforcement percentage. The size of the beams casted is of length 1200 mm, breadth 100 mm and depth 200 mm. The clear cover of 25 mm is provided on top and bottom of the beam. Beams are tested under two-point loading with constant aspect ratio (a/d) and comparing the flexural strength, load deflection curves and types of failures of beams reinforced with GFRP as main reinforcement and beams reinforced with conventional steel. The final experimental results are compared with numerical results. M30 grade concrete with Conplast as a superplasticizer is used for casting beams.

  12. Preliminary investigation on the suitablity of using fiber reinforced concrete in the construction of a hazardous waste disposal vessel

    International Nuclear Information System (INIS)

    Ramey, M.R.; Daie-e, G.

    1988-07-01

    There are certain hazardous wastes that must be contained in an extremely secure vessel for transportation and disposal. The vessel, among other things, must be able to withstand relatively large impacts without rupturing. Such containment vessels therefore must be able to absorb substantial amounts of energy during an impact and still perform their function. One of the impacts that the vessel must withstand is a 30-foot fall onto an unyielding surface. For some disposal scenarios it is proposed to encase the waste in a steel enclosure which is to be surrounded by a thick layer of concrete which, in turn, is encased by a relatively thin steel shell. Tests on concrete in compression and flexure, including static, dynamic and impact tests, have shown that low modulus concretes tend to behave in a less brittle manner than higher modulus concretes. Tests also show that fiber reinforced concretes have significantly greater ductility, crack propagation resistance and toughness than conventional concretes. Since it is known that concrete is a reasonably brittle material, it is necessary to do impact tests on sample containment structures consisting of thin-walled metal containers having closed ends which are filled with concrete, grout, or fiber reinforced concrete. This report presents the results of simple tests aimed at observing the behavior of sample containment structures subjected to impacts due to a fall from 30 feet. 8 figs., 4 tabs

  13. Role of flexural stiffness of leukocyte microvilli in adhesion dynamics

    Science.gov (United States)

    Wu, Tai-Hsien; Qi, Dewei

    2018-03-01

    Previous work reported that microvillus deformation has an important influence on dynamics of cell adhesion. However, the existing studies were limited to the extensional deformation of microvilli and did not consider the effects of their bending deformation on cell adhesion. This Rapid Communication investigates the effects of flexural stiffness of microvilli on the rolling process related to adhesion of leukocytes by using a lattice-Boltzmann lattice-spring method (LLM) combined with adhesive dynamics (AD) simulations. The simulation results reveal that the flexural stiffness of microvilli and their bending deformation have a profound effect on rolling velocity and adhesive forces. As the flexural stiffness of the microvilli decreases, their bending angles increase, resulting in an increase in the number of receptor-ligand bonds and adhesive bonding force and a decrease in the rolling velocity of leukocytes. The effects of flexural stiffness on deformation and adhesion represent crucial factors involved in cell adhesion.

  14. Effects of nano-silica on mechanical performance and microstructure of ultra-high performance concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, T. M., E-mail: thiagomendes@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Londrina, PR (Brazil). Departamento de Engenharia Ambiental; Repette, W.L., E-mail: wellington.repette@gmail.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Civil; Reis, P.J., E-mail: pjlondrina@yahoo.com.br [Univeridade Estadual de Londrina (UEL), PR (Brazil). Lab. de Fisica Nuclear Aplicada

    2017-07-15

    The use of nanoparticles in ultra-high strength concretes can result in a positive effect on mechanical performance of these cementitious materials. This study evaluated mixtures containing 10 and 20 wt% of silica fume, for which the optimum nano-silica content was determined, i.e. the quantity of nano-silica that resulted on the higher gain of strength. The physical characterization of raw materials was done in terms of particle size distribution, density and specific surface area. Chemical and mineralogical compositions of materials were obtained through fluorescence and X-ray diffraction. The mechanical performance was evaluated by compressive strength, flexural strength and dynamic elastic modulus measurements. The microstructural analysis of mixtures containing nano-silica was performed by X-ray diffraction, thermogravimetry, mercury intrusion porosimetry and scanning electron microscopy. Obtained results indicate an optimum content of nano-silica of 0.62 wt%, considering compressive and flexural strengths. This performance improvement was directly related to two important microstructural aspects: the packing effect and pozzolanic reaction of nano-silica. (author)

  15. Effects of nano-silica on mechanical performance and microstructure of ultra-high performance concrete

    International Nuclear Information System (INIS)

    Mendes, T. M.; Repette, W.L.; Reis, P.J.

    2017-01-01

    The use of nanoparticles in ultra-high strength concretes can result in a positive effect on mechanical performance of these cementitious materials. This study evaluated mixtures containing 10 and 20 wt% of silica fume, for which the optimum nano-silica content was determined, i.e. the quantity of nano-silica that resulted on the higher gain of strength. The physical characterization of raw materials was done in terms of particle size distribution, density and specific surface area. Chemical and mineralogical compositions of materials were obtained through fluorescence and X-ray diffraction. The mechanical performance was evaluated by compressive strength, flexural strength and dynamic elastic modulus measurements. The microstructural analysis of mixtures containing nano-silica was performed by X-ray diffraction, thermogravimetry, mercury intrusion porosimetry and scanning electron microscopy. Obtained results indicate an optimum content of nano-silica of 0.62 wt%, considering compressive and flexural strengths. This performance improvement was directly related to two important microstructural aspects: the packing effect and pozzolanic reaction of nano-silica. (author)

  16. Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting, E-mail: WT323@mail.nwpu.edu.cn [School of Marine Science and Technology, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072 (China); College of Engineering and Computer Science, The Australian National University, ACT, 2600 (Australia); Sheng, Mei-Ping [School of Marine Science and Technology, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072 (China); Qin, Qing-Hua [College of Engineering and Computer Science, The Australian National University, ACT, 2600 (Australia)

    2016-02-05

    Flexural vibration suppression in an Euler–Bernoulli beam with attached lateral local resonators (LLR) is studied theoretically and numerically. Hamilton's principle and Bloch's theorem are employed to derive the dispersion relation which reveals that two band gaps are generated. Within both band gaps, the flexural waves are partially transformed into longitudinal waves through a four-link-mechanism and totally blocked. The band gaps can be flexibly tuned by changing the geometry parameter of the four-link-mechanism and the spring constants of the resonators. Frequency response function (FRF) from finite element analysis via commercial software of ANSYS shows large flexural wave attenuation within the band gaps and the effect of damping from the LLR substructures which helps smooth and lower the response peaks at the sacrifice of the band gap effect. The existence of the multi-flexural band gaps can be exploited for the design of flexural vibration control of beams. - Highlights: • A metamaterial beam with lateral local resonance is proposed. • The metamaterial beam can generate multi-band gaps for flexural wave suppression. • The substructure can transform the flexural wave into longitudinal wave and absorb the waves. • Damping from different part has different influence on the band gaps. • The design of the metamaterial beam can be used for multi-flexural vibration control.

  17. Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics

    International Nuclear Information System (INIS)

    Zhang Jun; Li, Victor C.

    2004-01-01

    Mode I crack propagation in fiber-reinforced concrete (FRC) is simulated by a fracture mechanics approach. A superposition method is applied to calculate the crack tip stress intensity factor. The model relies on the fracture toughness of hardened cement paste (K IC ) and the crack bridging law, so-called stress-crack width (σ-δ) relationship of the material, as the fundamental material parameters for model input. As two examples, experimental data from steel FRC beams under three-point bending load are analyzed with the present fracture mechanics model. A good agreement has been found between model predictions and experimental results in terms of flexural stress-crack mouth opening displacement (CMOD) diagrams. These analyses and comparisons confirm that the structural performance of concrete and FRC elements, such as beams in bending, can be predicted by the simple fracture mechanics model as long as the related material properties, K IC and (σ-δ) relationship, are known

  18. Processing, structure and flexural strength of CNT and carbon fibre ...

    Indian Academy of Sciences (India)

    Administrator

    1Department of Mechanical Engineering, Vignan Institute of Technology and Science, Deshmukhi, ... perties include primarily the tensile stress, flexural stress and fracture parameters. However ... The present work is an attempt to bring out the flexural strength ..... lating Materials Annual Book of ASTM Standards American.

  19. Experimental investigation of span length for flexural test of fiber reinforced polymer composite laminates

    Directory of Open Access Journals (Sweden)

    Akhil Mehndiratta

    2018-01-01

    Full Text Available Testing and evaluation of mechanical properties for FRP (Fiber Reinforced Polymer composite parts play a significant role to qualify it for the end use. Among the mechanical properties, the flexural strength is significant and vital as it may vary with specimen depth, temperature and the test span length. The flexural strength varies for different materials with varying the test span length hence the current work aims to find an optimum span length to test flexural strength for the specimens made of Glass (7781, EC9756 and Carbon (HTA7, G801 prepreg materials. Experiments are conducted as per the ASTM Standard D 790 for flexural test by varying the span lengths to understand the behavior of the flexural strength and flexural modulus. The experimental data were compared with those obtained from the finite element program software Altair Hyper works 14.0. The results indicate that flexural modulus increases with the span length to a point and then it decreases. Thereby, an optimum span length can be obtained for testing flexural strength, which will be useful to the designers and the composite manufacturers to accomplish better standard testing procedures.

  20. The Design of a Semi-Prefabricated LVL-Concrete Composite Floor

    Directory of Open Access Journals (Sweden)

    David Yeoh

    2012-01-01

    Full Text Available This paper describes the design of a novel semi-prefabricated LVL-concrete composite floor that has been developed in New Zealand. In this solution, the floor units made from LVL joists and plywood are prefabricated in the factory and transported to the building site. The units are then lifted onto the supports and connected to the main frames of the building and to the adjacent units. Finally, a concrete topping is poured on top of the units in order to form a continuous slab connecting all the units. Rectangular notches cut from the LVL joists and reinforced with coach screws provide the composite action between the concrete slab and the LVL joists. This system proved to be an effective modular solution that ensures rapid construction. A design procedure based on the use of the effective flexural stiffness method, also known as the “gamma method” is proposed for the design of the composite floor at ultimate and serviceability limit states, in the short and long term. By comparison with the experimental results, it is shown that the proposed method leads to conservative design. A step-by-step design worked example of this novel semi-prefabricated composite floor concludes the paper.

  1. MODELLING AND FAILURE ANALYSIS OF FLEXURE SPRINGS FOR A STIRLING CRYOCOOLER

    Directory of Open Access Journals (Sweden)

    RAJESH V. R.

    2017-04-01

    Full Text Available In the range of milliwatt to a few watts cooling capacity, Stirling cycle and pulse tube coolers are most suitable for producing cryogenic temperatures owing to their eco-friendliness, high efficiency, cooling capacity to mass ratio etc. The compressor of a Stirling cooler is powered by a linear motor. The power piston of the cooler is held in position and moves to and fro with the support of so called flexure springs or flexure bearings. Flexures avoid direct contact between moving parts of the compressor of the cooler. Thus, if designed adequately to withstand fatigue, flexure bearings can easily outlast rolling element bearings and slider bearings. In this work, a computational analysis is used to study the performance of flexure spring by varying the geometrical parameters. Three of the most common spring materials namely, SS304, beryllium copper and spring steel are considered for analysis. The analysis was made by varying the parameters like spiral sweep angle, slot width, number of spirals and disc thickness. The influence of each of these parameters on the fatigue life of the spring has been investigated. The results suggest that flexure springs of three spiral arms would be the ideal choice for the selected cryocooler. The variation of stress developed with respect to different design parameters and fatigue damage factor are presented graphically.

  2. Compresive Strength for FRC Member using Silica Fume

    OpenAIRE

    R.M.Damgir,; Y.M.Ghugal

    2011-01-01

    The compressive strength of concrete was obtained by conducting tests on standard cubes of size 150X 150X150 mm size with fibers 0 to 5% with an increment of 0.5% and Silica Fume of 5%.The compressivestrength was determined by carrying out compressive test by using UTM. Slump loss increases with increase in Fiber Volume Crack Width reduces as percentage Fiber Volume increases and Crack width varying between 0.75 to 1.30 mm for 28 days concrete strength. Toughness of concrete member increases ...

  3. The nonlinear flexural response of a whole teleost fish: Contribution of scales and skin.

    Science.gov (United States)

    Szewciw, Lawrence; Zhu, Deju; Barthelat, Francois

    2017-12-01

    The scaled skin of fish is an intricate system that provides mechanical protection against hard and sharp puncture, while maintaining the high flexural compliance required for unhindered locomotion. This unusual combination of local hardness and global compliance makes fish skin an interesting model for bioinspired protective systems. In this work we investigate the flexural response of whole teleost fish, and how scales may affect global flexural stiffness. A bending moment is imposed on the entire body of a striped bass (Morone saxatilis). Imaging is used to measure local curvature, to generate moment-curvature curves as function of position along the entire axis of the fish. We find that the flexural stiffness is the highest in the thick middle portion of the fish, and lowest in the caudal and rostral ends. The flexural response is nonlinear, with an initial soft response followed by significant stiffening at larger flexural deformations. Low flexural stiffness at low curvatures promotes efficient swimming, while higher stiffness at high curvatures enables a possible tendon effect, where the mechanical energy at the end of a stroke is stored in the form of strain energy in the fish skin. To assess the contribution of the scales to stiffening we performed flexural tests with and without scales, following a careful protocol to take in account tissue degradation and the effects of temperature. Our findings suggest that scales do not substantially increase the whole body flexural stiffness of teleost fish over ranges of deformations which are typical of swimming and maneuvering. Teleost scales are thin and relatively flexible, so they can accommodate large flexural deformations. This finding is in contrast to the bulkier ganoid scales which were shown in previous reports to have a profound impact of global flexural deformations and swimming in fish like gar or Polypterus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparison of the design rules for the end of the prestressed concrete double tee component between China and the United States

    Directory of Open Access Journals (Sweden)

    Meng Xian Hong

    2016-01-01

    Full Text Available Precast prestressed concrete double tee is an economic bearing component which can be made into a large span, large coverage area .From the angle of the design for the end of the precast prestressed concrete double tee component, flexure and axial tension in extended end, direct shear, diagonal tension at re-entrant corner, diagonal tension in extended end and the connection of the end of precast prestressed double tee component in China and the United States are compared. The comparative study provide the direction for the future development of China in the double tee,including strengthening the end reinforcement and increasing end connections.

  5. State-of-the-Art Report on Fiber-Reinforced Lightweight Aggregate Concrete Masonry

    Directory of Open Access Journals (Sweden)

    Saul Rico

    2017-01-01

    Full Text Available Masonry construction is the most widely used building method in the world. Concrete masonry is relatively low in cost due to the vast availability of aggregates used within the production process. These aggregate materials are not always reliable for structural use. One of the principal issues associated with masonry is the brittleness of the unit. When subject to seismic loads, the brittleness of the masonry magnifies. In regions with high seismic activity and unspecified building codes or standards, masonry housing has developed into a death trap for countless individuals. A common approach concerning the issue associated with the brittle characteristic of masonry is addition of steel reinforcement. However, this can be expensive, highly dependent on skillfulness of labor, and particularly dependent on the quality of available steel. A proposed solution presented in this investigation consists of introducing steel fibers to the lightweight aggregate concrete masonry mix. Previous investigations in the field of lightweight aggregate fiber-reinforced concrete have shown an increase in flexural strength, toughness, and ductility. The outcome of this research project provides invaluable data for the production of a ductile masonry unit capable of withstanding seismic loads for prolonged periods.

  6. Prestressed CFRP Fabrics for Flexural Strengthening of Concrete Beams with an Easy Prestressing Technique

    Science.gov (United States)

    Şakar, G.; Tanarslan, H. M.

    2014-09-01

    It is proposed to use prestressed CFRP plates for strengthening in order to prevent their debonding and thus to increase their strengthening efficiency. For this purpose, and easy-to-use piece of equipment was created. To determine the effectiveness of this method, an experimental program was carried out, and the effect of prestressed CFRP on the behavior and ultimate strength of reinforced concrete beams was examined in threepoint bending tests. A remarkable increase in their strength with debonding was seen for every specimen to which a prestressed CFRP plate had been applied.

  7. Behavior and strength of beams cast with ultra high strength concrete containing different types of fibers

    Directory of Open Access Journals (Sweden)

    M.M. Kamal

    2014-04-01

    Full Text Available Ultra-high performance concrete (UHPC is a special type of concrete with extraordinary potentials in terms of strength and durability performance. Its production and application implement the most up-to-date knowledge and technology of concrete manufacturing. Sophisticated structural designs in bridges and high-rise buildings, repair works and special structures like nuclear facilities are currently the main fields of applications of UHPC. This paper aimed to evaluate the behavior of ultra-high strength concrete beams. This paper also aimed to determine the effect of adding fibers and explore their effect upon the behavior and strength of the reinforced concrete beams. A total of twelve simple concrete beams with and without shear reinforcements were tested in flexure. The main variables taken into consideration in this research were the type of fibers and the percentage of longitudinal reinforcement as well as the existence or absence of the web reinforcement. Two types of fibers were used including steel and polypropylene fibers. The behavior of the tested beams was investigated with special attention to the deflection under different stages of loading, initial cracking, cracking pattern, and ultimate load. Increased number of cracks was observed at the end of loading due to the use of fibers, which led to the reduced width of cracks. This led to increased stiffness and higher values of maximum loads.

  8. Geometric controls of the flexural gravity waves on the Ross Ice Shelf

    Science.gov (United States)

    Sergienko, O. V.

    2017-12-01

    Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.

  9. Comparative study of flexural strength test methods on CAD/CAM Y-TZP dental ceramics

    Science.gov (United States)

    Xu, Yongxiang; Han, Jianmin; Lin, Hong; An, Linan

    2015-01-01

    Clinically, fractures are the main cause of computer-aided design and computer-aided manufacturing (CAD/CAM) 3 mol%-yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) all-ceramic dental restorations failure because of repetitive occlusal loading. The goal of this work is to study the effect of test methods and specimen’s size on the flexural strength of five ceramic products. Both bi-axial flexure test (BI) and uni-axial flexure tests (UNI), including three-point flexure test (3PF) and four-point flexure test (4PF), are used in this study. For all five products, the flexural strength is as follows: BI > 3PF > 4PF. Furthermore, specimens with smaller size (3PF-s) have higher values than the bigger ones (3PF). The difference between BI and UNI resulted from the edge flaws in ceramic specimens. The relationship between different UNI (including 3PF-s, 3PF and 4PF) can be explained according to Weibull statistical fracture theory. BI is recommended to evaluate the flexural strength of CAD/CAM Y-TZP dental ceramics. PMID:26816646

  10. Comparative study of flexural strength test methods on CAD/CAM Y-TZP dental ceramics.

    Science.gov (United States)

    Xu, Yongxiang; Han, Jianmin; Lin, Hong; An, Linan

    2015-12-01

    Clinically, fractures are the main cause of computer-aided design and computer-aided manufacturing (CAD/CAM) 3 mol%-yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) all-ceramic dental restorations failure because of repetitive occlusal loading. The goal of this work is to study the effect of test methods and specimen's size on the flexural strength of five ceramic products. Both bi-axial flexure test (BI) and uni-axial flexure tests (UNI), including three-point flexure test (3PF) and four-point flexure test (4PF), are used in this study. For all five products, the flexural strength is as follows: BI > 3PF > 4PF. Furthermore, specimens with smaller size (3PF-s) have higher values than the bigger ones (3PF). The difference between BI and UNI resulted from the edge flaws in ceramic specimens. The relationship between different UNI (including 3PF-s, 3PF and 4PF) can be explained according to Weibull statistical fracture theory. BI is recommended to evaluate the flexural strength of CAD/CAM Y-TZP dental ceramics.

  11. Behaviours of reinforced concrete containment models under thermal gradient and internal pressure

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Ohnuma, H.; Yoshioka, Y.; Okada, K.; Ueda, M.

    1979-01-01

    The provisions for design concepts in Japanese Technical Standard of Concrete Containments for Nuclear Power Plants require to take account of thermal effects into design. The provisions also propose that the thermal effects could be relieved according to the degree of crack formation and creep of concrete, and may be neglected in estimating the ultimate strength capacity in extreme environmental loading conditions. This experimental study was carried out to clarify the above provisions by investigating the crack and deformation behaviours of two identical reinforced cylindrical models with dome and basement (wall outer diameter 160 cm, and wall thickness 10 cm). One of these models was hydraulically pressurized up to failure at room temperature and the other was subjected to similar internal pressure combined with the thermal gradient of approximately 40 to 50 0 C across the wall. Initial visual cracks were recognized when the stress induced by the thermal gradient reached at about 85% of bending strength of concrete used. The thermal stress of reinforcement calculated with the methods proposed by the authors using an average flexural rigidity considering the contribution of concrete showed good agreement with test results. The method based on the fully cracked section, however, was recognized to underestimate the measured stress. These cracks considerably reduced the initial deformation caused by subsequent internal pressure. (orig.)

  12. Workability of glass reinforced concrete (GRC) with granite and silica sand aggregates

    Science.gov (United States)

    Moceikis, R.; Kičaitė, A.; Keturakis, E.

    2017-10-01

    Glass fiber reinforced concrete (GRC) opens the door for lightweight and complex shaped innovative construction, adding architectural value to buildings. With panel thickness down to 15 mm, considerable amount of total loads and materials per square meter of facade can be saved, if compared to conventionally used 80 mm thickness outer layer in insulated precast concrete wall elements. Even though GRC is used for over 50 years in such countries as Great Britain, USA and Japan, there are very few examples and little research done in Eastern Europe with this building material. European Commission propagates sustainable design as commitment to energy efficiency, environmental stewardship and conservation. For this reason, GRC plays important role in mowing toward these goals. In this paper, GRC premix recipes including fine granite and silica sands, reinforced with 13mm length alkali resistant glass fibers are investigated. Two CEM I 52,5R cements with different particle sizes were used and severe water dissociation noticed in one of concrete mixes. Cement particle size distribution determined with laser diffraction particle analyser Cilas 1090LD. To determine modulus of rupture (M.O.R.) and limit of proportionality (L.O.P), plates thickness 15 and 20 mm were produced and tested for flexural resistance according to 4-point bending scheme. Concrete workability tests were made according EN 1170-1.

  13. Optimum Design and Performance of Porous Concrete for Heavy-Load Traffic Pavement in Cold and Heavy Rainfall Region of NE China

    Directory of Open Access Journals (Sweden)

    Ailing Yao

    2018-01-01

    Full Text Available The aim of the study was to solve the problem of drainage stability of pavement base in cold and Cloudburst area. With porous concrete as the research object, an optimum design of porous concrete was determined using a step filling and orthogonal test method, and the relationship between the porosity and the connected porosity of the porous concrete was analyzed. Furthermore, drainage performance and frost resistance of the pavement, compressive strength of the porous concrete, bending strength, and compressive elastic modulus were studied. The results show that the effects of water-cement ratio on the strength of porous concrete based on the step filling method are the most significant. In addition, the connected porosity and goal porosity have a good linear relationship; that is, the drainage performance increases with the increase in connected porosity, whereas the frost resistance, compressive strength, flexural tensile strength, and compressive elastic modulus decrease with the increase in connected porosity. Based on an engineering project in Inner Mongolia (in China, it was shown that porous concrete with a goal porosity of 15% used as a pavement base could meet the requirements of cold weather, showers, and heavy traffic.

  14. Final Report: Self-Consolidating Concrete Construction for Modular Units

    International Nuclear Information System (INIS)

    Gentry, Russell; Kahn, Lawrence; Kurtis, Kimberly; Petrovic, Bojan; Loreto, Giovanni; Van Wyk, Jurie; Canterero-Leal, Carlos

    2016-01-01

    This report focuses on work completed on DE-NE0000667, Self-Consolidating Concrete for Modular Units, in connection with the Department of Energy Nuclear Energy Enabling Technologies (DOE-NEET) program. This project was completed in the School of Civil and Environmental Engineering at the Georgia Institute of Technology, with Westinghouse Corporation as the industrial partner. The primary objective of this project was to develop self-consolidating concrete (also termed ''self-compacting concrete'' or SCC) mixtures so that concrete placement can be made into steel plate composite (SC) modular structures without the need for continuous concrete placement. As part of the research, SCC mixtures were developed and validated to ensure sufficient shear capacity across cold-joints, while minimizing shrinkage and temperature increase during curing to enhance concrete bonding with the steel plate construction found in modular units. The SCC mixtures developed were able to carry shearing forces across the cold-joint boundaries. This ''self-roughening'' was achieved by adding a tailored fraction of lightweight aggregate (LWA) to the concrete mix, some of which raised to the surface during curing, forming a rough surface on which subsequent concrete placements were made. The self-roughening behavior was validated through three sets of structural tests. Shear friction on small-scale specimens with cold joints was assessed using varying fractions of LWA and with varying amounts of external steel plate reinforcement. The results show that the shear friction coefficient, to be used with the provisions of ACI 318-14, Section 22.9, can be taken as 1.35. Mid-scale beam tests were completed to assess the cold-joint capacity in both in-plane and out-of-plane bending. The results showed that the self-roughened joints performed as well as monolithic joints. The final assessment was a full-scale test using a steel composite module supplied by

  15. Flexural Free Vibrations of Multistep Nonuniform Beams

    Directory of Open Access Journals (Sweden)

    Guojin Tan

    2016-01-01

    Full Text Available This paper presents an exact approach to investigate the flexural free vibrations of multistep nonuniform beams. Firstly, one-step beam with moment of inertia and mass per unit length varying as I(x=α11+βxr+4 and m(x=α21+βxr was studied. By using appropriate transformations, the differential equation for flexural free vibration of one-step beam with variable cross section is reduced to a four-order differential equation with constant coefficients. According to different types of roots for the characteristic equation of four-order differential equation with constant coefficients, two kinds of modal shape functions are obtained, and the general solutions for flexural free vibration of one-step beam with variable cross section are presented. An exact approach to solve the natural frequencies and modal shapes of multistep beam with variable cross section is presented by using transfer matrix method, the exact general solutions of one-step beam, and iterative method. Numerical examples reveal that the calculated frequencies and modal shapes are in good agreement with the finite element method (FEM, which demonstrates the solutions of present method are exact ones.

  16. ICESat-derived lithospheric flexure as caused by an endorheic lake's expansion on the Tibetan Plateau and the comparison to modeled flexural responses

    Science.gov (United States)

    Madson, Austin; Sheng, Yongwei; Song, Chunqiao

    2017-10-01

    A substantial and rapid expansion beginning in the late 1990s of Siling Co, the largest endorheic lake on the central Tibetan Plateau (TP), has caused a measurable lithospheric deflection in the region adjacent to the lake. Current broad-scale measuring of this flexural response is mainly derived from InSAR processing techniques or time-consuming field campaigns. The rheological constraints of the lithosphere from the underlying lithospheric response to large lake loads in this region are not well understood. This paper highlights a more efficient spaceborne LiDAR remote sensing technique to measure the deflection in the vicinity of Siling Co and to investigate the mechanisms of the observed lithospheric response in order to garner a better understanding of the local rheology. A lake-adjacent deflection rate and Siling Co water load variations are calculated utilizing the Geoscience Laser Altimeter System (GLAS) onboard NASA's Ice, Cloud and land Elevation Satellite (ICESat) and the joint NASA/USGS Landsat series of Earth observing satellites. A downward deflection rate of ∼5.6 mm/yr for the first 4 km of lake-adjacent land is calculated from the GLAS instrument, and this response is compared to the flexural outputs from a spherically symmetric, non-rotating, elastic, and isotropic (SNREI) Earth model in order to better understand the underlying mechanisms of the lithospheric response to the rapid increase of Siling Co loads. The modeled elastic response is ∼6.9 times lower than the GLAS derived flexure, thereby providing further evidence that a purely elastic lithospheric response cannot explain the deflection in this region. The relationship between the modeled elastic response and the GLAS derived flexure is applied to a long-term lake load change dataset to create the longest-running flexural response curve as caused by the last ∼40 years of Siling Co load variations, and these results show an accumulated lake-adjacent flexure of ∼12.6 cm from an

  17. Corrosion of steel in locally deficient concrete.

    Science.gov (United States)

    2009-02-28

    This investigation confirmed prior noted trends of extensive preferential chloride intrusion at preexisitng cracks in a majority of cases of substructure members in Florida bridges built with low permeability conventional concrete.

  18. Analysis of Mechanical Properties of Self Compacted Concrete by Partial Replacement of Cement with Industrial Wastes under Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Junaid Mansoor

    2018-03-01

    Full Text Available Self-Compacting Concrete (SCC differs from the normal concrete as it has the basic capacity to consolidate under its own weight. The increased awareness regarding environmental disturbances and its hazardous effects caused by blasting and crushing procedures of stone, it becomes a delicate and obvious issue for construction industry to develop an alternative remedy as material which can reduce the environmental hazards and enable high-performance strength to the concrete, which would make it durable and efficient for work. A growing trend is being established all over the world to use industrial byproducts and domestic wastes as a useful raw material in construction, as it provides an eco-friendly edge to the construction process and especially for concrete. This study aims to enlighten the use and comparative analysis for the performance of concrete with added industrial byproducts such as Ground Granulated Blast Furnace Slag (GGBFS, Silica fumes (SF and Marble Powder (MP in the preparation of SCC. This paper deals with the prediction of mechanical properties (i.e., compressive, tensile and flexural Strength of self-compacting concrete by considering four major factors such as type of additive, percentage additive replaced, curing days and temperature using Artificial Neural Networks (ANNs.

  19. Aggregate Effect on the Concrete Cone Capacity of an Undercut Anchor under Quasi-Static Tensile Load.

    Science.gov (United States)

    Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie; Wan-Wendner, Roman

    2018-05-01

    In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means.

  20. Properties of concrete with tire derived aggregate and crumb rubber as a lighthweight substitute for mineral aggregates in the concrete mix

    Science.gov (United States)

    Siringi, Gideon Momanyi

    Scrap tires continue to be a nuisance to the environment and this research proposes one way of recycling them as a lightweight aggregate which can substitute for mineral aggregates in concrete. Aggregates derived from scrap tires are often referred to as Tire Derived Aggregate (TDA). First, the focus is how much mineral aggregate can be replaced by these waste tires and how the properties of concrete are affected with the introduction of rubber. This is being mindful of the fact that for a new material to be acceptable as an engineering material, its properties and behavior has to be well understood, the materials must perform properly and be acceptable to the regulating agencies. The role played by the quantity of TDA and Crumb Rubber replacing coarse aggregate and fine aggregate respectively as well as different treatment and additives in concrete on its properties are examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, Splitting Tensile Strength based on ASTM C496, Modulus of Rupture (flexural strength) based on ASTM C78 and Bond strength of concrete developed with reinforcing steel based on ASTM C234.Through stress-strain plots, the rubberized concrete is compared in terms of change in ductility, toughness and Elastic Modulus. Results indicate that while replacement of mineral aggregates with TDA results in reduction in compressive strength, this may be mitigated by addition of silica fume or using a smaller size of TDA to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product with lower density while utilizing recycled TDA. From the results, it is observed that 7-10% of weight of mineral aggregates can be replaced by an equal volume of TDA to produce concrete with compressive strength of up to 4000 psi (27.5 MPa). Rubberized concrete would have higher ductility and toughness with