WorldWideScience

Sample records for concrete composite steel

  1. Composite Behaviour of Steel Frames with Precast Concrete Infill Panels

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Hofmeyer, H.; Snijder, H.H.; B. Hoffmeister, xx; O. Hechler, xx

    2005-01-01

    This paper presents preliminary experimental and numerical results of an investigation into the composite behaviour of a steel frame with a precast concrete infill panel (S-PCP) subject to a lateral load. The steel-concrete connections consist of two plates connected with two bolts which are loaded

  2. Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls

    Science.gov (United States)

    Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu

    2017-10-01

    In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.

  3. TYPES OF STEEL AND CONCRETE COMPOSITE CABLE SPACE FRAMES

    Directory of Open Access Journals (Sweden)

    G. M. Gasii

    2016-12-01

    Full Text Available Purpose. Modern terms of the construction generate the need to find new structures, including roof systems that would meet modern requirements. An important aspect in finding constructive solutions for new structures is the use of reliable and advanced materials. Considering this, the decision to develop the new space structures to a wide implementation in practice of domestic and foreign construction are relevant and perspective direction of building structures development. Methodology. Given the results of previously conducted theoretical research of existing types of space roof structures find promising areas of improvement or creation of new structures that should be devoid of weaknesses and imperfections of analogs and they should have an economic effect through rational use of materials. Findings. Types of steel and concrete composite cable space frames and structural features of its elements are developed and considered. The steel and concrete composite cable space frame is a completely new kind of space structure system that has the original structural concept and it was designed to cover large-span industrial and public buildings. The basic elements of that structure system are modular element of the bottom chord and space steel and concrete composite module that consists of tubular rods and reinforced concrete slab. All modular elements are made in the factory. With bottom chord modular elements and space steel and concrete composite modules can be assembled three types of longitudinal elements. It is the beam element, arched element and hanging element. Also with the modules can be assembled various structure system and their combinations. Number of space steel and concrete composite modules and bottom chord modular elements, which is needed to collect steel and concrete composite cable space frames, is determined by calculation and optimal designing. Recommended dimensions of the modular elements of the steel and concrete composite

  4. Analysis of the Behaviour of Composite Steel and Steel Fiber Reinforced Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Mindaugas Petkevičius

    2011-04-01

    Full Text Available There was a pending influence of steel fiber on the strength and stiffness of composite steel–concrete slabs under statical short–time load. Steel profiled sheeting and steel fiber reinforced concrete were used for specimens. Four composite slabs were made. Experimental investigations into the behaviour and influence of steel fiber reinforced concrete in composite slabs were conducted. Transverse, longitudinal, shear deformation and deflection of the slab were measured. The results indicated that the use of steel fiber in composite slabs was effective: strength was 20–24 % higher and the meanings of deflections under the action of the bending moment were 0,6MR (where MR is the bending moment at failure of the slabs and were 16–18 % lower for slabs with usual concrete. Article in Lithuanian

  5. The Vibration Based Fatigue Damage Assessment of Steel and Steel Fiber Reinforced Concrete (SFRC Composite Girder

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2015-01-01

    Full Text Available The steel-concrete composite girder has been usually applied in the bridge and building structures, mostly consisting of concrete slab, steel girder, and shear connector. The current fatigue damage assessment for the composite girder is largely based on the strain values and concrete crack features, which is time consuming and not stable. Hence the vibration-based fatigue damage assessment has been considered in this study. In detail, a steel-steel fiber reinforced concrete (SFRC composite girder was tested. The steel fiber reinforced concrete is usually considered for dealing with the concrete cracks in engineering practice. The composite girder was 3.3m long and 0.45m high. The fatigue load and impact excitation were applied on the specimen sequentially. According to the test results, the concrete crack development and global stiffness degradation during the fatigue test were relatively slow due to the favourable performance of SFRC in tension. But on the other hand, the vibration features varied significantly during the fatigue damage development. Generally, it confirmed the feasibility of executing fatigue damage assessment of composite bridge based on vibration method.

  6. Towards improved modeling of steel-concrete composite wall elements

    International Nuclear Information System (INIS)

    Vecchio, Frank J.; McQuade, Ian

    2011-01-01

    Highlights: → Improved analysis of double skinned steel concrete composite containment walls. → Smeared rotating crack concept applied in formulation of new analytical model. → Model implemented into finite element program; numerically stable and robust. → Models behavior of shear-critical elements with greater ease and improved accuracy. → Accurate assessments of strength, deformation and failure mode of test specimens. - Abstract: The Disturbed Stress Field Model, a smeared rotating crack model for reinforced concrete based on the Modified Compression Field Theory, is adapted to the analysis of double-skin steel-concrete wall elements. The computational model is then incorporated into a two-dimensional nonlinear finite element analysis algorithm. Verification studies are undertaken by modeling various test specimens, including panel elements subject to uniaxial compression, panel elements subjected to in-plane shear, and wall specimens subjected to reversed cyclic lateral displacements. In all cases, the analysis model is found to provide accurate calculations of structural load capacities, pre- and post-peak displacement responses, post-peak ductility, chronology of damage, and ultimate failure mode. Minor deficiencies are found in regards to the accurate portrayal of faceplate buckling and the effects of interfacial slip between the faceplates and the concrete. Other aspects of the modeling procedure that are in need of further research and development are also identified and discussed.

  7. Effect of shear connectors on local buckling and composite action in steel concrete composite walls

    International Nuclear Information System (INIS)

    Zhang, Kai; Varma, Amit H.; Malushte, Sanjeev R.; Gallocher, Stewart

    2014-01-01

    Steel concrete composite (SC) walls are being used for the third generation nuclear power plants, and also being considered for small modular reactors. SC walls consist of thick concrete walls with exterior steel faceplates serving as reinforcement. These steel faceplates are anchored to the concrete infill using shear connectors, for example, headed steel studs. The steel faceplate thickness (t p ) and yield stress (F y ), and the shear connector spacing (s), stiffness (k s ), and strength (Q n ) determine: (a) the level of composite action between the steel plates and the concrete infill, (b) the development length of steel faceplates, and (c) the local buckling of the steel faceplates. Thus, the shear connectors have a significant influence on the behavior of composite SC walls, and should be designed accordingly. This paper presents the effects of shear connector design on the level of composite action and development length of steel faceplates in SC walls. The maximum steel plate slenderness, i.e., ratio of shear connector spacing-to-plate thickness (s/t p ) ratio to prevent local buckling before yielding is also developed based on the existing experimental database and additional numerical analysis

  8. Effect of shear connectors on local buckling and composite action in steel concrete composite walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai, E-mail: kai-zh@purdue.edu [School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Malushte, Sanjeev R., E-mail: smalusht@bechtel.com [Bechtel Power Corporation, Frederick, MD (United States); Gallocher, Stewart, E-mail: stewart.gallocher@steelbricks.com [Modular Walling Systems Ltd., Glasgow (United Kingdom)

    2014-04-01

    Steel concrete composite (SC) walls are being used for the third generation nuclear power plants, and also being considered for small modular reactors. SC walls consist of thick concrete walls with exterior steel faceplates serving as reinforcement. These steel faceplates are anchored to the concrete infill using shear connectors, for example, headed steel studs. The steel faceplate thickness (t{sub p}) and yield stress (F{sub y}), and the shear connector spacing (s), stiffness (k{sub s}), and strength (Q{sub n}) determine: (a) the level of composite action between the steel plates and the concrete infill, (b) the development length of steel faceplates, and (c) the local buckling of the steel faceplates. Thus, the shear connectors have a significant influence on the behavior of composite SC walls, and should be designed accordingly. This paper presents the effects of shear connector design on the level of composite action and development length of steel faceplates in SC walls. The maximum steel plate slenderness, i.e., ratio of shear connector spacing-to-plate thickness (s/t{sub p}) ratio to prevent local buckling before yielding is also developed based on the existing experimental database and additional numerical analysis.

  9. EXPERIMENTAL RESEARCH OF THE THREE-DIMENSIONAL PERFORMANCE OF COMPOSITE STEEL AND CONCRETE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Zamaliev Farit Sakhapovich

    2012-12-01

    steel-concrete slabs limits their use in the construction of residential housing. This article describes the composition, geometry, reinforcement, and anchors to enable the use of concrete slabs and steel beams. The article contains photographs that illustrate the load distribution model. Methods of testing of fiber strains of concrete slabs and steel profiles, deflections of beams, shear stresses in the layers of the "steel-to-concrete" contact area that may involve slab cracking are analyzed. Dynamics of fiber deformations of concrete slabs, steel beams, and layers of the "steel-to-concrete" contact areas, deflection development patterns, initial cracking and crack development to destruction are analyzed. The author also describes the fracture behavior of the floor model. Results of experimental studies of the three-dimensional overlapping of structural elements are compared to the test data of individual composite beams. Peculiarities of the stress-strain state of composite steel and concrete slabs, graphs of strains and stresses developing in sections of middle and external steel-and-concrete beams, deflection graphs depending on the loading intensity are provided. The findings of the experimental studies of the three-dimensional performance of composite steel-and-concrete slabs are provided, as well.

  10. Experimental investigations on steel-concrete composite columns for varying parameters

    Science.gov (United States)

    Aparna, V.; Vivek, D.; Neelima, Kancharla; Karthikeyan, B.

    2017-07-01

    In this study, the experimental investigations on steel tubes filled with different types of concrete are presented. Steel tubes filled with fibre reinforced concrete using lathe waste and steel tube with concerned confined with steel mesh were investigated. The combinations were compared with steel tubes with conventional concrete. A total of 4 concrete filled steel tube (CFST) combinations were made with tubes of diameter 100 mm with wall thickness 1.6 mm and a height of 300 mm. Axial compression test to examine the resisting capacity of the columns and push-out test for noting the bond strength were performed. Coupon tests were also conducted to determine the mechanical properties of steel. The structural behaviour of the composite columns was evaluated from on the test results. It was observed that steel tube filled fibre reinforced possessed better bond strength and resistance to axial load.

  11. Seismic behavior of fiber reinforced steel-concrete composite systems

    OpenAIRE

    Faghih, F.; Das, D.; Ayoub, A.

    2017-01-01

    The addition of Steel Fibers (SF) to concrete has been widely studied in the past decades as a mean to control its crack behavior and maintain its ductility in tension. It has been verified that the use of these fibers at an appropriate dosage can change the behavior of structural members from brittle to ductile. Further, since the discovery of carbon nanotubes/fibers (CNT/CNF), they have been also considered as efficient fibers to be used in construction materials such as concrete. Previous ...

  12. Distortional Buckling Analysis of Steel-Concrete Composite Girders in Negative Moment Area

    Directory of Open Access Journals (Sweden)

    Zhou Wangbao

    2014-01-01

    Full Text Available Distortional buckling is one of the most important buckling modes of the steel-concrete composite girder under negative moment. In this study, the equivalent lateral and torsional restraints of the bottom flange of a steel-concrete composite girder under negative moments due to variable axial forces are thoroughly investigated. The results show that there is a coupling effect between the applied forces and the lateral and torsional restraint of the bottom flange. Based on the calculation formula of lateral and torsional restraints, the critical buckling stress of I-steel-concrete composite girders and steel-concrete composite box girders under variable axial force is obtained. The critical bending moment of the steel-concrete composite girders can be further calculated. Compared to the traditional calculation methods of elastic foundation beam, the paper introduces an improved method, which considers coupling effect of the external loads and the foundation spring constraints of the bottom flange. Fifteen examples of the steel-concrete composite girders in different conditions are calculated. The calculation results show a good match between the hand calculation and the ANSYS finite element method, which validated that the analytic calculation method proposed in this paper is practical.

  13. Bayesian decision and mixture models for AE monitoring of steel-concrete composite shear walls

    Science.gov (United States)

    Farhidzadeh, Alireza; Epackachi, Siamak; Salamone, Salvatore; Whittaker, Andrew S.

    2015-11-01

    This paper presents an approach based on an acoustic emission technique for the health monitoring of steel-concrete (SC) composite shear walls. SC composite walls consist of plain (unreinforced) concrete sandwiched between steel faceplates. Although the use of SC system construction has been studied extensively for nearly 20 years, little-to-no attention has been devoted to the development of structural health monitoring techniques for the inspection of damage of the concrete behind the steel plates. In this work an unsupervised pattern recognition algorithm based on probability theory is proposed to assess the soundness of the concrete infill, and eventually provide a diagnosis of the SC wall’s health. The approach is validated through an experimental study on a large-scale SC shear wall subjected to a displacement controlled reversed cyclic loading.

  14. Comparative analysis of the influence of creep of concrete composite beams of steel - concrete model based on Volterra integral equation

    Directory of Open Access Journals (Sweden)

    Partov Doncho

    2017-01-01

    Full Text Available The paper presents analysis of the stress-strain behaviour and deflection changes due to creep in statically determinate composite steel-concrete beam according to EUROCODE 2, ACI209R-92 and Gardner&Lockman models. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann - Volterra for the concrete part considering the above mentioned models. On the basis of the theory of viscoelastic body of Maslov-Arutyunian-Trost-Zerna-Bažant for determining the redistribution of stresses in beam section between concrete plate and steel beam with respect to time 't', two independent Volterra integral equations of the second kind have been derived. Numerical method based on linear approximation of the singular kernel function in the integral equation is presented. Example with the model proposed is investigated.

  15. Composite structures of steel and concrete beams, slabs, columns, and frames for buildings

    CERN Document Server

    Johnson, R P

    2008-01-01

    This book sets out the basic principles of composite construction with reference to beams, slabs, columns and frames, and their applications to building structures. It deals with the problems likely to arise in the design of composite members in buildings, and relates basic theory to the design approach of Eurocodes 2, 3 and 4.The new edition is based for the first time on the finalised Eurocode for steel/concrete composite structures.

  16. Numerical Analysis of Prefabricated Steel-Concrete Composite Floor in Typical Lipsk Building

    Directory of Open Access Journals (Sweden)

    Lacki Piotr

    2017-12-01

    Full Text Available The aim of the work was to perform numerical analysis of a steel-concrete composite floor located in a LIPSK type building. A numerical model of the analytically designed floor was performed. The floor was in a six-storey, retail and service building. The thickness of a prefabricated slab was 100 mm. The two-row, crisscrossed reinforcement of the slab was made from φ16 mm rods with a spacing of 150 x 200 mm. The span of the beams made of steel IPE 160 profiles was 6.00 m and they were spaced every 1.20 m. The steelconcrete composite was obtained using 80×16 Nelson fasteners. The numerical analysis was carried out using the ADINA System based on the Finite Element Method. The stresses and strains in the steel and concrete elements, the distribution of the forces in the reinforcement bars and cracking in concrete were evaluated. The FEM model was made from 3D-solid finite elements (IPE profile and concrete slab and truss elements (reinforcement bars. The adopted steel material model takes into consideration the plastic state, while the adopted concrete material model takes into account material cracks.

  17. Behaviour of steel-concrete composite beams using bolts as shear connectors

    Science.gov (United States)

    Tran, Minh-Tung; Nguyen Van Do, Vuong; Nguyen, Tuan-Anh

    2018-04-01

    The paper presents an experimental program on the application of bolts as shear connectors for steel-composite beams. Four steel- concrete composite beams and a reference steel beam were made and tested. The aim of the testing program is to examine which forms of the steel bolts can be used effectively for steel-composite beams. The four types of the bolts include: Type 1 the bolt with the nut at the end; Type 2 the bolt bending at 900 hook; Type 3 the bolt without the nut at the end and Type 4 the bolt with the nut at the end but connected with the steel beam by hand welding in other to be connected with the steel beam by bolt connection as in the first three types. The test results showed that beside the traditional shear connectors like shear studs, angle type, channel type, bolts can be used effectively as the shear connectors in steel-composite beams and the application of bolts in Types 1 and 2 in the composite beams gave the better performance for the tested beam.

  18. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.; Isobata, O.; Kawamata, S.

    1977-01-01

    A new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. Because of the compressive and shearing resistance of the concrete core, the layers behave as a composite solid shell. Membrane forces are shared by steel plates and partly by concrete core. Bending moment is effectively resisted by the section with extreme layers of steel. Therefore, both surfaces can be designed as extremely thin plates: the inner plate, which is a load carrying members as well as a liner, can be welded without the laborious process of stress-relieving, and various jointing methods can be applied to the outer plate which is free from the need for leak tightness. The capability of the composite layers of behaving as a unified solid shell section depends largely on the shearing rigidity of the concrete core. However, as its resisting capacity to transverse shearing force is comparatively low, a device for reducing the shearing stress at the junction to the base mat is needed. In the new scheme, this part of the cylindrical shell is divided into multiple layers of the same kind of composite shell. This device makes the stiffness of the bottom of the cylindrical shell to lateral movement minimum while maintaining the proper resistance to membrane forces. The analysis shows that the transverse shearing stress can be reduced to less than 1√n of the ordinary case by dividing the thickness of the shell into n layers which are able to slip against each other at the contact surface. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented

  19. Seismic Material Properties of Reinforced Concrete and Steel Casing Composite Concrete in Elevated Pile-Group Foundation

    Directory of Open Access Journals (Sweden)

    Zhou Mi

    2015-09-01

    Full Text Available The paper focuses on the material mechanics properties of reinforced concrete and steel casing composite concrete under pseudo-static loads and their application in structure. Although elevated pile-group foundation is widely used in bridge, port and ocean engineering, the seismic performance of this type of foundation still need further study. Four scale-specimens of the elevated pile-group foundation were manufactured by these two kinds of concrete and seismic performance characteristic of each specimen were compared. Meanwhile, the special soil box was designed and built to consider soil-pile-superstructure interaction. According to the test result, the peak strength of strengthening specimens is about 1.77 times of the others and the ultimate displacement is 1.66 times of the RC specimens. Additionally, the dissipated hysteric energy capability of strengthening specimens is more than 2.15 times of the others as the equivalent viscous damping ratio is reduced by 50%. The pinching effect of first two specimens is more obvious than latter two specimens and the hysteretic loops of reinforced specimens are more plumpness. The pseudo-static tests also provided the data to quantitatively assessment the positive effect of steel casing composite concrete in aseismatic design of bridge.

  20. Efficiency of steel-concrete compositions in a side shielding of high-energy proton accelerators

    International Nuclear Information System (INIS)

    Getmanov, V.B.; Kryuchkov, V.P.; Lebedev, V.N.

    1983-01-01

    Aiming at the study of efficiency of application of heavy concretes with the density up to 6.3 g/cm -3 with iron-ore aggregate and steel scrap with shot the calculational study on high-energy radiation attenuation in the accelerator side shield has been carried out. The calculation is made for five concretes with the density 2.38; 3.66; 4.68; 5.34; 6.30 g x cm -3 and for pure iron. The real chemical composition of each concrete, including hydrogen, is taken into account. The real spectrum of hadron generated in the materiai of evacuated ionguide wall under the effect of the 70 GeV proton beam incident on the wall at a narrow angle THETA -3 ensuring the same ratio of the dose or hadron fluence with the energy > 20 MeV attenuation is accepted as a relative shield efficiency of the material. It is shown, that for steel-concrete compositions with the density > 5.6 gxcm -3 the relative shield efficiency decreases sharply. It is also shown, that aplication of concretes with the density 3.6-3.7 gxcm -3 is expedient and economically profitable

  1. Interfacial damage identification of steel and concrete composite beams based on piezoceramic wave method.

    Science.gov (United States)

    Yan, Shi; Dai, Yong; Zhao, Putian; Liu, Weiling

    2018-01-01

    Steel-concrete composite structures are playing an increasingly important role in economic construction because of a series of advantages of great stiffness, good seismic performance, steel material saving, cost efficiency, convenient construction, etc. However, in service process, due to the long-term effects of environmental impacts and dynamic loading, interfaces of a composite structure might generate debonding cracks, relative slips or separations, and so on, lowering the composite effect of the composite structure. In this paper, the piezoceramics (PZT) are used as transducers to perform experiments on interface debonding slips and separations of composite beams, respectively, aimed at proposing an interface damage identification model and a relevant damage detection innovation method based on PZT wave technology. One part of various PZT patches was embedded in concrete as "smart aggregates," and another part of the PZT patches was pasted on the surface of the steel beam flange, forming a sensor array. A push-out test for four specimens was carried out and experimental results showed that, under the action of the external loading, the received signal amplitudes will increasingly decrease with increase of debonding slips along the interface. The proposed signal energy-based interface damage detection algorithm is highly efficient in surface state evaluations of composite beams.

  2. Estimation of Curvature Changes for Steel-Concrete Composite Bridge Using Fiber Bragg Grating Sensors

    OpenAIRE

    Kang, Donghoon; Chung, Wonseok

    2013-01-01

    This study is focused on the verification of the key idea of a newly developed steel-concrete composite bridge. The key idea of the proposed bridge is to reduce the design moment by applying vertical prestressing force to steel girders, so that a moment distribution of a continuous span bridge is formed in a simple span bridge. For the verification of the key technology, curvature changes of the bridge should be monitored sequentially at every construction stage. A pair of multiplexed FBG sen...

  3. Cohesive Zone Model Based Numerical Analysis of Steel-Concrete Composite Structure Push-Out Tests

    Directory of Open Access Journals (Sweden)

    J. P. Lin

    2014-01-01

    Full Text Available Push-out tests were widely used to determine the shear bearing capacity and shear stiffness of shear connectors in steel-concrete composite structures. The finite element method was one efficient alternative to push-out testing. This paper focused on a simulation analysis of the interface between concrete slabs and steel girder flanges as well as the interface of the shear connectors and the surrounding concrete. A cohesive zone model was used to simulate the tangential sliding and normal separation of the interfaces. Then, a zero-thickness cohesive element was implemented via the user-defined element subroutine UEL in the software ABAQUS, and a multiple broken line mode was used to define the constitutive relations of the cohesive zone. A three-dimensional numerical analysis model was established for push-out testing to analyze the load-displacement curves of the push-out test process, interface relative displacement, and interface stress distribution. This method was found to accurately calculate the shear capacity and shear stiffness of shear connectors. The numerical results showed that the multiple broken lines mode cohesive zone model could describe the nonlinear mechanical behavior of the interface between steel and concrete and that a discontinuous deformation numerical simulation could be implemented.

  4. Moment-Curvature Behaviors of Concrete Beams Singly Reinforced by Steel-FRP Composite Bars

    Directory of Open Access Journals (Sweden)

    Zeyang Sun

    2017-01-01

    Full Text Available A steel-fiber-reinforced polymer (FRP composite bar (SFCB is a kind of rebar with inner steel bar wrapped by FRP, which can achieve a better anticorrosion performance than that of ordinary steel bar. The high ultimate strength of FRP can also provide a significant increase in load bearing capacity. Based on the adequate simulation of the load-displacement behaviors of concrete beams reinforced by SFCBs, a parametric analysis of the moment-curvature behaviors of concrete beams that are singly reinforced by SFCB was conducted. The critical reinforcement ratio for differentiating the beam’s failure mode was presented, and the concept of the maximum possible peak curvature (MPPC was proposed. After the ultimate curvature reached MPPC, it decreased with an increase in the postyield stiffness ratio (rsf, and the theoretical calculation method about the curvatures before and after the MPPC was derived. The influence of the reinforcement ratio, effective depth, and FRP ultimate strain on the ultimate point was studied by the dimensionless moment and curvature. By calculating the envelope area under the moment-curvature curve, the energy ductility index can obtain a balance between the bearing capacity and the deformation ability. This paper can provide a reference for the design of concrete beams that are reinforced by SFCB or hybrid steel bar/FRP bar.

  5. Hybrid structure in civil engineering construction. Composite types of steel and concrete; Doboku bun`ya ni okeru fukugo kozo. Kozai to concrete no ittai keishiki

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T. [JR Railway Technical Research Inst. Tokyo (Japan)

    1995-03-30

    In connection with hybrid structures in civil engineering construction, classification and application of composite types of steel and concrete are discussed. H steel embedded beam is a composite beam in which the H shape steel of the main beam is connected to rolled or welded H shape steel using cross beams. Composite structure columns are grouped into the composite column and the steel pipe concrete column. SRC piers are often adopted from the viewpoints of constraints for execution of works and vibration proof. Steel and concrete hybrid structure is a kind of structural system in which various kinds of materials such as steel, RC, or PC members are connected. The cable stayed bridge utilizes characteristics of steel and concrete effectively. For the piers of municipal expressway viaducts, there are executed cases of mixed structures which have RC, SRC columns for T shape piers and S structure for the bridges. SRC structure and composite columns are adopted often for structures of subway stations. 7 refs., 7 figs.

  6. Vibration Analysis of Steel-Concrete Composite Box Beams considering Shear Lag and Slip

    Directory of Open Access Journals (Sweden)

    Zhou Wangbao

    2015-01-01

    Full Text Available In order to investigate dynamic characteristics of steel-concrete composite box beams, a longitudinal warping function of beam section considering self-balancing of axial forces is established. On the basis of Hamilton principle, governing differential equations of vibration and displacement boundary conditions are deduced by taking into account coupled influencing of shear lag, interface slip, and shear deformation. The proposed method shows an improvement over previous calculations. The central difference method is applied to solve the differential equations to obtain dynamic responses of composite beams subjected to arbitrarily distributed loads. The results from the proposed method are found to be in good agreement with those from ANSYS through numerical studies. Its validity is thus verified and meaningful conclusions for engineering design can be drawn as follows. There are obvious shear lag effects in the top concrete slab and bottom plate of steel beams under dynamic excitation. This shear lag increases with the increasing degree of shear connections. However, it has little impact on the period and deflection amplitude of vibration of composite box beams. The amplitude of deflection and strains in concrete slab reduce as the degree of shear connections increases. Nevertheless, the influence of shear connections on the period of vibration is not distinct.

  7. Numerical analysis of nonlinear behavior of steel-concrete composite structures

    Directory of Open Access Journals (Sweden)

    Í.J.M. LEMES

    Full Text Available Abstract This paper presents the development of an effective numerical formulation for the analysis of steel-concrete composite structures considering geometric and materials nonlinear effects. Thus, a methodology based on Refined Plastic Hinge Method (RPHM was developed and the stiffness parameters were obtained by homogenization of cross-section. The evaluation of structural elements strength is done through the Strain Compatibility Method (SCM. The Newton-Raphson Method with path-following strategies is adopted to solve nonlinear global and local (in cross-section level equations. The results are compared with experimental and numerical database presents in literature and a good accuracy is observed in composite cross sections, composite columns, and composite portal frames.

  8. Research and tests of steel-concrete-steel sandwich composite shear wall in reactor containment of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yunlun; Huang Wen; Zhang Ran; Zhang Pei; Tian Chunyu

    2014-01-01

    By quasi-static test of 8 specimens of steel-concrete-steel sandwich composite shear wall, the bearing capacity, hysteretic behavior, failure mode of the specimens was studied. So was the effect of the shear-span ratios, steel ratios and spacing of studs on the properties of the specimens. The failure patterns of all specimens with different shear-span ratios between 1.0 and 1.5 were compression-bending failure. The hysteretic curves of all specimens were relatively plump, which validated the well deformability and energy dissipation capacity of the specimens. When shear-span ratio less than 1.5, the shear property of the steel plate was well played, and so was the deformability of the specimens. The bigger the steel ratio was, the better the lateral resistance capacity and the deformability was. Among the spacing of studs in the test, the spacing of studs had no significant effect on the bearing capacity, deformability and ductility of the specimens. Based on the principle of superposition an advised formula for the compression-bending capacity of the shear wall was proposed, which fitted well with the test result and had a proper safety margin. (author)

  9. Estimation of Curvature Changes for Steel-Concrete Composite Bridge Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Donghoon Kang

    2013-01-01

    Full Text Available This study is focused on the verification of the key idea of a newly developed steel-concrete composite bridge. The key idea of the proposed bridge is to reduce the design moment by applying vertical prestressing force to steel girders, so that a moment distribution of a continuous span bridge is formed in a simple span bridge. For the verification of the key technology, curvature changes of the bridge should be monitored sequentially at every construction stage. A pair of multiplexed FBG sensor arrays is proposed in order to measure curvature changes in this study. They are embedded in a full-scale test bridge and measured local strains, which are finally converted to curvatures. From the result of curvature changes, it is successfully ensured that the key idea of the proposed bridge, expected theoretically, is viable.

  10. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  11. Influence of Charge Shape and Orientation on the Response of Steel-Concrete Composite Panels

    Directory of Open Access Journals (Sweden)

    Abraham Christian

    2016-09-01

    Full Text Available Blast design codes usually generalize the shape of the charge as spherical or hemispherical. However, it was found that the blast overpressure of cylindrical charges differ greatly when compared with relevant analytical results generated with the charges assumed to be spherical. The objective is to use fully coupled 3D multi-material arbitrary Lagrangian Eulerian (MMALE modelling technique in LS Dyna software to simulate the cylindrical charge blast loading. Comparison of spherical and cylindrical charge blast simulation was carried out to show the influence on peak overpressure and total impulse. Two steel-concrete composite specimens were subjected to blast testing under cylinder charges for benchmarking against numerical results. It was found that top detonated, vertical cylinder charge could give much higher blast loading compared to horizontal cylinder charge. The MMALE simulation could generate the pressure loading of various charge shape and orientation to be used for predicting the response of the composite panel.

  12. Numerical Analysis of Effectiveness of Strengthening Concrete Slab in Tension of the Steel-Concrete Composite Beam Using Pretensioned CFRP Strips

    Directory of Open Access Journals (Sweden)

    Jankowiak Iwona

    2017-12-01

    Full Text Available One of the methods to increase the load carrying capacity of the reinforced concrete (RC structure is its strengthening by using carbon fiber (CFRP strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments. The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.

  13. Numerical Analysis of Effectiveness of Strengthening Concrete Slab in Tension of the Steel-Concrete Composite Beam Using Pretensioned CFRP Strips

    Science.gov (United States)

    Jankowiak, Iwona; Madaj, Arkadiusz

    2017-12-01

    One of the methods to increase the load carrying capacity of the reinforced concrete (RC) structure is its strengthening by using carbon fiber (CFRP) strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments). The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.

  14. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.

    1977-01-01

    Reinforced and prestressed concrete containments for reactors have been developed in order to avoid the difficulties of welding of steel containments encountered as their capacities have become large: growing thickness of steel shells gave rise to the requirement of stress relief at the construction sites. However, these concrete vessels also seem to face another difficulty: the lack of shearing resistance capacity. In order to improve the shearing resistance capacity of the containment vessel, while avoiding the difficulty of welding, a new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented. The results of model tests in 1:30 scale are also reported. (Auth.)

  15. Design and experimental analysis of a new shear connector for steel and concrete composite structures

    OpenAIRE

    Veríssimo, G. S.; Paes, J. L. R.; Valente, Isabel; Cruz, Paulo J. S.; Fakury, R. H.

    2006-01-01

    This work presents the design of a new shear connector and the corresponding results obtained on push-out tests. This new shear connector consists on a steel rib with indented cut shape that provides resistance to longitudinal shear and prevents transversal separation between the concrete slab and the steel profile (uplift). Adding to this, the connector openings cut makes easier the arrangement of transversal reinforcement bars. The installation of the connectors is simple and requires only ...

  16. Plug and play type joints in steel and steel-concrete composite constructions

    NARCIS (Netherlands)

    Bijlaard, F.S.K.; Brekelmans, J.W.P.M.

    2007-01-01

    Traditionally for Western Europe countries, joints in steel frame structures are realised using bolts and welds. In the workshop the components are made using welding and drilling of the bolt holes. On site these structural components are connected together using bolts and nuts. The actions on site

  17. Life-cycle impacts assessment of steel, composite, concrete and wooden columns

    DEFF Research Database (Denmark)

    Rossi, Barbara; Lukic, Ivan; Du, Guangli

    2011-01-01

    are presented in the forms of bar charts for each considered column. For steel and concrete, depending on the source of information, the inventory can vary substantially e.g. the CO and CH4 emissions. Several sources of information are provided and used to perform a brief sensitivity analysis. The influence...

  18. Experimental Tests on Bending Behavior of Profiled Steel Sheeting Dry Board Composite Floor with Geopolymer Concrete Infill

    Directory of Open Access Journals (Sweden)

    Mohd Isa Jaffar

    Full Text Available Abstract Profiled Steel Sheet Dry Board (PSSDB system is a lightweight composite structure comprises Profiled Steel Sheeting and Dry Board connected by self-drilling and self-tapping screws. This study introduced geopolymer concrete, an eco-friendly material without cement content as an infill material in the PSSDB floor system to highlight its effect onto the PSSDB (with full and half-size dry boards floor system's stiffness and strength. Experimental tests on various full scale PSSDB floor specimens were conducted under uniformly distributed transverse loads. Results illustrate that the rigidity of the panel with geopolymer concrete infill with half-size dry board (HBGPC increases by 43% relative to that of the panel with normal concrete infill with full-size dry board (FBNC. The developed finite-element modeling (FEM successfully predicts the behavior of FBGPC model with 94.8% accuracy. Geopolymer concrete infill and dry board size influence the strength panel, infill contact stiffness, and mid-span deflection of the profiled steel sheeting/dry board (PSSDB flooring system.

  19. Behaviour of timber and steel fibre reinforced concrete composite constructions with screwed connections

    Czech Academy of Sciences Publication Activity Database

    Caldová, E.; Blesák, L.; Wald, F.; Kloiber, Michal; Urushadze, Shota; Vymlátil, P.

    2014-01-01

    Roč. 59, č. 4 (2014), s. 639-659 ISSN 1336-4561 R&D Projects: GA MŠk(CZ) LO1219; GA ČR(CZ) GAP105/10/2159 Keywords : timber * steel fibre reinforced concrete (SFRC) * screws * numerical model Subject RIV: JN - Civil Engineering Impact factor: 0.364, year: 2014 http://www.woodresearch.sk/ articles .php?volume=12&issue=47

  20. Composite action of steel frames and precast concrete infill panels with corner connections – Part 2 : finite element analysis

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Hofmeyer, H.; Snijder, H.H.; Liew, J.Y.R.; Lee, S.C.

    2012-01-01

    When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on

  1. Composite action of steel frames and precast concrete infill panels with corner connections – Part 1 : experiments

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Snijder, H.H.; Hofmeyer, H.; Liew, J.Y.R.; Lee, S.C.

    2012-01-01

    When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on

  2. Prestressed concrete. Composite material perfectly utilizing the merits of steel and concrete; Puresutoresu concrete. Ko to concreteto no tokucho wo kanzen ni ikashita fukugo sozai

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, M. [Kyokuto Kogen Concrete Shinko Co. Ltd., Tokyo (Japan)

    1996-10-15

    Since the early stage of the development of the prestressed concrete (PC) manufacturing techniques, it has been said that forming a single PC structure by uniting precast segments with PC steel material into one is a construction method making the most of the feature of PC. This paper roughly describes the history of the development of PC and concrete examples of PC, centering on the construction techniques effectively utilizing the principle of PC and its materials. Especially, a PC bridge is superior to a steel bridge with respect to noise and vibration, so that the construction works of replacing railway steel bridges and railway elevated bridges by PC bridges have come to be seen in many places recently. In order to increase the span of a PC bridge, the reduction of the weight is a major factor. Therefore, an outer cable system has come to be used so as to reduce the thickness is cross section of the web of a PC beam as much as possible. The changes of the maximum span of cable stayed bridge are listed in a table in comparison of PC bridges with steel bridges. 29 refs., 9 figs., 1 tab.

  3. Experimental Study on Welded Headed Studs Used In Steel Plate-Concrete Composite Structures Compared with Contactless Method of Measuring Displacement

    Science.gov (United States)

    Kisała, Dawid; Tekieli, Marcin

    2017-10-01

    Steel plate-concrete composite structures are a new innovative design concept in which a thin steel plate is attached to the reinforced concrete beam by means of welded headed studs. The comparison between experimental studies and theoretical analysis of this type of structures shows that their behaviour is dependent on the load-slip relationship of the shear connectors used to ensure sufficient bond between the concrete and steel parts of the structure. The aim of this paper is to describe an experimental study on headed studs used in steel plate-concrete composite structures. Push-out tests were carried out to investigate the behaviour of shear connectors. The test specimens were prepared according to standard push-out tests, however, instead of I-beam, a steel plate 16 mm thick was used to better reflect the conditions in the real structure. The test specimens were produced in two batches using concrete with significantly different compressive strength. The experimental study was carried out on twelve specimens. Besides the traditional measurements based on LVDT sensors, optical measurements based on the digital image correlation method (DIC) and pattern tracking methods were used. DIC is a full-field contactless optical method for measuring displacements in experimental testing, based on the correlation of the digital images taken during test execution. With respect to conventional methods, optical measurements offer a wider scope of results and can give more information about the material or construction behaviour during the test. The ultimate load capacity and load-slip curves obtained from the experiments were compared with the values calculated based on Eurocodes, American and Chinese design specifications. It was observed that the use of the relationships developed for the traditional steel-concrete composite structures is justified in the case of ultimate load capacity of shear connectors in steel plate-concrete composite structures.

  4. Long-term behaviour of a steel-concrete composite railway bridge deck

    OpenAIRE

    STAQUET, S; TAILHAN, JL; ESPION, B

    2005-01-01

    A prefabricated, composite and prestressed railway bridge deck has been instrumented in June 2000 with strain gages and vibrating wire extensometers. The purpose of this paper is to report on the comparison between strains recorded in situ up to four years with values computed within the framework of an original time-dependent analysis base on the evolution of the degree of hydration and the internal relative humidity in concrete. These fundamental parameters used in the proposed model to com...

  5. Core reilforced braided composite armour as a substitute to steel in concrete reinforcement

    OpenAIRE

    Fangueiro, Raúl; Sousa, Guilherme José Miranda de; Araújo, Mário Duarte de; Pereira, C. Gonilho; Jalali, Said

    2006-01-01

    This paper presents the work that is being done at the University of Minho concerning the development of brainded rods concrete reinforcement. Several samples of core reinforced braided fabrics have been produced varying the type of braided fabric (core reinforced and hybrid), the linear density of the core reinforcing yarns and the type of braiding structure (with or without ribs). The tensile properties of braided fabrics has also been analysed. Core reinforced braided composites rods were ...

  6. An effective simplified model of composite compression struts for partially-restrained steel frame with reinforced concrete infill walls

    Science.gov (United States)

    Sun, Guohua; Chuang-Sheng, Walter Yang; Gu, Qiang; DesRoches, Reginald

    2018-04-01

    To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained (PR) steel frames with solid reinforced concrete (RC) infill walls, an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution, load transferring mechanism, and failure modes of RC infill walls filled in PR steel frame. The proposed composite compression struts model for the solid RC infill walls is composed of α inclined struts and main diagonal struts. The α inclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface, while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls. This study derives appropriate formulas for the effective widths of the α inclined strut and main diagonal strut, respectively. An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated. The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results, and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%. This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.

  7. Experimental, numerical, and analytical studies on the seismic response of steel-plate concrete (SC) composite shear walls

    Science.gov (United States)

    Epackachi, Siamak

    The seismic performance of rectangular steel-plate concrete (SC) composite shear walls is assessed for application to buildings and mission-critical infrastructure. The SC walls considered in this study were composed of two steel faceplates and infill concrete. The steel faceplates were connected together and to the infill concrete using tie rods and headed studs, respectively. The research focused on the in-plane behavior of flexure- and flexure-shear-critical SC walls. An experimental program was executed in the NEES laboratory at the University at Buffalo and was followed by numerical and analytical studies. In the experimental program, four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure- and flexure-shear critical. The progression of damage in the four walls was identical, namely, cracking and crushing of the infill concrete at the toes of the walls, outward buckling and yielding of the steel faceplates near the base of the wall, and tearing of the faceplates at their junctions with the baseplate. A robust finite element model was developed in LS-DYNA for nonlinear cyclic analysis of the flexure- and flexure-shear-critical SC walls. The DYNA model was validated using the results of the cyclic tests of the four SC walls. The validated and benchmarked models were then used to conduct a parametric study, which investigated the effects of wall aspect ratio, reinforcement ratio, wall thickness, and uniaxial concrete compressive strength on the in-plane response of SC walls. Simplified analytical models, suitable for preliminary analysis and design of SC walls, were

  8. Shakedown Analysis of Composite Steel-Concrete Frame Systems with Plastic and Brittle Elements Under Seismic Action

    Directory of Open Access Journals (Sweden)

    Alawdin Piotr

    2017-06-01

    Full Text Available In this paper the earthquake analysis of composite steel-concrete frames is performed by finding solution of the optimization problem of shakedown analysis, which takes into account the nonlinear properties of materials. The constructions are equipped with systems bearing structures of various elastic-plastic and brittle elements absorbing energy of seismic actions. A mathematical model of this problem is presented on the base of limit analysis theory with partial redistribution of self-stressed internal forces. It is assumed that the load varies randomly within the specified limits. These limits are determined by the possible direction and magnitude of seismic loads. The illustrative example of such analysis of system is introduced. Some attention has been paid to the practical application of the proposed mathematical model.

  9. Shakedown Analysis of Composite Steel-Concrete Frame Systems with Plastic and Brittle Elements Under Seismic Action

    Science.gov (United States)

    Alawdin, Piotr; Bulanov, George

    2017-06-01

    In this paper the earthquake analysis of composite steel-concrete frames is performed by finding solution of the optimization problem of shakedown analysis, which takes into account the nonlinear properties of materials. The constructions are equipped with systems bearing structures of various elastic-plastic and brittle elements absorbing energy of seismic actions. A mathematical model of this problem is presented on the base of limit analysis theory with partial redistribution of self-stressed internal forces. It is assumed that the load varies randomly within the specified limits. These limits are determined by the possible direction and magnitude of seismic loads. The illustrative example of such analysis of system is introduced. Some attention has been paid to the practical application of the proposed mathematical model.

  10. Design of joints in steel and composite structures Eurocode 3 : design of steel structures : part 1-8 : design of joints, Eurocode 4 : design of composite steel and concrete structures : part 1-1 : general rules and rules for buildings

    CERN Document Server

    Jaspart, Jean-Pierre

    2016-01-01

    This book details the basic concepts and the design rules included in Eurocode 3 Design of steel structures Part 1-8 Design of joints. Joints in composite construction are also addressed through references to Eurocode 4 Design of composite steel and concrete structures Part 1-1 General rules and rules for buildings. Attention has to be duly paid to the joints when designing a steel or composite structure, in terms of the global safety of the construction, and also in terms of the overall cost, including fabrication, transportation and erection. Therefore, in this book, the design of the joints themselves is widely detailed, and aspects of selection of joint configuration and integration of the joints into the analysis and the design process of the whole construction are also fully covered. Connections using mechanical fasteners, welded connections, simple joints, moment-resisting joints and lattice girder joints are considered. Various joint configurations are treated, including beam-to-column, beam-to-beam, ...

  11. Factors and mechanisms affecting corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Dehqanian, Ch.

    1986-01-01

    Atomic power plants possess reinforced concrete structures which are exposed to sea water or sea atmosphere. Sea water or its surrounding environment contain very corrosive species which cause corrosion of metal in concrete. It should be mentioned that corrosion of steel in concrete is a complex problem that is not completely understood. Some of the factors which influence the corrosion mechanism and can be related to the pore solution composition is discussed. Chloride ion caused problems are the main source of the corrosion damage seen on the reinforced concrete structures. Corrosion rate in concrete varies and depends on the way chloride ion diffuses into concrete. In addition, the associated cations can influence diffusion of chloride into concrete. The type of portland cement and also the concrete mix design all affect the corrosion behaviour of steel in concrete

  12. FLEXURAL TOUGHNESS OF STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Fehmi ÇİVİCİ

    2006-02-01

    Full Text Available Fiber concrete is a composite material which has mechanical and physical characteristics unlike plain concrete. One of the important mechanical characteristics of fiber concrete is its energy absorbing capability. This characteristics which is also called toughness, is defined as the total area under the load-deflection curve. A number of composite characteristics such as crack resistance, ductility and impact resistance are related to the energy absorbtion capacity. According to ASTM C 1018 and JSCE SF-4 the calculation of toughness is determined by uniaxial flexural testing. Fiber concrete is often used in plates such as bridge decks, airport pavements, parking areas, subjected to cavitation and erosion. In this paper, toughness has been determined according to ASTM C 1018 and JSCE SF-4 methods by testing beam specimens. Energy absorbing capacities of plain and steel fiber reinforced concrete has been compared by evaluating the results of two methods. Also plain and steel fiber reinforced plate specimens behaviors subjected to biaxial flexure are compared by the loaddeflection curves of each specimen.

  13. Steel plates and concrete filled composite shear walls related nuclear structural engineering: Experimental study for out-of-plane cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohu [The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124 (China); Li, Xiaojun, E-mail: beerli@vip.sina.com [The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124 (China); Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China)

    2017-04-15

    Based on the program of CAP1400 nuclear structural engineering, the out-of-plane seismic behavior of steel plate and concrete infill composite shear walls (SCW) was investigated. 6 1/5 scaled specimens were conducted which consist of 5 SCW specimens and 1 reinforced concrete (RC) specimen. The specimens were tested under out-of-plane cyclic loading. The effect of the thickness of steel plate, vertical load and the strength grade of concrete on the out-of-plane seismic behavior of SCW were analyzed. The results show that the thickness of steel plate and vertical load have great influence on the ultimate bearing capacity and lateral stiffness, however, the influence of the strength grade of concrete was little within a certain range. SCW is presented to have a better ultimate capacity and lateral stiffness but have worse ductility in failure stage than that of RC. Based on the experiment, the cracking load of concrete infill SCW was analyzed in theory. The modified calculation formula of the cracking load was made, the calculated results showed good agreement with the test results. The formula can be used as the practical design for the design of cracking loads.

  14. Steel plates and concrete filled composite shear walls related nuclear structural engineering: Experimental study for out-of-plane cyclic loading

    International Nuclear Information System (INIS)

    Li, Xiaohu; Li, Xiaojun

    2017-01-01

    Based on the program of CAP1400 nuclear structural engineering, the out-of-plane seismic behavior of steel plate and concrete infill composite shear walls (SCW) was investigated. 6 1/5 scaled specimens were conducted which consist of 5 SCW specimens and 1 reinforced concrete (RC) specimen. The specimens were tested under out-of-plane cyclic loading. The effect of the thickness of steel plate, vertical load and the strength grade of concrete on the out-of-plane seismic behavior of SCW were analyzed. The results show that the thickness of steel plate and vertical load have great influence on the ultimate bearing capacity and lateral stiffness, however, the influence of the strength grade of concrete was little within a certain range. SCW is presented to have a better ultimate capacity and lateral stiffness but have worse ductility in failure stage than that of RC. Based on the experiment, the cracking load of concrete infill SCW was analyzed in theory. The modified calculation formula of the cracking load was made, the calculated results showed good agreement with the test results. The formula can be used as the practical design for the design of cracking loads.

  15. design chart procedures for polygonal concrete-filled steel columns

    African Journals Online (AJOL)

    ADMIN

    hexagonal and octagonal steel-concrete composite columns subjected to ... This paper also outlines procedures that will enable preparation of ... buildings and in a variety of large-span building ... Likewise, hot-rolled steel tubes are used while ... small moderate large. Fig. 2. Possible arrangement of composite polygonal ...

  16. Fatigue design of steel and composite structures Eurocode 3 : design of steel structures, part 1-9 fatigue ; Eurocode 4 : design of composite steel and concrete structures

    CERN Document Server

    Nussbaumer, Alain; Davaine, Laurence

    2012-01-01

    This volume addresses the specific subject of fatigue, a subject not familiar to many engineers, but still relevant for proper and good design of numerous steel structures. It explains all issues related to the subject: Basis of fatigue design, reliability and various verification formats, determination of stresses and stress ranges, fatigue strength, application range and limitations. It contains detailed examples of applications of the concepts, computation methods and verifications.

  17. Nonlinear finite element analysis of a test on the mechanical mechanism of the half-steel-concrete composite beam in HTR-PM

    International Nuclear Information System (INIS)

    Sun Feng; Pan Rong

    2014-01-01

    According to a large-span half-steel-concrete (HSC) composited beam in the composited roof in the HTR-PM, a 1:3 scale specimen is investigated by the static load test. By analyzing the loading, deflection, strain and fracture development of the specimen in the process, studying the mechanical characteristics and failure pattern of such components. The ANSYS finite element software is utilized in this paper to analyze the nonlinearity behavior of the HSC beam specimen, and through comparing the experimental results and the numerical simulation, it can be illustrated that the finite element model can simulate the HSC beam accurately. From the test results, it can be concluded that by means of appropriate shear connection and anchorage length, steel plate and concrete can work together very well and the HSC beam has good load carrying capacity and ductility. These conclusions can serve as a preliminary design reference for the large span half-steel-concrete composite beam in NPP. (author)

  18. Steel fiber replacement of mild steel in prestressed concrete beams

    Science.gov (United States)

    2010-10-01

    In traditional prestressed concrete beams, longitudinal prestressed tendons serve to resist bending moment and : transverse mild steel bars (or stirrups) are used to carry shear forces. However, traditional prestressed concrete I-beams : exhibit earl...

  19. Steel fiber replacement of mild steel in prestressed concrete beams.

    Science.gov (United States)

    2011-01-01

    In traditional prestressed concrete beams, longitudinal prestressed tendons serve to resist bending moment and transverse mild : steel bars (or stirrups) are used to carry shear forces. However, traditional prestressed concrete I-beams exhibit early-...

  20. TEMPERATURE HETEROGENEITY OF TRAVELLING FIRE AND ITS INFLUENCE ON COMPOSITE STEEL-CONCRETE FLOOR

    Directory of Open Access Journals (Sweden)

    Kamila Horová

    2016-04-01

    Full Text Available In order to follow modern trends in contemporary building architecture, which is moving off the limits of current fire design models, assumption of homogeneous temperature conditions used for structural fire analysis needs to be revised. In this paper fire dynamics of travelling fire is investigated experimentally by conducting fire test in two-storey experimental building. To evaluate the impact of travelling fire on the mechanical behaviour of a structure, the spatial and temporal evolution of the gas temperature calculated in NIST code FDS, which was validated to experimental measurements, is applied to the composite floor of dimensions 9.0 m by 9.0 m. Mechanical behaviour of the composite slab highly affected by regions of high temperatures and areas with only elevated temperatures is solved in code Vulcan. To highlight the severity of spreading fire causing non-uniform temperature conditions, which after-effects differ from traditional methods, a comparison of both methods is introduced. The calculation of mechanical behaviour of the composite floor is repeated in a series of three different thermal loading cases. Results of all cases are then compared in terms of vertical displacement and axial force in several positions of the composite floor.

  1. Practical fire design of partially encased composite steel-concrete columns according to Eurocode 4

    Directory of Open Access Journals (Sweden)

    Sadaoui Arezki

    2014-04-01

    Full Text Available A practical method based on Campus-Massonet criteria which is developed initially to steel structures with combined compression and bending is adapted for the calculation of the buckling resistance of eccentrically loaded columns. The latter at room temperature or in fire situation is expressed by a simple formula as a function of an equivalent buckling coefficient taking into account the amount the eccentricity of the compressive applied load. The method proposed combines accuracy, efficiency and convenience obviating the need of M-N interaction diagrams and long iteration process. Otherwise, the estimation of the fire resistance for a given loading is made on the assumption based on the linearity with the level applied compressive load. It was found that the fire resistance of a column subjected to an eccentric load decreases gradually with the increase in the load level (ƞ , the slenderness ratio (λ or the amount of the eccentricity. For a fire resistance of one hour, time enough to evacuate the building of all its occupants, it recommended to use η≤ 0.5 and λ ≤45. The range of values of reinforcement cover (u suggested by Eurocode 4 leads to a better fire resistance except for u = 60 mm where there is a decline of the about 10%.

  2. Influence of heat treatment on corrosive resistance of concrete steels

    International Nuclear Information System (INIS)

    Woldan, A.; Suliga, I.; Kusinski, J.; Jazowy, R.

    1998-01-01

    The reinforcing bars are essential elements of ferro-concrete structures. During the building structure service the reinforcing bars should co-operate with surrounding concrete. Any bonding defects as well as corrosion induced strength reduction may result in construction failure. The reinforcing steel working environment is determined by concrete chemical and phase composition and surrounding environmental properties. The aggressive corrosive activity of the letter implies necessity of effective ways development to protect elements against corrosion. The effect of heat treatment, increased Si content in steel on corrosion resistance of reinforcing steel in concrete was studied in the current work. Corrosion tests and metallographic examinations proved a positive influence of hardening and Si enrichment on corrosion resistance of reinforcing bars in ferro-concrete structures. (author)

  3. Properties of Concrete partially replaced with Coconut Shell as Coarse aggregate and Steel fibres in addition to its Concrete volume

    Science.gov (United States)

    Kalyana Chakravarthy, P. R.; Janani, R.; Ilango, T.; Dharani, K.

    2017-03-01

    Cement is a binder material with various composition of Concrete but instantly it posses low tensile strength. The study deals with mechanical properties of that optimized fiber in comparison with conventional and coconut shell concrete. The accumulation of fibers arbitrarily dispersed in the composition increases the resistance to cracking, deflection and other serviceability conditions substantially. The steel fiber in extra is one of the revision in coconut shell concrete and the outcome of steel fiber in coconut shell concrete was to investigate and compare with the conventional concrete. For the given range of steel fibe from 0.5 to 2.0%, 12 beams and 36 cylindrical specimens were cast and tested to find the mechanical properties like flexural strength, split tensile, impact resistance and the modulus of elasticity of both conventional and coconut shell concrete has been studied and the test consequences are compared with the control concrete and coconut shell concrete for M25 Grade. It is fulfilled that, the steel fibers used in this venture has shown significant development in all the properties of conventional and coconut shell concrete while compared to controlled conventional and coconut shell concrete like, Flexural strength by 6.67 % for 1.0 % of steel fiber in conventional concrete and by 5.87 % for 1.5 % of steel fiber in coconut shell concrete.

  4. Study on Axial Compressive Capacity of FRP-Confined Concrete-Filled Steel Tubes and Its Comparisons with Other Composite Structural Systems

    Directory of Open Access Journals (Sweden)

    Jun Deng

    2017-01-01

    Full Text Available Concrete-filled steel tubular (CFST columns have been widely used for constructions in recent decades because of their high axial strength. In CFSTs, however, steel tubes are susceptible to degradation due to corrosion, which results in the decrease of axial strength of CFSTs. To further improve the axial strength of CFST columns, carbon fiber reinforced polymer (CFRP sheets and basalt fiber reinforced polymer (BFRP sheets are applied to warp the CFSTs. This paper presents an experimental study on the axial compressive capacity of CFRP-confined CFSTs and BFRP-confined CFSTs, which verified the analytical model with considering the effect of concrete self-stressing. CFSTs wrapped with FRP exhibited a higher ductile behavior. Wrapping with CFRP and BFRP improves the axial compressive capacity of CFSTs by 61.4% and 17.7%, respectively. Compared with the previous composite structural systems of concrete-filled FRP tubes (CFFTs and double-skin tubular columns (DSTCs, FRP-confined CFSTs were convenient in reinforcing existing structures because of softness of the FRP sheets. Moreover, axial compressive capacity of CFSTs wrapped with CFRP sheets was higher than CFFTs and DSTCs, while the compressive strength of DSTCs was higher than the retrofitted CFSTs.

  5. Comportement des poteaux composites en profils creux en acier remplis de béton Behavior of composite columns in hollow steel section filled with concrete

    Directory of Open Access Journals (Sweden)

    Othmani N.

    2012-09-01

    Full Text Available Le but de cet article, est la determination des rigidites flexionnelles EIx et EIy d’fune section mixte acier beton et plus precisement d’fun poteau en tube d’facier de section rectangulaire, remplie de beton, sollicitee a la flexion bi-axiale (N, Mx et My. L’festimation des rigidites sera faite a partir d’fune approche theorique par une analyse du poteau en elements finis (element barre a 4 degres de liberte, basee sur les conditions d’fequilibres a mi-portee en utilisant la relation moment-courbure (M–Φ de l’felement deforme par application de l’fequation suivante: EI=M/Φ. Le comportement des materiaux est celui comme adopte par les reglements Eurocode 2 et 3, respectivement pour le beton et l’facier. Afin de valider l’fapproche theorique utilisee dans cette etude, deux comparaisons ont ete faites : une premiere permettant de comparer les resultats des rigidites determinees par les relations moments courbures et celles calculees par l’fEurocode 4 et une deuxieme comparaison entre les charges de ruines de deux poteaux de grandeurs natures avec ceux testes au laboratoire [2]. Au vu des resultats obtenus, nous pouvons conclure que l’approche théorique utilisée dans cette étude ainsi que les modèles de comportement des matériaux sont adéquats pour ce genre de problèmes. The purpose of this paper is the determination of flexural stiffness EIx and EIy of a concrete filled rectangular cross section of a composite steel column, under biaxial bending (N, Mx and My. The rigidities will be estimated from a theoretical approach using a finite element analysis (element bar with 4 degrees of freedom, based on the equilibrium conditions at mid-span using the moment-curvature relationships (M–Φ of the deformed element by applying the following equation: EI=M/Φ. The material behavior is the one adopted by Eurocode 2 and 3, respectively, for concrete and steel. To validate the theoretical approach used, two comparisons

  6. The use of steel slag in concrete

    Science.gov (United States)

    Martauz, P.; Vaclavik, V.; Cvopa, B.

    2017-10-01

    This paper presents the results of a research dealing with the use of unstable steel slag as a 100% substitute for natural aggregate in the production of concrete. Portland cement CEM I 42.5N and alkali activated hybrid cement H-CEMENT were used as the binder. The test results confirm the possibility to use steel slag as the filler in the production of concrete.

  7. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  8. Performance of steel wool fiber reinforced geopolymer concrete

    Science.gov (United States)

    Faris, Meor Ahmad; Abdullah, Mohd Mustafa Al Bakri; Ismail, Khairul Nizar; Muniandy, Ratnasamy; Ariffin, Nurliayana

    2017-09-01

    In this paper, performance of geopolymer concrete was studied by mixing of Class F fly ash from Manjung power station, Lumut, Perak, Malaysia with alkaline activator which are combination of sodium hydroxide and sodium silicate. Steel wool fiber were added into the geopolymer concrete as reinforcement with different weight percentage vary from 0 % - 5 %. Chemical compositions of Malaysian fly ash was first analyzed by using X-ray fluorescence. All geopolymer concrete reinforced with steel wool fiber with different weight percentage were tested in terms of density, workability, and compression. Result shows Malaysian fly ash identified by using XRF was class F. Density of geopolymer concrete close to density of OPC which is approximately 2400 kg/m3 and the density was increase gradually with the additions of steel fiber. However, the inclusions of steel fibers also shows some reduction to the workability of geopolymer concrete. Besides, the compressive strength was increased with the increasing of fibers addition until maximum of 18.6 % improvement at 3 % of steel fibers.

  9. Wood and concrete polymer composites

    International Nuclear Information System (INIS)

    Singer, K.

    1974-01-01

    There are several ways to prepare and use wood and concrete polymer composites. The most important improvements in the case of concrete polymer composites are obtained for compressive and tensile strengths. The progress in this field in United States and other countries is discussed in this rview. (M.S.)

  10. Steel-concrete bond model for the simulation of reinforced concrete structures

    International Nuclear Information System (INIS)

    Mang, Chetra

    2015-01-01

    Reinforced concrete structure behavior can be extremely complex in the case of exceeding the cracking threshold. The composite characteristics of reinforced concrete structure should be finely presented especially in the distribution stress zone between steel-concrete at their interface. In order to compute the industrial structures, a perfect relation hypothesis between steel and concrete is supposed in which the complex phenomenon of the two-material relation is not taken into account. On the other hand, this perfect relation is unable to predict the significant disorders, the repartition, and the distribution of the cracks, which is directly linked to the steel. In literature, several numerical methods are proposed in order to finely study the concrete-steel bond behavior, but these methods give many difficulties in computing complex structures in 3D. With the results obtained in the thesis framework of Torre-Casanova (2012), the new concrete-steel bond model has been developed to improve performances (iteration numbers and computational time) and the representation (cyclic behavior) of the initial one. The new model has been verified with analytical solution of steel-concrete tie and validated with the experimental results. The new model is equally tested with the structural scale to compute the shear wall behavior in the French national project (CEOS.fr) under monotonic load. Because of the numerical difficulty in post-processing the crack opening in the complex crack formation, a new crack opening method is also developed. This method consists of using the discontinuity of relative displacement to detect the crack position or using the slip sign change between concrete-steel. The simulation-experiment comparison gives validation of not only the new concrete-steel bond model but also the new crack post-processing method. Finally, the cyclic behavior of the bond law with the non-reduced envelope is adopted and integrated in the new bond model in order to take

  11. Slippage of steel in high and normal strength concrete

    International Nuclear Information System (INIS)

    Ahmed, K.; Siddiqi, Z.A.; Yousaf, M.

    2007-01-01

    Composite action of any reinforced concrete member is only possible if sufficient bond strength exists between steel reinforcing bars and concrete, which can adequately transfer shear stress between them. Bond strength is a function of compressive strength of concrete and hence high strength concrete has higher bond strength (1-2). Therefore required development length can be reduced. In order to investigate the effect of development length on bond stress and slip relationships, experimental investigation was carried out. In this experimentation 24 pull-out samples of high strength concrete and normal strength concrete were casted and tested. The results of this investigation revealed that by increasing the development length from 5db to 10db bond strength increases for both high and normal strength concrete as shown in Figure 11, 12 and 13. However in case of normal strength concrete increase in bond strength is more compared to that in high strength concrete as it is clear from Figure 11 and Figure 13. The increase in bond strength is observed even at 10db development length but the extent is less for 19 mm than 16 mm bars as shown in Figure 12 and Figure 13. This is in agreement with the earlier findings of Chen et al (3) and Harajli et al (1). However in case of HSC the total slippage at 10db is 50% greater than at 5db. This may be due to the fact that more no of concrete keys participate in resisting the slippage. (author)

  12. Parameters estimation of Drucker-Prager plasticity criteria for steel confined circular concrete columns in compression

    Directory of Open Access Journals (Sweden)

    Al-Kutti Walid A.

    2018-01-01

    Full Text Available This paper explores the possibility to use Drucker-Prager model in Steel-Concrete composite section. Numerical simulation was conducted using finite element package to simulate the steel-concrete composite section subjected to uniaxial compressive loading. After calibration with experimental study, parametric study was conducted to evaluate the effect of the friction angle and the cohesion constant c on the stress-strain curve of composite section. Empirical relationship between the friction angle and the confined concrete compressive strength was developed and a range of cohesion constant c between 5-10 MPa was suggested for confined concrete strength range of 25 to 100 MPa, respectively.

  13. Flow modelling of steel fibre reinforced self-compacting concrete

    DEFF Research Database (Denmark)

    Svec, Oldrich

    was done by means of the Immersed boundary method with direct forcing. Evolution of the immersed particles was described by Newton's differential equations of motion. The Newton's equations were solved by means of Runge-Kutta-Fehlberg iterative scheme. Several challenges had to be overcome during...... in concrete can efficiently substitute or supplement conventional steel reinforcement, such as reinforcement bars. Ordinary concrete composition further makes the material stiff and non-flowable. Self-compacting concrete is an alternative material of low yield stress and plastic viscosity that does flow...... of the fluid near formwork surface. A method to incorporate the apparent slip into the Lattice Boltzmann fluid dynamics solver was suggested. The proposed numerical framework was observed to correctly predict flow of fibre reinforced self-compacting concrete. The proposed numerical framework can therefore...

  14. Corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Preece, C.M.

    1982-10-01

    A comparative study has been made of those properties of Massiv and Standard cements which are considered to determine their ability to protect steel reinforcement from corroding. Saturated Massiv cement has a higher evaporabel water content, but a significantly finer pore structure than has saturated Standard cement. This fine structure resulted in an electrical resistivity ten times higher and chloride diffusivity ten times lower than those of Standard cement. Electrochemical measurements have shown that the passive current density of steel in Massiv mortar is higher than that of steel in Standard mortar, but the higher current should lead to a more rapid decrease in potential to a level at which neither chloride attack of hydrogen evolution will occur. Whereas steel in Standard mortar was found to be highly susceptible to crevice corrosion, no such attack has been observed in Massiv mortar. Moreover, the initiation of chloride induced corrosion and the subsequent rates of corrosion were both lower in Massiv mortar than in Standard mortar. Thus, it may be predicted that Massiv cement would provide greater protection for steel reinforcement in underground structures exposed to chloride containing ground water than would Standard cement. (author)

  15. Steel-reinforced concrete-filled steel tubular columns under axial and lateral cyclic loading

    Science.gov (United States)

    Farajpourbonab, Ebrahim; Kute, Sunil Y.; Inamdar, Vilas M.

    2018-03-01

    SRCFT columns are formed by inserting a steel section into a concrete-filled steel tube. These types of columns are named steel-reinforced concrete-filled steel tubular (SRCFT) columns. The current study aims at investigating the various types of reinforcing steel section to improve the strength and hysteresis behavior of SRCFT columns under axial and lateral cyclic loading. To attain this objective, a numerical study has been conducted on a series of composite columns. First, FEM procedure has been verified by the use of available experimental studies. Next, eight composite columns having different types of cross sections were analyzed. For comparison purpose, the base model was a CFT column used as a benchmark specimen. Nevertheless, the other specimens were SRCFT types. The results indicate that reinforcement of a CFT column through this method leads to enhancement in load-carrying capacity, enhancement in lateral drift ratio, ductility, preventing of local buckling in steel shell, and enhancement in energy absorption capacity. Under cyclic displacement history, it was observed that the use of cross-shaped reinforcing steel section causes a higher level of energy dissipation and the moment of inertia of the reinforcing steel sections was found to be the most significant parameter affecting the hysteresis behavior of SRCFT columns.

  16. Composition and Morphology of Product Layers in the Steel/Cement Paste Interface in Conditions of Corrosion and Cathodic Protection in Reinforced Concrete

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.; De Wit, J.H.W.; Fraaij, A.L.A.; Boshkov, N.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP). Of particular interest was to investigate if the introduced pulse CP (as

  17. Short steel and concrete columns under high temperatures

    Directory of Open Access Journals (Sweden)

    A. E. P. G. A. Jacintho

    Full Text Available The growing demand for knowledge about the effect of high temperatures on structures has stimulated increasing research worldwide. This article presents experimental results for short composite steel and concrete columns subjected to high temperatures in ovens with or without an axial compression load, numerically analyzes the temperature distribution in these columns after 30 and 60 minutes and compares them with experimental results. The models consist of concrete-filled tubes of three different thicknesses and two different diameters, and the concrete fill has conventional properties that remained constant for all of the models. The stress-strain behavior of the composite columns was altered after exposure to high temperatures relative to the same columns at room temperature, which was most evident in the 60-minute tests due to the higher temperatures reached. The computational analysis adopted temperature rise curves that were obtained experimentally.

  18. Concrete compositions and methods

    Science.gov (United States)

    Chen, Irvin; Lee, Patricia Tung; Patterson, Joshua

    2015-06-23

    Provided herein are compositions, methods, and systems for cementitious compositions containing calcium carbonate compositions and aggregate. The compositions find use in a variety of applications, including use in a variety of building materials and building applications.

  19. Engineering Performance of High Strength Concrete Containing Steel Fibre Reinforcement

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2013-09-01

    Full Text Available The development and utilization of the high strength concrete in the construction industry have been increasing rapidly. Fiber reinforced concrete is introduced to overcome the weakness of the conventional concrete because concrete normally can crack under a low tensile force and it is known to be brittle. Steel fibre is proved to be the popular and best combination in the high strength concrete to result the best in the mechanical and durability properties of high strength concrete with consideration of curing time, steel fibre geometry, concrete grade and else more. The incorporation of steel fibre in the mortar mixture is known as steel fibre reinforced concrete have the potential to produce improvement in the workability, strength, ductility and the deformation of high strength concrete. Besides that, steel fibre also increases the tensile strength of concrete and improves the mechanical properties of the steel fibre reinforced concrete. The range for any high strength concrete is between 60MPa-100MPa. Steel fibre reinforced concrete which contains straight fibres has poorer physical properties than that containing hooked end stainless steel fibre due to the length and the hooked steel fibre provide a better effective aspects ratio. Normally, steel fibre tensile strength is in the range of 1100MPa-1700MPa. Addition of less steel fibre volumes in the range of 0.5% to 1.0% can produce better increase in the flexural fatigue strength. The strength can be increased with addition of steel fibre up to certain percentage. This paper will review and present some basic properties of steel fibre reinforced concrete such as mechanical, workability and durability properties.

  20. Review of design codes of concrete encased steel short columns under axial compression

    Directory of Open Access Journals (Sweden)

    K.Z. Soliman

    2013-08-01

    Full Text Available In recent years, the use of encased steel concrete columns has been increased significantly in medium-rise or high-rise buildings. The aim of the present investigation is to assess experimentally the current methods and codes for evaluating the ultimate load behavior of concrete encased steel short columns. The current state of design provisions for composite columns from the Egyptian codes ECP203-2007 and ECP-SC-LRFD-2012, as well as, American Institute of Steel Construction, AISC-LRFD-2010, American Concrete Institute, ACI-318-2008, and British Standard BS-5400-5 was reviewed. The axial capacity portion of both the encased steel section and the concrete section was also studied according to the previously mentioned codes. Ten encased steel concrete columns have been investigated experimentally to study the effect of concrete confinement and different types of encased steel sections. The measured axial capacity of the tested ten composite columns was compared with the values calculated by the above mentioned codes. It is concluded that non-negligible discrepancies exist between codes and the experimental results as the confinement effect was not considered in predicting both the strength and ductility of concrete. The confining effect was obviously influenced by the shape of the encased steel section. The tube-shaped steel section leads to better confinement than the SIB section. Among the used codes, the ECP-SC-LRFD-2012 led to the most conservative results.

  1. 75 FR 4104 - Prestressed Concrete Steel Wire Strand From China

    Science.gov (United States)

    2010-01-26

    ... retarded, by reason of subsidized and less-than-fair-value imports from China of prestressed concrete steel... in prestressed concrete (both pre-tensioned and post- tensioned) applications. The product definition..., producers, or exporters in China of prestressed concrete steel wire strand, and that such products are being...

  2. The behaviour of concrete under attack of liquid steel

    International Nuclear Information System (INIS)

    Schneider, U.; Ehm, C.; Diederichs, U.

    1983-01-01

    Investigations were carried out to study the interaction between concrete and liquid steel. Different types and different forms of concrete were investigated at temperatures of liquid steel between 1.600 and 2.600 0 C. The liquid steel of 1.600 0 C was produced in an induction furnace, the liquid steel of 2.600 0 C was produced in concrete crucibles by metallothermic reactions. The reactions occuring during the interaction of concrete and liquid steel may be summarized as follows: - Concrete reacts violently upon sudden loading with high temperatures and high heat fluxes. Great quantities of steam and gases are generated. The mechanical strength decreases rapidly with increasing temperature. -At about 1.200 0 C concrete begins to melt. First the cement matrix melts, than the aggregates melt. The melts of different concretes consist of different constituents and their reactions with liquid steel vary. The temperature of the liquid steel significantly influences the intensity of the reactions and the erosion rates. - The erosion rates amounted to 30 mm/min, when liquid steel was produced in concrete crucibles. When cylindrical concrete specimens were immersed in molten steel the rate of melting off amounted up to 66 mm/min. - The dissipation of heat during the interaction brings about that the reactions between concrete and liquid steel vanish gradually, if no additional energy is fed into the system. (orig.)

  3. Steel fibre corrosion in cracks:durability of sprayed concrete

    OpenAIRE

    Nordström, Erik

    2000-01-01

    Steel fibre reinforced sprayed concrete is common practice for permanent linings in underground construction. Today there is a demand on "expected technical service life" of 120 years. Thin steel fibres could be expected to discontinue carrying load fast with a decrease of fibre diameter caused by corrosion, especially in cracks. The thesis contains results from inspections on existing sprayed concrete structures and a literature review on corrosion of steel fibres in cracked concrete. To stu...

  4. Normal Strength Steel Fiber Reinforced Concrete Subjected to Explosive Loading

    OpenAIRE

    Mohammed Alias Yusof; Norazman Norazman; Ariffin Ariffin; Fauzi Mohd Zain; Risby Risby; CP Ng

    2011-01-01

    This paper presents the results of an experimental investigation on the behavior of plain reinforced concrete and Normal strength steel fiber reinforced concrete panels (SFRC) subjected to explosive loading. The experiment were performed by the Blast Research Unit Faculty of Engineering, University Pertahanan Nasional Malaysia A total of 8 reinforced concrete panels of 600mm x 600mm x 100mm were tested. The steel fiber reinforced concrete panels incorporated three different volume fraction, 0...

  5. Composite steel panels for tornado missile barrier walls. Topical report

    International Nuclear Information System (INIS)

    1975-10-01

    A composite steel panel wall system is defined as a wall system with concrete fill sandwiched between two steel layers such that no concrete surface is exposed on the interior or the exterior wall surface. Three full scale missile tests were conducted on two specific composite wall systems. The results of the full scale tests were in good agreement with the finalized theory. The theory is presented, and the acceptance of the theory for design calculations is discussed

  6. Cracking in concrete-debonding length at the concrete/steel interface

    OpenAIRE

    Kjeldby, Liv Brox

    2016-01-01

    Investigation of the debonding length at the concrete/steel interface have been investigated based on different types of cracks in concrete. Different methods for investigation have been used in the laboratory.

  7. Prototype steel-concrete LEP dipole magnet

    CERN Multimedia

    1981-01-01

    The magnetic field needed in the LEP dipole magnets was rather low, of a fraction of tesla. This lead to the conception of a novel yoke structure consisting of stacks of 1.5 mm thick low-carbon steel laminations spaced by 4.1 mm with the spaces filled with concrete. The excitation coils were also very simple: aluminium bars insulated by polyester boxes in this prototype, by glass-epoxy in the final magnets. For details see LEP-Note 118,1978 and LEP-Note 233 1980. See also 8111529,7908528X.

  8. Experimental investigations into in-plane stiffness and strength of steel frames with precast concrete infill panels

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Hofmeyer, H.; Snijder, H.H.; Richard Liew, J.; Choo, Y.S.

    2007-01-01

    At Eindhoven University of Technology a research program on composite construction is underway aiming at the development of design rules for steel frames with precast concrete infill panels subject to horizontal loading. In two projects, 3 by 3 m steel frames are infilled with concrete: solid

  9. High temperature polymer concrete compositions

    Science.gov (United States)

    Fontana, Jack J.; Reams, Walter

    1985-01-01

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system. A preferred formulation emphasizing the major necessary components is as follows: ______________________________________ Component A: Silica sand 60-77 wt. % Silica flour 5-10 wt. % Portland cement 15-25 wt. % Acrylamide 1-5 wt. % Component B: Styrene 50-60 wt. % Trimethylolpropane 35-40 wt. % trimethacrylate ______________________________________ and necessary initiators, accelerators, and surfactants.

  10. Research on working property and early age mechanical property of self-compacting concrete used in steel-concrete structure

    International Nuclear Information System (INIS)

    Zhao Yongguang

    2013-01-01

    Background: Self-compacting concrete that has good working property is the prerequisite of steel-concrete structure. The early age mechanical property of self-compacting concrete is the important parameter when design steel-concrete structure. Purpose: This paper attempts to research the working property and early age mechanical property of self-compacting concrete. Methods: Test is used to research the working property and early age mechanical property of self-compacting concrete. Results: Self-compacting concrete that could meet the requirement of steel-concrete structure has been mixed and parameters of early age mechanical property of self-compacting concrete which is necessary for design of steel-concrete structure have been presented. Conclusions: Base on the results, this paper can guide the construction of self-compacting concrete in steel-concrete structure and the design and construction of steel-concrete structure. (author)

  11. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar.

    Science.gov (United States)

    Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing

    2018-01-22

    The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens.

  12. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  13. Rotation capacity of self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.

    2006-01-01

    Steel fiber reinforced concrete (SFRC) has been used in segmental tunnel linings in the past years. In order to investigate the effect of steel fibers on the rotation capacity of plastic hinges in self-compacting concrete (SCC) the effect of the addition of fibers to SCC in compression, tension and

  14. Corrosion of Steel in Concrete, Part I – Mechanisms

    DEFF Research Database (Denmark)

    Küter, André; Møller, Per; Geiker, Mette Rica

    2006-01-01

    prematurely. Reinforcement corrosion is identified to be the foremost cause of deterioration. Steel in concrete is normally protected by a passive layer due the high alkalinity of the concrete pore solution; corrosion is initiated by neutralization through atmospheric carbon dioxide and by ingress...... of depassivation ions, especially chloride ions. The background and consequences of deterioration of reinforced concrete structures caused by steel corrosion are summarized. Selected corrosion mechanisms postulated in the literature are briefly discussed and related to observations. The key factors controlling...... initiation and propagation of corrosion of steel in concrete are outlined....

  15. Recent trends in steel fibered high-strength concrete

    International Nuclear Information System (INIS)

    Shah, Abid A.; Ribakov, Y.

    2011-01-01

    Highlights: → Recent studies on steel fibred high strength concrete (SFHSC) are reviewed. → Different design provisions for SFHSC are compared. → Applications of SFHSC in new and existing structures and elements are discussed. → Using non-destructive techniques for quality control of SFHSC are reviewed. -- Abstract: Steel fibered high-strength concrete (SFHSC) became in the recent decades a very popular material in structural engineering. High strength attracts designers and architects as it allows improving the durability as well as the esthetics of a construction. As a result of increased application of SFHSC, many experimental studies are conducted to investigate its properties and to develop new rules for proper design. One of the trends in SFHSC structures is to provide their ductile behavior that is desired for proper structural response to dynamic loadings. An additional goal is to limit development and propagation of macro-cracks in the body of SFHSC elements. SFHSC is tough and demonstrates high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents as well as suitable fiber types, to study most efficient combination of fiber and regular steel bar reinforcement. Proper selection of other materials like silica fume, fly ash and super plasticizer has also high importance because of the influence on the fresh and hardened concrete properties. Combination of normal-strength concrete with SFHSC composite two-layer beams leads to effective and low cost solutions that may be used in new structures as well as well as for retrofitting existing ones. Using modern nondestructive testing techniques like acoustic emission and nonlinear ultrasound allows verification of most design parameters and control of SFHSC properties during casting and after hardening. This paper presents recent experimental results, obtained in the field SFHSC and non-destructive testing. It reviews the

  16. Mechanical Properties of Steel Fiber Reinforced all Lightweight Aggregate Concrete

    Science.gov (United States)

    Yang, Y. M.; Li, J. Y.; Zhen, Y.; Nie, Y. N.; Dong, W. L.

    2018-05-01

    In order to study the basic mechanical properties and failure characteristics of all lightweight aggregate concrete with different volume of steel fiber (0%, 1%, 2%), shale ceramsite is used as light coarse aggregate. The shale sand is made of light fine aggregate and mixed with different volume of steel fiber, and the mix proportion design of all lightweight aggregate concrete is carried out. The cubic compressive strength, axial compressive strength, flexural strength, splitting strength and modulus of elasticity of steel fiber all lightweight aggregate concrete were studied. Test results show that the incorporation of steel fiber can restrict the cracking of concrete, improve crack resistance; at the same time, it shows good plastic deformation ability and failure morphology. It lays a theoretical foundation for further research on the application of all lightweight aggregate concrete in structural systems.

  17. Study on The Geopolymer Concrete Properties Reinforced with Hooked Steel Fiber

    Science.gov (United States)

    Abdullah, M. M. A. B.; Tahir, M. F. M.; Tajudin, M. A. F. M. A.; Ekaputri, J. J.; Bayuaji, R.; Khatim, N. A. M.

    2017-11-01

    In this research, Class F fly ash and a mixture of alkaline activators and different amount of hooked steel fiber were used for preparing geopolymer concrete. In order to analyses the effect of hooked steel fiber on the geopolymer concrete, the analysis such as chemical composition of fly ash, workability of fresh geopolymer, water absorption, density, compressive strength of hardened geopolymer concrete have been carried out. Mixtures were prepared with fly ash to alkaline liquid ratio of 2.0 with hooked steel fibers were added to the mix with different amounts which are 1%, 3%, 5% and 7% by the weight of the concrete. Experimental results showed that the compressive strength of geopolymer concrete increases as the hooked steel fibers increases. The optimum compressive strength obtained was up to 87.83 MPa on the 14th day. The density of geopolymer concrete are in the range between 2466 kg/m3 to 2501 kg/m3. In addition, the workability value of geopolymer without hooked steel fibers is 100 mm while the workability value of geopolymer with hooked steel fibers are between 60 mm to 30 mm.

  18. Steel fiber reinforced concrete subjected to elevated cyclic temperatures

    International Nuclear Information System (INIS)

    Yousif, R. A.; Rasheed, H. M.; Muhammad, H. A.

    1997-01-01

    The results from a series of tests on steel fiber reinforced concrete at elevated cyclic temperature are presented. The residual compressive strength and ultimate splitting tensile strength were nadir's on specimen ts with no fibers and with 0.5% and 1% plain steel fibers over a temperature range of 300-700 C. concrete was subjected to one, two or three cycles of heating and cooling. In general the exposure to temperature decreased the strength of concrete, although the number of heating cycles seems only to have a secondary effect. The results also show that the steel fiber reinforced concrete performs better than plain concrete. Two equations were suggested to predict the strength of concrete and the results show good agreement with the experimental values. . (authors). 10 refs., 1 tabs. 3 figs

  19. Application of concrete filled steel bearing wall to inner concrete structure fro PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sekimoto, Hisashi; Tanaka, Mamoru; Inoue, Kunio; Fukihara, Masaaki; Akiyama, Hiroshi.

    1992-01-01

    'Concrete filled steel bearing wall', applied to the inner concrete structure for PWR nuclear power plant, was developed for rationalization of construction procedure at site. It was concluded through preliminary studies that this new type of wall, where concrete is placed between steel plates, is best suited for the strength members of the above structure, due to the high strength and ductility of surface steel plates and the confinement effect of filled concrete. To verify the behavior from the elastic range to the inelastic range, the ultimate strength and the failure mechanism, and to clarify experimentally the structural integrity of the inner concrete structure, which was composed of a concrete filled steel bearing wall, against seismic lateral loads, horizontal loading tests using a 1/10th scale model of the inner concrete structure for PWR nuclear power plant were conducted. As a result of the tests, the inner concrete structure composed of a concrete filled steel bearing wall appeared to have a larger load carrying capacity and a higher ductility as compared with that composed of a reinforced concrete wall. (author)

  20. Hydraulic concrete composition and properties control system

    OpenAIRE

    PSHINKO O.M.; KRASNYUK A.V.; HROMOVA O.V.

    2015-01-01

    Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings) based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canon...

  1. Corrosion of reinforcement bars in steel ibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe

    and the influence of steel fibres on initiation and propagation of cracks in concrete. Moreover, the impact of fibres on corrosion-induced cover cracking was covered. The impact of steel fibres on propagation of reinforcement corrosion was investigated through studies of their impact on the electrical resistivity...... of concrete, which is known to affect the corrosion process of embedded reinforcement. The work concerning the impact of steel fibres on initiation and propagation of cracks was linked to corrosion initiation and propagation of embedded reinforcement bars via additional studies. Cracks in the concrete cover...... are known to alter the ingress rate of depassivating substances and thereby influence the corrosion process. The Ph.D. study covered numerical as well as experimental studies. Electrochemically passive steel fibres are electrically isolating thus not changing the electrical resistivity of concrete, whereas...

  2. Corrosion performance tests for reinforcing steel in concrete : technical report.

    Science.gov (United States)

    2009-10-01

    The existing test method used to assess the corrosion performance of reinforcing steel embedded in : concrete, mainly ASTM G 109, is labor intensive, time consuming, slow to provide comparative results, : and can be expensive. However, with corrosion...

  3. Corrosion performance tests for reinforcing steel in concrete : test procedures.

    Science.gov (United States)

    2009-09-01

    The existing test method to assess the corrosion performance of reinforcing steel embedded in concrete, mainly : ASTM G109, is labor intensive, time consuming, slow to provide comparative results, and often expensive. : However, corrosion of reinforc...

  4. Stainless steel reinforcement for durability in concrete structures

    International Nuclear Information System (INIS)

    Cochrane, D.J.

    1998-01-01

    Stainless steels and concrete are materials which the nuclear industry, more than any other, has given special attention to over the years. It is the intention of this paper to inform congress about developments outside the nuclear industry, in the use of stainless steel as reinforcement (rebar) in concrete structures. It is left to individual engineers within the industry to assess the implications of this information to applications with which they will be familiar. (author)

  5. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    Science.gov (United States)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  6. Composite Strain Hardening Properties of High Performance Hybrid Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Vikram Jothi Jayakumar

    2014-01-01

    Full Text Available Hybrid fibres addition in concrete proved to be a promising method to improve the composite mechanical properties of the cementitious system. Fibre combinations involving different fibre lengths and moduli were added in high strength slag based concrete to evaluate the strain hardening properties. Influence of hybrid fibres consisting of steel and polypropylene fibres added in slag based cementitious system (50% CRL was explored. Effects of hybrid fibre addition at optimum volume fraction of 2% of steel fibres and 0.5% of PP fibres (long and short steel fibre combinations were observed in improving the postcrack strength properties of concrete. Test results also indicated that the hybrid steel fibre additions in slag based concrete consisting of short steel and polypropylene (PP fibres exhibited a the highest compressive strength of 48.56 MPa. Comparative analysis on the performance of monofibre concrete consisting of steel and PP fibres had shown lower residual strength compared to hybrid fibre combinations. Hybrid fibres consisting of long steel-PP fibres potentially improved the absolute and residual toughness properties of concrete composite up to a maximum of 94.38% compared to monofibre concrete. In addition, the relative performance levels of different hybrid fibres in improving the matrix strain hardening, postcrack toughness, and residual strength capacity of slag based concretes were evaluated systematically.

  7. Temperature effects on bond between concrete and reinforcing steel

    Directory of Open Access Journals (Sweden)

    Lublóy Éva

    2014-01-01

    Full Text Available Bond behaviour between concrete and reinforcing bars was observed under elevated temperatures. Five different concrete compositions were used. Hundred five pull-out specimens (Ø120 mm, 100 mm were prepared. After removing the specimens from the formwork, they were stored in water for seven days then kept at laboratory conditions until testing. The specimens were 28 days old by testing. After heating up the specimens, they were kept for two hours at these maximum temperatures (20 °C, 150 °C, 300 °C, 400 °C, 500 °C, 800 °C. Specimens were then cooled down in laboratory conditions. Finally the specimens were tested at room temperature. In order to check the compressive strength standard cubes were cast, cured, and heat treated, then tested to compressive strength. The results showed reduction in residual compressive strength and considerable changes in steel-concrete bond under high temperatures. Based on test results, a proposal is presented for the modification of MC2010 bond-ship formula in order to consider temperature effect.

  8. Flexural Cracking Behavior Of Steel Fiber Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ashraf Abdalkader

    2017-08-01

    Full Text Available Steel fibers are added to concrete due to its ability to improve the tensile strength and control propagation of cracks in reinforced concrete members. Steel fiber reinforced concrete is made of cement fine water and coarse aggregate in addition to steel fibers. In this experimental work flexural cracking behavior of reinforced concrete beams contains different percentage of hooked-end steel fibers with length of 50 mm and equivalent diameter of 0.5 mm was studied. The beams were tested under third-point loading test at 28 days. First cracking load maximum crack width cracks number and load-deflection relations were investigated to evaluate the flexural cracking behavior of concrete beams with 34 MPa target mean strength. Workability wet density compressive and splitting tensile strength were also investigated. The results showed that the flexural crack width is significantly reduced with the addition of steel fibers. Fiber contents of 1.0 resulted in 81 reduction in maximum crack width compared to control concrete without fiber. The results also showed that the first cracking load and maximum load are increased with the addition of steel fibers.

  9. Corrosion of Steel in Concrete – Thermodynamical Aspects

    DEFF Research Database (Denmark)

    Küter, Andre; Møller, Per; Geiker, Mette Rica

    2004-01-01

    The present understanding of selected corrosion phenomena in reinforced concrete is reviewed. Special emphasis is given to chloride induced corrosion. There is a general acceptance of the basic corrosion mechanism for steel in concrete. However different anodic reactions governing the subsequent...

  10. Optimising of Steel Fiber Reinforced Concrete Mix Design | Beddar ...

    African Journals Online (AJOL)

    Optimising of Steel Fiber Reinforced Concrete Mix Design. ... as a result of the loss of mixture workability that will be translated into a difficult concrete casting in site. ... An experimental study of an optimisation method of fibres in reinforced ...

  11. Steel slag in hot mix asphalt concrete : final report

    Science.gov (United States)

    2000-04-01

    In September 1994, steel slag test and control sections were constructed in Oregon to evaluate the use of steel slag in hot mix asphalt concrete (HMAC). This report covers the construction and five-year performance of a pavement constructed with 30% ...

  12. Corrosion resistance of steel fibre reinforced concrete - A literature review

    DEFF Research Database (Denmark)

    Marcos Meson, Victor; Michel, Alexander; Solgaard, Anders

    2017-01-01

    Steel fibre reinforced concrete (SFRC) is increasingly being used in the construction of civil infrastructure. However, there are inconsistencies among international standards and guidelines regarding the consideration of carbon-steel fibres for the structural verification of SFRC exposed...... of the mechanisms governing the corrosion of carbon-steel fibres in cracks and its effects on the fracture behaviour of SFRC are not fully understood....

  13. Thermal stress control using waste steel fibers in massive concretes

    Science.gov (United States)

    Sarabi, Sahar; Bakhshi, Hossein; Sarkardeh, Hamed; Nikoo, Hamed Safaye

    2017-11-01

    One of the important subjects in massive concrete structures is the control of the generated heat of hydration and consequently the potential of cracking due to the thermal stress expansion. In the present study, using the waste turnery steel fibers in the massive concretes, the amount of used cement was reduced without changing the compressive strength. By substituting a part of the cement with waste steel fibers, the costs and the generated hydration heat were reduced and the tensile strength was increased. The results showed that by using 0.5% turnery waste steel fibers and consequently, reducing to 32% the cement content, the hydration heat reduced to 23.4% without changing the compressive strength. Moreover, the maximum heat gradient reduced from 18.5% in the plain concrete sample to 12% in the fiber-reinforced concrete sample.

  14. Flexural fatigue behavior of steel fiber reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, G.I.; Chai, W.K.; Park, C.W.; Min, I.K.

    1993-01-01

    In this thesis, the fatigue tests are performed on a series of SFRC (steel fiber reinforced concrete) to investigate the fatigue behavior of SFRC varing with the steel fiber contents and the steel fiber aspect ratios. Thirty SFRC beams are used in this test. The relationships between repeated loading cycle and mid-span deflection of the beams are observed under the three-point loading system. From the test results, the effects of the fiber content and the fiber aspect ratio on the concrete fatigue behavior were studied. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams are also suggested. (author)

  15. Bond behavior of reinforcing steel in ultra-high performance concrete.

    Science.gov (United States)

    2014-10-01

    Ultra-High Performance Concrete (UHPC) is a relatively new class of advanced cementitious composite : materials, which exhibits high compressive [above 21.7 ksi (150 MPa)] and tensile [above 0.72 ksi (5 MPa)] : strengths. The discrete steel fiber rei...

  16. Experimental Investigation of the Shear Resistance of Steel Frames with Precast Concrete Infill Panels

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Hofmeyer, H.; Snijder, H.H.

    2010-01-01

    At the Technische Universiteit Eindhoven a research program on composite construction is underway aiming at the development of design rules for steel frames with discretely connected precast concrete infill panels subject to in-plane horizontal loading. This paper presents experimental and finite

  17. Prefabricated floor panels composed of fiber reinforced concrete and a steel substructure

    DEFF Research Database (Denmark)

    Lárusson, Lárus H.; Fischer, Gregor; Jönsson, Jeppe

    2013-01-01

    This paper reports on a study on prefabricated composite and modular floor deck panels composed of relatively thin fiber reinforced concrete slabs connected to steel substructures. The study focuses on the design, manufacturing, structural improvements and behavior of the floor systems during...

  18. Failure Monitoring and Condition Assessment of Steel-Concrete Adhesive Connection Using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Magdalena Rucka

    2018-02-01

    Full Text Available Adhesive bonding is increasingly being incorporated into civil engineering applications. Recently, the use of structural adhesives in steel-concrete composite systems is of particular interest. The aim of the study is an experimental investigation of the damage assessment of the connection between steel and concrete during mechanical degradation. Nine specimens consisted of a concrete cube and two adhesively bonded steel plates were examined. The inspection was based on the ultrasound monitoring during push-out tests. Ultrasonic waves were excited and registered by means of piezoelectric transducers every two seconds until the specimen failure. To determine the slip between the steel and concrete a photogrammetric method was applied. The procedure of damage evaluation is based on the monitoring of the changes in the amplitude and phase shift of signals measured during subsequent phases of degradation. To quantify discrepancies between the reference signal and other registered signals, the Sprague and Gears metric was applied. The results showed the possibilities and limitations of the proposed approach in diagnostics of adhesive connections between steel and concrete depending on the failure modes.

  19. Innovative Concrete Repairing Technique Using Post Tensioning Steel Straps

    Directory of Open Access Journals (Sweden)

    Ma Chau-Khun

    2017-01-01

    Full Text Available In this paper, innovative technique using low-cost recycled steel straps confinement to repair load-induced damaged high-strength concrete (HSC columns were studied. This paper explains the effects of repairing technique using post tensioning steel straps. A series of experimental test was carried out to investigate the stress-strain relationships of such concrete. A total of 6 HSC columns were compressed 50% of their ultimate strength, then repaired by using steel straps. The proposed repairing technique significantly improved the performance of damaged concrete columns, in both strength and ductility. It was evidenced from this study that the steel strapping confining technique is effective in repairing of damaged HSC columns but ensured reasonable operating costs.

  20. Concrete and steel construction quality control and assurance

    CERN Document Server

    El-Reedy, Mohamed A

    2014-01-01

    Starting with the receipt of materials and continuing all the way through to the final completion of the construction phase, Concrete and Steel Construction: Quality Control and Assurance examines all the quality control and assurance methods involving reinforced concrete and steel structures. This book explores the proper ways to achieve high-quality construction projects, and also provides a strong theoretical and practical background. It introduces information on quality techniques and quality management, and covers the principles of quality control. The book presents all of the quality control and assurance protocols and non-destructive test methods necessary for concrete and steel construction projects, including steel materials, welding and mixing, and testing. It covers welding terminology and procedures, and discusses welding standards and procedures during the fabrication process, as well as the welding codes. It also considers the total quality management system based on ISO 9001, and utilizes numer...

  1. Rotation capacity of self-compacting steel fibre reinforced concrete beams

    NARCIS (Netherlands)

    Schumacher, P.; Walraven, J.C.; Den Uijl, J.A.; Bigaj-van Vliet, A.

    2009-01-01

    Steel fibres are known to enhance the toughness of concrete in compression and in tension. Steel fibres also improve the bond properties between concrete matrix and reinforcing steel bars. In order to investigate the effect of steel fibres on the rotation capacity of reinforced concrete members,

  2. 78 FR 75545 - Prestressed Concrete Steel Rail Tie Wire From the People's Republic of China: Preliminary...

    Science.gov (United States)

    2013-12-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-990] Prestressed Concrete Steel... (``Department'') preliminarily determines that prestressed concrete steel rail tie wire (``PC tie wire'') from... prestressed tendons in concrete railroad ties (``PC tie wire''). High carbon steel is defined as steel that...

  3. Comparison of the performance of concrete-filled steel tubular and hollow steel diagrid buildings

    Science.gov (United States)

    Peter, Minu Ann; S, Sajith A.; Nagarajan, Praveen

    2018-03-01

    In the recent construction scenario, diagrid structures are becoming a popular high-rise building structural system. Diagrid structures consist of diagonals in the perimeter and an interior core. The corner and interior vertical columns are not required due to the structural efficiency of diagrid structural systems. Steel and concrete are commonly used material for diagrid. An alternate material for diagrid is concrete-filled steel tube (CFST). CFST incorporates the advantages of both steel and concrete. In CFST, the inward buckling of the steel tube is effectively prevented by the filled concrete. The compressive strength of concrete increases due to the tri-axial state of stress in concrete induced by the steel tube. The longitudinal as well as lateral reinforcement to the concrete core is also provided by the steel tube. This paper compares the performance of CFST and steel diagrid buildings using linear static analysis. For this purpose, a 12 storey and 36 storey building are analysed using finite element method and CFST diagrid building is found to perform better.

  4. Influence of Changes in Water-to-Cement Ratio, Alkalinity, Concrete Fluidity, Voids, and Type of Reinforcing Steel on the Corrosion Potential of Steel in Concrete.

    Science.gov (United States)

    2014-04-01

    "Research on steel corrosion has demonstrated that the concentrations of chloride and hydroxide ion at the concrete/steel : interface influence the susceptibility of the steel to corrosive attack. This study used electrochemical means and changes in ...

  5. Application of the self-diagnosis composite into concrete structure

    Science.gov (United States)

    Matsubara, Hideaki; Shin, Soon-Gi; Okuhara, Yoshiki; Nomura, Hiroshi; Yanagida, Hiroaki

    2001-04-01

    The function and performance of the self-diagnosis composites embedded in mortar/concrete blocks and concrete piles were investigated by bending tests and electrical resistance measurements. Carbon powder (CP) and carbon fiber (CF) were introduced in glass fiber reinforced plastics composites to obtain electrical conductivity. The CP composite has commonly good performances in various bending tests of block and pile specimens, comparing to the CF composite. The electrical resistance of the CP composite increases in a small strain to response remarkably micro-crack formation at about 200 (mu) strain and to detect well to smaller deformations before the crack formation. The CP composite possesses a continuous resistance change up to a large strain level near the final fracture of concrete structures reinforced by steel bars. The cyclic bending tests showed that the micro crack closed at unloading state was able to be evaluated from the measurement of residual resistance. It has been concluded that the self- diagnosis composite is fairly useful for the measurement of damage and fracture in concrete blocks and piles.

  6. Concrete-Filled Steel Tube Arch Bridges in China

    Directory of Open Access Journals (Sweden)

    Jielian Zheng

    2018-02-01

    Full Text Available In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key construction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world’s longest CFST arch bridge—the First Hejiang Yangtze River Bridge. The main construction technologies of reinforced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges—the Guangxi Yongning Yong River Bridge and the Yunnan–Guangxi Railway Nanpan River Bridge—is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges. Keywords: Concrete-filled steel tube (CFST arch bridge, Steel-reinforced concrete arch bridge, Cable-stayed fastening-hanging cantilever assembly, Vacuum-assisted pouring in-tube concrete, Adjusting load by stay cables

  7. Limit Analysis of Geometrically Hardening Composite Steel-Concrete Systems / Stany Graniczne Geometrycznie Wzmacniających Się Konstrukcji Zespolonych

    Science.gov (United States)

    Alawdin, Piotr; Urbańska, Krystyna

    2015-03-01

    The paper considers some results of creating load-carrying composite systems that have uprated strength, rigidity and safety, and therefore are called geometrically (self-) hardening systems. The optimization mathematic models of structures as discrete mechanical systems withstanding dead load, monotonic or low cyclic static and kinematic actions are proposed. To find limit parameters of these actions the extreme energetic principle is suggested what result in the bilevel mathematic programming problem statement. The limit parameters of load actions are found on the first level of optimization. On the second level the power of the constant load with equilibrium preloading is maximized and/or system cost is minimized. The examples of using the proposed methods are presented and geometrically hardening composite steel-concrete system are taken into account. W pracy przedstawiono sposoby projektowania konstrukcji, które ze względu na swoją geometrię oraz topologię posiadają podwyższoną nośność, sztywność i bezpieczeństwo. Systemy takie nazwano geometrycznie (samo-) wzmacniającymi się. Zaproponowano optymalizacyjne modele matematyczne konstrukcji jako dyskretne systemy mechaniczne będące pod obciążeniem stałym, zmiennym monotoniczne lub niskocyklowym, statycznym lub kinematycznym. Dla znalezienia granicznych parametrów obciążeń wprowadzona została ekstremalna zasada energetyczna, przedstawiona jako problem dwupoziomowego programowania matematycznego. Graniczne parametry obciążeń szukane są na pierwszym poziomie optymalizacji. Na drugim poziomie minimalizowany jest koszt systemu i/lub maksymalizowana jest moc stałego równoważącego obciążenia z dociążeniem. Ponadto w pracy przeanalizowano numerycznie i analitycznie zachowanie konstrukcji geometrycznie wzmacniających się na przykładzie konstrukcji zespolonych stalowobetonowych. Pierwszy przykład dotyczy konstrukcji belkowo-prętowej z podciągiem, belkę stanowi stalowy dwuteownik

  8. Neutron imaging of water penetration into cracked steel reinforced concrete

    International Nuclear Information System (INIS)

    Zhang, P.; Wittmann, F.H.; Zhao, T.; Lehmann, E.H.

    2010-01-01

    Service life and durability of reinforced concrete structures have become a crucial issue because of the economical and ecological implications. Service life of reinforced concrete structures is often limited by penetration of water and chemical compounds dissolved in water into the porous cement-based material. By now it is well-known that cracks in reinforced concrete are preferential paths for ingress of aggressive substances. Neutron radiography was successfully applied to study the process of water penetration into cracked steel reinforced concrete. In addition, the effectiveness of integral water repellent concrete to prevent ingress of water and salt solutions was investigated. Results are described in detail in this contribution. It will be shown that neutron radiography is a powerful method to visualize the process of water penetration into cracked and uncracked cement-based materials. On the basis of the obtained experimental data, it is possible to quantify the time-dependent water distributions in concrete with high accuracy and spatial resolution. It is of particular interest that penetration of water and salt solutions into damaged interfaces between concrete and steel can be visualized by means of neutron radiography. Deteriorating processes in cracked reinforced concrete structures can be studied in a completely new way. This advanced technology will help and find adequate ways to improve durability and service life of reinforced concrete structures. This will mean at the same time an essential contribution to improved sustainability.

  9. Repairing reinforced concrete slabs using composite layers

    International Nuclear Information System (INIS)

    Naghibdehi, M. Ghasemi; Sharbatdar, M.K.; Mastali, M.

    2014-01-01

    There are several strengthening methods for rehabilitation of RC structural elements. The efficiency of these methods has been demonstrated by many researchers. Due to their mechanical properties, using fibrous materials in rehabilitation applications is growing fast. Therefore, this study presents rehabilitation of slabs in such a way that plain concrete layers on top, on bottom, on the entire cross section are replaced by reinforced concrete layers. In order to reinforce the concrete, Polypropylene (PP) and steel fibers were used by 0.5%, 1% and 2% fiber volume fractions. Nineteen slabs were studied under flexural loadings and fibrous material effects on the initial crack force, the maximum loading carrying capacity, absorbed energy and ductility were investigated. The obtained results demonstrated that increasing the fiber volume fraction or using reinforced concrete layer on top, bottom, or at the entire cross section of the slabs not only always leads to improvement in the slab performance, but also sometimes debilitates the slab performance. Hence, this study will propose the best positioning of reinforced concrete layer, fiber volume fraction and fiber type to achieve the best flexural performance of slabs. - Highlights: • Using PP fibers at the bottom layer led to the best slab performance in bending. • Using steel fiber at the top layer and entire cross-section led to the best slab performance. • Maximum increase in the initial crack force and loading were obtained at 2% steel fiber. • Maximum increase in the initial crack force and loading were obtained at 1% PP fiber

  10. Observations on the electrical resistivity of steel fibre reinforced concrete

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Geiker, Mette Rica; Edvardsen, Carola

    2014-01-01

    concrete the model underestimated the influence of the addition of fibres. The results indicate that the addition of steel fibres reduce the electrical resistivity of concrete if the fibres are conductive. This represents a hypothetical case where all fibres are depassivated (corroding) which was created......Steel fibre reinforced concrete (SFRC) is in many ways a well-known construction material, and its use has gradually increased over the last decades. The mechanical properties of SFRC are well described based on the theories of fracture mechanics. However, knowledge on other material properties......, including the electrical resistivity, is sparse. Among others, the electrical resistivity of concrete has an effect on the corrosion process of possible embedded bar reinforcement and transfer of stray current. The present paper provides experimental results concerning the influence of the fibre volume...

  11. Coated steel rebar for enhanced concrete-steel bond strength and corrosion resistance.

    Science.gov (United States)

    2010-10-01

    This report summarizes the findings and recommendations on the use of enamel coating in reinforced concrete structures both for bond strength and : corrosion resistance of steel rebar. Extensive laboratory tests were conducted to characterize the pro...

  12. Experimental and Numerical Study of FRP Encased Composite Concrete Columns

    Directory of Open Access Journals (Sweden)

    Mohsen Ishaghian

    2017-02-01

    Full Text Available A new type of composite column is presented and assessed through experimental testing and numerical modeling. The objective of this research is to investigate design options for a composite column without the use of ferrous materials. This is to avoid the current problem of deterioration of concrete due to expansion of rusting reinforcement members. Such a target can be achieved by replacing the steel reinforcement of concrete columns with pultruded I-shape glass FRP structural sections. The composite column utilizes a glass FRP tube that surrounds a pultruded I-section glass FRP, which is subsequently filled with concrete. The GFRP tube acts as a stay-in-place form in addition to providing confinement to the concrete. A total of four composite columns were tested under monotonic axial loading. The experimental ultimate capacity of each of the tested composite column was compared to the predicted numerical capacity using ANSYS program. The comparison showed that the predicted numerical values were in good agreement with the experimental ones.

  13. 75 FR 32747 - Prestressed Concrete Steel Wire Strand from Mexico: Rescission of Antidumping Duty Administrative...

    Science.gov (United States)

    2010-06-09

    ... DEPARTMENT OF COMMERCE INTERNATIONAL TRADE ADMINISTRATION [A-201-831] Prestressed Concrete Steel Wire Strand from Mexico: Rescission of Antidumping Duty Administrative Review AGENCY: Import... request an administrative review of the antidumping duty order on prestressed concrete steel wire strand...

  14. Mechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets.

    Science.gov (United States)

    Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K; Gudonis, Eugenijus; Misiunaite, Ieva

    2017-06-17

    This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets.

  15. Study on Performance of Steel Fiber Concrete Bridge Pier Specimens under Horizontal Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Baiben Chen

    2017-01-01

    Full Text Available Because of that steel fiber can effectively prevent the extension and development of small cracks in the concrete, steel fiber reinforced concrete has good toughness and tensile strength. In the application of building materials, steel fiber reinforced concrete is an ideal elastic-plastic material. For the seismic performance, it has advantages. In order to analyze the seismic performance of steel fiber reinforced concrete, 4 piers of the scale model test under horizontal cyclic loading were done. The results showed that failure mode of steel fiber reinforced concrete is better than that of ordinary concrete, and has a large yield moment under the external loads.

  16. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    International Nuclear Information System (INIS)

    Choun, Youngsun; Park, Junhee

    2014-01-01

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs

  17. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs.

  18. Parametric Study of Fire Performance of Concrete Filled Hollow Steel Section Columns with Circular and Square Cross-Section

    Science.gov (United States)

    Nurfaidhi Rizalman, Ahmad; Tahir, Ng Seong Yap Mahmood Md; Mohammad, Shahrin

    2018-03-01

    Concrete filled hollow steel section column have been widely accepted by structural engineers and designers for high rise construction due to the benefits of combining steel and concrete. The advantages of concrete filled hollow steel section column include higher strength, ductility, energy absorption capacity, and good structural fire resistance. In this paper, comparison on the fire performance between circular and square concrete filled hollow steel section column is established. A three-dimensional finite element package, ABAQUS, was used to develop the numerical model to study the temperature development, critical temperature, and fire resistance time of the selected composite columns. Based on the analysis and comparison of typical parameters, the effect of equal cross-sectional size for both steel and concrete, concrete types, and thickness of external protection on temperature distribution and structural fire behaviour of the columns are discussed. The result showed that concrete filled hollow steel section column with circular cross-section generally has higher fire resistance than the square section.

  19. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1991-01-01

    This is the final report of a 2 year programme aimed at (1) determining the rate of anaerobic corrosion of steel in concrete, (2) investigating the nature of the corrosion products formed on carbon steel embedded in cementitious material under anaerobic conditions and (3) evaluating the effect of hydrogen over-pressures on the rate of anaerobic corrosion. All experiments have been carried out at temperatures in the range 20-30 0 C, ie ambient conditions. 4 refs.; 19 figs.; 6 tabs

  20. Nano-composite stainless steel

    Science.gov (United States)

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  1. 78 FR 73838 - Steel Concrete Reinforcing Bar From Turkey: Postponement of Preliminary Determination in the...

    Science.gov (United States)

    2013-12-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-489-819] Steel Concrete Reinforcing... countervailing duty investigation on steel concrete reinforcing bar from Turkey.\\1\\ The original signature date... signature date for the preliminary determination was revised to December 16, 2013.\\3\\ \\1\\ See Steel Concrete...

  2. 78 FR 41079 - Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and Ukraine

    Science.gov (United States)

    2013-07-09

    ...)] Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and Ukraine... U.S.C. 1675(c)), that revocation of the antidumping duty orders on steel concrete reinforcing bar... Commission are contained in USITC Publication 4409 (July 2013), entitled Steel Concrete Reinforcing Bar from...

  3. 77 FR 39254 - Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and...

    Science.gov (United States)

    2012-07-02

    ...)] Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and Ukraine; Institution of Five-Year Reviews Concerning the Antidumping Duty Orders on Steel Concrete Reinforcing Bar From... revocation of the antidumping duty orders on steel concrete reinforcing bar from Belarus, China, Indonesia...

  4. 78 FR 43858 - Steel Concrete Reinforcing Bars From Belarus, Indonesia, Latvia, Moldova, Poland, the People's...

    Science.gov (United States)

    2013-07-22

    ...-860; A-822-804; A-823-809; A- 841-804] Steel Concrete Reinforcing Bars From Belarus, Indonesia, Latvia... antidumping duty orders \\1\\ on steel concrete reinforcing bars from Belarus, Indonesia, Latvia, Moldova... orders. \\1\\ See Antidumping Duty Orders: Steel Concrete Reinforcing Bars From Belarus, Indonesia, Latvia...

  5. 77 FR 71631 - Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and...

    Science.gov (United States)

    2012-12-03

    ...)] Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and Ukraine; Scheduling of Full Five-Year Reviews Concerning the Antidumping Duty Orders on Steel Concrete Reinforcing Bar...) to determine whether revocation of the antidumping duty orders on steel concrete reinforcing bar from...

  6. 77 FR 54652 - Draft Program Comment for Common Post-1945 Concrete and Steel Bridges

    Science.gov (United States)

    2012-09-05

    ... constructed by State transportation agencies after 1945, using reinforced concrete or steel beams and designs... proposed Program Comment: Program Comment for Common Post-1945 Concrete and Steel Bridges I. Introduction... reinforced concrete or steel beams and designs that quickly became standardized. These common bridge types...

  7. Corrosion of steel in locally deficient concrete.

    Science.gov (United States)

    2009-02-28

    This investigation confirmed prior noted trends of extensive preferential chloride intrusion at preexisitng cracks in a majority of cases of substructure members in Florida bridges built with low permeability conventional concrete.

  8. Accelerated testing for chloride threshold of reinforcing steel in concrete

    NARCIS (Netherlands)

    Polder, R.B.; Put, M. van; Peelen, W.H.A.

    2017-01-01

    Testing for the chloride threshold (also called critical chloride content) for corrosion initiation of steel in concrete has been found difficult and, at best, time consuming. Nevertheless, the chloride threshold is an important parameter in service life design of new structures and for evaluation

  9. Analysis of steel frames with precast concrete infill panels

    NARCIS (Netherlands)

    Teeuwen, P.A; Kleinman, C.S.; Snijder, H.H.; Hofmeyer, H.; IABSE-AIPPC-IVBH, xx

    2008-01-01

    This paper presents experimental and numerical analyses of a new type of hybrid lateral load resisting structure. This structure consists of a steel frame with a discretely connected precast concrete infill panel with a window opening. The discrete connections are formed by structural bolts on the

  10. 75 FR 8113 - Prestressed Concrete Steel Wire Strand From China

    Science.gov (United States)

    2010-02-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-464 and 731-TA-1160 (Final)] Prestressed Concrete Steel Wire Strand From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject investigations. DATES: Effective Date: February 16, 2010. FOR FURTHER INFORMATION...

  11. Static Analysis of Steel Fiber Concrete Beam With Heterosis Finite Elements

    Directory of Open Access Journals (Sweden)

    James H. Haido

    2014-08-01

    Full Text Available Steel fiber is considered as the most commonly used constructional fibers in concrete structures. The formulation of new nonlinearities to predict the static performance of steel fiber concrete composite structures is considered essential. Present study is devoted to investigate the efficiency of utilizing heterosis finite elements analysis in static analysis of steel fibrous beams. New and simple material nonlinearities are proposed and used in the formulation of these elements. A computer program coded in FORTRAN was developed to perform current finite element static analysis with considering four cases of elements stiffness matrix determination. The results are compared with the experimental data available in literature in terms of central deflections, strains, and failure form, good agreement was found. Suitable outcomes have been observed in present static analysis with using of tangential stiffness matrix and stiffness matrix in second iteration of the load increment.

  12. Heavy concrete shieldings made of recycled radio-active steel

    International Nuclear Information System (INIS)

    Holland, D.; Quade, U.; Sappok, M.; Heim, H.

    1998-01-01

    Maintenance and decommissioning of nuclear installations will generate increasing quantities of radioactively contaminated metallic residues. For many years, Siempelkamp has been melting low-level radioactive scrap in order to re-use it for containers of nuclear industry. Another new recycling path has recently been developed by producing steel granules from the melt. These granules are used as replacement for hematite (iron ore) in the production of heavy concrete shieldings. In the CARLA plant (central plant for the recycling of low-level radioactive waste) of Siempelkamp Nuklear- und Umwelttechnik GmbH and Co., the scrap is melted in a medium frequency induction furnace. The liquid iron is poured into a cooling basin through a water jet, which splits the iron into granules. The shape of these granules is determined by various factors, such as water jet speed, pouring rate of the liquid iron and different additives to the melt. In this process, massive spheres with diameters ranging from 1 to 8 mm can be produced which add to the density of heavy concrete elements for optimum shielding. In close cooperation with Boschert, which indeed is an expert for the production of concrete shieldings, a new technology for manufacturing heavy concrete shieldings, containing low-level radioactive steel granules, has been developed. The portion of steel granules in the concrete is approx. 50 weight-%. A concrete density between 2.4 kg/dm 3 and 4.0 kg/dm 3 is available. The compressive strength for the concrete reaches values up to 65 MPa. Different types of Granulate Shielding Casks (GSC) are offered by Siempelkamp. The most famous one is the GSC 200 for 200 1 drums, which has already been qualified for final storage of radioactive wastes at the German Morsleben final repository (ERAM). This newly developed recycling process further increases the quantities of low-level radioactive metallic wastes available for recycling. Expensive storage area can thus be saved respectively

  13. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    Science.gov (United States)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-04-01

    In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  14. Potential applications of steel fibre reinforced concrete to improve seismic response of frame structures

    International Nuclear Information System (INIS)

    Adhikari, S.; Patnaik, A.

    2012-01-01

    Fibre reinforced concrete has gained acceptance in several civil engineering applications. The proclivity of new generation of engineers to use steel fibre reinforced concrete can be attributed to some distinct functional and structural benefits that it can provide compared to conventional reinforced concrete. Fibre reinforced concrete has been found to increase the post-cracking tensile strength of concrete thus facilitating pseudo-plastic response, improved energy absorption, and better energy dissipation capabilities that lead to better structural response under cyclic loading. These factors suggest benefits in considering the use of steel fibre reinforced concrete to enhance the structural response of reinforced concrete structures under earthquake loading. This paper summarizes useful background on steel fibre reinforced concrete, the benefits over conventional reinforced concrete, and its response to cyclic excitation. The authors believe that steel fibre reinforced concrete is a suitable ductile high performance material that is gaining acceptance for applications in frame structures and is particularly suitable for enhancing seismic response. (author)

  15. Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation

    Science.gov (United States)

    Doru, Zdrenghea

    2017-10-01

    The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater

  16. Evaluation of workability and strength of green concrete using waste steel scrap

    Science.gov (United States)

    Neeraja, D.; Arshad, Shaik Mohammed; Nawaz Nadaf, Alisha K.; Reddy, Mani Kumar

    2017-11-01

    This project works on the study of workability and mechanical properties of concrete using waste steel scrap from the lathe industry. Lathe industries produce waste steel scrap from the lathe machines. In this study, an attempt is made to use this waste in concrete, as accumulation of waste steel scrap cause disposal problem. Tests like compressive test, split tensile test, NDT test (UPV test) were conducted to determine the impact of steel scrap in concrete. The percentages of steel scrap considered in the study were 0%, 0.5%, 1%, 1.5%, and 2% respectively by volume of concrete, 7 day, 28 days test were conducted to find out strength of steel scrap concrete. It is observed that split tensile strength of steel scrap concrete is increased slightly. Split tensile strength of Steel scrap concrete is found to be maximum with volume fraction of 2.0% steel scrap. The steel scrap gives good result in split tensile strength of concrete. From the study concluded that steel scrap can be used in concrete to reduce brittleness of concrete to some extent.

  17. Investigation on dynamic performance of concrete column crumb rubber steel and fiber concrete

    Science.gov (United States)

    Siti Nurul Nureda, M. Z.; Mariyana, A. K.; Khiyon, M. Iqbal; Rahman, M. S. Abdul; Nurizaty, Z.

    2017-11-01

    In general the Normal Concrete (NC) are by quasi-brittle failure, where, the nearly complete loss of loading capacity, once failure is initiated especially under dynamic loadings. The significance of this study is to improve the damping properties of concrete structure by utilization of the recycled materials from waste tires to be used in concrete as structural materials that improve seismic performance. In this study, the concrete containing 10% of fine crumb rubber and 1 % volume fraction of steel fiber from waste tires is use to investigate the dynamic performance (natural frequency and damping ratio).A small scale column were fabricated from Treated Crumb Rubber and Steel Fiber Concrete (TCRSFC) and NC were cast and cured for 28 days to investigate the dynamic performance. Based on analysis, dynamic modulus, damping ratio and natural frequency of TCRSFC has improved considerably by 5.18%, 109% and 10.94% when compared with NC. The TCRSFC producing concrete with the desired properties as well as to introduce the huge potential as dynamic resistance structure from severe damage especially prevention on catastrophic failure.

  18. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  19. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  20. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.

  1. Bond slip and crack development in FRC and regular concrete specimens longitudinally reinforced with FRP or steel under tension loading

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor

    2012-01-01

    tensile loading using high definition image analysis in two unique test setups. Two different types of cementitious materials, conventional concrete and highly ductile Engineered Cementitious Composite (ECC), and two types of reinforcement bars, regular steel and Glass Fiber Reinforcement Polymer (GFRP......The governing mechanism in the structural response of reinforced concrete members in tension is the interaction between structural reinforcement and the surrounding concrete matrix. The composite response and the mechanical integrations of reinforced cementitious members were investigated during......), were tested. It was found that the ductile ECC in contrast to regular brittle concrete decreases crack widths significantly which effectively results in decreased bond slip between the reinforcement and surrounding matrix. Furthermore the use of elastic GFRP in comparison to elastic/plastic steel...

  2. Ductility and Ultimate Capacity of Prestressed Steel Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Chengquan Wang

    2017-01-01

    Full Text Available Nonlinear numerical analysis of the structural behaviour of prestressed steel reinforced concrete (PSRC beams was carried out by using finite element analysis software ABAQUS. By comparing the load-deformation curves, the rationality and reliability of the finite element model have been confirmed; moreover, the changes of the beam stiffness and stress in the forcing process and the ultimate bearing capacity of the beam were analyzed. Based on the model, the effect of prestressed force, and H-steel to the stiffness, the ultimate bearing capacity and ductility of beam were also analyzed.

  3. Finite Element Modeling of Compressive and Splitting Tensile Behavior of Plain Concrete and Steel Fiber Reinforced Concrete Cylinder Specimens

    OpenAIRE

    Chowdhury, Md. Arman; Islam, Md. Mashfiqul; Ibna Zahid, Zubayer

    2016-01-01

    Plain concrete and steel fiber reinforced concrete (SFRC) cylinder specimens are modeled in the finite element (FE) platform of ANSYS 10.0 and validated with the experimental results and failure patterns. Experimental investigations are conducted to study the increase in compressive and tensile capacity of cylindrical specimens made of stone and brick concrete and SFRC. Satisfactory compressive and tensile capacity improvement is observed by adding steel fibers of 1.5% volumetric ratio. A tot...

  4. Timber-concrete composite floor systems

    NARCIS (Netherlands)

    Linden, M.L.R. van der; Blass, H.J.

    1996-01-01

    Timber-concrete composite (tcc) beams may be used for the renovation of old timber floors. Although these systems are a simple and practical solution, they are not widely adopted. One of the reasons for this is the lack of uniform design mies. In this research programme shear tests on four different

  5. Fatigue testing of wood-concrete composite beams.

    Science.gov (United States)

    2013-05-01

    Currently, wood-concrete composite structural members are usually applied in building structures. There are a relatively small number (in the low 100s) of known bridge applications involving wood-concrete composites. A problem with using these novel ...

  6. 77 FR 70140 - Steel Concrete Reinforcing Bars From Belarus, Indonesia, Latvia, Moldova, Poland, People's...

    Science.gov (United States)

    2012-11-23

    ...-860; A-822-804; A-823-809; A- 841-804] Steel Concrete Reinforcing Bars From Belarus, Indonesia, Latvia... concrete reinforcing bars from Belarus, Indonesia, Latvia, Moldova, Poland, the People's Republic of China...-0371, respectively. SUPPLEMENTARY INFORMATION: Background The antidumping duty orders on steel concrete...

  7. 77 FR 64127 - Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and...

    Science.gov (United States)

    2012-10-18

    ...)] Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and Ukraine... determine whether revocation of the antidumping duty orders on steel concrete reinforcing bar from Belarus... concrete reinforcing bar from Latvia and Moldova. The Commission found that the respondent interested party...

  8. 78 FR 60831 - Steel Concrete Reinforcing Bar From Turkey: Initiation of Countervailing Duty Investigation

    Science.gov (United States)

    2013-10-02

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-489-819] Steel Concrete Reinforcing... concrete reinforcing bar (``rebar'') from the Republic of Turkey (``Turkey''), filed in proper form on... of Steel Concrete Reinforcing Bar from the Republic of Turkey, dated September 4, 2013. \\2...

  9. 75 FR 28560 - Prestressed Concrete Steel Wire Strand From the People's Republic of China: Final Determination...

    Science.gov (United States)

    2010-05-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-945] Prestressed Concrete Steel... antidumping investigation of prestressed concrete steel strand (``PC strand'') from the People's Republic of... are shown in the ``Final Determination Margins'' section of this notice. \\1\\ See Prestressed Concrete...

  10. Steel fiber reinforced concrete behavior, modelling and design

    CERN Document Server

    Singh, Harvinder

    2017-01-01

    This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to d...

  11. Experimental investigation on temperature distribution of foamed concrete filled steel tube column under standard fire

    Science.gov (United States)

    Kado, B.; Mohammad, S.; Lee, Y. H.; Shek, P. N.; Kadir, M. A. A.

    2018-04-01

    Standard fire test was carried out on 3 hollow steel tube and 6 foamed concrete filled steel tube columns. Temperature distribution on the columns was investigated. 1500 kg/m3 and 1800 kg/m3 foamed concrete density at 15%, 20% and 25% load level are the parameters considered. The columns investigated were 2400 mm long, 139.7 mm outer diameter and 6 mm steel tube thickness. The result shows that foamed concrete filled steel tube columns has the highest fire resistance of 43 minutes at 15% load level and low critical temperature of 671 ºC at 25% load level using 1500 kg/m3 foamed concrete density. Fire resistance of foamed concrete filled column increases with lower foamed concrete strength. Foamed concrete can be used to provide more fire resistance to hollow steel column or to replace normal weight concrete in concrete filled columns. Since filling hollow steel with foamed concrete produce column with high fire resistance than unfilled hollow steel column. Therefore normal weight concrete can be substituted with foamed concrete in concrete filled column, it will reduces the self-weight of the structure because of its light weight at the same time providing the desired fire resistance.

  12. A Numerical Analysis of the Resistance and Stiffness of the Timber and Concrete Composite Beam

    Science.gov (United States)

    Szumigała, Ewa; Szumigała, Maciej; Polus, Łukasz

    2015-03-01

    The article presents the results of a numerical analysis of the load capacity and stiffness of the composite timber and concrete beam. Timber and concrete structures are relatively new, they have not been thoroughly tested and they are rarely used because of technological constraints. One of the obstacles to using them is difficulty with finding a method which would allow successful cooperation between concrete and timber, which has been proposed by the authors of the present article. The modern idea of sustainable construction design requires the use of new more environmentally-friendly solutions. Wood as an ecological material is easily accessible, less energy-consuming, and under certain conditions more corrosion-resistant than steel. The analysis presented in the article showed that cooperation between a wooden beam and a concrete slab on profiled steel sheeting is possible. The analysed composite beam has a greater load capacity and stiffness than the wooden beam.

  13. A Numerical Analysis of the Resistance and Stiffness of the Timber and Concrete Composite Beam

    Directory of Open Access Journals (Sweden)

    Szumigała Ewa

    2015-03-01

    Full Text Available The article presents the results of a numerical analysis of the load capacity and stiffness of the composite timber and concrete beam. Timber and concrete structures are relatively new, they have not been thoroughly tested and they are rarely used because of technological constraints. One of the obstacles to using them is difficulty with finding a method which would allow successful cooperation between concrete and timber, which has been proposed by the authors of the present article. The modern idea of sustainable construction design requires the use of new more environmentally-friendly solutions. Wood as an ecological material is easily accessible, less energy-consuming, and under certain conditions more corrosion-resistant than steel. The analysis presented in the article showed that cooperation between a wooden beam and a concrete slab on profiled steel sheeting is possible. The analysed composite beam has a greater load capacity and stiffness than the wooden beam.

  14. Corrosion of steel tendons used in prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Griess, J.C.; Naus, D.J.

    The purpose of this investigation was to determine the corrosion behavior of a high strength steel (ASTM A416-74 grade 270), typical of those used as tensioning tendons in prestressed concrete pressure vessels, in several corrosive environments and to demonstrate the protection afforded by coating the steel with either of two commercial petroleum-base greases or Portland Cement grout. In addition, the few reported incidents of prestressing steel failures in concrete pressure vessels used for containment of nuclear reactors are reviewed. The susceptibility of the steel to stress corrosion cracking and hydrogen embrittlement and its general corrosion rate were determined in several salt solutions. Wires coated with the greases and grout were soaked for long periods in the same solutions and changes in their mechanical properties were subsequently determined. All three coatings appeared to give essentially complete protection but small flaws in the grease coatings were detrimental; flaws or cracks less than 1 mm wide in the grout were without effect

  15. Braided reinforced composite rods for the internal reinforcement of concrete

    Science.gov (United States)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  16. Steel hollow columns with an internal profile filled with self-compacting concrete under fire conditions

    OpenAIRE

    Chu, Thi Binh; Gernay, Thomas; Dotreppe, Jean-Claude; Franssen, Jean-Marc

    2016-01-01

    A detailed experimental and numerical investigation has been performed on the behavior under fire conditions of concrete filled steel hollow section (CFSHS) columns. In this study the internal reinforcement consists of another profile (tube or H section) being embedded with the concrete, and filling is realized by self-compacting concrete (SCC). Ten columns filled with self-compacting concrete embedding another steel profile have been tested in the Fire Testing Laboratory of the University of...

  17. Testing an Impedance Non-destructive Method to Evaluate Steel-Fiber Concrete Samples

    Science.gov (United States)

    Komarkova, Tereza; Fiala, Pavel; Steinbauer, Miloslav; Roubal, Zdenek

    2018-02-01

    Steel-fiber reinforced concrete is a composite material characterized by outstanding tensile properties and resistance to the development of cracks. The concrete, however, exhibits such characteristics only on the condition that the steel fibers in the final, hardened composite have been distributed evenly. The current methods to evaluate the distribution and concentration of a fiber composite are either destructive or exhibit a limited capability of evaluating the concentration and orientation of the fibers. In this context, the paper discusses tests related to the evaluation of the density and orientation of fibers in a composite material. Compared to the approaches used to date, the proposed technique is based on the evaluation of the electrical impedance Z in the band close to the resonance of the sensor-sample configuration. Using analytically expressed equations, we can evaluate the monitored part of the composite and its density at various depths of the tested sample. The method employs test blocks of composites, utilizing the resonance of the measuring device and the measured sample set; the desired state occurs within the interval of between f=3 kHz and 400 kHz.

  18. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    Directory of Open Access Journals (Sweden)

    Faris M. A.

    2016-01-01

    Full Text Available In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3 and sodium hydroxide (NaOH. Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF. All hardened alkali activated material samples were tested for density, workability, and compression after 28 days. Results show a slight increase of density with the addition of steel fibers. However, the workability was reduced with the addition of steel fibers content. Meanwhile, the addition of steel fibers shows the improvement of compressive strength which is about 19 % obtained at 3 % of steel fibers addition.

  19. Behaviour of fibre reinforced concrete using steel slag coarse aggregate produced in Qatar

    Directory of Open Access Journals (Sweden)

    Alnahhal Wael

    2017-01-01

    Full Text Available The state of Qatar suffers from the shortage of natural resources needed for concrete production. Therefore, it is essential to investigate the feasibility of using by-product recycled materials as aggregates to maintain the concrete construction industry. Several types of recyclable materials are currently used in concrete. One of the potential resources of recycled concrete is steel slag. Knowing that Steel slag is the most significant solid waste generated by Qatar Steel Company in Qatar, replacing of natural coarse aggregate with steel slag aggregate will have a significant environmental and economic impact to the state of Qatar. This paper presents the compression and flexural test results of different concrete mixes made of steel slag coarse aggregate combined with a newly developed basalt chopped fibres. The parameters investigated included the volume fraction of the fibre used and the type of coarse aggregates (natural aggregates “Gabbro” and steel slag aggregates. Plain concrete specimens containing natural coarse aggregates and steel slag aggregates with no fibres added were also tested to serve as control. Test results showed that adding the basalt chopped fibres to the concrete mixes enhanced their flexural tensile strengths at different percentages. In addition, the compressive strength of concrete made with steel slag aggregate was higher than that made with natural gabbro aggregate. Test results clearly showed that steel slag aggregates can be used as sustainable and eco-friendly alternative materials in concrete structures.

  20. Composite binders for concrete with reduced permeability

    International Nuclear Information System (INIS)

    Fediuk, R; Yushin, A

    2016-01-01

    Composite binder consisting of cement (55%), acid fly ash (40%) and limestone (5%) has been designed. It is obtained by co-milling to a specific surface of 550 kg/m 2 , it has an activity of 77.3 MPa and can produce a more dense cement stone structure. Integrated study revealed that the concrete on the composite binder basis provides an effective diffusion coefficient D. So we can conclude that the concrete layer protects buildings from toxic effects of expanded polystyrene. Low water absorption of the material (2.5% by weight) is due to the structure of its cement stone pore space. Besides lime powder prevents the penetration of moisture, reduces water saturation of the coverage that has a positive effect on useful life period. It also explains rather low water vapor permeability of the material - 0.021 mg/(m- hour-Pa). (paper)

  1. Investigation of Corrosion and Cathodic Protection in Reinforced Concrete. II : Properties of Steel Surface Layers

    NARCIS (Netherlands)

    Koleva, D.A.; De Wit, J.H.W.; Van Breugel, K.; Lodhi, Z.F.; Ye, G.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface (using as-received low carbon construction steel) in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP).

  2. Fire resistance of a steel plate reinforced concrete bearing wall

    International Nuclear Information System (INIS)

    Kodaira, Akio; Kanchi, Masaki; Fujinaka, Hideo; Akita, Shodo; Ozaki, Masahiko

    2003-01-01

    Samples from a steel plate reinforced concrete bearing wall composed of concrete slab sandwiched between studded steel plates, were subjected to loaded fire resistance tests. There were two types of specimens: some were 1800 mm high while the rest were 3000 mm high ; thickness and width were the same for all specimens, at 200 mm and 800 mm, respectively. Under constant load conditions, one side of each specimen was heated along the standard fire-temperature curve. The results enabled us to approximate the relationship between the ratio of working load to concrete strength N/(Ac x c σ b) and the fire resistance time (t: minutes), as equation (1) for the 1800 mm - high specimen, and equation (2) for the 3000 mm - high specimen. N/(Ac x c σ b) = 2.21 x (1/t) 0.323 (1), .N/(Ac x c σ b) 2.30 x (1/t) 0.378 (2) In addition, the temperature of the unheated side of the specimens was 100degC at 240 minutes of continuous heating, clearly indicating that there was sufficient heat insulation. (author)

  3. Earthquake behavior of steel cushion-implemented reinforced concrete frames

    Science.gov (United States)

    Özkaynak, Hasan

    2018-04-01

    The earthquake performance of vulnerable structures can be increased by the implementation of supplementary energy-dissipative metallic elements. The main aim of this paper is to describe the earthquake behavior of steel cushion-implemented reinforced concrete frames (SCI-RCFR) in terms of displacement demands and energy components. Several quasi-static experiments were performed on steel cushions (SC) installed in reinforced concrete (RC) frames. The test results served as the basis of the analytical models of SCs and a bare reinforced concrete frame (B-RCFR). These models were integrated in order to obtain the resulting analytical model of the SCI-RCFR. Nonlinear-time history analyses (NTHA) were performed on the SCI-RCFR under the effects of the selected earthquake data set. According to the NTHA, SC application is an effective technique for increasing the seismic performance of RC structures. The main portion of the earthquake input energy was dissipated through SCs. SCs succeeded in decreasing the plastic energy demand on structural elements by almost 50% at distinct drift levels.

  4. Steel-soil composite bridge

    DEFF Research Database (Denmark)

    Du, Guangli; Pettersson, Lars; Karoumi, Raid

    2017-01-01

    viability, while their environmental performance is overlooked. Today’s designers are urged to seek new design options to reduce the environmental burdens. Sweden owns more than 24574 bridges and most of them are short spans. Among them, the slab frame bridge (CFB) is a common solution. Soil steel composite...... bridge (SSCB), alternatively, is a functionally equivalent solution to CFB and shows advantages in low cost and easy construction. This paper compares the environmental performance between these two bridge types based on life cycle assessment (LCA). The analysis and result shows that, the SSCB...

  5. Performance of Retrofitted Self-Compacting Concrete-Filled Steel Tube Beams Using External Steel Plates

    Directory of Open Access Journals (Sweden)

    Ahmed A. M. AL-Shaar

    2018-01-01

    Full Text Available Self-compacting concrete-filled steel tube (SCCFST beams, similar to other structural members, necessitate retrofitting for many causes. However, research on SCCFST beams externally retrofitted by bolted steel plates has seldom been explored in the literature. This paper aims at experimentally investigating the retrofitting performance of square self-compacting concrete-filled steel tube (SCCFST beams using bolted steel plates with three different retrofitting schemes including varied configurations and two different steel plate lengths under flexure. A total of 18 specimens which consist of 12 retrofitted SCCFST beams, three unretrofitted (control SCCFST beams, and three hollow steel tubes were used. The flexural behaviour of the retrofitted SCCFST beams was examined regarding flexural strength, failure modes, and moment versus deflection curves, energy absorption, and ductility. Experimental results revealed that the implemented retrofitting schemes efficiently improve the moment carrying capacity and stiffness of the retrofitted SCCFST beams compared to the control beams. The increment in flexural strength ranged from 1% to 46%. Furthermore, the adopted retrofitting schemes were able to restore the energy absorption and ductility of the damaged beams in the range of 35% to 75% of the original beam ductility. Furthermore, a theoretical model was suggested to predict the moment capacity of the retrofitted SCCFST beams. The theoretical model results were in good agreement with the test results.

  6. Deflection of Steel Reinforced Concrete Beam Prestressed With CFRP Bar

    Directory of Open Access Journals (Sweden)

    Selvachandran P.

    2017-09-01

    Full Text Available Carbon Fiber Reinforced polymer (CFRP bars are weak in yielding property which results in sudden failure of structure at failure load. Inclusion of non-pretensioned steel reinforcement in the tension side of CFRP based prestressed concrete beam will balance the yielding requirements of member and it will show the definite crack failure pattern before failure. Experimental investigation has been carried out to study the deflection behavior of partially prestressed beam. Experimental works includes four beam specimens stressed by varying degree of prestressing. The Partial Prestressing Ratio (PPR of specimen is considered for experimental works in the range of 0.6 to 0.8. A new deflection model is recommended in the present study considering the strain contribution of CFRP bar and steel reinforcement for the fully bonded member. New deflection model converges to experimental results with the error of less than 5% .

  7. Behaviour of reinforced concrete slabs with steel fibers

    Science.gov (United States)

    Baarimah, A. O.; Syed Mohsin, S. M.

    2017-11-01

    This paper investigates the potential effect of steel fiber added into reinforced concrete slabs. Four-point bending test is conducted on six slabs to investigate the structural behaviour of the slabs by considering two different parameters; (i) thickness of slab (ii) volume fraction of steel fiber. The experimental work consists of six slabs, in which three slabs are designed in accordance to Eurocode 2 to fulfil shear capacity characteristic, whereas, the other three slabs are designed with 17% less thickness, intended to fail in shear. Both series of slabs are added with steel fiber with a volume fraction of Vf = 0%, Vf = 1% and Vf = 2% in order to study the effect and potential of fiber to compensate the loss in shear capacity. The slab with Vf = 0% steel fiber and no reduction in thickness is taken as the control slab. The experimental result suggests promising improvement of the load carrying capacity (up to 32%) and ductility (up to 87%) as well as delayed in crack propagation for the slabs with Vf = 2%. In addition, it is observed that addition of fibers compensates the reduction in the slab thickness as well as changes the failure mode of the slab from brittle to a more ductile manner.

  8. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hong, E-mail: luohong@hhu.edu.cn [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Su, Huaizhi [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098,China (China); Dong, Chaofang; Li, Xiaogang [Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083,China (China)

    2017-04-01

    Highlights: • The pH value play an important role on passive mechanism of stainless steel. • The relationship between Cr/Fe ratio within the passive film and pH is non-linear. • Better corrosion resistance due to high Cr/Fe ratio and molybdates ions. - Abstract: In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  9. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    International Nuclear Information System (INIS)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-01-01

    Highlights: • The pH value play an important role on passive mechanism of stainless steel. • The relationship between Cr/Fe ratio within the passive film and pH is non-linear. • Better corrosion resistance due to high Cr/Fe ratio and molybdates ions. - Abstract: In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  10. Flexural behaviour of reinforced concrete beams with discrete steel – polypropylene fibres

    Directory of Open Access Journals (Sweden)

    Amizah Wan Jusoh Wan

    2017-01-01

    Full Text Available This paper discusses the experimental results on the flexural test of concrete containing different proportions of steel fibre (SF and polypropylene fibre (PPF. The flexural test was carried out under 4-point bending load and followed the relevant standards to FRC. Hooked-end deformed SF fibre with 60 mm length and fibrillated virgin PPF fibre with 19 mm length were used in this study. Meanwhile, the concrete was designed for high strength concrete of C60. The mixture included both single SF and PPF, and also the combination of both fibres; Control beam (PC, beam with 75%SF, beam with 75%SF + 25%PPF and beam with 25%PPF. The total fibre volume fraction (Vf was fixed at 1.5%. The experimental results show that the percentage proportion of combined SF-PPF at 75-25% had the best performance for its flexural capacity. Mixture with single PPF was also found not effective in delaying the onset of tension cracks and to increase the tensile strength of the concrete. Experimental result also shows beam with 75%SF +25%PPF had their structural stiffness improved the most as compared with the others. For the compressive strength, beam with 75%SF + 25%PPF also revealed comparable performance with the control for high strength composite concrete.

  11. 78 FR 55755 - Steel Concrete Reinforcing Bar From Mexico and Turkey; Institution of Antidumping and...

    Science.gov (United States)

    2013-09-11

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-502 and 731-TA-1227-1228 (Preliminary)] Steel Concrete Reinforcing Bar From Mexico and Turkey; Institution of Antidumping and Countervailing... of imports from Mexico and Turkey of steel concrete reinforcing bar, primarily provided for in...

  12. 77 FR 2958 - Prestressed Concrete Steel Wire Strand From Thailand: Correction to Notice of Opportunity To...

    Science.gov (United States)

    2012-01-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-549-820] Prestressed Concrete Steel Wire Strand From Thailand: Correction to Notice of Opportunity To Request Administrative Review AGENCY... prestressed concrete steel wire strand (``PC Strand'') from Thailand. See Antidumping or Countervailing Duty...

  13. 78 FR 25303 - Prestressed Concrete Steel Rail Tie Wire From China, Mexico, and Thailand

    Science.gov (United States)

    2013-04-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-1207-1209 (Preliminary)] Prestressed Concrete Steel Rail Tie Wire From China, Mexico, and Thailand Institution of antidumping duty..., by reason of imports from prestressed concrete steel rail tie wire from China, Mexico, and Thailand...

  14. 78 FR 37236 - Prestressed Concrete Steel Rail Tie Wire From China, Mexico, and Thailand

    Science.gov (United States)

    2013-06-20

    ... Concrete Steel Rail Tie Wire From China, Mexico, and Thailand Determinations On the basis of the record \\1... imports from China, Mexico, and Thailand of prestressed concrete steel rail tie wire, provided for in... China, Mexico, and Thailand. Accordingly, effective April 23, 2013, the Commission instituted...

  15. Racking shear resistance of steel frames with corner connected precast concrete infill panels

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Snijder, H.H.; Hofmeyer, H.

    2015-01-01

    When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on

  16. 75 FR 36678 - Prestressed Concrete Steel Wire Strand From China; Determinations

    Science.gov (United States)

    2010-06-28

    ... prestressed concrete steel wire strand (PC strand), provided for in subheading 7312.10.30 of the Harmonized... Publication 4162 (June 2010), entitled Prestressed Concrete Steel Wire Strand from China: Investigation Nos... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-464 and 731-TA-1160 (Final)] Prestressed...

  17. Thermal and mechanical cutting of concrete and steel

    International Nuclear Information System (INIS)

    Kloj, G.; Tittel, G.

    1984-01-01

    Various thermal and mechanical processes for dismantling radioactive large components and concrete structures were investigated in order to determine the optimal handling conditions and their respective efficiency. For the thermal processes, the separation of heavy concrete and steel components by means of oxygen lances, powder cutting, ocyacetylene cutting, and plasma cutting processes were tested. In order to gain the necessary data for designing filtering equipment with regard to use in nuclear power stations, the amount of dust deposition and particle size distribution for these thermal processes were measured. The largest particle size proportion occurs for a particle size of ca. 0.3 μm. For the mechanical processes, stationary saws were used. Due to the large dimensions of the components which are to be found in a nuclear installation, it is not possible to use such saws for the initial dismantling. These saws can be used for both low-alloy and austenitic types of steel, and for separating materials not containing iron. In order to compare the efficiency of the saws with that of the thermal processes, to some extent the same test pieces were used that were used for the thermal tests. The advantage of the saw technique in comparison to the thermal separation processes lies in that next to no gas or dust contamination can become released. Also, the amount of shavings produced (secondary waste) is low. Furthermore, some of the saws can be used under remote control

  18. Studying of Compressive, Tensile and Flexural Strength of Concrete by Using Steel Fibers

    Directory of Open Access Journals (Sweden)

    Muslim Abdul-Ameer

    2016-12-01

    Full Text Available This research aims to study the effect of adding steel fibers on the mechanical properties of concrete. Steel fiber has a very significant effect on concrete because it delays the propagation of micro cracks that generate due to loading on concrete members such as beams and slabs, therefore ,it increases the strength of concrete. The steel fiber was used in this study as a percentage of the volume of concrete. Mix proportion was 1: 2:4 (cement: sand: gravel by volume for all mixes and using 0% as (control mix,0.1 %,0.2%,0.5 % and 1.0% of steel fibers, these ratios leads to increase the compressive, tensile ,and flexural strength of concrete, where the improvement in flexural strength was significant

  19. Reinforced concrete treatment as composite material

    International Nuclear Information System (INIS)

    Oller, S.; Onate, E.; Miguel, J.

    1995-01-01

    This paper presents the general mixing theory applied to the numerical simulation of multiphase composite material behaviour as reinforced concrete materials. This theory is based on the mixture of that composite basic substances and allows to evaluate the inter-dependence behaviour between the different compounding constitutive models. If it would be necessary to consider the initial anisotropy of each compound it could be done by mean of the mapped isotropic plastic formulation. The approach is a generalization of the classic isotropic plasticity theory to be applied to either ortho tropic or anisotropic materials such as reinforced concrete. The existence of a stress and strain real anisotropic spaces, and the respective fictitious isotropic spaces are assumed, where a mapped fictitious problem is solved. Those spaces are relating by means of two fourth order transformation tensors. Both formulation are joined establishing a powerful work tool for the treatment of bulk-fiber composite materials. The induced anisotropy behaviour is take into account by each compounding constitutive formulation. (author). 24 refs., 3 figs

  20. Behavior of FRP-Confined Concrete-Filled Steel Tube Columns

    Directory of Open Access Journals (Sweden)

    Yiyan Lu

    2014-05-01

    Full Text Available This paper presents the results of an experimental study into the behavior of concrete-filled steel tube columns confined by fiber-reinforced polymer (FRP. Eleven columns were tested to investigate the effects of the FRP layer number, the thickness of the steel tube and concrete strength on their load capacity and axial deformation capacity. The experimental results indicated that the FRP wrap can effectively confine the concrete expansion and delay the local buckling of the steel tube. Both the load capacity and the axial deformation capacity of concrete-filled steel tube columns can be substantially enhanced with FRP confinement. A model is proposed to predict the load capacity of the FRP-confined concrete-filled steel tube columns. The predicted results are generally in good agreement with the experimental ones obtained in this study and in the literature.

  1. Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures

    OpenAIRE

    Chen, G. M.; He, Y. H.; Yang, H.; Chen, J. F.; Guo, Y.C.

    2014-01-01

    For sustainability considerations, the use of recycled aggregate in concrete has attracted many interests in the research community. One of the main concerns for using such concrete in buildings is its spalling in fire. This may be alleviated by adding steel fibers to form steel fiber reinforced recycled aggregate concrete (SFRAC). This paper presents an experimental investigation into the compressive properties of SFRAC cylinders after exposure to elevated temperatures, including the compres...

  2. 78 FR 29325 - Prestressed Concrete Steel Rail Tie Wire From Mexico, the People's Republic of China, and...

    Science.gov (United States)

    2013-05-20

    ...] Prestressed Concrete Steel Rail Tie Wire From Mexico, the People's Republic of China, and Thailand: Initiation... of prestressed concrete steel rail tie wire (``PC tie wire'') from Mexico, the PRC, and Thailand... Prestressed Concrete Steel Rail Tie Wire from the PRC, Mexico, and Thailand, filed on April 23, 2013 (the...

  3. 78 FR 57619 - Prestressed Concrete Steel Rail Tie Wire From Mexico, Thailand, and the People's Republic of...

    Science.gov (United States)

    2013-09-19

    ...] Prestressed Concrete Steel Rail Tie Wire From Mexico, Thailand, and the People's Republic of China... prestressed concrete steel rail tie wire from Mexico, Thailand, and the People's Republic of China. See Prestressed Concrete Steel Rail Tie Wire From Mexico, the People's Republic of China, and Thailand: Initiation...

  4. Effect of steel surface conditions on reinforcing steel corrosion in concrete exposed to marine environments

    Directory of Open Access Journals (Sweden)

    Anzola, E.

    2005-09-01

    Full Text Available Laboratory methods and experimental tests were deployed in the present study to evaluate corrosion in reinforced concrete exposed to marine environments. Reinforcing steel exhibiting two different surface conditions prior to embedment in concrete were studied, one the one hand to assess the electrochemical behaviour of the bars during exposure of the concrete specimens to a simulated marine environment, and on the other to determine the strength of the steel/concrete bond. The reinforced concrete specimens prepared were adapted as required for electrochemical potential and corrosion rate testing. A total of 56 7x15-cm cylindrical specimens containing 3/8" steel rods anchored at a depth of 11.5 cm were made to evaluate the steel / concrete bond and exposed to a natural marine environment for 28 or 190 days prior to testing. All the specimens were made with ready-mixed concrete. It may be concluded from the results of the corrosion tests on reinforcing steel with different surface conditions that the oxide initially covering the bars was dissolved and the steel passivated by the alkalinity in the concrete. The chief finding of the bonding study was that the layer of oxide formed in pre-embedment steel deterioration contributed to establishing a better bond.

    En el contexto de esta investigación, se tomaron en consideración métodos y ensayos experimentales de laboratorio, que permiten hacer una evaluación de la corrosión del hormigón armado expuesto en ambientes marinos. Por una parte se evaluó el comportamiento electroquímico de dos condiciones de estados superficiales del acero embebido en el hormigón, exponiéndolo en un ambiente marino simulado y, por otra parte, se estudió la adherencia entre el acero y el hormigón, con los mismos estados superficiales usados para la evaluación electroquímica. Las probetas se fabricaron de hormigón con acero de refuerzo en su interior, adecuándolas para realizar los ensayos de potenciales

  5. Feasibility of Steel Fiber-Reinforced Rubberized Concrete in Cold Regions for High Volume Intersections

    Science.gov (United States)

    Abou Eid, Mahear A.

    There are many challenges faced with the use of Portland Cement Concrete (PCC) in cold regions, but with the inclusion of new technologies such as steel fibers and recycled tire crumb rubber efficient construction may be possible. Research was conducted on a modified concrete material that included both steel fibers and crumb rubber. The composite material was called Steel Fiber-Reinforced Rubberized Concrete (SFRRC). The objective of this investigation was to provide evidence showing that SFRRC can reduce tire rutting compared to asphaltic pavement. In addition, the research showed that the SFRRC could withstand freeze-thaw cycles and increase service life of roadways. Several tests were performed to determine the characteristics of the material. Freeze-thaw testing was performed to determine compressive strength loss and visual deterioration of the material. Wheel tracker rut testing was performed both with the standard steel wheel and with a modified studded rubber tire to determine plastic deformation and rut resistance. An experimental test slab was cast in place on a public approach to observe the construction procedures, the effects of studded tire wear and the frost actions in cold region conditions. Based on freeze-thaw and wheel tracker test results and observations of the experimental test slab, the SFRRC material shows viability in cold regions for resisting freeze-thaw actions. The freeze-thaw testing resulted in increased compressive strength after 300 freeze-thaw cycles and very low deterioration of material compared to standard PCC. The wheel tracker testing resulted in very low plastic deformation and minor material rutting with use of the studded rubber tire. The test slab showed very minor surface wear, no freeze-thaw cracking and no rutting after one winter of use. It is recommended that further testing of the material be conducted by means of a large-scale trial section. This would provide information with respect to cost analysis and

  6. Numerical analysis on seismic behavior of reinforced concrete beam to concrete filled steel tubular column connections with ring-beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yi., E-mail: zhaoyi091218@163.com [School of Civil and Architectural Engineering, Zhongyuan University of Technology,Zhengzhou 450000 (China); Xu, Li. Hua. [School of Civil Engineering, Wuhan University, No.8, Donghu Road, WuHan 430072 (China)

    2016-06-08

    This paper presents numerical study of the seismic behavior of reinforced concrete beam to concrete filled steel tube column connections with ring-beam. The material stress-strain relations, element type and boundary condition are selected, which are consistent with actual situation. Then the seismic behavior of this type of joint are researched by ABAQUS, and finite element analyses are conducted under cyclic loading. Its parameters are discussed including thickness of steel tubular column wall, sectional dimension of the ring-beam and strength of the core concrete. The results show that the ultimate capacity of the connections is improved with sectional dimension of the ring-beam increased. In the meanwhile, the influence on skeleton curve of the joints is slight of which included thickness of steel tubular column wall and strength of the core concrete.

  7. A compression and shear loading test of concrete filled steel bearing wall

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Sekimoto, Hisashi; Fukihara, Masaaki; Nakanishi, Kazuo; Hara, Kiyoshi.

    1991-01-01

    Concrete-filled steel bearing walls called SC structure which are the composite structure of concrete and steel plates have larger load-carrying capacity and higher ductility as compared with conventional RC structures, and their construction method enables the rationalization of construction procedures at sites and the shortening of construction period. Accordingly, the SC structures have become to be applied to the inner concrete structures of PWR nuclear power plants, and subsequently, it is planned to apply them to the auxiliary buildings of nuclear power plants. The purpose of this study is to establish a rational design method for the SC structures which can be applied to the auxiliary buildings of nuclear power plants. In this study, the buckling strength of surface plates and the ultimate strength of the SC structure were evaluated with the results of the compression and shear tests which have been carried out. The outline of the study and the tests, the results of the compression test and the shear test and their evaluation are reported. Stud bolts were effective for preventing the buckling of surface plates. The occurrence of buckling can be predicted analytically. (K.I.)

  8. A Preliminary Experimental Study on Vibration Responses of Foamed Concrete Composite Slabs

    Science.gov (United States)

    Rum, R. H. M.; Jaini, Z. M.; Ghaffar, N. H. Abd; Rahman, N. Abd

    2017-11-01

    In recent years, composite slab has received utmost demand as a floor system in the construction industry. The composite slab is an economical type of structure and able to accelerate the construction process. Basically, the composite slab can be casting by using a combination of corrugated steel deck and normal concrete in which selfweight represents a very large proportion of the total action. Therefore, foamed concrete become an attractive alternative to be utilized as a replacement of normal concrete. However, foamed concrete has high flexibility due to the presence of large amount of air-void and low modulus elasticity. It may result in vibration responses being greater. Hence, this experimental study investigates the vibration responses of composite slab made of corrugated steel deck and foamed concrete. The specimens were prepared with dimension of 750mm width, 1600mm length and 125mm thickness. The hammer-impact test was conducted to obtain the acceleration-time history. The analysis revealed that the first natural frequency is around 27.97 Hz to 40.94 Hz, while the maximum acceleration reaches 1.31 m/s2 to 1.88 m/s2. The first mode shape depicts normal pattern and favourable agreement of deformation.

  9. Collaboration of polymer composite reinforcement and cement concrete

    Science.gov (United States)

    Khozin, V. G.; Gizdatullin, A. R.

    2018-04-01

    The results of experimental study of bond strength of cement concrete of different types with fiber reinforcing polymer (FRP) bars are reported. The reinforcing bars were manufactured of glass fibers and had a rebar with different types of the surface relief formed by winding a thin strip impregnated with a binder or by “sanding”. The pullout tests were carried out simultaneously for the steel reinforcing ribbed bars A400. The impact of friction, adhesion and mechanical bond on the strength of bonds between FRP and concrete was studied. The influence of the concrete strength and different operation factors on the bond strength of concrete was evaluated.

  10. An Experimental Study on Strengthening of Reinforced Concrete Flexural Members using Steel Wire Mesh

    Directory of Open Access Journals (Sweden)

    Al Saadi Hamza Salim Mohammed

    2017-01-01

    Full Text Available One of the major challenges and contemporary research in the field of structural engineering is strengthening of existing structural elements using readily available materials in the market. Several investigations were conducted on strengthening of various structural components using traditional and advanced materials. Many researchers tried to enhance the reinforced concrete (RC beams strength using steel plate, Glass and Carbon Fibre Reinforced Polymers (GFRP & CFRP. For the reason that high weight to the strength ratio and compatibility in strength between FRP composites and steel bars, steel plates and GFRP and CFRP composites are not used for strengthening works practically. Hence, in this present work the suitability of using wire mesh for the purpose of strengthening the RC flexural members is studied by conducting experimental works. New technique of strengthening system using wire mesh with a view to improve sectional properties and subsequently flexural strength of RC beams is adopted in this work. The results for experimental and theoretical analysis were compared and found that good correlation exists between them. The experimental results indicate that RC beams strengthened with steel wire mesh are easy technique for strengthening of existing flexural members.

  11. Characterization of four prestressed concrete reactor vessel liner steels

    International Nuclear Information System (INIS)

    Nanstad, R.K.

    1980-12-01

    A program of fracture toughness testing and analysis is being performed with PCRV steels for HTGRs. This report focuses on background information for the base materials and results of characterization testing, such as tensile and impact properties, chemical composition, and microstructural examination. The steels tested were an SA-508 class 1 forging, two plates of SA-537 class 1, and one plate of SA-537 class 2. Tensile requirements in effect at the time of procurement are met by all four steels. However, the SA-537 class 2 plate would not meet the minimum requirement for yield strength. Drop-weight and Charpy impact tests verified that the RT/sub NDT/ is equal to the NDT for each steel. Charpy impact energies at the NDT range from 40 J (30 ft-lb) for one heat of SA-537 class 1 to 100 J (74 ft-lb) for the SA-537 class 2 plate; upper-shelf energies range from 170 to 310 J (125 to 228 ft-lb) for the same two steels, respectively. The onset of upper-shelf energy occurred at temperatures ranging from 0 to 50 0 C

  12. Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Solgaard, Anders Ole Stubbe; Pease, Bradley Justin

    2013-01-01

    Cracks in covering concrete are known to hasten initiation of steel corrosion in reinforced concrete structures. To minimise the impact of cracks on the deterioration of reinforced concrete structures, current approaches in (inter)national design codes often limit the concrete surface crack width....... Recent investigations however, indicate that the concrete-reinforcement interfacial condition is a more fundamental criterion related to reinforcement corrosion. This work investigates the relation between macroscopic damage at the concrete-steel interface and corrosion initiation of reinforcement...... embedded in plain and fibre reinforced concrete. Comparisons of experimental and numerical results indicate a strong correlation between corrosion initiation and interfacial condition....

  13. Corrosion Measurements in Reinforced Fly Ash Concrete Containing Steel Fibres Using Strain Gauge Technique

    Directory of Open Access Journals (Sweden)

    V. M. Sounthararajan

    2013-01-01

    Full Text Available Corrosion of steel bars in concrete is a serious problem leading to phenomenal volume expansion and thereby leading to cover concrete spalling. It is well known that the reinforced concrete structures subjected to chloride attack during its service life cause these detrimental effects. The early detection of this damage potential can extend the service life of concrete. This study reports the comprehensive experimental studies conducted on the identification of corrosion mechanism in different types of reinforced concrete containing class-F fly ash and hooked steel fibres. Fly ash replaced concrete mixes were prepared with 25% and 50% fly ash containing steel fibres at 0.5%, 1.0%, and 1.5% by volume fraction. Corrosion process was investigated in an embedded steel bar (8 mm diameter reinforced in concrete by passing an impressed current in sodium chloride solution. Strain gauge attached to the rebars was monitored for electrical measurements using strain conditioner. Strain gauge readings observed during the corrosion process exhibited the volume changes of the reinforcement embedded inside the concrete. The corrosion potential of different steel fibre reinforced concrete mixes with fly ash addition showed higher resistance towards the corrosion initiation.

  14. A three-dimensional rupture analysis of steel liners anchored to concrete pressure and containment vessels

    International Nuclear Information System (INIS)

    Bangash, Y.

    1987-01-01

    Steel liners or plates are anchored to concrete pressure and containment vessels for nuclear and offshore facilities. Due to extreme loading conditions a liner may buckle due to the pull-out or shearing of anchors from the base metal and concrete. Under certain conditions attributed to loadings, liner metal deterioration and cracking of concrete behind the liner, the liner may fail by rupture. This paper presents a three-dimensional analysis of steel-concrete elements, using finite elements analysis in which a provision is made for liner instability, anchor strength and stiffness, concrete cracking and finally liner rupture. The analysis is tested first on an octagonal slab with and without an anchored steel liner. It is then extended to concrete pressure and containment vessels. The analytical results obtained are compared well with those available from the experimental tests and other sources. (author)

  15. Simulation analysis of impact tests of steel plate reinforced concrete and reinforced concrete slabs against aircraft impact and its validation with experimental results

    International Nuclear Information System (INIS)

    Sadiq, Muhammad; Xiu Yun, Zhu; Rong, Pan

    2014-01-01

    Highlights: • Simulation analysis is carried out with two constitutive concrete models. • Winfrith model can better simulate nonlinear response of concrete than CSCM model. • Performance of steel plate concrete is better than reinforced concrete. • Thickness of safety related structures can be reduced by adopting steel plates. • Analysis results, mainly concrete material models should be validated. - Abstract: The steel plate reinforced concrete and reinforced concrete structures are used in nuclear power plants for protection against impact of an aircraft. In order to compare the impact resistance performance of steel plate reinforced concrete and reinforced concrete slabs panels, simulation analysis of 1/7.5 scale model impact tests is carried out by using finite element code ANSYS/LS-DYNA. The damage modes of all finite element models, velocity time history curves of the aircraft engine and damage to aircraft model are compared with the impact test results of steel plate reinforced concrete and reinforced concrete slab panels. The results indicate that finite element simulation results correlate well with the experimental results especially for constitutive winfrith concrete model. Also, the impact resistance performance of steel plate reinforced concrete slab panels is better than reinforced concrete slab panels, particularly the rear face steel plate is very effective in preventing the perforation and scabbing of concrete than conventional reinforced concrete structures. In this way, the thickness of steel plate reinforced concrete structures can be reduced in important structures like nuclear power plants against impact of aircraft. It also demonstrates the methodology to validate the analysis procedure with experimental and analytical studies. It may be effectively employed to predict the precise response of safety related structures against aircraft impact

  16. The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement

    International Nuclear Information System (INIS)

    Butler, L.; West, J.S.; Tighe, S.L.

    2011-01-01

    The purpose of this study was to investigate the influence that replacing natural coarse aggregate with recycled concrete aggregate (RCA) has on concrete bond strength with reinforcing steel. Two sources of RCA were used along with one natural aggregate source. Numerous aggregate properties were measured for all aggregate sources. Two types of concrete mixture proportions were developed replacing 100% of the natural aggregate with RCA. The first type maintained the same water-cement ratios while the second type was designed to achieve the same compressive strengths. Beam-end specimens were tested to determine the relative bond strength of RCA and natural aggregate concrete. On average, natural aggregate concrete specimens had bond strengths that were 9 to 19% higher than the equivalent RCA specimens. Bond strength and the aggregate crushing value seemed to correlate well for all concrete types.

  17. Study on durability of natural fibre concrete composites using ...

    Indian Academy of Sciences (India)

    33, No. 6, December 2010, pp. 719–729. * Indian Academy of Sciences. 719 ... vegetable fibre–cement composites. ... modified vegetable fibre–mortar composites was analysed ... exhibit better performance than conventional concrete.

  18. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1990-11-01

    The report describes the work of a two year programme investigating the anaerobic corrosion of carbon steel embedded in a range of candidate repository cements and concretes at laboratory ambient temperatures. The factors investigated in the study were the rate of the anaerobic corrosion reaction, the effect of hydrogen overpressure on the reaction rate and the form of the corrosion product. Both electrochemical and sample weight loss corrosion rate measurements were used. The cements and concretes used were prepared both with and without small additions of chloride (2% by weight of mix water). The results indicate that the corrosion rate is low, <1 μm/year, the effect of hydrogen overpressure is not significant over the range of pressures investigated, 1-100 atmospheres, and that the corrosion product is dependent on the cement used to cast the samples. Magnetite was identified in the case of blast furnace slag replacement cements but for pulverised fuel ash and ordinary Portland cements no corrosion product was evident either from X-ray diffraction or laser Raman measurements. (Author)

  19. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1990-11-01

    The report describes the work of a two year programme investigating the anaerobic corrosion of carbon steel embedded in a range of candidate repository cements and concretes at laboratory temperatures. The factors investigated in the study were the rate of the anaerobic corrosion reaction, the effect of hydrogen overpressure on the reaction rate and the form of the corrosion product. Both electrochemical and sample weight loss corrosion rate measurements were used. The cements and concretes used were prepared both with and without small additions of chloride (2% by weight of mix water). The results indicate that the corrosion rate is low, < 1 μm/year, the effect of hydrogen overpressure is not significant over the range of pressures investigated, 1-100 atmospheres, and that the corrosion product is dependent on the cement used to cast the samples. Magnetite was identified in the case of blast furnace slag replacement cements but for pulverised fuel ash and ordinary Portland cements no corrosion product was evident either from X-ray diffraction or laser Raman measurements. Further work is presently underway to investigate the effects of elevated temperatures and chloride levels on the anaerobic corrosion reaction and the rate of hydrogen gas production. (author)

  20. 221-U Facility concrete and reinforcing steel evaluations specification for the canyon disposition initiative (CDI)

    International Nuclear Information System (INIS)

    Baxter, J.T.

    1998-01-01

    This describes a test program to establish the in-situ material properties of the reinforced concrete in Building 221-U for comparison to the original design specifications. Field sampling and laboratory testing of concrete and reinforcing steel structural materials in Building 221-U for design verification will be undertaken. Forty seven samples are to be taken from radiologically clean exterior walls of the canyon. Laboratory testing program includes unconfined compressive strength of concrete cores, tensile strength of reinforcing steel, and petrographic examinations of concrete cores taken from walls below existing grade

  1. Static design of steel-concrete lining for traffic tunnels

    Science.gov (United States)

    Vojtasik, Karel; Mohyla, Marek; Hrubesova, Eva

    2017-09-01

    Article summarizes the results of research focused on the structural design of traffic tunnel linings that have been achieved in the framework of a research project TE01020168 that supports The Technology Agency of Czech Republic. This research aim is to find and develop a process for design structure parameters of tunnel linings. These are now mostly build up by a shotcrete technology. The shotcrete is commonly endorsed either with steel girders or steel fibres. Since the installation a lining structure is loaded while strength and deformational parameters of shotcrete start to rise till the setting time elapses. That’s reason why conventional approaches of reinforced concrete are not suitable. As well as there are other circumstances to step in shown in this article. Problem is solved by 3D analysis using numerical model that takes into account all the significant features of a tunnel lining construction process inclusive the interaction between lining structure with rock massive. Analysis output is a view into development of stress-strain state in respective construction parts of tunnel lining the whole structure around, including impact on stability of rock massive. The proposed method comprises all features involved in tunnel fabrication including geotechnics and construction technologies.

  2. Properties of Fresh and Hardened High Strength Steel Fibres Reinforced Self-Compacted Concrete

    Directory of Open Access Journals (Sweden)

    Saad Ali Al-Ta'an

    2016-10-01

    Full Text Available Fresh and hardened properties of high strength steel fibrous self-compacted concrete were studied in this investigation. One reference high strength self-compacted concrete mix is used, with five percent (by weight of cement silica fume and eight percent of the cement replaced by limestone powder. Three steel fibres percentages by volume of concrete are used (0.4, 0.8, and 1.2. The used steel fibres were a shelled Harex type with irregular cross-section, equivalent diameter of 0.9278 mm, and 32 mm long. Super plasticizer was used to improve the workability and flow ability of the mixes. The test results showed that the presence of steel fibres decrease the flow ability, and increase the time of spreading, segregation, and passing ability of the fresh concrete. For the fibres percentages used, the fresh properties were within the recommended specifications for the self-compacted concrete. The test results showed an early strength development rate more than that for plain normal concrete due to the presence of the fine materials. As for normal concrete, the test results showed also that the increase in the splitting strength is more than the increase in the compressive strength due to the presence of the steel fibres. The brittle mode of failure of the plain unreinforced specimens changed to a ductile one due to the presence of the steel fibres.

  3. Dynamic and Static Behavior of Hollow-Core FRP-Concrete-Steel and Reinforced Concrete Bridge Columns under Vehicle Collision

    Directory of Open Access Journals (Sweden)

    Omar I. Abdelkarim

    2016-12-01

    Full Text Available This paper presents the difference in behavior between hollow-core fiber reinforced polymer-concrete-steel (HC-FCS columns and conventional reinforced concrete (RC columns under vehicle collision in terms of dynamic and static forces. The HC-FCS column consisted of an outer FRP tube, an inner steel tube, and a concrete shell sandwiched between the two tubes. The steel tube was hollow inside and embedded into the concrete footing with a length of 1.5 times the tube diameter while the FRP tube stopped at the top of footing. The RC column had a solid cross-section. The study was conducted through extensive finite element impact analyses using LS-DYNA software. Nine parameters were studied including the concrete material model, unconfined concrete compressive strength, material strain rate, column height-to-diameter ratio, column diameter, column top boundary condition, axial load level, vehicle velocity, and vehicle mass. Generally, the HC-FCS columns had lower dynamic forces and higher static forces than the RC columns when changing the values of the different parameters. During vehicle collision with either the RC or the HC-FCS columns, the imposed dynamic forces and their equivalent static forces were affected mainly by the vehicle velocity and vehicle mass.

  4. Reinforcement steel corrosion in passive state and by carbonation: Consideration of galvanic currents and interface steel - concrete defaults

    International Nuclear Information System (INIS)

    Nasser, A.

    2010-01-01

    This thesis aims to study the durability of nuclear waste deep storage structures. The work carried out is essentially an experimental study, and focuses on the corrosion of steel in the passive state with aerated or non-aerated conditions on the one hand, and the corrosion of steel in carbonated concrete during the propagation phase on the other hand. Indeed, the pore solution of concrete in contact with the metal is alkaline (pH between 12 and 13). Under these conditions, steel reinforced concrete remains passive by forming a stable and protective oxide layer (corrosion of steel in the passive state). This passive layer limits the steel corrosion rate at very low values (negligible on a short life time) but not null. For the nuclear waste storage structures due to a very long life time (up to several hundred years), this low corrosion rate can become a risk. Therefore, it is necessary to study the evolution of the oxide layer growth over time. The objectives of the thesis are to study the influence of the steel-concrete interface quality on reinforcement corrosion in passive and active state, and the possible occurrence of galvanic corrosion currents between different reinforcement steel areas. (author)

  5. Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete

    Directory of Open Access Journals (Sweden)

    Sun-Woo Kim

    2015-10-01

    Full Text Available Conventional concrete production that uses ordinary Portland cement (OPC as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO2 emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO2 emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO2 intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO2 emissions reduction and resources and energy conservation in the concrete industry.

  6. Comparison of Mechanical Properties of Lightweight and Normal Weight Concretes Reinforced with Steel Fibers

    Directory of Open Access Journals (Sweden)

    A. Ali

    2018-04-01

    Full Text Available Compared to conventional concrete, lightweight concrete is more brittle in nature however, in many situations its application is advantageous due to its lower weight. The associated brittleness issue can be, to some extent, addressed by incorporation of discrete fibers. It is now established that fibers modify some fresh and hardened concrete properties. However, evaluation of those properties for lightweight fiber-reinforced concrete (LWFC against conventional/normal weight concrete of similar strength class has not been done before. Current study not only discusses the change in these properties for lightweight concrete after the addition of steel fibers, but also presents a comparison of these properties with conventional concrete with and without fibers. Both the lightweight and conventional concrete were reinforced with similar types and quantity of fibers. Hooked end steel fibers were added in the quantities of 0, 20, 40 and 60kg/m3. For similar compressive strength class, results indicate that compared to normal weight fiber-reinforced concrete (NWFC, lightweight fiber-reinforced concrete (LWFC has better fresh concrete properties, but performs poorly when tested for hardened concrete properties.

  7. Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete.

    Science.gov (United States)

    Kim, Sun-Woo; Jang, Seok-Joon; Kang, Dae-Hyun; Ahn, Kyung-Lim; Yun, Hyun-Do

    2015-10-30

    Conventional concrete production that uses ordinary Portland cement (OPC) as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO₂) emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS) from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO₂ emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO₂ intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO₂ emissions reduction and resources and energy conservation in the concrete industry.

  8. Use of Steel Fiber-Reinforced Rubberized Concrete in Cold Regions

    Science.gov (United States)

    2017-12-24

    This report documents and presents the use of steel fiber-reinforced rubberized concrete (SFRRC) in cold regions. Further investigation of SFRRC use was conducted with the wheel tracker rut and freeze-thaw laboratory testing procedures at the Univers...

  9. ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE

    OpenAIRE

    Cuenca Asensio, Estefanía

    2013-01-01

    Cuenca Asensio, E. (2012). ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE [Tesis doctoral no publicada]. Universitat Politècnica de València. doi:10.4995/Thesis/10251/18326. Palancia

  10. Ultimate Pressure Capacity of Prestressed Concrete Containment Vessels with Steel Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Choun, Young Sun; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The ultimate pressure capacity (UPC) of the prestressed concrete containment vessel (PCCV) is very important since the PCCV are final protection to prevent the massive leakage of a radioactive contaminant caused by the severe accident of nuclear power plants (NPPs). The tensile behavior of a concrete is an important factor which influence to the UPC of PCCVs. Hence, nowadays, it is interested that the application of the steel fiber to the PCCVs since that the concrete with steel fiber shows an improved performance in the tensile behavior compared to reinforced concrete (RC). In this study, we performed the UPC analysis of PCCVs with steel fibers corresponding to the different volume ratio of fibers to verify the effectiveness of steel fibers on PCCVs

  11. Design of a 3-D Magnetic Mapping System to Locate Reinforcing Steel in Concrete Pavements

    Science.gov (United States)

    2017-12-01

    This report outlines the design, fabrication, and testing of a 3-D magnetic mapping system used to locate reinforcing steel in concrete pavements developed at Kansas State University (KSU) in 2006. The magnetic sensing functionality is based on the p...

  12. Blast Resistance of Slurry Infiltrated Fibre Concrete with Waste Steel Fibres from Tires

    Directory of Open Access Journals (Sweden)

    Drdlová Martina

    2018-01-01

    Full Text Available The utilization of waste steel fibres (coming from the recycling process of the old tires in production of blast resistant cement based panels was assessed. Waste fibres were incorporated in slurry infiltrated fibre concrete (SIFCON, which is a special type of ultra-highperformance fibre reinforced concrete with high fibre content. The technological feasibility (i.e. suitability of the waste fibres for SIFCON technology was assessed using homogeneity test. Test specimens were prepared with three volume fractions (5; 7.5 and 10 % by vol. of waste unclassified fibres. SIFCON with industrial steel fibres (10% by vol. and ultra-highperformance fibre concrete with industrial fibres were also cast and tested for comparison purposes. Quasi-static mechanical properties were determined. Real blast tests were performed on the slab specimens (500x500x40 mm according to the modified methodology M-T0-VTU0 10/09. Damage of the slab, the change of the ultrasound wave velocity propagation in the slab specimen before and after the blast load in certain measurement points, the weight of fragments and their damage potential were evaluated and compared. Realized tests confirmed the possibility of using the waste fibres for SIFCON technology. The obtained results indicate, that the usage of waste fibres does not significantly reduce the values of SIFCON flexural and compressive strength at quasi-static load - the values were comparable to the specimens with industrially produced fibres. With increasing fibre content, the mechanical parameters are increasing as well. Using of the waste fibres reduces fragmentation of SIFCON at blast load due to the fibre size parameters. Using of low diameter fibres means more fibres in the matrix and thus better homogeneity of the whole composite with less unreinforced areas. Regarding the blast tests, the specimen with waste steel fibres showed the best resistance and outperformed also the specimen with commercial fibres. Using of

  13. Material equations for the calculations of steel fiber reinforced concrete members

    International Nuclear Information System (INIS)

    Jonas, W.

    1993-01-01

    Steel fiber reinforced concrete (SFRC) is made by the addition of steel fibers to fresh concrete. Usually the fibers are about 0.4-0.8mm in diameter and 25-80mm long. The addition of about 50-120 kg/m 3 is a practical and useful amount. That is about 0.6-1.5% by volume. The fibers are uniformly dispersed with a suitable concrete mix, so that clusters and uneven concentrations are prevented. The tensile strength of steel fiber reinforced concrete is scarcely better compared to that of plain concrete, but the fibers are very effective at preventing the propagation of tensile cracks. Thereby the tensile strength of fiber reinforced concrete is a reliable value. The addition of steel fibers also leads to a considerable increase of plastic deformations in the post cracking region, in comparison to plain concrete members. For nuclear power plant construction the use of steel fiber concrete with additional reinforcement of normal or prestressing steel is of special interest. The finished members exhibit good crack behaviour, increased shear strength and a considerable ability to absorb mechanical energy. These are valuable properties for members providing protection against extreme load cases (e.g. aircraft crash, earthquake, blast caused by explosion, debris due to hurricane, internal pressure loads or debris due to bursting of vessels or pipes). The behaviour of a reinforced concrete beam with steel fiber reinforced concrete against that of a reinforced beam without is shown. Until now the use of steel fiber reinforced concrete in civil engineering has been restricted because of the lack of design rules. For the preparation of fundamental principles and for the development of design rules HOCHTIEF has undertaken a series of tests on steel fiber reinforced concrete members with and without additional bar reinforcement. For this purpose HOCHTIEF has carried out several series of tests using either static, impact or cyclic loadings. In section 2 of this paper the elements

  14. Effect of Cement Composition in Lampung on Concrete Strength

    OpenAIRE

    Riyanto, Hery

    2014-01-01

    The strength and durability of concrete depends on the composition of its constituent materials ie fine aggregate, coarse aggregate, cement, water and other additives. The cement composition is about 10% acting as a binder paste material fine and coarse aggregates. In the Lampung market there are several brands of portland cement used by the community to make concrete construction. Although there is a standard of the government of portland cement composition, yet each brand of cement has diff...

  15. Behavior of Low Grade Steel Fiber Reinforced Concrete Made with Fresh and Recycled Brick Aggregates

    Directory of Open Access Journals (Sweden)

    Md. Shariful Islam

    2017-01-01

    Full Text Available In recent years, recycled aggregates from construction and demolition waste (CDW have been widely accepted in construction sectors as the replacement of coarse aggregate in order to minimize the excessive use of natural resources. In this paper, an experimental investigation is carried out to observe the influence of low grade steel fiber reinforcements on the stress-strain behavior of concrete made with recycled and fresh brick aggregates. In addition, compressive strength by destructive and nondestructive tests, splitting tensile strength, and Young’s modulus are determined. Hooked end steel wires with 50 mm of length and an aspect ratio of 55.6 are used as fiber reinforcements in a volume fraction of 0% (control case, 0.50%, and 1.00% in concrete mixes. The same gradation of aggregates and water-cement ratio (w/c=0.44 were used to assess the effect of steel fiber in all these concrete mixes. All tests were conducted at 7, 14, and 28 days to perceive the effect of age on different mechanical properties. The experimental results show that around 10%~15% and 40%~60% increase in 28 days compressive strength and tensile strength of steel fiber reinforced concrete, respectively, compared to those of the control case. It is observed that the effect of addition of 1% fiber on the concrete compressive strength is little compared to that of 0.5% steel fiber addition. On the other hand, strain of concrete at failure of steel fiber reinforced concrete has increased almost twice compared to the control case. A simple analytical model is also proposed to generate the ascending portions of the stress-strain curve of concrete. There exists a good correlation between the experimental results and the analytical model. A relatively ductile failure is observed for the concrete made with low grade steel fibers.

  16. Prestressing Concrete with CFRP Composites for Sustainability and Corrosion-Free Applications

    Directory of Open Access Journals (Sweden)

    Belarbi A.

    2018-01-01

    Full Text Available Advancement in material science has enabled the engineers to enhance the strength and long-term behavior of concrete structures. The conventional approach is to use steel for prestressed bridge girders. Despite having good ductility and strength, beams prestressed with steel are susceptible to corrosion when subjected to environmental exposure. The corrosion of the prestressing steel reduces load carrying capacity of the prestressed member and result in catastrophic failures. In the last decades, more durable composite materials such as Aramid Fiber Reinforced Polymer (AFRP, Glass Fiber Reinforced Polymer (GFRP and Carbon Fiber Reinforced Polymer (CFRP have been implemented in concrete structures as a solution to this problem. Among these materials, CFRP stands out as a primary prestressing reinforcement, which has the potential to replace steel and provide corrosion free prestressed bridge girders. Despite its promise, prestressing CFRP has not frequently been used for bridge construction worldwide. The major contributing factor to the lack of advancement of this promising technology in the United States (U.S. is the lack of comprehensive design specifications. Apart from a limited number of guides, manuals, and commentaries, there is currently no standard or comprehensive design guideline available to bridge engineers in the U.S. for the design of concrete structures prestressed with CFRP systems. The main goal is to develop design guidelines in AASHTO-LRFD format for concrete bridge girders with prestressing CFRP materials. The guidelines are intended to address the limitation in current AASHTO-LRFD Bridge Design Specifications which is applicable for prestressed bridge girders with steel strands. To accomplish this goal, some of the critical parameters that affect the design and long-term behavior of prestressed concrete bridge girders with prestressing CFRP systems are identified and included in the research work. This paper presents

  17. Design Review Report for Concrete Cover Block Replaced by Steel Plate

    Energy Technology Data Exchange (ETDEWEB)

    JAKA, O.M.

    2000-07-27

    The design for the steel cover plates to replace concrete cover blocks for U-109 was reviewed and approved in a design review meeting. The design for steel plates to replace concrete blocks were reviewed and approved by comparison and similarity with U-109 for the following additional pits: 241-U-105. 241-I-103, 241-Ax-101. 241-A-101, 241-SX-105, 241-S-A, 241-S-C, 241-SX-A.

  18. Study of the performance of steel fiber reinforced concrete to water and salt freezing condition

    International Nuclear Information System (INIS)

    Niu, Ditao; Jiang, Lei; Bai, Min; Miao, Yuanyao

    2013-01-01

    Highlights: ► Based on the fast freeze–thaw test, the frost resistance of SFRC has been studied. ► Different volumes of steel fiber have been selected to prepare the concrete. ► The microstructure of SFRC subjected to freeze–thaw cycles has been analyzed. ► The influence of steel fiber volume on the frost-resisting property is obvious. ► Steel fiber can be used to improve the frost-resisting property of concrete. -- Abstract: Properties of plain concrete and steel fiber reinforced concrete (SFRC) (with volume fraction of 0.5%, 1%, 1.5% and 2%) subjected to freeze–thaw cycles in water and in the 3.5% NaCl solution were investigated in this paper. Through the experiment, surface damage, weight loss and splitting tensile strength loss of SFRC were measured after different numbers of freeze–thaw circulations. The microstructure and the pore structure of SFRC were analyzed on the basis of scanning electron microscope (SEM) and mercury intrusion experiment. The test results show that the use of steel fiber could improve the pore structure and decelerate the damage of concrete during freeze–thaw cycles. However, the ability of steel fiber to reduce surface scaling of concrete is limited subjected to freeze–thaw cycles in the NaCl solution. Furthermore, the weight loss and the splitting tensile strength loss of concrete tested in the NaCl solution were larger than those in water. It is also shown that the steel fiber content has the great influence on the frost-resisting property of SFRC. When a relatively steel fiber content is introduced (1.5 vol.%), the deterioration process of concrete subjected to the frost damage is considerably reduced.

  19. Protection of Steel Corrosion in Concrete Members by the Combination of Galvanic Anode and Nitrite Penetration

    Directory of Open Access Journals (Sweden)

    Minobu Aoyama

    2014-01-01

    Full Text Available Chloride induced-corrosion of steel bars in concrete can make cracks and exfoliation in near-surface regions in reinforced concrete structures. In this paper, we described the basic concept and practice of steel bars corrosion protection method by the combination of galvanic anode (zinc wire and the penetration of nitrite ions from mortar layers containing a large amount of lithium nitrite.

  20. 78 FR 75544 - Prestressed Concrete Steel Rail Tie Wire From Mexico: Preliminary Determination of Sales at Less...

    Science.gov (United States)

    2013-12-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-843] Prestressed Concrete Steel...'') preliminarily determines that prestressed concrete steel rail tie wire (``PC tie wire'') from Mexico is being... element levels; suitable for use as prestressed tendons in concrete railroad ties (``PC tie wire''). High...

  1. 78 FR 75547 - Prestressed Concrete Steel Rail Tie Wire From Thailand: Preliminary Determination of Sales at Not...

    Science.gov (United States)

    2013-12-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-549-829] Prestressed Concrete Steel...'') preliminarily determines that prestressed concrete steel rail tire wire (``PC tie wire'') from Thailand is not... shape, size or alloy element levels; suitable for use as prestressed tendons in concrete railroad ties...

  2. Influence of Freeze-Thaw Damage on the Steel Corrosion and Bond-Slip Behavior in the Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Fangzhi Zhu

    2016-01-01

    Full Text Available This paper mainly studies the behavior of steel corrosion in various reinforced concrete under freeze-thaw environment. The influence of thickness of concrete cover is also discussed. Additionally, the bond-slip behavior of the reinforced concrete after suffering the freeze-thaw damage and steel corrosion has also be presented. The results show that the freeze-thaw damage aggravates the steel corrosion in concrete, and the results become more obvious in the concrete after suffering serious freeze-thaw damage. Compared with the ordinary concrete, both air entrained concrete and waterproofing concrete possess better resistance to steel corrosion under the same freeze-thaw environment. Moreover, increasing the thicknesses of concrete cover is also an effective method of improving the resistance to steel corrosion. The bond-slip behavior of reinforced concrete with corroded steel decreases with the increase of freeze-thaw damage, especially for the concrete that suffered high freeze-thaw cycles. Moreover, there exists a good correlation between the parameters of bond-slip and freeze-thaw cycles. The steel corrosion and bond-slip behavior of reinforced concrete should be considered serious under freeze-thaw cycles environment, which significantly impact the durability and safety of concrete structure.

  3. Experimental investigation of steel fiber-reinforced concrete beams under cyclic loading

    Science.gov (United States)

    Ranjbaran, Fariman; Rezayfar, Omid; Mirzababai, Rahmatollah

    2018-03-01

    An experimental study has been conducted to study the cyclic behavior of reinforced concrete beams in which steel fibers were added to the concrete mix. Seven similar geometrically specimens in full scale were studied under four- point bending test in the form of slow cyclic loading. One sample as a control specimen was made without steel fibers or 0% volume fraction (vf) and six other samples with 1, 2 and 4% vf of steel fibers in twin models. The maximum and ultimate resistance, ductility, degradation of loading and unloading stiffness, absorption and dissipation of energy and equivalent viscous damping were studied in this investigation and the effect of steel fibers on the cyclic behavior was compared with each other. Generally, the addition of steel fibers up to a certain limit value (vf = 2%) improves the cyclic behavior of reinforced concrete beams and results in the increase of maximum strength and ultimate displacement.

  4. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    OpenAIRE

    Faris M. A.; Abdullah Mohd Mustafa Al Bakri; Ismail Khairul Nizar; Muniandy Ratnasamy; Mahmad Nor Aiman; Putra Jaya Ramadhansyah; Waried Wazien A. Z.

    2016-01-01

    In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH). Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF). All hardened alkali activated materia...

  5. Effect of steel fibers on plastic shrinkage cracking of normal and high strength concretes

    Directory of Open Access Journals (Sweden)

    Özgür Eren

    2010-06-01

    Full Text Available Naturally concrete shrinks when it is subjected to a drying environment. If this shrinkage is restrained, tensile stresses develop and concrete may crack. Plastic shrinkage cracks are especially harmful on slabs. One of the methods to reduce the adverse effects of shrinkage cracking of concrete is by reinforcing concrete with short randomly distributed fibers. The main objective of this study was to investigate the effect of fiber volume and aspect ratio of hooked steel fibers on plastic shrinkage cracking behavior together with some other properties of concrete. In this research two different compressive strength levels namely 56 and 73 MPa were studied. Concretes were produced by adding steel fibers of 3 different volumes of 3 different aspect ratios. From this research study, it is observed that steel fibers can significantly reduce plastic shrinkage cracking behavior of concretes. On the other hand, it was observed that these steel fibers can adversely affect some other properties of concrete during fresh and hardened states.

  6. Short-term benefits of Cathodic Protection of steel in concrete

    NARCIS (Netherlands)

    Pacheco, J.; Polder, R.B.; Fraaij, A.L.A.; Mol, J.M.C.

    2012-01-01

    Cathodic Protection (CP) of steel in concrete has been used over the past decades in order to increase the remaining service life of concrete infrastructure. CP involves the application of an electrical current to the corroding reinforcing bars, thus stopping and preventing further corrosion. The

  7. Concreteness Effects and Syntactic Modification in Written Composition.

    Science.gov (United States)

    Sadoski, Mark; Goetz, Ernest T.

    1998-01-01

    Investigates whether concreteness was related to a key characteristic of written composition--the cumulative sentence with a final modifier--which has been consistently associated with higher quality writing. Supports the conceptual-peg hypothesis of dual coding theory, with concrete verbs providing the pegs on which cumulative sentences are…

  8. Corrosion Behavior of Carbon Steel in Concrete Material Composed of Tin Slag Waste in Aqueous Chloride Solution

    Science.gov (United States)

    Rustandi, Andi; Cahyadi, Agung; Taruli Siallagan, Sonia; Wafa' Nawawi, Fuad; Pratesa, Yudha

    2018-01-01

    Tin slag is a byproduct of tin ore smelting process which is rarely utilized. The main purpose of this work is to investigate the use of tin slag for concrete cement material application compared to the industrial Ordinary Portland Cement (OPC). Tin slag composition was characterized by XRD and XRF analysis. The characterization results showed the similar chemical composition of tin slag and OPC. It also revealed the semi crystalline structure of tin slag sample. Several electrochemical tests were performed to evaluate corrosion behavior of tin slag, OPC and various mixed composition of both materials and the addition of CaO. The corrosion behavior of OPC and tin slag were evaluated by using Cyclic Polarization, Electrochemical Impedance Spectroscopy (EIS) and Electrochemical Frequency Modulation (EFM) methods. Aqueous sodium chloride (NaCl) solution with 3.5% w.t concentration which similar to seawater was used as the electrolyte in this work. The steel specimen used as the reinforce bar (rebar) material of the concrete was carbon steel AISI 1045. The rebar was embedded in the concrete cement which composed of OPC and the various composition of tin slag including slag without addition of CaO and slag mixed with addition of 50 % CaO. The electrochemical tests results revealed that tin slag affected its corrosion behavior which becoming more active and increasing the corrosion rate as well as decreasing the electrochemical impedance.

  9. Articularities of Analysis and Behaviour of Concrete Beams Reinforced with Fibrous Polymer Composite Bars

    Directory of Open Access Journals (Sweden)

    N. Ţăranu

    2006-01-01

    Full Text Available Traditional steel based reinforcement systems for concrete elements are facing with serious problems mainly caused by corrosion due to chemically aggressive environments and salts used in deicing procedures, especially in case of bridge steel reinforced concrete girders. Also in some cases special applications require structural members with magnetic transparency. An alternative to this major problem has recently become the use of fiber reinforced polymer (FPR composite bars as internal reinforcement for concrete beams. The particularities of their mechanical properties are making the design process a difficult task for engineers, numerous research centers being involved in correcting this situation. The general aspects concerning the conceiving of FR.P reinforced concrete beams are firstly analyzed, compared to those reinforced with steel bars. Some results of a Finite Element Analysis, as part of a complex program which also implies full scale testing of FRP reinforced beams subjected to bending, are given and discussed in the paper. The low elasticity modulus presented by glass fiber reinforced polymer (GFRP bars does not justify its use from structural point of view when deflection is the limiting condition but for corrosive resistance reasons and special electromagnetic properties this system can be promoted.

  10. Economic aspect comparison between steel plate reinforced concrete and reinforced concrete technique in reactor containment wall construction

    International Nuclear Information System (INIS)

    Yuliastuti; Sriyana

    2008-01-01

    Construction costs of nuclear power plant were high due to the construction delays, regulatory delays, redesign requirement, and difficulties in construction management. Based on US DOE (United States Department of Energy) study in 2004, there were thirteen advanced construction technologies which were potential to reduce the construction time of nuclear power plant. Among these technologies was the application of steel-plate reinforced concrete (SC) on reactor containment construction. The conventional reinforced concrete (RC) technique were built in place and require more time to remove framework since the external form is temporary. Meanwhile, the SC technique offered a more efficient way to placing concrete by using a permanent external form made of steel. The objective of this study was to calculate construction duration and economic comparison between RC and SC technique. The result of this study showed that SC technique could reduce the construction time by 60% and 29,7% cost reduced compare to the RC technique. (author)

  11. High strength reinforcing steel bars : concrete shear friction interface : final report : Part A.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcement, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) steel reinf...

  12. AWWA C303-17 concrete pressure pipe, bar-wrapped, steel-cylinder type

    CERN Document Server

    2017-01-01

    This standard describes the manufacture of concrete pressure pipe, reinforced with a steel cylinder that is helically wrapped with mild steel bar reinforcement, in sizes ranging from 10 in. through 72 in. (250 mm through 1,830 mm), inclusive, and for working pressures up to 400 psi (2,760 kPa).

  13. Behavior of Equipment Support Beam Joint Directly Connected to A Steel-plate Concrete(SC) Wall

    International Nuclear Information System (INIS)

    Kim, K. S.; Kwon, K. J.

    2008-01-01

    To decrease the time for building nuclear power plants, a modular construction method, 'Steel-plate Concrete(SC)', has been investigated for over a decade. To construct a SC wall, a pair of steel plates are placed in parallel similar to a form-work in conventional reinforced concrete (RC) structures, and concrete is filled between the steel plates. Instead of removing the steel plates after the concrete has cured, the steel plates serve as components of the structural member. The exposed steel plate of SC structures serves as the base plate for the equipment support, and the headed studs welded to the steel plates are used as anchor bolts. Then, a support beam can be directly welded to the surface of the steel plate in any preferred position. In this study, we discuss the behavior and evaluation method of the equipment support joint directly connected to exposed steel plate of SC wall

  14. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana

    2015-05-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  15. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  16. Demonstration test on manufacturing steel bars for concrete reinforcement for recycling of reactor decommissioning metal scrap

    International Nuclear Information System (INIS)

    Sakurai, D.; Anabuki, Y.

    1993-01-01

    To prove the possibility of recycling the steel scrap resulting from decommissioning of a nuclear power plant, this salvaged steel would be formed into steel bars for concrete reinforcement, as the restricted use and limited use at nuclear plants. The shifting behavior of radioactive isotopes (RI) in the melting process was confirmed through the laboratory hot test using the RI. Then, the demonstration cold test for steel bars for reinforcement using the nonradioactive isotope was conducted in on-line production facilities. In this test the quality of steel bars and uniform distribution of RI were proven and material balance and operational data were obtained. These data show the recycling to steel bars for concrete reinforcement is applicable from economical and safety aspects

  17. Environmental importance, composition and properties of pervious concrete

    Directory of Open Access Journals (Sweden)

    Topličić-Ćurčić Gordana

    2016-01-01

    Full Text Available Porous or pervious concrete was in use since the 60's of the previous century. It was first used in the USA and afterwards in Europe. The environmental importance of pervious concrete can be seen through fast collection of stormwater from the pavements, parking lots and other impervious surfaces. . Special purification systems remove the detrimental matter from the collected strormwater. As such, it can be used for other purposes. The pervious concrete has little or almost no fine aggregates. Its porosity is high, and ranges between 15 and 30 % in comparison to the concrete volume. Prior to massive usage of pervious concrete, it was necessary to prove, i.e. to examine its properties in service conditions. The paper elucidates the environmental character of pervious concrete, provides its usual composition and its properties.

  18. Composite Analysis of Concrete - Creep, Relaxation and Eigenstrain/stress

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1996-01-01

    approach.The model is successfully justified comparing predicted results with recent experimental data obtained in tests made at the Danish Technological Institute and at the Technical University of Denmark on creep, relaxation, and shrinkage of very young concretes (hours) - and also with experimental...... results on creep, shrinkage, and internal stresses caused by drying shrinkage reported in the literature on the mechanical behavior of mature concretes.Shrinkage (autogeneous or drying) of mortar and concrete and associated internal stress states are examples of analysis made in this report......A composite-rheological model of concrete is presented by which consistent predictions of creep, relaxation, and internal stresses can be made from known concrete composition, age at loading, and climatic conditions. No other existing "creep prediction method" offers these possibilities in one...

  19. Mechanical properties of steel/kenaf (hybrid) fibers added into concrete mixtures

    Science.gov (United States)

    Baarimah, A. O.; Syed Mohsin, S. M.

    2018-04-01

    This paper investigates the potential advantages of adding hybrid steel-kenaf fibers to concrete mixtures. Compression and flexural test were conducted on six concrete mixtures at 28 days to investigate the mechanical properties of the concrete. The experimental work consists of six concrete mixtures, in which the first mixture was a control mixture without adding any fiber. The following five concrete mixtures contain a total of 1% of volume fraction for steel, kenaf and a mixture of steel-kenaf (hybrid) fibers. Three ratios were considered for hybrid fibers with the ratios of 0.25/0.75, 0.5/0.5 and 0.75/0.25 for steel and kenaf fibers, respectively. From the investigation, it was observed that fibers have minimal effect on compressive strength of the concrete. However, the findings suggest promising improvement on the flexural strength of the concrete added with hybrid fiber (up to 86%) as well as manages to change the mode of failure of the beam from brittle to a more ductile manner.

  20. Experimental Study on Temperature Behavior of SSC (Stiffened Steel Plate Concrete) Structures

    International Nuclear Information System (INIS)

    Lee, K. J.; Ham, K. W.; Park, D. S.; Kwon, K. J.

    2008-01-01

    SSC(Stiffened Steel plate Concrete) module method uses steel plate instead of reinforcing bar and mold in existing RC structure. Steel plate modules are fabricated in advance, installed and poured with concrete in construction field, so construction period is remarkably shortened by SC module technique. In case of existence of temperature gap between internal and external structure surface such as containment building, thermal stress is taken place and as a result of it, structural strength is deteriorated. In this study, we designed two test specimens and several tests with temperature heating were conducted to evaluate temperature behavior of SSC structures and RC structure

  1. Preliminary studies on steel slag as a substitute for coarse aggregate on concrete

    Directory of Open Access Journals (Sweden)

    Karolina Rahmi

    2017-01-01

    Full Text Available The development of science and technology in the field of construction that is rapidly increasing, is always followed by the growing community needs for infrastructure facilities, such as buildings, bridges and other construction. One of the key element in that development is concrete. Due to the rapid development of science and technology in the field of construction, it’s required a building material which has better advantage than the materials of the existing building. To obtain a better building materials, one alternative is the use of waste as aggregate in concrete mixture. In this study the authors using waste steel waste (steel slag as a substitute for coarse aggregate. Steel slag used is steel waste from PT. Growth Sumatra Industry. The gravel substitution variations is 0%, 15%, and 25% and the testing was done by the slump test, compressive strength and flexural strength of concrete. From the test results obtained optimum compressive strength variation occurs in 25% substitution of steel slag gravel amounted to 40.481 MPa, whereas for the optimum bending capacity contained in variations of 25% substitution of steel slag gravel amounted to 19.592 N / mm2. And for optimum slump value obtained on the variation of normal concrete. This shows the workability of the concrete normally higher than the other variation.

  2. Attenuation of Gamma Rays by Concrete . Lead Slag Composites

    International Nuclear Information System (INIS)

    Ismail, I.M.; Sweelam, M.H.; Zaghloul, Y.R.; Aly, H.F.

    2008-01-01

    Using of wastes and industrial by-products as concrete aggregate to be used as structural and radiation shielded material has increased in the recent years. Concrete was mixed with different amounts of lead slag extracted from recycling of the spent automotive batteries as fine aggregates. The lead slag was used as partial replacement of sand in the studied composites. The concrete composites obtained were characterized in terms of density, water absorption, porosity, compressive strength and attenuation of γ- rays with different energies. The attenuation coefficient and the half value thickness of the different matrices were calculated and discussed

  3. Impact of Steel Fiber Size and Shape on the Mechanical Properties of Ultra-High Performance Concrete

    Science.gov (United States)

    2015-08-01

    characteristics of steel fiber reinforcement to the mechanical properties of high-strength concretes , this study investigated four commercially available...Standard test method for flexural performance of fiber - reinforced concrete (using beam with third-point loading). Designation: C1609/1609M. West...STEEL FIBERS are low-carbon, drawn w ire for reinforced concrete . NYCON-SF fibers distribute stresses within the concrete and provide improvement

  4. Recycling radioactive scrap metal by producing concrete shielding with steel granules

    International Nuclear Information System (INIS)

    Sappok, M.

    1996-01-01

    Siempelkamp foundry at Krefeld, Germany, developed a method for recycling radioactively contaminated steel from nuclear installations. The material is melted and used for producing shielding plates, containers, etc., on a cast-iron basis. Because the percentage of stainless steel has recently increased significantly, problems in the production of high-quality cast iron components have also grown. The metallurgy, the contents of nickel and chromium especially, does not allow for the recycling of stainless steel in a percentage to make this process economical. In Germany, the state of the art is to use shielded concrete containers for the transport of low active waste; this concrete is produced by using hematite as an additive for increasing shielding efficiency. The plan was to produce steel granules from radioactive scrap metal as a substitute for hematite in shielding concrete

  5. Steel Fibres: Effective Way to Prevent Failure of the Concrete Bonded with FRP Sheets

    Directory of Open Access Journals (Sweden)

    V. Gribniak

    2016-01-01

    Full Text Available Although the efficiency of steel fibres for improving mechanical properties (cracking resistance and failure toughness of the concrete has been broadly discussed in the literature, the number of studies dedicated to the fibre effect on structural behaviour of the externally bonded elements is limited. This experimental study investigates the influence of steel fibres on the failure character of concrete elements strengthened with external carbon fibre reinforced polymer sheets. The elements were subjected to different loading conditions. The test data of four ties and eight beams are presented. Different materials were used for the internal bar reinforcement: in addition to the conventional steel, high-grade steel and glass fibre reinforced polymer bars were also considered. The experimental results indicated that the fibres, by significantly increasing the cracking resistance, alter the failure character from splitting of the concrete to the bond loss of the external sheets and thus noticeably increase the load bearing capacity of the elements.

  6. Seismic behavior of conxl connections in concrete filled steel Tube ...

    African Journals Online (AJOL)

    This connection consists of collar flange, collar corner, and collar web extension. In this paper, the seismic behavior of these types of connections is investigated using the numerical method. For this purpose, three samples of ConXL connections without concrete filler, with concrete filler and with concrete filler and stiffener ...

  7. Effect of Elevated Temperature on Mechanical Assets of Metakaolin Base Steel Fiber Reinforced Concrete

    Science.gov (United States)

    Vijay Anand, M.; Ibrahim, Azmi; Patil, Anand A.; Muthu, K. U.

    2017-06-01

    The fact of vast usage of concrete leads to important problems regarding its design and preparation of eco-friendly to obtain an economic cost of the product on varieties of time periods. Conventional ordinary Portland concrete may not able to meet its functional requisites as it found inconsistency in high temperature. The exposing of concrete structure to elevated temperature may be in case of rocket launching space ships, nuclear power plants. In this experiment, to enhance the high temperature resistance, pozzolanic materials and steel fibres are added to preserve the strength characteristics of concrete structure. In this analysis, the pozzolanic admixture MK is used as partial replacement of cementatious materials. The volume fraction of steel fibre is varied 0.25%, 0.5%, 0.75% and 1% by preserving MK as stationary for 10% replacement of cement. The strength parameters of concrete such as compressive strength, split tensile strength and flexural strength are studied.

  8. Natural Corrosion Inhibitors for Steel Reinforcement in Concrete — a Review

    Science.gov (United States)

    Raja, Pandian Bothi; Ghoreishiamiri, Seyedmojtaba; Ismail, Mohammad

    2015-04-01

    Reinforced concrete is one of the widely used construction materials for bridges, buildings, platforms and tunnels. Though reinforced concrete is capable of withstanding a large range of severe environments including marine, industrial and alpine conditions, there are still a large number of failures in concrete structures for many reasons. Either carbonation or chloride attack is the main culprit which is due to depassivation of reinforced steel and subsequently leads to rapid steel corrosion. Among many corrosion prevention measures, application of corrosion inhibitors play a vital role in metal protection. Numerous range of corrosion inhibitors were reported for concrete protection that were also used commercially in industries. This review summarizes the application of natural products as corrosion inhibitors for concrete protection and also scrutinizes various factors influencing its applicability.

  9. Influence of Axial Load on Electromechanical Impedance (EMI) of Embedded Piezoceramic Transducers in Steel Fiber Concrete.

    Science.gov (United States)

    Wang, Zhijie; Chen, Dongdong; Zheng, Liqiong; Huo, Linsheng; Song, Gangbing

    2018-06-01

    With the advantages of high tensile, bending, and shear strength, steel fiber concrete structures have been widely used in civil engineering. The health monitoring of concrete structures, including steel fiber concrete structures, receives increasing attention, and the Electromechanical Impedance (EMI)-based method is commonly used. Structures are often subject to changing axial load and ignoring the effect of axial forces may introduce error to Structural Health Monitoring (SHM), including the EMI-based method. However, many of the concrete structure monitoring algorithms do not consider the effects of axial loading. To investigate the influence of axial load on the EMI of a steel fiber concrete structure, concrete specimens with different steel fiber content (0, 30, 60, 90, 120) (kg/m³) were casted and the Lead Zirconate Titanate (PZT)-based Smart Aggregate (SA) was used as the EMI sensor. During tests, the step-by-step loading procedure was applied on different steel fiber content specimens, and the electromechanical impedance values were measured. The Normalized root-mean-square deviation Index (NI) was developed to analyze the EMI information and evaluate the test results. The results show that the normalized root-mean-square deviation index increases with the increase of the axial load, which clearly demonstrates the influence of axial load on the EMI values for steel fiber concrete and this influence should be considered during a monitoring or damage detection procedure if the axial load changes. In addition, testing results clearly reveal that the steel fiber content, often at low mass and volume percentage, has no obvious influence on the PZT's EMI values. Furthermore, experiments to test the repeatability of the proposed method were conducted. The repeating test results show that the EMI-based indices are repeatable and there is a great linearity between the NI and the applied loading.

  10. Influence of Axial Load on Electromechanical Impedance (EMI of Embedded Piezoceramic Transducers in Steel Fiber Concrete

    Directory of Open Access Journals (Sweden)

    Zhijie Wang

    2018-06-01

    Full Text Available With the advantages of high tensile, bending, and shear strength, steel fiber concrete structures have been widely used in civil engineering. The health monitoring of concrete structures, including steel fiber concrete structures, receives increasing attention, and the Electromechanical Impedance (EMI-based method is commonly used. Structures are often subject to changing axial load and ignoring the effect of axial forces may introduce error to Structural Health Monitoring (SHM, including the EMI-based method. However, many of the concrete structure monitoring algorithms do not consider the effects of axial loading. To investigate the influence of axial load on the EMI of a steel fiber concrete structure, concrete specimens with different steel fiber content (0, 30, 60, 90, 120 (kg/m3 were casted and the Lead Zirconate Titanate (PZT-based Smart Aggregate (SA was used as the EMI sensor. During tests, the step-by-step loading procedure was applied on different steel fiber content specimens, and the electromechanical impedance values were measured. The Normalized root-mean-square deviation Index (NI was developed to analyze the EMI information and evaluate the test results. The results show that the normalized root-mean-square deviation index increases with the increase of the axial load, which clearly demonstrates the influence of axial load on the EMI values for steel fiber concrete and this influence should be considered during a monitoring or damage detection procedure if the axial load changes. In addition, testing results clearly reveal that the steel fiber content, often at low mass and volume percentage, has no obvious influence on the PZT’s EMI values. Furthermore, experiments to test the repeatability of the proposed method were conducted. The repeating test results show that the EMI-based indices are repeatable and there is a great linearity between the NI and the applied loading.

  11. Finite element modeling of reinforced concrete beams with a hybrid combination of steel and aramid reinforcement

    International Nuclear Information System (INIS)

    Hawileh, R.A.

    2015-01-01

    Highlights: • Modeling of concrete beams reinforced steel and FRP bars. • Developed finite element models achieved good results. • The models are validated via comparison with experimental results. • Parametric studies are performed. - Abstract: Corrosion of steel bars has an adverse effect on the life-span of reinforced concrete (RC) members and is usually associated with crack development in RC beams. Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and superior corrosion resistance properties. However, FRP materials are brittle in nature, thus RC beams reinforced with such materials would exhibit a less ductile behavior when compared to similar members reinforced with conventional steel reinforcement. Recently, researchers investigated the performance of concrete beams reinforced with a hybrid combination of steel and Aramid Fiber Reinforced Polymer (AFRP) reinforcement to maintain a reasonable level of ductility in such members. The function of the AFRP bars is to increase the load-carrying capacity, while the function of the steel bars is to ensure ductility of the flexural member upon yielding in tension. This paper presents a three-dimensional (3D) finite element (FE) model that predicted the load versus mid-span deflection response of tested RC beams conducted by other researchers with a hybrid combination of steel and AFRP bars. The developed FE models account for the constituent material nonlinearities and bond–slip behavior between the reinforcing bars and adjacent concrete surfaces. It was concluded that the developed models can accurately capture the behavior and predicts the load-carrying capacity of such RC members. In addition, a parametric study is conducted using the validated models to investigate the effect of AFRP bar size, FRP material type, bond–slip action, and concrete compressive strength on the performance of concrete beams when reinforced

  12. Vertical impedance measurements on concrete bridge decks for assessing susceptibility of reinforcing steel to corrosion

    Science.gov (United States)

    Bartholomew, Paul D.; Guthrie, W. Spencer; Mazzeo, Brian A.

    2012-08-01

    Corrosion is a pressing problem for aging concrete infrastructure, especially bridge decks. Because of its sensitivity to factors that affect corrosion of reinforcing steel in concrete, resistivity is an important structural health indicator for reinforced concrete structures. In this research, an instrument was developed to measure vertical impedance on concrete bridge decks. Measurements of vertical impedance on slabs prepared in the laboratory, on slabs removed from decommissioned bridge decks, and on an in-service bridge deck in the field demonstrate the utility of the new apparatus.

  13. Production and construction technology of C100 high strength concrete filled steel tube

    Science.gov (United States)

    Wu, Yanli; Sun, Jinlin; Yin, Suhua; Liu, Yu

    2017-10-01

    In this paper, the effect of the amount of cement, water cement ratio and sand ratio on compressive strength of C100 concrete was studied. The optimum mix ratio was applied to the concrete filled steel tube for the construction of Shenyang Huangchao Wanxin mansion. The results show that the increase of amount of cement, water cement ratio can improve the compressive strength of C100 concrete but increased first and then decreased with the increase of sand ratio. The compressive strength of C100 concrete can reach 110MPa with the amount of cement 600kg/m3, sand ratio 40% and water cement ratio 0.25.

  14. SCIENTIFIC-METHODICAL PREREQUISITES FOR DEVELOPMENT OF THE STEEL COMPOSITIONS FOR INCREASE OF RESISTANCE OF HIGH-LOADED STAMPS OF COLD DEFORMATION

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2005-01-01

    Full Text Available The basis of perfecting of the known steels composition with the purpose of using for solving of concrete production problem, in particular increase of instrument resistance, are examined in the article.

  15. PZT-Based Detection of Compactness of Concrete in Concrete Filled Steel Tube Using Time Reversal Method

    Directory of Open Access Journals (Sweden)

    Shi Yan

    2014-01-01

    Full Text Available A smart aggregate-based approach is proposed for the concrete compactness detection of concrete filled steel tube (CFST columns. The piezoceramic-based smart aggregates (SAs were embedded in the predetermined locations prior to the casting of concrete columns to establish a wave-based smart sensing system for the concrete compactness detection purpose. To evaluate the efficiency of the developed approach, six specimens of the CFST columns with the rectangular cross-section were produced by placing some artificial defects during casting of concrete for simulating various uncompacted voids such as cavities, cracks, and debond. During the test, the time reversal technology was applied to rebuild the received signals and launch the reversed signals again by SAs, to overcome the issue of the lack of the prototype. Based on the proposed nonprototype, two indices of time reversibility (TR and symmetry (SYM were applied to relatively evaluate the level of concrete compactness in the range of the two SAs. The experimental results show that the developed method can effectively detect the compactness of concrete in CFST columns.

  16. Effect Of Age And Concrete Cover Thickness On Steel Reinforcement Corrosion At Splash Zone In Reinforced Concrete Hydraulic Structures

    Directory of Open Access Journals (Sweden)

    Nada M. Al- Galawi

    2015-08-01

    Full Text Available Corrosion of reinforcing steel bars in reinforced concrete is considered as one of the biggest problems that face countries overlooking to the Arabian Gulf including Iraq. The research aims to study the effect of the corrosion of steel bars in concrete structures that are exposed to wetting and drying via waves. Reinforced concrete samples were exposed to marine simulated environment for 90 days using prepared system for this purpose. At the end of exposure period polarization test was implemented to measure the actual corrosion rate in each sample. After that the corrosion process was accelerated using impressed current technique by applying a constant electric current DC to the reinforcing bars. Depending on the corrosion current in natural conditions which was measured in polarization test periods of exposing samples to accelerated corrosion current so as to maintain virtual exposure ages of 5 and 25 years of exposure to natural corrosion were calculated. The results showed a remarkable increase in the corrosion current of steel bars in samples that had lower concrete cover thickness. The increase in the cover thickness from 20mm to 40 and 65 mm had a significant effect on reducing the corrosion current at the age of 90 days to about 70 of its original value in both cases. At the virtual exposure age of 5 years the reduction percentage in the corrosion current resulted from increasing cover thickness from 20mm to 40 and 65 mm were 43 and 79 respectively.

  17. Abrasion Properties of Steel Fiber Reinforced Silica Fume Concrete According to Los Angeles and Water Abrasion Tests

    Directory of Open Access Journals (Sweden)

    Tsan-Ching CHENG

    2014-12-01

    Full Text Available The current study mainly investigated the influence of different tests on the abrasion resistance of concrete mixed with steel fibers and silica fume. The abrasion resistance was assessed at 28, 56 and 91 days on concretes with water-binder ratios of 0.35 and 0.55 where in some mixes silica fume was substituted by 5 % of cement by weight. Steel fibers of 0.5 % and 1.0 % of concrete volume were also added into the test concrete by replacement of coarse and fine aggregates. The results showed that concrete with higher compressive strength in Los Angeles abrasion tests also had better abrasion resistance. The inclusion of steel fibers into test concrete with a water-binder ratio of 0.35 resulted in a significant increase in compressive strength. This concrete also displayed better abrasion resistance and splitting tensile strength than reference concrete; in the test sample with a water-binder ratio of 0.55, the added steel fibers was unable to effectively produce cementation with the concrete. The inclusion of silica fume improved the abrasion resistance of concretes. In water abrasion testing, the abrasion resistance of concrete containing steel fiber was worse than that of concrete without steel fibers. In the water abrasion testing, the surface of steel fiber reinforced concrete was eroded by water and steel balls, and the impact caused the steel fibers to separate from the concrete and led to higher wear loss. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6460

  18. Finite Element Modeling of Compressive and Splitting Tensile Behavior of Plain Concrete and Steel Fiber Reinforced Concrete Cylinder Specimens

    Directory of Open Access Journals (Sweden)

    Md. Arman Chowdhury

    2016-01-01

    Full Text Available Plain concrete and steel fiber reinforced concrete (SFRC cylinder specimens are modeled in the finite element (FE platform of ANSYS 10.0 and validated with the experimental results and failure patterns. Experimental investigations are conducted to study the increase in compressive and tensile capacity of cylindrical specimens made of stone and brick concrete and SFRC. Satisfactory compressive and tensile capacity improvement is observed by adding steel fibers of 1.5% volumetric ratio. A total of 8 numbers of cylinder specimens are cast and tested in 1000 kN capacity digital universal testing machine (UTM and also modeled in ANSYS. The enhancement of compressive strength and splitting tensile strength of SFRC specimen is achieved up to 17% and 146%, respectively, compared to respective plain concrete specimen. Results gathered from finite element analyses are validated with the experimental test results by identifying as well as optimizing the controlling parameters to make FE models. Modulus of elasticity, Poisson’s ratio, stress-strain behavior, tensile strength, density, and shear transfer coefficients for open and closed cracks are found to be the main governing parameters for successful model of plain concrete and SFRC in FE platform. After proper evaluation and logical optimization of these parameters by extensive analyses, finite element (FE models showed a good correlation with the experimental results.

  19. Influence of stress on passive behaviour of steel bars in concrete pore solution

    International Nuclear Information System (INIS)

    Feng Xingguo; Tang Yuming; Zuo Yu

    2011-01-01

    Research highlights: → The influence of load on passivity of steel in concrete pore solution is studied. → The passivity of steel in pore solution decreased as the load amplitude increased. → A micro-crack model is presented to explain passive behaviour of steel under loads. - Abstract: The influence of stress on passive behaviour of steel bars in concrete pore solution was studied with electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The passive ability of steel decreased as the applied load increased and higher load had much greater influence on passivation than repeated loading of small magnitude. A micro-crack model was presented to explain the damage of passive layer by loads. Lower load caused micro-cracks in the passive film which might be completely recovered after unloading. Under higher load more micro-cracks were produced in the passive film and some may penetrate the film, leading to irreversible damages.

  20. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches.

    Science.gov (United States)

    Hwang, Jin-Ha; Lee, Deuck Hang; Ju, Hyunjin; Kim, Kang Su; Seo, Soo-Yeon; Kang, Joo-Won

    2013-10-23

    Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC) members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%-1.5%, in terms of shear performance.

  1. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches

    Directory of Open Access Journals (Sweden)

    Joo-Won Kang

    2013-10-01

    Full Text Available Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%–1.5%, in terms of shear performance.

  2. Performance of Hybrid Steel Fibers Reinforced Concrete Subjected to Air Blast Loading

    Directory of Open Access Journals (Sweden)

    Mohammed Alias Yusof

    2013-01-01

    Full Text Available This paper presents the results of the experimental data and simulation on the performance of hybrid steel fiber reinforced concrete (HSFRC and also normal reinforced concrete (NRC subjected to air blast loading. HSFRC concrete mix consists of a combination of 70% long steel hook end fibre and also 30% of short steel hook end fibre with a volume fraction of 1.5% mix. A total of six concrete panels were subjected to air blast using plastic explosive (PE4 weighing 1 kg each at standoff distance of 0.3 meter. The parameters measured are mode of failure under static and blast loading and also peak overpressure that resulted from detonation using high speed data acquisition system. In addition to this simulation work using AUTODYN was carried out and validated using experimental data. The experimental results indicate that hybrid steel fiber reinforced concrete panel (HSFRC possesses excellent resistance to air blast loading as compared to normal reinforced concrete (NRC panel. The simulation results were also found to be close with experimental data. Therefore the results have been validated using experimental data.

  3. Comparing the cyclic behavior of concrete cylinders confined by shape memory alloy wire or steel jackets

    International Nuclear Information System (INIS)

    Park, Joonam; Choi, Eunsoo; Kim, Hong-Taek; Park, Kyoungsoo

    2011-01-01

    Shape memory alloy (SMA) wire jackets for concrete are distinct from conventional jackets of steel or fiber reinforced polymer (FRP) since they provide active confinement which can be easily achieved due to the shape memory effect of SMAs. This study uses NiTiNb SMA wires of 1.0 mm diameter to confine concrete cylinders with the dimensions of 300 mm × 150 mm (L × D). The NiTiNb SMAs have a relatively wider temperature hysteresis than NiTi SMAs; thus, they are more suitable for the severe temperature-variation environments to which civil structures are exposed. Steel jackets of passive confinement are also prepared in order to compare the cyclic behavior of actively and passively confined concrete cylinders. For this purpose, monotonic and cyclic compressive loading tests are conducted to obtain axial and circumferential strain. Both strains are used to estimate the volumetric strains of concrete cylinders. Plastic strains from cyclic behavior are also estimated. For the cylinders jacketed by NiTiNb SMA wires, the monotonic axial behavior differs from the envelope of cyclic behavior. The plastic strains of the actively confined concrete show a similar trend to those of passive confinement. This study proposed plastic strain models for concrete confined by SMA wire or steel jackets. For the volumetric strain, the active jackets of NiTiNb SMA wires provide more energy dissipation than the passive jacket of steel

  4. Prompt gamma-ray analysis of steel slag in concrete

    International Nuclear Information System (INIS)

    Naqvi, Akhtar Abbas; Garwan, Muhammad Ahmad; Nagadi, Mahmoud Mohammad; Rehman, Khateeb-ur; Raashid, Mohammad; Masalehuddin Mohiuddin, Mohammad; Al-Amoudi, Omar Saeed Baghabra

    2009-01-01

    Blast furnace slag (BFS) is added to Portland cement concrete to increase its durability, particularly its corrosion resistance. Monitoring the concentration of BFS in concrete for quality control purposes is desired. In this study, the concentration of BFS in concrete was measured by utilizing an accelerator-based prompt gamma-ray neutron activation analysis (PGNAA) setup. The optimum size of the BFS cement concrete specimen that produces the maximum intensity of gamma rays at the detector location was calculated through Monte Carlo simulations. The simulation results were experimentally validated through the gamma-ray yield measurement from BFS cement concrete specimens having different radii. The concentration of BFS in the cement concrete specimens was assessed through calcium and silicon gamma-ray yield measurement from cement concrete specimens containing 5 to 80 wt% BFS. The yield of calcium gamma rays decreases with increasing BFS concentration in concrete while the yield of silicon gamma rays increases with increasing BFS concentration in concrete. The calcium-to-silicon gamma-ray yield ratio has an inverse relation with BFS concentration in concrete. (author)

  5. Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kouril, M.; Pokorny, P.; Stoulil, J. [University of Chemistry and Technology, Prague (Czech Republic)

    2017-04-15

    Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.

  6. Properties of Reinforced Concrete Steel Rebars Exposed to High Temperatures

    OpenAIRE

    Topçu, İlker Bekir; Karakurt, Cenk

    2008-01-01

    The deterioration of the mechanical properties of yield strength and modulus of elasticity is considered as the primary element affecting the performance of steel structures under fire. In this study, hot-rolled S220 and S420 reinforcement steel rebars were subjected to high temperatures to investigate the fire performance of these materials. It is aimed to determine the remaining mechanical properties of steel rebars after elevated temperatures. Steels were subjected to 20, 100, 200, 300, 5...

  7. Hybrid Bridge Structures Made of Frp Composite and Concrete

    Science.gov (United States)

    Rajchel, Mateusz; Siwowski, Tomasz

    2017-09-01

    Despite many advantages over the conventional construction materials, the contemporary development of FRP composites in bridge engineering is limited due to high initial cost, low stiffness (in case of glass fibers) and sudden composite failure mode. In order to reduce the given limitations, mixed (hybrid) solutions connecting the FRP composites and conventional construction materials, including concrete, have been tested in many countries for 20 years. Shaping the hybrid structures based on the attributes of particular materials, aims to increase stiffness and reduce cost without losing the carrying capacity, lightness and easiness of bridges that includes such hybrid girders, and to avoid the sudden dangerous failure mode. In the following article, the authors described examples of hybrid road bridges made of FRP composite and concrete within the time of 20 years and presented the first Polish hybrid FRP-concrete road bridge. Also, the directions of further research, necessary to spread these innovative, advanced and sustainable bridge structures were indicated.

  8. Optimization of concrete composition in radioactive waste management

    International Nuclear Information System (INIS)

    Plecas, I.; Peric, A.

    1995-01-01

    Low and intermediate level waste represents 95% of the total wastes that is conditioned into special concrete containers. Since these containers are to protect radioactive waste safely for about 300 years, the selection and precise control of physical and mechanical characteristics of materials is very important. After volume reduction and valuable components recovery, waste materials have to be conditioned for transport, storage and disposal. Conditioning is the waste management step in which radioactive wastes are immobilized and packed. The immobilization processes involve conversation of the wastes to solid forms that reduce the potential for migration or dispersion of radionuclides from the wastes by natural processes during storage, transport and disposal. The immobilization processes involve the use of various matrices of nonradioactive materials, such as concrete, to fix the wastes as monoliths, usually directly in the waste containers used for subsequent handling. In this paper an optimization of concrete container composition, used for storing radioactive waste from nuclear power plants, is presented. Optimization was performed on the composition of the concrete that is used in the container production. In experiments, the authors tried to obtain the best mechanical characteristics of the concrete, varying the weight percentage of the granulate due to its diameter, water-to-cement ratios and type of the cements that were used in preparing the concrete container formulation. Concrete containers, that were optimized in the manner described in this paper, will be in used for the radioactive waste materials final disposal, using the concept of the engineer trench system facilities

  9. Investigation of Stress-Strain-Time Relationships of Concrete Filled Steel Tube Columns

    Directory of Open Access Journals (Sweden)

    Mutlu Seçer

    2010-01-01

    Full Text Available In this study, time dependent creep and shrinkage behaviors of concrete filled steel box section columns are investigated by using various methods. Time dependent behavior is examined by using effective modulus method, age-adjusted effective modulus method, creep rate method and Dischinger method. Shrinkage and creep strains are modeled using ACI 209 specification. In the study, in order to investigate time dependent behavior numerically, a concrete filled steel box section column is selected in a twenty story building and the time dependent stress decrease in concrete and stress increase in steel box section and the changes in strain components are calculated. Stress – time, strain – time and strain components – time graphics are shown and the advantages and the disadvantages of the numerical methods in modeling the time dependent behavior are revealed respectively.

  10. Test method research on weakening interface strength of steel - concrete under cyclic loading

    Science.gov (United States)

    Liu, Ming-wei; Zhang, Fang-hua; Su, Guang-quan

    2018-02-01

    The mechanical properties of steel - concrete interface under cyclic loading are the key factors affecting the rule of horizontal load transfer, the calculation of bearing capacity and cumulative horizontal deformation. Cyclic shear test is an effective method to study the strength reduction of steel - concrete interface. A test system composed of large repeated direct shear test instrument, hydraulic servo system, data acquisition system, test control software system and so on is independently designed, and a set of test method, including the specimen preparation, the instrument preparation, the loading method and so on, is put forward. By listing a set of test results, the validity of the test method is verified. The test system and the test method based on it provide a reference for the experimental study on mechanical properties of steel - concrete interface.

  11. Properties of Reinforced Concrete Steel Rebars Exposed to High Temperatures

    Directory of Open Access Journals (Sweden)

    İlker Bekir Topçu

    2008-01-01

    Full Text Available The deterioration of the mechanical properties of yield strength and modulus of elasticity is considered as the primary element affecting the performance of steel structures under fire. In this study, hot-rolled S220 and S420 reinforcement steel rebars were subjected to high temperatures to investigate the fire performance of these materials. It is aimed to determine the remaining mechanical properties of steel rebars after elevated temperatures. Steels were subjected to 20, 100, 200, 300, 500, 800, and 950∘C temperatures for 3 hours and tensile tests were carried out. Effect of temperature on mechanical behavior of S220 and S420 were determined. All mechanical properties were reduced due to the temperature increase of the steel rebars. It is seen that mechanical properties of S420 steel was influenced more than S220 steel at elevated temperatures.

  12. The Effect of Fly Ash on the Corrosion Behaviour of Galvanised Steel Rebarsin Concrete

    Science.gov (United States)

    Tittarelli, Francesca; Mobili, Alessandra; Bellezze, Tiziano

    2017-08-01

    The effect of fly ash on the corrosion behaviour of galvanised steel rebars in cracked concrete specimens exposed to wet-dry cycles in a chloride solution has been investigated. The obtained results show that the use of fly ash, replacing either cement or aggregate, always improves the corrosion behaviour of galvanised steel reinforcements. In particular, the addition of fly ash, even in the presence of concrete cracks, decreases the corrosion rate monitored in very porous concretes, as those with w/c = 0.80, to values comparable with those obtained in good quality concretes, as those with w/c = 0.45. Therefore, fly ash cancels the negative effect, at least from the corrosion point of view, of a great porosity of the cement matrix.

  13. Mechanical Behavior of Recycled Aggregate Concrete-Filled Steel Tubular Columns before and after Fire

    Directory of Open Access Journals (Sweden)

    Wenchao Liu

    2017-03-01

    Full Text Available Recycled aggregate concrete (RAC is an environmentally friendly building material. This paper investigates the mechanical behavior of recycled aggregate concrete filled steel tube (RACFST columns exposed to fire. Two groups of 12 columns were designed and tested, under axial compression, before and after fire, to evaluate the degradation of bearing capacity due to fire exposure. Six specimens were subjected to axial compression tests at room temperature and the other six specimens were subjected to axial compression tests after a fire exposure. The main parameters of the specimens include the wall thickness of the steel tube (steel content and the type of concrete materials. Several parameters as obtained from the experimental results were compared and analyzed, including the load-bearing capacity, deformation capacity, and failure characteristics of the specimens. Meanwhile, rate of loss of bearing capacity of specimens exposed to fire were calculated based on the standards EC4 and CECS28:90. The results show that concrete material has a large influence on the rate of loss of bearing capacity in the case of a relatively lower steel ratio. While steel content has little effect on the rate of loss of bearing capacity of concrete-filled steel tube (CFST columns after fire, it has a relatively large influence on the loss rate of bearing capacity of the RACFST columns. The loss of bearing capacity of the specimens from the experiment is more serious than that from the calculation. As the calculated values are less conservative, particular attention should be given to the application of recycled aggregate concrete in actual structures.

  14. Mechanical Behavior of Recycled Aggregate Concrete-Filled Steel Tubular Columns before and after Fire.

    Science.gov (United States)

    Liu, Wenchao; Cao, Wanlin; Zhang, Jianwei; Wang, Ruwei; Ren, Lele

    2017-03-09

    Recycled aggregate concrete (RAC) is an environmentally friendly building material. This paper investigates the mechanical behavior of recycled aggregate concrete filled steel tube (RACFST) columns exposed to fire. Two groups of 12 columns were designed and tested, under axial compression, before and after fire, to evaluate the degradation of bearing capacity due to fire exposure. Six specimens were subjected to axial compression tests at room temperature and the other six specimens were subjected to axial compression tests after a fire exposure. The main parameters of the specimens include the wall thickness of the steel tube (steel content) and the type of concrete materials. Several parameters as obtained from the experimental results were compared and analyzed, including the load-bearing capacity, deformation capacity, and failure characteristics of the specimens. Meanwhile, rate of loss of bearing capacity of specimens exposed to fire were calculated based on the standards EC4 and CECS28:90. The results show that concrete material has a large influence on the rate of loss of bearing capacity in the case of a relatively lower steel ratio. While steel content has little effect on the rate of loss of bearing capacity of concrete-filled steel tube (CFST) columns after fire, it has a relatively large influence on the loss rate of bearing capacity of the RACFST columns. The loss of bearing capacity of the specimens from the experiment is more serious than that from the calculation. As the calculated values are less conservative, particular attention should be given to the application of recycled aggregate concrete in actual structures.

  15. An experimental study on flexural strength enhancement of concrete by means of small steel fibers

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2013-10-01

    Full Text Available Cost effective improvement of the mechanical performances of structural materials is an important goal in construction industry. To improve the flexural strength of plain concrete so as to reduce construction costs, the addition of fibers to the concrete mixture can be adopted. The addition of small steel fibers with different lengths and proportion have experimentally been analyzed in terms of concrete flexural strength enhancement. The main objectives of the present study are related to the evaluation of the influence of steel fibers design on the increase of concrete flexural characteristics and on the mode of failure. Two types of beams have been investigated. The force level, deflection and time to failure of beams have been measured. The shear crack, flexural crack and intermediate shear-flexural crack have been studied. The steel fiber content controlled crack morphology. Flexural strength and time to failure of fiber reinforce concrete could be further enhanced if, instead of smooth steel fibers, corrugated fibers were used.

  16. Evaluation of corrosion of prestressing steel in concrete using non-destructive techniques

    International Nuclear Information System (INIS)

    Ali, M.G.; Maddocks, A.R.

    2003-01-01

    Use of high strength steel in pre-stressed concrete structures has been in use in Australia for many decades. Highway bridges, among other structures, have extensively used pre-stress-ing and post-tensioning techniques. Although prestressing offers many competitive edges to it's traditional rival reinforced concrete, the consequence of damage to prestressing tendons could be catastrophic. Periodic visual inspections of prestressed concrete bridges throughout the world have demonstrated the growing problem of deterioration of prestressing steel as a result of corrosion. Early detection of damage to prestressing steel therefore is of paramount importance. Unfortunately no reliable and practical non-destructive evaluation technique has been available for assessing the condition of prestressing steel within concrete although a number of techniques appear promising. The following inspection methods have been highlighted in recent literature for their use as non-destructive inspection methods for prestressed concrete structures. In addition to the techniques discussed, a number of destructive, or invasive techniques also exist for determination of the corrosion status of prestressing tendons in prestressed structures. The following non-destructive techniques are discussed in some detail: Radiography; Computed Tomography; Surface Penetrating Radar; Impact Echo; Acoustic Emission Monitoring; Magnetic Field Disturbance Technique; Remnant Magnetism Method; Linear Polarisation Method; Electrical Resistance and Surface Potential Survey. The portability, limitations and use in Australia of these techniques are summarised in a table

  17. On the performance of circular concrete-filled high strength steel columns under axial loading

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmoud El-Heweity

    2012-06-01

    Full Text Available This work presents a numerical study to investigate the performance of circular high-strength steel tubes filled with concrete (CFT under monotonic axial loading. A model is developed to implement the material constitutive relationships and non-linearity. Calibration against previous experimental data shows good agreement. A parametric study is then conducted using the model and compared with codes provisions. Strength and ductility of confined concrete are of primary concern. Variables considered are yield stress of steel tube and column diameter. The assessment of column performance is based on axial load carrying capacities and enhancements of both strength and ductility due to confinement. Two parameters namely strength enhancement factor (Kf and ductility index (μ are clearly defined and introduced for assessment. Results indicate that both concrete strength and ductility of CFT columns are enhanced but to different extents. The ductile behaviors are significantly evident. The increase in yield stress of steel tube has a minimal effect on concrete strength but pronounced effect on concrete ductility. However, reduction in ductility is associated with using high-tensile steel of Grade 70. The overall findings indicate that the use of high-strength tube in CFT columns is not promising. This finding may seriously be considered in seismic design.

  18. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH

    International Nuclear Information System (INIS)

    Ai, Zhiyong; Jiang, Jinyang; Sun, Wei; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-01-01

    Highlights: • A new alloy corrosion-resistant steel Cr10Mo1 is developed for reinforcing rebar of concrete in severe environments. • The effects of pH on the passive behaviour of Cr10Mo1 steel compared with plain carbon steel were studied systematically by electrochemical techniques and surface analysis. • The mechanism for self-reinforcing passivity against carbonation of the corrosion-resistant steel is revealed. - Abstract: The passive behaviour of new alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel (as a comparison) in simulating concrete pore solutions of different pH (ranging from 13.5 to 9.0) under open circuit potential conditions, was evaluated by various electrochemical techniques: potentiodynamic polarization, capacitance measurements and electrochemical impedance spectroscopy. The chemical composition and structure of passive films were investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The electrochemical responses of passive films show that Cr10Mo1 steel has an increasing passivity with pH decreasing while carbon steel dose conversely, revealing carbonation does no negative effect on passivation of the corrosion-resistant steel. SIMS reveals that the passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer mainly consisting of Fe oxides and hydroxides, and an inner layer enriched in Cr species, while only a Fe-concentrated layer for carbon steel. According to the XPS analysis results, as the pH decreases, more stable and protective Cr oxides are enriched in the film on Cr10Mo1 steel while Fe oxides gradually decompose. Higher content of Cr oxides in the film layer provides Cr10Mo1 corrosion-resistant steel more excellent passivity at lower pH.

  19. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Zhiyong, E-mail: 230139452@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Jiang, Jinyang, E-mail: jiangjinyang16@163.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Sun, Wei, E-mail: sunwei@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Song, Dan, E-mail: songdancharls@hhu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); College of Mechanics and Materials, Hohai University, Nanjing 210098, Jiangsu (China); Ma, Han, E-mail: mahan-iris@shasteel.cn [Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, Jiangsu (China); Zhang, Jianchun, E-mail: Zhangjc-iris@shasteel.cn [Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, Jiangsu (China); Wang, Danqian, E-mail: wonderbaba@126.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China)

    2016-12-15

    Highlights: • A new alloy corrosion-resistant steel Cr10Mo1 is developed for reinforcing rebar of concrete in severe environments. • The effects of pH on the passive behaviour of Cr10Mo1 steel compared with plain carbon steel were studied systematically by electrochemical techniques and surface analysis. • The mechanism for self-reinforcing passivity against carbonation of the corrosion-resistant steel is revealed. - Abstract: The passive behaviour of new alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel (as a comparison) in simulating concrete pore solutions of different pH (ranging from 13.5 to 9.0) under open circuit potential conditions, was evaluated by various electrochemical techniques: potentiodynamic polarization, capacitance measurements and electrochemical impedance spectroscopy. The chemical composition and structure of passive films were investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The electrochemical responses of passive films show that Cr10Mo1 steel has an increasing passivity with pH decreasing while carbon steel dose conversely, revealing carbonation does no negative effect on passivation of the corrosion-resistant steel. SIMS reveals that the passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer mainly consisting of Fe oxides and hydroxides, and an inner layer enriched in Cr species, while only a Fe-concentrated layer for carbon steel. According to the XPS analysis results, as the pH decreases, more stable and protective Cr oxides are enriched in the film on Cr10Mo1 steel while Fe oxides gradually decompose. Higher content of Cr oxides in the film layer provides Cr10Mo1 corrosion-resistant steel more excellent passivity at lower pH.

  20. Copper infiltrated high speed steels based composites

    International Nuclear Information System (INIS)

    Madej, M.; Lezanski, J.

    2003-01-01

    High hardness, mechanical strength, heat resistance and wear resistance of M3/2 high speed steel (HSS) make it an attractive material. Since technological and economical considerations are equally important, infiltration of high-speed steel skeleton with liquid cooper has proved to be a suitable technique whereby fully dense material is produced at low cost. Attempts have been made to describe the influence of the production process parameters and alloying additives, such as tungsten carbide on the microstructure and mechanical properties of copper infiltrated HSS based composites. The compositions of powder mixtures are 100% M3/2, M3/2+10% Wc, M3/2=30% WC. The powders were uniaxially cold compacted in a cylindrical die at 800 MPa. The green compacts were sintered in vacuum at 1150 o C for 60 minutes. Thereby obtained porous skeletons were subsequently infiltrated with cooper, by gravity method, in vacuum furnace at 1150 o C for 15 minutes. (author)

  1. Shear Capacity of Steel and Polymer Fibre Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Kragh-Poulsen, Jens C.; Hoang, Cao Linh; Goltermann, Per

    2011-01-01

    This paper deals with the application of a plasticity model for shear strength estimation of fibre reinforced concrete beams without stirrups. When using plastic theory to shear problems in structural concrete, the so-called effective strengths are introduced, usually determined by calibrating...... the plastic solutions with tests. This approach is, however, problematic when dealing with fibre reinforced concrete (FRC), as the effective strengths depend also on the type and the amount of fibres. In this paper, it is suggested that the effective tensile strength of FRC can be determined on the basis...

  2. Long-term prediction of reinforced concrete structures - Use of thermodynamic data to assess steel corrosion in carbonated concrete

    Energy Technology Data Exchange (ETDEWEB)

    Huet, Bruno [Laboratoire d' Etude du Comportement des Betons et Argiles, DEN/DPC/SCCME/LECBA, Bat. 158, CEA Saclay, 91191 Gif sur Yvette cedex (France)]|[Laboratoire de Physico-Chimie Industrielle, LPCI, INSA de Lyon, Bat. Leonard de Vinci, 20 av. Albert Einstein, 69621 Villeurbanne cedex (France); L' Hostis, Valerie; Le Bescop, Patrick [Laboratoire d' Etude du Comportement des Betons et Argiles, DEN/DPC/SCCME/LECBA, Bat. 158, CEA Saclay, 91191 Gif sur Yvette cedex (France); Idrissi, Hassane [Laboratoire de Physico-Chimie Industrielle, LPCI, INSA de Lyon, Bat. Leonard de Vinci, 20 av. Albert Einstein, 69621 Villeurbanne cedex (France)

    2004-07-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of the steels have to be assessed and modelled. When nuclear wastes are embedded in reinforced concrete containers, the chemical environment of the reinforcement is progressively modified, due to the diffusion of the carbonation front inside the concrete matrix. This modification leads to the variation of the properties of the iron oxides formed at the steel/concrete interface, and the active corrosion can be initiated. In order to understand and modelled the mechanisms of steel corrosion in concrete, the equilibrium of two main systems must be separately described with the help of thermodynamic data issued from the literature: - The mineral phases, lime and calcium silicate hydrate (C-S-H), in equilibrium with the pore solution during the propagation of the carbonation front; - The iron oxides in equilibrium with the aqueous solution. For this purpose, the nature of aqueous species present in the pore solution was calculated in the whole range of pH encountered during the cement paste degradation by carbonation. As a matter of fact, as the pH decreases, calcium concentration decreases and silicates concentration increases due to the calcium carbonate formation and C-S-H dissolution. The pH of a carbonated concrete ranges between 8.3 and 10, depending on the partial pressure of carbon dioxide in the porosity and the conversion degree of carbonation. In this pH range, the iron oxides equilibria were analysed as a function of the redox potential and aqueous species (carbonates and sulphates present in the solution) present inside the solution. In a reductive solution and in presence of carbonates, the high solubility of iron oxides may prevent passivation or generate the dissolution of the passive film. Moreover, the relevance of thermodynamics calculations has been confirmed by corrosion tests of mild steel

  3. Long-term prediction of reinforced concrete structures - Use of thermodynamic data to assess steel corrosion in carbonated concrete

    International Nuclear Information System (INIS)

    Huet, Bruno; L'Hostis, Valerie; Le Bescop, Patrick; Idrissi, Hassane

    2004-01-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of the steels have to be assessed and modelled. When nuclear wastes are embedded in reinforced concrete containers, the chemical environment of the reinforcement is progressively modified, due to the diffusion of the carbonation front inside the concrete matrix. This modification leads to the variation of the properties of the iron oxides formed at the steel/concrete interface, and the active corrosion can be initiated. In order to understand and modelled the mechanisms of steel corrosion in concrete, the equilibrium of two main systems must be separately described with the help of thermodynamic data issued from the literature: - The mineral phases, lime and calcium silicate hydrate (C-S-H), in equilibrium with the pore solution during the propagation of the carbonation front; - The iron oxides in equilibrium with the aqueous solution. For this purpose, the nature of aqueous species present in the pore solution was calculated in the whole range of pH encountered during the cement paste degradation by carbonation. As a matter of fact, as the pH decreases, calcium concentration decreases and silicates concentration increases due to the calcium carbonate formation and C-S-H dissolution. The pH of a carbonated concrete ranges between 8.3 and 10, depending on the partial pressure of carbon dioxide in the porosity and the conversion degree of carbonation. In this pH range, the iron oxides equilibria were analysed as a function of the redox potential and aqueous species (carbonates and sulphates present in the solution) present inside the solution. In a reductive solution and in presence of carbonates, the high solubility of iron oxides may prevent passivation or generate the dissolution of the passive film. Moreover, the relevance of thermodynamics calculations has been confirmed by corrosion tests of mild steel

  4. Application of potential relaxation transient measurements to corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Benjamin, S.E.; Skyes, J.M.

    1993-01-01

    Corrosion of steel in concrete is an electrochemical process that involves the process occurring at the interface and also in the bulk diffusion of species. This paper present studies on corrosion of Swedish Iron in concrete utilizing potential relaxation transients. This rapid new D.C. technique (developed at Oxford University, U.K.) analyzes the decay in terms of different resistor (R) - capacitor(c) combinations, thus identifying the individual processes as their time constants(tau). The resistance of the concrete is also separated. The merits and demerits of the technique are discussed. (author)

  5. Evaluation of the potential of additives as corrosion inhibitors of CA-50 carbon steel used as reinforcement in concretes

    International Nuclear Information System (INIS)

    Mennucci, Marina Martins

    2006-01-01

    In this work, various compounds were tested to evaluate their potential capability for their use as corrosion inhibitors of carbon steel reinforcement in concretes. The additives tested were sodium benzoate, polyethylene glycol, hexamethylenetetramine, benzotriazole and yttrium carbonate. Initially, exploratory tests were carried out to select the ones to be used as corrosion inhibitors, based on the inhibit ion efficiency determined from electrochemical tests, specifically polarization tests and electrochemical impedance spectroscopy. These tests were carried out in a solution composed of 0.01 N sodium hydroxide (NaOH) and 0.05 N potassium hydroxide (KOH) to simulate the composition of the solution inside the pores in concretes. The additive that presented the most promising potential to be used as corrosion inhibitor was benzotriazole (BTA). After the elimination of some compounds and selection of the additive with higher corrosion inhibit ion efficiency in the test medium, the effect of its concentration on the corrosion inhibition efficiency was evaluated. Sodium nitrite solutions with the same concentrations as those solutions with BTA were tested for comparison reasons. Sodium nitrite is a well established corrosion inhibitor for carbon steel reinforcement in concretes but it has been related to toxic effects. The BTA was associated to higher corrosion inhibition efficiencies than that of sodium nitrite in similar concentrations. A blackish adherent film was formed on the steel surface exposed to BTA solutions during long periods of immersion in the alkaline medium. The results suggest that BTA is a potential candidate for substitution of nitrites as corrosion inhibitor of reinforcements in concrete. (author)

  6. Analysis of hydrogen generation according to the specific concrete composition during severe accident

    International Nuclear Information System (INIS)

    Seo, M. R.; Kim, M. K.

    2001-01-01

    The chemical composition of reactor cavity floor concrete affects the kind and amout of gases generated by MCCI and ablation of concrete. And if affects the physical and chemical characteristics of molten pool formed in the cavity. So, the specific concrete compostion is inputted in the MAAP Code used in the Level 2 PSA. and since Ulchin Unit 3 and 4 PSA, the analysis of concrete composition has been performed by the concrete mold prepared for this usage at the installation of cavity floor concrete. But, the composition of domestic concrete for construction of NPP is nearly the same as that of the standard basaltic concrete, and the effect of minor variation in composition is expected to be negligible. This report analyze the effect of the concrete composition to the generation of hydrogen due to MCCI, and discuss the necessity of analysis about the specific concrete composition for Level 2 PSA

  7. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Science.gov (United States)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  8. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst

    Directory of Open Access Journals (Sweden)

    Hebé Gurdián

    2014-04-01

    Full Text Available The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes.

  9. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst.

    Science.gov (United States)

    Gurdián, Hebé; García-Alcocel, Eva; Baeza-Brotons, Francisco; Garcés, Pedro; Zornoza, Emilio

    2014-04-21

    The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash) and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes.

  10. Corrosion of steel tendons in concrete pressure vessels: review of recent literature and experimental investigations

    International Nuclear Information System (INIS)

    Griess, J.C.

    1978-01-01

    The fundamentals of localized corrosion are briefly discussed, and the literature concerning corrosion of carbon steel in aqueous environments, in particular the stress-corrosion cracking of carbon steels, is reviewed. The behavior of high strength steels in specific environments, including concrete and organic substances, is also summarized. The available information indicates that the corrosion of steels in correctly formulated concrete is minimal. Even appreciable concentrations of chloride, sulfate, sulfide, and nitrate salts can be tolerated in the concrete or grout without detrimental effects. Adherence to established standards in the preparation and application of grouts in tendon-bearing conduits should guarantee very long tendon lifetimes. Little is reported about the behavior of tendons in proprietary organic greases or waxes, but very good corrosion resistance is expected if the organic material remains intact. Stress-corrosion cracking tests performed with AISI 1080 steel tendon wires, using the constant-strain-rate method, produced results expected from data in the literature. Cracking was observed only in neutral or acid solutions containing hydrogen sulfide, in ammonium nitrate solutions, and possibly in a dilute solution of sodium bisulfite. General corrosion tests in water and in dilute solutions of sodium nitrate, chloride, or sulfate showed that oxygen was an important factor; corrosion was substantially greater when oxygen had free access to the solution than when access to oxygen was restricted. In the tests with oxygen the heaviest attack on the steel tendons was at the waterline of the solution

  11. STRENGTHENING OF A REINFORCED CONCRETE BRIDGE WITH PRESTRESSED STEEL WIRE ROPES

    Directory of Open Access Journals (Sweden)

    Kexin Zhang

    2017-10-01

    Full Text Available This paper describes prestressed steel wire ropes as a way to strengthen a 20-year-old RC T-beam bridge. High strength, low relaxation steel wire ropes with minor radius, high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel wire ropes—including wire rope measuring, extruding anchor heads making, anchorage installing, tensioning steel wire ropes and pouring mortar was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on the concrete structure theory. The flexural strength of RC T-beam bridges strengthened with prestressed steel wire ropes was governed by the failure of concrete crushing. To investigate effectiveness of the strengthening method, fielding-load tests were carried out before and after strengthening. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved. The crack width measurement also indicates that this technique could increase the durability of the bridge. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

  12. Corrosion of steel in cracked concrete: a microscale study

    NARCIS (Netherlands)

    Pacheco, J.; Savija, B.; Schlangen, E.; Polder, R.B.

    2014-01-01

    The influence of concrete cracking upon reinforcement corrosion is complex. Cracks allow fast penetration of chlorides, potentially leading to a shorter initiation period of reinforcement corrosion. Structural regulations control acceptable crack width values based on the exposure class of the

  13. X-Ray Investigation and Strength Measurement of Steel Fibre Reinforced Self-Compacting Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ponikiewski Tomasz

    2016-12-01

    Full Text Available The paper presents a study on self-compacting concrete with two types of steel fibres. Under consideration was the effect the method of forming of beam elements has on the distribution of steel fibres. Formed we beams of dimensions 120×15×15 cm3 and 180×15×15 cm3. The self-compacting mixture contained steel fibres of varying lengths (35 and 50 mm and varying levels of their volume ratio in the mix (0.5% - 1.0% - 1.5%.

  14. Behaviour of partially composite precast concrete sandwich panels under flexural and axial loads

    Science.gov (United States)

    Tomlinson, Douglas George

    Precast concrete sandwich panels are commonly used on building exteriors. They are typically composed of two concrete wythes that surround rigid insulation. They are advantageous as they provide both structural and thermal resistance. The structural response of sandwich panels is heavily influenced by shear connectors that link the wythes together. This thesis presents a study on partially composite non-prestressed precast concrete wall panels. Nine flexure tests were conducted on a wall design incorporating 'floating' concrete studs and Glass Fibre Reinforced Polymer (GFRP) connectors. The studs encapsulate and stiffen the connectors, reducing shear deformations. Ultimate loads increased from 58 to 80% that of a composite section as the connectors' reinforcement ratio increased from 2.6 to 9.8%. This design was optimized by reinforcing the studs and integrating them with the structural wythe; new connectors composed of angled steel or Basalt-FRP (BFRP) were used. The load-slip response of the new connector design was studied through 38 double shear push-through tests using various connector diameters and insertion angles. Larger connectors were stronger but more likely to pull out. Seven flexure tests were conducted on the new wall design reinforced with different combinations of steel and BFRP connectors and reinforcement. Composite action varied from 50 to 90% depending on connector and reinforcement material. Following this study, the axial-bending interaction curves were established for the new wall design using both BFRP and steel connectors and reinforcement. Eight panels were axially loaded to predesignated loads then loaded in flexure to failure. A technique is presented to experimentally determine the effective centroid of partially composite sections. Beyond the tension and compression-controlled failure regions of the interaction curve, a third region was observed in between, governed by connector failure. Theoretical models were developed for the bond

  15. Modelling the post-cracking behaviour of steel fibre reinforced concrete for structural design purposes

    NARCIS (Netherlands)

    Kooiman, A.G.; Walraven, C.

    2000-01-01

    With the increasing number of applications in practice, the demand for standardised test methods and design rules for Steel Fibre Reinforced Concrete (SFRC) arises. Test methods need to be practical, which means that they have to be relatively cheap and simple to carry out. Design models should be

  16. Push-Pull interface connections in steel frames with precast concrete infill panels

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Snijder, H.H.; Hofmeyer, H.

    2012-01-01

    This paper presents experimental and finite element results of investigations into the stiffness and strength of three discrete interface connections between simple steel frames and precast concrete infill panels serving as lateral bracing. The ability of the connections to resist compression and

  17. Mechanical model for steel frames with discretely connected precast concrete infill panels with window openings

    NARCIS (Netherlands)

    Teeuwen, P.A.; Kleinman, C.S.; Snijder, H.H.

    2012-01-01

    This paper presents a mechanical model for a structure comprising of steel frames with discretely connected precast concrete infill panels having window openings, termed semi-integral infilled frames. The discrete panel-to-frame connections are realized by structural bolts acting under compression.

  18. Lateral behavior of steel frames with discretely connected precast concrete infill panels

    NARCIS (Netherlands)

    Teeuwen, P.A.

    2009-01-01

    As an alternative to the conventional structures for tall buildings, a hybrid lateral load resisting structure has been designed at Eindhoven University of Technology. It consists of discretely connected precast concrete panels with window openings in steel frames, and is a new application in

  19. Parameter study on infilled steel frames with discretely connected precast concrete panels

    NARCIS (Netherlands)

    Teeuwen, P.A.; Kleinman, C.S.; Snijder, H.H.; Hofmeyer, H.; Chan, S.L.

    2009-01-01

    This paper presents a parameter study on infilled steel frames with discretely connected precast concrete infill panels having window openings. In this study, finite element simulations were carried out to study the infilled frame performance by varying several parameters. A recently developed

  20. Bond of reinforcing bars in self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.; Bigaj-van Vliet, A.J.; Braam, C.R.; Walraven, J.C.

    2002-01-01

    Plain concrete demonstrates a rather brittle behavior both under compression and tension. By adding steel fibers, the post-cracking behavior becomes more ductile and an increase of the strain capacity under tension and compression is found. The research project currently being carried out aims at

  1. Bond of reinforcing bars in self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.; Bigaj-van Vliet, A.J.; Braam, C.R.; Uijl, J.A. den; Walraven, J.C.

    2002-01-01

    Pull-out tests were performed on 10 mm diameter ribbed bars embedded along three times the bar diameter in 200 mm cubes made of plain and steel fiber reinforced concrete (SFRC) of normal strength (B45). The fiber content was 60 and 120 kg/m3, respectively, the aspect ratio of the fibers was 45 and

  2. The use of the Deep Kerfer for thick, steel-reinforced concrete cutting

    International Nuclear Information System (INIS)

    Pezzimenti, D.M.; Vlad, P.M.; Landau, B.

    1989-08-01

    This paper describes the project during which cutting operations were performed on thick, steel-reinforced concrete structures using the Deep Carfare System. The project involved making modifications to the Equipment Decontamination Room, a cell in the former nuclear fuel reprocessing plant, as one phase of the Vitrification Facility Construction. 23 figs., 2 tabs

  3. Compressive Strength Prediction of Square Concrete Columns Retrofitted with External Steel Collars

    Directory of Open Access Journals (Sweden)

    Pudjisuryadi, P.

    2013-01-01

    Full Text Available Transverse confining stress in concrete members, commonly provided by transverse reinforcement, has been recognized to enhance strength and ductility. Nowadays, the confining method has been further developed to external confinement approach. This type of confinement can be used for retrofitting existing concrete columns. Many external confining techniques have been proven to be successful in retrofitting circular columns. However, for square or rectangular columns, providing effective confining stress by external retrofitting method is not a simple task due to high stress concentration at column’s corners. This paper proposes an analytical model to predict the peak strength of square concrete columns confined by external steel collars. Comparison with the experimental results showed that the model can predict the peak strength reasonably well. However, it should be noted that relatively larger amount of steel is needed to achieve comparable column strength enhancement when it is compared with those of conve tional internally-confined columns.

  4. Long-term effects of waste solutions on concrete and reinforcing steel

    International Nuclear Information System (INIS)

    Daniel, J.I.; Stark, D.C.; Kaar, P.H.

    1982-04-01

    This report has been prepared for the In Situ Waste Disposal Program Tank Assessment Task (WG-11) as part of an investigation to evaluate the long-term performance of waste storage tanks at the Hanford Site. This report, prepared by the Portland Cement Association, presents the results of four years of concrete degradation studies which exposed concrete and reinforcing steel, under load and at 180 0 F, to simulated double-shell slurry, simulated salt cake solution, and a control solution. Exposure length varied from 3 months to 36 months. In all cases, examination of the concrete and reinforcing steel at the end of the exposure indicated there was no attack, i.e., no evidence of rusting, cracking, disruption of mill scale or loss of strength

  5. Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Nateghi-Alahi, Fariborz; Fischer, Gregor

    2015-01-01

    The results of the second part of a comprehensive experimental program, aimed at investigating the behavior of masonry infilled reinforced concrete (RC) frames strengthened with fiber reinforced engineered cementitious composites (ECC) used as an overlay on the masonry wall, are presented...

  6. Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars

    International Nuclear Information System (INIS)

    Zafar, Adeel; Andrawes, Bassem

    2012-01-01

    Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA–FRP composite, which is sought in this research as reinforcing bars. SMA–FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA–FRP and glass–FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA–FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones. (paper)

  7. Quantitative analysis of the microstructure of interfaces in steel reinforced concrete

    International Nuclear Information System (INIS)

    Horne, A.T.; Richardson, I.G.; Brydson, R.M.D.

    2007-01-01

    This article reports the results of a backscattered electron imaging study of the microstructure of the steel- and aggregate-cement paste interfaces in concrete containing 9 mm ribbed reinforcing bars. The water to cement (w/c) ratio, hydration age, steel orientation, and surface finish were varied. For vertically cast bars, there was more calcium hydroxide (CH) and porosity and less unreacted cement at both the steel- and aggregate-cement paste interfaces when compared to the bulk cement paste. As the hydration age increased, the porosity near the interfaces decreased, and the CH increased with more CH close to the steel than to the aggregate. Horizontal bars had more porosity and less CH under them than above. An increase in the w/c ratio produced interfaces of higher porosity and lower levels of CH. Wire-brush cleaned bars had higher levels of CH at the steel-cement paste interface at 365 days when compared to uncleaned bars

  8. Shear Strengthening of Concrete Structures with the use of mineral based composites

    DEFF Research Database (Denmark)

    Blanksvärd, Thomas; Täljsten, Björn; Carolin, Anders

    2009-01-01

    concrete (RC) beams strengthened in shear with the use of cementitious bonding agents and carbon fiber grids, denoted mineral based composites (MBC). In this study it is shown that the MBC system has a strengthening effect corresponding to that of strengthening systems using epoxy bonding agents and carbon...... for rehabilitation. In addition, more traffic and heavier loads lead to the need for upgrading. Existing externally bonded strengthening systems using FRP (fiber reinforced polymers) and epoxy as bonding agents have been proven to be a good approach to repair and strengthen concrete structures. However, the use...... fiber sheets. Different designs and material properties of the MBC system have been tested. An extensive monitoring set-up has been carried out using traditional strain gauges and photometric strain measurements to obtain strains in steel reinforcement, in FRP and strain fields on the strengthened...

  9. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee

    2013-01-01

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%

  10. High strength oil palm shell concrete beams reinforced with steel fibres

    Directory of Open Access Journals (Sweden)

    S. Poh-Yap

    2017-10-01

    Full Text Available The utilization of lightweight oil palm shell to produce high strength lightweight sustainable material has led many researchers towards its commercialization as structural concrete. However, the low tensile strength of Oil Palm Shell Concrete (OPSC has hindered its development. This study aims to enhance the mechanical properties and flexural behaviours of OPSC by the addition of steel fibres of up to 3% by volume, to produce oil palm shell fibre-reinforced concrete (OPSFRC. The experimental results showed that the steel fibres significantly enhanced the mechanical properties of OPSFRC. The highest compressive strength, splitting tensile and flexural strengths of 55, 11.0 and 18.5 MPa, respectively, were achieved in the OPSFRC mix reinforced with 3% steel fibres. In addition, the flexural beam testing on OPSFRC beams with 3% steel fibres showed that the steel fibre reinforcement up to 3% produced notable increments in the moment capacity and crack resistance of OPSFRC beams, but accompanied by reduction in the ductility.

  11. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%.

  12. A coupled carbonation-rust formation mechanical damage model for steel corrosion in reinforced concrete

    International Nuclear Information System (INIS)

    Nguyen, Huyen; Bary, B.; L'Hostis, Valerie; DeLarrard, T.

    2014-01-01

    This paper aims at presenting a strategy to simulate the corrosion of steel reinforcement due to carbonation of concrete in atmospheric environment. We propose a model coupling drying, carbonation, diffusion of oxygen, formation of rust and mechanics to describe these phenomena. The rust layer is assumed to be composed of two sub-layers with different elastic modulus. An unstable layer with a low modulus (from 0.1 to 5 GPa) is located next to the transformed medium, and another more stable one with a higher modulus (from 100 to 150 GPa) at the interface with steel reinforcement. This model is applied to a numerical meso-structure composed of 4 phases: mortar matrix, randomly distributed aggregates, steel rebar and rust layers to underline the effect of aggregates on damage initiation and corresponding crack pattern of concrete cover. (authors)

  13. Nonlinear finite element modeling of concrete deep beams with openings strengthened with externally-bonded composites

    International Nuclear Information System (INIS)

    Hawileh, Rami A.; El-Maaddawy, Tamer A.; Naser, Mohannad Z.

    2012-01-01

    Highlights: ► A 3D nonlinear FE model is developed of RC deep beams with web openings. ► We used cohesion elements to simulate bond. ► The developed FE model is suitable for analysis of such complex structures. -- Abstract: This paper aims to develop 3D nonlinear finite element (FE) models for reinforced concrete (RC) deep beams containing web openings and strengthened in shear with carbon fiber reinforced polymer (CFRP) composite sheets. The web openings interrupted the natural load path either fully or partially. The FE models adopted realistic materials constitutive laws that account for the nonlinear behavior of materials. In the FE models, solid elements for concrete, multi-layer shell elements for CFRP and link elements for steel reinforcement were used to simulate the physical models. Special interface elements were implemented in the FE models to simulate the interfacial bond behavior between the concrete and CFRP composites. A comparison between the FE results and experimental data published in the literature demonstrated the validity of the computational models in capturing the structural response for both unstrengthened and CFRP-strengthened deep beams with openings. The developed FE models can serve as a numerical platform for performance prediction of RC deep beams with openings strengthened in shear with CFRP composites.

  14. Cracking behavior of reinforced concrete beams: experiment and simulations on the numerical influence of the steel-concrete bond

    International Nuclear Information System (INIS)

    Jason, L.; Torre-Casanova, A.; Pinelli, X.; Davenne, L.

    2013-01-01

    Experimental and numerical results are provided in this contribution to study the global and cracking behaviors of two reinforced concrete beams subjected to four point bending. Experimentally, the use of image correlation technique enables to obtain precise information concerning the cracking properties (spacing, cumulated, maximum and mean values of the opening). Numerically, two simulations are compared taking into account a bond model between steel and concrete or supposing a perfect relation between the two materials. In both cases, a good agreement is achieved between numerical and experimental results even if the introduction of the bond effects has a direct influence during the development of the cracks (better agreement during the 'active' cracking phase). (authors)

  15. Modeling of interaction between steel and concrete in continuously reinforced concrete pavements : final report.

    Science.gov (United States)

    2016-01-01

    Continuously reinforced concrete pavement (CRCP) contains continuous longitudinal reinforcement with no transverse : expansion within the early life of the pavement and can continue to develop cracks in the long-term. The : accurate modeling of CRCPs...

  16. Fire Response of Concrete Filled Hollow Steel Sections

    DEFF Research Database (Denmark)

    Nyman, Simon; Virdi, Kuldeep

    2011-01-01

    Advanced and simplified methods of analysis and design for the fire resistance of structural elements and assemblages of structures have been developed in recent years. Some simplified methods for the fire design of concrete filled tubes have appeared in Eurocode 4 part 1.2. Experience to date in...... hollow sections....

  17. Optimization of Concrete Composition in Radioactive Waste Management

    International Nuclear Information System (INIS)

    IIija, P.

    1999-01-01

    Low and Intermediate level radioactive waste re presents 95% of the total wastes that is conditioned into special concrete containers. Since these containers are to protect radioactive waste safely for about 300 years, the selection and precise control of physical and mechanical characteristics of materials is very important. After volume reduction and valuable components recovery, waste materials have to be conditioned for transport, storage and disposal. Conditioning is the waste management step in which radioactive wastes are immobilized and packed . In this paper methods and optimization of concrete container composition, used for storing radioactive waste, is presented

  18. Field Testing of Rapid Electrokinetic Nanoparticle Treatment for Corrosion Control of Steel in Concrete

    Science.gov (United States)

    Cardenas, Henry E.; Alexander, Joshua B.; Kupwade-Patil,Kunal; Calle, Luz Marina

    2009-01-01

    This work field tested the use of electrokinetics for delivery of concrete sealing nanoparticles concurrent with the extraction of chlorides. Several cylinders of concrete were batched and placed in immersion at the Kennedy Space Center Beach Corrosion Test Site. The specimens were batched with steel reinforcement and a 4.5 wt.% (weight percent) content of sodium chloride. Upon arrival at Kennedy Space Center, the specimens were placed in the saltwater immersion pool at the Beach Corrosion Test Site. Following 30 days of saltwater exposure, the specimens were subjected to rapid chloride extraction concurrent with electrokinetic nanoparticle treatment. The treatments were operated at up to eight times the typical current density in order to complete the treatment in 7 days. The findings indicated that the short-term corrosion resistance of the concrete specimens was significantly enhanced as was the strength of the concrete.

  19. Corrosion of the reinforcing steel in the inhibited sawdust concrete construction

    International Nuclear Information System (INIS)

    Kobuliev, Z.V.

    2005-01-01

    In the article described the way of protection of the reinforcing steel in sawdust concrete construction by adding to inhibited sawdust concrete mixture containing nitrate-nitride calcium chloride (NNCC) and (NH 4 ) 2 Cr 2 O 7 , also NaNO 2 + NaNO 3 +NH 4 Cl and CaCl 2 +(NH 4 ) 2 +Cr 2 . There is determined, that the use of these additives increase strength properties of sawdust concrete at 28 day to 40-55% in comparison with sawdust concrete containing CaCl 2 , and decrease its corrosion-resistance activity, and provided reliability under condition of double excess of inhibitor ions (NO 2- , Cr 2 O 7- ) in comparison with ions (Cl-)

  20. The effect of steel slag as a coarse aggregate and Sinabung volcanic ash a filler on high strength concrete

    Science.gov (United States)

    Karolina, R.; Putra, A. L. A.

    2018-02-01

    The Development of concrete technology is continues to grow. The requisite for efficient constructions that are often viewed in terms of concrete mechanical behavior, application on the field, and cost estimation of implementation increasingly require engineers to optimize construction materials, especially for concrete materials. Various types of concrete have now been developed according to their needs, such as high strength concrete. On high strength concrete design, it is necessary to consider several factors that will affect the reach of the quality strength, Those are cement, water cement ratio (w/c), aggregates, and proper admixture. In the use of natural mineral, it is important for an engineer to keep an eye on the natural conditions that have been explored. So the selection of aggregates as possible is a material that is not causing nature destruction. On this experiment the use of steel slag from PT.Growth Sumatra Industry as a substitute of coarse and fine aggregate, and volcanic ash of mount Sinabung as microsilka in concrete mixture substituted to create high strength concrete that is harmless for the environment. The use of mount sinabung volcanic ash as microsilika coupled with the use of Master Glenium Sky 8614 superplasticizer. This experiment intend to compare high strength concrete based slag steel as the main constituent aggregates and high strength concrete with a conventional mixture. The research result for 28 days old concrete shows that conventional concrete compressive strength is 67.567 MPa, slag concrete 75.958 Mpa, conventional tensile strength 5.435 Mpa while slag concrete 5.053 Mpa, conventional concrete bending strength 44064.96 kgcm while concrete slag 51473.94 kgcm and modulus of conventional concrete fracture 124.978 kg / cm2 while slag concrete 145.956 kg / cm2. Both concrete slump values shows similar results due to the use of superplasticizer.

  1. Research on the Properties of the Waste Glass Concrete Composite Foundation

    Science.gov (United States)

    Jia, Shilong; Chen, Kaihui; Chen, Zhongliang

    2018-02-01

    The composite foundation of glass concrete can not only reuse the large number of waste glass, but also improve the bearing capacity of weak foundation and soil with special properties. In this paper, the engineering properties of glass concrete composite foundation are studied based on the development situation of glass concrete and the technology of composite foundation.

  2. Superelastic SMA–FRP composite reinforcement for concrete structures

    International Nuclear Information System (INIS)

    Wierschem, Nicholas; Andrawes, Bassem

    2010-01-01

    For many years there has been interest in using fiber-reinforced polymers (FRPs) as reinforcement in concrete structures. Unfortunately, due to their linear elastic behavior, FRP reinforcing bars are never considered for structural damping or dynamic applications. With the aim of improving the ductility and damping capability of concrete structures reinforced with FRP reinforcement, this paper studies the application of SMA–FRP, a relatively novel type of composite reinforced with superelastic shape memory alloy (SMA) wires. The cyclic tensile behavior of SMA–FRP composites are studied experimentally and analytically. Tests of SMA–FRP composite coupons are conducted to determine their constitutive behavior. The experimental results are used to develop and calibrate a uniaxial SMA–FRP analytical model. Parametric and case studies are performed to determine the efficacy of the SMA–FRP reinforcement in concrete structures and the key factors governing its behavior. The results show significant potential for SMA–FRP reinforcement to improve the ductility and damping of concrete structures while still maintaining its elastic characteristic, typical of FRP reinforcement

  3. Composite layers in the high speed steels

    International Nuclear Information System (INIS)

    Koson, A.; Rutkowska, A.; Dabrowski, M.

    2002-01-01

    The production process and different properties of TiN, (TiA)(N and TiN + (TiAl)N coatings are described in this work. The coatings were obtained on fast-cutting steel 6-5-2(SW7M) after a typical heat treatment and gas nitriding. The following features were examined: thickness and hardness of produced layers as well as wearing quality (using T-0.5 tester). Composite layer of (TiAl)N has achieved the highest wearing quality in the range of wearing parameters applied. (author)

  4. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Serdar, Marijana [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Meral, Cagla [Middle East Technical University, Department of Civil Engineering, Ankara (Turkey); Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bjegovic, Dubravka [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Wenk, Hans-Rudolf [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.

  5. Effect of steel fibres on mechanical properties of high-strength concrete

    International Nuclear Information System (INIS)

    Holschemacher, K.; Mueller, T.; Ribakov, Y.

    2010-01-01

    Steel fibre reinforced concrete (SFRC) became in the recent decades a very popular and attractive material in structural engineering because of its good mechanical performance. The most important advantages are hindrance of macrocracks' development, delay in microcracks' propagation to macroscopic level and the improved ductility after microcracks' formation. SFRC is also tough and demonstrates high residual strengths after appearing of the first crack. This paper deals with a role of steel fibres having different configuration in combination with steel bar reinforcement. It reports on results of an experimental research program that was focused on the influence of steel fibre types and amounts on flexural tensile strength, fracture behaviour and workability of steel bar reinforced high-strength concrete beams. In the frame of the research different bar reinforcements (2o6 mm and 2o12 mm) and three types of fibres' configurations (two straight with end hooks with different ultimate tensile strength and one corrugated) were used. Three different fibre contents were applied. Experiments show that for all selected fibre contents a more ductile behaviour and higher load levels in the post-cracking range were obtained. The study forms a basis for selection of suitable fibre types and contents for their most efficient combination with regular steel bar reinforcement.

  6. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    International Nuclear Information System (INIS)

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM

  7. STUDY ON ANTI-CRACKING PERFORMANCE EVALUATION METHOD OF STEEL FIBER REINFORCED CERAMSITE CONCRETE (SFRCC BASED ON PARTLY-RESTRAINED SHRINKAGE RING

    Directory of Open Access Journals (Sweden)

    Zhang Yi-fan

    2017-12-01

    Full Text Available In the study of crack resistance of steel fiber reinforced concrete in steel fiber on concrete deformation ability and prevent the Angle of the micro cracks, and the lack of overall evaluation on the performance of steel fiber reinforced concrete crack. By tinder barrier-free restrain some experimental research on steel fiber ceramsite concrete shrinkage ring crack resistance, and use the test results within the definition of steel ring strain from expansion to contraction cut-off age for early and late ages, and the ages of the cut-off point for the early and the late steel fiber ceramsite concrete anti-cracking performance evaluation. The results show that the anti-cracking properties of the steel fiber ceramic concrete are improved with the increase of steel fiber content.

  8. Proposals for Calculation of Bucking Coefficient for Concrete-Filled Steel Tube Columns

    Science.gov (United States)

    Krishan, A. L.; Sagadatov, A. I.; Surovtsov, M. M.

    2017-11-01

    This paper demonstrates that the methodology currently standardized in Russia to factor in the flexibility of reinforced concrete components under extra-central compression produce results that satisfactorily match the experimental values; however, that only holds for the components with a flexibility of λ=40÷60. Given the complex stress state of the concrete core and the steel shell as well as due to the concrete-filled steel tube columns being prone to deformation, this method cannot be used to reliably calculate their load capacity. The literature review has revealed many researchers’ suggestions to factor in the flexibility of concrete-filled steel tubes by means of the buckling coefficient that reduces the limit value of longitudinal force a short compressed element can take. We have analyzed the methods currently standardized in Europe and China as well as more advanced methods proposed by Chinese scientists. Calculating by these methods led to the results that excessively deviated from experimental values. By statistically analyzing a large volume of own and third-party research data as well as the data obtained by non-linear deformation computing, we have derived a new formula to determine the bucking coefficient depending on the relative flexibility.

  9. Mechanical properties of cement concrete composites containing nano-metakaolin

    Science.gov (United States)

    Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana

    2017-11-01

    The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.

  10. Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete

    International Nuclear Information System (INIS)

    Michel, A.; Solgaard, A.O.S.; Pease, B.J.; Geiker, M.R.; Stang, H.; Olesen, J.F.

    2013-01-01

    Highlights: •Cracked plain and steel fibre reinforced concrete flexural beams were investigated. •“Instrumented rebars” provided location- and time-dependent corrosion measurements. •Interfacial condition can be used as a reliable indicator to quantify the risk of corrosion. •Simulated interfacial conditions are in very good agreement with all experimental observations. -- Abstract: Cracks in covering concrete are known to hasten initiation of steel corrosion in reinforced concrete structures. To minimise the impact of cracks on the deterioration of reinforced concrete structures, current approaches in (inter)national design codes often limit the concrete surface crack width. Recent investigations however, indicate that the concrete-reinforcement interfacial condition is a more fundamental criterion related to reinforcement corrosion. This work investigates the relation between macroscopic damage at the concrete-steel interface and corrosion initiation of reinforcement embedded in plain and fibre reinforced concrete. Comparisons of experimental and numerical results indicate a strong correlation between corrosion initiation and interfacial condition

  11. Concrete with steel furnace slag and fractionated reclaimed asphalt pavement.

    Science.gov (United States)

    2014-09-01

    Steel furnace slag (SFS) is an industrial by-product material that can contain free calcium oxide (CaO) and free magnesium oxide (MgO), both : of which can cause significant expansion when hydrated. SFS aggregates are therefore not commonly used in c...

  12. Enamel coated steel reinforcement for improved durability and life-cycle performance of concrete structures: microstructure, corrosion, and deterioration

    Science.gov (United States)

    Tang, Fujian

    This study is aimed (a) to statistically characterize the corrosion-induced deterioration process of reinforced concrete structures (concrete cracking, steel mass loss, and rebar-concrete bond degradation), and (b) to develop and apply three types of enamel-coated steel bars for improved corrosion resistance of the structures. Commercially available pure enamel, mixed enamel with 50% calcium silicate, and double enamel with an inner layer of pure enamel and an outer layer of mixed enamel were considered as various steel coatings. Electrochemical tests were respectively conducted on steel plates, smooth bars embedded in concrete, and deformed bars with/without concrete cover in 3.5 wt.% NaCl or saturated Ca(OH)2 solution. The effects of enamel microstructure, coating thickness variation, potential damage, mortar protection, and corrosion environment on corrosion resistance of the steel members were investigated. Extensive test results indicated that corrosion-induced concrete cracking can be divided into four stages that gradually become less correlated with corrosion process over time. The coefficient of variation of crack width increases with the increasing level of corrosion. Corrosion changed the cross section area instead of mechanical properties of steel bars. The bond-slip behavior between the corroded bars and concrete depends on the corrosion level and distribution of corrosion pits. Although it can improve the chemical bond with concrete and steel, the mixed enamel coating is the least corrosion resistant. The double enamel coating provides the most consistent corrosion performance and is thus recommended to coat reinforcing steel bars for concrete structures applied in corrosive environments. Corrosion pits in enamel-coated bars are limited around damage locations.

  13. Optimization of Packing Density of M30 Concrete With Steel Slag As Coarse Aggregate Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Arivoli M.

    2017-09-01

    Full Text Available Concrete plays a vital role in the design and construction of the infrastructure. To meet the global demand of concrete in future, it is becoming a challenging task to find suitable alternatives to natural aggregates. Steel slag is a by-product of steel making process. The steel slag aggregates are characterized by studying particle size and shape, physical and chemical properties, and mechanical properties as per IS: 2386-1963. The characterization study reveals the better performance of steel slag aggregate over natural coarse aggregate. M30 grade of concrete is designed and natural coarse aggregate is completely replaced by steel slag aggregate. Packing density of aggregates affects the characteristics of concrete. The present paper proposes a fuzzy system for concrete mix proportioning which increases the packing density. The proposed fuzzy system have four sub fuzzy system to arrive compressive strength, water cement ratio, ideal grading curve and free water content for concrete mix proportioning. The results show, the concrete mix proportion of the given fuzzy model agrees with IS method. The comparison of results shows that both proposed fuzzy system and IS method, there is a remarkable increase in compressive strength and bulk density, with increment in the percentage replacement of steel slag.

  14. Influence of chemical bonding of chlorides with aluminates in cement hidratation process on corrosion steel bars in concrete

    Directory of Open Access Journals (Sweden)

    Bikić Farzet H.

    2010-01-01

    Full Text Available The presence of chlorides in concrete is a permanent subject of research because they cause corrosion of steel bars. Chlorides added to the concrete during preparation, as accelerators of the bonding of cement minerals process, enter into reaction with aluminates, creating a phase known as chloroaluminate hydrates. In everyday conditions the product of chemical bonding between chlorides and aluminates is usually monochloridealuminate C3A·CaCl2·Hx, better known as Friedel's salt. In this paper, the influence of chemical bonding of chlorides with aluminates during the process of cement hydration on corrosion of steel bars in concrete was investigated. The process of chlorides bonding with aluminates yielding monochloride aluminate is monitored by XRD analyses. It was found that the amount of chlorides bonding with aluminates increases with an increase of temperature, and as a result, reduces the amount of 'free' chlorides in concrete. Potentiodynamic measurements have shown that increase in temperature of the heat treatment of working electrodes by chlorides leads to a reduction of steel bars corrosion as a result of either the increase of the monochloride-aluminate content or the decrease of free chlorides amount. Chlorides bound in chloroaluminate hydrates do not cause activation of steel bars corrosion in concrete. It was also proven that the increase of free chlorides concentration in the concrete leads to intensification of steel bars corrosion. This additionally approves that free chlorides are only the activators of process of steel bars corrosion in the concrete.

  15. Passivating action of an organic inhibitor on the steel of reinforced concrete

    International Nuclear Information System (INIS)

    Anzola, E.; Malave, R.; Barrios, V.; Villarroel, D.; Tiso, A.; Parra, M.

    2003-01-01

    An electrochemical evaluation has been made on a concrete mix with an organic inhibitor added, in order to establish its contribution to the formation of a protective film on the steel surface. Concrete cylinders (6''x ), each with a 3/8 steel bar and two graphite electrodes embedded, with two water/cement ratios (0.40 and 0.55) were used as testing samples. Reinforced steel bars, both chemically cleaned and in the as rolled condition, embedded in salted and unsalted concrete mixes, were used to test if chemical adsorption occurs in each condition. Samples were soaked into brine solution during 365 days as to simulate a sea environment. During exposure period readings of potential, corrosion rate and potentiodynamical cyclic curves were made. It can be, concluded that the organic inhibitor needs a low water(cement ratio mix (0.40) in order to react via a chemical adsorption on the steel, being more effective on cleaned surfaces. (Author) 10 refs

  16. Steel fibre concrete, a safer material for reactor construction. A general theory for rupture prediction

    International Nuclear Information System (INIS)

    Rammant, J.P.; Van Laethem, L.; Backx, E.

    1977-01-01

    The effect of steel fibre reinforcement on the mechanical behavior of concrete reactor structures is studied. It is shown that this material leads to a higher safety factor for highly stressed concrete structures like prestressed concrete pressure vessels. The reinforcement of concrete with short steel fibres results clearly in a fundamental change of the material properties. The study comprises basic experiments, the elaboration of an expression of the material laws, the development of a general computer program and the comparison of computational results with more elaborate experiments. Basic experimental work is conducted to determine the material characteristics of the fibre reinforced concrete. It is shown how the fibre reinforcement mechanism is translated into mathematical formulae by expressing the principal characteristics as matrix relationships. These relationships describe the elasto-plastic behavior and the cracked behavior. Probabilistic principles are used to express to fibre efficiency, such that a general stress-strain relationship is incorporated in a subsequent computer program. A general finite element program is developed which includes the new matrix relationships, the pull-out of fibres and the general stress-strain equations. A nonlinear calculation method gives the propagation of the distributed cracks with increasing load untill failure of the structure. Similarly, thermal cycling conditions are accounted for. For example the crack propagation in a fibre reinforced beam was measured by the photostress coating technique: the comparison with the computed crack propagation reveals an excellent agreement. Other comparative studies on simple structural parts are also reported

  17. Influence of steel fibers on the shear and flexural performance of high-strength concrete beams tested under blast loads

    Science.gov (United States)

    Algassem, O.; Li, Y.; Aoude, H.

    2017-09-01

    This paper presents the results of a study examining the effect of steel fibres on the blast behaviour of high-strength concrete beams. As part of the study, a series of three large-scale beams built with high-strength concrete and steel fibres are tested under simulated blast loading using the shock-tube testing facility at the University of Ottawa. The specimens include two beams built with conventional high-strength concrete (HSC) and one beam built with high-strength concrete and steel fibres (HSFRC). The effect of steel fibres on the blast behaviour is examined by comparing the failure mode, mid-span displacements and, overall blast resistance of the specimens. The results show that the addition of steel fibres in high-strength concrete beams can prevent shear failure and substitute for shear reinforcement if added in sufficient quantity. Moreover, the use of steel fibres improves flexural response under blast loading by reducing displacements and increasing blast capacity. Finally, the provision of steel fibres is found to improve the fragmentation resistance of high-strength concrete under blast loads.

  18. Effect of internal short fibers, steel reinforcement, and surface layer on impact and penetration resistance of concrete

    Directory of Open Access Journals (Sweden)

    Ali Abd_Elhakam Aliabdo

    2013-09-01

    Full Text Available This paper presents an experimental program to investigate the impact and penetration resistance of concrete. The research work is divided into two approaches. These approaches are effect of concrete constituents and effect of surface layer. Effect of concrete aggregate type, w/c ratio, fiber type, fiber shape, fiber volume fraction, and steel reinforcement is considered in the first approach. The second approach includes using fiber reinforced concrete and glass fiber reinforced polymer as surface layers. The evaluating tests include standard impact test according to ASTM D 1557 and suggested simulated penetration test to measure the impact and penetration resistance of concrete. The test results of plain and fibrous concrete from ASTM D 1557 method indicated that steel fiber with different configurations and using basalt have a great positive effect on impact resistance of concrete. Moreover, the simulated penetration test indicates that steel fibers are more effective than propylene fibers, type of coarse aggregate has negligible effect, and steel fiber volume fraction has a more significant influence than fiber shape for reinforced concrete test panels. Finally, as expectable, surface properties of tested concrete panels have a significant effect on impact and penetration resistance.

  19. Corrosion resistance of steel fibre reinforced concrete – a literature review

    DEFF Research Database (Denmark)

    Marcos Meson, Victor; Michel, Alexander; Solgaard, Anders

    2016-01-01

    Steel fibre reinforced concrete (SFRC) is increasingly being used in the construction of prefabricated segmental linings for bored tunnels, since it entails simplified production processes and higher quality standards. However, international standards and guidelines are not consistent regarding...... the consideration of steel fibres for the structural verification of SFRC elements exposed to corrosive environments, hampering the development of civil infrastructure built of SFRC. In particular, the long-term effect of exposure to chlorides is in focus and under discussion. This paper reviews the existing...... the existence of a critical crack width, below 0.20 mm, where corrosion of carbon-steel fibres is not critical and the structural integrity of the exposed SFRC can be ensured over the long-term. A doctoral project investigating chloride-induced corrosion of steel fibres on cracked SFRC has been initiated...

  20. A study on the fatigue behavior of Steel Fiber Reinforced Concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong-Il; Chai, Won-Kyu; Son, Young-Hyun; Park, Cheol-Woo

    1992-01-01

    Fatigue tests are performed in order to investigate the fatigue behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Thirty SFRC beams are used in this test. The relationships between repeated loading cycle and mid-span deflection of the beams are observed under the three-point loading system. From the test results, the effects of the fiber content and the fiber aspect ratio on the concrete fatigue behavior were studied. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams are also suggested. (author)

  1. Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, D.I.

    1995-01-01

    Fracture and fatigue tests were performed in order to investigate the fracture and fatigue behavior of steel-fibre-reinforced concrete (SFRC) structures. 33 SFRC beams were used in the fracture and fatigue tests. The relationship between loading, strain and midspan deflection of the beams was observed under the three-point loading system.From the test results, the effects of the fiber content, fiber aspect ratio and notch-to-depth ratio on the concrete fracture and fatigue behavior were studied, and the fatigue strengths of SFRC beams were calculated. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams were also suggested. (orig.)

  2. A study on the fracture energy of Steel Fiber Reinforced Concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong-Il; Sim Jongsung; Chai, Won-Kyu; Lee, Myeong-Gu

    1991-01-01

    Fracture test is performed in order to investigate the fracture behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Thirty six SFRC beams are used in this test. The relationships between loading, strain, and mid-span deflection of the beams are observed under the three point loading system. From the test results, the effects of the fiber content, the fiber aspect ratio and the initial crack ratio on the concrete fracture behavior were studied, and the flexural strength and the fracture energy of SFRC beams were also calculated. According to the regression technique, some empirical formulae for predicting the flexural strength and the fracture energy of SFRC beams are also suggested. (author)

  3. Characterization of aerosols produced in cutting steel components and concrete structures by means of a laser beam

    International Nuclear Information System (INIS)

    Tarroni, G.; Melandri, C.; Zaiacomo, T. de; Lombard, C.C.; Formignani, M.

    1986-01-01

    The technique of cutting based on the use of a laser beam is studied as a possible method in nuclear plant dismantling (OECD, 1982). The technique implies a relevant problem of contamination due to high aerosol production. Tests have been carried out to characterize the aerosol produced in cutting steel and concrete in terms of size spectrum, electric charge and chemical composition in comparison with bulk material composition. The high temperature value locally reached in the cutting zone causes material vaporization with emission of very fine primary particles. In such conditions aerosol coagulation is very fast (it occurs in less than 1s) and leads to aggregates. Research has been aimed at finding the characteristics of the aerosol removable from the cutting zone by ventilation and evaluating the morphology of the particles that diffuse at approximately 50 cm from the generation point, or settle on the cutting-box base. (author)

  4. Numerical approach of the bond stress behavior of steel bars embedded in self-compacting concrete and in ordinary concrete using beam models

    Directory of Open Access Journals (Sweden)

    F.M. Almeida Filho

    Full Text Available The present study evaluates the bond behavior between steel bars and concrete by means of a numerical analysis based on Finite Element Method. Results of a previously conducted experimental program on reinforced concrete beams subjected to monotonic loading are also presented. Two concrete types, self-compacting concrete and ordinary concrete, were considered in the study. Non-linear constitutive relations were used to represent concrete and steel in the proposed numerical model, aiming to reproduce the bond behavior observed in the tests. Experimental analysis showed similar results for the bond resistances of self-compacting and ordinary concrete, with self-compacting concrete presenting a better performance in some cases. The results given by the numerical modeling showed a good agreement with the tests for both types of concrete, especially in the pre-peak branch of the load vs. slip and load vs. displacement curves. As a consequence, the proposed numerical model could be used to estimate a reliable development length, allowing a possible reduction of the structure costs.

  5. Ultrasonic assessment of service life of concrete structures subject to reinforcing steel corrosion

    Science.gov (United States)

    Udegbunam, Ogechukwu Christian

    Over half of the bridges in the United States were built before 1970. Such bridges and the network of roads that they carry include the Inter State system, which was built as part of the great public works program, following the end of the Second World War. During that era, the emphasis was on strength design and economical construction of new structures, and not much premium was placed on durability and maintainability concerns. Since the end of this construction boom in the early 1970s, the concern for the durability of transportation infrastructure has steadily gained prominence among those agencies that must secure, program and administer funds for maintaining highway networks. The objective of this research was to develop a nondestructive method of assessing the durability of concrete bridge decks susceptible to damage from corrosion of embedded reinforcing steel. This was accomplished by formulating a holistic approach that accounts for the major factors that influence corrosion based deterioration of reinforced concrete. In this approach, the assessment of the durability of concrete bridge decks is based on a model that estimates the time it takes for the cover concrete to fail a result of stresses caused by expansion of reinforcing steel bars, due to corrosion activities. This time to failure is comprised of two distinct periods that must be evaluated before the problem can be solved. The research consisted of an experimental program and an analytical study. In the experimental program concrete specimens were cast and tested to determine their diffusivity and mechanical properties. The diffusivity was used to evaluate the period it takes for corrosion of the reinforcing bars to commence. In the analytical study, the resistance of the concrete structure against the internal forces caused by corrosion was evaluated with the finite element techniques. This resistance was used to evaluate the period defining the failure of the cover concrete. These two periods

  6. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Directory of Open Access Journals (Sweden)

    Xingjun Lv

    2011-11-01

    Full Text Available In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  7. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    Science.gov (United States)

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  8. 75 FR 1755 - Prestressed Concrete Steel Wire Strand From the People's Republic of China: Postponement of Final...

    Science.gov (United States)

    2010-01-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-945] Prestressed Concrete Steel Wire Strand From the People's Republic of China: Postponement of Final Determination AGENCY: Import Administration, International Trade Administration, Department of Commerce. DATES: Effective Date: January 13...

  9. Design of a 3-D Magnetic Mapping System to Locate Reinforcing Steel in Concrete Pavements : Technical Summary

    Science.gov (United States)

    2017-12-01

    This report outlines the design, fabrication, and testing of a 3-D magnetic mapping system used to locate reinforcing steel in concrete pavements developed at Kansas State University (KSU) in 2006. The magnetic sensing functionality is based on the p...

  10. Prediction on flexural strength of encased composite beam with cold-formed steel section

    Science.gov (United States)

    Khadavi, Tahir, M. M.

    2017-11-01

    A flexural strength of composite beam designed as boxed shaped section comprised of lipped C-channel of cold-formed steel (CFS) facing each other with reinforcement bars is proposed in this paper. The boxed shaped is kept restrained in position by a profiled metal decking installed on top of the beam to form a slab system. This profiled decking slab is cast by using self-compacting concrete where the concrete is in compression when load is applied to the beam. Reinforcement bars are used as shear connector between slab and CFS as beam. A numerical analysis method proposed by EC4 is used to predict the flexural strength of the proposed composite beam. It was assumed that elasto-plastic behaviour is developed in the cross -sectional of the proposed beam. The calculated predicted flexural strength of the proposed beam shows reasonable flexural strength for cold-formed composite beam.

  11. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Directory of Open Access Journals (Sweden)

    Wenning Shen

    Full Text Available The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel. Keywords: Stainless steel, Carbon steel, Anti-corrosion, Conductivity, Electrochemical, EIS

  12. Results of polarization resistance and impedance of steel bars embedded in carbonated concrete contaminated with chlorides

    International Nuclear Information System (INIS)

    Andrade, C.; Alonso, C.; Gonzalez, J.A.

    1989-01-01

    Laboratory results of the corrosion rate of steel embedded in carbonated concrete contaminated with chlorides determined through the Polarization Resistance method are presented here as examples of the possibilities offered by this technique in order to monitor the reinforcement corrosion process. The Rp technique has the advantages of fast response, simple and relatively accurate. Contrasts with gravimetric losses are presented. The A.C. Impedance measurements determined on the same specimens are also presented. The difficulties found in the interpretation of the results are stressed. R T values cannot easily be obtained. Several electrical circuits which may model the behaviour of the steel/concrete system are discussed. Finally, comments on the basic criteria to interpret results of both techniques are given. (author) 4 refs., 6 figs

  13. Residual characteristic properties of ternary blended steel fibre reinforced concrete subjected to sustained elevated temperature

    Directory of Open Access Journals (Sweden)

    Sinha Deepa A.

    2013-09-01

    Full Text Available To study the behavior of ternary blended steel fibre reinforced concrete when subjected to 800 Deg.C and 1000 Deg.C for 3 hours. It has been found that the ternary blended steel fibre reinforced concrete containing (FA+GGBFS and (FA+MK offer higher resistance to sustained elevated temperatures upto 800 Deg.C, where as the blend containing (FA+SF does not offer any resistance at this temperature. The study reveals that the blend containing (FA+GGBFS and (FA+MK gives highest resistance at replacement levels of (10+20 and (15+15 respectively at sustained exposure to 800 Deg.C.

  14. Experimental results of core-concrete interactions using molten steel with zirconium

    International Nuclear Information System (INIS)

    Copus, E.R.; Blose, R.E.; Brockmann, J.E.; Gomez, R.D.; Lucero, D.A.

    1990-07-01

    Four inductively sustained experiments, QT-D, QT-E, SURC-3, and SURC-3A, were performed in order to investigate the additional effects of zirconium metal oxidation on core debris-concrete interactions using molten stainless steel as the core debris simulant. The QT-D experiment ablated 18 cm of concrete axially during 50 minutes of interaction on limestone-common sand concrete using a 10 kg charge of 304 stainless steel to which 2 kg of zirconium metal was added subsequent to the onset of erosion. The QT-E experiment ablated 10 cm of limestone-common sand concrete axially and 10 cm radially during 35 minutes of sustained interaction using 50 kg of stainless steel and 10 kg of zirconium. The SURC-3 experiment had a 45 kg charge of stainless steel to which 1.1 kg of zirconium was subsequently added. SURC-3 axially eroded 33 cm of limestone concrete during two hours of interaction. The fourth experiment, SURC-3A, eroded 25 cm of limestone concrete axially and 9 cm radially during 90 minutes of sustained interaction. It utilized 40 kg of stainless steel and 2.2 kg of added zirconium as the charge material. All four experiments showed in a large increase in erosion rate, gas production, and aerosol release following the addition of Zr metal to the melt. In the SURC-3 and SURC-3A tests the measured erosion rates increased from 14 cm/hr to 27 cm/hr, gas release increased from 50 slpm to 100 slpm, and aerosol release increased from .02 q/sec to .04 q/sec. The effluent gas was composed of 80% CO, 10% CO 2 , and 2% H 2 before Zr addition and 92% CO, 4% CO 2 , 4% H 2 during the Zr interactions which lasted 10--20 minutes. Addition measurements indicated that the melt pool temperature ranged from 1600 degree C--1800 degree and that the aerosols produced were comprised primarily of Te and Fe oxides. 21 refs., 120 figs., 51 tabs

  15. Experimental results of core-concrete interactions using molten steel with zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Copus, E.R.; Blose, R.E.; Brockmann, J.E.; Gomez, R.D.; Lucero, D.A. (Sandia National Labs., Albuquerque, NM (USA))

    1990-07-01

    Four inductively sustained experiments, QT-D, QT-E, SURC-3, and SURC-3A, were performed in order to investigate the additional effects of zirconium metal oxidation on core debris-concrete interactions using molten stainless steel as the core debris simulant. The QT-D experiment ablated 18 cm of concrete axially during 50 minutes of interaction on limestone-common sand concrete using a 10 kg charge of 304 stainless steel to which 2 kg of zirconium metal was added subsequent to the onset of erosion. The QT-E experiment ablated 10 cm of limestone-common sand concrete axially and 10 cm radially during 35 minutes of sustained interaction using 50 kg of stainless steel and 10 kg of zirconium. The SURC-3 experiment had a 45 kg charge of stainless steel to which 1.1 kg of zirconium was subsequently added. SURC-3 axially eroded 33 cm of limestone concrete during two hours of interaction. The fourth experiment, SURC-3A, eroded 25 cm of limestone concrete axially and 9 cm radially during 90 minutes of sustained interaction. It utilized 40 kg of stainless steel and 2.2 kg of added zirconium as the charge material. All four experiments showed in a large increase in erosion rate, gas production, and aerosol release following the addition of Zr metal to the melt. In the SURC-3 and SURC-3A tests the measured erosion rates increased from 14 cm/hr to 27 cm/hr, gas release increased from 50 slpm to 100 slpm, and aerosol release increased from .02 q/sec to .04 q/sec. The effluent gas was composed of 80% CO, 10% CO{sub 2}, and 2% H{sub 2} before Zr addition and 92% CO, 4% CO{sub 2}, 4% H{sub 2} during the Zr interactions which lasted 10--20 minutes. Addition measurements indicated that the melt pool temperature ranged from 1600{degree}C--1800{degree} and that the aerosols produced were comprised primarily of Te and Fe oxides. 21 refs., 120 figs., 51 tabs.

  16. Investigation of early timber–concrete composite bridges in the United States

    Science.gov (United States)

    James P. Wacker; Alfredo Dias; Travis K. Hosteng

    2017-01-01

    The use of timber–concrete composite (TCC) bridges in the United States dates back to circa 1925. Two different TCC systems were constructed during this early period. The first system included a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system included sawn timber stringers supporting a concrete deck top layer. Records...

  17. Computertomographic investigation of steel fibre reinforced sprayed concrete using multi-dimensional transfer functions [Computertomografische Untersuchung von Stahlfaserspritzbeton mit mehrdimensionalen Transferfunktionen

    KAUST Repository

    Pittino, Gerhard

    2011-06-01

    The composite material steel fibre reinforced concrete or steel fibre reinforced sprayed concrete (SFRS) is widely used in geotechnics. For the modelling of the mechanical behaviour the knowledge of the distribution and orientation of the fibres in the concrete is of particular importance. For a bachelor thesis the steel fibres in drill cores were investigated by computed tomography (CT) at the Austrian Foundry Research Institute (ÖGI). The orientation of each fibre was calculated using a STL-interface and further software tools. The results were statistically evaluated and graphically represented using Schmidt\\'s net. This time consuming (expensive) method was automated by a post-processing of VRVis. With that tool the steel fibres in the sample can be explored, classified and visually examined in real-time regarding their orientation in two angles. Different possibilities of statistical evaluation can be implemented. A real-time direction sphere histogram (DSH), comparable to Schmidt\\'s net in 3D allows the user to recognise the distribution of orientations of the selected fibres at a glance. The colour-coding of the different orientations is also used for the 3D-volume-view of the fibres, to easily identify the spatial distribution of orientations in the SFRS sample. © 2011 Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin.

  18. Generalised fracture mechanics approach to the interfacial failure analysis of a bonded steel-concrete joint

    Czech Academy of Sciences Publication Activity Database

    De Corte, W.; Helincks, P.; Boel, V.; Klusák, Jan; Seitl, Stanislav; De Schutter, G.

    2017-01-01

    Roč. 11, č. 42 (2017), s. 147-160 ISSN 1971-8993 R&D Projects: GA MŠk(CZ) LQ1601; GA ČR(CZ) GA16-18702S Institutional support: RVO:68081723 Keywords : Epoxy adhesive * Fracture mechanics * Interfacial properties * Numerical study * Push-out test * Steel-concrete joint Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  19. Failure conditions from push-out tests of a steel-concrete joint: experimental results

    Czech Academy of Sciences Publication Activity Database

    Helincks, P.; De Corte, W.; Klusák, Jan; Seitl, Stanislav; Boel, V.; De Schutter, G.

    488-489, - (2012), s. 714-717 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics - FDM 2011 /10./. Dubrovník, 19.09.2011-21.09.2011] R&D Projects: GA ČR GAP108/10/2049 Institutional research plan: CEZ:AV0Z20410507 Keywords : steel-concrete joint * push-out test * shear bond strength Subject RIV: JL - Materials Fatigue, Friction Mechanics

  20. End view of steel-concrete prototype yoke for LEP dipoles

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The magnetic field needed in the LEP dipole magnets was rather low, of a fraction of tesla. This lead to the conception of a novel yoke structure consisting of stacks of 1.5 mm thick low-carbon steel laminations spaced by 4.1 mm with the spaces filled with concrete. For details see LEP-Note 118,1978 and LEP-Note 233,1980. See also 7908528X, 8111710X, 8111529.

  1. Effects of aggregate grading on the properties of steel fibre-reinforced concrete

    Science.gov (United States)

    Acikgens Ulas, M.; Alyamac, K. E.; Ulucan, Z. C.

    2017-09-01

    This study investigates the effects of changing the aggregate grading and maximum aggregate size (D max ) on the workability and mechanical properties of steel fibre-reinforced concrete (SFRC). Four different gradations and two different D max were used to produce SFRC mixtures with constant cement dosages and water/cement ratios. Twelve different concrete series were tested. To observe the properties of fresh concrete, slump and Ve-Be tests were performed immediately after the mixing process to investigate the effects of time on workability. The hardened properties, such as the compressive, splitting tensile and flexural strengths, were also evaluated. In addition, the toughness of the SFRC was calculated. Based on our test results, we can conclude that the grading of the aggregate and the D max have remarkable effects on the properties of fresh and hardened SFRC. In addition, the toughness of the SFRC was influenced by changing the grading of the aggregate and the D max .

  2. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Lee

    2015-03-01

    Full Text Available In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter. In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  3. Structural design of nuclear power plant using stiffened steel plate concrete structure

    International Nuclear Information System (INIS)

    Moon, Ilhwan; Kim, Sungmin; Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang

    2009-01-01

    Nuclear power is an alternative energy source that is conducive to mitigate the environmental strains. The countries having nuclear power plants are encouraging research and development sector to find ways to construct safer and more economically feasible nuclear power plants. Modularization using Steel Plate Concrete(SC) structure has been proposed as a solution to these efforts. A study of structural modules using SC structure has been performed for shortening of construction period and enhancement of structural safety of NPP structures in Korea. As a result of the research, the design code and design techniques based on limit state design method has been developed. The design code has been developed through various structural tests and theoretical studies, and it has been modified by application design of SC structure for NPP buildings. The code consists of unstiffened SC wall design, stiffened SC wall design, Half-SC slab design, stud design, connection design and so on. The stiffened steel plate concrete(SSC) wall is SC structure whose steel plates with ribs are composed on both sides of the concrete wall, and this structure was developed for improved constructability and safety of SC structure. This paper explains a design application of SC structure for a sample building specially devised to reflect all of major structural properties of main buildings of APR1400. In addition, Stiffening effect of SSC structure is evaluated and structural efficiency of SSC structure is verified in comparison with that of unstiffened SC structure. (author)

  4. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    Science.gov (United States)

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  5. Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the estimation of the electrical corrosion potential of uncoated reinforcing steel in field and laboratory concrete, for the purpose of determining the corrosion activity of the reinforcing steel. 1.2 This test method is limited by electrical circuitry. Concrete surface in building interiors and desert environments lose sufficient moisture so that the concrete resistivity becomes so high that special testing techniques not covered in this test method may be required (see 5.1.4.1). Concrete surfaces that are coated or treated with sealers may not provide an acceptable electrical circuit. The basic configuration of the electrical circuit is shown in Fig. 1. 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It ...

  6. Diurnal thermal analysis of microencapsulated PCM-concrete composite walls

    International Nuclear Information System (INIS)

    Thiele, Alexander M.; Sant, Gaurav; Pilon, Laurent

    2015-01-01

    Highlights: • Transient heat conduction across microencapsulated PCM-concrete walls was simulated. • Equivalent homogeneous wall with effective thermal properties was rigorously derived. • Adding PCM to the wall increases daily energy savings and delays peak thermal load. • Energy savings is maximum when PCM melting temperature equals indoor temperature. • Energy savings are limited in extreme climates but time delay can be large. - Abstract: This paper examines the benefits of adding microencapsulated phase change material (PCM) to concrete used in building envelopes to reduce energy consumption and costs. First, it establishes that the time-dependent thermal behavior of microencapsulated PCM-concrete composite walls can be accurately predicted by an equivalent homogeneous wall with appropriate effective thermal properties. The results demonstrate that adding microencapsulated PCM to concrete resulted in a reduction and a time-shift in the maximum heat flux through the composite wall subjected to diurnal sinusoidal outdoor temperature and solar radiation heat flux. The effects of the PCM volume fraction, latent heat of fusion, phase change temperature and temperature window, and outdoor temperature were evaluated. Several design rules were established including (i) increasing the PCM volume fraction and/or enthalpy of phase change increased the energy flux reduction and the time delay, (ii) the energy flux reduction was maximized when the PCM phase change temperature was close to the desired indoor temperature, (iii) the optimum phase change temperature to maximize the time delay increased with increasing average outdoor temperature, (iv) in extremely hot or cold climates, the thermal load could be delayed even though the reduction in daily energy flux was small, and (v) the choice of phase change temperature window had little effect on the energy flux reduction and on the time delay. This analysis can serve as a framework to design PCM composite walls

  7. The efficiency of a corrosion inhibitor on steel in a simulated concrete environment

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, Nina; Kosec, Tadeja, E-mail: tadeja.kosec@zag.si; Legat, Andraž

    2016-12-01

    The aim of the present work was to characterize the efficiency of a corrosion inhibitor on steel in a simulated concrete pore solution. Laboratory measurements were performed at various chloride and inhibitor concentrations in order to simulate different applications of the inhibitor when used for the protection or rehabilitation of steel reinforcement in concrete. Two electrochemical techniques, i.e. potentiodynamic polarization scans and electrochemical impedance spectroscopy, were used for this study. The exposed surfaces of the steel specimens were subsequently investigated by Raman spectroscopy and scanning electron microscopy. It was found that the inhibitor can efficiently retard the corrosion of steel in a simulated concrete pore solution at concentrations of the inhibitor >2.0% and of chlorides <0.3% at a pH 10.5. On the other hand, when these conditions are not fulfilled, localized corrosion was observed. The results of the Raman and SEM/EDS analysis showed various morphologies of corrosion products and different types of corrosion attack depending on the pH of the pore solution, and the applied concentrations of the chlorides and the inhibitor. - Highlights: • Electrochemical studies performed at various Cl{sup −} and inhibitor concentrations. • Exposed steel surfaces investigated by Raman spectroscopy and SEM. • Cl{sup −}/inhibitor ratio is important parameter for the inhibitor's efficiency. • The corrosion can re-occur if the concentration of the inhibitor is reduced. • Different corrosion behaviour and oxides in the presence of inhibitor and/or Cl{sup −}.

  8. Experiment on interface separation detection of concrete-filled steel tubular arch bridge using accelerometer array

    Science.gov (United States)

    Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian

    2015-04-01

    Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.

  9. Conditional release of steel from decommissioning in a form of reinforced concrete - 59058

    International Nuclear Information System (INIS)

    Pritrsky, Jozef; Brodnan, Miroslav; Necas, Vladimir

    2012-01-01

    The paper deals with the conditional release of low-level radioactive steel from decommissioning in a form of reinforced concrete. The main goal was to determine limits for radionuclides concentration and calculate the annual dose for a member of a critical group of public, which should not exceed 10 μSv/year (according to IAEA Safety Guide RS-G-1.7). Corrosion is the principle mechanism of radionuclides release in this case; therefore effort was devoted to assess the time-dependent rate of steel reinforcement corrosion. It was assumed, that concrete is initially highly alkaline (with pH of 12 to 13) because of hydration products such as calcium hydroxide, which keeps the steel surface passive and protected from corrosion. However, carbonic acid resulting from carbon dioxide and water in the atmosphere can react with these products to produce calcium carbonate. This process is referred to as a 'carbonation', and leads after a period of time to significant reduction of the alkalinity (to pH as low as 8.5) followed by destruction of passive layer and starting corrosion of the embedded steel. The analytical principles and a set of input data have been implemented into a mathematical model developed by means of GoldSim software. The paper presents the results of mathematical simulation of corrosion process, which are compared with real measured values. (authors)

  10. Development of oxide dispersion strengthened 2205 duplex stainless steel composite

    Directory of Open Access Journals (Sweden)

    Oladayo OLANIRAN

    2015-05-01

    Full Text Available Composites of duplex stainless steel were produced by oxide dispersion strengthening with comparatively improved mechanical properties by hot press sintering of partially stabilized Zirconia (PSZ, 3% yttria, mole fraction dispersion in 2205 duplex stainless steels. Ceramic oxide was added as reinforcement, while chromium (Cr and Nickel (Ni were incorporated to maintain the austenitic/ferritic phase balance of the duplex stainless steel. The powders and sintered were characterized in detail using scanning electron microscopy (SEM and X-ray diffraction (XRD. The microstructural evolution and phase formation during oxide dispersion strengthening of duplex stainless steel composites were investigated. The influence of composition variation of the reinforcements on the microstructural and corrosion behaviour in simulated mine water of the composites were investigated. In this manuscript, it was established that composition has great influence on the structure/properties relationship of the composites developed.

  11. The Effect of Type and Volume Fraction (Vf) of Steel Fiber on the Mechanical Properties of Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Ghanbarpour, S.; Mazaheripour, H.; Mirmoradi, S. H.

    2010-01-01

    is to investigate the effects of type and volume fraction of steel fiber on the compressive strength, split tensile strength, flexural strength and modulus of elasticity of steel fiber reinforced self-compacting concrete (SFRSCC). Design/methodology/approach – For this purpose, Micro wire and Wave type steel fibers......Purpose – Self-compacting concrete (SCC) offers several economic and technical benefits; the use of steel fibers extends its possibilities. Steel fibers bridge cracks, retard their propagation, and improve several characteristics and properties of the SCC. The purpose of this paper...... – It was found that, inclusion of steel fibers significantly affect the split tensile and flexural strength of SCC accordance with type and vf. Besides, mathematical expressions were developed to estimate the flexural, modulus of elasticity and split tensile strength of SFRSCCs regarding of compressive strength...

  12. Flexural Behavior of High-Volume Steel Fiber Cementitious Composite Externally Reinforced with Basalt FRP Sheet

    Directory of Open Access Journals (Sweden)

    Seungwon Kim

    2016-01-01

    Full Text Available High-performance fiber-reinforced cementitious composites (HPFRCCs are characterized by unique tensile strain hardening and multiple microcracking behaviors. The HPFRCC, which demonstrates remarkable properties such as strength, ductility, toughness, durability, stiffness, and thermal resistance, is a class of fiber cement composite with fine aggregates. It can withstand tensile stresses by forming distributed microcracks owing to the embedded fibers in the concrete, which improve the energy absorption capacity and apparent ductility. This high energy absorbing capacity can be enhanced further by an external stiff fiber-reinforced polymer (FRP. Basalt fabric is externally bonded as a sheet on concrete materials to enhance the durability and resistance to fire and other environmental attacks. This study investigates the flexural performance of an HPFRCC that is externally reinforced with multiple layers of basalt FRP. The HPFRCC considered in the study contains steel fibers at a volume fraction of 8%.

  13. A micromorphic model for steel fiber reinforced concrete.

    Science.gov (United States)

    Oliver, J; Mora, D F; Huespe, A E; Weyler, R

    2012-10-15

    A new formulation to model the mechanical behavior of high performance fiber reinforced cement composites with arbitrarily oriented short fibers is presented. The formulation can be considered as a two scale approach, in which the macroscopic model, at the structural level, takes into account the mesostructural phenomenon associated with the fiber-matrix interface bond/slip process. This phenomenon is contemplated by including, in the macroscopic description, a micromorphic field representing the relative fiber-cement displacement. Then, the theoretical framework, from which the governing equations of the problem are derived, can be assimilated to a specific case of the material multifield theory. The balance equation derived for this model, connecting the micro stresses with the micromorphic forces, has a physical meaning related with the fiber-matrix bond slip mechanism. Differently to previous procedures in the literature, addressed to model fiber reinforced composites, where this equation has been added as an additional independent ingredient of the methodology, in the present approach it arises as a natural result derived from the multifield theory. Every component of the composite is defined with a specific free energy and constitutive relation. The mixture theory is adopted to define the overall free energy of the composite, which is assumed to be homogeneously constituted, in the sense that every infinitesimal volume is occupied by all the components in a proportion given by the corresponding volume fraction. The numerical model is assessed by means of a selected set of experiments that prove the viability of the present approach.

  14. Steel fiber reinforced concrete pipes: part 1: technological analysis of the mechanical behavior

    Directory of Open Access Journals (Sweden)

    A. D. de Figueiredo

    Full Text Available This paper is the first part of an extensive work focusing the technological development of steel fiber reinforced concrete pipes (FRCP. Here is presented and discussed the experimental campaign focusing the test procedure and the mechanical behavior obtained for each of the dosages of fiber used. In the second part ("Steel fiber reinforced concrete pipes. Part 2: Numerical model to simulate the crushing test", the aspects of FRCP numerical modeling are presented and analyzed using the same experimental results in order to be validated. This study was carried out trying to reduce some uncertainties related to FRCP performance and provide a better condition to the use of these components. In this respect, an experimental study was carried out using sewage concrete pipes in full scale as specimens. The diameter of the specimens was 600 mm, and they had a length of 2500 mm. The pipes were reinforced with traditional bars and different contents of steel fibers in order to compare their performance through the crushing test. Two test procedures were used in that sense. In the 1st Series, the diameter displacement was monitored by the use of two LVDTs positioned at both extremities of the pipes. In the 2nd Series, just one LVDT is positioned at the spigot. The results shown a more rigidity response of the pipe during tests when the displacements were measured at the enlarged section of the socket. The fiber reinforcement was very effective, especially when low level of displacement was imposed to the FRCP. At this condition, the steel fibers showed an equivalent performance to superior class pipes made with traditional reinforced. The fiber content of 40 kg/m3 provided a hardening behavior for the FRCP, and could be considered as equivalent to the critical volume in this condition.

  15. Current state of knowledge on the behavior of steel liners in concrete containments subjected to overpressurization loads

    International Nuclear Information System (INIS)

    von Riesemann, W.A.; Parks, M.B.

    1993-01-01

    In the United States, concrete containment buildings for commercial nuclear power plants have steel liners that act as the intemal pressure boundary. The liner abuts the concrete, acting as the interior concrete form. The liner is attached to the concrete by either studs or by a continuous structural shape (such as a T-section or channel) that is either continuously or intermittently welded to the liner. Studs are commonly used in reinforced concrete containments, while prestressed containments utilize a structural element as the anchorage. The practice in some countries follows the US practice, while in other countries the containment does not have a steel liner. In this latter case, there is a true double containment, and the annular region between the two containments is vented. This paper will review the practice of design of the liner system prior to the consideration of severe accident loads (overpressurization loads beyond the design conditions)

  16. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, Brian A.; Patil, Anjali N.; Klis, Jeffrey M. [Brigham Young University, Department of Electrical and Computer Engineering, Provo, Utah, 84602 (United States); Hurd, Randy C.; Truscott, Tadd T. [Brigham Young University, Department of Mechanical Engineering, Provo, Utah, 84602 (United States); Guthrie, W. Spencer [Brigham Young University, Department of Civil and Environmental Engineering, Provo, Utah, 84602 (United States)

    2014-02-18

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work, numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials.

  17. Passivation of duplex stainless steel in solutions simulating chloride-contaminated concrete

    Directory of Open Access Journals (Sweden)

    Takenouti, H.

    2007-12-01

    Full Text Available Most studies published to date on the corrosion behaviour of stainless reinforcing steel are based on austenitic steel. The market presence of corrugated duplex steel is growing, however. The present study compared passivity in 2205 type duplex and 304 type austenitic stainless steel. Polarization tests in chloride-containing Ca(OH2 solutions confirmed the exceptional performance of duplex steels. X-ray photoelectronic spectroscopy (XPS showed that the passive layer generated on duplex stainless steel in media simulating concrete pore solutions had a higher Cr content than the layer formed on steel in contact with the air. The XPS results also revealed that in duplex steel the form adopted by the passive layer Fe oxides was Fe3O4 in the solutions simulating concrete, rather than Fe2O3, as in duplex steel exposed to air. Electrochemical impedance spectroscopy (EIS can be used to monitor the transformations taking place in the passive layer and analyze the factors involved.La mayoría de los estudios publicados hasta el momento sobre el comportamiento frente a la corrosión de armaduras de acero inoxidable se basan en aceros austeníticos. Sin embargo, la presencia en el mercado de aceros corrugados dúplex es cada vez más importante. En este trabajo se analiza la pasividad de un acero inoxidable dúplex tipo 2205 en comparación con la de un inoxidable austenítico tipo 304. Los ensayos de polarización en disoluciones de Ca(OH2 con cloruros confirman el excepcional comportamiento de los aceros dúplex. La espectroscopía fotoelectrónica de rayos X (XPS informa de que la capa pasiva generada en aceros inoxidables dúplex en medios que simulan la disolución de los poros del hormigón posee mayor contenido en óxidos de Cr que la formada en aire. También se puede deducir de los resultados de XPS que los óxidos de Fe de la capa pasiva de los aceros dúplex se encuentran en forma de Fe3O4 en las disoluciones que simulan el hormigón en vez de en

  18. Discussion on the standardization of concrete composition for radiation shielding design 2. Evaluation of the effect of the composition variance on the shielding property

    International Nuclear Information System (INIS)

    Ogata, Tomohiro; Kimura, Ken-ichi; Nakata, Mikihiro; Okuno, Koichi; Ishikawa, Tomoyuki

    2017-01-01

    Radiation Shielding Material Standardization Working Group of AESJ has been organized to establish Japanese standard concrete composition for radiation shielding design. We have collected concrete composition data to organize a representative concrete composition data. Neutron and Gamma dose rates penetrated through several concrete compositions are calculated by one dimensional discrete ordinate code ANISN. Effects of the variation of concrete composition on the neutron and gamma dose are evaluated. In this paper, recent standardization activity is summarized. (author)

  19. The Effects of Substitution of The Natural Sand by Steel Slag in The Properties of Eco-Friendly Concrete with The 1:2:3 Ratio Mixing Method

    Science.gov (United States)

    Rahmawati, A.; Saputro, I. N.

    2018-03-01

    This study was motivated by the need for the development of eco-friendly concrete, and the use of large quantities of steel slag as an industrial waste which is generated from the steel manufacturers. This eco-friendly concrete was developed with steel slag as a substitute for natural sand. Properties of concrete which used waste slag as the fine aggregate with the 1 cement: 2 sand : 3 coarse aggregate ratio mixing method were examined. That ratio was in volume. Then a part of natural sand replaced with steel slag sand in six variations percentages that were 0 %, 20 %, 40 %, 60 %, 80 % and 100 %. The compressive strength, tensile strength, and flexural strength of concrete specimens were determined after curing for 28 days. The research results demonstrate that waste steel slag can increase the performance of concrete. The optimal percentage substitution natural sand by steel slag sand reached of slag on the percentage of 20 % which reached strength ratios of steel slag concrete to the strength of conventional concrete with natural sandstone were 1.37 for compressive strength and 1.13 for flexural strength. While the tensile strength reached a higher ratio of concrete with steel slag sand to the concrete with natural sand on the 80% substitution of natural sand with steel slag sand.

  20. Mechanical Properties of Steel-FRP Composite Bars under Tensile and Compressive Loading

    Directory of Open Access Journals (Sweden)

    Zeyang Sun

    2017-01-01

    Full Text Available The factory-produced steel-fiber reinforced polymer composite bar (SFCB is a new kind of reinforcement for concrete structures. The manufacturing technology of SFCB is presented based on a large number of handmade specimens. The calculated stress-strain curves of ordinary steel bar and SFCB under repeated tensile loading agree well with the corresponding experimental results. The energy-dissipation capacity and residual strain of both steel bar and SFCB were analyzed. Based on the good simulation results of ordinary steel bar and FRP bar under compressive loading, the compressive behavior of SFCB under monotonic loading was studied using the principle of equivalent flexural rigidity. There are three failure modes of SFCB under compressive loading: elastic buckling, postyield buckling, and no buckling (ultimate compressive strength is reached. The increase in the postyield stiffness of SFCB rsf can delay the postyield buckling of SFCB with a large length-to-diameter ratio, and an empirical equation for the relationship between the postbuckling stress and rsf is suggested, which can be used for the design of concrete structures reinforced by SFCB to consider the effect of reinforcement buckling.

  1. Finite element analysis of composite concrete-timber beams

    Directory of Open Access Journals (Sweden)

    N. C. S. FORTI

    Full Text Available AbstractIn the search for sustainable construction, timber construction is gaining in popularity around the world. Sustainably harvested wood stores carbon dioxide, while reforestation absorbs yet more CO2. One technique involves the combination of a concrete slab and a timber beam, where the two materials are assembled by the use of flexible connectors. Composite structures provide reduced costs, environmental benefits, a better acoustic performance, when compared to timber structures, and maintain structural safety. Composite structures combine materials with different mechanical properties. Their mechanical performance depends on the efficiency of the connection, which is designed to transmit shear longitudinal forces between the two materials and to prevent vertical detachment. This study contributes with the implementation of a finite element formulation for stress and displacement determination of composite concrete-timber beams. The deduced stiffness matrix and load vector are presented along to numerical examples. Numerical examples are compared to the analytical equations available in Eurocode 5 and to experimental data found in the literature.

  2. Designing of the chemical composition of steels basing on the hardenability of constructional steels

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Sitek, W.

    2003-01-01

    The paper presents the original method of modelling of the relationships between chemical composition of alloy constructional steel and its hardenability, employing neural networks. Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The model of neural networks, making it possible to design the steel chemical composition, basing on the known Jominy hardenability curve shape, was developed also and fully verified numerically. (author)

  3. Mechanical behaviour of steel fibre-reinforced alkali activated slag concrete

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2009-03-01

    Full Text Available This study addressed the mechanical behaviour of a steel fibre-reinforced alternative concrete made from waterglass (Na2SiO3.nH2O+NaOH- activated Colombian blast furnace slag. The mixes studied were prepared with 400 kg of cement and the fibres were added in proportions of 40 and 120 kg per cubic metre of concrete. 7-, 14- and 28-day concrete was tested for compressive, splitting tensile and flexural strength. The results obtained showed that adding steel fibre to alkaline concrete lowered early age compressive strength, and that this decline was more intense with rising volumes of steel. Flexural and splitting tensile strength grew, however, enhancing the toughness of the material. As a general rule, the mechanical strength of the plain and fibre-reinforced alkaline concretes studied was higher than exhibited by conventional ordinary Portland cement concrete prepared with similar proportions of cement and fibre.En este estudio se investigó el comportamiento mecánico de hormigones alternativos reforzados con fibras de acero, basados en una escoria siderúrgica colombiana activada alcalinamente con waterglass (Na2SiO3.nH2O+NaOH. Las mezclas en estudio fueron preparadas con 400 kg de cemento y las fibras fueron incorporadas en proporciones de 40 kg y 120 kg por metro cúbico de hormigón, respectivamente. Se evaluó el comportamiento mecánico de los hormigones frente a esfuerzos de compresión, tracción indirecta y flexión a edades de curado de 7, 14 y 28 días. Los resultados obtenidos indican que la incorporación de fibras de acero en los hormigones alcalinos reduce la resistencia a la compresión a edades tempranas siendo superior la pérdida de resistencia a mayores volúmenes de fibra incorporados, mientras que la resistencia a la flexión y tracción indirecta se incrementan significativamente, mejorando la tenacidad del material. En términos generales, es posible concluir que el comportamiento mecánico exhibido por los hormigones

  4. A very sensitive LSC procedure to determine Ni-63 in environmental samples, steel and concrete

    International Nuclear Information System (INIS)

    Scheuerer, C.; Schupfner, R.; Schuettelkopf, H.

    1995-01-01

    This procedure to determine Ni-63 contributes to a safe and economically reasonable decommissioning of nuclear power plants. Co-60, Fe-55 and Ni-63 are the most abundant long-lived radionuclides associated with contaminated piping, hardware and concrete for a period of several decades of years after shutdown. Samples are carefully ashed leached, or dissolved by suitable mixtures of acids. The analysis starts with the absorption Ni 2+ on the chelating resin CHELEX 100. The next purification steps include an anionic exchange column and a precipitation as Ni-dimethyl-glyoxime, which is extracted into chloroform. After reextraction with sulfuric acid the solution containing Ni 2+ is mixed with a scintillation cocktail and counted in an anticoincidence shielded LSC. The decontamination factors are determined for all important artificially and naturally occurring radionuclides ranging form above 10 4 to 10 9 . The chemical yield adopts a value of (95±5)%. Up to maximum sample amounts of 0.4 g steel, 5 g concrete and about 100 g of environmental samples the detection limits are about 5 mBq per sample or 12 mBq/g steel, 1 mBq/g concrete and 0.05 mBq/g environmental sample at a counting time of 1000 minutes. (author) 16 refs.; 2 figs.; 2 tabs

  5. A fast and very sensitive LSC procedure to determine Fe-55 in steel and concrete

    International Nuclear Information System (INIS)

    Koenig, W.; Schupfner, R.; Schuettelkopf, H.

    1995-01-01

    This procedure determining Fe-55 contributes to a safe and economically reasonable decommissioning of nuclear power plants. Co-60, Fe-55 and Ni-63 are the most abundant, long-lived radionuclides associated with contaminated piping, hardware, and concrete for several decades of years after shutdown. The analysis of Fe takes about three hours until the measurement with an anticoincidence shielded LSC Quantulus 1220 starts. The decontamination factors are ranging from greater than 10 5 to 10 9 for all important naturally and artificially occurring radionuclides except Sb. The chemical yield stays constant at a value of about 92% up to 0.1 g stable Fe in steel, concrete or other material. The detection limits (confidence level 95%) reach values of 8 mBq per sample or about 60 mBq/g steel and 1.5 mBq/g concrete at a counting time of 1000 minutes. Four to eight analyses are performed by one technician during eight hours. (author) 16 refs.; 2 figs.; 4 tabs

  6. Magnetic-based NDE of steel in prestressed and post-tensioned concrete bridges

    Science.gov (United States)

    Ghorbanpoor, Al

    1998-03-01

    This paper addresses a study, funded by the Federal Highway Administration (FHWA), the U.S. Department of Transportation (DOT), that is currently underway at the University of Wisconsin-Milwaukee. The objective of the study is to develop an automated non-destructive testing system based on the magnetic flux leakage principle that would allow assessment of the condition of reinforcing and prestressing steels in concrete bridge components. Corrosion or cracking of steel within concrete members will be detected and evaluated. The system will be used as a self clamping and moving sensing device that can be installed on a concrete girder. Data from the sensing device is transmitted via a wireless communication system to data recording/analysis equipment on the ground. The sensing device may also be operated manually to allow inspection of local areas such as the end bearing or cable anchorage locations in cable bridges. Through performing a correlation analysis of recorded data, an assessment of the condition of the member under test is made. Reference data base for the correlation analysis is established through laboratory and field testing with known conditions.

  7. Combined Transverse Steel-External FRP Confinement Model for Rectangular Reinforced Concrete Columns

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Rahmani

    2016-02-01

    Full Text Available Recently, the need to increase the strength of reinforced concrete members has become a subject that civil engineers are interested in tackling. Of the many proposed solutions, fiber-reinforced polymer (FRP materials have attracted attention due to their superior properties, such as high strength-to-weight ratio, high energy absorption and excellent corrosion resistance. FRP wrapping of concrete columns is done to enhance the ultimate strength due to the confinement effect, which is normally induced by steel ties. The existence of the two confinement systems changes the nature of the problem, thus necessitating specialized nonlinear analysis to obtain the column’s ultimate capacity. Existing research focused on a single confinement system. Furthermore, very limited research on rectangular sections was found in the literature. In this work, a model to estimate the combined behavior of the two systems in rectangular columns is proposed. The calculation of the effective lateral pressure is based on the Lam and Teng model and the Mander model for FRP wraps and steel ties, respectively. The model then generates stress-strain diagrams for both the concrete core and the cover. The model was developed for the analysis in extreme load events, where all possible contributions to the column’s ultimate capacity should be accounted for without any margin of safety. The model was validated against experiments, and the results obtained showed good agreement with almost all of the available experimental data.

  8. Comparison of carbon footprints of steel versus concrete pipelines for water transmission.

    Science.gov (United States)

    Chilana, Lalit; Bhatt, Arpita H; Najafi, Mohammad; Sattler, Melanie

    2016-05-01

    The global demand for water transmission and service pipelines is expected to more than double between 2012 and 2022. This study compared the carbon footprint of the two most common materials used for large-diameter water transmission pipelines, steel pipe (SP) and prestressed concrete cylinder pipe (PCCP). A planned water transmission pipeline in Texas was used as a case study. Four life-cycle phases for each material were considered: material production and pipeline fabrication, pipe transportation to the job site, pipe installation in the trench, and operation of the pipeline. In each phase, the energy consumed and the CO2-equivalent emissions were quantified. It was found that pipe manufacturing consumed a large amount of energy, and thus contributed more than 90% of life cycle carbon emissions for both kinds of pipe. Steel pipe had 64% larger CO2-eq emissions from manufacturing compared to PCCP. For the transportation phase, PCCP consumed more fuel due to its heavy weight, and therefore had larger CO2-eq emissions. Fuel consumption by construction equipment for installation of pipe was found to be similar for steel pipe and PCCP. Overall, steel had a 32% larger footprint due to greater energy used during manufacturing. This study compared the carbon footprint of two large-diameter water transmission pipeline materials, steel and prestressed concrete cylinder, considering four life-cycle phases for each. The study provides information that project managers can incorporate into their decision-making process concerning pipeline materials. It also provides information concerning the most important phases of the pipeline life cycle to target for emission reductions.

  9. Structural integrity of power generating speed bumps made of concrete foam composite

    Science.gov (United States)

    Syam, B.; Muttaqin, M.; Hastrino, D.; Sebayang, A.; Basuki, W. S.; Sabri, M.; Abda, S.

    2018-02-01

    In this paper concrete foam composite speed bumps were designed to generate electrical power by utilizing the movements of commuting vehicles on highways, streets, parking gates, and drive-thru station of fast food restaurants. The speed bumps were subjected to loadings generated by vehicles pass over the power generating mechanical system. In this paper, we mainly focus our discussion on the structural integrity of the speed bumps and discuss the electrical power generating speed bumps in another paper. One aspect of structural integrity is its ability to support designed loads without breaking and includes the study of past structural failures in order to prevent failures in future designs. The concrete foam composites were used for the speed bumps; the reinforcement materials are selected from empty fruit bunch of oil palm. In this study, the speed bump materials and structure were subjected to various tests to obtain its physical and mechanical properties. To analyze the structure stability of the speed bumps some models were produced and tested in our speed bump test station. We also conduct a FEM-based computer simulation to analyze stress responses of the speed bump structures. It was found that speed bump type 1 significantly reduced the radial voltage. In addition, the speed bump is equipped with a steel casing is also suitable for use as a component component in generating electrical energy.

  10. Study of the compressive behavior of short concrete columns confined by fiber reinforced composite

    International Nuclear Information System (INIS)

    Benzaid, Riad; Mesbah, Habib; Chikh, Nasr eddine

    2009-01-01

    Fiber reinforced polymer (FRP) composites are very attractive for use in civil engineering applications due to their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance, light weight, and potentially high durability. There is a growing interest in the use of FRP for strengthening of concrete structures such as buildings, bridges, chimneys, etc. This is mainly due to their tailorable performance characteristics, ease of application, and low life cycle costs. The present paper deals with the analysis of experimental results, in terms of load carrying capacity and strains, obtained from tests on circular and square prismatic high strength concrete specimens, strengthened with external E-glass fiber reinforced polymer (GFRP). The parameters considered are the number of composite layers, the corner radius for square shape, and the relation of GFRP confinement with steel reinforcement. All the test specimens were loaded to failure in axial compression and the behavior of the specimens in the axial directions was investigated. The obtained results showed that the efficiency of the confinement was very sensitive to the specimen cross section geometry (circular and square) and the confining stress expressed in the number of the GFRP sheet layers applied. In square cross sections, the stress-strain curve was influenced by the radius to which the corners of the section are rounded off, in order to avoid the breakage of the fibers. (author)

  11. FLEXURAL TESTING OF WOOD-CONCRETE COMPOSITE BEAM MADE FROM KAMPER AND BANGKIRAI WOOD

    Directory of Open Access Journals (Sweden)

    Fengky Satria Yoresta

    2015-07-01

    Full Text Available Certain wood has a tensile strength that almost equal with steel rebar in reinforced concrete beams. This research aims to understand the capacity and flexural behavior of concrete beams reinforced by wood (wood-concrete composite beam. Two different types of beams based on placement positions of wood layers are proposed in this study. Two kinds of wood used are consisted of Bangkirai (Shorea laevifolia and Kamper (Cinnamomum camphora, meanwhile the concrete mix ratio for all beams is 1 cement : 2 fine aggregates : 3 coarse aggregates. Bending test is conducted by using one-point loading method. The results show that composite beam using Bangkirai wood is stronger than beams using Kamper wood. More thicker wood layer in tensile area will increase the flexural strength of beams. Crack patterns identified could be classified into flexural cracks, shear cracks, and split on wood layer   Beberapa jenis kayu tertentu memiliki kekuatan tarik yang hampir sama dengan tulangan baja pada balok beton bertulang. Penelitian ini bertujuan memahami kapasitas dan perilaku lentur balok beton bertulang yang diperkuat menggunakan kayu (balok komposit beton-kayu. Dua tipe balok yang berbeda berdasarkan posisi penempatan kayu digunakan dalam penelitian ini. Dua jenis kayu yang digunakan adalah kayu Bangkirai (Shorea laevifolia and Kamper (Cinnamomum camphora, sementara itu rasio campuran beton untuk semua balok menggunakan perbandingan 1 semen : 2 agregat halus : 3 agregat kasar. Pengujian lentur dilakukan menggunakan metode one-point loading. Hasil penelitian menunjukkan bahwa balok komposit dengan kayu Bangkirai lebih kuat dibandingkan balok dengan kayu Kamper. Semakin tebal lapisan kayu yang berada di daerah tarik akan meningkatkan kekuatan lentur balok. Pola kerusakan yang teridentifikasi dapat diklasifikasikan menjadi retak lentur, retak geser, dan pecah pada kayu REFERENCES Boen T. (2010. Retrofitting Simple Buildings Damaged by Earthquakes. World Seismic

  12. Studies on connecting structure between steel shell and steel reinforced concrete; Kokaku to tekkotsu tekkin concrete tono ketsugo kozo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, A. [Kinki University, Osaka (Japan). Faculty of Science and Engineering; Morikawa, H.; Ito, N. [Metropolitan Expressway Public Corp., Tokyo (Japan)

    1996-02-15

    On the insert reinforcing bar structure for the connecting part of the main tower of cable stayed bridges, this paper reports verification results on a load resistant safety with a full-scale model, structure analysis and construction work. The basic structure was composed of a drilled steel shell, inserted reinforcing bars, fixing structure of bars in lining concrete of the shell and a pressure bearing plate. As an experimental result, the connecting part had a sufficient load carrying capacity against both tensile and compressive loads. The shear stress of the insert reinforcing bar structure was estimated successfully under von Mises`s condition. The shear spring constant in deformation characteristics was linearly proportional to an inserted reinforcing bar ratio. In earthquake, nearly 60% of an allowable compressive load was transferred to concrete through the pressure bearing plate. The analytical results of load resistant deformation characteristics of the connecting part well agreed with experimental ones, and the proposed analytical model was applicable to estimation of a dynamic behavior. 5 refs., 22 figs., 4 tabs.

  13. Post-cracking tensile behaviour of steel-fibre-reinforced roller-compacted-concrete for FE modelling and design purposes

    International Nuclear Information System (INIS)

    Jafarifar, N.; Pilakoutas, K.; Angelakopoulos, H.; Bennett, T.

    2017-01-01

    Fracture of steel-fibre-reinforced-concrete occurs mostly in the form of a smeared crack band undergoing progressive microcracking. For FE modelling and design purposes, this crack band could be characterised by a stress-strain (σ-ε) relationship. For industrially-produced steel fibres, existing methodologies such as RILEM TC 162-TDF (2003) propose empirical equations to predict a trilinear σ-ε relationship directly from bending test results. This paper evaluates the accuracy of these methodologies and their applicability for roller-compacted-concrete and concrete incorporating steel fibres recycled from post-consumer tyres. It is shown that the energy absorption capacity is generally overestimated by these methodologies, sometimes up to 60%, for both conventional and roller-compacted concrete. Tensile behaviour of fibre-reinforced-concrete is estimated in this paper by inverse analysis of bending test results, examining a variety of concrete mixes and steel fibres. A multilinear relationship is proposed which largely eliminates the overestimation problem and can lead to safer designs. [es

  14. Corrosion protection of the reinforcing steels in chloride-laden concrete environment through epoxy/polyaniline–camphorsulfonate nanocomposite coating

    International Nuclear Information System (INIS)

    Pour-Ali, Sadegh; Dehghanian, Changiz; Kosari, Ali

    2015-01-01

    Highlights: • Epoxy/polyaniline–camphorsulfonate nanocomposite coating well protects steel rebar. • Coating performance is evaluated by impedance measurements up to 1 year. • Ultimate bond strength between the coated rebars and concrete is measured. • Self-compacting concrete shows better anticorrosive property compared to normal one. - Abstract: In this study, an epoxy/polyaniline–camphorsulfonate nanocomposite (epoxy/PANI–CSA) is employed to protect reinforcing steels in chloride-laden concrete environment. The synthesized nanocomposite was characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. Bare, epoxy-coated and epoxy/PANI–CSA nanocomposite-coated steel rebars were embedded in normal and self-compacting concretes. To evaluate their corrosion behaviors, open circuit potential and impedance measurements were performed for the duration of 1 year. Ultimate bond strength of concrete with the reinforcement bars were measured in corroded and uncorroded conditions. It was found that epoxy/PANI–CSA coating provides good corrosion resistance and durable bond strength with concrete for steel rebars

  15. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete.

    Science.gov (United States)

    Song, Weimin; Yin, Jian

    2016-08-18

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  16. Standard test method for initial screening of corrosion inhibiting admixtures for steel in concrete

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers a procedure for determining the effects of chemical admixtures on the corrosion of metals in concrete. This test method can be used to evaluate materials intended to inhibit chloride-induced corrosion of steel in concrete. It can also be used to evaluate the corrosivity of admixtures by themselves or in a chloride environment. This test is not applicable for emulsions. 1.2 &solely-SI-units; 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Structural aspects of cold-formed steel section designed as U-shape composite beam

    Science.gov (United States)

    Saggaff, Anis; Tahir, Mahmood Md.; Azimi, Mohammadamin; Alhajri, T. M.

    2017-11-01

    Composite beam construction usually associated with old-style Hot-Rolled Steel Section (HRSS) has proven to act much better in compare with Cold-Formed Steel Section (CFSS) sections due to thicker section. Due, it's getting popular to replace HRSS with CFSS in some aspects as a composite beam. The advantages such as lightweight, cost effective and easy to install have contributed to the apply CFSS as a preferred construction material for composite beam. There is a few technical data available regarding the application of the usage of CFSS as a composite system, despite the potentials use for residential and light-weight industrial constructions. This paper presents an experimental tests results which have been conducted using CFSS as composite beam. Composite action of CFSS arranged as double beam with Self-Compacting Concrete (SCC) slab are integrated together with bolted shear connectors were used. A full-scale test comprised of 3 proposed composite beam specimens with bolted shear connector spaced at 300 mm interval of grade 8.8 was using single nut with washer on flange of CFS, cast to the slab and loaded until failed. The test show that the bolted shear connector yielded better capacity of ultimate strength and ultimate moment for the proposed composite beam. It can be concluded that, bolted shear connectors of 16 mm in diameter performed better than the other diameter size of bolted shear connectors.

  18. Interfacial shear behavior of composite flanged concrete beams

    Directory of Open Access Journals (Sweden)

    Moataz Awry Mahmoud

    2014-08-01

    Full Text Available Composite concrete decks are commonly used in the construction of highway bridges due to their rapid constructability. The interfacial shear transfer between the top slab and the supporting beams is of great significance to the overall deck load carrying capacity and performance. Interfacial shear capacity is directly influenced by the distribution and the percentage of shear connectors. Research and design guidelines suggest the use of two different approaches to quantify the required interfacial shear strength, namely based on the maximum compressive forces in the flange at mid span or the maximum shear flow at the supports. This paper investigates the performance of flanged reinforced concrete composite beams with different shear connector’s distribution and reinforcing ratios. The study incorporated both experimental and analytical programs for beams. Key experimental findings suggest that concentrating the connectors at the vicinity of the supports enhances the ductility of the beam. The paper proposes a simple and straight forward approach to estimate the interfacial shear capacity that was proven to give good correlation with the experimental results and selected code provisions. The paper presents a method to predict the horizontal shear force between precast beams and cast in-situ slabs.

  19. The influence of repeated loading on work of the steel fiber concrete drainage trays and pipes on the roads

    Directory of Open Access Journals (Sweden)

    Andriichuk Oleksandr

    2017-01-01

    Full Text Available The drainage system is one of the components of the road design. The condition of the subgrade and pavement depends on its effectiveness. The main structural elements of the drainage system on the roads are gutters and pipes. They are made of concrete or reinforced concrete. Under the influence of climatic factors and fluctuations of the vibration caused by the vehicles movement on the surface, it occurs destruction: formation of cracks, potholes, husking of concrete, destruction of protective layer of concrete, etc. It should be noted that these structures perceive the dynamic and thermal effects. The low fracture materials toughness poses the issue of searching ways of its increase. One solution of this problem is the use of dispersion-reinforced concrete gutters and pipes. The article presents the results of research strength, crack resistance and deformability of gutters and pipes using steel fiber reinforced concrete under the action of repeated loads

  20. Effect of Using Metakaolin on Chloride Ion Penetration in High Performance Steel Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Adnan Mohammed Shihab

    2016-03-01

    Full Text Available This paper attempts to reduce the penetrability of high performance steel fiber reinforced concrete to chloride ions originating from external sources, by using High Reactivity Metakaolin (HRM as a highly active pozzolanic material, in order to prolong the time to initiation of the steel fibers corrosion and to minimize concrete damage that may occur due to the exposure to chloride ion penetration. According to pozzolanic activity index (P.A.I., 8% content of HRM was used as a partial replacement by weight of cement with 2% steel fibers by volume of concrete. During the exposure period of 300 days in 4.5% of NaCl solution, the total and free chloride contents (Cltotal, Clfree with the chloride profiles at the ages of 28 and 300 days were investigated. Also the rapid chloride penetrability test (RCPT, compressive and flexural strengths tests were conducted at the ages of 28, 90, 180 and 300 days. Results showed that the incorporation of 8% HRM caused a reduction in the (Clfree/Cltota ratio, the chloride penetration depth and the electrical conductivity with percentages of 21%, 40% and 43% respectively after 300 days exposure to chloride solution in comparing with the mix of 0% HRM. Results also indicated that the losses in compressive and flexural strengths after exposure of 300 days to chloride solution for the mix incorporating 8% HRM were by 5% and 5.8% respectively while they reached 9.5% and 11% respectively for the mix without HRM in relation to the correspondent test specimens cured in tap water.

  1. Strength Properties of Foamed Concrete Containing Crushed Steel Slag as Partial Replacement of Sand with Specific Gradation

    Directory of Open Access Journals (Sweden)

    Tiong Hock Yong

    2017-01-01

    Full Text Available Lightweight construction material, notably foamed concrete, had become more favourable to reduce building weight and cost, accelerate construction process, and ease handling of precast segment. Simultaneously, rapid development had result in price rising of conventional material and environmental issue due to abundant wastes, for instance steel slag. As a consequence, feasibility of steel slag to be incorporated in lightweight foamed concrete for both structural and nonstructural purpose is worth to be investigated. This paper is aimed to evaluate the effects of crushed steel slag, as partial replacement of sand with specific gradation, on performance of lightweight foamed concrete (LFC with density of 1600 kg/m3 to 1700 kg/m3 in terms of compressive and tensile strengths. Different steel slag based LFCs were developed by replacing 0, 25, 50, 75 and 100% of steel slag for sand. Different water to cement ratios (w/c and dosages of super-plasticizer (sp were adopted to confirm certain workability, strength properties was then studied for ages of 7 and 28 days. The laboratory results showed that lightweight foamed concrete with incorporation of crushed steel slag has decreased strength; however it still achieves structural strength of 17 MPa when replacement level is less than 25% at density of 1600 kg/m3 to 1700 kg/m3.

  2. Examination of leakage aspects through concrete - steel interfaces at and around containment penetration assemblies

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.; Sai, A.S.R.; Basu, P.C.

    1994-01-01

    Penetration assemblies are parts required to be provided in the containment wall/dome to permit piping, mechanical devices, equipments, electrical cables, personnel movements etc. Integrity of arrangements with respect to leak tightness at or around these penetration assemblies, is of utmost importance for achieving safe functioning of containment. Considering the feasibilities in controlling leakages along different possible paths, it has been found necessary to examine in detail the leakage possibilities at concrete - steel interfaces at and around penetration assemblies. The present paper addresses this issue with respect to the important related aspects like constructional details, testing conditions, normal operating conditions, and the accidental situation associated with containment structures. (author)

  3. The use of concrete-filled steel structures for modular construction of advanced reactors

    International Nuclear Information System (INIS)

    Braverman, J.; Morante, R.; Hofmayer, C.; Graves, H.

    1997-01-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. This paper presents the results of a research program which evaluated the use of modular construction for safety-related structures in advanced nuclear power plant designs. The research program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules

  4. Cymbopogon citratus and NaNO2 Behaviours in 3.5% NaCl-Immersed Steel-Reinforced Concrete: Implications for Eco-Friendly Corrosion Inhibitor Applications for Steel in Concrete

    Directory of Open Access Journals (Sweden)

    Joshua Olusegun Okeniyi

    2018-01-01

    Full Text Available This paper studies behaviours of Cymbopogon citratus leaf-extract and NaNO2, used as equal-mass admixture models, in 3.5% NaCl-immersed steel-reinforced concrete by nondestructive electrochemical methods and by compressive-strength improvement/reduction effects. Corrosion-rate, corrosion-current, and corrosion-potential constitute electrochemical test-techniques while compressive-strength effect investigations followed ASTM C29 and ASTM C33, in experiments using positive-controls for the electrochemical and compressive-strength studies. Analyses of the different electrochemical test-results mostly portrayed agreements on reinforcing-steel anticorrosion effects by the concentrations of natural plant and of chemical admixtures in the saline/marine simulating-environment and in the distilled H2O (electrochemical positive control of steel-reinforced concrete immersions. These indicated that little amount (0.0833% cement for concrete-mixing of Cymbopogon citratus leaf-extract was required for optimal inhibition efficiency, η = 99.35%, on reinforcing-steel corrosion, in the study. Results of compressive-strength change factor also indicated that the 0.0833% Cymbopogon citratus concentration outperformed NaNO2 admixture concentrations also in compressive-strength improvement effects on the NaCl-immersed steel-reinforced concrete. These established implications, from the study, on the suitability of the eco-friendly Cymbopogon citratus leaf-extract for replacing the also highly effective NaNO2 inhibitor of steel-in-concrete corrosion in concrete designed for the saline/marine service-environment.

  5. Seismic performance of recycled concrete-filled square steel tube columns

    Science.gov (United States)

    Chen, Zongping; Jing, Chenggui; Xu, Jinjun; Zhang, Xianggang

    2017-01-01

    An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.

  6. A study on the fracture strength of steel fiber reinforced concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong Il; Chai, Won Kyu; Lee, Myeong Gu

    1991-01-01

    Fracture tests were carried out in order to investigate the fracture behavior of SFRC(Steel Fiber Reinforced Concrete) structures with initial cracks. Sixty three SFRC beams were used in the tests. And the fracture mode, and relations between loading and mid-span deflection of the beams were observed. On the base of test results, fracture behavior of SFRC beams resulted from steel fiber content and initial crack length to beam depth ratio were found out, and the stress intensity factors, the modulus of rupture and the fracture energy of SFRC beams may then be calculated. According to the results of regression analysis, prediction formulas for the modulus of rupture and the fracture energy of SFRC beams are also suggested. (Author)

  7. Performance of Engineered Cementitious Composites for Concrete Repairs

    NARCIS (Netherlands)

    Zhou, J.

    2011-01-01

    Background and goals of this thesis The concrete repair, rehabilitation and retrofitting industry grows rapidly, driven by deterioration of, damage to and defects in concrete structures. However, it is well known that to achieve durable concrete repairs is very difficult. The failure of concrete

  8. Elastic Composite, Reinforced Lightweight Concrete as a Type of Resilient Composite Systems

    OpenAIRE

    Esmaeili, Kamyar

    2015-01-01

    . A kind of "Elastic Composite, Reinforced Lightweight Concrete (ECRLC)" with the mentioned specifics is a type of "Resilient Composite Systems (RCS)" in which, contrary to the basic geometrical assumption of flexure theory in Solid Mechanics, "the strain changes in the beam height during bending" is typically "Non-linear". . Through employing this integrated structure, with significant high strain capability and modulus of resilience in bending, we could constructively achieve high bearing c...

  9. Stainless and Galvanized Steel, Hydrophobic Admixture and Flexible Polymer-Cement Coating Compared in Increasing Durability of Reinforced Concrete Structures

    Science.gov (United States)

    Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra

    2017-08-01

    The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.

  10. Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang

    2013-12-01

    A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.

  11. Students design composite bridges

    NARCIS (Netherlands)

    Stark, J.W.B.; Galjaard, J.C.; Brekelmans, J.W.P.M.

    1999-01-01

    The paper gives an overview of recent research on steel-concrete composite bridge design by students of Delft University of Technology doing their master's thesis. Primary objective of this research was to find possibilities for application of steel-concrete composite bridges in the Netherlands,

  12. X-ray photoelectron spectroscopy and electrochemical studies of mild steel FeE500 passivation in concrete simulated water

    Science.gov (United States)

    Miserque, F.; Huet, B.; Azou, G.; Bendjaballah, D.; L'Hostis, V.

    2006-11-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of steels have to be assessed. When mild steel rebars are embedded in concrete, the chemical environment of the reinforcement is progressively modified, due to the carbonation of the concrete matrix. This modification leads to the variation of iron oxides properties formed at the steel/concrete interface, and the active corrosion can be initiated. The aim of this study is to evaluate the passivation behaviour and to provide insights into the depassivation of mild steel in concrete pore solution. In a young concrete, due to the alkalinity of the interstitial solution, steel reinforcement remains passive. Immersion tests of mild steel substrate in various alkaline solutions (from pH 13 to 10) have been performed. Due to the low thickness of the corrosion layers formed, X-ray photoelectron spectroscopy has been used to characterize them. In the passive domain, the corrosion products are similar for the various solutions. The corrosion layer is composed of a mixture of Fe3+ and Fe2+. A similar approach is used to determine the depassivation mechanism. The effect of various components such as carbonates, sulfates and silicates resulting from the dissolution of minerals of cement during the carbonation process is investigated. In addition to the surface analysis, the evolution of the electrochemical behaviour as function of the solution nature (pH) is evaluated with the help of electrochemical measurements (free corrosion potential, cyclic voltamperometry).

  13. FRP Composites Strengthening of Concrete Columns under Various Loading Conditions

    Directory of Open Access Journals (Sweden)

    Azadeh Parvin

    2014-04-01

    Full Text Available This paper provides a review of some of the progress in the area of fiber reinforced polymers (FRP-strengthening of columns for several loading scenarios including impact load. The addition of FRP materials to upgrade deficiencies or to strengthen structural components can save lives by preventing collapse, reduce the damage to infrastructure, and the need for their costly replacement. The retrofit with FRP materials with desirable properties provides an excellent replacement for traditional materials, such as steel jacket, to strengthen the reinforced concrete structural members. Existing studies have shown that the use of FRP materials restore or improve the column original design strength for possible axial, shear, or flexure and in some cases allow the structure to carry more load than it was designed for. The paper further concludes that there is a need for additional research for the columns under impact loading senarios. The compiled information prepares the ground work for further evaluation of FRP-strengthening of columns that are deficient in design or are in serious need for repair due to additional load or deterioration.

  14. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    Science.gov (United States)

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  15. Damage assessment for seismic response of recycled concrete filled steel tube columns

    Science.gov (United States)

    Huang, Yijie; Xiao, Jianzhuang; Shen, Luming

    2016-09-01

    A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).

  16. A preliminary study on the local impact behavior of Steel-plate Concrete walls

    International Nuclear Information System (INIS)

    Kim, Kap-sun; Moon, Il-hwan; Choi, Hyung-jin; Nam, Deok-woo

    2017-01-01

    International regulations for nuclear power plants strictly prescribe the design requirements for local impact loads, such as aircraft engine impact, and internal and external missile impact. However, the local impact characteristics of Steel-plate Concrete (SC) walls are not easy to evaluate precisely because the dynamic impact behavior of SC walls which include external steel plate, internal concrete, tie-bars, and studs, is so complex. In this study, dynamic impact characteristics of SC walls subjected to local missile impact load are investigated via actual high-speed impact test and numerical simulation. Three velocity checkout tests and four SC wall tests were performed at the Energetic Materials Research and Testing Center (EMRTC) site in the USA. Initial and residual velocity of the missile, strain and acceleration of the back plate, local failure mode (penetration, bulging, splitting and perforation) and deformation size, etc. were measured to study the local behavior of the specimen using high speed cameras and various other instrumentation devices. In addition, a more advanced and applicable numerical simulation method using the finite element (FE) method is proposed and verified by the experimental results. Finally, the experimental results are compared with the local failure evaluation formula for SC walls recently proposed, and future research directions for the development of a refined design method for SC walls are reviewed.

  17. High temperature concrete composites containing organosiloxane crosslinked copolymers

    Science.gov (United States)

    Zeldin, A.; Carciello, N.; Kukacka, L.; Fontana, J.

    High temperature polymer concrete composites comprising about 10 to 30% by weight of a liquid monomer mixture is described. It consists essentially of an organosiloxane polymer crosslinked with an olefinically unsaturated monomer selected from the group consisting of styrene, methyl methacrylate, trimethylolpropane trimethacrylate, triallyl cyanurate, n-phenylmalimide, divinyl benzene and mixtures thereof. About 70 to 90% by weight of an inert inorganic filler system containing silica sand and portland cement, Fe/sub 2/O/sub 3/, carbon black or mixtures thereof. Optionally a free radical initiator such as di-tert-butyl peroxide, azobisisobyutyronitrile, benzoyl peroxide, lauryl peroxide and other organic peroxides are used to initiate crosspolymerization of the monomer mixture in the presence of the inorganic filler.

  18. Passivating action of an organic inhibitor on the steel of reinforced concrete

    Directory of Open Access Journals (Sweden)

    Anzola, E.

    2003-12-01

    Full Text Available An electrochemical evaluation has been made on a concrete mix with an organic inhibitor added, in order to establish its contribution to the formation of a protective film on the steel surface. Concrete cylinders (6" x 3", each with a 3/8" steel bar and two graphite electrodes embedded, with two water/cement ratios (0.40 and 0.55 were used as testing samples. Reinforced steel bars, both chemically cleaned and in the as rolled condition, embedded in salted and unsalted concrete mixes, were used to test if chemical adsorption occurs in each condition. Samples were soaked into brine solution during 365 days as to simulate a sea environment. During exposure period readings of potential, corrosion rate and potentiodynamical cyclic curves were made. It can be concluded that the organic inhibitor needs a low water/cement ratio mix (0.40 in order to react via a chemical adsorption on the steel, being more effective on cleaned surfaces.

    El objetivo del trabajo es hacer una evaluación electroquímica para inferir sobre la formación de la película pasivante en la superficie del acero, por parte de un inhibidor orgánico adicionado a la mezcla de concreto. Para esto se elaboraron probetas de concreto armado de 3 x 6 pulgadas con acero de refuerzo de 3/8 pulgadas de diámetro y dos electrodos de grafito en su interior, usando mezclas de relación agua/cemento 0,40 y 0,55; con y sin sal. Se utilizó acero limpiado por medios químicos y también en condiciones normales de uso. Las probetas se colocaron en agua salada durante 365 d, realizándoseles mediciones de potencial, velocidad de corrosión y curvas cíclicas potenciodinámicas. Se puede decir que el inhibidor actúa solo para relaciones agua/cemento de 0,40, observándose mejores resultados en las probetas con acero limpiado, indicando que el estado superficial del acero influye en la reacción de quimiadsorción del inhibidor.

  19. Pre-test analysis results of a PWR steel lined pre-stressed concrete containment model

    International Nuclear Information System (INIS)

    Basha, S.M.; Ghosh, Barnali; Patnaik, R.; Ramanujam, S.; Singh, R.K.; Kushwaha, H.S.; Venkat Raj, V.

    2000-02-01

    Pre-stressed concrete nuclear containment serves as the ultimate barrier against the release of radioactivity to the environment. This ultimate barrier must be checked for its ultimate load carrying capacity. BARC participated in a Round Robin analysis activity which is co-sponsored by Sandia National Laboratory, USA and Nuclear Power Engineering Corporation Japan for the pre-test prediction of a 1:4 size Pre-stressed Concrete Containment Vessel. In house finite element code ULCA was used to make the test predictions of displacements and strains at the standard output locations. The present report focuses on the important landmarks of the pre-test results, in sequential terms of first crack appearance, loss of pre-stress, first through thickness crack, rebar and liner yielding and finally liner tearing at the ultimate load. Global and local failure modes of the containment have been obtained from the analysis. Finally sensitivity of the numerical results with respect to different types of liners and different constitutive models in terms of bond strength between concrete and steel and tension-stiffening parameters are examined. The report highlights the important features which could be observed during the test and guidelines are given for improving the prediction in the post test computation after the test data is available. (author)

  20. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete.

    Science.gov (United States)

    Dong, Zhijun; Cui, Hongzhi; Tang, Waiching; Chen, Dazhu; Wen, Haibo

    2016-01-19

    The application of thermal energy storage with phase change materials (PCMs) for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB). The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times.

  1. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete

    Directory of Open Access Journals (Sweden)

    Zhijun Dong

    2016-01-01

    Full Text Available The application of thermal energy storage with phase change materials (PCMs for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB. The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times.

  2. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete

    Science.gov (United States)

    Dong, Zhijun; Cui, Hongzhi; Tang, Waiching; Chen, Dazhu; Wen, Haibo

    2016-01-01

    The application of thermal energy storage with phase change materials (PCMs) for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB). The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times. PMID:28787859

  3. On the corrosion of reinforcing steels in concrete in the presence of chlorides

    Directory of Open Access Journals (Sweden)

    R. Genin, Jean Marie

    1986-12-01

    Full Text Available The purpose of this study is to give a scientific justification to some empirical results, in steel corrosion field, from concrete containing chlorides. First, it appears that corrosion products on the steels, have different structures and natures in function of the chloride content would be inferior or superior to a characteristic value. Second, the penetration of the chlorides in the concrete can be described by a simple Fick's diffusion law in the most frecuent cases. When cement has a high proportion of tricalcium aluminates and the concrete a small porosity, Fick's law cannot be applied.

    Este estudio pretende dar a ciertos resultados empíricos, una justificación científica en el campo de la corrosión de los aceros, en un hormigón que contenga cloruros. En primer lugar, se pone de manifiesto que los productos de corrosión sobre los aceros tienen estructuras y naturalezas diferentes, en función de que el contenido de cloruro sea inferior o superior a un valor característico. En segundo lugar, se puede describir la penetración de los cloruros en el hormigón por una sencilla ley de difusión de Fick, en los casos más frecuentes. Cuando el cemento contiene una elevada proporción de aluminato tricálcico, y el hormigón poca porosidad, no se aplica la ley de Fick.

  4. Orientation factor and number of fibers at failure plane in ring-type steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Lee, C.; Kim, H.

    2010-01-01

    Considering the probabilistic distributions of fibers in ring-type steel fiber reinforced concrete, the orientation factor and the number of ring-type steel fibers crossing the failure plane were theoretically derived as a function of fiber geometry, specimen dimensions, and fiber volume fraction. A total number of 24 specimens were tested incorporating different fiber types, specimen geometry, and fiber volume fractions of 0.2% and 0.4%: 5 beams and 5 panels containing straight steel fibers; and 6 beams and 8 panels containing ring-type steel fibers. Measurements were made to assess the number of fibers at fractured surfaces of steel fiber reinforced concrete. The developed theoretical expressions reasonably predicted the orientation factor and the number of ring-type steel fibers at failure plane: the average and the standard deviation for the ratios of the test to theory were 1.03 and 0.26, respectively. Theoretical investigations and comparisons were made for the values of orientation factor and the number of fibers at failure plane for straight steel fibers and ring-type steel fibers.

  5. Shielding properties of protective thin film coatings and blended concrete compositions for high level waste storage packages

    International Nuclear Information System (INIS)

    Fusco, Michael A.; Winfrey, Leigh; Bourham, Mohamed A.

    2016-01-01

    Highlights: • Measured linear attenuation coefficients are the same for bare and coated steels. • Gamma mean free path is much larger than coating thickness; buildup is negligible. • ‘Concrete-6’ reduces exposure rate outside spent fuel cask significantly over ordinary concrete. - Abstract: Various thin film coatings have been proposed to protect stainless steel high level waste (HLW) containers from premature failure due to localized corrosion, hydrogen embrittlement, and mechanical wear. These coatings include TiN, ZrO 2 , MoS 2 , TiO 2 , and Al 2 O 3 , to be deposited either in multiple layers or as a thicker, single-layer composite. Linear attenuation coefficients of these materials have been simulated using MicroShield and measured experimentally for various photon energies. Additionally, spent fuel casks with overpacks made of two different types of concrete were simulated to compare exposure rate at the cask surface. In the energy range that is significant for high level waste storage all coating materials possess very similar attenuation behavior. A specialty concrete, containing magnetite (Fe 3 O 4 ) and lead oxide (PbO), reduces the exposure rate at the outer surface of the overpack by several orders of magnitude. The higher-Z elements not present in ordinary concrete greatly increase attenuation of intermediate-energy gammas (0.4–1.0 MeV). The thin film coatings do not affect the shielding capabilities of the HLW packaging, as their total proposed thickness is nearly three orders of magnitude less than the mean free path (MFP) of the primary photons of interest.

  6. Parametric design of silo steel framework of concrete mixing station based on the finite element method and MATLAB

    Directory of Open Access Journals (Sweden)

    Long Hui

    2016-01-01

    Full Text Available When the structure of the silo steel framework of concrete mixing station is designed, In most cases, the dimension parameters, shape parameters and position parameters of silo steel framework beams are changed as the productivity adjustment of the concrete mixing station, but the structure types of silo steel framework will remain the same. In order to acquire strength of silo steel framework rapidly and efficiently, it is need to provide specialized parametric strength computational software for engineering staff who does not understand the three-dimensional software such as PROE and finite element analysis software. By the finite element methods(FEM, the parametric stress calculation modal of the silo steel framework of concrete mixing station is established, which includes dimension parameters, shape parameters, position parameters and applied load parameters of each beams, and then the parametric calculation program is written with MATLAB. The stress equations reflect the internal relationship between the stress of the silo steel frames with the dimension parameters, shape parameters, position parameters and load parameters. Finally, an example is presented, the calculation results show the stress of all members and the size and location of the maximum stress, which agrees well with realistic cases.

  7. An experimental study on the flexural and shear behavior of steel plate concrete—reinforced concrete connected structures

    International Nuclear Information System (INIS)

    Hwang, K.M.; Lee, K.J.; Yang, H.J.; Kim, W.K.

    2013-01-01

    Highlights: ► This paper confirmed the structural behavior of the connection plane between a RC and a SC member. ► Out-of-plane flexural load tests verified the appropriateness of the ductile non-contact splice length. ► The test results for the in-plane shear load showed the needlessness of horizontal bars in the SC member. ► In order to consider dynamic loads such as earthquakes, cyclic loading tests were carried out. ► Numerical analysis was carried out to verify test results and its results was compared with them. -- Abstract: This paper describes an experimental study on the structural behavior of the joint plane between a RC (reinforced concrete) wall and a SC (steel plate concrete) wall under out-of-plane flexural loads and in-plane shear loads. L- and I-shaped test specimens were produced to efficiently assess the flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquakes, cyclic loading tests were carried out. The out-of-plane flexural test conducted on the short development length L-shaped specimen with a non-contact splice length exhibited a ductile failure mode that surpassed the nominal strength, verifying the validity of the splice length used in its design. The in-plane shear test was conducted on two I-shaped specimens varying the compositional presence of horizontal bars in the SC member. The test results showed that the capacity of the specimens was more than their nominal strength regardless of the compositional presence of horizontal bars. The shear friction tests of the RC–SC member connection conducted on the other L-shaped specimen caused the failure of the SC member and verified a shear resistance of at least 85.5% compared to the theoretical value

  8. Concrete

    DEFF Research Database (Denmark)

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities. Through tangible experiments the project...... specific for this to happen. And the knowledge and intention behind the drawing becomes specialised through the understanding of the fabrication processes and their affect on the materials.The structure Concrete is a result of a multi-angled kerf series in ash wood and a concrete base. The ash wood is cut...... using a 5-axis CNC router with a thin saw blade attached. The programming of the machining results in variations of kerfs that lets the ash wood twist into unique shapes.The shapes of the revolving ash ribbons continue into the concrete creating a cohesive shape. The form for the concrete itself is made...

  9. Data of the properties of rebar steel brands in Lagos, Nigerian market used in reinforced concrete applications.

    Science.gov (United States)

    Joshua, Opeyemi; Olusola, Kolapo O; Oyeyemi, Kehinde D; Ogunde, Ayodeji O; Amusan, Lekan M; Nduka, David O; Abuka-Joshua, Joyce

    2018-04-01

    The data presented herein are compilations of the research summary of "Assessment of the Quality of Steel Reinforcement Bars Available in Nigerian Market" (Joshua et al., 2013) [1]. This data article provides information on the properties and cost of steel rebars used in reinforced concrete in Lagos, Nigeria. The data is based on the properties of 12 mm rebar brands which are the most used steel diameter in construction and they include actual diameters, yield strengths, ultimate strengths, ultimate/yield strength ratio, ductility and the cost of each brand. This data also contains the limiting standard properties of the highlighted properties in this data.

  10. Modeling reinforced concrete durability : [summary].

    Science.gov (United States)

    2014-06-01

    Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...

  11. Numerical Study on Section Constitutive Relations of Members Reinforced by Steel-BFRP Composite Bars

    Science.gov (United States)

    Xiao, Tongliang; Qiu, Hongxing

    2017-06-01

    Steel-Basalt FRP Composite Bar (S-BFCB) is a new kind of substitute material for longitudinal reinforcement, with high elastic modulus, stable post-yield stiffness and excellent corrosive resistance. Based on mechanical properties of S-BFCB and the plane cross-section assumption, the moment-curvature curves of beam and column members are simulated. Some parameters such as equivalent rebar ratio, postyeild stiffness, concrete strength and axial compression ratio of column were discussed. Results show that the constitutive relation of the cross section is similar with RC member in elastic and cracking stages, while different in post-yield stage. With the increase of postyeild stiffness ratio of composite bar, the ultimate bearing capacity of component improved observably, member may turn out over-reinforced phenomenon, concrete crushing may appear before the fibersarefractured. The effect of concrete strength increase in lower postyeild stiffness ratio is not obvious than in higher. The increase of axial compression ratio has actively influence on bearing capacity of column, but decreases on the ductility.

  12. Seismic performance of interior precast concrete beam-column connections with T-section steel inserts under cyclic loading

    Science.gov (United States)

    Ketiyot, Rattapon; Hansapinyo, Chayanon

    2018-04-01

    An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core, under reversed cyclic loading. Six 2/3-scale interior beam-column subassemblies, one monolithic concrete specimen and five precast concrete specimens were tested. One precast specimen was a simple connection for a gravity load resistant design. Other precast specimens were developed with different attributes to improve their seismic performance. The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior. Failure of columns and joints could be prevented, and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends, close to the column faces. For the precast specimens, the splitting crack along the longitudinal lapped splice was a major failure. The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models. However, the dowel bars connected to the steel inserts were too short to develop a bond. The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.

  13. Effects of Magnetite Aggregate and Steel Powder on Thermal Conductivity and Porosity in Concrete for Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-01-01

    Full Text Available Among many engineering advantages in concrete, low thermal conductivity is an attractive property. Concrete has been widely used for nuclear vessels and plant facilities for its excellent radiation shielding. The heat isolation through low thermal conductivity is actually positive for nuclear power plant concrete; however the property may cause adverse effect when fires and melt-down occur in nuclear vessel since cooling down from outer surface is almost impossible due to very low thermal conductivity. If concrete containing atomic reactor has higher thermal conductivity, the explosion risk of conductive may be partially reduced. This paper presents high thermally conductive concrete development. For the work, magnetite with varying replacements of normal aggregates and steel powder of 1.5% of volume are considered, and the equivalent thermal conductivity is evaluated. Only when the replacement ratio goes up to 30%, thermal conductivity increases rapidly to 2.5 times. Addition of steel powder is evaluated to be effective by 1.08~1.15 times. In order to evaluate the improvement of thermal conductivity, several models like ACI, DEMM, and MEM are studied, and their results are compared with test results. In the present work, the effects of steel powder and magnetite aggregate are studied not only for strength development but also for thermal behavior based on porosity.

  14. NON-LINEAR ANALYSIS OF AN EXPERIMENTAL JOINT OF COLUMN AND BEAMS OF ARMED CONCRETE-STEEL COLUMN FOR FRAME

    Directory of Open Access Journals (Sweden)

    Nelson López

    2017-12-01

    Full Text Available In this research, the nonlinear behavior of a real-scale experimental joint (node is studied, consisting of three reinforced concrete elements, one column and two beams joined to a structural steel column at the upper level. In the numerical analysis the model of the union was analyzed in the inelastic range, this model was elaborated with the finite element program based on fibers, SeismoStruct to analyze as a function of time, the traction and compression efforts in the confined area and not confined area of the concrete column and in the longitudinal reinforcement steel, as well as verification of the design of the base plate that joins the two columns. The results showed that tensile stresses in the unconfined zone surpassed the concrete breaking point, with cracking occurring just below the lower edge of the beams; in the confined area the traction efforts were much lower, with cracks occurring later than in the non-confined area. The concrete column-steel column joint behaved as a rigid node, so the elastic design was consistent with the calculation methodology of base plates for steel columns.

  15. Full-scale testing of infilled steel frames with precast concrete panels provided with a window opening

    NARCIS (Netherlands)

    Teeuwen, P.A; Kleinman, C.S.; Snijder, H.H.; Hofmeyer, H.

    2008-01-01

    As an alternative to conventional structures for tall buildings, a hybrid lateral load resisting building system has been designed, enabling the assembly of tall buildings directly from truck. It consists of steel frames with discretely connected precast concrete infill panels provided with a window

  16. Experiments and FE-model for a connection between steel frames and precast concrete infill panels (Stuttgart)

    NARCIS (Netherlands)

    Teeuwen, P.A; Kleinman, C.S.; Snijder, H.H.; Hofmeyer, H.; Eligehausen, R.; Fuchs, W.; Genesio, G.; Grosser, P.

    2007-01-01

    The paper presents experimental and FE results of investigations into the structural behaviour of a connection between steel frames and precast concrete infill panels, forming a recently developed lateral load resisting system. The discrete connections, being structural bolts on the column and beam

  17. Flexural toughness of steel fiber reinforced high performance concrete containing nano-SiO2 and fly ash.

    Science.gov (United States)

    Zhang, Peng; Zhao, Ya-Nan; Li, Qing-Fu; Wang, Peng; Zhang, Tian-Hang

    2014-01-01

    This paper aims to clarify the effect of steel fiber on the flexural toughness of the high performance concrete containing fly ash and nano-SiO2. The flexural toughness was evaluated by two methods, which are based on ASTM C1018 and DBV-1998, respectively. By means of three-point bending method, the flexural toughness indices, variation coefficients of bearing capacity, deformation energy, and equivalent flexural strength of the specimen were measured, respectively, and the relational curves between the vertical load and the midspan deflection (P(V)-δ) were obtained. The results indicate that steel fiber has great effect on the flexural toughness parameters and relational curves (P(V)-δ) of the three-point bending beam specimen. When the content of steel fiber increases from 0.5% to 2%, the flexural toughness parameters increase gradually and the curves are becoming plumper and plumper with the increase of steel fiber content, respectively. However these flexural toughness parameters begin to decrease and the curves become thinner and thinner after the steel fiber content exceeds 2%. It seems that the contribution of steel fiber to the improvement of flexural toughness of the high performance concrete containing fly ash and nano-SiO2 is well performed only when the steel fiber content is less than 2%.

  18. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  19. Assessment of exposure pathways connected with construction and operation of concrete bridge reinforced with very low level radioactive steel

    International Nuclear Information System (INIS)

    Panik, M.; Necas, V.

    2012-01-01

    Large amount of low level radioactive material arises during decommissioning of nuclear power plants. Material mostly comprises metal scrap and concrete ruble. Paper deals with recycling and reuse of metal scrap and its utilization as part of reinforcement of concrete bridges under the conditional release concept. Radiation exposure originating in very low level reinforcement steel consists of several exposure pathways. Short-term radiation impact is represented mostly by external exposure pathway and it is relevant to the construction workers and users of the bridge. Long-term radiation impacts on inhabitants living near finished bridge and it is divided into inhalation and ingestion of radionuclides-internal exposure pathways. Radiation impact caused by utilization of very low level radioactive waste was calculated using simulation software VISIPLAN 3D ALARA and GOLDSIM. Results of calculations provide fair summary of possibilities of utilization of conditionally released steel as reinforcement of concrete bridges. (Authors)

  20. Plasma arc and thermal lance techniques for cutting concrete and steel

    International Nuclear Information System (INIS)

    Bargagliotti, A.; Caprile, L.; Piana, F.; Tolle, E.

    1986-01-01

    The plasma arc technique is used today in industrial practice for any metal, but mainly for cutting stainless steel, carbon steel and aluminium. In air the maximum thickness that was cut in the performed tests was 150 mm, both with ferritic and austenitic steel. Underwater the maximum thickness cut was 103 mm. The two types of torch used in the tests are those used today: the plasma-shaped electrode torch (WIPC) and the pointed electrode torch (DMC-GRUEN). Two different types of gas were compared: an argon-nitrogen mixture and an argon-hydrogen mixture. The second mixture adopted results in less dust emission. The production of dust and aerosols also depends on the cutting speed, on the kind of steel, but mainly on the environmental conditions; it is reduced up to 500 times under water. Dust and aerosols can, jeopardize the efficiency of the system; moreover, the ambient air can have high-level radiation fields. Indirect and direct protections are needed (shields, remote control, robots, etc.). Tentative procedures for dismantling two types of BWR reactor are examined. Two series of tests demonstrated the feasibility of cutting the most geometrically difficult parts of the reactor internals. The thermal lance technique is used in industrial practice mainly for dismantling large reinforced concrete structures. This technique can be applied to dismantle nuclear facilities, even though it can cause some problems due to the gases, fumes and lapilli produced. In addition, the cost of this technique seems to be generally higher than the cost of other techniques. From the analyses done, the conclusion seems that both the above techniques are feasible for dismantling a nuclear power plant (NPP). The best solution is probably to analyse the different dismantling possibilities and problems and problems of each case

  1. Ductility in a new low nickel stainless steel for reinforced concrete

    Directory of Open Access Journals (Sweden)

    Cobo, A.

    2011-12-01

    Full Text Available This paper discusses the stress-strain curves for a new low nickel stainless steel, a conventional AISI 304 stainless steel and a carbon steel commonly used in reinforced concrete structures. Ductility was studied in terms of ultimate tensile strength (fmax, elastic limit (fy and total elongation at maximum force [ultimate strain; uniform elongation] (εmax. The three materials were assessed with internationally accepted criteria, such as plastic rotational capacity, necking region and the toughness index (total energy absorbed at uniform elongation. The findings were compared to the properties of three types of conventional reinforcing steel: 500SD, 500N and 500H (EC-2.

    En este trabajo se presentan los diagramas tensióndeformación de un nuevo acero inoxidable con bajo contenido en níquel, un inoxidable convencional AISI 304 y un acero al carbono de uso común en estructuras de hormigón armado. Dicha ductilidad se ha estudiado determinando la tensión máxima (fmax, la tensión en el límite elástico (fy y la deformación bajo carga máxima (εmax. Los tres materiales se han evaluado utilizando criterios aceptados internacionalmente, como son el índice p (capacidad de rotación plástica, el índice A* (área plástica de endurecimiento y el índice de tenacidad Id (energía total absorbida en el punto de alargamiento bajo carga máxima, los resultados obtenidos se han comparado con los aceros convencionales de armaduras 500SD, 500N y 500H (EC-2.

  2. Current state of knowledge on the behavior of steel liners in concrete containments subjected to overpressurization loads

    International Nuclear Information System (INIS)

    Riesemann, W.A. von; Parks, M.B.

    1995-01-01

    In the US, concrete containment buildings for commercial nuclear power plants have steel liners that act as the internal pressure boundary. The liner abuts the concrete, acting as the interior concrete form. The liner is attached to the concrete by either studs or by a continuous structural shape (such as a T-section or channel) that is either continuously or intermittently welded to the liner. Studs are commonly used in reinforced concrete containments, while prestressed containments utilize a structural element as the anchorage. The practice in some countries follows the US practice, while in other countries the containment does not have a steel liner. In this latter case, there is a true double containment, and the annular region between the two containments is vented.This paper will review the practice of design of the liner system prior to the consideration of severe accident loads (overpressurization loads beyond the design conditions).An overpressurization test of a 1:6 scale reinforced concrete containment at Sandia National Laboratories resulted in a failure mechanism in the liner that was not fully anticipated. Post-test analyses and experiments have been conducted to understand the failure better. This work and the activities that followed the test are reviewed. Areas in which additional research should be conducted are given. (orig.)

  3. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers.

  4. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi

    2014-01-01

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers

  5. CF60 Concrete Composition Design and Application on Fudiankou Xijiang Super Large Bridge

    Science.gov (United States)

    Qiu, Yi Mei; Wen, Sen Yuan; Chen, Jun Xiang

    2018-06-01

    Guangxi Wuzhou City Ring Road Fudiankou Xijiang super large bridge CF60 concrete is a new multi-phase composite high-performance concrete, this paper for the Fudiankou Xijiang bridge structure and characteristics of the project, in accordance with the principle of local materials and technical specification requirements, combined with the site conditions of CF60 engineering high performance concrete component materials, proportion and the technical performance, quantify the main physical and mechanical performance index. Analysis main influencing factors of the technical indicators, reasonable adjustment of concrete mix design parameters, and the use of technical means of admixture and multi-function composite admixture of concrete, obtain the optimal proportion of good work, process, mechanical properties stability and durability of engineering properties, recommend and verification of concrete mix; to explore the CF60 high performance concrete Soil in the Fudiankou Xijiang bridge application technology, detection and tracking the quality of concrete construction, concrete structure during the construction of the key technology and control points is proposed, evaluation of CF60 high performance concrete in the actual engineering application effect and benefit to ensure engineering quality of bridge structure and service life, and super long span bridge engineering construction to provide basis and reference.

  6. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment

    Science.gov (United States)

    Luo, Hong; Su, Huaizhi; Li, Baosong; Ying, Guobing

    2018-05-01

    In the present work, the electrochemical behavior and semiconducting properties of a tin alloyed ferritic stainless steel in simulated concrete solution in presence of NaCl were estimated by conventional electrochemical methods such as potentiodynamic polarization, electrochemical impedance spectroscopy, and capacitance measurement (Mott-Schottky approach). The surface passive film was analyzed by X-ray photoelectron spectroscopy. The results revealed a good agreement between pitting corrosion, electrochemical behaviour, and electronic properties. The p and n-type bilayer structure passive film were observed. The increase of Sn4+ oxide species in the passive film shows no beneficial effects on the pitting corrosion. In addition, the dehydration of the passive film was further discussed.

  7. Construction Simulation Analysis of 60m-span Concrete Filled Steel Tube arch bridge

    Science.gov (United States)

    Shi, Jing Xian; Ding, Qing Hua

    2018-06-01

    The construction process of the CFST arch bridge is complicated. The construction process not only affects the structural stress in the installation, but also determines the form a bridge and internal force of the bridge. In this paper, a 60m span concrete filled steel tube tied arch bridge is taken as the background, and a three-dimensional finite element simulation model is established by using the MIDAS/Civil bridge structure analysis software. The elevation of the main arch ring, the beam stress, the forces in hanger rods and the modal frequency of the main arch during the construction stage are calculated, and the construction process is simulated and analyzed. Effectively and reasonably guide the construction and ensure that the line and force conditions of the completed bridge meet the design requirements and provides a reliable technical guarantee for the safe construction of the bridge.

  8. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    Science.gov (United States)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-03-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  9. Pseudo-dynamic tests on masonry residential buildings seismically retrofitted by precast steel reinforced concrete walls

    Science.gov (United States)

    Li, Wenfeng; Wang, Tao; Chen, Xi; Zhong, Xiang; Pan, Peng

    2017-07-01

    A retrofitting technology using precast steel reinforced concrete (PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.

  10. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    Science.gov (United States)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-06-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  11. Fatigue Behavior of Steel Fiber Reinforced High-Strength Concrete under Different Stress Levels

    Science.gov (United States)

    Zhang, Chong; Gao, Danying; Gu, Zhiqiang

    2017-12-01

    The investigation was conducted to study the fatigue behavior of steel fiber reinforced high-strength concrete (SFRHSC) beams. A series of 5 SFRHSC beams was conducted flexural fatigue tests at different stress level S of 0.5, 0.55, 0.6, 0.7 and 0.8 respectively. Static test was conducted to determine the ultimate static capacity prior to fatigue tests. Fatigue modes and S-N curves were analyzed. Besides, two fatige life prediction model were analyzed and compared. It was found that stress level S significantly influenced the fatigue life of SFRHSC beams and the fatigue behavior of SFRHSC beams was mainly determined by the tensile reinforcement.

  12. Study of the stress-strain state of compressed concrete elements with composite reinforcement

    Directory of Open Access Journals (Sweden)

    Bondarenko Yurii

    2017-01-01

    Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.

  13. Summary and evaluation of low-velocity impact tests of solid steel billet onto concrete pads

    International Nuclear Information System (INIS)

    Witte, M.C.; Hovingh, W.J.; Mok, G.C.; Murty, S.S.; Chen, T.F.; Fischer, L.E.

    1998-02-01

    Spent fuel storage casks intended for use at independent spent fuel storage installations are evaluated during the application and review process for low-velocity impacts representative of possible handling accidents. In the past, the analyses involved in these evaluations have assumed that the casks dropped or tipped onto an unyielding surface - a conservative and simplifying assumption. Since 10 CFR Part 72, the regulation imposed by the Nuclear Regulatory Commission (NRC), does not require this assumption, applicants are currently seeking a more realistic model for the analyses to predict the effect of a cask dropping onto a reinforced concrete pad, including energy absorbing aspects such as cracking and flexure. To develop data suitable for benchmarking these analyses, the NRC has conducted several series of drop-test studies of a solid steel billet and of a near-full-scale empty cask. This report contains a summary and evaluation of all steel billet testing conducted by Sandia National Laboratories and Lawrence Livermore National Laboratory. A series of finite element analyses of the billet testing is described and benchmarked against the test data. A method to apply the benchmarked finite element model of the soil and concrete pad to an analysis of a full-size storage cask is provided. In addition, an application to a open-quotes genericclose quotes full-size cask is presented for side and end drops, and tipover events. The primary purpose of this report is to provide applicants for an NRC license under 10 CFR Part 72 with a method for evaluating storage casks for low-velocity impact conditions

  14. Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete

    International Nuclear Information System (INIS)

    Khan, M.S.H.; Castel, Arnaud; Akbarnezhad, A.; Foster, Stephen J.; Smith, Marc

    2016-01-01

    This paper evaluates the performance of steel furnace slag (SFS) coarse aggregate in blended slag and low calcium fly ash geopolymer concrete (GPC). The geopolymer binder is composed of 90% of low calcium fly ash and 10% of ground granulated blast furnace slag (GGBFS). Mechanical and physical properties, shrinkage, and detailed microstructure analysis were carried out. The results showed that geopolymer concrete with SFS aggregate offered higher compressive strength, surface resistivity and pulse velocity than that of GPC with traditional aggregate. The shrinkage results showed no expansion or swelling due to delayed calcium oxide (CaO) hydration after 320 days. No traditional porous interfacial transition zone (ITZ) was detected using scanning electron microscopy, indicating a better bond between SFS aggregate and geopolymer matrix. Energy dispersive spectroscopy results further revealed calcium (Ca) diffusion at the vicinity of ITZ. Raman spectroscopy results showed no new crystalline phase formed due to Ca diffusion. X-ray fluorescence result showed Mg diffusion from SFS aggregate towards geopolymer matrix. The incorporation of Ca and Mg into the geopolymer structure and better bond between SFS aggregate and geopolymer matrix are the most likely reasons for the higher compressive strength observed in GPC with SFS aggregate.

  15. PREDICTION OF MAXIMUM CREEP STRAIN OF HIGH PERFORMANCE STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Mishina Alexandra Vasil'evna

    2012-12-01

    Full Text Available The strongest research potential is demonstrated by the areas of application of high performance steel fiber reinforced concrete (HPSFRC. The research of its rheological characteristics is very important for the purposes of understanding its behaviour. This article is an overview of an experimental study of UHSSFRC. The study was carried out in the form of lasting creep tests of HPSFRC prism specimen, loaded by stresses of varied intensity. The loading was performed at different ages: 7, 14, 28 and 90 days after concreting. The stress intensity was 0.3 and 0.6 Rb; it was identified on the basis of short-term crush tests of similar prism-shaped specimen, performed on the same day. As a result, values of ultimate creep strains and ultimate specific creep of HPSFRC were identified. The data was used to construct an experimental diagramme of the ultimate specific creep on the basis of the HPSFRC loading age if exposed to various stresses. The research has resulted in the identification of a theoretical relationship that may serve as the basis for the high-precision projection of the pattern of changes in the ultimate specific creep of HPSFRC, depending on the age of loading and the stress intensity.

  16. The concept of floating electrode for contact-less electrochemical measurements: Application to reinforcing steel-bar corrosion in concrete

    International Nuclear Information System (INIS)

    Keddam, M.; Novoa, X.R.; Vivier, V.

    2009-01-01

    The concept of floating electrode is introduced for defining the common electrochemical behaviour of any non-connected, electronically conducting, body immersed in an electrolytic medium. The emphasis is put on both its own polarisation features and its influence on the d.c. and a.c. current and potential across the cell, hence the feasibility, among others, of contact-less electrochemical measurements on floating electrodes. Application to reinforcing steel bars in concrete is investigated by numerical computation of the a.c. current and potential fields in a broad range of concrete resistivity, interfacial resistance and capacitance. Impedance defined in a 4-electrode configuration, when rationalised against the concrete resistivity, is shown to provide, within a realistic range of parameters, a practical mean to access the properties of the bar-concrete interface.

  17. Effect of Gamma Ray Energies and Steel Fiber addition by Weight on some Shielding Properties of Limestone Concrete

    International Nuclear Information System (INIS)

    Abd El-Latifa, A.A.; Ikraiam, F.A.; Abd El-Latifa, A.A.; Abd Elazziz, A.; Abd Elazziz, A.

    2010-01-01

    The mass attenuation coefficient , the build up factor , the half value thickness X 1/2 , and tenth value thickness X 1/10 of fiber concrete , 0% , 1% , 2%, 3%, and 4% by weight fiber content were measured at different gamma ray energies in MeV, 0.511,1.274 from Na-22 ,1.17 ,1.33 from Co-60 and 0.662 from Cs-137 . Appreciable variations were noted in the former nuclear parameters, due to the changes in the fiber content and gamma ray energies .A comparison of shielding properties of concrete with fiber content and reference sample(concrete without fiber ) have proven that the addition of steel fibers by weight to concrete have a potential application as a radiation shielding

  18. Design development of steel plate concrete modularization for the advanced PWR in Korea

    International Nuclear Information System (INIS)

    Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang; Kim, Taeyoung; Hwang, Geunha

    2008-01-01

    APR1400 TM - an advanced PWR - has been developed in Korea since 1992. Four APR1400 units - Shin Kori no.3,4 and Shin Uljin no.1,2 - are going to be built in a next decade. As for economical efficiency, construction cost per power generation Unit(W) is improved more than 10% compared to the former 1,000 MWe PWRs. Moreover, life-cycle maintenance cost is reduced to the world's most level. For construction period from first concrete pouring to commercial operation, 54 months for APR1400 and 36 months for n-th unit have been projected. Reduction of the construction term of the Nuclear Power Plant has been emphasized increasingly for the NPP construction Project because it would reduce the interest cost and uncertainty of the project. The reduction can also advance the return of investment. Some of the PPM(Prefabrication, Preassembly, and Modularization) techniques have been studied for the shortening the construction period of nuclear power plant. Especially for the internal structure of reactor containment building (RCB) in PWR whose term of construction is critical to the whole project, Steel Plate Concrete(SC) structure has been studied as one of alternative structural systems to the conventional Reinforced Concrete(RC) structure in APR1400. SC structure is considered appropriate for the modularization of the structure with its self-supporting. In addition, formwork can be dramatically eliminated when SC structural modules are used. The MKE (Ministry of Knowledge Economy) and KHNP (Korea Hydro and Nuclear Power Co., Ltd.) initiated the research and development of SC Structure in 2005. This paper presents design examples along with Codes and Standards of SC structure in nuclear power plant. (author)

  19. High-rate tensile behavior of steel fiber-reinforced concrete for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Jin; Park, Gi-Joon [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Kim, Dong Joo, E-mail: djkim75@sejong.ac.kr [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Moon, Jae Heum; Lee, Jang Hwa [Korea Institute of Construction Technology, 2311 Daewha-Dong, Ilsan-Gu, Goyang-Si, Gyeonggi-Do 411-712 (Korea, Republic of)

    2014-01-15

    Highlights: • The final goal is to develop a fiber reinforced concrete for containment buildings. • High rate tensile behavior of FRC was investigated. • Strain energy frame impact machine was used for tensile impact tests. • Different rate sensitivity of FRC was found according to the type fiber. • Adding more fibers by increasing S/a is positive for higher impact resistance of FRC. -- Abstract: The direct tensile behavior of fiber-reinforced concrete (FRC) at high strain rates were investigated for their potential to enhance the resistance of the containment building of nuclear power plants (NPPs) against aircraft impact. Two types of deformed steel, hooked (H) and twisted (T) fibers were employed. To improve the tensile resistance of FRCs even at higher rates by adding more fibers, the mixture of concrete was modified by either increasing the sand-to-coarse aggregate ratio or decreasing the maximum size of coarse aggregate. All FRC specimens produced two to six times greater tensile strength and one to five times higher toughness at high strain rates (4–53 s{sup −1}) than those at a static rate (0.000167 s{sup −1}). T-fiber generally produced higher tensile strength and toughness than H-fiber at both static and high rates. Although both fibers showed favorable rate sensitivity, T-fiber produced much greater enhancement, at higher strain rates, in tensile strength and slightly lower enhancement in toughness than H-fiber. As the maximum size of coarse aggregate decreased from 19 to 5 mm, the tensile strength and toughness of FRCs with T-fibers noticeably increased at both static and high strain rates.

  20. Development and application of a material law for steel-fibre-reinforced concrete with regard to its use for pre-stressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.; Borgerhoff, M.

    1995-01-01

    On the basis of the evaluation of many publications on the mechanical behaviour of steel fibre reinforced concrete (SFRC) and on the results of experiments using an SFRC especially developed for pre-stressed concrete reactor vessels (PCRVs), a material law for SFRC including general multiaxial stress conditions has been developed. From fibre pull-out tests described in the literature and by use of the experimental results, relations describing the capable tensile stress in SFRC after cracking, as a function of crack width, have been derived. There is a significant increase in the biaxial compressive strength of SFRC compared with plain concrete. The improved behaviour under multiaxial stress conditions, with one of the principal stresses being tensile, is outlined in comparison with different formulations of failure envelopes of plain concrete. For the purpose of verifying the material law implemented in the computer program used, analyses have been carried out for experiments with SFRC beams. After some modification concerning the shear behaviour, load-displacement curves and realistic crack propagations which correspond well have been obtained. In the stand-tube area in the centre of a PCRV top cap the use of SFRC is advantageous because of the difficulties concerning the arrangement of reinforcement in the concrete between the tubes. (orig.)

  1. On the balanced composition of the unkilled steel

    International Nuclear Information System (INIS)

    Urazgil'deev, A.Kh.

    1977-01-01

    A investigation of a ''balanced'' composition of a molten Fe-C-O system, which is distinguished by an invariable concentration of carbon and oxygen in the molten phase, has shown that the composition of the balanced melt will depend on the content of manganese in boiling steel, as the introduction into the system of small amounts of manganese shifts the position of the maximum point of the Fe-C-O system toward higher carbon concentrations. Solidification of melts containing more carbon than the balanced melts results in an enrichment of the molten phase in carbon and its impoverishment in oxygen. Manganese raises the concentration of carbon in the balanced composition. For a common content of manganese in a boiling steel of 0.30 to 0.40%, that of C in the balanced composition is approximately 0.10%

  2. Study on Energy Absorption Capacity of Steel-Polyester Hybrid Fiber Reinforced Concrete Under Uni-axial Compression

    Science.gov (United States)

    Chella Gifta, C.; Prabavathy, S.

    2018-05-01

    This work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load-deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.

  3. Trial manufacturing of titanium-carbon steel composite overpack

    International Nuclear Information System (INIS)

    Honma, Nobuyuki; Chiba, Takahiko; Tanai, Kenji

    1999-11-01

    This paper reports the results of design analysis and trial manufacturing of full-scale titanium-carbon steel composite overpacks. The overpack is one of the key components of the engineered barrier system, hence, it is necessary to confirm the applicability of current technique in their manufacture. The required thickness was calculated according to mechanical resistance analysis, based on models used in current nuclear facilities. The Adequacy of the calculated dimensions was confirmed by finite-element methods. To investigate the necessity of a radiation shielding function of the overpack, the irradiation from vitrified waste has been calculated. As a result, it was shown that shielding on handling and transport equipment is a more reasonable and practical approach than to increase thickness of overpack to attain a self-shielding capability. After the above investigation, trial manufacturing of full-scale model of titanium-carbon steel composite overpack has been carried out. For corrosion-resistant material, ASTM Grade-2 titanium was selected. The titanium layer was bonded individually to a cylindrical shell and fiat cover plates (top and bottom) made of carbon steel. For the cylindrical shell portion, a cylindrically formed titanium layer was fitted to the inner carbon steel vessel by shrinkage. For the flat cover plates (top and bottom), titanium plate material was coated by explosive bonding. Electron beam welding and gas metal arc welding were combined to weld of the cover plates to the body. No significant failure was evident from inspections of the fabrication process, and the applicability of current technology for manufacturing titanium-carbon steel composite overpack was confirmed. Future research and development items regarding titanium-carbon steel composite overpacks are also discussed. (author)

  4. Dynamic Fracture Behavior of Steel Fiber Reinforced Self-Compacting Concretes (SFRSCCs

    Directory of Open Access Journals (Sweden)

    Xiaoxin Zhang

    2017-11-01

    Full Text Available Three-point bending tests on notched beams of three types of steel fiber-reinforced self-compacting concrete (SFRSCC have been performed by using both a servo-hydraulic machine and a drop-weight impact instrument. The lo ading rates had a range of six orders of magnitude from 2.20 × 10−3 mm/s (quasi-static to 2.66 × 103 mm/s. These SFRSCCs had the same matrix, but various types of steel fiber (straight and hooked-end and contents (volume ratios, 0.51%, 0.77% and 1.23%, respectively. The results demonstrate that the fracture energy and the flexural strength increase as the loading rate increases. Moreover, such tendency is relatively moderate at low rates. However, at high rates it is accentuated. For the 0.51% fiber content, the dynamic increase factors of the flexural strength and the fracture energy are approximately 6 and 3, while for the 1.23% fiber content, they are around 4 and 2, respectively. Thus, the higher the fiber content the less rate sensitivity there is.

  5. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing

    Science.gov (United States)

    de Alcantara, Naasson P.; da Silva, Felipe M.; Guimarães, Mateus T.; Pereira, Matheus D.

    2015-01-01

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works. PMID:26712754

  6. Flexural performance of steel fiber reinforced concrete (SFRC) ribbed slab with various topping thicknesses

    Science.gov (United States)

    Rahman, Fadhillah Abdul; Bakar, Afidah Abu; Hashim, Mohd Hisbany Mohd; Ahmad, Hazrina

    2017-11-01

    Ribbed slab provides lighter slab than an equivalent solid slab which helps in reducing the weight with its voids. However, in order to overcome the drawbacks in the construction process, the application of steel fibre reinforcement concrete (SFRC) is seen as an alternative material to be used in the slab. This study is performed to investigate the behaviour of SFRC as the main material in ribbed slab, omitting the conventional reinforcements, under four-point bending test. Three equivalent samples of ribbed slabs were prepared for this study with variations in the topping thickness of 100, 75 and 50 mm. The flexural strength of ribbed slab with 100 mm topping shows similar loading carrying capacity with the 75mm topping while 50 mm gave the lowest ultimate loading. First cracks for all slabs occurred at the topping. The cracks began from the external ribs and propagates toward the internal rib. Incorporation of steel fibres help in giving a longer deflection softening than a sudden brittle failure, thus proves its ability to increase energy absorption capacity and improving cracking behaviour.

  7. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing

    Directory of Open Access Journals (Sweden)

    Naasson P. de Alcantara

    2015-12-01

    Full Text Available This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works.

  8. Design and evaluation of steel bridges with double composite action

    Science.gov (United States)

    2010-02-01

    This report presents findings from a cooperative USF/URS/FDOT research study undertaken to develop design rules for : double composite steel bridges. In the study, a 48 ft long, 16 ft wide, 4 ft. 10 in. deep trapezoidal HPS 70W box section : desig...

  9. Concrete

    OpenAIRE

    Kruse Aagaard, Anders

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities.Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion as an opportunity to connect th...

  10. Studying the Combination Effect of Additives and Micro Steel Fibers on Cracks of Self-Healing Concrete

    Directory of Open Access Journals (Sweden)

    Muhannad Hussien Muhsin

    2017-01-01

    Full Text Available In this study, the effect of the combination of micro steel fibers and additives (calcium hydroxide and sodium carbonate on the size of cracks formation and healing them were investigated. This study aims to apply the use of self-healing phenomenon to repair cracks and to enhance the service life of the concrete structures. Micro steel fibers straight type were used in this research with 0.2% and 0.4% by volume of concrete. A weight of 20 and 30 kg/m3 of Ca(OH2 and 2 and 3 kg/m3 of Na2CO3 were used as a partial cement replacement. The results confirm that the concrete cracks were significantly self-healed up to 30 days re-curing. Cracks width up to 0.2 mm were completely self-healed after re-curing for 90 days by using the combination of micro steel fiber of 0.4% by volume of concrete and 25 kg/m3 of Ca(OH2 and 2.5 kg/m3 of Na2CO3 as a partial replacement of cement. Products of Self-healing are observed by Scanning Electron Microscopy (SEM with Energy Dispersive X-Ray Analysis (EDX. It was found that self-healing occurred mainly due to precipitation of calcium carbonate.

  11. Concretes with ternary composite cements. Part III: multicriteria optimization

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2007-06-01

    Full Text Available Optimization methods are tools of vital importance in composite material design, where large numbers of components and design criteria must be taken into account. The formulation of today’s separately milled custommade cements is a clear example of just such a case, for the components must be proportioned to yield mortars and concretes with the proper balance of durability, strength, financial and environmental features. Multicriteria optimization has been used to develop many materials, although its application in cement formulation has yet to be explored. The present paper discusses the use of an objective function to jointly optimize sorptivity and compressive strength in limestone- (up to 20% and/or granulated blast furnace slag- (up to 20% additioned Portland cement concrete.Los métodos de optimización constituyen una herramienta de vital importancia en el diseño de materiales compuestos, donde la cantidad de componentes de la mezcla y los criterios de diseño que deben tenerse en cuenta en el proceso de fabricación son numerosos. En la actualidad, la formulación de un cemento a medida (tailor made a partir del proceso de molienda separada es un claro ejemplo de ello, pues las proporciones relativas de las componentes de la mezcla deben permitir luego obtener morteros y hormigones con el equilibrio justo entre los requerimientos durables, mecánicos, económicos y ecológicos que se soliciten. La optimización por multicriterios ha sido empleada en el desarrollo de diversos materiales, sin embargo, su aplicación en la formulación del cemento no ha sido aún explorada. En este trabajo se presenta la optimización conjunta de la capacidad de absorción y la resistencia a compresión de hormigones elaborados con cemento Portland con caliza (hasta un 20% y/o escoria granulada de alto horno (hasta un 20% utilizando la función objetivo.

  12. Analysis and modelling composite timber-concrete systems: Design of bridge structure according to EN

    Directory of Open Access Journals (Sweden)

    Manojlović Dragan

    2016-01-01

    Full Text Available Timber-concrete composite structures are already applied more than 80 years in engineering practice, went trought the intuitive problem solution to the fully prefabricated hybride assemblies for dry building. The development path of timber-concrete composites was always followed by extensive theoretical and experimental research, whose results were successfully implemented in practice, i.e. on the market, but till presence didn't result in modern designer's code. In expectation of new European codes for timber-concrete composites, the objective of the paper is to provide a comprehensive review of available standards provisions and recent conclusions from literature. The key issues for practical design are highlighted and ilustrated on the example of glulam composite arch bridge structure with concrete deck, according the Eurocodes.

  13. Axial Compression Properties Nonlinear Analysis on Square Double Skin Steel Stub Short Columns Filled with Recycled Concrete

    Directory of Open Access Journals (Sweden)

    Song Bing

    2016-01-01

    Full Text Available Taking the mixing amount of diatomite calcined and vitrified micro bubbles(VMB as the main changing parameters, experiment studies the properties of the vitrified micro bubbles recycled concrete blocks; then this paper adopts the finite element software ANSYS to analyze the square double skin steel stub short columns filled with recycled concrete under axial compression. According to the vertical stress distribution, strain and bearing capacity of the steel tube and core concrete, we make a contrastive axial compression properties analysis on the different hollow ratio χ(0,0.35and the VMB content(0%,100%,130% of square double skin steel stub short columns filled with recycled concrete. The result shows that: Compressive strength of VMB recycled concrete increases with the increase of diatomite calcined content, when mixing amount of diatomite calcined is 3%,the compressive strength of 130% VMB content test specimen can reach 32.45 MPa;Because of the inner circular steel tube is setted which strengthening component buckling capacity and improving the ductility of the component, stress distribution of hollow components is more balance than solid components, and their axial displacements decrease by 5.6% compared with the solid components when they reach ultimate bearing capacity; When the hollow ratio is same, ultimate bearing capacity of 130% VMB content test specimen compared with the content is 0% only reduces by about 3.5%; When the VMB content is same, ultimate bearing capacity of hollow components compared with solid components increases by about 2.5%, which reducing weight as well as improving the anti-seismic performance.

  14. A comparative experimental study of steel fibre-additive reinforced concrete beams

    Directory of Open Access Journals (Sweden)

    Altun, F.

    2004-12-01

    Full Text Available Five different batches of class C20 concrete, containing Dramix-RC-80/60-BN steel fibers (SFs as additives at doses of 0, 30, 40, 50 and 60 kg/m3, and six Ø 15x30 cm prisms were poured from each batch. Standard crushing tests were run on all the specimens and the respective load-displacement and stress-strain curves were plotted. Toughness, ultimate compressive strength and the modulus of elasticity were determined for all specimens. The compressive strength and modulus of elasticity declined in 30 kg/m3 steel-fiber-additive concrete (SFAC by 9% and 7% compared to the reference C20 concrete without SFs, and the area under the load-deflection curve grew more than twofold. In concrete with a higher SF dosage, the differences in strength and elasticity were around I0% whilst toughness was about the same. Because toughness values were similar in 30, 40, 50 and 60 kg/m3 plain SF-additive concrete and the strength and modulus of elasticity were slightly better in the mixes with the smallest proportion of SF for reasons of economy, 30 kg/m3 was taken as the optimum dose of steel fiber to be added to the reinforced concrete used in a second phase of the study. Hence, of the six reinforced concrete (RC beams made, all of equal size and with the same under-reinforced tensile reinforcement design, three were made with concrete containing the above-mentioned dose of SF. In addition to compressive strength, these beams were tested for flexural strength, which was found to be 18% greater for the SFARC beams than the ordinary RC beams, and the upper arms of the load versus mid-span deflection curves prior to ultimate failure of the SFARC beams were considerably longer than the same arms on the curves for ordinary RC beams.

    Se han utilizado cinco lotes diferentes de hormigón clase C20 cuatro de ellos con fibras de acero (FA, identificadas como Dramix-CR-80/60-BN, en cuatro proporciones diferentes: 30, 40, 50 y 60 kg/m3 y el quinto exento de

  15. Behavior of steel fiber high strength concrete under impact of projectiles

    Directory of Open Access Journals (Sweden)

    Cánovas, M. F.

    2012-09-01

    Full Text Available This paper presents the results of the investigation carried out by the authors about the behavior of 80 MPa characteristic compression strength concrete reinforced with different amount of high carbon content steel fiber, submit to impact of different caliber projectiles, determining the thickness of this type of concrete walls needs to prevent no perforation, as well as the maximum penetration to reach into them, so that in the event of no perforation and only penetration, "scabbing" phenomena does not take place on the rear surface of the wall. Prior to ballistic testing was necessary to design the high-strength concrete with specific mechanical properties, especially those related to ductility, since these special concrete must absorb the high energy of projectiles and also the shock waves that accompany them.Este trabajo presenta los resultados de la investigación llevada a cabo por los autores sobre el comportamiento de hormigón de 80 MPa de resistencia característica a compresión reforzado con diferentes cuantías de fibras de acero de alto contenido en carbono sometido al impacto de proyectiles de distintos calibres, determinando el espesor de muros de este tipo de hormigón que sería preciso disponer para impedir su perforación por dichos proyectiles, así como los valores máximos de penetración, para que en el caso de no producirse perforación y sólo penetración, no se genera cráter, “scabbing”, en el trasdós de los mismos. Previamente a los ensayos balísticos fue preciso diseñar los hormigones para que, presentaran determinadas características mecánicas, especialmente las relacionadas con la ductilidad, dado que estos hormigones especiales deben absorber la elevada energía que le transmiten los proyectiles y las ondas de choque que los acompañan.

  16. The Dependence of the Physical Mechanical Properties of Expanded-Clay Lightweight Concrete on the Composition

    Directory of Open Access Journals (Sweden)

    Marija Vaičienė

    2011-04-01

    Full Text Available Binder material is the most expensive raw component of concrete; thus, scientists are looking for cheaper substitute materials. This paper shows that when manufacturing, a part of the binder material of expanded-clay lightweight concrete can be replaced with active filler. The conducted studies show that technogenic – catalyst waste could act as similar filler. The study also includes the dependence of the physical and mechanical properties of expanded-clay lightweight concrete on the concrete mixture and the chemical composition of the samples obtained. Different formation and composition mixtures of expanded-clay lightweight concrete were chosen to determine the properties of physical-mechanical properties such as density, water absorption and compressive strength.Article in Lithuanian

  17. Modified composite material developed on the basis of no-fines asphalt concrete

    Directory of Open Access Journals (Sweden)

    Mikhasek Andrey

    2017-01-01

    Full Text Available Being a composite material, asphalt concrete is widely used in hydraulic engineering and road construction. The paper proves one of asphalt concrete modification, which includes first creating a skeleton of no-fines concrete and then its washing-down with bituminous materials by a hot procedure, can be successfully used in hydraulic structures Modified composite material based on no-fines asphalt concrete has a harder skeleton because of links from cement stone and has a technological advantage, as through the proposed technology it allows to reduce the cost of filling porous spaces. This technology allows to conclude that concrete aggregate with size fractions of 120 mm or less and frost resistance of 50 cycles and less can be recommended for fastening of slopes.

  18. Sustainable construction: Composite use of tyres and ash in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Snelson, D.G.; Kinuthia, J.M.; Davies, P.A.; Chang, S.R. [University of Glamorgan, Pontypridd (United Kingdom). Faculty of Advanced Technology

    2009-01-15

    An investigation was carried out to establish the physical, mechanical and chemical characteristics of a non-standard (unprocessed) pulverised fuel ash (PFA) and waste tyres from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. Investigations are on-going to establish the suitability of the fly ash and/or tyres in road construction (embankment and pavement) and also in concrete to be used in the construction of the proposed highway. This paper reports on concrete-based construction where concrete blends (using various levels of PFA as partial replacement for Portland cement (PC), and shredded waste tyres (chips 15-20 mm) as aggregate replacement) were subjected to unconfined compressive strength tests to establish performance, hence, optimising mix designs. Strength development up to 180 days for the concrete made with PC-PFA blends as binders (PC-PFA concrete), with and without aggregate replacement with tyre chips, is reported. The binary PC-PFA concrete does not have good early strength but tends to improve at longer curing periods. The low early strength observed means that PC-PFA concrete cannot be used for structures, hence, only as low to medium strength applications such as blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.

  19. Direct displacement-based design of special composite RC shear walls with steel boundary elements

    Directory of Open Access Journals (Sweden)

    H. Kazemi

    2016-06-01

    Full Text Available Special composite RC shear wall (CRCSW with steel boundary elements is a kind of lateral force resisting structural system which is used in earthquake-prone regions. Due to their high ductility and energy dissipation, CRCSWs have been widely used in recent years by structural engineers. However, there are few studies in the literature on the seismic design of such walls. Although there are many studies in the literature on the Direct Displacement-Based Design (DDBD of RC structures, however, no study can be found on DDBD of CRCSWs. Therefore, the aim of present study is to evaluate the ability of DDBD method for designing CRCSWs. In this study, four special composite reinforced concrete shear walls with steel boundary elements of 4, 8, 12 and 16 story numbers were designed using the DDBD method for target drift of 2%. The seismic behavior of the four CRCSWs was studied using nonlinear time-history dynamic analyses. Dynamic analyses were performed for the mentioned walls using 7 selected earthquake records. The seismic design parameters considered in this study includes: lateral displacement profile, inelastic dynamic inter-story drift demand, failure pattern and the composite RC shear walls overstrength factor. For each shear wall, the overall overstrength factor was calculated by dividing the ultimate dynamic base shear demand (Vu by the base shear demand (Vd as per the Direct Displacement Based-Design (DDBD method. The results show that the DDBD method can be used to design CRCSWs safely in seismic regions with predicted behavior.

  20. The influence of loading on the corrosion of steel in cracked ordinary Portland cement and high performance concretes

    Science.gov (United States)

    Jaffer, Shahzma Jafferali

    Most studies that have examined chloride-induced corrosion of steel in concrete have focused on sound concrete. However, reinforced concrete is seldom uncracked and very few studies have investigated the influence of cracked concrete on rebar corrosion. Furthermore, the studies that have examined the relationship between cracks and corrosion have focused on unloaded or statically loaded cracks. However, in practice, reinforced concrete structures (e.g. bridges) are often dynamically loaded. Hence, the cracks in such structures open and close which could influence the corrosion of the reinforcing steel. Consequently, the objectives of this project were (i) to examine the effect of different types of loading on the corrosion of reinforcing steel, (ii) the influence of concrete mixture design on the corrosion behaviour and (iii) to provide data that can be used in service-life modelling of cracked reinforced concretes. In this project, cracked reinforced concrete beams made with ordinary Portland cement concrete (OPCC) and high performance concrete (HPC) were subjected to no load, static loading and dynamic loading. They were immersed in salt solution to just above the crack level at their mid-point for two weeks out of every four (wet cycle) and, for the remaining two weeks, were left in ambient laboratory conditions to dry (dry cycle). The wet cycle led to three conditions of exposure for each beam: (i) the non-submerged region, (ii) the sound, submerged region and (iii) the cracked mid-section, which was also immersed in the solution. Linear polarization resistance and galvanostatic pulse techniques were used to monitor the corrosion in the three regions. Potentiodynamic polarization, electrochemical current noise and concrete electrical resistance measurements were also performed. These measurements illustrated that (i) rebar corroded faster at cracks than in sound concrete, (ii) HPC was more protective towards the rebar than OPCC even at cracks and (iii) there