WorldWideScience

Sample records for concrete bridge girders

  1. Shear capacity of in service prestressed concrete bridge girders.

    Science.gov (United States)

    2010-05-17

    The design of prestressed concrete bridge girders has changed significantly over the past several : decades. Specifically, the design procedure to calculate the shear capacity of bridge girders that : was used forty years ago is very different than t...

  2. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges : technical summary report.

    Science.gov (United States)

    2004-03-01

    Most highway bridges are built as cast-in-place : reinforced concrete slabs and prestressed concrete : girders. The shear connectors on the top of the girders : assure composite action between the slabs and : girders. The design guidelines for bridge...

  3. Self-Consolidating Concrete for Prestressed Bridge Girders : Research Brief

    Science.gov (United States)

    2017-08-01

    Self-consolidating concrete (SCC) is commonly used as an alternative to conventional concrete (CC) in precast, prestressed concrete (PSC) bridge girders. The high strength, highly workable mixture can flow through dense reinforcement to fill formwork...

  4. Self-Consolidating Concrete for Prestressed Bridge Girders

    Science.gov (United States)

    2017-07-01

    This document reports the findings of a research project designed to better understand material and structural performance of prestressed bridge girders made with Self-Consolidating Concrete (SCC) from Wisconsin. SCC has high potential to be used for...

  5. Simplified method for the transverse bending analysis of twin celled concrete box girder bridges

    Science.gov (United States)

    Chithra, J.; Nagarajan, Praveen; S, Sajith A.

    2018-03-01

    Box girder bridges are one of the best options for bridges with span more than 25 m. For the study of these bridges, three-dimensional finite element analysis is the best suited method. However, performing three-dimensional analysis for routine design is difficult as well as time consuming. Also, software used for the three-dimensional analysis are very expensive. Hence designers resort to simplified analysis for predicting longitudinal and transverse bending moments. Among the many analytical methods used to find the transverse bending moments, SFA is the simplest and widely used in design offices. Results from simplified frame analysis can be used for the preliminary analysis of the concrete box girder bridges.From the review of literatures, it is found that majority of the work done using SFA is restricted to the analysis of single cell box girder bridges. Not much work has been done on the analysis multi-cell concrete box girder bridges. In this present study, a double cell concrete box girder bridge is chosen. The bridge is modelled using three- dimensional finite element software and the results are then compared with the simplified frame analysis. The study mainly focuses on establishing correction factors for transverse bending moment values obtained from SFA.

  6. Flexural and Shear Behavior of FRP Strengthened AASHTO Type Concrete Bridge Girders

    Directory of Open Access Journals (Sweden)

    Nur Yazdani

    2016-01-01

    Full Text Available Fiber-reinforced polymers (FRP are being increasingly used for the repair and strengthening of deteriorated or unsafe concrete structures, including structurally deficient concrete highway bridges. The behavior of FRP strengthened concrete bridge girders, including failure modes, failure loads, and deflections, can be determined using an analytical finite element modeling approach, as outlined in this paper. The differences in flexural versus shear FRP strengthening and comparison with available design guidelines are also beneficial to design professionals. In this paper, a common AASHTO type prestressed concrete bridge girder with FRP wrapping was analyzed using the ANSYS FEM software and the ACI analytical approach. Both flexural and shear FRP applications, including vertical and inclined shear strengthening, were examined. Results showed that FRP wrapping can significantly benefit concrete bridge girders in terms of flexure/shear capacity increase, deflection reduction, and crack control. The FRP strength was underutilized in the section selected herein, which could be addressed through decrease of the amount of FRP and prestressing steel used, thereby increasing the section ductility. The ACI approach produced comparable results to the FEM and can be effectively and conveniently used in design.

  7. Evaluation of a highway bridge constructed using high strength lightweight concrete bridge girders.

    Science.gov (United States)

    2011-04-01

    The use of high performance concretes to provide longer bridge spans has been limited due to the capacity of existing infrastructure to handle the load of the girders during transportation. The use of High Strength Lightweight Concrete (HSLW) can pro...

  8. Shear in high strength concrete bridge girders : technical report.

    Science.gov (United States)

    2013-04-01

    Prestressed Concrete (PC) I-girders are used extensively as the primary superstructure components in Texas highway bridges. : A simple semi-empirical equation was developed at the University of Houston (UH) to predict the shear strength of PC I-girde...

  9. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    International Nuclear Information System (INIS)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-01-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler–Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges. (paper)

  10. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  11. Development of bridge girder movement criteria for accelerated bridge construction.

    Science.gov (United States)

    2014-06-01

    End diaphragms connect multiple girders to form a bridge superstructure system for effective resistance to earthquake loads. Concrete : girder bridges that include end diaphragms consistently proved to perform well during previous earthquake events. ...

  12. PARAMETRIC STUDY OF SKEW ANGLE ON BOX GIRDER BRIDGE DECK

    OpenAIRE

    Shrikant D. Bobade *, Dr. Valsson Varghese

    2016-01-01

    Box girder bridge deck, is the most common type of bridges in world and India, it consists of several Slab or girders. The span in the direction of the roadway and connected across their tops and bottoms by a thin continuous structural stab, the longitudinal box girders can be made of steel or concrete. The Simple supported single span concrete bridge deck is presented in present study. Skewed bridges are suitable in highway design when the geometry of straight bridges is not possible. The sk...

  13. Comparison Between PCI and Box Girder in BridgesPrestressed Concrete Design

    Science.gov (United States)

    Rahmawati, Cut; Zainuddin, Z.; Is, Syafridal; Rahim, Robbi

    2018-04-01

    This research is done by comparing PCI and Box Girder types of prestressed concrete design. The method used is load balance. Previous studies have just discussed the differences in terms of effectiveness and economics. In this study, the researchers want to know the design process by comparing the working forces, the resulting moment, and the losses of the prestressed. As the case in this study, the researchers used the bridge with the span of 31 meters. The tendon pulling system was conducted with post-tensioning system The analysis result showed that prestressed of the Girder box type sustained the greatest moment due to the combination of its own weight, additional dead load, lane load, and wind load of 44,029 kNm, while the biggest moment of PCI Girder was 7,556.75 KNm The Girder beam box experiences greater moment and shear force than PCI Girder. This is the effect of the weight of its own Girderboxwaslarger than PCI Girder. The losses ofprestressed style of Girderboxand PCI Girder type were 24.85% and 26.32%, respectively.Moreover, it showed that the type of Girder box is cheaper, easier, and more efficient than PCI Girder.

  14. STRENGTHENING CONCRETE HOLLOW SECTION GIRDER BRIDGE USING POLYURETHANE-CEMENT MATERIAL (PART B

    Directory of Open Access Journals (Sweden)

    Haleem K. Hussain

    2018-01-01

    Full Text Available This paper presents experimental study to retrofitted reinforced concrete Hollow Section Bridge. The study was carried out on the White River Bridge structure (Bai xi da Qiao / China. The effect of retrofitting on stress and strain of beams at the critical section was studied. Evaluating the bridges girder after strengthening using new material called PolyurethaneCement material (PUC as an external material .This study present the strain and deflection before and after strengthening the bridge girders. The results has shown that the overall state of the bridge structural strengthening is in good condition. The enhancement was significant in stiffness of the bridge structure. Regarding to the results of static load test, the experimental values strain and deflection are less than theoretical values, indicating that the stiffness of the structure, overall deformation and integrity satisfy the designed and standard requirements and the working performance are in good condition, and flexure capacity has a certain surplus.

  15. The effect of span length and girder type on bridge costs

    Directory of Open Access Journals (Sweden)

    Batikha Mustafa

    2017-01-01

    Full Text Available Bridges have an important role in impacting the civilization, growth and economy of cities from ancient time until these days due to their function in reducing transportation cost and time. Therefore, development of bridges has been a knowledge domain in civil engineering studies in terms of their types and construction materials to confirm a reliable, safe, economic design and construction. Girder-bridge of concrete deck and I-beam girder has been used widely for short and medium span bridges because of ease and low-cost of fabrication. However, many theoretical and practical investigations are still undertaken regarding the type of beam girder; i.e steel composite or prestressed concrete. This paper evaluates the effect of bridge span and the type of girder on the capital cost and life cycle costs of bridges. Three types of girders were investigated in this research: steel composite, pre-tensioned pre-stressed concrete and post-tensioned pre-stressed concrete. The structural design was analyzed for 5 span lengths: 20, 25, 30, 35 and 40m. Then, the capital construction cost was accounted for 15 bridges according to each span and construction materials. Moreover, the maintenance required for 50 years of bridge life was evaluated and built up as whole life costs for each bridge. As a result of this study, the influence of both span length and type of girder on initial construction cost and maintenance whole life costs were assessed to support the decision makers and designers in the selection process for the optimum solution of girder bridges.

  16. Development of guidelines for transportation of prestressed concrete girders.

    Science.gov (United States)

    2011-11-01

    "Prestressed concrete girders are an economical superstructure system for bridges. With the : advent of higher strength concretes and more effi cient cross sections, the use of long span (>100 : ft.) prestressed girders are now specifi ed. Such long ...

  17. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  18. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : appendices.

    Science.gov (United States)

    2012-01-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  19. Condition Assessment of PCI Bridge Girder a Result of The Reduction Prestressing Force

    Directory of Open Access Journals (Sweden)

    Suangga Made

    2014-03-01

    Full Text Available PCI bridge girders is known and widely used for many construction e.g.: bridge, wharf, flyover, and other application. PC Bridge girders have two types: Pre - tensioned girders and post - tensioned girders. In pre tensioned girders, prestressing in carried out first then after that the fresh concrete poured. The prestressing process in only carried off after the concrete has sufficient strength. In this study, analysis was conducted for PCI bridge girder with span is 40 meters. Based on the data geometry bridge dimension girder, material girder, and material strands cable, it will be analyzed to calculate the natural frequencies and moment capacity using finite element program (Midas/Civil program. So it can be estimated how much the percentage reduction prestress force on the bridge until PCI bridge structure collapses. From the calculation, it found that the pattern comparison between reduction prestressing force and natural frequency are linear. These results are also similar for natural frequency versus moment capacity.PCI bridge will collapse when the reduction prestreesing force of 45 % to 50 % from the total loss of prestressing.

  20. Design aids of NU I-girders bridges.

    Science.gov (United States)

    2010-05-01

    Precast prestressed concrete I-Girder bridges have become the most dominant bridge system in the United States. In the early design : stages, preliminary design becomes a vital first step in designing an economical bridge. Within the state of Nebrask...

  1. Structural Health Monitoring and Time-Dependent Effects Analysis of Self-Anchored Suspension Bridge with Extra-Wide Concrete Girder

    Directory of Open Access Journals (Sweden)

    Guangpan Zhou

    2018-01-01

    Full Text Available The present work is aimed at studying the structural health status of Hunan Road Bridge, which is currently the widest concrete self-anchored suspension bridge in China. The monitoring data included the structural deformations, internal forces, and vibration characteristics from April 2015 to April 2016 were analyzed to evaluate the structural changes and safety. The influences brought by the ambient temperature changes and the dual effects composed of concrete shrinkage & creep (S&C and seasonal temperature changes were analyzed based on the measured data. The long-time effects of concrete S&C were predicted using the CEB-FIP 90 model and the age-adjusted effective modulus method based on the ANSYS beam finite element model. The measured data showed that the transverse displacements of towers were more significant than the longitudinal ones. The spatial effect of the extra-wide girder is significant, which performs as the longitudinal stresses change unevenly along the transverse direction. The seasonal ambient warming caused overall increases in girder compressive stresses, and the cooling resulted in decreases along with significant temperature gradient effects. The prediction results show that the cable anchoring positions at girder ends and tower tops will move towards the mid-span affected by concrete S&C. In terms of the middle region of mid-span girder, significant increases in longitudinal stresses of top plate and decreases in the ones of bottom plate will be caused by the significant deflection. Comprehensively, the increases in the girder compressive stresses of side-span bottom plate and mid-span top plate are worthy of attention when confronted with extreme high temperature during the bridge service life cycle.

  2. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  3. Repair of cracked prestressed concrete girders, I-565, Huntsville, Alabama.

    Science.gov (United States)

    2011-07-01

    Wide cracks were discovered in prestressed concrete bridge girders shortly after their construction in Huntsville, Alabama. Previous investigations of these continuous-for-live-load girders revealed that the cracking resulted from restrained thermal ...

  4. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report appendices.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  5. Implementation and field evaluation of pretensioned concrete girder end crack control.

    Science.gov (United States)

    2016-05-01

    Wisconsin bulb tee pretensioned concrete girders are currently used for bridge construction. Their efficiency in load resistance has made them particularly desirable. To provide that efficiency, these girders are heavily prestressed. Cracking is evid...

  6. Numerical Analysis on Variation of Dynamic Response of Girder Bridges with Torsional Reinforcement Panels

    Directory of Open Access Journals (Sweden)

    Kang Jae-Yoon

    2015-01-01

    Full Text Available The dynamic flexural behaviour of the railway bridge is influenced by its torsional behaviour. Especially, in the case of girder railway bridges, the dynamic response tends to amplify when the natural frequency in flexure (1st vibration mode is close to that in torsion (2nd vibration mode. In order to prevent such situation, it is necessary to adopt a flexural-to-torsional natural frequency ratio larger than 120%. This study proposes a solution shifting the natural frequency in torsion to high frequency range and restraining torsion by installing concrete panels on the bottom flange of the girder so as to prevent the superposition of the responses in the girder bridge. The applicability of this solution is examined by finite element analysis of the shift of the torsional natural frequency and change in the dynamic response according to the installation of the concrete panels. The analytical results for a 30 m-span girder railway bridge indicate that installing the concrete panels increases the natural frequency in torsion by restraining the torsional behaviour and reduces also the overall dynamic response. It is seen that the installation of 100 mm-thick concrete panels along a section of 4 m at both extremities of the girder can reduce the dynamic response by more than 30%.

  7. End region detailing of pretensioned concrete bridge girders.

    Science.gov (United States)

    2013-03-01

    End region detailing has significant effect on the serviceability, behavior, and capacity of pretensioned concrete girders. : In this project, experimental and analytical research programs were conducted to evaluate and quantify the effects of : diff...

  8. Experimental testing of post-tensioned concrete girders instrumented with optical fibre gratings

    Science.gov (United States)

    Matthys, S.; Taerwe, L.

    2005-05-01

    The integration of optical fibre strain sensors in concrete structures in order to measure deformations has proven to be successful in several applications. Examples of monitored structures by the Magnel Laboratory for Concrete Research are a concrete girder bridge over the Ring Canal by Ghent, a Quay wall at the Ring Canal and a trough girder containing a railway track of a bridge [1,2]. Based on a joint research project the feasibility of integrating Bragg grating sensors in concrete in order to statically and dynamically monitor 17.6 m long prestressed concrete girders has been investigated. During the project 3 post-tensioned concrete girders were tested, submitting them to static and dynamic loading conditions and monitoring the structural behavior with several types of measuring devices, including accelerometers, Bragg gratings, Fabry-Perot gratings, deformeters, crack microscopes, etc. The obtained test results demonstrate the feasibility of optical strain sensors for both static and dynamic measurements. Though it was demonstrated, in the case of dynamic monitoring, that optical strain measurements can be used to directly measure the modal strains, the project also demonstrated that for prestressed concrete the variation in dynamic parameters was insufficient for adequate dynamic monitoring and related damage diagnostics.

  9. Repair of Impact-Damaged Prestressed Bridge Girders Using Strand Splices and Fabric Reinforced Cementitious Matrix

    OpenAIRE

    Jones, Mark Stevens

    2017-01-01

    This thesis investigates the repair of impact-damaged prestressed concrete bridge girders with strand splices and fabric-reinforced cementitious matrix systems, specifically for repair of structural damage to the underside of an overpass bridge girder due to an overheight vehicle collision. Collision damage to bridges can range from minor to catastrophic, potentially requiring repair or replacement of a bridge girder. This thesis investigates the performance of two different types of repair...

  10. Aerodynamic stability study of a long-span prestressed concrete cable-stayed bridge. Aerodynamic behavior of edge box girder under uniform flow; Chodai PC shachokyo no taifu anteisei ni kansuru kenkyu. Ichiyoryuchu ni okeru edge girder keishiki no kuriki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, T. [Obayashi Corp., Tokyo (Japan)

    1999-01-10

    In recent years, the construction of long-span bridges is on the increase. Prestressed concrete cable-stayed bridges are dynamically very efficient structures of relatively low cost that blend in well with the landscape. Maintenance is also easy. Consequently, the adoption of edge box girders for cable-stayed bridges is increasing worldwide, but problems related to the aerodynamic stability of the structure have emerged. The aerodynamic stability of edge box girders for a prestressed concrete cable-stayed bridge was investigated under uniform flow conditions by conducting several wind tunnel experiments. As a result, the section of the bridge deck was optimized to prevent torsional flutter within an angle of attack varying from -5 to +5 degrees. It is therefore possible to guarantee the aerodynamic stability of long-span prestressed concrete cable-stayed bridges. (author)

  11. The Vibration Based Fatigue Damage Assessment of Steel and Steel Fiber Reinforced Concrete (SFRC Composite Girder

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2015-01-01

    Full Text Available The steel-concrete composite girder has been usually applied in the bridge and building structures, mostly consisting of concrete slab, steel girder, and shear connector. The current fatigue damage assessment for the composite girder is largely based on the strain values and concrete crack features, which is time consuming and not stable. Hence the vibration-based fatigue damage assessment has been considered in this study. In detail, a steel-steel fiber reinforced concrete (SFRC composite girder was tested. The steel fiber reinforced concrete is usually considered for dealing with the concrete cracks in engineering practice. The composite girder was 3.3m long and 0.45m high. The fatigue load and impact excitation were applied on the specimen sequentially. According to the test results, the concrete crack development and global stiffness degradation during the fatigue test were relatively slow due to the favourable performance of SFRC in tension. But on the other hand, the vibration features varied significantly during the fatigue damage development. Generally, it confirmed the feasibility of executing fatigue damage assessment of composite bridge based on vibration method.

  12. Development of guidelines for transportation of long prestressed concrete girders.

    Science.gov (United States)

    2016-12-01

    This research study investigates the behavior of two long prestressed concrete girders during lifting and : transportation from the precast yard to the bridge site, with a particular focus on cracking concerns : during transport. Different response m...

  13. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges.

    Science.gov (United States)

    2004-10-01

    Continuity diaphragms used on skewed bents in prestressed girder bridges cause difficulties in detailing and : construction. Details for bridges with large diaphragm skew angles (>30) have not been a problem for LA DOTD. : However, as the skew angl...

  14. Analysis of a damaged and repaired pre-stressed concrete bridge girder by vehicle impact and effectiveness of repair procedure

    OpenAIRE

    Domínguez Mayans, Félix

    2014-01-01

    This thesis aims to study the structural consequences of the damages produced by vehicle impact in a pres-stressed concrete bridge girder and the repair procedure in a real case-study damaged after the bridge was opened to service. From the analysis of the situation of the beam and its damage state, a study of the repair actions carried out on this beam has been analyzed in order to determine the efficiency of the repair and if other alternatives are possible or more efficient. A stat...

  15. Proposal and study of a long-span composite cable-stayed bridge with new hybrid girder; Atarashii gosei kozo shuketa wo mochiita chodai fukugo shachokyo no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, K.; Hishiki, Y.; Furuichi, K. [Kajima Corp., Tokyo (Japan)

    1999-09-30

    A hybrid or mixed structure (composite structures) are a matter of increasing concern which takes in each advantage of steel and concrete. A field of bridges is no exception, with the plan and construction carried out for the new type of composite bridge, such as a composite cable-stayed bridge and a composite extra dose bridge as a long span bridge, and a composite truss bridge and a corrugated steel plate web bridge as a medium-span bridge, with technological development becoming active in this field. In such a technological trend, a hybrid two-girder structure was devised, a structure consisting of a concrete filled steel pipe for a girder and a precast (PC) floor plate for a floor board, as the girder structure of a long-span cable-stayed bridge in the subject research; also, applicability was examined using, as an example, the composite cable-stayed bridge with hybrid girders employed for the span. This paper reports the result of the analysis of the entire system, the analysis made for the purpose of examining the characteristic and the feasibility of this hybrid girder. The analysis revealed the structural feasibility of the long-span composite cable-stayed bridge using two hybrid girders of concrete-filled steel pipes thus devised. (NEDO)

  16. Performance of self-consolidating concrete in prestressed girders.

    Science.gov (United States)

    2010-04-01

    A structural investigation of self-consolidating concrete (SCC) in AASHTO Type I precast, : prestressed girders was performed. Six test girders were subjected to transfer length and : flexural testing. Three separate concrete mixtures, two girders pe...

  17. Seismic Retrofit of a Multispan Prestressed Concrete Girder Bridge with Friction Pendulum Devices

    Directory of Open Access Journals (Sweden)

    Alberto Maria Avossa

    2018-01-01

    Full Text Available The paper deals with the proposal and application of a procedure for the seismic retrofit of an existing multispan prestressed concrete girder bridge defined explicitly for the use of friction pendulum devices as an isolation system placed between piers top and deck. First, the outcomes of the seismic risk assessment of the existing bridge, performed using an incremental noniterative Nonlinear Static Procedure, based on the Capacity Spectrum Method as well as the Inelastic Demand Response Spectra, are described and discussed. Then, a specific multilevel design process, based on a proper application of the hierarchy of strength considerations and the Direct Displacement-Based Design approach, is adopted to dimension the FPD devices. Furthermore, to assess the impact of the FPD nonlinear behaviour on the bridge seismic response, a device model that reproduces the variation of the normal force and friction coefficient, the bidirectional coupling, and the large deformation effects during nonlinear dynamic analyses was used. Finally, the paper examines the effects of the FPD modelling parameters on the behaviour of the retrofitted bridge and assesses its seismic response with the results pointing out the efficiency of the adopted seismic retrofit solution.

  18. Design and construction of a cable-stayed composite girder bridge with precast RC-slabs; Purekyasuto shohan gosei keta shachokoyo no sekkei to seko

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, K. [Tokyo Metropolitan Univ. (Japan). Faculty of Technology; Shimura, T.; Tachibana, Y.; Echigo, S. [Kawada Industries Inc., Tokyo (Japan)

    1995-09-20

    A report on design and execution of cable-stayed composite girder bridge with precast RC-slabs constructed first in Japan though in small scale was described. This bridge adopted steel slabs relatively low in slab height for main slab and with two boxes slab section, and was designed at an aim of being more economic and shorter in its working term in comparison with steel girder slab type, on a base of the design in a region allowable with the existing design standards. This bridge is mainly in accordance with the regulation on continuous bridge in the prescription of road bridge, and is designed for normal RC-girder selecting between girder supports to direction normal to bridge axis as usual without using specially strong concrete to the girder. And, in order to fill with the regulation on allowable tensile stress on considering effects of creep and drying shrinkage, a method adding prestress to the slabs was adopted. Furthermore, a loop-like overlap joint for cable joint for the precast girders, expansion concrete for joint portion to compose the girder with the steel slab and so forth were adopted. 12 refs., 22 figs., 5 tabs.

  19. Shear Behavior of Corrugated Steel Webs in H Shape Bridge Girders

    Directory of Open Access Journals (Sweden)

    Qi Cao

    2015-01-01

    Full Text Available In bridge engineering, girders with corrugated steel webs have shown good mechanical properties. With the promotion of composite bridge with corrugated steel webs, in particular steel-concrete composite girder bridge with corrugated steel webs, it is necessary to study the shear performance and buckling of the corrugated webs. In this research, by conducting experiment incorporated with finite element analysis, the stability of H shape beam welded with corrugated webs was tested and three failure modes were observed. Structural data including load-deflection, load-strain, and shear capacity of tested beam specimens were collected and compared with FEM analytical results by ANSYS software. The effects of web thickness, corrugation, and stiffening on shear capacity of corrugated webs were further discussed.

  20. Assessing the need for intermediate diaphragms in prestressed concrete bridges.

    Science.gov (United States)

    2008-03-01

    Reinforced concrete intermediate diaphragms (IDs) are currently being used in prestressed concrete (PC) girder bridges in Louisiana. Some of the advantages of providing IDs are disputed in the bridge community; the use of IDs increases the cost and t...

  1. Load Distribution Factors for Composite Multicell Box Girder Bridges

    Science.gov (United States)

    Tiwari, Sanjay; Bhargava, Pradeep

    2017-12-01

    Cellular steel section composite with a concrete deck is one of the most suitable superstructures in resisting torsional and warping effects induced by highway loading. This type of structure has inherently created new design problems for engineers in estimating its load distribution when subjected to moving vehicles. Indian Codes of Practice does not provide any specific guidelines for the design of straight composite concrete deck-steel multi-cell bridges. To meet the practical requirements arising during the design process, a simple design method is needed for straight composite multi-cell bridges in the form of load distribution factors for moment and shear. This work presents load distribution characteristics of straight composite multi-cell box girder bridges under IRC trains of loads.

  2. Hybrid FRP-concrete bridge deck system final report II : long term performance of hybrid FRP-concrete bridge deck system.

    Science.gov (United States)

    2009-06-01

    This report describes the investigation of the long term structural performance of a : hybrid FRP-concrete (HFRPC) bridge deck on steel girders. The study aimed at : assessing three long term aspects pertaining to the HFRPC bridge deck: (1) creep : c...

  3. Continuous prestressed concrete girder bridges, volume 2 : analysis, testing, and recommendations.

    Science.gov (United States)

    2016-12-01

    The Texas Department of Transportation designs typical highway bridge structures as simple span systems using : standard precast, pretensioned girders. Spans are limited to about 150 ft due to weight and length restrictions on : transporting the prec...

  4. Continuous prestressed concrete girder bridges volume 1 : literature review and preliminary designs.

    Science.gov (United States)

    2012-06-01

    The Texas Department of Transportation (TxDOT) is currently designing typical highway bridge structures as simply supported using standard precast, pretensioned girders. TxDOT is interested in developing additional economical design alternatives for ...

  5. Damage identification method for continuous girder bridges based on spatially-distributed long-gauge strain sensing under moving loads

    Science.gov (United States)

    Wu, Bitao; Wu, Gang; Yang, Caiqian; He, Yi

    2018-05-01

    A novel damage identification method for concrete continuous girder bridges based on spatially-distributed long-gauge strain sensing is presented in this paper. First, the variation regularity of the long-gauge strain influence line of continuous girder bridges which changes with the location of vehicles on the bridge is studied. According to this variation regularity, a calculation method for the distribution regularity of the area of long-gauge strain history is investigated. Second, a numerical simulation of damage identification based on the distribution regularity of the area of long-gauge strain history is conducted, and the results indicate that this method is effective for identifying damage and is not affected by the speed, axle number and weight of vehicles. Finally, a real bridge test on a highway is conducted, and the experimental results also show that this method is very effective for identifying damage in continuous girder bridges, and the local element stiffness distribution regularity can be revealed at the same time. This identified information is useful for maintaining of continuous girder bridges on highways.

  6. Bridge maintenance to enhance corrosion resistance and performance of steel girder bridges

    Science.gov (United States)

    Moran Yanez, Luis M.

    The integrity and efficiency of any national highway system relies on the condition of the various components. Bridges are fundamental elements of a highway system, representing an important investment and a strategic link that facilitates the transport of persons and goods. The cost to rehabilitate or replace a highway bridge represents an important expenditure to the owner, who needs to evaluate the correct time to assume that cost. Among the several factors that affect the condition of steel highway bridges, corrosion is identified as the main problem. In the USA corrosion is the primary cause of structurally deficient steel bridges. The benefit of regular high-pressure superstructure washing and spot painting were evaluated as effective maintenance activities to reduce the corrosion process. The effectiveness of steel girder washing was assessed by developing models of corrosion deterioration of composite steel girders and analyzing steel coupons at the laboratory under atmospheric corrosion for two alternatives: when high-pressure washing was performed and when washing was not considered. The effectiveness of spot painting was assessed by analyzing the corrosion on steel coupons, with small damages, unprotected and protected by spot painting. A parametric analysis of corroded steel girder bridges was considered. The emphasis was focused on the parametric analyses of corroded steel girder bridges under two alternatives: (a) when steel bridge girder washing is performed according to a particular frequency, and (b) when no bridge washing is performed to the girders. The reduction of structural capacity was observed for both alternatives along the structure service life, estimated at 100 years. An economic analysis, using the Life-Cycle Cost Analysis method, demonstrated that it is more cost-effective to perform steel girder washing as a scheduled maintenance activity in contrast to the no washing alternative.

  7. Finite element model updating of a prestressed concrete box girder bridge using subproblem approximation

    Science.gov (United States)

    Chen, G. W.; Omenzetter, P.

    2016-04-01

    This paper presents the implementation of an updating procedure for the finite element model (FEM) of a prestressed concrete continuous box-girder highway off-ramp bridge. Ambient vibration testing was conducted to excite the bridge, assisted by linear chirp sweepings induced by two small electrodynamic shakes deployed to enhance the excitation levels, since the bridge was closed to traffic. The data-driven stochastic subspace identification method was executed to recover the modal properties from measurement data. An initial FEM was developed and correlation between the experimental modal results and their analytical counterparts was studied. Modelling of the pier and abutment bearings was carefully adjusted to reflect the real operational conditions of the bridge. The subproblem approximation method was subsequently utilized to automatically update the FEM. For this purpose, the influences of bearing stiffness, and mass density and Young's modulus of materials were examined as uncertain parameters using sensitivity analysis. The updating objective function was defined based on a summation of squared values of relative errors of natural frequencies between the FEM and experimentation. All the identified modes were used as the target responses with the purpose of putting more constrains for the optimization process and decreasing the number of potentially feasible combinations for parameter changes. The updated FEM of the bridge was able to produce sufficient improvements in natural frequencies in most modes of interest, and can serve for a more precise dynamic response prediction or future investigation of the bridge health.

  8. Comparative Research of Extra-large-span Cable-stayed Bridge with Steel Truss Girder and Steel Box Girder

    Directory of Open Access Journals (Sweden)

    Tan Manjiang

    2015-01-01

    Full Text Available To research structural performance of extra-large-span cable-stayed bridge under different section forms, with the engineering background of a 800m main-span cable-stayed bridge with steel truss girder, the cable-stayed bridge with steel box girder is designed according to the current bridge regulations when two bridges are designed in an ultimate state of the carrying capacity, so the maximum stress and minimum stress of the stress envelope diagram are substantially the same. A comprehensive comparison is given to two types of bridge on the aspect of static force, natural vibration frequency, stability, economic performance and so on. Analysis results provide future reference for the large-span cable-stayed bridge to select between the steel truss girder and the steel box girder.

  9. Suspension Bridge Flutter for Girder with Separate Control Flaps

    DEFF Research Database (Denmark)

    Huynh, T.; Thoft-Christensen, Palle

    Active vibration control of long span suspension bridge flutter using separated control flaps (SFSC) has shown to increase effectively the critical wind speed of bridges. In this paper, an SFSC calculation based on modal equations of the vertical and torsional motions of the bridge girder including...... the flaps is presented. The length of the flaps attached to the girder, the flap configuration and the flap rotational angles are parameters used to increase the critical wind speed of the bridge. To illustrate the theory a numerical example is shown for a suspension bridge of 1000m+2500m+1000m span based...... on the Great Belt Bridge streamlined girder....

  10. Behavior of Reinforced Concrete Hybrid Trapezoidal Box Girders Using Ordinary and Highly Strength Concrete

    Directory of Open Access Journals (Sweden)

    Nameer A. Alawsh

    2018-03-01

    Full Text Available In this paper, the general behavior of reinforced concrete hybrid box girders is studied by experimental and numerical investigation. Experimental work is included casting monolithically five specimens of box girders with trapezoidal cross section and testing it as simply supported under two point loading. Two specimens were cast as homogenous box girders (full normal strength concrete (NSC (about 35 MPa and full high strength concrete (HSC (about 55 MPa and three specimens were cast as hybrid box girders (HSC in upper flange only, HSC in upper flange and half depth of webs, and HSC in bottom flange and total depth of webs. Experimental results showed significant effects of concrete hybridization on the structural behavior of box girders specimens such as: cracking loads, cracking patterns, ultimate strengths, and failure modes. The ultimate strength of Hybrid box girders increased by 23% as average when compared with the homogenous box girder (full NSC and decreased by 9% as average when compared with homogenous box girder (full HSC. In numerical investigation, the tested specimens were modeled and analyzed using three dimensional non-linear finite element analysis. The analysis was carried out by using a computer program (ANSYS V16.1. The numerical results showed an acceptable agreement with the experimental work with difference about (3.12% and 9.588% as average for ultimate load and deflection, respectively.

  11. Reliability Assessment for PSC Box-Girder Bridges Based on SHM Strain Measurements

    Directory of Open Access Journals (Sweden)

    Chuang Chen

    2017-01-01

    Full Text Available A reliability assessment method for prestressed concrete (PSC continuous box-girder bridges based on structural health monitoring (SHM strain measurements was proposed. First, due to the fact that measured strain was compositive and the variation periods of its components were different, a series of limit state equations under normal use limit state were given. Then, a linear fitting method was used to determine the relationship between the ambient temperature and the measured strain, which was aimed at extracting the vehicle load effect and the temperature load effect from the measured strain. Finally, according to the equivalent normalization method, the load effects unsatisfying the normal distribution by probability density function fitting were transformed, and the daily failure probabilities of monitored positions were calculated for evaluating the safety state of the girder. The results show that (1 the top plate of the box girder is more sensitive than the bottom plate to the high temperature, (2 the daily and seasonal strain variations induced by uniform temperature reveal an inconsistent tendency to the seasonal variation for mid-span cross sections, and (3 the generalized extreme value distribution is recommended for temperature gradient stress and vehicle induced stress fitting for box-girder bridges.

  12. Wireless Impedance Sensor with PZT-Interface for Prestress-Loss Monitoring in Prestressed Concrete Girder

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Lee, So Young; Kim, Jeong Tae

    2011-01-01

    Ensuring the designed prestress force is very important for the safety of prestressed concrete bridge. The loss of prestress force in tendon could significantly reduce load carrying capacity of the structure. In this study, an automated prestress-loss monitoring system for prestressed concrete girder using PZT-interface and wireless impedance sensor node is presented. The following approaches are carried out to achieve the objective. Firstly, wireless impedance sensor nodes are designed for automated impedance-based monitoring technique. The sensor node is mounted on the high-performance Imote2 sensor platform to fulfill high operating speed, low power requirement and large storage memory. Secondly, a smart PZT-interface designed for monitoring prestress force is described. A linear regression model is established to predict prestress-loss. Finally, a system of the PZT-interface interacted with the wireless sensor node is evaluated from a lab-scale tendon-anchorage connection of a prestressed concrete girder

  13. Study on the Old Girders in the Widening Hollow Slab Girder Bridge

    Science.gov (United States)

    Wang, Ying; Zhang, Li Fang; Ma, Hai Yan

    2018-06-01

    Taking the bridge widening project of Shanghai-Hangzhou-Ningbo expressway widening construction project (China) as the background in this paper, the variation law of the internal force of the old bridge in the widening hollow slab girder bridge under vehicle load is studied, which is under the condition of different span lengths and different widening widths. Three different span lengths of the pre-tensioned prestressed hollow slab girder bridges are selected, the spatial finite element models of both the old bridge and the whole structure of widening bridge are established and calculated respectively by Midas/Civil software. The influences of widening and load increasing on the old bridges under the vehicle load are compared and analyzed. In addition, the authors also analyze the influences of different widening widths on the force state of old bridges under the condition of widening the same number of lane. Moreover , the effects on the old bridges that are caused by the uneven foundation settlement of widening bridge structure are also studied in this paper. This paper can provide some references for widening design of hollow slab bridges.

  14. Acoustic emission techniques applied to conventionally reinforced concrete bridge girders.

    Science.gov (United States)

    2008-09-01

    Reinforced concrete (RC) bridges generally operate at service-level loads except during discrete overload events that can reduce the integrity of the structure by initiating concrete cracks, widening or extending of existing concrete cracks, as well ...

  15. Distortional Buckling Analysis of Steel-Concrete Composite Girders in Negative Moment Area

    Directory of Open Access Journals (Sweden)

    Zhou Wangbao

    2014-01-01

    Full Text Available Distortional buckling is one of the most important buckling modes of the steel-concrete composite girder under negative moment. In this study, the equivalent lateral and torsional restraints of the bottom flange of a steel-concrete composite girder under negative moments due to variable axial forces are thoroughly investigated. The results show that there is a coupling effect between the applied forces and the lateral and torsional restraint of the bottom flange. Based on the calculation formula of lateral and torsional restraints, the critical buckling stress of I-steel-concrete composite girders and steel-concrete composite box girders under variable axial force is obtained. The critical bending moment of the steel-concrete composite girders can be further calculated. Compared to the traditional calculation methods of elastic foundation beam, the paper introduces an improved method, which considers coupling effect of the external loads and the foundation spring constraints of the bottom flange. Fifteen examples of the steel-concrete composite girders in different conditions are calculated. The calculation results show a good match between the hand calculation and the ANSYS finite element method, which validated that the analytic calculation method proposed in this paper is practical.

  16. Development of Embedded EM Sensors for Estimating Tensile Forces of PSC Girder Bridges

    Science.gov (United States)

    Kim, Ju-Won; Lee, Chaggil; Park, Seunghee

    2017-01-01

    The tensile force of pre-stressed concrete (PSC) girders is the most important factor for managing the stability of PSC bridges. The tensile force is induced using pre-stressing (PS) tendons of a PSC girder. Because the PS tendons are located inside of the PSC girder, the tensile force cannot be measured after construction using conventional NDT (non-destructive testing) methods. To monitor the induced tensile force of a PSC girder, an embedded EM (elasto-magnetic) sensor was proposed in this study. The PS tendons are made of carbon steel, a ferromagnetic material. The magnetic properties of the ferromagnetic specimen are changed according to the induced magnetic field, temperature, and induced stress. Thus, the tensile force of PS tendons can be estimated by measuring their magnetic properties. The EM sensor can measure the magnetic properties of ferromagnetic materials in the form of a B (magnetic density)-H (magnetic force) loop. To measure the B-H loop of a PS tendon in a PSC girder, the EM sensor should be embedded into the PSC girder. The proposed embedded EM sensor can be embedded into a PSC girder as a sheath joint by designing screw threads to connect with the sheath. To confirm the proposed embedded EM sensors, the experimental study was performed using a down-scaled PSC girder model. Two specimens were constructed with embedded EM sensors, and three sensors were installed in each specimen. The embedded EM sensor could measure the B-H loop of PS tendons even if it was located inside concrete, and the area of the B-H loop was proportionally decreased according to the increase in tensile force. According to the results, the proposed method can be used to estimate the tensile force of unrevealed PS tendons. PMID:28867790

  17. A technical report on structural evaluation of the Meade County reinforced concrete bridge : research [summary].

    Science.gov (United States)

    2009-01-01

    Meade County Bridge is a two-lane highway reinforced concrete bridge with two girders each with 20 continuous spans. The bridge was built in 1965. It has been reported that in early years of the bridge service period, a considerable amount of cracks ...

  18. Life-Cycle Monitoring of Long-Span PSC Box Girder Bridges through Distributed Sensor Network: Strategies, Methods, and Applications

    OpenAIRE

    Chen, Zheheng; Guo, Tong; Yan, Shengyou

    2015-01-01

    Structural health monitoring (SHM) has attracted much attention in recent years, which enables early warnings of structural failure, condition assessments, and rational maintenance/repair strategies. In the context of bridges, many long-span steel bridges in China have been installed with the SHM systems; however, the applications of the SHM in prestressed concrete (PSC) bridges are still rather limited. On the other hand, the PSC box girder bridges are extensively used in highway and railway...

  19. Design of bridge crane girder strain acquisition system based on virtual instrument

    Directory of Open Access Journals (Sweden)

    Wenxue LIU

    Full Text Available Girder is an important part of the bridge crane, which is also the main force element. In order to prevent accidents, it is necessary to collect the bridge crane girder stress data to analyse the fatigue life. This paper constructs a bridge crane girder strain acquisition system. The hardware system consists of sensors, connectors, data acquisition cards, wireless data transmission groups, POE power and host computer. The software system consists of NI MAX to interface with the computer's NI hardware and software resources,and LabVIEW programming to display and storage the girder strain data. Through this system, positions and working days strain data acquisition for the 50/10 t bridge crane girder gets the key positions strain data. The results show that the girder strain data acquisition system runs stably, channel signals of acquisition task transmit accurately, and the terminal data stores competely, meeting the detection requirements, which provides an important data support for the subsequent fatigue analysis and accurate remaining service life prediction of the crane girder.

  20. Effect of longitudinal stiffening on bridge girder webs at incremental launching stage

    Directory of Open Access Journals (Sweden)

    Carlos Graciano

    2015-01-01

    Full Text Available Patch loading is a predominant load case at incremental bridge launching. Bridge girder webs are frequently provided with longitudinal stiffeners to increase in-service shear and bending strength, and its effect has been included in design codes. However, no straightforward rules are given to account for the influence of such stiffeners on improving the patch loading resistance. This paper presents a review of some available formulae found in the literature to estimate the girder ultimate strength including the provisions of the European, American and Colombian design codes. Additionally, a nonlinear finite element analysis is conducted on three case studies related to actual launched bridges. The case studies are also used to study the influence of the longitudinal stiffener and girder depth on the girder capacity. Different load-displacement responses are observed depending on the girder depth. Finally, the finite element analysis shows to what extent the longitudinal stiffeners can increase the patch loading capacity of bridge girder webs during launching.

  1. Creep analysis and torsional vibration analysis of cable-stayed bridges with two edge composite girders; Nishuketa gosei kozo shachokyo no creep kaiseki to nejiri shindo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, M. [Nihon University, Tokyo (Japan). College of Science and Technology

    1996-07-21

    This paper describes the creep analysis and torsional vibration analysis of cable-stayed bridges with two edge composite girders. The girder is composed of the concrete slab and the steel girder. I-girders are placed at both edges of the profile. Such a type of bridge was investigated. As the stress migrates by the creep of concrete slab, it is necessary to evaluate the influence of this creep precisely in designing. In the analysis, the composite girder was expressed not by the single member, but by the binary member consisting of concrete member and steel member. Two methods were employed, i.e., method A in which both members are connected by the rigid body beam and method B in which the profile of concrete is converted into the profile of steel. The method A provided better accuracy, but the method B was often sufficient. Torsional rigidity of the open profile structure was much smaller than that of the box profile. As the torsional natural frequency was low, proper torsional vibration analysis was indispensable especially from the viewpoint of wind resistance. Two methods were employed, which utilize the vibration analysis method for general space frame structures. Results of both methods were agreed mutually, but the second method provided better calculation efficiency. 10 refs., 9 figs., 6 tabs.

  2. Hybrid Bridge Structures Made of Frp Composite and Concrete

    Science.gov (United States)

    Rajchel, Mateusz; Siwowski, Tomasz

    2017-09-01

    Despite many advantages over the conventional construction materials, the contemporary development of FRP composites in bridge engineering is limited due to high initial cost, low stiffness (in case of glass fibers) and sudden composite failure mode. In order to reduce the given limitations, mixed (hybrid) solutions connecting the FRP composites and conventional construction materials, including concrete, have been tested in many countries for 20 years. Shaping the hybrid structures based on the attributes of particular materials, aims to increase stiffness and reduce cost without losing the carrying capacity, lightness and easiness of bridges that includes such hybrid girders, and to avoid the sudden dangerous failure mode. In the following article, the authors described examples of hybrid road bridges made of FRP composite and concrete within the time of 20 years and presented the first Polish hybrid FRP-concrete road bridge. Also, the directions of further research, necessary to spread these innovative, advanced and sustainable bridge structures were indicated.

  3. Critical traffic loading for the design of prestressed concrete bridge

    International Nuclear Information System (INIS)

    Hassan, M.I.U.

    2009-01-01

    A study has been carried out to determine critical traffic loadings for the design of bridge superstructures. The prestressed concrete girder bridge already constructed in Lahore is selected for the analysis as an example. Standard traffic loadings according to AASHTO (American Association of State Highway and Transportation Officials) and Pakistan Highway Standards are used for this purpose. These include (1) HL-93 Truck, (2) Lane and (3) Tandem Loadings in addition to (4) Military tank loading, (5) Class-A, (6) Class-B and (7) Class-AA loading, (8) NLC (National Logistic Cell) and (9) Volvo truck loadings. Bridge superstructure including transom beam is analyzed Using ASD and LRFD (Load and Resistance Factor Design) provisions of AASHTO specifications. For the analysis, two longer and shorter spans are selected. This includes the analysis of bridge deck; interior and exterior girder; a typical transom beam and a pier. Dead and live loading determination is carried out using both computer aided and manual calculations. Evaluation of traffic loadings is done for all the bridge components to find out the critical loading. HL-93 loading comes out to be the most critical loading and where this loading is not critical in case of bridge decks; a factor of 1.15 is introduced to make it equivalent with HL-93 -Ioading. SAP-2000 (Structural Engineering Services of Pakistan) and MS-Excel is employed for analysis of bridge superstructure subjected to this loading. Internal forces are obtained for the structural elements of the bridge for all traffic loadings mentioned. It is concluded that HL-93 loading can be used for the design of prestressed concrete girder bridge. Bridge design authorities like NHA (National Highway Authority) and different cities development authorities are using different standard traffic loadings. A number of suggestions are made from the results of the research work related to traffic loadings and method of design. These recommendations may be

  4. Acoustic emission techniques applied to conventionally reinforced concrete bridge girders : final report.

    Science.gov (United States)

    2008-09-01

    Reinforced concrete (RC) bridges generally operate at service-level loads except during discrete overload events that can reduce the integrity of the structure by initiating concrete cracks, widening or extending of existing concrete cracks, as well ...

  5. Developing Extended Strands in Girder-Cap Beam Connections for Positive Moment Resistance

    Science.gov (United States)

    2017-11-01

    In bridges constructed with precast prestressed concrete girders, resistance to seismic effects is achieved by the interaction between the columns, the cap beam and the girders. These components must be connected to provide flexural resistance. Under...

  6. Flexible concrete link slabs used as expansion joints in bridge decks

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor

    2011-01-01

    of water through the expansion joint and subsequent corrosion of girders and girder bearings. Investigations on joint-less superstructures using conventional steel reinforcement in so-called concrete link slabs indicate improved performance and economic feasibility. However, this concept requires...... relatively large amounts of steel reinforcement for crack control purposes and consequently provides a relatively large flexural stiffness and negative moment capacity at the joint between the spans. These contradicting requirements and effects in existing replacement concepts for damaged mechanical bridge...... joints are currently unresolved. In the proposed system described in this paper, a ductile cement-based composite section reinforced with Glass Fiber Reinforced Polymers (GFRP) replaces the damaged expansion joint. The combination of this ductile concrete together with corrosion resistant GFRP...

  7. Live-Load Testing Application Using a Wireless Sensor System and Finite-Element Model Analysis of an Integral Abutment Concrete Girder Bridge

    Directory of Open Access Journals (Sweden)

    Robert W. Fausett

    2014-01-01

    Full Text Available As part of an investigation on the performance of integral abutment bridges, a single-span, integral abutment, prestressed concrete girder bridge near Perry, Utah was instrumented for live-load testing. The live-load test included driving trucks at 2.24 m/s (5 mph along predetermined load paths and measuring the corresponding strain and deflection. The measured data was used to validate a finite-element model (FEM of the bridge. The model showed that the integral abutments were behaving as 94% of a fixed-fixed support. Live-load distribution factors were obtained using this validated model and compared to those calculated in accordance to recommended procedures provided in the AASHTO LRFD Bridge Design Specifications (2010. The results indicated that if the bridge was considered simply supported, the AASHTO LRFD Specification distribution factors were conservative (in comparison to the FEM results. These conservative distribution factors, along with the initial simply supported design assumption resulted in a very conservative bridge design. In addition, a parametric study was conducted by modifying various bridge properties of the validated bridge model, one at a time, in order to investigate the influence that individual changes in span length, deck thickness, edge distance, skew, and fixity had on live-load distribution. The results showed that the bridge properties with the largest influence on bridge live-load distribution were fixity, skew, and changes in edge distance.

  8. Effects of Adhesive Connection on Composite Action between FRP Bridge Deck and Steel Girder

    NARCIS (Netherlands)

    Jiang, X.; Luo, Chengwei; Qiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2017-01-01

    The FRP-steel girder composite bridge system is increasingly used in new constructions of bridges as well as rehabilitation of old bridges. However, the understanding of composite action between FRP decks and steel girders is limited and needs to be systematically investigated. In this paper,

  9. review of elastic analys ew of elastic analysis of box girder bridges

    African Journals Online (AJOL)

    eobe

    Nigerian Journal of Technology,. Vol. 34, No. 1, January 2015 87 bridges under the attack of pitting corrosion. Savkovic et al. [130] proposed an optimum solution to optimization of the box section of the main girder of the bridge crane. Reduction of the girder mass was set as the objective function. Optimum dimensions of the.

  10. APPLICATION OF ULTRA-HIGH PERFORMANCE CONCRETE TO PEDESTRIAN CABLE-STAYED BRIDGES

    Directory of Open Access Journals (Sweden)

    CHI-DONG LEE

    2013-06-01

    Full Text Available The use of ultra-high performance concrete (UHPC, which enables reducing the cross sectional dimension of the structures due to its high strength, is expected in the construction of the super-long span bridges. Unlike conventional concrete, UHPC experiences less variation of material properties such as creep and drying shrinkage and can reduce uncertainties in predicting time-dependent behavior over the long term. This study describes UHPC’s material characteristics and benefits when applied to super-long span bridges. A UHPC girder pedestrian cable-stayed bridge was designed and successfully constructed. The UHPC reduced the deflections in both the short and long term. The cost analysis demonstrates a highly competitive price for UHPC. This study indicates that UHPC has a strong potential for application in the super-long span bridges.

  11. Shear evaluation of tapered bridge girder panels with steel corrugated webs near the supports of continuous bridges

    OpenAIRE

    Zevallos, E.; Hassanein, M.F.; Real Saladrigas, Esther; Mirambell Arrizabalaga, Enrique

    2016-01-01

    Because of public construction budgets were cut over the last few years, new bridge girders with corrugated webs to reduce the construction costs have become more widely studied and used. In spite that tapered bridge girders with corrugated webs (BGCWs) are used in modern bridges, their shear strength and behaviour rarely exists in literature. Based on available literature, the web of the linearly tapered BGCWs may be divided into three typologies with different structural response to shear f...

  12. Estimation of Curvature Changes for Steel-Concrete Composite Bridge Using Fiber Bragg Grating Sensors

    OpenAIRE

    Kang, Donghoon; Chung, Wonseok

    2013-01-01

    This study is focused on the verification of the key idea of a newly developed steel-concrete composite bridge. The key idea of the proposed bridge is to reduce the design moment by applying vertical prestressing force to steel girders, so that a moment distribution of a continuous span bridge is formed in a simple span bridge. For the verification of the key technology, curvature changes of the bridge should be monitored sequentially at every construction stage. A pair of multiplexed FBG sen...

  13. Extension of POA based on Fiber Element to Girder Bridge

    International Nuclear Information System (INIS)

    Li Zhenxin; Qiang Shizhong

    2010-01-01

    Because of its main advantage of simplicity, practicality, lower computational cost and relative good results Pushover analysis (POA) has become an effective analytical tool during the last decade for the seismic assessment of buildings. But such work on bridges has been very limited. Hence, the aim of this study is to adapt POA for nonlinear seismic analysis of girder bridges, and investigate its applicability in the case of an existing river-spanning approach bridge. To three different types bridge models the nonlinear POA, which adopts fiber model nonlinear beam-column element based on flexibility approach, with return period about 2500 years is carried out. It can be concluded that POA is applicable for bridges, with some shortcomings associated with the method in general, even when it is applied for buildings. Finally the applicable selection for monitoring point and lateral load pattern is suggested according to dynamic characteristic of girder bridges.

  14. Evaluating the performance of skewed prestressed concrete bridge after strengthening

    Science.gov (United States)

    Naser, Ali Fadhil; Zonglin, Wang

    2013-06-01

    The objectives of this paper are to explain the application of repairing and strengthening methods on the damaged members of the bridge structure, to analyze the static and dynamic structural response under static and dynamic loads after strengthening, and to evaluate the structural performance after application of strengthening method. The repairing and strengthening methods which are used in this study include treatment of the cracks, thickening the web of box girder along the bridge length and adding internal pre-stressing tendons in the thickening web, and construct reinforced concrete cross beams (diaphragms) between two box girders. The results of theoretical analysis of static and dynamic structural responses after strengthening show that the tensile stresses are decreased and become less than the allowable limit values in the codes. The values of vertical deflection are decreased after strengthening. The values of natural frequencies after strengthening are increased, indicating that the strengthening method is effective to reduce the vibration of the bridge structure. Therefore, the strengthening methods are effective to improve the bearing capacity and elastic working state of the bridge structure and to increase the service life of the bridge structure.

  15. Prestressing force monitoring method for a box girder through distributed long-gauge FBG sensors

    Science.gov (United States)

    Chen, Shi-Zhi; Wu, Gang; Xing, Tuo; Feng, De-Cheng

    2018-01-01

    Monitoring prestressing forces is essential for prestressed concrete box girder bridges. However, the current monitoring methods used for prestressing force were not applicable for a box girder neither because of the sensor’s setup being constrained or shear lag effect not being properly considered. Through combining with the previous analysis model of shear lag effect in the box girder, this paper proposed an indirect monitoring method for on-site determination of prestressing force in a concrete box girder utilizing the distributed long-gauge fiber Bragg grating sensor. The performance of this method was initially verified using numerical simulation for three different distribution forms of prestressing tendons. Then, an experiment involving two concrete box girders was conducted to study the feasibility of this method under different prestressing levels preliminarily. The results of both numerical simulation and lab experiment validated this method’s practicability in a box girder.

  16. Evaluation of continuity detail for precast prestressed girders.

    Science.gov (United States)

    2011-08-01

    The construction of highway bridges using precast prestressed concrete (PSC) girders is considered one of the most : economical construction alternatives because of the advantages they offer (e.g. reducing formwork and rapid construction). : Construc...

  17. Assessment of Replacement Bridge using Proof Load Test

    Science.gov (United States)

    Sundru, Saibabu

    2017-11-01

    This work begins with an overview of the condition assessment of old bridge and explained reasons for demolishing of the bridge. Briefly presented flexural analysis of two stage post-tensioned prestressed concrete girder, which will be replace the old (new bridge). Construction of I-girder and composite girder at first stage and second stage prestressing respectively is explained with figures. Assessment of the load-caring capacity of the one span of the replacement bridge with simple supports using proof load test is presented which is mandatory according to Indian standards. Weighted sand bags were used to load the bridge up to a predetermined service load with impact factor. Deflections of the I-girders of the bridge were measured at selected locations along and across the bridge span and compared with computed values. Linear response was observed during loading and unloading. Considering the load test results, theoretical estimation and criteria as stipulated in codes of practice, it can be inferred that prestressed concrete I-girder bridge span has adequate capacity to carry the loads and hence, deemed to have passed the test.

  18. Evaluation on Impact Interaction between Abutment and Steel Girder Subjected to Nonuniform Seismic Excitation

    Directory of Open Access Journals (Sweden)

    Yue Zheng

    2015-01-01

    Full Text Available This paper aims to evaluate the impact interaction between the abutment and the girder subjected to nonuniform seismic excitation. An impact model based on tests is presented by taking material properties of the backfill of the abutment into consideration. The conditional simulation is performed to investigate the spatial variation of earthquake ground motions. A two-span continuous steel box girder bridge is taken as the example to analyze and assess the pounding interaction between the abutment and the girder. The detailed nonlinear finite element (FE model is established and the steel girder and the reinforced concrete piers are modeled by nonlinear fiber elements. The pounding element of the abutment is simulated by using a trilinear compression gap element. The elastic-perfectly plastic element is used to model the nonlinear rubber bearings. The comparisons of the pounding forces, the shear forces of the nonlinear bearings, the moments of reinforced concrete piers, and the axial pounding stresses of the steel girder are studied. The made observations indicate that the nonuniform excitation for multisupport bridge is imperative in the analysis and evaluation of the pounding effects of the bridges.

  19. Life-Cycle Monitoring of Long-Span PSC Box Girder Bridges through Distributed Sensor Network: Strategies, Methods, and Applications

    Directory of Open Access Journals (Sweden)

    Zheheng Chen

    2015-01-01

    Full Text Available Structural health monitoring (SHM has attracted much attention in recent years, which enables early warnings of structural failure, condition assessments, and rational maintenance/repair strategies. In the context of bridges, many long-span steel bridges in China have been installed with the SHM systems; however, the applications of the SHM in prestressed concrete (PSC bridges are still rather limited. On the other hand, the PSC box girder bridges are extensively used in highway and railway systems and premature damage of these bridges is often reported, resulting in considerable maintenance and/or replacement costs. First, this paper presents a state-of-art review on the SHM of long-span PSC bridges. Monitoring strategies, methods, and previous applications for these bridges are summarized and discussed. In order to well capture the behavior of the bridge during its whole life and to maximize the use of sensors, a life-cycle monitoring strategy is proposed, in which the sensor layout is determined according to requirements for construction monitoring, completion test, and in-service monitoring. A case study is made on a three-span PSC box girder bridge in China. The system configuration, sensor layout, and data communications, and so forth, are presented. The up-to-date monitored structural responses are analyzed and compared with the design values.

  20. Analytical Calculation And FEM Analysis Main Girder Double Girder Bridge Crane

    Directory of Open Access Journals (Sweden)

    Muamer Delić

    2017-02-01

    Full Text Available The cranes are now not replaceable mode of transport of materials and finished products both in production halls and in the open space. This paper made the whole analytical calculation of double girder bridge cranes to be used in laboratories exclusively for testing, determined by the maximum bending stress and deflection of the main girder. After calculating the dimensions, we created a model cranes in software CATIA V5. The same model was subjected to FEM analysis of the same name software. At the end of the paper comparison has been done. The objective of the calculation and analysis of the model was to develop a model crane and to serve for the next tests. Dimensions of the crane are given according to the laboratory where it will be located.

  1. Increased of the capacity integral bridge with reinforced concrete beams for single span

    Science.gov (United States)

    Setiati, N. Retno

    2017-11-01

    Sinapeul Bridge that was built in 2012 in Sumedang is a bridge type using a full integral system. The prototype of integral bridge with reinforced concrete girder and single span 20 meters until this year had decreased capacity. The bridge was conducted monitoring of strain that occurs in the abutment in 2014. Monitoring results show that based on the data recorded, the maximum strain occurs at the abutment on the location of the integration of the girder of 10.59 x 10-6 tensile stress of 0.25 MPa (smaller than 150 x 10-6) with 3 MPa tensile stress as limit the occurrence of cracks in concrete. Sinapeul bridge abutment with integral system is still in the intact condition. Deflection of the bridge at the time of load test is 1.31 mm. But this time the bridge has decreased exceeded permission deflection (deflection occurred by 40 mm). Besides that, the slab also suffered destruction. One cause of the destruction of the bridge slab is the load factor. It is necessary for required effort to increase the capacity of the integral bridge with retrofitting. Retrofitting method also aims to restore the capacity of the bridge structure due to deterioration. Retrofitting can be done by shortening of the span or using Fibre Reinforced Polymer (FRC). Based on the results obtained by analysis of that method of retrofitting with Fibre Reinforced Polymer (FRC) is more simple and effective. Retrofitting with FRP can increase the capacity of the shear and bending moment becomes 41% of the existing bridge. Retrofitting with FRP method does not change the integral system on the bridge Sinapeul become conventional bridges.

  2. An overheight vehicle bridge collision monitoring system using piezoelectric transducers

    Science.gov (United States)

    Song, G.; Olmi, C.; Gu, H.

    2007-04-01

    With increasing traffic volume follows an increase in the number of overheight truck collisions with highway bridges. The detection of collision impact and evaluation of the impact level is a critical issue in the maintenance of a concrete bridge. In this paper, an overheight collision detection and evaluation system is developed for concrete bridge girders using piezoelectric transducers. An electric circuit is designed to detect the impact and to activate a digital camera to take photos of the offending truck. Impact tests and a health monitoring test were conducted on a model concrete bridge girder by using three piezoelectric transducers embedded before casting. From the experimental data of the impact test, it can be seen that there is a linear relation between the output of sensor energy and the impact energy. The health monitoring results show that the proposed damage index indicates the level of damage inside the model concrete bridge girder. The proposed overheight truck-bridge collision detection and evaluation system has the potential to be applied to the safety monitoring of highway bridges.

  3. Structural behavior of concrete box bridge using embedded FBG sensors

    Science.gov (United States)

    Chung, Wonseok; Kang, Donghoon

    2012-04-01

    For the structural monitoring of railway bridges, electromagnetic interference (EMI) is a significant problem as modern railway lines are powered by high-voltage electric power feeding systems. Fiber optic sensing systems are free from EMI and have been successfully applied in civil engineering fields. This study presents the application of fiber Bragg grating (FBG)-based sensing systems to precast concrete box railway bridges. A 20 m long full-scale precast concrete box railway girder was fabricated and tested in order to identify its static performance. The experimental program involved the measurement of the nonlinear static behavior until failure. Multiplexed FBG strain sensors were embedded along the length of steel rebar and a strain-induced wavelength shift was measured in order to monitor internal strains. The measured values from the FBG-based sensors are compared with the results using electric signal-based sensors. The results show that the FBG sensing system is promising and can improve the efficiency of structural monitoring for modern railway bridges.

  4. Determination of in-situ strength on selected bridge element concrete girder and slab of Nagtahan bridge using rebound hammer test

    International Nuclear Information System (INIS)

    Uy, Bernadette Betsy B.; Banaga, Renato T.

    2013-01-01

    This study examined the extent of the damage due to fire on the affected areas of the bridge structure. The need to assess the damage of the Nagtahan Bridge is very useful to provide appropriate measures in the repair or in the reinforcement of the bridge, hence will ensure its strength and integrity. The study included two (2) spans of the bridge deck/slab with specific locations of the bridge that were subjected for testing. The Rebound Hammer was used as a preliminary test in evaluating the bridge condition. Its capability is to assess the in-place uniformity of concrete, to delineate regions in a structure of poor quality or deteriorated concrete, and to estimate the in-place strength; and ultimately, for relative comparison between the different structures of the bridge. With the use of the NDT Rebound Hammer Test, the researchers were able to determine whether or not the in-situ strength of the bridge's concrete has been weakened due to fire. The DPW-Standard Specification is the government acceptable manual, containing the acceptance criteria, used as the basis for standard construction procedures in the department.(author)

  5. Evaluation of continuity detail for precast prestressed girders : tech summary.

    Science.gov (United States)

    2011-08-01

    Building multi-simple span bridges using precast prestressed concrete girders is an easy construction. However, the existence of : expansion joints often leads to a host of problems in their vicinity due to drainage leaks. Furthermore, debris accumul...

  6. Evaluation of the Structure Stability of a Plate Girder Bridge Using MIDAS Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Soo; Kim, Jong Hyuk [National Forensic Service, Wonju (Korea, Republic of)

    2014-04-15

    Recently, as a means of resolving the issue of legal liability in the event of an accident or a disaster, a wide variety of simulation techniques, such as structural and structure-fluid interaction analysis, have been used in the field of forensic engineering. The plate girder bridge discussed in this paper was being constructed between a pier and an abutment to expand an existing bridge, but an accident whereby the bridge overturned occurred at the end of the concrete laying process for a protective wall. This accident was caused by additional loads not being considered at the time of the design as well as the actual construction being different from the design. The additional loads ultimately generated a negative support force. In this study, we determined the cause of the accident by comparing the structural stability of the original design with that of the additional, non-conforming construction using MIDAS structural analysis.

  7. Evaluation of the Structure Stability of a Plate Girder Bridge Using MIDAS Structure Analysis

    International Nuclear Information System (INIS)

    Kim, Eui Soo; Kim, Jong Hyuk

    2014-01-01

    Recently, as a means of resolving the issue of legal liability in the event of an accident or a disaster, a wide variety of simulation techniques, such as structural and structure-fluid interaction analysis, have been used in the field of forensic engineering. The plate girder bridge discussed in this paper was being constructed between a pier and an abutment to expand an existing bridge, but an accident whereby the bridge overturned occurred at the end of the concrete laying process for a protective wall. This accident was caused by additional loads not being considered at the time of the design as well as the actual construction being different from the design. The additional loads ultimately generated a negative support force. In this study, we determined the cause of the accident by comparing the structural stability of the original design with that of the additional, non-conforming construction using MIDAS structural analysis

  8. Effects of Adhesive Connection on Composite Action between FRP Bridge Deck and Steel Girder

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2017-01-01

    Full Text Available The FRP-steel girder composite bridge system is increasingly used in new constructions of bridges as well as rehabilitation of old bridges. However, the understanding of composite action between FRP decks and steel girders is limited and needs to be systematically investigated. In this paper, depending on the experimental investigations of FRP to steel girder system, the Finite Element (FE models on experiments were developed and analyzed. Comparison between experiments and FE results indicated that the FE models were much stiffer for in-plane shear stiffness of the FRP deck panel. To modify the FE models, rotational spring elements were added between webs and flanges of FRP decks, to simulate the semirigid connections. Numerical analyses were also conducted on four-point bending experiments of FRP-steel composite girders. Good agreement between experimental results and FE analysis was achieved by comparing the load-deflection curves at midspan and contribution of composite action from FRP decks. With the validated FE models, the parametric studies were conducted on adhesively bonded connection between FRP decks and steel girders, which indicated that the loading transfer capacity of adhesive connection was not simply dependent on the shear modulus or thickness of adhesive layer but dominated by the in-plane shear stiffness K.

  9. Strength Enhancement of Prestressed Concrete Dapped-End Girders

    Directory of Open Access Journals (Sweden)

    Shatha Dhia Mohammed

    2015-10-01

    Full Text Available This paper presents the application of nonlinear finite element models in the analysis of dapped-ends pre-stressed reinforced concrete girders under static loading by using ANSYS software. The girder dimensions are (4.90 m span, 0.40 m depth, 0.20 m width, 0.20 m nib depth, and 0.10 m nib length and the parameters considered in this research are the pre-stress effect, and strand profile (straight and draped. The numerical results are compared with the experimental results of the same girders. The comparisons are carried out in terms of initial prestress effect, load- deflection curve, and failure load. Good agreement was obtained between the analytical and experimental results. Even that, the numerical model was stiffer than the experimental, but; there were a good agreements in both trends and values. The difference varies in the range (5-12% for the deflection. Results have shown that the pre-stress force has increased the static ultimate load capacity by (35% in case of straight strand and by (97% in case of draped strand

  10. Complex Method Mixed with PSO Applying to Optimization Design of Bridge Crane Girder

    Directory of Open Access Journals (Sweden)

    He Yan

    2017-01-01

    Full Text Available In engineer design, basic complex method has not enough global search ability for the nonlinear optimization problem, so it mixed with particle swarm optimization (PSO has been presented in the paper,that is the optimal particle evaluated from fitness function of particle swarm displacement complex vertex in order to realize optimal principle of the largest complex central distance.This method is applied to optimization design problems of box girder of bridge crane with constraint conditions.At first a mathematical model of the girder optimization has been set up,in which box girder cross section area of bridge crane is taken as the objective function, and its four sizes parameters as design variables, girder mechanics performance, manufacturing process, border sizes and so on requirements as constraint conditions. Then complex method mixed with PSO is used to solve optimization design problem of cane box girder from constrained optimization studying approach, and its optimal results have achieved the goal of lightweight design and reducing the crane manufacturing cost . The method is reliable, practical and efficient by the practical engineer calculation and comparative analysis with basic complex method.

  11. Precast concrete elements for accelerated bridge construction : laboratory testing, field testing, evaluation of a precast concrete bridge, Madison County bridge.

    Science.gov (United States)

    2009-01-01

    The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa : DOT Office of Bridges and Structures. Recognizing this a two-lane single-span precast box girder bridge was constructed ...

  12. Long-Term Effects of Super Heavy-Weight Vehicles on Bridges

    OpenAIRE

    Wood, Scott M.; Akinci, Necip Onder; Liu, Judy; Bowman, Mark D

    2007-01-01

    A permit truck which exceeds the predefined limit of 108 kips is defined as a superload in Indiana. This study was conducted to examine the long-term effects of superload trucks on the performance of typical slab-on-girder bridges and to assess the likelihood of causing immediate damage. Typical steel and prestressed concrete slab-on-girder type bridges were analyzed using both beam line analysis and detailed finite element models. Furthermore, one prestressed concrete bridge and one steel br...

  13. Design and construction of superstructure in prestressed concrete cable-stayed bridge. ; Aomori Bay Bridge. PC shachokyo jobuko no sekkei to seko. ; Aomori Bay Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, T.; Fujimori, S.; Oba, M.; Tsuyoshi, T. (East Japan Railway Co., Tokyo (Japan))

    1991-12-01

    Aomori Bay Bridge is a 1,219m long elevated bridge, a part of No.2 Bay Highway of 1,993m in total length crossing over Aomori railway station which was planned in ordecr to integrate the port facilities of Aomori Harbor and expedite cargo traffic smoothly. Of this Bay Bridge, its main bridge portion crossing over Aomori railway station and the sea area was planned as a continuous prestressed concrete cable-stayed bridge of 498m in total length and consisting of three portions including the central portion in which the main span between the central bridge piers was 240m. It is scheduled to open in the summer of 1992. With regard to the design of this bridge, special care for the view of the bridge has been taken covering from the structure style to the accessories. For this bridge, a large scale underground continuous wall solid base with a box-shaped section consisting of 6 chambers was adopted for the base of a main tower. It has the cantilever suspension structure of the wide girder with the inverted Y-shaped pylons. For its stav cable, was adopted a large capacity stay cable with standard tensile strength of 1,942 fabricated on the site and for its covering tube, a FRP tube was adopted. In this article, the construction of the main girder and stay cables, and the construction control during their installation by projection are reported. 7 refs., 14 figs., 9 tabs.

  14. Bridges analysis, design, structural health monitoring, and rehabilitation

    CERN Document Server

    Bakht, Baidar

    2015-01-01

    This book offers a valuable guide for practicing bridge engineers and graduate students in structural engineering; its main purpose is to present the latest concepts in bridge engineering in fairly easy-to-follow terms. The book provides details of easy-to-use computer programs for: ·      Analysing slab-on-girder bridges for live load distribution. ·      Analysing slab and other solid bridge components for live load distribution. ·      Analysing and designing concrete deck slab overhangs of girder bridges under vehicular loads. ·      Determining the failure loads of concrete deck slabs of girder bridges under concentrated wheel loads. In addition, the book includes extensive chapters dealing with the design of wood bridges and soil-steel bridges. Further, a unique chapter on structural health monitoring (SHM) will help bridge engineers determine the actual load carrying capacities of bridges, as opposed to their perceived analytical capacities. The chapter addressing structures...

  15. Geometric nonlinear analysis of self-anchored cable-stayed suspension bridges.

    Science.gov (United States)

    Hui-Li, Wang; Yan-Bin, Tan; Si-Feng, Qin; Zhe, Zhang

    2013-01-01

    Geometric nonlinearity of self-anchored cable-stayed suspension bridges is studied in this paper. The repercussion of shrinkage and creep of concrete, rise-to-span ratio, and girder camber on the system is discussed. A self-anchored cable-stayed suspension bridge with a main span of 800 m is analyzed with linear theory, second-order theory, and nonlinear theory, respectively. In the condition of various rise-to-span ratios and girder cambers, the moments and displacements of both the girder and the pylon under live load are acquired. Based on the results it is derived that the second-order theory can be adopted to analyze a self-anchored cable-stayed suspension bridge with a main span of 800 m, and the error is less than 6%. The shrinkage and creep of concrete impose a conspicuous impact on the structure. And it outmatches suspension bridges for system stiffness. As the rise-to-span ratio increases, the axial forces of the main cable and the girder decline. The system stiffness rises with the girder camber being employed.

  16. Geometric Nonlinear Analysis of Self-Anchored Cable-Stayed Suspension Bridges

    Directory of Open Access Journals (Sweden)

    Wang Hui-Li

    2013-01-01

    Full Text Available Geometric nonlinearity of self-anchored cable-stayed suspension bridges is studied in this paper. The repercussion of shrinkage and creep of concrete, rise-to-span ratio, and girder camber on the system is discussed. A self-anchored cable-stayed suspension bridge with a main span of 800 m is analyzed with linear theory, second-order theory, and nonlinear theory, respectively. In the condition of various rise-to-span ratios and girder cambers, the moments and displacements of both the girder and the pylon under live load are acquired. Based on the results it is derived that the second-order theory can be adopted to analyze a self-anchored cable-stayed suspension bridge with a main span of 800 m, and the error is less than 6%. The shrinkage and creep of concrete impose a conspicuous impact on the structure. And it outmatches suspension bridges for system stiffness. As the rise-to-span ratio increases, the axial forces of the main cable and the girder decline. The system stiffness rises with the girder camber being employed.

  17. Numerical analysis of dynamic response of vehicle–bridge coupled system on long-span continuous girder bridge

    Directory of Open Access Journals (Sweden)

    Lipeng An

    2016-07-01

    Full Text Available To systematically study the vehicle–bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle–bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the “set-in-right-position” rule. On the basis of the self-compiled Fortran program and bridge engineering, the dynamic response of long-span continuous girder bridge under vehicle load was studied. This study also included the calculation of vehicle impact coefficient, evaluation of vibration comfort, and analysis of dynamic response parameters. Results show the impact coefficient changes with lane number and is larger than the value calculated by the “general code for design of highway bridges and culverts (China”. The Dieckmann index of bridge vibration is also related to lane number, and the vibration comfort evaluation is good in normal conditions. The relevant conclusions from parametric analyses have practical significance to dynamic design and daily operation of long-span continuous girder bridges in expressways. Safety and comfort are expected to improve significantly with further control of the vibration of vehicle–bridge system.

  18. Prestressing Concrete with CFRP Composites for Sustainability and Corrosion-Free Applications

    Directory of Open Access Journals (Sweden)

    Belarbi A.

    2018-01-01

    Full Text Available Advancement in material science has enabled the engineers to enhance the strength and long-term behavior of concrete structures. The conventional approach is to use steel for prestressed bridge girders. Despite having good ductility and strength, beams prestressed with steel are susceptible to corrosion when subjected to environmental exposure. The corrosion of the prestressing steel reduces load carrying capacity of the prestressed member and result in catastrophic failures. In the last decades, more durable composite materials such as Aramid Fiber Reinforced Polymer (AFRP, Glass Fiber Reinforced Polymer (GFRP and Carbon Fiber Reinforced Polymer (CFRP have been implemented in concrete structures as a solution to this problem. Among these materials, CFRP stands out as a primary prestressing reinforcement, which has the potential to replace steel and provide corrosion free prestressed bridge girders. Despite its promise, prestressing CFRP has not frequently been used for bridge construction worldwide. The major contributing factor to the lack of advancement of this promising technology in the United States (U.S. is the lack of comprehensive design specifications. Apart from a limited number of guides, manuals, and commentaries, there is currently no standard or comprehensive design guideline available to bridge engineers in the U.S. for the design of concrete structures prestressed with CFRP systems. The main goal is to develop design guidelines in AASHTO-LRFD format for concrete bridge girders with prestressing CFRP materials. The guidelines are intended to address the limitation in current AASHTO-LRFD Bridge Design Specifications which is applicable for prestressed bridge girders with steel strands. To accomplish this goal, some of the critical parameters that affect the design and long-term behavior of prestressed concrete bridge girders with prestressing CFRP systems are identified and included in the research work. This paper presents

  19. Performance evaluation of corrosion-affected reinforced concrete ...

    Indian Academy of Sciences (India)

    M B Anoop

    Abstract. A methodology for performance evaluation of reinforced concrete bridge girders in corrosive ... concrete (RC) members of infrastructural systems, espe- ... bility will be useful for making engineering decisions for ...... Water-cement ratio.

  20. Statistical determination of significant curved I-girder bridge seismic response parameters

    Science.gov (United States)

    Seo, Junwon

    2013-06-01

    Curved steel bridges are commonly used at interchanges in transportation networks and more of these structures continue to be designed and built in the United States. Though the use of these bridges continues to increase in locations that experience high seismicity, the effects of curvature and other parameters on their seismic behaviors have been neglected in current risk assessment tools. These tools can evaluate the seismic vulnerability of a transportation network using fragility curves. One critical component of fragility curve development for curved steel bridges is the completion of sensitivity analyses that help identify influential parameters related to their seismic response. In this study, an accessible inventory of existing curved steel girder bridges located primarily in the Mid-Atlantic United States (MAUS) was used to establish statistical characteristics used as inputs for a seismic sensitivity study. Critical seismic response quantities were captured using 3D nonlinear finite element models. Influential parameters from these quantities were identified using statistical tools that incorporate experimental Plackett-Burman Design (PBD), which included Pareto optimal plots and prediction profiler techniques. The findings revealed that the potential variation in the influential parameters included number of spans, radius of curvature, maximum span length, girder spacing, and cross-frame spacing. These parameters showed varying levels of influence on the critical bridge response.

  1. Estimation of Curvature Changes for Steel-Concrete Composite Bridge Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Donghoon Kang

    2013-01-01

    Full Text Available This study is focused on the verification of the key idea of a newly developed steel-concrete composite bridge. The key idea of the proposed bridge is to reduce the design moment by applying vertical prestressing force to steel girders, so that a moment distribution of a continuous span bridge is formed in a simple span bridge. For the verification of the key technology, curvature changes of the bridge should be monitored sequentially at every construction stage. A pair of multiplexed FBG sensor arrays is proposed in order to measure curvature changes in this study. They are embedded in a full-scale test bridge and measured local strains, which are finally converted to curvatures. From the result of curvature changes, it is successfully ensured that the key idea of the proposed bridge, expected theoretically, is viable.

  2. Magnetic-based NDE of steel in prestressed and post-tensioned concrete bridges

    Science.gov (United States)

    Ghorbanpoor, Al

    1998-03-01

    This paper addresses a study, funded by the Federal Highway Administration (FHWA), the U.S. Department of Transportation (DOT), that is currently underway at the University of Wisconsin-Milwaukee. The objective of the study is to develop an automated non-destructive testing system based on the magnetic flux leakage principle that would allow assessment of the condition of reinforcing and prestressing steels in concrete bridge components. Corrosion or cracking of steel within concrete members will be detected and evaluated. The system will be used as a self clamping and moving sensing device that can be installed on a concrete girder. Data from the sensing device is transmitted via a wireless communication system to data recording/analysis equipment on the ground. The sensing device may also be operated manually to allow inspection of local areas such as the end bearing or cable anchorage locations in cable bridges. Through performing a correlation analysis of recorded data, an assessment of the condition of the member under test is made. Reference data base for the correlation analysis is established through laboratory and field testing with known conditions.

  3. Analysis of structural diseases in widened structure due to the shrinkage and creep difference of new bridge

    Science.gov (United States)

    Wu, Wenqing; Zhang, Hui

    2018-03-01

    In order to investigate the possible structural diseases brought to the top flange of existing prestressed concrete box girder bridge due to the shrinkage and creep difference between new and old bridge, the stress state of the existing box girder before and after widening and the mechanisms of potential structural diseases were analyzed using finite element method in this paper. Results showed that the inner flange of the old box girder were generally in the state of large tensile stress, the main reason for which was the shrinkage and creep effect difference of the new and old bridge. And the tensile stress was larger than tensile strength of C50 concrete, which would most likely cause crack in the deck plate of box girder. Hence, reinforcement measures are needed to be designed carefully. Meanwhile, the transverse deformation of widened structure had exceeded the distance between the anti-seismic block and the web of box girder at the end cross section, which would squeeze anti-seismic block severely. Therefore, it is necessary to limit the length of continuous bridge in need of widening.

  4. Predicting camber, deflection, and prestress losses in prestressed concrete members.

    Science.gov (United States)

    2011-07-01

    Accurate predictions of camber and prestress losses for prestressed concrete bridge girders are essential to minimizing the frequency and cost of construction problems. The time-dependent nature of prestress losses, variable concrete properties, and ...

  5. Numerical investigation of the bearing capacity of transversely prestressed concrete deck slabs

    NARCIS (Netherlands)

    Amir, S.; Van der Veen, C.; Walraven, J.C.; De Boer, A.

    2014-01-01

    The research subject of this paper is the bearing capacity of transversely prestressed concrete bridge decks between concrete girders under concentrated loads. Experiments on a 1:2 scale model of this bridge were carried out in the laboratory and a 3D nonlinear finite element model was developed in

  6. INVESTIGATION OF LAUNCHING PROCESS FOR STEEL REINFORCED CONCRETE FRAMEWORK OF LARGE BRIDGES

    Directory of Open Access Journals (Sweden)

    V. A. Grechukhin

    2017-01-01

    Full Text Available Bridges are considered as the most complicated, labour-consuming and expensive components in roadway network of the Republic of Belarus. So their construction and operation are to be carried out at high technological level. One of the modern industrial methods is a cyclic longitudinal launching of large frameworks which provide the possibility to reject usage of expensive auxiliary facilities and reduce a construction period. There are several variants of longitudinal launching according to shipping conditions and span length: without launching girder, with launching girder, with top strut-framed beam in the form of cable-stayed system, with strut-framed beam located under span. While using method for the cyclic longitudinal launching manufacturing process of span is concentrated on the shore. The main task of the investigations is to select economic, quick and technologically simple type of the cyclic longitudinal launching with minimum resource- and labour inputs. Span launching has been comparatively analyzed with temporary supports being specially constructed within the span and according to capital supports with the help of launching girder. Conclusions made on the basis of calculations for constructive elements of span according to bearing ability of element sections during launching and also during the process of reinforced concrete plate grouting and at the stage of operation have shown that span assembly with application of temporary supports does not reduce steel spread in comparison with the variant excluding them. Results of the conducted investigations have been approbated in cooperation with state enterprise “Belgiprodor” while designing a bridge across river Sozh.

  7. Wireless Smart Sensor Network System Using SmartBridge Sensor Nodes for Structural Health Monitoring of Existing Concrete Bridges

    Science.gov (United States)

    Gaviña, J. R.; Uy, F. A.; Carreon, J. D.

    2017-06-01

    There are over 8000 bridges in the Philippines today according to the Department of Public Works and Highways (DPWH). Currently, visual inspection is the most common practice in monitoring the structural integrity of bridges. However, visual inspections have proven to be insufficient in determining the actual health or condition of a bridge. Structural Health Monitoring (SHM) aims to give, in real-time, a diagnosis of the actual condition of the bridge. In this study, SmartBridge Sensor Nodes were installed on an existing concrete bridge with American Association of State Highway and Transportation Officials (AASHTO) Type IV Girders to gather vibration of the elements of the bridge. Also, standards on the effective installation of SmartBridge Sensor Nodes, such as location and orientation was determined. Acceleration readings from the sensor were then uploaded to a server, wherein they are monitored against certain thresholds, from which, the health of the bridge will be derived. Final output will be a portal or webpage wherein the information, health, and acceleration readings of the bridge will be available for viewing. With levels of access set for different types of users, the main users will have access to download data and reports. Data transmission and webpage access are available online, making the SHM system wireless.

  8. Research on structural dynamic characteristics of continuous steel box girder-bridge with lager ratio of wide-span

    Directory of Open Access Journals (Sweden)

    Yin Haijun

    2018-01-01

    Full Text Available Structure natural frequency and mode of vibration can not only reflect the structure modal parameters of dynamic properties, but also incarnate the dynamic evaluation characteristics of bridge structure. This paper applies ANSYS to establish the finite element model based on a continuous steel box girder bridge in order to obtain the corresponding modal analysis parameters. Through the environmental stimulation test, The results show that height of the steel box girder and the setting of diaphragm plate is reasonable, transverse space of piers not merely provide enough support but also ensure lateral stability of the bridge, as well as offering aside the maximum lateral clearance of the existing road. Meanwhile, the calculation results have important engineering practical values. which can provide basic data for the design, construction and maintenance of similar Bridges.

  9. Assessment of vehicular live load and load factors for design of short-span bridges according to the new Egyptian Code

    Directory of Open Access Journals (Sweden)

    Hatem M. Seliem

    2015-04-01

    The study shows that concrete box-girders designed according to ECP-201:2012 and ECP-201:2003 using the ultimate limit state method yield almost the same demand. Despite the increase in the VLL of ECP-201:2012, and consequently the live load forces, concrete I-shaped girder bridges will be subjected to less total factored internal forces in comparison to ECP-201:2003 This is attributed to the interaction between the live to dead loads ratio and the load combinations. Design of composite steel plate girder bridges according to ECP-201:2012 using the allowable stress design method yields over designed sections.

  10. Economic impact of multi-span, prestressed concrete girder bridges designed as simple span versus continuous span : final report.

    Science.gov (United States)

    2016-10-01

    The objective of this study was to determine the economic impact of designing pre-tensioned prestressed concrete beam (PPCB) : bridges utilizing the continuity developed in the bridge deck as opposed to the current Iowa Department of Transportation (...

  11. Application of Composite Structures in Bridge Engineering. Problems of Construction Process and Strength Analysis

    Science.gov (United States)

    Flaga, Kazimierz; Furtak, Kazimierz

    2015-03-01

    Steel-concrete composite structures have been used in bridge engineering from decades. This is due to rational utilisation of the strength properties of the two materials. At the same time, the reinforced concrete (or prestressed) deck slab is more favourable than the orthotropic steel plate used in steel bridges (higher mass, better vibration damping, longer life). The most commonly found in practice are composite girder bridges, particularly in highway bridges of small and medium spans, but the spans may reach over 200 m. In larger spans steel truss girders are applied. Bridge composite structures are also employed in cable-stayed bridge decks of the main girder spans of the order of 600, 800 m. The aim of the article is to present the cionstruction process and strength analysis problems concerning of this type of structures. Much attention is paid to the design and calculation of the shear connectors characteristic for the discussed objects. The authors focused mainly on the issues of single composite structures. The effect of assembly states on the stresses and strains in composite members are highlighted. A separate part of problems is devoted to the influence of rheological factors, i.e. concrete shrinkage and creep, as well as thermal factors on the stresses and strains and redistribution of internal forces.

  12. Rating precast prestressed concrete bridges for shear

    Science.gov (United States)

    2008-12-01

    Shear capacity of real-world prestressed concrete girders designed in the 1960s and 1970s is a concern because : AASHTO Standard Specifications (AASHTO-STD) employed the quarter-point rule for shear design, which is less : conservative for shea...

  13. Deflection control system for prestressed concrete bridges by CCD camera. CCD camera ni yoru prestressed concrete kyo no tawami kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Y.; Nakayama, Y.; Arai, T. (Kawada Construction Co. Ltd., Tokyo (Japan))

    1994-03-15

    For the long-span prestressed concrete bridge (continuous box girder and cable stayed bridge), the design and construction control becomes increasingly complicated as construction proceeds because of its cyclic works. This paper describes the method and operation of an automatic levelling module using CCD camera and the experimental results by this system. For this automatic levelling system, the altitude can be automatically measured by measuring the center location of gravity of the target on the bridge surface using CCD camera. The present deflection control system developed compares the measured value by the automatic levelling system with the design value obtained by the design calculation system, and manages them. From the real-time continuous measurement for the long term, in which the CCD camera was set on the bridge surface, it was found that the stable measurement accuracy can be obtained. Successful application of this system demonstrates that the system is an effective and efficient construction aid. 11 refs., 19 figs., 1 tab.

  14. Composite Action in Prestressed NU I-Girder Bridge Deck Systems Constructed with Bond Breakers to Facilitate Deck Removal : Technical Summary

    Science.gov (United States)

    2017-11-01

    Results are reported from tests of small-scale push-off and large-scale composite NU I-girder specimens conducted to establish an interface connection detail that (1) Facilitates in-situ removal of the bridge deck without damaging prestressed girders...

  15. Economic impact of multi-span, prestressed concrete girder bridges designed as simple span versus continuous span : tech transfer summary.

    Science.gov (United States)

    2016-10-01

    The objective of this study was to determine the economic impact of : designing pre-tensioned prestressed concrete beam (PPCB) bridges : utilizing the continuity developed in the bridge deck as opposed to the : current Iowa Department of Transportati...

  16. Dynamic Responses of Continuous Girder Bridges with Uniform Cross-Section under Moving Vehicular Loads

    OpenAIRE

    Gao, Qingfei; Wang, Zonglin; Jia, Hongyu; Liu, Chenguang; Li, Jun; Guo, Binqiang; Zhong, Junfei

    2015-01-01

    To address the drawback of traditional method of investigating dynamic responses of the continuous girder bridge with uniform cross-section under moving vehicular loads, the orthogonal experimental design method is proposed in this paper. Firstly, some empirical formulas of natural frequencies are obtained by theoretical derivation and numerical simulation. The effects of different parameters on dynamic responses of the vehicle-bridge coupled vibration system are discussed using our own progr...

  17. Structural health monitoring of an existing PC box girder bridge with distributed HCFRP sensors in a destructive test

    Science.gov (United States)

    Yang, Caiqian; Wu, Zhishen; Zhang, Yufeng

    2008-06-01

    The application of hybrid carbon fiber reinforced polymer (HCFRP) sensors was addressed to monitor the structural health of an existing prestressed concrete (PC) box girder bridge in a destructive test. The novel HCFRP sensors were fabricated with three types of carbon tows in order to realize distributed and broad-based sensing, which is characterized by long-gauge length and low cost. The HCFRP sensors were bonded on the bottom and side surfaces of the existing bridge to monitor its structural health. The gauge lengths of the sensors bonded on the bottom and side surfaces were 1.5 m and 1.0 m, respectively. The HCFRP sensors were distributed on the bridge for two purposes. One was to detect damage and monitor the structural health of the bridge, such as the initiation and propagation of new cracks, strain distribution and yielding of steel reinforcements. The other purpose was to monitor the propagation of existing cracks. The good relationship between the change in electrical resistance and load indicates that the HCFRP sensors can provide actual infrastructures with a distributed damage detection and structural health monitoring system. Corrections were made to this article on 13 May 2008. The corrected electronic version is identical to the print version.

  18. Structural health monitoring of an existing PC box girder bridge with distributed HCFRP sensors in a destructive test

    International Nuclear Information System (INIS)

    Yang Caiqian; Wu Zhishen; Zhang Yufeng

    2008-01-01

    The application of hybrid carbon fiber reinforced polymer (HCFRP) sensors was addressed to monitor the structural health of an existing prestressed concrete (PC) box girder bridge in a destructive test. The novel HCFRP sensors were fabricated with three types of carbon tows in order to realize distributed and broad-based sensing, which is characterized by long-gauge length and low cost. The HCFRP sensors were bonded on the bottom and side surfaces of the existing bridge to monitor its structural health. The gauge lengths of the sensors bonded on the bottom and side surfaces were 1.5 m and 1.0 m, respectively. The HCFRP sensors were distributed on the bridge for two purposes. One was to detect damage and monitor the structural health of the bridge, such as the initiation and propagation of new cracks, strain distribution and yielding of steel reinforcements. The other purpose was to monitor the propagation of existing cracks. The good relationship between the change in electrical resistance and load indicates that the HCFRP sensors can provide actual infrastructures with a distributed damage detection and structural health monitoring system. Corrections were made to this article on 13 May 2008. The corrected electronic version is identical to the print version

  19. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface-Bonded Carbon Fiber-Reinforced Polymer

    Science.gov (United States)

    2009-05-01

    "This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort...

  20. Life cycle uses of concrete for more sustainable construction

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, A. [Univ. of California, Berkeley, CA (United States). Dept. of Civil and Environmental Engineering

    2001-07-01

    This paper examined ways in which the environmental burdens of construction in general and concrete production in particular can be reduced. Aggregates for concrete production include sand, gravel and stone. They account for most (80 per cent) of the materials used in the United States. This paper argued that given the fact that environmental concerns are an important social issue, the issue of natural resource conservation should be addressed. Some of the life-cycle assessments and comparative design issues associated with concrete construction were summarized. The author presented the example that often the initial cost of a new pavement application may indicate a lower environmental impact than an equivalent design when asphalt is used over reinforced concrete. However, annualized impacts may result in comparable environmental assessments. The same is true for bridge girders, reinforced concrete also seems to be a better environmental choice than steel. This paper also described end-of-life options that involve the use of waste products and recycled products in concrete and other materials to reduce the overall environmental impacts of a product or facility. This paper was divided into several sections entitled: life cycle assessments; life cycle inventory assessment of concretes and asphalt pavements; and, life cycle inventory assessment of concrete and steel bridge girders. 16 refs., 4 tabs.

  1. Evaluating the time-dependent and bond characteristics of lightweight concrete mixes for Kansas prestressed concrete bridges : technical summary.

    Science.gov (United States)

    2011-07-01

    The majority of the bridges in Kansas are in rural areas. Many of these are : becoming structurally deficient, and are in need of replacement. Due to the location of : these bridges, cost of transporting prestressed girders to these areas often makes...

  2. Estimation of Structure-Borne Noise Reduction Effect of Steel Railway Bridge Equipped with Floating Ladder Track and Floating Reinforced-Concrete Deck

    Science.gov (United States)

    Watanabe, Tsutomu; Sogabe, Masamichi; Asanuma, Kiyoshi; Wakui, Hajime

    A number of steel railway bridges have been constructed in Japan. Thin steel members used for the bridges easily tend to vibrate and generate structure-borne noise. Accordingly, the number of constructions of steel railway bridges tends to decrease in the urban areas from a viewpoint of environmental preservation. Then, as a countermeasure against structure-borne noise generated from steel railway bridges, we have developed a new type of the steel railway bridge equipped with a floating-ladder track and a floating reinforced-concrete (RC) deck. As a result of train-running experiment, it became apparent that the new steel railway bridge installed by double floating system has reduced a vibration velocity level by 10.5 dB(A) at main girder web as compared with a steel railway bridge installed by directly fastened track. This reduction effect was achieved by the ladder track and RC deck supported by resilient materials.

  3. Structure-borne noise of railway composite bridge: Numerical simulation and experimental validation

    Science.gov (United States)

    Li, Xiaozhen; Liu, Quanmin; Pei, Shiling; Song, Lizhong; Zhang, Xun

    2015-09-01

    In order to investigate the characteristics of the noise from steel-concrete composite bridges under high-speed train loading, a model used to predict the bridge-borne noise is established and validated through a field experiment. The numerical model for noise prediction is developed based on the combination of spatial train-track-bridge coupled vibration theory and Statistical Energy Analysis (SEA). Firstly, train-track-bridge coupled vibration is adopted to obtain the velocity time history of the bridge deck vibration. Then, the velocity time history is transferred into frequency domain through FFT to serve as the vibratory energy of SEA deck subsystems. Finally, the transmission of the vibratory energy is obtained by solving the energy balance equations of SEA, and the sound radiation is computed using the vibro-acoustic theory. The numerically computed noise level is verified by a field measurement. It is determined that the dominant frequency of steel-concrete composite bridge-borne noise is 20-1000 Hz. The noise from the bottom flange of steel longitudinal girder is less than other components in the whole frequency bands, while the noise from web of steel longitudinal girder is dominant in high frequency range above 315 Hz. The noise from concrete deck dominates in low-frequency domain ranges from 80 Hz to 160 Hz.

  4. Revised Rules for Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Jensen, F. M.; Middleton, C.

    This paper is based on research performed for the Highway Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: Concrete Bridges" It contains details of a methodology which can be used to generate Whole Life (WL) reliability profiles....... These WL reliability profiles may be used to establish revised rules for Concrete Bridges....

  5. Concrete-Filled Steel Tube Arch Bridges in China

    Directory of Open Access Journals (Sweden)

    Jielian Zheng

    2018-02-01

    Full Text Available In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key construction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world’s longest CFST arch bridge—the First Hejiang Yangtze River Bridge. The main construction technologies of reinforced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges—the Guangxi Yongning Yong River Bridge and the Yunnan–Guangxi Railway Nanpan River Bridge—is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges. Keywords: Concrete-filled steel tube (CFST arch bridge, Steel-reinforced concrete arch bridge, Cable-stayed fastening-hanging cantilever assembly, Vacuum-assisted pouring in-tube concrete, Adjusting load by stay cables

  6. Re-Assessment of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper two aspects of re-assessment of the reliability of concrete bridges are discussed namely modelling of the corrosion of reinforcement and updating of uncertain variables. The main reason for deterioration of concrete bridges is corrosion of the reinforcement. Therefore, modelling...

  7. Finite element model updating of multi-span steel-arch-steel-girder bridges based on ambient vibrations

    Science.gov (United States)

    Hou, Tsung-Chin; Gao, Wei-Yuan; Chang, Chia-Sheng; Zhu, Guan-Rong; Su, Yu-Min

    2017-04-01

    The three-span steel-arch-steel-girder Jiaxian Bridge was newly constructed in 2010 to replace the former one that has been destroyed by Typhoon Sinlaku (2008, Taiwan). It was designed and built to continue the domestic service requirement, as well as to improve the tourism business of the Kaohsiung city government, Taiwan. This study aimed at establishing the baseline model of Jiaxian Bridge for hazardous scenario simulation such as typhoons, floods and earthquakes. Necessities of these precaution works were attributed to the inherent vulnerability of the sites: near fault and river cross. The uncalibrated baseline bridge model was built with structural finite element in accordance with the blueprints. Ambient vibration measurements were performed repeatedly to acquire the elastic dynamic characteristics of the bridge structure. Two frequency domain system identification algorithms were employed to extract the measured operational modal parameters. Modal shapes, frequencies, and modal assurance criteria (MAC) were configured as the fitting targets so as to calibrate/update the structural parameters of the baseline model. It has been recognized that different types of structural parameters contribute distinguishably to the fitting targets, as this study has similarly explored. For steel-arch-steel-girder bridges in particular this case, joint rigidity of the steel components was found to be dominant while material properties and section geometries relatively minor. The updated model was capable of providing more rational elastic responses of the bridge superstructure under normal service conditions as well as hazardous scenarios, and can be used for manage the health conditions of the bridge structure.

  8. Experimental Investigation for Behavior of Spliced Continuous RC Girders Strengthened with CFRP Laminates

    Directory of Open Access Journals (Sweden)

    Ammar Yasir Ali

    2016-03-01

    Full Text Available In this paper, the behavior of spliced continuous reinforced concrete girders was experimentally investigated. The main objective was to examine the contribution of the carbon fiber reinforced polymer (CFRP laminates in strengthening the spliced continuous reinforced concrete girders. Eight models of continuous reinforced concrete girder were constructed and tested. The test variables were strengthening the splice joints by different schemes of CFRP laminates, presence of horizontal stirrups through the interfaces of the joints and using binder material at the interfaces of the joints. The results showed that strengthening the continuous spliced girders with 45° inclined CFRP laminates led to an increase in the ultimate load in a range of (47 to 74%. Besides, strengthening the continuous spliced girder with horizontal CFRP laminates bonded at its lateral faces could increase the ultimate load by 70%. Additionally, the ultimate load of the continuous spliced girder was increased by (30% due to presence of the horizontal steel stirrups through the interfaces of the joints

  9. Erection of the stiffening girder of the Akashi Kaikyo bridge; Akashi Kaikyo Ohashi hokoketa (sono 2) koji no genchi seko

    Energy Technology Data Exchange (ETDEWEB)

    Otsuki, M.; Inoue, M.; Ueno, Y.; Matsumura, T.; Oe, S. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1998-12-20

    The Akashi Kaikyo Bridge is 3,911m long with a center span of 1,991m, making it the longest suspension bridge in the world. Much careful attention has been given to the erection planning details in order to construct the bridge to withstand the harsh environmental conditions of that area. This report details the characteristics of the bridge stiffening girder and erection procedure, and the effects of the Hyogoken-Nanbu Earthquake. (author)

  10. A Study of the Bolt Connection System for a Concrete Barrier of a Modular Bridge

    Directory of Open Access Journals (Sweden)

    Doo-Yong Cho

    2018-04-01

    Full Text Available Modular technology has been recently studied to reduce the construction periods in the field of bridge construction. However, this method is restricted to the pier, girder, and deck, which are the main members of a bridge, and incidental facilities such as concrete barriers have been rarely studied. Thus, in this study, the connection system of a concrete barrier for modular bridges was developed, and a static loading experiment was performed to verify the structural capacity of the proposed system. The variables of the experiment were the vertical and horizontal bolt connections and the construction method. The barrier and plate were fabricated using match casting methods in which nuts were first inserted into the plates rather than anchor bolts using the conservative method. Moreover, a comparison with the conventional in situ barrier was also performed. The experiments were conducted according to the AASHTO LRFD standard. Consequently, the specimen using the vertical bolt connection had a structural capacity that was equal to 85% of that of the conventional specimen and exhibited similar crack patterns compared with the conventional specimen. In the case of the horizontal bolt connection, the separation in the connection area occurred with the application of the initial load and this specimen exhibited a poor performance because of the increase in the separation distance with the application of the maximum load.

  11. Reliability Assessment of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Middleton, C. R.

    This paper is partly based on research performed for the Highways Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: concrete bridges". It contains the details of a methodology which can be used to generate Whole Life (WL) reliability...... profiles. These WL reliability profiles may be used to establish revised rules for concrete bridges. This paper is to some extend based on Thoft-Christensen et. al. [1996], Thoft-Christensen [1996] et. al. and Thoft-Christensen [1996]....

  12. FE-ANN based modeling of 3D Simple Reinforced Concrete Girders for Objective Structural Health Evaluation : Tech Transfer Summary

    Science.gov (United States)

    2017-06-01

    The objective of this study was to develop an objective, quantitative method for evaluating damage to bridge girders by using artificial neural networks (ANNs). This evaluation method, which is a supplement to visual inspection, requires only the res...

  13. Reinforced concrete bridges: effects due to corrosion and concrete young modulus variation

    Directory of Open Access Journals (Sweden)

    P. T. C. Mendes

    Full Text Available Most of the Brazilian bridges of federal road network are made of reinforced concrete and are more than 30 years old, with little information about the mechanical properties of their constitutive materials. Along the service life of these bridges much modification occurred on vehicles load and geometry and in design standard. Many of them show signs of concrete and steel deterioration and their stability conditions are unknown. With the aim of contributing to the structural evaluation of reinforced concrete bridges it was decided to analyze the stresses in reinforced concrete bridge sections to verify the effects due to reinforcement corrosion and variation of the concrete Young modulus on the stress distribution regarding several load patterns and cracking effects in a representative bridge of the Brazilian road network with different longitudinal reinforcement taxes and two concrete Young modulus, Ec and 0.5Ec, and with different percentage of reinforcement corrosion. The analysis considered two finite element models: frame and shell elements as well as solid elements. The results indicate that these variation effects are more significant in reinforcement bars than in concrete.

  14. Nonlinear Stability Analysis of a Composite Girder Cable-Stayed Bridge with Three Pylons during Construction

    Directory of Open Access Journals (Sweden)

    Xiaoguang Deng

    2015-01-01

    Full Text Available Based on the nonlinear stability analysis method, the 3D nonlinear finite element model of a composite girder cable-stayed bridge with three pylons is established to research the effect of factors including geometric nonlinearity, material nonlinearity, static wind load, and unbalanced construction load on the structural stability during construction. Besides, the structural nonlinear stability in different construction schemes and the determination of temporary pier position are also studied. The nonlinear stability safety factors are calculated to demonstrate the rationality and safety of construction schemes. The results show that the nonlinear stability safety factors of this bridge during construction meet the design requirement and the minimum value occurs in the maximum double cantilever stage. Besides, the nonlinear stability of the structure in the side of edge-pylon meets the design requirement in the two construction schemes. Furthermore, the temporary pier can improve the structure stability, effectively, and the actual position is reasonable. In addition, the local buckling of steel girder occurs earlier than overall instability under load in some cable tension stages. Finally, static wind load and the unbalanced construction load should be considered in the stability analysis for the adverse impact.

  15. Chichibu park bridge, a Japan's longest PC cable suspension bridge that attaches importance to scenery. Keikan wo jushishita Nippon saidai no PC shachokyo 'Chichibu koenkyo'

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This paper introduces the feature of Chichibu Park Bridge, a Japan's longest PC cable suspension bridge that attaches importance to scenery. The maximum effective span of Chichibu Park Bridge which is a two-span continuous PC cable suspension bridge measures 195 m, that means the center span length is equivalent to about 400 m if converted to a three-span structure. With respect to the design that values the scenic effect, the main tower has relief engravings of stone carving tone using Chichibu Night Festival as a motif disposed around it; lighting up is applied to the main tower to highlight it so that it can be viewed from far away places; and a balcony is built on the center of the bridge. Chichibu Park Bridge has the bridge axial direction stagger with the river flow direction at 45[degree] to reduce water resistance. The tensile force generated at the corbel section according to the main tower reactive force is dealt with reinforced concrete rather than with prestressed concrete. The main tower adopts a two-chamber girder structure as its cross section shape from the view points of rigidity assurance and scenic effect. For construction control, micro computers are used to correct growing change in bend of the main girder due to temperature change and cable tension change. 6 figs., 4 tabs.

  16. A review on the suitability of rubberized concrete for concrete bridge decks

    Science.gov (United States)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Radziah Abdullah, Siti; Anting Guntor, Nickholas; Syazani Leman, Alif

    2017-11-01

    Road authorities manage a large population of ageing bridges, a substantial number of which fail to meet the current requirements either due to deterioration and other structural deficiencies or as a result of the escalating demands imposed by increased traffic. This problem is related to the dynamic load from vehicles. This problem can be solved by producing a type of concrete that can reduce the amplitude of oscillation or vibration such as rubberized concrete. Green construction has been a very important aspect in concrete production field in the last decade. One of the most problematic waste materials is scrap tires. The use of scrap tires in civil engineering is increasing by producing rubberized concrete. Rubberized concrete is a type of concrete that is mixed with rubber. The purpose of this review is to justify the suitability of rubberized concrete for concrete bridge decks. Several parameters named physical, chemical and mechanical properties were measured to ensure the suitability of rubberized concrete for concrete bridge decks. Rubberized concrete has similar workability to normal concrete. The rubber reduced the density and compressive strength of the concrete while increased the flexural strength, water absorption and damping ratio. The used of rubber in concrete beyond 20% is not recommended due to decreasing in compressive strength. Rubberized concrete recommended to be used in circumstances where vibration damping was required such as in bridge construction as shock-wave absorber.

  17. End region detailing of pretensioned concrete bridge girders : [summary].

    Science.gov (United States)

    2013-03-01

    Introduction of the Florida-I Beam (FIB) in 2009 renewed interest in prestressed concrete beam design, especially end region details. In this study, University of Florida researchers examined construction detailing at the FIB end region.

  18. Construction of the Usui bridge. Chodai PC shachokyo no kensetsu (Joshin'etsu jidoshado Usuikyo)

    Energy Technology Data Exchange (ETDEWEB)

    Otani, S.; Ogata, T. (Japan Highway Public Corp., Tokyo (Japan))

    1993-10-01

    The Usui Bridge is a long bridge located at the Usui mountain pass on the Joshinetsu Expressway, completed in March 1993. This paper reports from its planning to the design, construction work, and construction management. The bridge is a first two-span continuous prestressed concrete cable-stayed bridge (with a length of 222 m) with one central cable plane ever constructed as a highway bridge in Japan. Its bridge construction features are represented by the main girder consisted of three-chamber type box girder, and the main tower of reversed Y-letter concrete structure. For the fan-shaped stay cable (9-step double cable), a large capacity cable of non-grouting type fabricated at a factory (with a tensile strength of 1500 tf class) was used to simplify the installation work at the site. The one-plane structure utilizing the center belt as a stay cable fixing portion was adopted because of its economic performance superior to a two-plane structure, easiness in consolidating construction works, and assurance of more open space for car traffic. After the completion, the bridge construction has been awarded with the Tanaka Prize of Japan Society of Civil Engineers and the PC Technology Association prize. 26 figs., 4 tabs.

  19. Design Optimization of Hybrid FRP/RC Bridge

    Science.gov (United States)

    Papapetrou, Vasileios S.; Tamijani, Ali Y.; Brown, Jeff; Kim, Daewon

    2018-04-01

    The hybrid bridge consists of a Reinforced Concrete (RC) slab supported by U-shaped Fiber Reinforced Polymer (FRP) girders. Previous studies on similar hybrid bridges constructed in the United States and Europe seem to substantiate these hybrid designs for lightweight, high strength, and durable highway bridge construction. In the current study, computational and optimization analyses were carried out to investigate six composite material systems consisting of E-glass and carbon fibers. Optimization constraints are determined by stress, deflection and manufacturing requirements. Finite Element Analysis (FEA) and optimization software were utilized, and a framework was developed to run the complete analyses in an automated fashion. Prior to that, FEA validation of previous studies on similar U-shaped FRP girders that were constructed in Poland and Texas is presented. A finer optimization analysis is performed for the case of the Texas hybrid bridge. The optimization outcome of the hybrid FRP/RC bridge shows the appropriate composite material selection and cross-section geometry that satisfies all the applicable Limit States (LS) and, at the same time, results in the lightest design. Critical limit states show that shear stress criteria determine the optimum design for bridge spans less than 15.24 m and deflection criteria controls for longer spans. Increased side wall thickness can reduce maximum observed shear stresses, but leads to a high weight penalty. A taller cross-section and a thicker girder base can efficiently lower the observed deflections and normal stresses. Finally, substantial weight savings can be achieved by the optimization framework if base and side-wall thickness are treated as independent variables.

  20. Design and construction of the Daini-Chikumagawa bridge; Dai ni Chikumagawa kyoryo no sekkei to seko

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, N.; Takasusuki, K.; Hirasawa, T.; Kanamori, M.

    1996-01-30

    The Daini-Chikumagawa bridge, having spans of 134m {times} 2 which is the largest in Japan as the concrete railroad, is a prestressed concrete (PC) oblique cable-stayed bridge building on the Hokuriku Shinkansen express line which is constructing towards Nagano Olympic (Feb.1998). Regarding adoption of the oblique cable-stayed bridge for the railroad bridge, there are very few examples on a global scale and in Japan besides this bridge there is only one example (Omoto bridge (Iwate pref.), span = 85m). One H type tower (H = 65m from the surface of bridge) is erected at the center of the Chikuma river and then main girders are built at the front and rear of this tower. These main girders, being separated into 5m {times} 24 blocks per one side excepting surroundings of the tower, are fabricated as a three room box type PC block (total width 12.8m; height 3.0m) each on the river beach near the spot. These blocks are jointed from the tower side by the overhanging work using the constructing vehicles and are fixed with oblique materials (cables; two face hanging system) at intervals of 10m. 4 refs., 16 figs., 5 tabs.

  1. Active Control of Suspension Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps...

  2. Yonjung High-Speed Railway Bridge Assessment Using Output-Only Structural Health Monitoring Measurements under Train Speed Changing

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2016-01-01

    Full Text Available Yonjung Bridge is a hybrid multispan bridge that is designed to transport high-speed trains (HEMU-430X with maximum operating speed of 430 km/h. The bridge consists of simply supported prestressed concrete (PSC and composite steel girders to carry double railway tracks. The structural health monitoring system (SHM is designed and installed to investigate and assess the performance of the bridge in terms of acceleration and deformation measurements under different speeds of the passing train. The SHM measurements are investigated in both time and frequency domains; in addition, several identification models are examined to assess the performance of the bridge. The drawn conclusions show that the maximum deflection and acceleration of the bridge are within the design limits that are specified by the Korean and European codes. The parameters evaluation of the model identification depicts the quasistatic and dynamic deformations of PSC and steel girders to be different and less correlated when higher speeds of the passing trains are considered. Finally, the variation of the frequency content of the dynamic deformations of the girders is negligible when high speeds are considered.

  3. Monolithic Concrete vs Precast Concrete for the Construction of Bridge by Th Cantilever Method

    Directory of Open Access Journals (Sweden)

    Morlova Dumitru Daniel

    2015-07-01

    Full Text Available In the article "Monolithic Concrete vs Precast Concrete for the Construction of Bridges by the Cantilever Method", there are approached a number of issues that come out in the design and execution of prestressed concrete bridge structures using the cantilever method.

  4. Behaviour of parallel girders stabilised with U-frames

    DEFF Research Database (Denmark)

    Virdi, Kuldeep; Azzi, Walid

    2010-01-01

    Lateral torsional buckling is a key factor in the design of steel girders. Stability can be enhanced by cross-bracing, reducing the effective length and thus increasing the ultimate capacity. U-frames are an option often used to brace the girders when designing through type of bridges and where...... overhead bracing is not practical. This paper investigates the effect of the U-frame spacing on the stability of the parallel girders. Eigenvalue buckling analysis was undertaken with four different spacings of the U-frames. Results were extracted from finite element analysis, interpreted and conclusions...

  5. A case study of interior low-frequency noise from box-shaped bridge girders induced by running trains: Its mechanism, prediction and countermeasures

    Science.gov (United States)

    Zhang, Xun; Li, Xiaozhen; Hao, Hong; Wang, Dangxiong; Li, Yadong

    2016-04-01

    A side effect of high-speed railway and urban rail transit systems is the associated vibration and noise. Since the use of concrete viaducts is predominant in railway construction due to scarce land resources, low-frequency (20-200 Hz) structure-radiated noise from concrete bridges is a principal concern. Although it is the most commonly used bridge type, the mechanism of noise emission from box-shaped bridge girders when subjected to impact forces from moving trains, which sounds like beating a drum, has not been well studied. In this study, a field measurement was first made on a simply-supported box-shaped bridge to record the acceleration of the slabs and the associated sound pressures induced by running trains. These data indicated that a significant beat-wave noise occurred in the box-shaped cavity when the train speed was around 340 km/h, which arose from the interference between two sound waves of 75.0 Hz and 78.8 Hz. The noise leakage from the bridge expansion joint was serious and resulted in obvious noise pollution near the bridge once the beat-wave noise was generated in the cavity. The dominant frequency of the interior noise at 75.0 Hz was confirmed from the spectrum of the data and the modal analysis results, and originated from the peak vibration of the top slab due to resonance and the first-order vertical acoustic mode, which led to cavity resonance, amplifying the corresponding noise. The three-dimensional acoustic modes and local vibration modes of the slab were calculated by using the finite element method. A simplified vehicle-track-bridge coupling vibration model was then developed to calculate the wheel-rail interaction force in a frequency range of 20-200 Hz. Numerical simulations using the boundary element method confirmed the cavity resonance effect and the numerical results agreed well with the data. Based on the calibrated numerical model, three noise reduction measures, i.e., adding a horizontal baffle in the interior cavity, narrowing

  6. Double Girder Bridge Crane with Double Cycling: Scheduling Strategy and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Dandan Wang

    2014-01-01

    Full Text Available This paper introduces a novel quay crane design, double girder bridge crane (DGBC. DGBC is capable of handling containers of two adjacent bays simultaneously, avoiding crane collisions, saving travelling and reposition cost, and eventually improving terminal efficiency. This problem is formulated as a resource-constrained project scheduling with objective to minimize the maximum completion time. A two-stage heuristic algorithm is proposed in which an operating sequences on each bay is obtained by double cycling, and the integrated timetable for both bays is constructed by solving resource conflicts using the proposed minimum cost strategy. We examine effectiveness and performance of applying DGBC with double cycling. A case study is presented to illustrate how DGBC works with the two-stage method. Three extreme cases with respective conflict types are investigated to develop the performance bounds of DGBC with double cycling. The results show that DGBC can significantly improve terminal productivity, and outperforms single girder crane in both makespan and the lift operation percentage. The highest DGBC efficiency does not require maximum double cycles in two bay schedules; rather the integrated timetable for two bays is the main contribution to the DGBC performance as it yields better cooperation between two spreaders and the driver.

  7. Implementation of straight and curved steel girder erection design tools construction : summary.

    Science.gov (United States)

    2010-11-05

    Project 0-5574 Curved Plate Girder Design for Safe and Economical Construction, resulted in the : development of two design tools, UT Lift and UT Bridge. UT Lift is a spreadsheet-based program for analyzing : steel girders during lifting while ...

  8. Estimation of the Service Lifetime of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper estimation of the service lifetime of concrete bridges is discussed. The main reason for deterioration of concrete bridges is corrosion of the reinforcement. Therefore, modelling of the corrosion process is an important aspect of the estimation of the service lifetime. In this paper...

  9. Assessment of the Reliability of Concrete Bridges

    DEFF Research Database (Denmark)

    Middleton, C. R.; Thoft-Christensen, Palle

    Although there has been a considerable amount of research into different aspects of concrete bridge reliability, it has still not been widely adopted in professional practice other than in the development and calibration of codes. This situation appears to be changing as there has been a signific......Although there has been a considerable amount of research into different aspects of concrete bridge reliability, it has still not been widely adopted in professional practice other than in the development and calibration of codes. This situation appears to be changing as there has been...... adopted to assist in achieving this goal. Rather than review the specific research on this subject this paper examines a number of key issues related to the practical application of reliability analysis to the assessment of concrete bridges....

  10. Inspection Strategies for Concrete Bridges

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1989-01-01

    In this paper an optimal inspection strategy for concrete bridges based on periodic routine and detailed inspections is presented. The failure mode considered is corrosion of the reinforcement due to chlorides. A simple modelling of the corrosion and of the inspection strategy is presented....... The optimal inspection strategy is determined from an optimization problem, where the design variables are time intervals between detailed inspections and the concrete cover. The strategy is illustrated on a simple structure, namely a reinforced concrete beam....

  11. Aesthetic coatings for concrete bridge components

    Science.gov (United States)

    Kriha, Brent R.

    This thesis evaluated the durability and aesthetic performance of coating systems for utilization in concrete bridge applications. The principle objectives of this thesis were: 1) Identify aesthetic coating systems appropriate for concrete bridge applications; 2) Evaluate the performance of the selected systems through a laboratory testing regimen; 3) Develop guidelines for coating selection, surface preparation, and application. A series of site visits to various bridges throughout the State of Wisconsin provided insight into the performance of common coating systems and allowed problematic structural details to be identified. To aid in the selection of appropriate coating systems, questionnaires were distributed to coating manufacturers, bridge contractors, and various DOT offices to identify high performing coating systems and best practices for surface preparation and application. These efforts supplemented a literature review investigating recent publications related to formulation, selection, surface preparation, application, and performance evaluation of coating materials.

  12. Experimental study on AR fiberglass connectors for bridges made of composite materials

    Directory of Open Access Journals (Sweden)

    Tolosana, N.

    2006-06-01

    Full Text Available One highly relevant aspect in composite material bridgedesing is the study of the shear connectors to be used.Composite material bridges most commonly comprise acomposite deck resting on steel or reinforced concrete girders.This article analyzes the connectors most frequentlyused in such bridges.It also reviews the connectors used in the King StormwaterChannel Bridge, whose fibreglass deck is supported bygirders made of concrete-filled carbon fibre girders.The paper advances proposals for several types of connectorsand discusses the results of push-out test run ona number of prototypes with different geometries.The results are analyzed to identify the optimum model forthe “Autovia del Cantabrico” Overpass, with its 46-m span,carbon fibre girders and AR glass shear connectors.Un aspecto relevante dentro del proyecto de un puenterealizado en materiales compuestos es el estudio de losconectores. El caso mas frecuente de puente en materialescompuestos es aquel que presenta un tablero de materialescompuestos soportado por vigas metalicas o de hormigonarmado. En este trabajo se analizaran los tipos deconectores mas utilizados en este tipo de puentesSe analizaran tambien los conectores utilizados en elKing Stormwater Channel Bridge, donde ademas deltablero en fibra de vidrio, se fabricaron las vigas en fibrasde carbono rellenas de hormigon.En este articulo se propondran varios tipos de conectoresy se presentaran los resultados experimentales correspondientesal ensayo de “push-out” de varios prototipos condiferentes geometrias.Tras evaluar los resultados, se determinara el mas idoneopara su implantacion en el Paso Superior de la Autovia delCantabrico, de 46 metros de luz y que presenta las vigasen fibra de carbono y los conectores de vidrio AR.

  13. Evaluation of bridge deck with shrinkage-compensating concrete.

    Science.gov (United States)

    2016-04-01

    Concrete bridge decks are susceptible to premature cracking and to corrosion of reinforcing steel. Low-permeability : concrete does not always ensure durability if the concrete has excessive cracks that facilitate the intrusion of aggressive solution...

  14. Dynamic behaviour of prestressed concrete bridges

    International Nuclear Information System (INIS)

    Javor, T.

    1982-01-01

    The paper presents the results of experimental research of dynamic effects on prestressed concrete bridges in dynamic load tests using testing vehicles. The bridges were passed over in both directions at various speeds also running over an artificial unevenness to produce impact loads. From investigated bridges are shown the dynamic quantities such as dynamic coefficients, natural frequency, logarithmical decrement of damping, etc. (orig.) [de

  15. 0-6722 : spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2014-08-01

    The Texas Department of Transportation uses : precast prestressed concrete slab beam bridges for : shorter-span bridges of approximately 3050 ft in : length. Conventional slab beam bridges have slab : beams placed immediately adjacent to one anoth...

  16. Longest cable-stayed bridge TATARA; Longest shachokyo Tatara Ohashi

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1998-06-15

    The world`s longest cable-stayed bridge Tatara having a central span of 890 m had the both ends closed in August 1997, linking Namakuchi Island and Omishima Island. Final finishing work is continuing for opening of the West Seto Expressway in the spring of 1999. A cable-stayed bridge supports the bridge girders by perpendicular components of tensile force of cables stayed obliquely. On the other hand, there is a concern that the girders may have axial compression force generated due to horizontal components of the force from the cable tensile force, which can cause buckling of the girders. Therefore, in order to suspend the girders efficiently by increasing the perpendicular components of the cable force, and moreover to suppress the axial compression force on the girders, it is more advantageous to make bridge towers high, hence the towers of this bridge are highest among the bridges on the Shimanami Ocean Road. This bridge whose long girders are stayed with 21-stage multi cables presented a problem in designing the buckling in steel girders near the towers due to the horizontal components of the force generated by the bridge. Discussions were given, therefore, by using load withstanding force experiments using a whole bridge model of 1/50 scale, buckling experiments on full-size reinforcing plate models, and load withstanding force analysis using a tower model. A number of other technical discussions were repeated, by which the world`s longest cable-stayed bridge was completed. 9 figs., 1 tab.

  17. FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING WEB DEPTH

    Directory of Open Access Journals (Sweden)

    Q. A. HASAN

    2017-11-01

    Full Text Available The paper presents Finite Element Analysis to determine the ultimate shear capacity of tapered composite plate girder. The effect of degree of taper on the ultimate shear capacity of tapered steel-concrete composite plate girder with a nonlinear varying web depth, effect of slenderness ratio on the ultimate shear capacity, and effect of flange stiffness on the ductility were considered as the parametric studies. Effect of concrete slab on the ultimate shear capacity of tapered plate girders was also considered and it was found to be so effective on the ultimate shear capacity of the tapered plate girder compared with the steel one. The accuracy of the finite element method is established by comparing the finite element with the results existing in the literature. The study was conducted using nonlinear finite element modelling with computer software LUSAS 14.7.

  18. Lifetime Reliability Assessment of Concrete Slab Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    A procedure for lifetime assesment of the reliability of short concrete slab bridges is presented in the paper. Corrosion of the reinforcement is the deterioration mechanism used for estimating the reliability profiles for such bridges. The importance of using sensitivity measures is stressed....... Finally the produce is illustrated on 6 existing UK bridges....

  19. Assessment of concrete bridge decks with alkali silica reactions

    DEFF Research Database (Denmark)

    Eriksen, Kirsten; Jansson, Jacob; Geiker, Mette Rica

    2008-01-01

    Based on investigations of concrete from an approximately 40 years old bridge a procedure to support the management of maintenance and repair of alkali silica damaged bridges is proposed. Combined petrography and accelerated expansion testing were undertaken on cores from the Bridge at Skovdiget......, Bagsværd, Denmark to provide information on the damage condition as well as the residual reactivity of the concrete. The Danish Road Directory’s guidelines for inspection and assessment of alkali silica damaged bridges will be briefly presented, and proposed modifications will be describe...

  20. Investigation of long-term prestress losses in pretensioned high performance concrete girders.

    Science.gov (United States)

    2005-01-01

    Effective determination of long-term prestress losses is important in the design of prestressed concrete bridges. Over-predicting prestress losses results in an overly conservative design for service load stresses, and under-predicting prestress loss...

  1. Hysteretic behavior of prestressed concrete bridge pier with fiber model.

    Science.gov (United States)

    Wang, Hui-li; Feng, Guang-qi; Qin, Si-feng

    2014-01-01

    The hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier were researched. The effects of the prestressed tendon ratio, the longitudinal reinforcement ratio, and the stirrup reinforcement ratio on the hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier have been obtained with the fiber model analysis method. The analysis show some results about the prestressed concrete bridge pier. Firstly, greater prestressed tendon ratio and more longitudinal reinforcement can lead to more obvious pier's hysteresis loop "pinching effect," smaller residual displacement, and lower energy dissipation capacity. Secondly, the greater the stirrup reinforcement ratio is, the greater the hysteresis loop area is. That also means that bridge piers will have better ductility and stronger shear capacity. The results of the research will provide a theoretical basis for the hysteretic behavior analysis of the prestressed concrete pier.

  2. Evaluation of post-tensioning of a curved continuous girder using long-gauge fiber optic sensors

    Science.gov (United States)

    Abdel-Jaber, Hiba; Glisic, Branko

    2014-03-01

    Streicker Bridge is a pedestrian bridge on the Princeton University campus. It consists of a main span and four curved continuous girders (legs). The main span and the southeast leg of the bridge are equipped with fiber optic strain and temperature sensors, allowing the bridge to also function as an on-campus laboratory for the Structural Health Monitoring research group. Parallel sensors were embedded at critical cross-sections in the deck prior to the pouring of concrete. The deck of the southeast leg experienced early age cracking within a few days of concrete pouring, which was detected by the strain sensors. Post-tensioning was then performed and it is assumed that it closed off the cracks. Evaluation of post-tensioning forces is complex due to the existence of the cracks, and this paper researches a procedure to estimate the post-tensioning forces at cracked and uncracked locations. The obtained post-tensioning forces were compared to design forces and conclusions regarding the status of post-tensioning were made. This is important as it gives information on the actual health condition and performance of the structure. It also provides information on the safety of the structure. The objective of this paper is to present a methodology for the evaluation of the post-tensioning force along the deck based on strain measurements. The monitoring system, results, data analysis method, and conclusions regarding the bridge health condition and performance are presented in this paper.

  3. GPR signal analysis of post-tensioned prestressed concrete girder defects

    Science.gov (United States)

    Liu, Sixin; Weng, Changnian; Jiao, Pengfei; Wang, Fei; Fu, Lei; Meng, Xu; Lei, Linlin

    2013-06-01

    The accurate inspection of the duct condition in post-tensioned prestressed concrete (PPC) is an essential part of GPR concrete inspection. The purpose is to inspect the grouting condition of the ducts where the strands are located, to find out if there is a void in the ducts, and if any water exists. In order to investigate the radar image characteristics of different PPC duct defects, a number of model girders were manufactured. Three major ducts are included in our study: (1) well grouted and no void (normal condition); (2) the duct is half filled, and the void is filled by water or air; and (3) the duct is not filled at all, and the duct is water or air filled. The data corresponding to seven different situations are acquired and processed. It is found that the radar can detect the first interface in the duct, and the detailed structure inside the duct cannot be ‘seen’ from the images directly. Characteristic curves greatly help the interpretation. A completely void duct is the easiest to differentiate from the others. The signature for this situation is characterized by a strong and clear reflection interface which becomes weaker as the void is water filled. The normal condition shows the weakest reflection interface. As for the half void situation, the front scan shows a similar result to the normal condition whether it is water or air filled, and the back scan shows similar features to the completely void situation. The experiment and analysis is helpful and instructive for practical engineering inspection.

  4. Prediction of welding shrinkage deformation of bridge steel box girder based on wavelet neural network

    Science.gov (United States)

    Tao, Yulong; Miao, Yunshui; Han, Jiaqi; Yan, Feiyun

    2018-05-01

    Aiming at the low accuracy of traditional forecasting methods such as linear regression method, this paper presents a prediction method for predicting the relationship between bridge steel box girder and its displacement with wavelet neural network. Compared with traditional forecasting methods, this scheme has better local characteristics and learning ability, which greatly improves the prediction ability of deformation. Through analysis of the instance and found that after compared with the traditional prediction method based on wavelet neural network, the rigid beam deformation prediction accuracy is higher, and is superior to the BP neural network prediction results, conform to the actual demand of engineering design.

  5. Causes of Early Age Cracking on Concrete Bridge Deck Expansion Joint Repair Sections

    Directory of Open Access Journals (Sweden)

    Jared R. Wright

    2014-01-01

    Full Text Available Cracking of newly placed binary Portland cement-slag concrete adjacent to bridge deck expansion dam replacements has been observed on several newly rehabilitated sections of bridge decks. This paper investigates the causes of cracking by assessing the concrete mixtures specified for bridge deck rehabilitation projects, as well as reviewing the structural design of decks and the construction and curing methods implemented by the contractors. The work consists of (1 a comprehensive literature review of the causes of cracking on bridge decks, (2 a review of previous bridge deck rehabilitation projects that experienced early-age cracking along with construction observations of active deck rehabilitation projects, and (3 an experimental evaluation of the two most commonly used bridge deck concrete mixtures. Based on the literature review, the causes of concrete bridge deck cracking can be classified into three categories: concrete material properties, construction practices, and structural design factors. The most likely causes of the observed early-age cracking were found to be inadequate curing and failure to properly eliminate the risk of plastic shrinkage cracking. These results underscore the significance of proper moist curing methods for concrete bridge decks, including repair sections. This document also provides a blueprint for future researchers to investigate early-age cracking of concrete structures.

  6. Analysis of vibration characteristics of a prestressed concrete cable-stayed bridge using strong motion observation data. Jishin kansoku ni motozuku PC shachokyo no shindo tokusei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Inatomi, T. (Port and Harbour Research Institute, Kanagawa (Japan)); Takeda, T.; Obi, N.; Yamanobe, S. (Kajima Corp., Tokyo (Japan))

    1994-05-31

    Records of seismic observation were analyzed for the purpose of proving the validity of antiseismic design for a prestressed concrete (PC) cable-stayed bridge. This bridge is a three span continuous PC cable-stayed bridge of 498 m in bridge length, and is constructed on alluvial soft ground. The seismometer used is a servo type accelerometer. The observed frequency and mode of seismic vibration are in good agreement with those in the analysis and hence the validity of modelling of the structure in designing was confirmed. It was also confirmed that the bending vibration and torsional vibration of the main girder are separated as designed. However, some points such as a large difference in the observed vibration and analysed vibration in the mode accompanying rotation of the base are listed as problems to be solved in antiseismic design. In order to investigate the attenuation constant of the upper structure, a seismic wave response analysis was performed and its results were compared with observed ones. When the attenuation constant is assumed to be 2%, agreement of data between analysis and observation is good, and it is considered that the attenuation constant of the upper structure only without the effects of attenuation of energy escape from the base and crack generation in concrete was about 2% in the observed earthquake (maximum acceleration on the ground: 51 Gal). 8 refs., 9 figs., 2 tabs.

  7. Study on the Effect and Mechanism of Aerodynamic Measures for the Vortex-Induced Vibration of Separate Pairs of Box Girders in Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    Han Xin He

    2015-01-01

    Full Text Available Although not always resulting in catastrophic failures, vortex-induced vibration (VIV response can seriously impact the fatigue life and functionality of bridges, especially for separate pairs of box girders in cable-stayed bridges. This study investigates the effects of three aerodynamic measures: grating, inclined web plate, and the baffles on separated box girders in the cable-stayed bridges. The experimental result indicates that the grating of different opening ratios can control the vortex-induced vibration effectively, and the optimized grating opening ratio set in this paper is 40%. Increasing the angle of inclined web plate has a great control on mitigation of the vortex-induced vibration. However, there is an optimum angle where the amplitude of vortex-induced vibration is the smallest at low wind speed. The amplitude of vortex-induced vibration becomes larger with the increase of the web inclined angle that exceeds the optimum angle. Comparatively, the baffles installed on both sides of the inclined webs are more effective to restrain the vortex-induced resonance. The Computational Fluent Dynamics (CFD software is utilized to investigate the mechanism of the experimental results.

  8. Evaluation of concrete bridge mix designs for control of cracking, phase I.

    Science.gov (United States)

    2014-11-01

    Cracking of concrete is a common problem with concrete structures such as bridge decks, pavements and bridge : rail. The Agency of Transportation (VTrans) has recently invested in higher performing concrete mixes that are : more impervious and has hi...

  9. Investigation of aerodynamic stability by wind response observation during cantilever construction of the Ikara Ohashi bridge; Ikara Ohashi haridashi sekoji no kaze kansoku ni yoru taifu anteisei no kento

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Mukai, H.; Takeda, T. [Kajima Corp., Tokyo (Japan)

    1995-12-20

    In order to ensure aerodynamic stability during cantilever construction of the Ikara Ohashi Bridge, wind response observation was carried out and discussions were given on the result. The Ikara Ohashi Bridge is a 5-span continuous PC cable-stayed bridge with the central span being a concrete bridge having a length of 260 m, which is the longest in Japan. The bridge was constructed using a method that main girders are extended from the central tower to the right and left sides while the girders are stayed by bracing cables. The bridge construction site is in an area which is often subjected to typhoons and gusts like seasonal winds in winter, hence a discussion on aerodynamic stability of the bridge especially during extension work was viewed as an important matter. In addition, the construction used two small-capacity cables spaced and bundled as the bracing material, which required verification on their aerodynamic stability. In order to identify vibration characteristics of the main girders and the central tower, wind response observation has been performed as soon as the construction was begun. As a result, the vibration characteristics of the main girders and the central tower were identified, and it was verified that vibration shape and dominant frequency can be evaluated properly by an intrinsic value analysis that uses a multi-material point frame model. Furthermore, effects of different vibration absorbing measures were compared, and the effective methods were adopted as the result. 4 refs., 12 figs.

  10. Wireless ultrasonic wavefield imaging via laser for hidden damage detection inside a steel box girder bridge

    International Nuclear Information System (INIS)

    An, Yun-Kyu; Song, Homin; Sohn, Hoon

    2014-01-01

    This paper presents a wireless ultrasonic wavefield imaging (WUWI) technique for detecting hidden damage inside a steel box girder bridge. The proposed technique allows (1) complete wireless excitation of piezoelectric transducers and noncontact sensing of the corresponding responses using laser beams, (2) autonomous damage visualization without comparing against baseline data previously accumulated from the pristine condition of a target structure and (3) robust damage diagnosis even for real structures with complex structural geometries. First, a new WUWI hardware system was developed by integrating optoelectronic-based signal transmitting and receiving devices and a scanning laser Doppler vibrometer. Next, a damage visualization algorithm, self-referencing f-k filter (SRF), was introduced to isolate and visualize only crack-induced ultrasonic modes from measured ultrasonic wavefield images. Finally, the performance of the proposed technique was validated through hidden crack visualization at a decommissioned Ramp-G Bridge in South Korea. The experimental results reveal that the proposed technique instantaneously detects and successfully visualizes hidden cracks even in the complex structure of a real bridge. (paper)

  11. Stress Regression Analysis of Asphalt Concrete Deck Pavement Based on Orthogonal Experimental Design and Interlayer Contact

    Science.gov (United States)

    Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei

    2018-03-01

    A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.

  12. Deflection monitoring for a box girder based on a modified conjugate beam method

    Science.gov (United States)

    Chen, Shi-Zhi; Wu, Gang; Xing, Tuo

    2017-08-01

    After several years of operation, a box girder bridge would commonly experience excessive deflection, which endangers the bridge’s life span as well as the safety of vehicles travelling on it. In order to avoid potential risks, it is essential to constantly monitor the defection of box girders. However, currently, the direct deflection monitoring methods are limited by the complicated environments beneath the bridges, such as rivers or other traffic lanes, which severely impede the layouts of the sensors. The other indirect deflection monitoring methods mostly do not thoroughly consider the inherent shear lag effect and shear deformation in the box girder, resulting in a rather large error. Under these circumstances, a deflection monitoring method suiting box girders is proposed in this article, based on the conjugate beam method and distributed long-gauge fibre Bragg grating (FBG) sensor. A lab experiment was conducted to verify the reliability and feasibility of this method under practical application. Further, the serviceability under different span-depth ratios and web thicknesses was examined through a finite element model.

  13. SEISMIC BEHAVIOR OF STEEL MONORAIL BRIDGES UNDER TRAIN LOAD DURING STRONG EARTHQUAKES

    OpenAIRE

    KIM, C. W.; KAWATANI, M.; KANBARA, T.; NISHIMURA, N.

    2013-01-01

    This paper investigated dynamic responses of steel monorail bridges incorporating train-bridge interaction under strong earthquakes. Two types of steel monorail bridges were considered in the study: a conventional type with steel track-girder; an advanced type with composite track-girder and simplified lateral bracing system. During strong earthquakes, monorail train was assumed standing on the track-girder of monorail bridges. Observations through the analytical study showed that considering...

  14. Christian Menn's recent bridge designs - Reducing structural elements to the simplest solution

    OpenAIRE

    Brühwiler, E.; Mahmoud, Khaled M.

    2009-01-01

    The conceptual designs by Christian Menn of four landmark bridges are presented: 1) a 350-m span cable-stayed bridge with jointless deck girder, 2) a cable-stayed bridge with a single “spindle-shaped” pylon, 3) a bridge with an arch reaching high above the deck (both carrying a horizontally curved deck girder), and 4) a cable stayed bridge with three pylons monolithically connected to the deck girder. All of the original bridge designs are driven by the aim to optimize the flow of force...

  15. CF60 Concrete Composition Design and Application on Fudiankou Xijiang Super Large Bridge

    Science.gov (United States)

    Qiu, Yi Mei; Wen, Sen Yuan; Chen, Jun Xiang

    2018-06-01

    Guangxi Wuzhou City Ring Road Fudiankou Xijiang super large bridge CF60 concrete is a new multi-phase composite high-performance concrete, this paper for the Fudiankou Xijiang bridge structure and characteristics of the project, in accordance with the principle of local materials and technical specification requirements, combined with the site conditions of CF60 engineering high performance concrete component materials, proportion and the technical performance, quantify the main physical and mechanical performance index. Analysis main influencing factors of the technical indicators, reasonable adjustment of concrete mix design parameters, and the use of technical means of admixture and multi-function composite admixture of concrete, obtain the optimal proportion of good work, process, mechanical properties stability and durability of engineering properties, recommend and verification of concrete mix; to explore the CF60 high performance concrete Soil in the Fudiankou Xijiang bridge application technology, detection and tracking the quality of concrete construction, concrete structure during the construction of the key technology and control points is proposed, evaluation of CF60 high performance concrete in the actual engineering application effect and benefit to ensure engineering quality of bridge structure and service life, and super long span bridge engineering construction to provide basis and reference.

  16. DISTORTION ANALYSIS OF TILL -WALLED BOX GIRDERS

    African Journals Online (AJOL)

    NIJOTECH

    bridges, buildings, motor vehicles, ships and aircrafts. Due to thinness of the box walls, generalized loads applied to this structure give rise to warping and distortion of ..... Recommendation for Design of. Intermediate Diaphragms in Box. Girders, Transactions of Japanese. Society of Civil Engineers, Vol. 14,1984, pp 121-126.

  17. An Expert System for Concrete Bridge Management

    DEFF Research Database (Denmark)

    Brito, J. de; Branco, F. A.; Thoft-Christensen, Palle

    1997-01-01

    The importance of bridge repair versus new bridge construction has risen in recent decades due to high deterioration rates that have been observed in these structures. Budgets both for building new bridges and keeping the existing ones are always limited. To help rational decision-making, bridge...... management systems are presently being implemented by bridge authorities in several countries. The prototype of an expert system for concrete bridge management is presented in this paper, with its functionality relying on two modules. The inspection module relies on a periodic acquisition of field...... information complemented by a knowledge-based interactive system, BRIDGE-1. To optimize management strategies at the headquarters, the BRIDGE-2 module was implemented, including three submodules: inspection strategy, maintenance and repair....

  18. Study on Construction Technology of Municipal Road and Bridge Concrete

    Science.gov (United States)

    Tang, Fuyong

    2018-03-01

    With the continuous development of social economy and the accelerating process of urbanization, municipal road and bridge projects have also shown a trend of rapid development. Municipal road and bridge work can fully reflect the economic and cultural development level of cities and is also an important symbol of urban development. As a basic material of construction, concrete is widely used in engineering construction. This article will analyze the municipal road and bridge concrete construction technology, put forward corresponding measures.

  19. Synthesis of concrete bridge piles prestressed with CFRP systems.

    Science.gov (United States)

    2017-06-01

    The Texas Department of Transportation frequently constructs prestressed concrete piles for use in bridge : foundations. Such prestressed concrete piles are typically built with steel strands that are highly susceptible to : environmental degradation...

  20. Application of super workable concrete to main tower of cable-stayed prestressed concrete bridge. ; Kiba park grand bridge. PC shachokyo no shuto eno tekiyo. ; Kiba koen ohashi

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Y.; Shindo, T.; Sakamoto, A. (Taisei Corp., Tokyo (Japan))

    1993-08-01

    The Kiba Park Grand Bridge is a cable-stayed prestressed concrete (PC) bridge with a length of 186m. The main tower of this PC cable-stayed bridge consists of a pair of vertical columns with height of 60m and a beam connecting the columns. For the purpose of the advanced efficiency of construction without formwork and removal work and the improvement of durability, the precast buried formwork made of polymer impregnated concrete formwork was adopted. Approximate 650 cubic meter of super workable concrete was placed for the upper part ranging from 7th to 17th blocks of vertical columns and the beam. Blast furnace cement B and fly ash were used as binder. Naphthalenesulfonic acid type high performance water reducing agent and lignosulfonic acid type AE (air-entraining) water reducing agent were used as admixtures. Super workable concrete was mixed using forced double-axle mixers in the ready-mixed concrete plant. Satisfactory quality of the fresh concrete and strength of the hardened concrete were obtained. 2 refs., 11 figs., 3 tabs.

  1. On Reliability Based Optimal Design of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In recent years important progress has been made in assessment of the lifetime behaviour of concrete bridges. Due to the large uncertainties related to the loading and the deterioration of such bridges, an assessment based on stochastic modelling of the significant parameters seems to be only...

  2. Implementation of a Refined Shear Rating Methodology for Prestressed Concrete Girder Bridges

    Science.gov (United States)

    2017-12-01

    Lower than desirable shear ratings at the ends of prestressed concrete beams have been the topic of ongoing research between MnDOT and the University of Minnesota. A recent study by the University of Minnesota entitled Investigation of Shear Distribu...

  3. Earthquake Resilient Bridge Columns Utilizing Damage Resistant Hybrid Fiber Reinforced Concrete

    OpenAIRE

    Trono, William Dean

    2014-01-01

    Modern reinforced concrete bridges are designed to avoid collapse and to prevent loss of life during earthquakes. To meet these objectives, bridge columns are typically detailed to form ductile plastic hinges when large displacements occur. California seismic design criteria acknowledges that damage such as concrete cover spalling and reinforcing bar yielding may occur in columns during a design-level earthquake. The seismic resilience of bridge columns can be improved through the use of a da...

  4. Effects of CFRP Strengthening on Dynamic and Fatigue Responses of Composite Bridge

    Directory of Open Access Journals (Sweden)

    Kittisak Kuntiyawichai

    2014-01-01

    Full Text Available This paper investigates the effect of CFRP strengthening on dynamic and fatigue responses of composite bridge using finite element program ABAQUS. Dynamic and fatigue responses of composite bridge due to truck load based on AASHTO standard are investigated. Two types of CFRP strengthening techniques, CFRP sheets and CFRP deck, are applied to both the damaged and undamaged bridges. For the case of damaged bridge, two through-thickness crack sizes, 3 mm and 6 mm in depth, are assumed at midspan of the steel girders. Furthermore, effects of the number of steel girders on the dynamic and fatigue responses are also considered. The results show that the maximum responses of composite bridges occur for dual lane cases. By using CFRP as a strengthening material, the maximum stress and deflection of the steel girders reduce and consequently increase the fatigue life of the girders. After introducing initial crack into the steel girders of the composite bridges, the fatigue life of the bridges is dramatically reduced. However, the overall performance of the damaged composite bridge can be improved by using CFRP, albeit with less effectiveness. Therefore, if cracks are found, steel welding must be performed before strengthening the composite bridge by CFRP.

  5. Dynamic Responses of Continuous Girder Bridges with Uniform Cross-Section under Moving Vehicular Loads

    Directory of Open Access Journals (Sweden)

    Qingfei Gao

    2015-01-01

    Full Text Available To address the drawback of traditional method of investigating dynamic responses of the continuous girder bridge with uniform cross-section under moving vehicular loads, the orthogonal experimental design method is proposed in this paper. Firstly, some empirical formulas of natural frequencies are obtained by theoretical derivation and numerical simulation. The effects of different parameters on dynamic responses of the vehicle-bridge coupled vibration system are discussed using our own program. Finally, the orthogonal experimental design method is proposed for the dynamic responses analysis. The results show that the effects of factors on dynamic responses are dependent on both the selected position and the type of the responses. In addition, the interaction effects between different factors cannot be ignored. To efficiently reduce experimental runs, the conventional orthogonal design is divided into two phases. It has been proved that the proposed method of the orthogonal experimental design greatly reduces calculation cost, and it is efficient and rational enough to study multifactor problems. Furthermore, it provides a good way to obtain more rational empirical formulas of the DLA and other dynamic responses, which may be adopted in the codes of design and evaluation.

  6. Impact of measurement uncertainty from experimental load distribution factors on bridge load rating

    Science.gov (United States)

    Gangone, Michael V.; Whelan, Matthew J.

    2018-03-01

    Load rating and testing of highway bridges is important in determining the capacity of the structure. Experimental load rating utilizes strain transducers placed at critical locations of the superstructure to measure normal strains. These strains are then used in computing diagnostic performance measures (neutral axis of bending, load distribution factor) and ultimately a load rating. However, it has been shown that experimentally obtained strain measurements contain uncertainties associated with the accuracy and precision of the sensor and sensing system. These uncertainties propagate through to the diagnostic indicators that in turn transmit into the load rating calculation. This paper will analyze the effect that measurement uncertainties have on the experimental load rating results of a 3 span multi-girder/stringer steel and concrete bridge. The focus of this paper will be limited to the uncertainty associated with the experimental distribution factor estimate. For the testing discussed, strain readings were gathered at the midspan of each span of both exterior girders and the center girder. Test vehicles of known weight were positioned at specified locations on each span to generate maximum strain response for each of the five girders. The strain uncertainties were used in conjunction with a propagation formula developed by the authors to determine the standard uncertainty in the distribution factor estimates. This distribution factor uncertainty is then introduced into the load rating computation to determine the possible range of the load rating. The results show the importance of understanding measurement uncertainty in experimental load testing.

  7. Fatigue analysis and life prediction of composite highway bridge decks under traffic loading

    Directory of Open Access Journals (Sweden)

    Fernando N. Leitão

    Full Text Available Steel and composite (steel-concrete highway bridges are currently subjected to dynamic actions of variable magnitude due to convoy of vehicles crossing on the deck pavement. These dynamic actions can generate the nucleation of fractures or even their propagation on the bridge deck structure. Proper consideration of all of the aspects mentioned pointed our team to develop an analysis methodology with emphasis to evaluate the stresses through a dynamic analysis of highway bridge decks including the action of vehicles. The design codes recommend the application of the curves S-N associated to the Miner's damage rule to evaluate the fatigue and service life of steel and composite (steel-concrete bridges. In this work, the developed computational model adopted the usual mesh refinement techniques present in finite element method simulations implemented in the ANSYS program. The investigated highway bridge is constituted by four longitudinal composite girders and a concrete deck, spanning 40.0m by 13.5m. The analysis methodology and procedures presented in the design codes were applied to evaluate the fatigue of the bridge determining the service life of the structure. The main conclusions of this investigation focused on alerting structural engineers to the possible distortions, associated to the steel and composite bridge's service life when subjected to vehicle's dynamic actions.

  8. Assessment of the Reliability of Concrete Slab Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Jensen, F. M.; Middleton, C. R.

    This paper is based on research performed for the Highways Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: Concrete Bridges". It contains details of a methodology which can be used to generate Whole Life (WL) reliability profiles....

  9. Vertical impedance measurements on concrete bridge decks for assessing susceptibility of reinforcing steel to corrosion

    Science.gov (United States)

    Bartholomew, Paul D.; Guthrie, W. Spencer; Mazzeo, Brian A.

    2012-08-01

    Corrosion is a pressing problem for aging concrete infrastructure, especially bridge decks. Because of its sensitivity to factors that affect corrosion of reinforcing steel in concrete, resistivity is an important structural health indicator for reinforced concrete structures. In this research, an instrument was developed to measure vertical impedance on concrete bridge decks. Measurements of vertical impedance on slabs prepared in the laboratory, on slabs removed from decommissioned bridge decks, and on an in-service bridge deck in the field demonstrate the utility of the new apparatus.

  10. Recent design methods for prestressed concrete cable stayed bridge; PC shachokyo no sekkei gijutsu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, K. [Kajima Corp., Tokyo (Japan)

    1995-02-01

    The number of constructed prestressed concrete cable stayed bridges reached nearly 100 in Japan, and the technique has greatly developed. In this article, the current status of design techniques for prestressed concrete cable stayed bridges were introduced along with the examples of constructed bridges for the analysis method and the design method for each structure part while introducing the current examples of constructed bridges. Also, this kind of extra-dosed prestressed concrete bridge and prestressed concrete bridge with prestressed concrete stays were reported. Standards have been prepared including a chapter for the prestressed concrete cable stayed bridges in the Road Bridge Guideline document in February 1990. Load to be noticed as the characteristics peculiar to the prestressed concrete cable stayed bridges includes the shock due to live load, temperature change, and execution error of a tower. For example, 1/1000 of the total tower height is generally considered as the execution error of the tower. A diagonal member is manufactured at factories and in fields and has both advantages and disadvantages. The linear analysis of plane framework is general. Damping of and earthquakeproof designs against the wind and earthquake of the diagonal member were also provided. 11 refs., 17 figs., 2 tabs.

  11. Cable-stayed PC bridge with inclined main tower. Hachinohe port island bridge; Keisha shuto to yusuru 2 keikan renzoku PC shachokyo. Hachinoheko port island renrakykyo (kasho)

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, A. [Hachinohe Institute of Technology, Aomori (Japan)

    1994-09-15

    The design and construction of the inclined main bridge, which is being constructed at the mouth of the Hachinohe Harbor (in Japan), are outlined in this paper. This connecting bridge has an overall length of 265.56 m, and consists of the main bridge member of asymmetric 2 cable-stayed PC bridge and the 3 cable-stayed PC box member bridge. An asymmetric design was employed for the main bridge frame to ensure the access space for small ships passing between bridge girders, easy maintenance and service, improved economy, and excellent view. The main tower is a single-pillar reinforced concrete structure with an inclination of 15{degree} and 47 m in height. Forty-eight diagonal cables are arranged so that 12 cable trains are connected to the main tower on the right and left sides respectively, and the back-stay cable structure is used for each upper 3 cable trains to improve safety against the earthquake. The main beam is made by a prestressed concrete structure with inverse trapezoidal 3-chamber frame section. This structure is superior in increasing the safety against wind. Steel tube sheet-pile well is selected for the bridge pier base, and debris layer is selected as a support layer for the base. For the construction of the lower bridge section, sand conversion through predrilling of rubble-mound and debris layer was executed. The underwater non-separative concrete and embedded type frame are used around the bridge piers and its surrounding. For the construction of the upper bridge section, steel frames are used inside the main tower to ensure the construction precision. 7 figs.

  12. 77 FR 54652 - Draft Program Comment for Common Post-1945 Concrete and Steel Bridges

    Science.gov (United States)

    2012-09-05

    ... constructed by State transportation agencies after 1945, using reinforced concrete or steel beams and designs... proposed Program Comment: Program Comment for Common Post-1945 Concrete and Steel Bridges I. Introduction... reinforced concrete or steel beams and designs that quickly became standardized. These common bridge types...

  13. Verification of LRFD Bridge Design and Analysis Software for INDOT

    OpenAIRE

    Varma, Amit H.; Seo, Jungil

    2009-01-01

    NCHRP Process 12-50 was implemented to evaluate and verify composite steel I-girder bridge design software used commonly in Indiana. A test-bed of twenty one bridges was developed with the guidance from an Indiana Department of Transportation appointed research advisory panel (RAP). The test-bed included five simple-span and sixteen multi-span bridge superstructures. More than 80 parameters were required to define a bridge and they include bridge span, girder spacing, number of beams, section...

  14. Effect of soil–structure interaction on the reliability of reinforced concrete bridges

    OpenAIRE

    Kamel Bezih; Alaa Chateauneuf; Mahdi Kalla; Claude Bacconnet

    2015-01-01

    In the design of reinforced concrete (RC) bridges, the random and nonlinear behavior of soil may lead to insufficient reliability levels. For this reason, it is necessary to take into account the variability of soil properties which can significantly affect the bridge behavior regarding ultimate and serviceability limit states. This study investigates the failure probability for existing reinforced concrete bridges due to the effects of interaction between the soil and the structure. In this ...

  15. Ældre betonbroers bæreevne (Load bearing capacity of old concrete bridges)

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1999-01-01

    Two old bridges have been analysed in connection with their demolition. The first one is a pedestrian bridge, the Gefion bridge, from 1894. This is the first bridge of reinforced concrete in Denmark. Here the creep in the concrete severely have changed the way in which the load on the bridge was ...... was carried. - The other is a motor way bridge from 1939, which were reinforced 1991 with external steel plates on the areas of shear on the beams. Four beams were carried to our laboratory and load tested. The steel plates have doubled the load bearing capacity of the beams....

  16. Comprehensive evaluation of fracture critical bridges.

    Science.gov (United States)

    2014-02-01

    Two-girder steel bridges are classified as fracture critical bridges based on the definition given in the AASHTO LRFD Bridge Design Specifications. In a fracture critical bridge a failure of a tension member leads to collapse of the bridge. However, ...

  17. Probability Based Evaluation of Vehicular Bridge Load using Weigh-in-Motion Data

    Directory of Open Access Journals (Sweden)

    Widi Nugraha

    2016-02-01

    Full Text Available Load and Resistance Factored Design (LRFD method for designing bridge in Indonesia have been implemented for more than 25 years. LRFD method treating loads and strengths variables as random variables with specific safety factors for different loads and strengths variables type. The nominal loads, load factors, reduction factors, and other criteria for bridge design code can be determined to meet the reliability criteria. Statistical data of weigh-in-motion (WIM vehicular loads measurement in Northern Java highway, Cikampek - Pamanukan, West Java (2011, used in as statistical loads variable. A 25 m simple span bridge with reinforced concrete T-girder is used as a model for structural analysis due to WIM measured and nominal vehicular load based on RSNI T-02-2005, with applied bending moment of girder as the output. The distribution fitting result of applied bending moment due to WIM measured vehicular loads is lognormal. The maximum bending moment due to RSNI T-02-2005 nominal vehicular load is 842.45 kN-m and has probability of exceedance of 5x10-5. It can be concluded, for this study, that the bridge designed using RSNI T-02-2005 is safely designed, since it has reliability index, β of 5.02, higher than target reliability, β ranging from 3.50 or 3.72.

  18. Multimedia package for LRFD concrete bridge design.

    Science.gov (United States)

    2009-02-01

    This Project developed a Load and Resistance Factor Design (LRFD) multimedia package to provide a practical introduction and an in-depth understanding of the technological advances in the design of concrete bridges. This package can be used to train ...

  19. Abrasion-resistant concrete mix designs for precast bridge deck panels.

    Science.gov (United States)

    2010-08-01

    The report documents laboratory investigations undertaken to develop high performance concrete (HPC) for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) re...

  20. STRENGTHENING OF A REINFORCED CONCRETE BRIDGE WITH PRESTRESSED STEEL WIRE ROPES

    Directory of Open Access Journals (Sweden)

    Kexin Zhang

    2017-10-01

    Full Text Available This paper describes prestressed steel wire ropes as a way to strengthen a 20-year-old RC T-beam bridge. High strength, low relaxation steel wire ropes with minor radius, high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel wire ropes—including wire rope measuring, extruding anchor heads making, anchorage installing, tensioning steel wire ropes and pouring mortar was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on the concrete structure theory. The flexural strength of RC T-beam bridges strengthened with prestressed steel wire ropes was governed by the failure of concrete crushing. To investigate effectiveness of the strengthening method, fielding-load tests were carried out before and after strengthening. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved. The crack width measurement also indicates that this technique could increase the durability of the bridge. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

  1. Recommendations for Longitudinal Post-Tensioning in Full-Depth Precast Concrete Bridge Deck Panels

    OpenAIRE

    Bowers, Susan Elizabeth

    2007-01-01

    Full-depth precast concrete panels offer an efficient alternative to traditional cast-in-place concrete for replacement or new construction of bridge decks. Research has shown that longitudinal post-tensioning helps keep the precast bridge deck in compression and avoid problems such as leaking, cracking, spalling, and subsequent rusting on the beams at the transverse panel joints. Current design recommendations suggest levels of initial compression for precast concrete decks in a very limit...

  2. Gust loading on streamlined bridge decks

    DEFF Research Database (Denmark)

    Larose, Guy; Mann, Jakob

    1998-01-01

    The current analytical description of the buffeting action of wind on long-span bridges is based on the strip assumption. However, recent experiments on closed-box girder bridge decks have shown that this assumption is not valid and is the source of an important part of the error margin...... of the analytical prediction methods. In this paper, an analytical model that departs from the strip assumption is used to describe the gust loading on a thin airfoil. A parallel is drawn between the analytical model and direct measurements of gust loading on motionless closed-box girder bridge decks. Empirical...

  3. Severe ASR damaged concrete bridges

    DEFF Research Database (Denmark)

    Antonio Barbosa, Ricardo; Gustenhoff Hansen, Søren

    2015-01-01

    Technical University of Denmark (DTU) and University of Southern Denmark (SDU) have conducted several full-scale experiments with severe ASR deteriorated bridges. This paper presents few and preliminary results from both the shear tests and the measuring of the material properties. The shear test...... show that the shear capacity is almost unaffected of ASR despite significant reduction in compressive concrete strength. Furthermore, measurements show a significant tensile reinforcement strain developed due to ASR expansion....

  4. Monitoring system of arch bridge for safety network management

    Science.gov (United States)

    Joo, Bong Chul; Yoo, Young Jun; Lee, Chin Hyung; Park, Ki Tae; Hwang, Yoon Koog

    2010-03-01

    Korea has constructed the safety management network monitoring test systems for the civil infrastructure since 2006 which includes airport structure, irrigation structure, railroad structure, road structure, and underground structure. Bridges among the road structure include the various superstructure types which are Steel box girder bridge, suspension bridge, PSC-box-girder bridge, and arch bridge. This paper shows the process of constructing the real-time monitoring system for the arch bridge and the measured result by the system. The arch type among various superstructure types has not only the structural efficiency but the visual beauty, because the arch type superstructure makes full use of the feature of curve. The main measuring points of arch bridges composited by curved members make a difference to compare with the system of girder bridges composited by straight members. This paper also shows the method to construct the monitoring system that considers the characteristic of the arch bridge. The system now includes strain gauges and thermometers, and it will include various sensor types such as CCTV, accelerometers and so on additionally. For the long term and accuracy monitoring, the latest optical sensors and equipments are applied to the system.

  5. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System

    Directory of Open Access Journals (Sweden)

    Min-Seok Park

    2009-10-01

    Full Text Available This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  6. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.

    Science.gov (United States)

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  7. Latex-modified fiber-reinforced concrete bridge deck overlay : construction/interim report.

    Science.gov (United States)

    1993-06-01

    Latex-modified concrete (LMC) is Portland cement concrete (PCC) with an admixture of latex. LMC is considered to be nearly impermeable to chlorides and is extensively used to construct bridge deck overlays. Unfortunately, some of these overlays have ...

  8. Steel bridges structural health monitoring based on operational modal analysis accommodating evaluation of uncertainty

    Directory of Open Access Journals (Sweden)

    Saeid Jahan

    2017-11-01

    Full Text Available Structural damage detection is based on that the dynamic response of structure will change because of damage. Hence, it is possible to estimate the location and severity of damage leads to changes in the dynamic response before and after the damage. In this study, the genetic fuzzy system has been used for bridge structural health monitoring. A key objective of using genetic algorithms is to automate the design of fuzzy systems. This method is used for damage detection of a single span railway bridge with steel girders and a concrete bridge. For studying damage detection, the numerical models of these two bridges are built with the measured dynamic characteristics. A three-dimensional finite element model and a single two-dimensional girders model of the bridge have been constructed to study usefulness of the genetic fuzzy system for damage detection and the effectiveness of modeling. After analysis to control the uncertainties, the measured frequencies are contaminated with some noise and the effect of that on the achievement of damage detection method is evaluated. The present study has shown that the natural frequency has appropriate sensitivity to different damage scenarios in the structure. In addition, the natural frequency in comparison with other modal parameters, is less affected by random noise. Increasing the number of measurement modes and using torsional modes, will lead to an accurate damage diagnosis even in symmetrical structures.

  9. Vibration analysis of concrete bridges during a train pass-by using various models

    International Nuclear Information System (INIS)

    Li, Qi; Wang, Ke; Cheng, Shili; Li, Wuqian; Song, Xiaodong

    2016-01-01

    The vibration of a bridge must be determined in order to predict the bridge noise during a train pass-by. It can be generally solved with different models either in the time domain or the frequency domain. The computation cost and accuracy of these models vary a lot in a wide frequency band. This study aims to compare the results obtained from various models for recommending the most suitable model in further noise prediction. First, train-track-bridge models in the time domain are developed by using the finite element method and mode superposition method. The rails are modeled by Timoshenko beam elements and the bridge is respectively modeled by shell elements and volume elements. Second, power flow models for the coupled system are established in the frequency domain. The rails are modelled by infinite Timoshenko beams and the bridge is respectively represented by three finite element models, an infinite Kirchhoff plate, and an infinite Mindlin plate model. The vibration at given locations of the bridge and the power input to the bridges through the rail fasteners are calculated using these models. The results show that the shear deformation of the bridge deck has significant influences on the bridge vibration at medium-to-high frequencies. The Mindlin plate model can be used to represent the U-shaped girder to obtain the power input to the bridge with high accuracy and efficiency. (paper)

  10. Experimental Investigation of a Self-Sensing Hybrid GFRP-Concrete Bridge Superstructure with Embedded FBG Sensors

    OpenAIRE

    Wang, Yanlei; Li, Yunyu; Ran, Jianghua; Cao, Mingmin

    2012-01-01

    A self-sensing hybrid GFRP-concrete bridge superstructure, which consists of two bridge decks and each bridge deck is comprised of four GFRP box sections combined with a thin layer of concrete in the compression zone, was developed by using eight embedded FBG sensors in the top and bottom flanges of the four GFRP box sections at midspan section of one bridge deck along longitudinal direction, respectively. The proposed self-sensing hybrid bridge superstructure was tested in 4-point loading to...

  11. Mechanical properties of high-strength concrete

    Science.gov (United States)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  12. The influence of carbonation process on concrete bridges and durability in Estonian practice

    Science.gov (United States)

    Liisma, E.; Sein, S.; Järvpõld, M.

    2017-10-01

    Concrete as one of the most widely used construction material in building industry, has considerable implementing in bridge engineering due to its extensive number of effective technical characteristics. However, according to exploitation environment, there are substantial factors such as aggressive liquids (e.g. deiced salts, sulfates, etc), rapid temperature alterations and the increasing rate of CO2 to take into account predicting actual retained service life of concrete structure and the need of repairmen to increase the lifespan of the bridge. According to several measuring, concentration of atmospheric CO2 is reported linearly increasing and is modeled to appear as exponential increase in the next decade. This environmental influence leads to accelerated carbonation process of concrete and brings up the importance of its potential untimely degradation mechanism. Hence, the main aim of this research is to give an analyzed overview of the carbonation depths of selection of 11 concrete bridges in Estonia built in the period of 1976-2007 and their relation with compressive strength of concrete. In addition to in situ tests, laboratory research was performed to understand natural carbonation rate and compressive strength relations of concrete.

  13. Bridge deck concrete volume change : final contract report.

    Science.gov (United States)

    2010-02-01

    Concrete structures such as bridge decks, with large surface area relative to volume, shrink and crack, thus reducing service life performance and increasing operation costs. The project evaluated the early, first 24 hours, and long-term, 180 days, s...

  14. Construction of precast high performance concrete segmental bridges.

    OpenAIRE

    Ruiz Ripoll, Lidia

    2016-01-01

    The construction of both medium and long span precast concrete segmental bridges is widely spread throughout Spain. Usually, the segments have multiple-keyed epoxy joints, and are assembled by internal prestressing. Yet, there is a more recent type of bridge with dry joints and external prestressing. In these last ones, shear is transferred through physical support between keys and friction between faces of the compressed joint. This shear force is evaluated using friction coefficients from t...

  15. Investigation of early timber–concrete composite bridges in the United States

    Science.gov (United States)

    James P. Wacker; Alfredo Dias; Travis K. Hosteng

    2017-01-01

    The use of timber–concrete composite (TCC) bridges in the United States dates back to circa 1925. Two different TCC systems were constructed during this early period. The first system included a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system included sawn timber stringers supporting a concrete deck top layer. Records...

  16. Plans for crash-tested wood bridge railings for concrete decks

    Science.gov (United States)

    Michael A. Ritter; Ronald K. Faller; Barry T. Rosson; Paula D. Hilbrich Lee; Sheila Rimal. Duwadi

    1998-01-01

    As part of a continuing cooperative research between the Midwest Roadside Safety Facility (MwRSF); the USDA Forest Service, Forest Products Laboratory (FPL); and the Federal Highway Administration (FHWA), several crashworthy wood bridge railings and approach railing transitions have been adapted for use on concrete bridge decks. These railings meet testing and...

  17. Assessment of the Reliability Profiles for Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper calculation of reliability profiles is discussed. ULS as well as SLS limit states are formulated. Corrosion due to chloride penetration is the considered deterioration mechanism. Three models for corrosion are formulated. A definition of service lifetime for concrete bridges...

  18. Increasing the Capacity of Existing Bridges by Using Unbonded Prestressing Technology: A Case Study

    Directory of Open Access Journals (Sweden)

    Antonino Recupero

    2014-01-01

    Full Text Available External posttensioning or unbonded prestressing was found to be a powerful tool for retrofitting and for increasing the life extension of existing structures. Since the 1950s, this technique of reinforcement was applied with success to bridge structures in many countries, and was found to provide an efficient and economic solution for a wide range of bridge types and conditions. Unbonded prestressing is defined as a system in which the post-tensioning tendons or bars are located outside the concrete cross-section and the prestressing forces are transmitted to the girder through the end anchorages, deviators, or saddles. In response to the demand for a faster and more efficient transportation system, there was a steady increase in the weight and volume of traffic throughout the world. Besides increases in legal vehicle loads, the overloading of vehicles is a common problem and it must also be considered when designing or assessing bridges. As a result, many bridges are now required to carry loads significantly greater than their original design loads; and their deck results still deteriorated by cracking of concrete, corrosion of rebars, snapping of tendons, and so forth. In the following, a case study about a railway bridge retrofitted by external posttensioning technique will be illustrated.

  19. Nondestructive Evaluation of Concrete Bridge Decks with Automated Acoustic Scanning System and Ground Penetrating Radar.

    Science.gov (United States)

    Sun, Hongbin; Pashoutani, Sepehr; Zhu, Jinying

    2018-06-16

    Delamanintions and reinforcement corrosion are two common problems in concrete bridge decks. No single nondestructive testing method (NDT) is able to provide comprehensive characterization of these defects. In this work, two NDT methods, acoustic scanning and Ground Penetrating Radar (GPR), were used to image a straight concrete bridge deck and a curved intersection ramp bridge. An acoustic scanning system has been developed for rapid delamination mapping. The system consists of metal-ball excitation sources, air-coupled sensors, and a GPS positioning system. The acoustic scanning results are presented as a two-dimensional image that is based on the energy map in the frequency range of 0.5⁻5 kHz. The GPR scanning results are expressed as the GPR signal attenuation map to characterize concrete deterioration and reinforcement corrosion. Signal processing algorithms for both methods are discussed. Delamination maps from the acoustic scanning are compared with deterioration maps from the GPR scanning on both bridges. The results demonstrate that combining the acoustic and GPR scanning results will provide a complementary and comprehensive evaluation of concrete bridge decks.

  20. Development and validation of deterioration models for concrete bridge decks - phase 1 : artificial intelligence models and bridge management system.

    Science.gov (United States)

    2013-06-01

    This research documents the development and evaluation of artificial neural network (ANN) models to predict the condition ratings of concrete highway bridge decks in Michigan. Historical condition assessments chronicled in the national bridge invento...

  1. CRASH TEST AND EVALUATION OF RESTRAINED SAFETY-SHAPE CONCRETE BARRIERS ON CONCRETE BRIDGE DECK

    Science.gov (United States)

    2018-01-01

    This research designed and tested a new portable concrete barrier that meets the performance of MASH TL-4 and can be used in temporary and permanent applications on bridge decks. Additionally, this new barrier system will minimize deflection, allowin...

  2. PS buildings : reinforced concrete structure for shielding "bridge" pillar

    CERN Multimedia

    CERN PhotoLab

    1956-01-01

    The PS ring traverses the region between the experimental halls South and North (buildings Nos 150 and 151) under massive bridge-shaped concrete beams. This pillar stands at the S-W end of the structure.

  3. Ground penetrating radar utilization in exploring inadequate concrete covers in a new bridge deck

    Directory of Open Access Journals (Sweden)

    Md. Istiaque Hasan

    2014-01-01

    Full Text Available The reinforced concrete cast in place four span deck of a concrete bridge near Roanoke, Texas, was recently completed. Due to possible construction errors, it was suspected that the concrete covers in the deck did not conform to drawings and specifications. A full scale non-destructive evaluation of the concrete covers was carried out using ground penetrating radar (GPR equipment. Cover values were determined from the radargram generated from the scan. The estimated covers were plotted on contour maps. Migration data can substitute the drilling based ground truth data without compromising the concrete cover estimations, except for areas with very high cover values. Areas with high water content may result in inaccurate concrete dielectric constants. Based on the results, significant retrofitting of the bridge deck, such as additional overlay, was recommended.

  4. Effects of increasing the allowable compressive stress at release on the shear strength of prestressed concrete girders.

    Science.gov (United States)

    2008-09-01

    In recent years, several research projects have been conducted to study the feasibility of increasing the allowable : compressive stress in concrete at prestress transfer, currently defined as 0.60f'ci in the AASHTO LRFD Bridge : Design Specification...

  5. Prestressed concrete bridge beams with microsilica admixture : final report.

    Science.gov (United States)

    1998-01-01

    Microsilica fume admixture in concrete beams was used in two coastal bridges to reduce chloride permeability. Cylinders were cast from the beam mixture for strength and permeability tests. : The fabricator found no problems with making these beams, e...

  6. Lateral dynamic interaction analysis of a train girder pier system

    Science.gov (United States)

    Xia, H.; Guo, W. W.; Wu, X.; Pi, Y. L.; Bradford, M. A.

    2008-12-01

    A dynamic model of a coupled train-girder-pier system is developed in this paper. Each vehicle in a train is modeled with 27 degrees-of-freedom for a 4-axle passenger coach or freight car, and 31 for a 6-axle locomotive. The bridge model is applicable to straight and curved bridges. The centrifugal forces of moving vehicles on curved bridges are considered in both the vehicle model and the bridge model. The dynamic interaction between the bridge and train is realized through an assumed wheel-hunting movement. A case study is performed for a test train traversing two straight and two curved multi-span bridges with high piers. The histories of the train traversing the bridges are simulated and the dynamic responses of the piers and the train vehicles are calculated. A field experiment is carried out to verify the results of the analysis, by which the lateral resonant train speed inducing the peak pier-top amplitudes and some other observations are validated.

  7. Nonlinear seismic analysis of continuous RC bridge

    Directory of Open Access Journals (Sweden)

    Čokić Miloš M.

    2017-01-01

    Full Text Available Nonlinear static analysis, known as a pushover method (NSPA is oftenly used to study the behaviour of a bridge structure under the seismic action. It is shown that the Equivalent Linearization Method - ELM, recommended in FEMA 440, is appropriate for the response analysis of the bridge columns, with different geometric characteristics, quantity and distribution of steel reinforcement. The subject of analysis is a bridge structure with a carriageway plate - a continuous beam with three spans, with the 24 + 40 + 24 m range. Main girder is made of prestressed concrete and it has a box cross section of a constant height. It is important to study the behaviour, not only in the transverse, but also in the longitudinal direction of the bridge axis, when analysing the bridge columns exposed to horizontal seismic actions. The columns were designed according to EN1992, parts 1 and 2. Seismic action analysis is conducted according to EN 1998: 2004 standard. Response spectrum type 1, for the ground type B, was applied and the analysis also includes 20% of traffic load. The analysis includes the values of columns displacement and ductility. To describe the behaviour of elements under the earthquake action in both - longitudinal and transverse direction, pushover curves were formed.

  8. Service Life and Maintenance Modelling of Reinforced Concrete Bridge Decks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Recent research in the area of assessment and maintenance of reinforced concrete bridge decks is presented in this paper. Three definitions of service lifetime are introduced and the difficult problem of assessing the service life is discussed. A stochastic modelling of corrosion and corrosion...... cracking is introduced and the site dependency of corrosion is stressed. Finally, a recently developed optimal repair strategy for bridges is briefly explained....

  9. Seismic evaluation and retrofit of deteriorated concrete bridge components.

    Science.gov (United States)

    2013-06-01

    Corrosion of steel bars in reinforced concrete structures is a major durability problem for bridges constructed in the New York State : (NYS). The heavy use of deicing salt compounds this problem. Corrosion of steel bars results in loss of steel cros...

  10. STUDY OF BRIDGE DECK A REVIEW

    OpenAIRE

    MISS. KSHITIJA S. BALWAN , MR. V. G. KHURD , MR. S. S. CHOUGULE

    2018-01-01

    The objective of this study was to understand the meaning of bridge deck. To know the different forms of decks used in bridge design. To understand different methods used for analysis of deck and study of box girder and its evolution

  11. Hybrid knowledge expert tool for load capacity assessment of railway plate girders with defects

    Science.gov (United States)

    KuŻawa, M.; Bień, J.; Gładysz, M.

    2013-10-01

    Importance of the bridge structures as components of the transportation network is increasing and requires regular development of the management methodology. The main activities are focused on the safety of the users of the transportation network and on the safety of structures, based on monitoring and analysis of the bridge condition changes caused by various types of defects. The paper presents application of the hybrid network technology in the expert tool NOBLA supporting condition assessment of bridge plate girders, taking into account defects of the structures.

  12. Managing concrete bridges: Methods for reducing costs and user inconveniences

    DEFF Research Database (Denmark)

    Goltermann, Per

    2005-01-01

    The paper presents experiences from modern bridge maintenance management, which has been forced to develop new and cost-efficient approaches in order to cope with the increase in overall deterioration of the aging bridge stock, the growing requirements to accessibility and the decreasing budgets...... situations often postpone or reduce the repair and rehabilitation activities required in critical parts of the structure. The paper will present some cases, where these approaches have been used on existing concrete bridges and explain how these experiences can be applied on other types of structures...

  13. Positioning of supporting-cable ducts in a prestressed concrete bridge

    International Nuclear Information System (INIS)

    Roetzer, H.

    1981-01-01

    Before inserting the supporting cables positioning of cable ducts in prestressed concrete bridges can be performed with the aid of radiation sources hauled through the ducts and localized by means of radiation monitors

  14. Phase I development of an aesthetic, precast concrete bridge rail.

    Science.gov (United States)

    2012-02-01

    Precast concrete bridge rail systems offer several advantages over traditional cast-in-place rail designs, including reduced construction : time and costs, installation in a wide range of environmental conditions, easier maintenance and repair, impro...

  15. The economy of preventive maintenance of concrete bridges : final report.

    Science.gov (United States)

    2016-03-01

    The most economical approach to maintain existing concrete bridges is by adopting an active preventive maintenance : approach. An in-depth investigation of the combined deterioration effects of various deterioration mechanisms is needed : to establis...

  16. Effect of soil–structure interaction on the reliability of reinforced concrete bridges

    Directory of Open Access Journals (Sweden)

    Kamel Bezih

    2015-09-01

    Full Text Available In the design of reinforced concrete (RC bridges, the random and nonlinear behavior of soil may lead to insufficient reliability levels. For this reason, it is necessary to take into account the variability of soil properties which can significantly affect the bridge behavior regarding ultimate and serviceability limit states. This study investigates the failure probability for existing reinforced concrete bridges due to the effects of interaction between the soil and the structure. In this paper, a coupled reliability–mechanical approach is developed to study the effect of soil–structure interaction for RC bridges. The modeling of this interaction is incorporated into the mechanical model of RC continuous beams, by considering nonlinear elastic soil stiffness. The reliability analysis highlights the large importance of soil–structure interaction and shows that the structural safety is highly sensitive to the variability of soil properties, especially when the nonlinear behavior of soil is considered.

  17. Determining the Environmental Benefits of Ultra High Performance Concrete as a Bridge Construction Material

    Science.gov (United States)

    Lande Larsen, Ingrid; Granseth Aasbakken, Ida; O'Born, Reyn; Vertes, Katalin; Terje Thorstensen, Rein

    2017-10-01

    Ultra High Performance Concrete (UHPC) is a material that is attracting attention in the construction industry due to the high mechanical strength and durability, leading to structures having low maintenance requirements. The production of UHPC, however, has generally higher environmental impact than normal strength concrete due to the increased demand of cement required in the concrete mix. What is still not sufficiently investigated, is if the longer lifetime, slimmer construction and lower maintenance requirements lead to a net environmental benefit compared to standard concrete bridge design. This study utilizes life cycle assessment (LCA) to determine the lifetime impacts of two comparable highway crossing footbridges spanning 40 meters, designed respectively with UHPC and normal strength concrete. The results of the study show that UHPC is an effective material for reducing lifetime emissions from construction and maintenance of long lasting infrastructure, as the UHPC design outperforms the normal strength concrete bridge in most impact categories.

  18. Parametric Study on Responses of a Self-Anchored Suspension Bridge to Sudden Breakage of a Hanger

    Directory of Open Access Journals (Sweden)

    Wenliang Qiu

    2014-01-01

    Full Text Available The girder of self-anchored suspension bridge is subjected to large compression force applied by main cables. So, serious damage of the girder due to breakage of hangers may cause the collapse of the whole bridge. With the time increasing, the hangers may break suddenly for their resistance capacities decrease due to corrosion. Using nonlinear static and dynamic analysis methods and adopting 3D finite element model, the responses of an actual self-anchored suspension bridge to sudden breakage of hangers are studied in this paper. The results show that the sudden breakage of a hanger causes violent vibration and large changes in internal forces of the bridge. In the process of the vibration, the maximum tension of hanger produced by breakage of a hanger exceeds 2.22 times its initial value, and the reaction forces of the bearings increase by more than 1.86 times the tension of the broken hanger. Based on the actual bridge, the influences of some factors including flexural stiffness of girder, torsion stiffness of girder, flexural stiffness of main cable, weight of girder, weight of main cable, span to sag ratio of main cable, distance of hangers, span length, and breakage time of hanger on the dynamic responses are studied in detail, and the influencing extent of the factors is presented.

  19. Parametric study on responses of a self-anchored suspension bridge to sudden breakage of a hanger.

    Science.gov (United States)

    Qiu, Wenliang; Jiang, Meng; Huang, Cailiang

    2014-01-01

    The girder of self-anchored suspension bridge is subjected to large compression force applied by main cables. So, serious damage of the girder due to breakage of hangers may cause the collapse of the whole bridge. With the time increasing, the hangers may break suddenly for their resistance capacities decrease due to corrosion. Using nonlinear static and dynamic analysis methods and adopting 3D finite element model, the responses of an actual self-anchored suspension bridge to sudden breakage of hangers are studied in this paper. The results show that the sudden breakage of a hanger causes violent vibration and large changes in internal forces of the bridge. In the process of the vibration, the maximum tension of hanger produced by breakage of a hanger exceeds 2.22 times its initial value, and the reaction forces of the bearings increase by more than 1.86 times the tension of the broken hanger. Based on the actual bridge, the influences of some factors including flexural stiffness of girder, torsion stiffness of girder, flexural stiffness of main cable, weight of girder, weight of main cable, span to sag ratio of main cable, distance of hangers, span length, and breakage time of hanger on the dynamic responses are studied in detail, and the influencing extent of the factors is presented.

  20. Active Control of Long Bridges Using Flaps

    DEFF Research Database (Denmark)

    Hansen, H. I.; Thoft-Christensen, Palle

    The main problem in designing ultra-long span suspension bridges is flutter. A solution to this problem might be to introduce an active flap control system to increase the flutter wind velocity. The investigated flap control system consists of flaps integrated in the bridge girder so each flap...... is the streamlined part of the edge of the girder. Additional aerodynamic derivatives are shown for the flaps and it is shown how methods already developed can be used to estimate the flutter wind velocity for a bridge section with flaps. As an example, the flutter wind velocity is calculated for different flap...... configurations for a bridge section model by using aerodynamic derivatives for a flat plate. The example shows that different flap configurations can either increase or decrease the flutter wind velocity. for optimal flap configurations flutter will not occur....

  1. Assessment of the transportation route of oversize and excessive loads in relation to the load-bearing capacity of existing bridges

    Science.gov (United States)

    Doležel, Jiří; Novák, Drahomír; Petrů, Jan

    2017-09-01

    Transportation routes of oversize and excessive loads are currently planned in relation to ensure the transit of a vehicle through critical points on the road. Critical points are level-intersection of roads, bridges etc. This article presents a comprehensive procedure to determine a reliability and a load-bearing capacity level of the existing bridges on highways and roads using the advanced methods of reliability analysis based on simulation techniques of Monte Carlo type in combination with nonlinear finite element method analysis. The safety index is considered as a main criterion of the reliability level of the existing construction structures and the index is described in current structural design standards, e.g. ISO and Eurocode. An example of a single-span slab bridge made of precast prestressed concrete girders of the 60 year current time and its load bearing capacity is set for the ultimate limit state and serviceability limit state. The structure’s design load capacity was estimated by the full probability nonlinear MKP analysis using a simulation technique Latin Hypercube Sampling (LHS). Load-bearing capacity values based on a fully probabilistic analysis are compared with the load-bearing capacity levels which were estimated by deterministic methods of a critical section of the most loaded girders.

  2. Two-course bonded concrete bridge deck construction : condition and performance after six years.

    Science.gov (United States)

    1981-01-01

    This report presents the findings from a six-year study of two-course bonded concrete bridge decks constructed in Virginia. Each of three special portland cement concretes was applied as an overlay, or wearing course, on two experimental spans. The o...

  3. Failure Load Test of a CFRP Strengthened Railway Bridge in Oumlrnskoumlldsvik, Sweden

    DEFF Research Database (Denmark)

    Täljsten, Björn; Bergström, Markus; Carolin, Anders

    2009-01-01

    using carbon fiber reinforced polymer (CFRP) rectangular rods epoxy bonded in sawed up slots, e.g., near surface mounted reinforcement. The strengthening was very successful and resulted in a desired shear failure when the bridge was loaded to failure. The load-carrying capacity in bending...... steel reinforcement by approximately 10%, and increased the height of the compressed zone by 100 mm. When the shear failure occurred, the utilization of the compression concrete and CFRP rods were 100 and 87.5%, respectively. This indicates that a bending failure indeed was about to occur, even though......, Sweden is presented. In this particular test the shear capacity of the concrete girders was of primary interest. However, for any reasonable placement of the load (a line load placed transverse to the track direction) a bending failure would occur. This problem was solved by strengthening for flexure...

  4. Seismic Performance of Multi-Span RC Railway Bridges

    DEFF Research Database (Denmark)

    Georgakis, Christos; Barrau, Xavier

    2008-01-01

    Presently, there is no clear method for determining the optimal railway bridge design for a particular ground type and expected seismic intensity. Four main types of RC bridge dominate the current multi-span railway bridge design trends – the Simply Supported Beam, Continuous Box-Girder (CBG), CBG...

  5. THE PROBLEM OF ESTIMATING THE DURABILITY OF THE REINFORCED CONCRETE BRIDGES

    Directory of Open Access Journals (Sweden)

    O. I. Lantukh-Liashchenko

    2007-10-01

    Full Text Available This paper presents an assessment and prediction of service life for reinforced concrete bridges. The deterministic and probabilistic approach prediction models of durability are proposed.

  6. Characterization and mediation of microbial deterioration of concrete bridge structures.

    Science.gov (United States)

    2013-04-01

    Samples obtained from deteriorated bridge structures in Texas were cultured in growth medium containing thiosulfate as an energy source and investigated for acid production, type of acid produced by microbes and the bio-deterioration of concrete cyli...

  7. The Impact of Traffic-Induced Bridge Vibration on Rapid Repairing High-Performance Concrete for Bridge Deck Pavement Repairs

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Based on forced vibration tests for high-performance concrete (HPC, the influence of bridge vibration induced by traveling vehicle on compressive strength and durability of HPC has been studied. It is concluded that 1 d and 2 d compressive strength of HPC decreased significantly, and the maximum reduction rate is 9.1%, while 28 d compressive strength of HPC had a slight lower with a 3% maximal drop under the action of two simple harmonic vibrations with 2 Hz, 3 mm amplitude, and 4 Hz, 3 mm amplitude. Moreover, the vibration had a slight effect on the compressive strength of HPC when the simple harmonic vibration had 4 Hz and 1 mm amplitude; it is indicated that the amplitude exerts a more prominent influence on the earlier compressive strength with the comparison of the frequency. In addition, the impact of simple harmonic vibration on durability of HPC can be ignored; this shows the self-healing function of concrete resulting from later hydration reaction. Thus, the research achievements mentioned above can contribute to learning the laws by which bridge vibration affects the properties of concrete and provide technical support for the design and construction of the bridge deck pavement maintenance.

  8. Bridge and steel structures. History and vision on bridge erection; Kyoryo kokozobutsu. Kasetsu gijutsu no shorai

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, S.; Hayashi, T. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1998-08-20

    This paper describes the progress of bridge erection technology. It introduces the results of cable erection, rotated/extruded erection, and cantilever erection. The cable erection is a multi point suspension erection using cables. For the rotated/extruded erection, the monolithic construction is conducted on a working yard set in a right angle to the construction position, and the horizontal beams of the bridge piers (corbel girders) are constructed by the rotated method using a slewing base incorporated around the bridge piers at one side. For the construction of stiffening girders of Innoshima-ohashi Bridge of Honshu-Shikoku Joint Bridge in 1978, trussed face bar blocks were extruded from the main tower in order using a travel crane. For the suspension bridges and cable stayed bridges, main towers were erected using various types of cranes. The erection of Tamashima-ohashi Bridge with a weight of 500 ton using an offshore floating crane is introduced as a large block method. Analysis methods and measurement techniques at the site are used in order to analyze the shape in each step under the erection and to ensure the accurate final complete shape. Reduction of the construction cost, improvement of erection technology, and technology development for large-scale projects are subjects in the future. 22 refs., 8 figs., 1 tab.

  9. Reflective Cracking between Precast Prestressed Box Girders

    Science.gov (United States)

    2017-06-30

    The adjacent precast prestressed concrete box-beam bridge is the bridge of choice for short and short-to-medium span bridges. This choice is because of the ease of construction, favorable span-to-depth ratios, aesthetic appeal, and high torsional sti...

  10. Hybrid FRP-concrete bridge deck system final report I : development and system performance validation.

    Science.gov (United States)

    2009-10-01

    In this study, the concept of the hybrid FRP-concrete structural systems was applied to both bridge : superstructure and deck systems. Results from the both experimental and computational analysis for : both the hybrid bridge superstructure and deck ...

  11. Smart photonic coating for civil engineering field: for a future inspection technology on concrete bridge

    Science.gov (United States)

    Fudouzi, Hiroshi; Tsuchiya, Koichi; Todoroki, Shin-ichi; Hyakutake, Tsuyoshi; Nitta, Hiroyuki; Nishizaki, Itaru; Tanaka, Yoshikazu; Ohya, Takao

    2017-04-01

    Here we will propose the conceptual new idea of the inspection of concrete bridge using smart materials and mobile IoT system. We apply opal photonic crystal film to detect cracks on concrete infrastructures. High quality opal photonic crystal films were coated on black color PET sheet over 1000 cm2 area. The opal film sheet was cut and adhered to concrete or mortar test pieces by epoxy resin. In the tensile test, the structural color of the opal sheet was changed when the crack was formed. As a demonstration, we have installated the opal film sheet on the wall of the concrete bridge. Our final purpose is the color change will be recorded by portable CCD devices, and send to expert via IoT network.

  12. Analysis of Biaxially Stressed Bridge Deck Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, Tommi Højer

    2012-01-01

    The ultimate state analysis of bridge deck plates at the intersection zone between main girders and transverse beams is complicated by biaxial membrane stresses, which may be in compression or tension in either direction depending on the bridge configuration and the specific location. This paper...

  13. Experimental study of cathodic protection of concrete from a 30 year old bridge

    NARCIS (Netherlands)

    Polder, R.B.; Nerland, O.C.

    1998-01-01

    An experimental study of cathodic protection (CP) was carried out with a conductive primer anode applied to specimens from a concrete bridge. The bridge was demolished after 30 years of service due to severe delaminations and reinforcement corrosion. Four specimens of approximately 1 m2 each were

  14. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Energy Technology Data Exchange (ETDEWEB)

    Chintakunta, Satish R. [Engineering and Software Consultants, Inc., 14123 Robert Paris Ct., Chantilly, VA 20151 (United States); Boone, Shane D. [Federal Highway Administration, Turner Fairbank Highway Research Center, 6300 Georgetown Pike, McLean, VA 22101 (United States)

    2014-02-18

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  15. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Science.gov (United States)

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-01

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  16. Study on seismic behaviour of integral concrete bridges with different skew angles through fragility curves

    Directory of Open Access Journals (Sweden)

    Mahmoud Reza ُُShiravand

    2017-12-01

    Full Text Available Bridges are key elements in urban transportation system and should be designed to sustain earthquake induced damages to be utilized after earthquake. Extensive damages during last earthquakes highlighted the importance of seismic assessment and damage estimation of bridges. Skewness is one of the primary parameters effects on seismic behavior of bridges. Skew bridges are defined as bridges with skew angle piers and abutments. In these bridges, the piers have some degrees of skewness due to construction restrictions, such as those caused by crossing a waterway, railway line or road. This paper aims to investigate seismic behavior of skew concrete bridges using damage criteria and estimate probability of piers damage with fragility curves. To this end, three types of concrete bridges with two, three and four spans and varying skew angles of 00 ,100, 200 and 300 are modeled with finite element software. Seismic responses of bridge piers under 10 earthquake ground motion records are calculated using incremental dynamic analysis. Following, damage criteria proposed by Mackie and Stojadinovic are used to define damage limits of bridge piers in four damage states of slight, moderate, extensive and complete and bridge fragility curves are developed. The results show that increasing skew angles increases the probability of damage occurrence, particularly in extensive and complete damage states.

  17. Determination of brace forces caused by construction loads and wind loads during bridge construction : [summary].

    Science.gov (United States)

    2014-04-01

    Bridges are constructed in stages as pilings, : columns, girders, decks, and other components : are added. At each stage, the structure must be : stable. Girders, which add significant weight to : the developing structure, rest on elastomeric : beari...

  18. Carbon paint anode for reinforced concrete bridges in coastal environments

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Stephen D.; Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Cryer, C.B. (ODOT); Laylor, H.M. (ODOT)

    2002-01-01

    Solvent-based acrylic carbon paint anodes were installed on the north approach spans of the Yaquina Bay Bridge (Newport OR) in 1985. The anodes continue to perform satisfactorily after more than 15 years service. The anodes were inexpensive to apply and field repairs are easily made. Depolarization potentials are consistently above 100 mV with long-term current densities around 2 mA/m 2. Bond strength remains adequate, averaging 0.50 MPa (73 psi). Some deterioration of the anode-concrete interface has occurred in the form of cracks and about 4% of the bond strength measurements indicated low or no bond. Carbon anode consumption appears low. The dominant long-term anode reaction appears to be chlorine evolution, which results in limited further acidification of the anode-concrete interface. Chloride profiles were depressed compared to some other coastal bridges suggesting chloride extraction by the CP system. Further evidence of outward chloride migration was a flat chloride profile between the anode and the outer rebar.

  19. Effect of Piers Shape on the Dynamic Structural Responses of Prestressed Concrete Bridge: Part II

    Directory of Open Access Journals (Sweden)

    Ali Fadhil Naser

    2016-03-01

    Full Text Available Pier of bridge is usually used as a general term for any type of substructure located between horizontal spans and foundations. Piers give vertical supports for spans at intermediate points and perform two main functions. The objective of this study is to inspect the effect of piers shape on the dynamic structural performance by adopting theoretical dynamic analysis. The results of dynamic analysis of 25 bridges models show that the maximum value of natural frequency is equal to 5.64Hz in two circles piers bridge model. Therefore, this type of model has good stiffness and bearing capacity. The two square piers model, the one circle pier model, and the two circles piers model appear good stiffness because of the natural frequencies (5.30Hz, 5.52Hz, and 5.64Hz are more than the maximum forced frequencies (4.52Hz, 5.45Hz, and 4.52Hz respectively. According to the comparison between all models results, the two circles piers model has the higher stiffness because of this model has the maximum value of natural frequency (5.64Hz and it is more than all forced vibration frequencies of all others models. Therefore, this study recommends that using the bridge model of two circles piers in the bridges construction that consists of three spans (30m+40m+30m with section of box girder.

  20. Effect of Piers Shape on the Dynamic Structural Responses of Prestressed Concrete Bridge: Part II

    Directory of Open Access Journals (Sweden)

    Ali Fadhil Naser

    2016-12-01

    Full Text Available Pier of bridge is usually used as a general term for any type of substructure located between horizontal spans and foundations. Piers give vertical supports for spans at intermediate points and perform two main functions. The objective of this study is to inspect the effect of piers shape on the dynamic structural performance by adopting theoretical dynamic analysis. The results of dynamic analysis of 25 bridges models show that the maximum value of natural frequency is equal to 5.64Hz in two circles piers bridge model. Therefore, this type of model has good stiffness and bearing capacity. The two square piers model, the one circle pier model, and the two circles piers model appear good stiffness because of the natural frequencies (5.30Hz, 5.52Hz, and 5.64Hz are more than the maximum forced frequencies (4.52Hz, 5.45Hz, and 4.52Hz respectively. According to the comparison between all models results, the two circles piers model has the higher stiffness because of this model has the maximum value of natural frequency (5.64Hz and it is more than all forced vibration frequencies of all others models. Therefore, this study recommends that using the bridge model of two circles piers in the bridges construction that consists of three spans (30m+40m+30m with section of box girder.

  1. Influence of fly ash, slag cement and specimen curing on shrinkage of bridge deck concrete.

    Science.gov (United States)

    2014-12-01

    Cracks occur in bridge decks due to restrained shrinkage of concrete materials. Concrete materials shrink as : cementitious materials hydrate and as water that is not chemically bonded to cementitious materials : migrates from the high humid environm...

  2. A Comparative Assessment of Aerodynamic Models for Buffeting and Flutter of Long-Span Bridges

    Directory of Open Access Journals (Sweden)

    Igor Kavrakov

    2017-12-01

    Full Text Available Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This paper aims to investigate different formulations of self-excited and buffeting forces in the time domain by comparing the dynamic response of a multi-span cable-stayed bridge during the critical erection condition. The bridge is selected to represent a typical reference object with a bluff concrete box girder for large river crossings. The models are viewed from a perspective of model complexity, comparing the influence of the aerodynamic properties implied in the aerodynamic models, such as aerodynamic damping and stiffness, fluid memory in the buffeting and self-excited forces, aerodynamic nonlinearity, and aerodynamic coupling on the bridge response. The selected models are studied for a wind-speed range that is typical for the construction stage for two levels of turbulence intensity. Furthermore, a simplified method for the computation of buffeting forces including the aerodynamic admittance is presented, in which rational approximation is avoided. The critical flutter velocities are also compared for the selected models under laminar flow. Keywords: Buffeting, Flutter, Long-span bridges, Bridge aerodynamics, Bridge aeroelasticity, Erection stage

  3. Non-Linear Three Dimensional Finite Elements for Composite Concrete Structures

    Directory of Open Access Journals (Sweden)

    O. Kohnehpooshi

    Full Text Available Abstract The current investigation focused on the development of effective and suitable modelling of reinforced concrete component with and without strengthening. The modelling includes physical and constitutive models. New interface elements have been developed, while modified constitutive law have been applied and new computational algorithm is utilised. The new elements are the Truss-link element to model the interaction between concrete and reinforcement bars, the interface element between two plate bending elements and the interface element to represent the interfacial behaviour between FRP, steel plates and concrete. Nonlinear finite-element (FE codes were developed with pre-processing. The programme was written using FORTRAN language. The accuracy and efficiency of the finite element programme were achieved by analyzing several examples from the literature. The application of the 3D FE code was further enhanced by carrying out the numerical analysis of the three dimensional finite element analysis of FRP strengthened RC beams, as well as the 3D non-linear finite element analysis of girder bridge. Acceptable distributions of slip, deflection, stresses in the concrete and FRP plate have also been found. These results show that the new elements are effective and appropriate to be used for structural component modelling.

  4. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, Brian A.; Patil, Anjali N.; Klis, Jeffrey M. [Brigham Young University, Department of Electrical and Computer Engineering, Provo, Utah, 84602 (United States); Hurd, Randy C.; Truscott, Tadd T. [Brigham Young University, Department of Mechanical Engineering, Provo, Utah, 84602 (United States); Guthrie, W. Spencer [Brigham Young University, Department of Civil and Environmental Engineering, Provo, Utah, 84602 (United States)

    2014-02-18

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work, numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials.

  5. Algorithms for highway-speed acoustic impact-echo evaluation of concrete bridge decks

    Science.gov (United States)

    Mazzeo, Brian A.; Guthrie, W. Spencer

    2018-04-01

    A new acoustic impact-echo testing device has been developed for detecting and mapping delaminations in concrete bridge decks at highway speeds. The apparatus produces nearly continuous acoustic excitation of concrete bridge decks through rolling mats of chains that are placed around six wheels mounted to a hinged trailer. The wheels approximately span the width of a traffic lane, and the ability to remotely lower and raise the apparatus using a winch system allows continuous data collection without stationary traffic control or exposure of personnel to traffic. Microphones near the wheels are used to record the acoustic response of the bridge deck during testing. In conjunction with the development of this new apparatus, advances in the algorithms required for data analysis were needed. This paper describes the general framework of the algorithms developed for converting differential global positioning system data and multi-channel audio data into maps that can be used in support of engineering decisions about bridge deck maintenance, rehabilitation, and replacement (MR&R). Acquisition of position and audio data is coordinated on a laptop computer through a custom graphical user interface. All of the streams of data are synchronized with the universal computer time so that audio data can be associated with interpolated position information through data post-processing. The audio segments are individually processed according to particular detection algorithms that can adapt to variations in microphone sensitivity or particular chain excitations. Features that are greater than a predetermined threshold, which is held constant throughout the analysis, are then subjected to further analysis and included in a map that shows the results of the testing. Maps of data collected on a bridge deck using the new acoustic impact-echo testing device at different speeds ranging from approximately 10 km/h to 55 km/h indicate that the collected data are reasonably repeatable. Use

  6. Wind Turbine Blade with Angled Girders

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...

  7. Design and test of a girder control system at NSRRC

    International Nuclear Information System (INIS)

    Wang, H.S.; Tsai, Y.L.; Perng, S.Y.; Chen, M.L.; Hsu, K.H.; Lai, W.Y.; Tseng, T.C.; Chen, J.R.

    2012-01-01

    A girder control system is proposed to quickly and precisely adjust the displacement and rotating angle of all girders in the storage ring with little manpower at the Taiwan Photon Source (TPS) project at National Synchrotron Research Center (NSRRC). In this control girder system, six motorized cam movers supporting a girder are driven on three pedestals to perform six-axis adjustments of a girder. A tilt-meter monitors the pitch and roll of each girder; several touch sensors measure the relative displacement between consecutive girders. Moreover, a laser position sensitive detector (PSD) system measuring the relative displacement between straight-section girders is included in this girder control system. Operator can use subroutines developed by MATLAB to control every local girder control system via the web. The test results show that the girder control system adjusts girders quickly, precisely and stably

  8. An influence of technological contraflexure of crane bridges on its durability

    Directory of Open Access Journals (Sweden)

    Artur BLUM

    2010-01-01

    Full Text Available Standard requirements till 1996 year during bridge crane manufacturing demanded a positive technological contraflexure. As a result of this process were implemented technological compressive stress into tensile zone from inertial and operational loads and tensile stress into compressive zone. This way there were redistributed resultant stress which have increased fatigue strength of exploited crane bridges. Actually valid standard PN-ISO 7363 has removed this obligatory requirement. Its use depends of crane buyer demands. Reduction of initial positive deflection can be seen after few years of crane operations. It is a case of girders permanent deflections increment. Article presents method of technological prestressing of bridge girders with its practical application to obtain positive contrafexure.

  9. Modal Identification and Damage Detection on a Concrete Highway Bridge by Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, P.; Zhang, L.

    2002-01-01

    As a part of a research project co-founded by the European Community, a series of 15 damage tests were performed on a prestressed concrete highway bridge in Switzerland. The ambient response of the bridge was recorded for each damage case. A dense array of instruments allowed the identification...

  10. Modal Identification and Damage Detection on a Concrete Highway Bridge by Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, Palle; Zhang, Lingmi

    2007-01-01

    As a part of a research project co-founded by the European Community, a series of 15 damage tests were performed on a prestressed concrete highway bridge in Switzerland. The ambient response of the bridge was recorded for each damage case. A dense array of instruments allowed the identification...

  11. Prestressed concrete cable-stayed bridge; PC shachokyo `Tajiri sky bridge` no seko

    Energy Technology Data Exchange (ETDEWEB)

    Kaida, Y.; Tsujino, F. [Osaka Prefectural Government Office, Osaka (Japan); Yamamoto, T.; Hishiki, Y.; Saito, K.

    1995-01-30

    The outline on the execution of PC cable-stayed bridge `Tajiri Sky Bridge` which was built at the opposite coast of Kansai International Airport was reported. This bridge is a double-sided suspension PC cable-stayed bridge with a tower height of 93.6 m having a main beam which is 26.3 m wide, featuring H-type main tower with one side beam, a smooth main beam structure, the leg top part with a large section, etc. A large-capacity factory manufacturing type non-grout cable with a pull strength of 1,900 ton class was adopted for the diagonal bracing. The leg top part is in a massive concrete structure so that, for avoiding the crack of cement due to temperature, a low heat build-up furnace cement was adopted, the water reducing agent was used, pre-cooling and side-clamping PC steel material were adopted and moderate pre-stress was introduced. In the execution of the connection part of the main beam, for preventing the deflection fluctuation due to the change of the main beam/main tower/diagonal bracing due to temperature and vibration due to wind, the earth anchor was used to tentatively fix the extended part. During execution, the wind velocity was strong reaching 25 m/s, which did not produce any problems. 1 ref., 24 figs., 3 tabs.

  12. Articularities of Analysis and Behaviour of Concrete Beams Reinforced with Fibrous Polymer Composite Bars

    Directory of Open Access Journals (Sweden)

    N. Ţăranu

    2006-01-01

    Full Text Available Traditional steel based reinforcement systems for concrete elements are facing with serious problems mainly caused by corrosion due to chemically aggressive environments and salts used in deicing procedures, especially in case of bridge steel reinforced concrete girders. Also in some cases special applications require structural members with magnetic transparency. An alternative to this major problem has recently become the use of fiber reinforced polymer (FPR composite bars as internal reinforcement for concrete beams. The particularities of their mechanical properties are making the design process a difficult task for engineers, numerous research centers being involved in correcting this situation. The general aspects concerning the conceiving of FR.P reinforced concrete beams are firstly analyzed, compared to those reinforced with steel bars. Some results of a Finite Element Analysis, as part of a complex program which also implies full scale testing of FRP reinforced beams subjected to bending, are given and discussed in the paper. The low elasticity modulus presented by glass fiber reinforced polymer (GFRP bars does not justify its use from structural point of view when deflection is the limiting condition but for corrosive resistance reasons and special electromagnetic properties this system can be promoted.

  13. Evaluating seismic reliability of Reinforced Concrete Bridge in view of their rehabilitation

    Directory of Open Access Journals (Sweden)

    Boubel Hasnae

    2018-01-01

    Full Text Available Considering in this work, a simplified methodology was proposed in order to evaluate seismic vulnerability of Reinforced Concrete Bridge. Reliability assessment of stress limits state and the applied loading which are assumed to be random variables. It is assumed that only their means and standard deviations are known while no information is available about their densities of probabilities. First Order Reliability Method is applied to a response surface representation of the stress limit state obtained through quadratic polynomial regression of finite element results. Then a parametric study is performed regarding the influence of the distributions of probabilities chosen to model the problem uncertainties for Reinforced Concrete Bridge. It is shown that the probability of failure depends largely on the chosen densities of probabilities, mainly in the useful domain of small failure probabilities.

  14. THE SIMULATION DIAGNOSTIC METHODS AND REGENERATION WAYS OF REINFORCED - CONCRETE CONSTRUCTIONS OF BRIDGES IN PROVIDING THEIR OPERATING RELIABILITY AND LONGEVITY

    OpenAIRE

    B. V. Savchinskiy

    2010-01-01

    On the basis of analysis of existing diagnostic methods and regeneration ways of reinforced-concrete constructions of bridges the recommendations on introduction of new modern technologies of renewal of reinforced-concrete constructions of bridges in providing their operating reliability and longevity are offered.

  15. Improving resistance of high strength concrete (HSC) bridge beams to frost and defrosting salt attack by application of hydrophobic agent

    Science.gov (United States)

    Kolisko, Jiri; Balík, Lukáš; Kostelecka, Michaela; Pokorný, Petr

    2017-09-01

    HSC (High Strength Concrete) is increasingly used for bearing bridge structures nowadays. Bridge structures in the Czech Republic are exposed to severe conditions in winter time and durability of the concrete is therefore a crucial requirement. The high strength and low water absorption of HSC suggests that the material will have high durability. However, the situation may not be so straightforward. We carried out a study of the very poor durability of HSC concrete C70/85 used to produce prestresed beams 37.1 m in length to build a 6-span highway bridge. After the beams were cast, a production control test indicated some problems with the durability of the concrete. There was a danger that 42 of the beams would not be suitable for use. All participants in the bridge project finally decided, after extensive discussions, to attempt to improve the durability of the concrete by applying a hydrophobic agent. Paper will present the results of comparative tests of four hydrophobic agents in order to choose one for real application and describes this application on construction site.

  16. Novel shear capacity testing of ASR damaged full scale concrete bridge

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Hansen, Søren Gustenhoff; Barbosa, Ricardo Antonio

    2014-01-01

    A large number of concrete bridges in Denmark have to undergo wide-ranging maintenance work to prevent deterioration due to aggressive Alkali Silica Reaction (ASR). This destructive mechanism results in extensive cracking which is believed to affect the load carrying capacity of the structure...

  17. Application of Classical Land Surveying Measurement Methods for Determining the Vertical Displacement of Railway Bridges

    Science.gov (United States)

    Gawronek, Pelagia; Makuch, Maria

    2017-12-01

    The classical measurements of stability of railway bridge, in the context of determining the vertical displacements of the object, consisted on precise leveling of girders and trigonometric leveling of controlled points (fixed into girders' surface). The construction elements, which were measured in two ways, in real terms belonged to the same vertical planes. Altitude measurements of construction were carried out during periodic structural stability tests and during static load tests of bridge by train. The specificity of displacement measurements, the type of measured object and the rail land surveying measurement conditions were determinants to define methodology of altitude measurement. The article presents compatibility of vertical displacements of steel railway bridge, which were developed in two measurement methods. In conclusion, the authors proposed the optimum concept of determining the vertical displacements of girders by using precise and trigonometric leveling (in terms of accuracy, safety and economy of measurement).

  18. Application of Classical Land Surveying Measurement Methods for Determining the Vertical Displacement of Railway Bridges

    Directory of Open Access Journals (Sweden)

    Gawronek Pelagia

    2017-12-01

    Full Text Available The classical measurements of stability of railway bridge, in the context of determining the vertical displacements of the object, consisted on precise leveling of girders and trigonometric leveling of controlled points (fixed into girders' surface. The construction elements, which were measured in two ways, in real terms belonged to the same vertical planes. Altitude measurements of construction were carried out during periodic structural stability tests and during static load tests of bridge by train. The specificity of displacement measurements, the type of measured object and the rail land surveying measurement conditions were determinants to define methodology of altitude measurement. The article presents compatibility of vertical displacements of steel railway bridge, which were developed in two measurement methods. In conclusion, the authors proposed the optimum concept of determining the vertical displacements of girders by using precise and trigonometric leveling (in terms of accuracy, safety and economy of measurement.

  19. Rapid multichannel impact-echo scanning of concrete bridge decks from a continuously moving platform

    Science.gov (United States)

    Mazzeo, Brian A.; Larsen, Jacob; McElderry, Joseph; Guthrie, W. Spencer

    2017-02-01

    Impact-echo testing is a non-destructive evaluation technique for determining the presence of defects in reinforced concrete bridge decks based on the acoustic response of the bridge deck when struck by an impactor. In this work, we build on our prior research with a single-channel impactor to demonstrate a seven-channel impact-echo scanning system with independent control of the impactors. This system is towed by a vehicle and integrated with distance measurement for registering the locations of the impacts along a bridge deck. The entire impact and recording system is computer-controlled. Because of a winch system and hinged frame construction of the apparatus, setup, measurement, and take-down of the apparatus can be achieved in a matter of minutes. Signal processing of the impact responses is performed on site and can produce a map of delaminations immediately after data acquisition. This map can then be used to guide other testing and/or can be referenced with the results of other testing techniques to facilitate comprehensive condition assessments of concrete bridge decks. This work demonstrates how impact-echo testing can be performed in a manner that makes complete bridge deck scanning for delaminations rapid and practical.

  20. THE SIMULATION DIAGNOSTIC METHODS AND REGENERATION WAYS OF REINFORCED - CONCRETE CONSTRUCTIONS OF BRIDGES IN PROVIDING THEIR OPERATING RELIABILITY AND LONGEVITY

    Directory of Open Access Journals (Sweden)

    B. V. Savchinskiy

    2010-03-01

    Full Text Available On the basis of analysis of existing diagnostic methods and regeneration ways of reinforced-concrete constructions of bridges the recommendations on introduction of new modern technologies of renewal of reinforced-concrete constructions of bridges in providing their operating reliability and longevity are offered.

  1. The effect of alkali-aggregate reaction on concrete bridge structures

    Directory of Open Access Journals (Sweden)

    Grković Slobodan

    2016-01-01

    Full Text Available This paper shows contemporary issues related to unfavorable effects of concrete alkali-aggregate reaction (AAR on concrete bridge structures (CBS. Although AAR unfavorable effects on CBS were identified in 1930s, it was much later that AAR was acknowledged as one of the most pronounced deterioration processes in concrete that results in damages to concrete structures. There are two basic forms of AAR: alkali-silica reaction (ASR and alkali-carbonate reaction (ACR. Compared to ACR, ASR is more prominent, especially in certain geographic parts of the world. Damages to concrete caused by the ASR have negative effect primarily on usability and durability of CBS, what is followed by the decrease in load bearing capacity of structural components and reliability of the whole structure, shortening of service life (SL and costly repairs. For CBS, simultaneous occurrence of ASR and other degradation processes in concrete, such as those caused by the presence of moisture, water, temperature variations and use of deicing salt during winter, are especially damaging. Based on review of the most relevant literature, this paper is focused on mechanisms and mechanisms factors of the ASR, related contemporary research and reliability design guidelines for CBS that are based on prevention of the initiation and development of ASR.

  2. Construction of Daiichi Tamagawa bridge; Daiichi Tamagawa kyoryo no seko

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, O.; Tsuyoshi, T. [East Japan Railway Company, Tokyo (Japan); Ota, T.; Sato, S. [Tekken Corp., Tokyo (Japan)

    1997-05-30

    This paper describes the construction of Daiichi Tamagawa Bridge for JR Tazawako Line, which was reconstructed with the Akita Shinkansen Project apart from the existing line. This bridge is a three-span continuous PC cable stayed bridge. To avoid operation accidents due to snow and ice, independent two-column type with a height of 11 m without beam was employed for the main tower. For the construction of upper part, overhang election construction method was adopted, which can be applied all the year round. The main girder has a single box cross section, and a width of 5.5 m and a beam height of 2.3 m. This was also constructed by the overhang construction method. To reduce the construction period, the main tower was constructed by the precast block construction method. The whole bridge was divided into six blocks by considering the hoist performance of cranes. Reinforcement against bearing pressure and cleavage due to the cable tensile force was conducted by adopting saddle structure for the main tower. Oblique members were jointed with the main girder using lateral beams projected from lateral side of girder. Totally seven PC cables were used for each oblique member. Measurements and management during the overhang construction were also described. The construction was over without problems in August, 1996. This bridge is under test operation using test run vehicles. 2 refs., 20 figs., 7 tabs.

  3. Bridge Management Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper bridge management systems are discussed with special emphasis on management systems for reinforced concrete bridges. Management systems for prestressed concrete bridges, steel bridges, or composite bridges can be developed in a similar way....

  4. Sprayed concrete linings

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-12-01

    Sprayed concrete, or shotcrete, was invented in the 1920s for preserving dinosaur skeletons and was used underground initially in coalmines for the preservation and fine proofing of timber supports. Its use as a support lining in rock tunnelling was developed in the 1950s and 60s. The article surveys equipment available from major manufacturers and suppliers of concrete spraying equipment (Aliva, Cifa, GIA, Industri, Ingersoll Rand, etc.), specialist cement and additive manufacturers (Castle, Cement, Moria Carbotech). manufacturers of lattice girders and fibre reinforcement, and manufacturers of instrumentation for tunnel linings. 5 tabs., 9 photos.

  5. Markov Chain-Based Stochastic Modeling of Chloride Ion Transport in Concrete Bridges

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2018-03-01

    Full Text Available Over the last decade, there has been an increasing interest in models for the evaluation and prediction of the condition of bridges in Canada due to their large number in an advanced state of deterioration. The models are used to develop optimal maintenance and replacement strategies to extend service life and optimally allocate financial and technical resources. The main process of deterioration of concrete bridges in Canada is corrosion of the reinforcing steel due to the widespread use of de-icing salts. In this article, numerical models of the diffusion process and chemical reactions of chloride ions in concrete are used to estimate the time to initiation of corrosion and for the progression of corrosion. The analyses are performed for a range of typical concrete properties, exposure and climatic conditions. The results from these simulations are used to develop parametric surrogate Markov chain models of increasing states of deterioration. The surrogate models are more efficient than physical models for the portfolio analysis of a large number of structures. The procedure provides an alternative to Markov models derived from condition ratings when historical inspection data is limited.

  6. Modern techniques in prestressed concrete cable-stayed bridges. Puresutoresuto concrete shachokyo ni okeru atarashii gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, A. (Kobe Univ. (Japan). Faculty of Engineering)

    1994-03-31

    Because the prestressed concrete (PC) cable-stayed bridges combine the distinctive features such as a rationality of the structure or a structural beauty, it will not stay on a development of the technologies to make them longer and larger, and a rationalization of the execution, an investigation from various aspects such as the scenery design, material selection, pursuit of new structure and so forth will become necessary. In a main meeting, 15 volumes of paper on the most advanced technologies of PC cable-stayed bridges were presented. The presentations from Japan were 11 volumes, and occupied about 70%, and therefore a high interest to the PC cable-stayed bridges in Japan was inferred. In the presentation from Japan, there were many relevancies of the important study themes which would become a foundation for a development of PC cable-stayed bridges in the future, like ones that an improvement effect of dynamic behavior such as the aseismatic property, wind endurance and so forth was made as an objective, ones that a safety evaluation at an ultimate state as the oblique member anchoring part, main tower or entire structure was related, ones that a construction of the various control systems when the cable-stayed bridges were executed was concerned and so forth. 23 figs., 1 tab.

  7. Assessment of exposure pathways connected with construction and operation of concrete bridge reinforced with very low level radioactive steel

    International Nuclear Information System (INIS)

    Panik, M.; Necas, V.

    2012-01-01

    Large amount of low level radioactive material arises during decommissioning of nuclear power plants. Material mostly comprises metal scrap and concrete ruble. Paper deals with recycling and reuse of metal scrap and its utilization as part of reinforcement of concrete bridges under the conditional release concept. Radiation exposure originating in very low level reinforcement steel consists of several exposure pathways. Short-term radiation impact is represented mostly by external exposure pathway and it is relevant to the construction workers and users of the bridge. Long-term radiation impacts on inhabitants living near finished bridge and it is divided into inhalation and ingestion of radionuclides-internal exposure pathways. Radiation impact caused by utilization of very low level radioactive waste was calculated using simulation software VISIPLAN 3D ALARA and GOLDSIM. Results of calculations provide fair summary of possibilities of utilization of conditionally released steel as reinforcement of concrete bridges. (Authors)

  8. Design and construction of the Natorigawa Bridge; Natorigawa kyoryo no sekkei/seko

    Energy Technology Data Exchange (ETDEWEB)

    Murai, Y.; Oba, M.; Omurata, Y. [JR East Japan Railway Co., Tokyo (Japan); Miyauchi, M.; Iwasaki, I. [Taisei Corp., Tokyo (Japan)

    1997-03-31

    The Natorigawa Bridge is reconstructed. Out of the reconstruction work, a report is made mainly on the design of the superstructure work of the PC panel-stayed bridge and the details of the work. In selecting bridge type, PC simple through beam bridge, steel trussed bridge, PC cable-stayed bridge, and PC panel-stayed bridge are compared, and a 2-span continuous PC panel-stayed bridge is adopted. Its appearance resembles that of the cable-stayed bridge, but the structure resembles a girder bridge. The appropriate span length is the intermediate range between those of the girder bridge and the cable-stayed bridge. Its trafficability is excellent with little deformation by the running of trains because the main beam, diagonal panel, and the main tower are connected rigidly to provide high rigidity of the entire bridge. PRC structure is employed in consideration of the restriction to beam height and economical efficiency. Analyses by a FEM model using two dimensional plane elements and by a few plane frame models as well as comparison of sectional force are performed for this bridge, and a proper plane model is selected. Substructure work, superstructure work and measurement work are described. 3 refs., 16 figs., 6 tabs.

  9. Integrated Monitoring System for Durability Assessment of Concrete Bridges

    Directory of Open Access Journals (Sweden)

    Cristian-Claudiu Comisu

    2005-01-01

    Full Text Available An ageing and deteriorating bridge stock presents the bridge owners with the growing challenge of maintaining the structures at a satisfactory level of safety, performance and aesthetic appearance within the allocated budgets. This task calls for optimized bridge management based on efficient methods of selecting technical and economical optimal maintenance and rehabilitation strategies. One of the crucial points in the assessment of the current condition and future development and performance. Selecting the optimal maintenance and rehabilitation strategy within the actual budget is a key point in bridge management for which an accurate assessment of performance and deterioration rate is necessary. For this assessment, the use of integrated monitoring system has several advantages compared to the traditional approach of scattered visual inspections combined with occasional on site testing with portable equipment and laboratory testing of collected samples. For this reason, attention is more focusing on the development of permanent integrated monitoring system for durability assessment of concrete bridges. It is estimated that with the implementation of such integrated monitoring systems, it should be possible to reduce the operating costs of inspections and maintenance by 25% and the operator of the structures will be able to take protective actions before damaging processes start. This paper indentifies the main bridge owner requirements to integrated monitoring systems and outlines how monitoring systems may be used for performance and deterioration rate assessment to establish a better basis for selecting the optimal maintenance and rehabilitation strategy.

  10. Construction Simulation Analysis of 60m-span Concrete Filled Steel Tube arch bridge

    Science.gov (United States)

    Shi, Jing Xian; Ding, Qing Hua

    2018-06-01

    The construction process of the CFST arch bridge is complicated. The construction process not only affects the structural stress in the installation, but also determines the form a bridge and internal force of the bridge. In this paper, a 60m span concrete filled steel tube tied arch bridge is taken as the background, and a three-dimensional finite element simulation model is established by using the MIDAS/Civil bridge structure analysis software. The elevation of the main arch ring, the beam stress, the forces in hanger rods and the modal frequency of the main arch during the construction stage are calculated, and the construction process is simulated and analyzed. Effectively and reasonably guide the construction and ensure that the line and force conditions of the completed bridge meet the design requirements and provides a reliable technical guarantee for the safe construction of the bridge.

  11. Appendix G : end region design models.

    Science.gov (United States)

    2013-03-01

    The 2007 AASHTO LRFD Bridge Design Specifications contain prescriptive : requirements for the quantity and placement of confinement reinforcement located in the bottom : flange of pretensioned concrete I-girders. This chapter proposes a rational mode...

  12. Structural design guidelines for concrete bridge decks reinforced with corrosion-resistant reinforcing bars.

    Science.gov (United States)

    2014-10-01

    This research program develops and validates structural design guidelines and details for concrete bridge decks with : corrosion-resistant reinforcing (CRR) bars. A two-phase experimental program was conducted where a control test set consistent : wi...

  13. Self-compacting concrete for prestressed bridge girders

    Science.gov (United States)

    Erkmen, Bulent

    The purpose of this study was to examine social mobility as a motivation for first-generation college students in reaching attainment at two-year technical colleges. The research question was to what degree has the perception of social mobility influenced first generation college students at technical colleges to complete their career educational goals. Graduates of a two-year technical college were asked a series of open-ended questions regarding their past experiences and perceptions of attending and completing a two-year technical college program; their childhood perceptions of their social status; and experiences with family members regarding their change in social class status. These questions were designed to determine their feelings, viewpoints, reflections, experiences, struggles, and thoughts about attainment (completing their post-secondary education) and the extent to which social mobility influenced their decision to complete their education. The benefits of this research include an understanding of social mobility and educational attainment. Results of this study could be used to better understand the process that first generation college students go through in order to attain their educational goals. The information from this study may be useful for technical college administrations to help design programs and processes for future first-generation college students' success and aid in retention of these students.

  14. Ultimate strength analysis of long-span cable-stayed bridges; Chodai chachokyo no shukyoku kyodo kaiseki to kyodo ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X.; Yamaguchi, H. [Saitama Univ., Urawa (Japan)] Nagai, M. [Nagaoka Technical Coll., Niigata (Japan)

    1998-07-21

    Recently, span of cable-stayed bridges has been getting loner and longer, present situation is that cable-stayed bridges with span 600 to 800m class have been built inside and outside the country, and accurate determination of its ultimate strength has been an important problem statistically. However, concrete design method for evaluating load bearing stress of long-span cable-stayed bridge. Particularly of the main beam whose axial stress is dominating, has not been established so far. As for cable-stayed bridge, even for long-span, effect of plasticization of cross section on ultimate strength is severe because there is little effect of geometric nonlinearity and it is thought that accurate evaluation of ultimate strength only by elastic finite potential analysis is difficult. Accordingly, it is necessary to study the behavior by using combined nonlinear analysis considering the nonlinearity of the material in order to evaluate the safety and economy to long-span cable-stayed bridge. In this report, 3 dimensional analysis method was formularized taking into account the combine nonlinearity of multi-box girder and analysis program of ultimate strength behavior of long-span cable-stayed bridge was developed. 19 refs., 17 figs., 2 tabs.

  15. Environmental Impact Optimization of Reinforced Concrete Slab Frame Bridges

    DEFF Research Database (Denmark)

    Yavari, Majid Solat; Du, Guangli; Pacoste, Costin

    2017-01-01

    The main objective of this research is to integrate environmental impact optimization in the structural design of reinforced concrete slab frame bridges in order to determine the most environmental-friendly design. The case study bridge used in this work was also investigated in a previous paper...... focusing on the optimization of the investment cost, while the present study focuses on environmental impact optimization and comparing the results of both of these studies. Optimization technique based on the pattern search method was implemented. Moreover, a comprehensive Life Cycle Assessment (LCA......) methodology of ReCiPe and two monetary weighting systems were used to convert environmental impacts into monetary costs. The analysis showed that both monetary weighting systems led to the same results. Furthermore, optimization based on environmental impact generated models with thinner construction elements...

  16. Design of Usui bridge (PC cable stayed bridge). Usuihashi (PC shachokyo) no sekkei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kido, M.; Iizuka, Y. (Japan Highway Public Corp., Tokyo (Japan)); Tanaka, S.; Otsuka, K. (P.S. Concrete Co. Ltd. Kajima Corp. Joint Venture, Tokyo (Japan)); Kitakuni, S. (Kajima Corp., Tokyo (Japan))

    1991-11-30

    Structure and design of single suspension PC cable bridge, which is first kind of high way bridge in Japan and aiming to start for general use by March, 1993, are reported. As a construction outline, main construction quantity and general layout of the whole bridge together with the selective detail and characteristics of the diagonal member, tower, main girder and tower support member, are cited. Design conditions( load, materials, allowable stress and others ), basic plan of the design, and structure analysis( surface stress framed structure analysis, stereoscopic framework analysis and FEM analysis of local stress ) are explained. Design of structure member like main girder is based on diagonal member tension, wave shearing force, level of diagonal strain stress, bending stress when diagonal member anchors the deformed main tower caused by living load during earth quake, principal stress of main tower junction and local stress etc. Main tower support member design is based on the results of corbel shearing force at varied cross section and main stress, and diagonal member design is decided by allowable stress. Diagonal member anchorage traverse beam design depends on bending moment of traverse beam and shearing force. 3 refs., 15 figs., 1 tab.

  17. Use of Just in Time Maintenance of Reinforced Concrete Bridge Structures based on Real Historical Data Deterioration Models

    Directory of Open Access Journals (Sweden)

    Abu-Tair A.

    2016-01-01

    Full Text Available Concrete is the backbone of any developed economy. Concrete can suffer from a large number of deleterious effects including physical, chemical and biological causes. Large owning bridge structures organizations are facing very serious questions when asking for maintenance budgets. The questions range from needing to justify the need for the work, its urgency, to also have to predict or show the consequences of delayed rehabilitation of a particular structure. There is therefore a need for a probabilistic model that can estimate the range of service lives of bridge populations and also the likelihood of level of deteriorations it can reached for every incremental time interval. A model was developed for such estimation based on statistical data from actual inspection records of a large reinforced concrete bridge portfolio. The method used both deterministic and stochastic methods to predict the service life of a bridge, using these service lives in combination with the just in time (JIT principle of management would enable maintenance managers to justify the need for action and the budgets needed, to intervene at the optimum time in the life of the structure and that of the deterioration. The paper will report on the model which is based on a large database of deterioration records of concrete bridges covering a period of over 60 years and include data from over 400 bridge structures. The paper will also illustrate how the service life model was developed and how these service lives combined with the JIT can be used to effectively allocate resources and use them to keep a major infrastructure asset moving with little disruption to the transport system and its users.

  18. A Novel Concrete-Based Sensor for Detection of Ice and Water on Roads and Bridges.

    Science.gov (United States)

    Tabatabai, Habib; Aljuboori, Mohammed

    2017-12-14

    Hundreds of people are killed or injured annually in the United States in accidents related to ice formation on roadways and bridge decks. In this paper, a novel embedded sensor system is proposed for the detection of black ice as well as wet, dry, and frozen pavement conditions on roads, runways, and bridges. The proposed sensor works by detecting changes in electrical resistance between two sets of stainless steel poles embedded in the concrete sensor to assess surface and near-surface conditions. A preliminary decision algorithm is developed that utilizes sensor outputs indicating resistance changes and surface temperature. The sensor consists of a 102-mm-diameter, 38-mm-high, concrete cylinder. Laboratory results indicate that the proposed sensor can effectively detect surface ice and wet conditions even in the presence of deicing chlorides and rubber residue. This sensor can further distinguish black ice from ice that may exist within concrete pores.

  19. Design and evaluation of a single-span bridge using ultra-high performance concrete.

    Science.gov (United States)

    2009-09-01

    "Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possib...

  20. Final report on characterization of time dependent deformations in concrete grades used in nuclear power plants

    International Nuclear Information System (INIS)

    Ramaswamy, Ananth; Chandra Kishen, J.M.

    2009-09-01

    Time dependent deformations in concrete, both creep and shrinkage, play a critical role in prestressed concrete structures, such as bridge girders, nuclear containment vessels, etc. These strains result in losses, through release of prestress, and thereby influence the safety of these structures. The present study comprises of an experimental and analytical program to assess the levels of creep and shrinkage in normal and heavy density concrete. The experimental program includes tests on creep using standard cylinder specimen, while shrinkage studies have been conducted using prism specimen, both under controlled environmental conditions. The experimental results suggest that creep and shrinkage strains are higher in heavy density concrete than in normal concrete. This may be attributed to the relatively smaller pore structure of heavy density concrete that results in larger availability of free water and a relatively slower hydration process in comparison to normal concrete. While there is some scatter in the results, creep strains decrease with age of loading and both creep and shrinkage strains are smaller when the relative humidity is higher. Statistical model reported in the literature for normal concrete is able to predict the test results for both normal and heavy density concrete quite well. Long term predictions of creep and shrinkage using this model, accounting for uncertainties, is also projected and shown to predict some long term measured results not used in the model calibration. The long term predictions are sensitive to the initial data used in model calibration. (author)

  1. Dynamic response of the train-track-bridge system subjected to derailment impacts

    Science.gov (United States)

    Ling, Liang; Dhanasekar, Manicka; Thambiratnam, David P.

    2018-04-01

    Derailments on bridges, although not frequent, when occurs due to a complex dynamic interaction of the train-track-bridge structural system, are very severe. Furthermore, the forced vibration induced by the post-derailment impacts can toss out the derailed wagons from the bridge deck with severe consequences to the traffic underneath and the safety of the occupants of the wagons. This paper presents a study of the train-track-bridge interaction during a heavy freight train crossing a concrete box girder bridge from a normal operation to a derailed state. A numerical model that considers the bridge vibration, train-track interaction and the train post-derailment behaviour is formulated based on a coupled finite-element - multi-body dynamics (FE-MBD) theory. The model is applied to predict the post-derailment behaviour of a freight train composed of one locomotive and several wagons, as well as the dynamic response of a straight single-span simply supported bridge containing ballast track subjected to derailment impacts. For this purpose, a typical derailment scenario of a heavy freight train passing over a severe track geometry defect is introduced. The dynamic derailment behaviour of the heavy freight train and the dynamic responses of the rail bridge are illustrated through numerical examples. The results exhibit the potential for tossing out of the derailed trains from the unstable increase in the yaw angle signature and a lower rate of increase of the bridge deck bending moment compared to the increase in the static axle load of the derailed wheelset.

  2. A technical report on structural evaluation of the Meade County reinforced concrete bridge.

    Science.gov (United States)

    2009-01-01

    This is a technical report on the first phase of the evaluation of the Meade County reinforced concrete bridge. : The first three chapters introduce the main problem and provide a general review of the existing evaluation : methods and the procedures...

  3. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years......, the research in concrete hinges has not evolved significantly in that period. But introducing a new state-of-the-art concrete arch bridge solution (Pearl-Chain arches invented at the Technical University of Denmark) creates a necessity of a concrete hinge research based on modern standards. Back when research...... in concrete hinges was more common different designs were proposed for the geometry and reinforcement. Previous research focused on fatigue, multi-axial stresses around the hinge throat, and the relation between rotation- and moment. But many different test-setups were proposed by different researchers...

  4. Cable-stayed bridge No. 1 Hikihara bridge'' ( Karauko bridge'') for Kinki construction bureau, ministry of construction. Kensetsusho kinki chiho kensetsukyoku (Hikihara 1 gobashi (Karauko ohashi))no shiko

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This paper summarizes the design, fabrication and erection of a back-anchor integrated single span cable suspension bridge (178 m long and 9.7 m wide) constructed over an ordinary road crossing a reservoir. This type of structure was adopted because the locational condition does not allow a bridge pier to be erected in the center of the pond, and the topography in the construction starting side has steep slopes and many places having fragile ground beds. This bridge employed precast floor plates using the Compo-Slab (manufactured by Ishikawajima Building Material Company). Main points which require attentions are listed in designing and fabricating the main towers (48 m high), main girders, and cables, as well as fabricating the precast cast floor plates (a panel has a length of 9.7 m, maximum width of 2 m, and maximum weight of 10 tons). The main towers were erected using 160-tf truck cranes, and the main girders were erected by the overhang method using 20-tf gate-type travel cranes. 3 refs., 14 figs.

  5. A Novel Concrete-Based Sensor for Detection of Ice and Water on Roads and Bridges

    Directory of Open Access Journals (Sweden)

    Habib Tabatabai

    2017-12-01

    Full Text Available Hundreds of people are killed or injured annually in the United States in accidents related to ice formation on roadways and bridge decks. In this paper, a novel embedded sensor system is proposed for the detection of black ice as well as wet, dry, and frozen pavement conditions on roads, runways, and bridges. The proposed sensor works by detecting changes in electrical resistance between two sets of stainless steel poles embedded in the concrete sensor to assess surface and near-surface conditions. A preliminary decision algorithm is developed that utilizes sensor outputs indicating resistance changes and surface temperature. The sensor consists of a 102-mm-diameter, 38-mm-high, concrete cylinder. Laboratory results indicate that the proposed sensor can effectively detect surface ice and wet conditions even in the presence of deicing chlorides and rubber residue. This sensor can further distinguish black ice from ice that may exist within concrete pores.

  6. Pervious concrete fill in Pearl-Chain Bridges: Using small-scale results in full-scale implementation

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Truelsen, R.

    2016-01-01

    distribution and strength properties is determined for 800 mm high blocks cast in different numbers of layers, and (2) full-scale implementation in a 26 m long Pearl-Chain Bridge. With a layer thickness of 27 cm, the small-scale tests indicated homogenous results; however, for the full-scale implementation......Pearl-Chain Bridge technology is a new prefabricated arch solution for highway bridges. This study investigates the feasibility of pervious concrete as a filling material in Pearl-Chain Bridges. The study is divided into two steps: (1) small-scale tests where the variation in vertical void...

  7. Discussion on the installation checking method of precast composite floor slab with lattice girders

    Science.gov (United States)

    Chen, Li; Jin, Xing; Wang, Yahui; Zhou, Hele; Gu, Jianing

    2018-03-01

    Based on the installation checking requirements of China’s current standards and the international norms for prefabricated structural precast components, it proposed an installation checking method for precast composite floor slab with lattice girders. By taking an equivalent composite beam consisted of a single lattice girder and the precast concrete slab as the checking object, compression instability stress of upper chords and yield stress of slab distribution reinforcement at the maximum positive moment, tensile yield stress of upper chords, slab normal section normal compression stress and shear instability stress of diagonal bars at the maximum negative moment were checked. And the bending stress and deflection of support beams, strength and compression stability bearing capacity of the vertical support, shear bearing capacity of the bolt and compression bearing capacity of steel tube wall at the bolt were checked at the same time. Every different checking object was given a specific load value and load combination. Application of installation checking method was given and testified by example.

  8. Arch-Axis Coefficient Optimization of Long-Span Deck-Type Concrete-Filled Steel Tubular Arch Bridge

    Science.gov (United States)

    Liu, Q. J.; Wan, S.; Liu, H. C.

    2017-11-01

    This paper is based on Nanpuxi super major bridge which is under construction and starts from Wencheng Zhejiang province to Taishun highway. A finite element model of the whole bridge is constructed using Midas Civil finite element software. The most adverse load combination in the specification is taken into consideration to determine the method of calculating the arch-axis coefficient of long-span deck-type concrete-filled steel tubular arch bridge. By doing this, this paper aims at providing references for similar engineering projects.

  9. Appendix C : SR-72 tests.

    Science.gov (United States)

    2013-03-01

    The Florida highway system includes some of the earliest (circa 1950s) pretensioned : concrete bridges in the United States. Shear capacity of Floridas early pretensioned girders is of : interest because the early designs had thin webs and only li...

  10. Analysis and modelling composite timber-concrete systems: Design of bridge structure according to EN

    Directory of Open Access Journals (Sweden)

    Manojlović Dragan

    2016-01-01

    Full Text Available Timber-concrete composite structures are already applied more than 80 years in engineering practice, went trought the intuitive problem solution to the fully prefabricated hybride assemblies for dry building. The development path of timber-concrete composites was always followed by extensive theoretical and experimental research, whose results were successfully implemented in practice, i.e. on the market, but till presence didn't result in modern designer's code. In expectation of new European codes for timber-concrete composites, the objective of the paper is to provide a comprehensive review of available standards provisions and recent conclusions from literature. The key issues for practical design are highlighted and ilustrated on the example of glulam composite arch bridge structure with concrete deck, according the Eurocodes.

  11. Development of a new-type super-long bridge; Chochotaikyo ni tekigoshita shinkeishiki kyoryo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K.; Shimodoio, H.; Saito, T.; Nogami, C.; Oryu, T.; Morikawa, M. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1998-12-20

    In order to realize large strait-crossing projects in the near future, it is necessary to develop a new type of super-long span bridge, which has a superior aerodynamic stability and is cost effective. We have been proposed a new type of suspension bridge using a 2-box and 1-box combined girder to apply to such a project And this time, we propose the cable stayed suspension bridge using a 2- box and 1-box combined girder aiming for improvement of aerodynamic stability with increase of torsional rigidity. This paper describes the performance of this cable stayed suspension bridge obtained from aerodynamic analysis. As a result, it can be confirmed that this newly developed cable stayed suspension system has fine characteristics and shows more potential for economical construction than the early proposed suspension system. (author)

  12. Research on Collapse Process of Cable-Stayed Bridges under Strong Seismic Excitations

    Directory of Open Access Journals (Sweden)

    Xuewei Wang

    2017-01-01

    Full Text Available In order to present the collapse process and failure mechanism of long-span cable-stayed bridges under strong seismic excitations, a rail-cum-road steel truss cable-stayed bridge was selected as engineering background, the collapse failure numerical model of the cable-stayed bridge was established based on the explicit dynamic finite element method (FEM, and the whole collapse process of the cable-stayed bridge was analyzed and studied with three different seismic waves acted in the horizontal longitudinal direction, respectively. It can be found from the numerical simulation analysis that the whole collapse failure process and failure modes of the cable-stayed bridge under three different seismic waves are similar. Furthermore, the piers and the main pylons are critical components contributing to the collapse of the cable-stayed bridge structure. However, the cables and the main girder are damaged owing to the failure of piers and main pylons during the whole structure collapse process, so the failure of cable and main girder components is not the main reason for the collapse of cable-stayed bridge. The analysis results can provide theoretical basis for collapse resistance design and the determination of critical damage components of long-span highway and railway cable-stayed bridges in the research of seismic vulnerability analysis.

  13. Design and construction of Chichibu-park bridge. Chichibu Koenkyo (kasho) no sekkei to seko

    Energy Technology Data Exchange (ETDEWEB)

    Hasuike, H.; Azami, Y. (Saitama Prefectural Government Office, Saitama (Japan) New Structural Engineering, Ltd., Tokyo (Japan)); Yamamoto, T.

    1994-01-31

    The design and construction of the Chichibu-Park Bridge in Japan were outlined which is the symmetric 2-span continuous PC cable stayed road bridge with one main tower (530 m in total length, 392 m in main bridge length, 19 m in width) built over the Arakawa River. The double-suspended four-box main girder with wind noses was adopted because of its excellent torsional rigidity of area and wind proof stability, and the rigid-frame main girder was rigidly connected to the middle main tower. The main tower with an H-type hollow section was adopted considering its workability, and was assembled with its divided 18 blocks. Each side of the main girder was suspended at 30 points spaced at 6.0 m, and the tower ends of the diagonal cables were fixed to the partition inside the main tower taking a landscape into account. The thick stranded wires composed of fine PC steel stranded wires and covered with polyethylene were adopted as diagonal cables, and structural beams were used for both ends of the diagonal cables. Damping wires were also adopted to damp the diagonal cables. 9 refs., 12 figs., 6 tabs.

  14. Durability of lightweight concrete : Phase I : concrete temperature study.

    Science.gov (United States)

    1968-08-01

    This report describes a study conducted to determine the temperature gradient throughout the depth of a six inch concrete bridge deck. The bridge deck selected for study was constructed using lightweight concrete for the center spans and sand and gra...

  15. Estimation of in-situ stresses in concrete members using polarized ultrasonic shear waves

    Science.gov (United States)

    Chen, Andrew; Schumacher, Thomas

    2014-02-01

    Ultrasonic testing is commonly used to detect flaws, estimate geometries, and characterize properties of materials and structures. Acoustoelasticity refers to the dependency of stress wave velocity with applied stresses and is a phenomenon that has been known by geophysicists since the 1960s. A way to capitalize on this effect for concrete applications is by using ultrasonic shear waves which are particularly sensitive to applied stresses when polarized in the direction of the applied stress. The authors conducted an experiment on a 150 mm (6 in.) diameter concrete cylinder specimen with a length of 305 mm (12 in.) that was loaded in discrete load steps to failure. At each load step two ultrasonic shear waves were transmitted through the specimen, one with the polarization perpendicular and the other transverse to the applied stress. The velocity difference between the two sets of polarized shear waves was found to correlate with the applied stress in the specimen. Two potential applications for this methodology include estimation of stresses in pre-stressed concrete bridge girders and investigation of load redistribution in structural support elements after extreme events. This paper introduces the background of the methodology, presents an analysis of the collected data, and discusses the relationship between the recorded signals and the applied stress.

  16. Disassembly of an arch bridge deformed due to landslide activity and the replacement of a new bridge in the same site. Jisuberi ni yori henkei shita arch bashi no kaitai to shinbashi no kakekae

    Energy Technology Data Exchange (ETDEWEB)

    Sano, S; Morimoto, C; Tomoda, T; Mizukawa, Y; Onushi, M; Ito, T [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    1991-10-20

    This report describes the replacement process of an arch bridge deformed due to landslide activity, selection and contents of the disassembly method, and configuration of the new bridge and its design method. The Ryugu Bridge had been damaged by landslides over an extended period. It was a deck arch bridge having originally a span of 74 meters, but it had shortened by 424 mm due to landslide activity during 14 years since its completion. Then it was decided to be replaced by a new bridge having an adjustable structure to support the movement of its abutments. As disassembly of the deformed arch bridge could be dangerous, the best methodology was studied, and the disassembly was carried out by the cable method. The new bridge had box-girder parts in both side of the main truss, so as to be adjustable to the change of the span length, and the bridge was designed for a working life of 50 years if the bearing supports and expansion joints were reset every 10 years. Concerning the connecting parts between the box-girder and the main truss, appropriateness of the sectional configuration was verified by FEM analysis. 9 refs., 18 figs., 2 tab.

  17. Use and selection of bridges as day roosts by Rafinesque's Big Eared Bats.

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Frances, M.; Loeb, Susan, C.; Bunch, Mary, S.; Bowerman, William, W.

    2008-03-01

    ABSTRACT.—Rafinesque’s big-eared bats (Corynorhinus rafinesquii) use bridges as day roosts in parts of their range, but information on bridge use across their range is lacking. From May to Aug. 2002 we surveyed 1129 bridges (12.5%) within all 46 counties of South Carolina to determine use and selection of bridges as day roosts by big-eared bats and to document their distribution across the state. During summer 2003, we visited 235 bridges in previously occupied areas of the state to evaluate short-term fidelity to bridge roosts. We found colonies and solitary big-eared bats beneath 38 bridges in 2002 and 54 bridges in 2003. Construction type and size of bridges strongly influenced use in both years; bats selected large, concrete girder bridges and avoided flat-bottomed slab bridges. The majority of occupied bridges (94.7%) were in the Upper and Lower Coastal Plains, but a few bridges (5.3%) were located in the Piedmont. Rafinesque’s big-eared bats were absent beneath bridges in the Blue Ridge Mountains. We established new records of occurrence for 10 counties. In the Coastal Plains, big-eared bats exhibited a high degree of short-term fidelity to roosts in highway bridges. For bridges that were occupied at least once, mean frequency of use was 65.9%. Probability of finding bats under a bridge ranged from 0.46 to 0.73 depending on whether the bridge was occupied in the previous year. Thus, bridges should be inspected three to five times in a given year to determine whether they are being used. Regional bridge roost surveys may be a good method for determining the distribution of C. rafinesquii, particularly in the Coastal Plains, and protection of suitable bridges may be a viable conservation strategy where natural roost sites are limited.

  18. DYNAMIC BEHAVIOR OF TWO-SPAN CONTINUOUS CONCRETE BRIDGES UNDER MOVING OF HIGH-SPEED TRAINS

    Directory of Open Access Journals (Sweden)

    O. H. Marinichenko

    2017-10-01

    Full Text Available Purpose. The scientific work provides a comparison of the results of the movement of a high-speed passenger train across the bridge, obtained as a result of finite element modeling in the SAP2000 software package, and real tests of a double-span concrete railway bridge. Analysis of the rigid characteristics of flying structures. Methodology.The numerical method presented in this study shows valid results concerning the dynamic analysis of the behavior of bridges in conditions of high-speed train traffic. The factors influencing the dynamic behavior of bridges under moving loads, the influence of design parameters and rolling stock, as well as the interaction of the train and spans are determined. The system was used in the form of moving concentrated forces simulating the axes of the train. Findings. Maximum movements and accelerations were obtained as a result of the dynamic calculation for different speeds of the train and compared with practical tests. The correctness of the model of a span structure with regard to continuous ferroconcrete spans was verified. Originality. Within the framework of the work, the latest test results were used, including those with speeds calculated on the prospect of rail passenger traffic. For these tests, a model of a span structure was developed. Practical value. The results of the research can be used to plan the introduction of high-speed train traffic on existing and planned flying structures of reinforced concrete bridges. An approach to the design of span structures that will be effective when passing high-speed passenger trains is implemented.

  19. Fabrication and erection of 'Chuo ohashi bridge' for Tokyo Metropolitan Government. Tokyoto kensetsukyoku 'Chuo ohashi' no seisaku oyobi kasetsu

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The present report outlines the superstructure of 'Chuo Ohashi Bridge' spanning the Sumida River, Tokyo Metropolis. Being 210.7m in length and 25.0m in breadth, that bridge is a cable-stayed bridge partially curved with a 220m radius curvature. Having a height of 76.8m, its main tower is shaped into an upside-down V with a curved top. Description of the points of which care was specially taken for the fabrication and construction in yard covers the cable anchorage of both girders and tower, assembly and welding, anti-shrinkage camber of girders, weld bevel preparation for the tower, tentative assembly, and accuracy control. Results of the wind tunnel test with a (1/50) scale model are as follows: stay cables were installed as measures against the vibration during the main tower erection. The main girders, main tower and cables were the order of superstructural erection. The cable tensioning was supervised mainly with its proper tension adjustment and subsidiarily for the configuration of bridge built. 2 refs., 10 figs., 1 tab.

  20. Planning and design of the Ikedako bride (temporary name); Ikedakokyo (kasho) no keikaku to sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, H.; Iizuka, Y.; Yukawa, Y. [Japan Highway Public Corporation, Tokyo (Japan)

    1997-09-30

    This paper describes the planning and design of the Ikeda-Lake Bridge of the Tokushima Express Way. This bridge is a PC (prestressed concrete) five-span continuous balanced arch bridge with a length 705 m. This bridge transverses prefectural road, Ikeda Dam Lake of Yoshino River, park, JR line, national highway, and town road, and both ends of the bridge are tunnels, resulting in the complicated bridging condition. Various bridging methods were examined from the viewpoint of structural characteristics, workability, profitability, maintenance/management, and aspect. A bridge with PC stiffening girders was adopted. The maximum interval between supports is 200 m. This bridge has the largest scale as a concrete arch bridge in Japan. Basements of bridge piers were constructed by pneumatic caisson method and large-diameter deep basement method. Since basements were located in the dam lake and they were quickly constructed in a short period in a non-flood season, steel caissons were separately fabricated in the dock, towed and placed for excavation. For the construction of upper section, overhang method was adopted using movable working vehicle. For the construction of arch section, the arch was overhung simultaneously in the both sides by composing the truss using stiffened girders, arch ribs, vertical members, and temporary cable stayed members, which was the first in Japan. In 1997, basement construction was completed, and construction of bridge piers and a part of the construction of upper section have been started. 2 refs., 12 figs.

  1. Prestressing of reinforcing bars in concrete slabs due to concrete expansion induced by Alkali-Silica Reaction

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Antonio Barbosa, Ricardo; Hoang, Linh Cao

    2017-01-01

    Alkali-silica reactions (ASR) in concrete bridges have been a major concern worldwide for many decades. In Denmark, several bridges are severely damaged due to ASR and over 600 bridges have the potential to develop ASR in the future. The majority of these bridges are slab-bridges. Despite the many...... cases, experimental research on structural safety and residual load carrying capacity of ASR-damaged bridges is limited. As ASR causes severe cracks in the concrete, which may affect the concrete compressive and tensile strength, concerns have been directed towards the residual shear capacity. Yet...

  2. Numerical Analysis of Effectiveness of Strengthening Concrete Slab in Tension of the Steel-Concrete Composite Beam Using Pretensioned CFRP Strips

    Directory of Open Access Journals (Sweden)

    Jankowiak Iwona

    2017-12-01

    Full Text Available One of the methods to increase the load carrying capacity of the reinforced concrete (RC structure is its strengthening by using carbon fiber (CFRP strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments. The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.

  3. Numerical Analysis of Effectiveness of Strengthening Concrete Slab in Tension of the Steel-Concrete Composite Beam Using Pretensioned CFRP Strips

    Science.gov (United States)

    Jankowiak, Iwona; Madaj, Arkadiusz

    2017-12-01

    One of the methods to increase the load carrying capacity of the reinforced concrete (RC) structure is its strengthening by using carbon fiber (CFRP) strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments). The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.

  4. Long-Term Vibration Monitoring of the Effects of Temperature and Humidity on PC Girders with and without Fly Ash considering ASR Deterioration

    Directory of Open Access Journals (Sweden)

    Tuan Minh Ha

    2017-01-01

    Full Text Available Structural responses have been used as inputs in the evaluation procedures of civil structures for years. Apart from the degradation of a structure itself, changes in the environmental conditions affect its characteristics. For adequate maintenance, it is necessary to quantify the environment-induced changes and discriminate them from the effects due to damage. This study investigates the variation in the vibration responses of prestressed concrete (PC girders, which were deteriorated because of the alkali–silica reaction (ASR, concerning ambient temperature and humidity. Three PC girders were exposed to outdoor weather conditions outside the laboratory, one of which had a selected amount of fly ash in its mixture to mitigate the ASR. The girders were periodically vibration tested for one and a half years. It was found that when the temperature and humidity increased, the frequencies and damping ratios decreased in proportion. No apparent variation in the mode shapes could be identified. A finite element model was proposed for numerical verification, the results of which were in good agreement with the measured changes in the natural frequencies. Moreover, the different dynamic performances of the three specimens indicated that the fly ash significantly affected the vibrations of the PC girders under ASR deterioration.

  5. Design and construction of PC cable-stayed bridge reducing the weight of dead load (Minamitabaru No. 1 Bridge). Shuko danmen no keiryoka wo hakatta PC shachokyo (kasho Minamitabaru 1 go kyo)

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, H. (Building Research Inst., Tokyo (Japan)); Ikari, K.; Ono, Y. (Ministry of Construction, Tokyo (Japan)); Hirano, A.

    1993-03-15

    The Minamitabaru No.1 bridge is a PC cable-stayed bridge with a 170m center span. The cross section dead load weight of the main beam in the center span is reduced to decrease the unbalance moment during construction and the negative reaction force after the completion. As a result, the average volume of concrete in the center span becomes 0.55m[sup 3]/m[sup 2] which is less by about 20% in comparison with a PC cable-stayed bridge of the similar scale. Separated 2 chamber box girder cross section is adopted for the shape of the main beam cross section to reduce the dead load weight of the cross section, and to improve the rigidity of the cross section and wind resisting stability, etc. In addition, a cross beam is provided in the diagonal member anchorage position to integrate the two box beams. A wind tunnel test is performed using a 1/30 scale model to confirm the wind resisting stability. The diagonal member is structured with several PC steel members. At the same time, a stretching work carriage is developed and used which can establish 3 dimensional position and direction by a hydraulic jack. 7 figs.

  6. Construction of cable-stayed prestressed concrete bridge, having Japan`s first independent single slanted tower; Nippon hatsu no keisha shuto wo motsu PC shachokyo no seko

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Y.; Naito, H. [Penta-Ocean Construction Co. Ltd., Tokyo (Japan); Takeuchi, H.; Mikami, T.

    1994-08-01

    In the Hachinoe Harbor, Aomori prefecture, a man-made island (Hachinoe Port Island) is being constructed by reclamation. When proceeding this undertaking plan, a construction of the Hachinoe Harbor Port Island connection bridge, which connects the man-made island with the existing harbor district, was made an urgent necessity. This connecting bridge is a bridge with a total length of 256.56m, and is constituted of two span continuous PC slanted bridge and three span continuous PC box girder bridge. This slanted bridge has become an asymmetrical structure due to several conditions coming from a plan, and moreover it has the first structural shape as a road bridge in Japan, of which main tower is 15{degree} slanted independent single tower type, there are more problems for the work execution compared with other normal slanted bridges. In addition, because it is situated in an extremely cruel environment like in the cold region and in the marine environment, a sufficient consideration is required for its design and work execution in order to insure a durability. In this report, an outline of work execution content about PC slanted bridge part currently under a construction zealously aiming at a completion in the end of the fiscal year 1994 is introduced. 2 refs., 14 figs., 4 tabs.

  7. Static behaviors of long-span cable-stayed bridge; Chodai shachokyo no seiteki kyodo ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xu [Saitama Univ., Saitama (Japan). Graduate School; Yamaguchi, H.; Ito, M. [Saitama Univ., Urawa (Japan). Faculty of Engineering

    1996-04-21

    In this study, incremental equation of cable-stayed bridge is formulated by finite element method taking the geometrical nonlinear analysis into account. Then, as an example of designing a bridge with 1500m span, setting up the initial tension, analysis of in-plane behavior caused by live loads as well as analysis of the behavior against wind caused by out-of-plane wind load that are necessary for designing a bridge with 1500m span are carried out. The main results obtained through the study are as follows. As for the cable stayed bridge with 1500m center super long-span having supplementary supporting points between the side arms, the geometrical non-linearity caused by the in-plane design live loads is not remarkable. The effects of wind which acts on girders on analysis of the behaviors against wind are different depending on the aerodynamic performance of the girder and in the case of high wind speed, strong effects on the behavior against wind of the in-plane and screws generate. As the changing of tension of the cable makes influences on the force of in-plane cross section and on displacement of the girder, if the wind speed is very high, the analysis results of the behaviors against wind of in-plane and screws of the cable-stayed bridge may be different depending on in what manner the wind load on the cable to be treated. 16 refs., 16 figs., 1 tab.

  8. Comparison and calibration of numerical models from monitoring data of a reinforced concrete highway bridge

    Directory of Open Access Journals (Sweden)

    R. G. M. de Andrade

    Full Text Available The last four decades were important for the Brazilian highway system. Financial investments were made so it could expand and many structural solutions for bridges and viaducts were developed. In parallel, there was a significant raise of pathologies in these structures, due to lack of maintenance procedures. Thus, this paper main purpose is to create a short-term monitoring plan in order to check the structural behavior of a curved highway concrete bridge in current use. A bridge was chosen as a case study. A hierarchy of six numerical models is shown, so it can validate the bridge's structural behaviour. The acquired data from the monitoring was compared with the finest models so a calibration could be made.

  9. Impact Coefficient Analysis of Long-Span Railway Cable-Stayed Bridge Based on Coupled Vehicle-Bridge Vibration

    Directory of Open Access Journals (Sweden)

    Yongle Li

    2015-01-01

    Full Text Available Compared with medium and small span bridges, very limited attention has been paid on the research of the impact coefficient of long-span railway bridges. To estimate the impact effects of long-span railway bridges subjected to moving vehicles, a real long-span railway cable-stayed bridge is regarded as the research object in this study, and a coupled model of vehicle-bridge system is established. The track irregularities are taken as the system excitation and the dynamic responses of the vehicle-bridge system are calculated. The impact effects on main girder, stayed cable, bearings, and bridge tower are discussed at various vehicle speeds. The results show that different components of the long-span railway cable-stayed bridge have different impact coefficients. Even for each part, the impact coefficient is also different at different local positions. It reveals that the impact coefficients in the actual situation may have significant differences with the related code clauses in the present design codes.

  10. Long-term behaviour of a steel-concrete composite railway bridge deck

    OpenAIRE

    STAQUET, S; TAILHAN, JL; ESPION, B

    2005-01-01

    A prefabricated, composite and prestressed railway bridge deck has been instrumented in June 2000 with strain gages and vibrating wire extensometers. The purpose of this paper is to report on the comparison between strains recorded in situ up to four years with values computed within the framework of an original time-dependent analysis base on the evolution of the degree of hydration and the internal relative humidity in concrete. These fundamental parameters used in the proposed model to com...

  11. Study on load test of 100m cross-reinforced deck type concrete box arch bridge

    Science.gov (United States)

    Shi, Jing Xian; Cheng, Ying Jie

    2018-06-01

    Found in the routine quality inspection of highway bridge that many vertical fractures on the main beam (10mT beam) of the steel reinforced concrete arch bridge near the hydropower station. In order to grasp the bearing capacity of this bridge under working conditions with cracks, the static load and dynamic load test of box arch bridge are carried out. The Midas civil theory is calculated by using the special plate trailer - 300 as the calculation load, and the deflection and stress of the critical section are tested by the equivalent cloth load in the test vehicle. The pulsation test, obstacles and no obstacle driving test were carried out. Experimental results show that the bridge under the condition of the test loads is in safe condition, main bearing component of the strength and stiffness meet the design requirements, the crack width does not increase, in the process of loading bridge overall work performance is good.

  12. Nigerian Journal of Technology - Vol 33, No 4 (2014)

    African Journals Online (AJOL)

    Evaluation of the Suitability of Low-Density Polyethylene (LDPE) Waste as Fine Aggregate in Concrete · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL ... Stress Distribution in Continuous Thin-Walled Multi-Cell Box Girder Bridges · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD ...

  13. Railway bridge monitoring during construction and sliding

    Science.gov (United States)

    Inaudi, Daniele; Casanova, Nicoletta; Kronenberg, Pascal; Vurpillot, Samuel

    1997-05-01

    The Moesa railway bridge is a composite steel concrete bridge on three spans of 30 m each. The 50 cm thick concrete deck is supported on the lower flanges of two continuous, 2.7 m high I-beams. The bridge has been constructed alongside an old metallic bridge. After demolishing this one, the new bridge has been slid for 5 m by 4 hydraulic jacks and positioned on the refurbished piles of the old bridge. About 30 fiber optic, low-coherence sensors were imbedded in the concrete deck to monitor its deformations during concrete setting and shrinkage, as well as during the bridge sliding phase. In the days following concrete pour it was possible to follow its thermal expansion due to the exothermic setting reaction and the following thermal and during shrinkage. The deformations induced by the additional load produced by the successive concreting phases were also observed. During the bridge push, which extended over six hours, the embedded and surface mounted sensors allowed the monitoring of the curvature variations in the horizontal plane due to the slightly uneven progression of the jacks. Excessive curvature and the resulting cracking of concrete could be ruled out by these measurements. It was also possible to observe the bridge elongation under the heating action of the sun.

  14. Optimum design of large span concrete filled steel tubular arch bridge based on static, stability and modal analysis

    Institute of Scientific and Technical Information of China (English)

    赵长军; 胡隽; 徐兴

    2002-01-01

    A three-dimensional finite element model was established for a large span concrete filled steel tubular (CFST) arch bridge which is currently under construction. The arch rib, the spandrel columns, the prestressed concrete box-beam, the cast-in-situ concrete plate of bridge deck, the steel box-beam and the crossbeams connecting the two pieces of arch ribs, were modeled by three-dimensional Timoshenko beam elements (3DTBE). The suspenders were modeled by three-dimensional cable elements (3DCE). Both geometric nonlinearity and prestress effect could be included in each kind of element. At the same time a second finite element model with the same geometric and material properties excepted for the sectional dimension of arch rib was set up. Static dynamic analyses were performed to determine the corresponding characteristics of the structure. The results showed that the arch rib's axial rigidity could be determined by static analysis. The stability and vibration of this system could be separated into in-plane modes, out-of-plane modes and coupled modes. The in-plane stability and dynamic characteristics are determined by the arch rib's vertical stiffness and that of out-of-plane is determined by the crossbeams' stiffness and arch rib's lateral stiffness mainly. The in-plane stiffness is much greater than that of out-of-plane for this kind of bridge . The effect of geometric nonlinearity and prestress effect on bridge behavior is insignificant.

  15. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan

    , and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version......The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional flow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the flow field around bridge sections...

  16. Estimation of Tsunami Bore Forces on a Coastal Bridge Using an Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Iman Mazinani

    2016-04-01

    Full Text Available This paper proposes a procedure to estimate tsunami wave forces on coastal bridges through a novel method based on Extreme Learning Machine (ELM and laboratory experiments. This research included three water depths, ten wave heights, and four bridge models with a variety of girders providing a total of 120 cases. The research was designed and adapted to estimate tsunami bore forces including horizontal force, vertical uplift and overturning moment on a coastal bridge. The experiments were carried out on 1:40 scaled concrete bridge models in a wave flume with dimensions of 24 m × 1.5 m × 2 m. Two six-axis load cells and four pressure sensors were installed to the base plate to measure forces. In the numerical procedure, estimation and prediction results of the ELM model were compared with Genetic Programming (GP and Artificial Neural Networks (ANNs models. The experimental results showed an improvement in predictive accuracy, and capability of generalization could be achieved by the ELM approach in comparison with GP and ANN. Moreover, results indicated that the ELM models developed could be used with confidence for further work on formulating novel model predictive strategy for tsunami bore forces on a coastal bridge. The experimental results indicated that the new algorithm could produce good generalization performance in most cases and could learn thousands of times faster than conventional popular learning algorithms. Therefore, it can be conclusively obtained that utilization of ELM is certainly developing as an alternative approach to estimate the tsunami bore forces on a coastal bridge.

  17. Finite-Element Investigation of the Structural Behavior of Basalt Fiber Reinforced Polymer (BFRP- Reinforced Self-Compacting Concrete (SCC Decks Slabs in Thompson Bridge

    Directory of Open Access Journals (Sweden)

    Lingzhu Zhou

    2018-06-01

    Full Text Available The need for a sustainable development and improved whole life performance of concrete infrastructure has led to the requirement of more durable and sustainable concrete bridges alongside accurate predictive analysis tools. Using the combination of Self-Compacting Concrete (SCC with industrial by-products and fiber-reinforced polymer (FRP, reinforcement is anticipated to address the concerns of high carbon footprint and corrosion in traditional steel-reinforced concrete structures. This paper presents a numerical investigation of the structural behavior of basalt fiber-reinforced polymer (BFRP-reinforced SCC deck slabs in a real bridge, named Thompson Bridge, constructed in Northern Ireland, U.K. A non-linear finite element (FE model is proposed by using ABAQUS 6.10 in this study, which is aimed at extending the previous investigation of the field test in Thompson Bridge. The results of this field test were used to validate the accuracy of the proposed finite element model. The results showed good agreement between the test results and the numerical results; more importantly, the compressive membrane action (CMA inside the slabs could be well demonstrated by this FE model. Subsequently, a series of parametric studies was conducted to investigate the influence of different parameters on the structural performance of the deck slabs in Thompson Bridge. The results of the analyses are discussed, and conclusions on the behavior of the SCC deck slabs reinforced by BFRP bars are presented.

  18. Design and test of box girder for a large wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Tesauro, A.; Bitsche, R. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2012-09-15

    This report is covering the structural design and full scale test of a box girder as a part of the project ''Demonstration of new blade design using manufacturing process simulations'' supported by the EUDP program. A box girder with a predetermined outer geometry was designed using new inventions, which create an inner structure in the box girder. With a combination of advanced FEM analysis and the inventions it was possible to reduce the material thickness of the cap by up to 40%. The new design of the box girder was manufactured at SSP Technology A/S, where it was demonstrated that the manufacturing process could include the new inventions. Subsequently the box girder was transported to the blade test facility at DTU Wind Energy. A series of test was performed with the blade to investigate the behaviour during loading, and finally the girder was loaded to ultimate failure. The report includes the description of the test setup, the test and an overview over the results from the test performed on the box girder. During the final test the box girder failed at 58 % of the expected ultimate load. Unfortunately, no definite conclusion could be made concerning the failure mechanism. (Author)

  19. Dynamic Analysis of Cable-Stayed Bridges Affected by Accidental Failure Mechanisms under Moving Loads

    Directory of Open Access Journals (Sweden)

    Fabrizio Greco

    2013-01-01

    Full Text Available The dynamic behavior of cable-stayed bridges subjected to moving loads and affected by an accidental failure in the cable suspension system is investigated. The main aim of the paper is to quantify, numerically, the dynamic amplification factors of typical kinematic and stress design variables, by means of a parametric study developed in terms of the structural characteristics of the bridge components. The bridge formulation is developed by using a geometric nonlinear formulation, in which the effects of local vibrations of the stays and of large displacements in the girder and the pylons are taken into account. Explicit time dependent damage laws, reproducing the failure mechanism in the cable system, are considered to investigate the influence of the failure mode characteristics on the dynamic bridge behavior. The analysis focuses attention on the influence of the inertial characteristics of the moving loads, by accounting coupling effects arising from the interaction between girder and moving system. Sensitivity analyses of typical design bridge variables are proposed. In particular, the effects produced by the moving system characteristics, the tower typologies, and the failure mode characteristics involved in the cable system are investigated by means of comparisons between damaged and undamaged bridge configurations.

  20. Monitoring of pre-release cracks in prestressed concrete using fiber optic sensors

    Science.gov (United States)

    Abdel-Jaber, Hiba; Glisic, Branko

    2015-04-01

    Prestressed concrete experiences low to no tensile stresses, which results in limiting the occurrence of cracks in prestressed concrete structures. However, the nature of construction of these structures requires the concrete not to be subjected to the compressive force from the prestressing tendons until after it has gained sufficient compressive strength. Although the structure is not subjected to any dead or live load during this period, it is influenced by shrinkage and thermal variations. Thus, the concrete can experience tensile stresses before the required compressive strength has been attained, which can result in the occurrence of "pre-release" cracks. Such cracks are visually closed after the transfer of the prestressing force. However, structural capacity and behavior can be impacted if cracks are not sufficiently closed. This paper researches a method for the verification of the status of pre-release cracks after transfer of the prestressing force, and it is oriented towards achievement of Level IV Structural Health Monitoring (SHM). The method relies on measurements from parallel long-gauge fiber optic sensors embedded in the concrete prior to pouring. The same sensor network is used for the detection and characterization of cracks, as well as the monitoring of the prestressing force transfer and the determination of the extent of closure of pre-release cracks. This paper outlines the researched method and presents its application to a real-life structure, the southeast leg of Streicker Bridge on the Princeton University campus. The application structure is a curved continuous girder that was constructed in 2009. Its deck experienced four pre-release cracks that were closed beyond the critical limits based on the results of this study.

  1. STRESS-DEFORMED STATE OF A STRUT-FRAMED CRANE GIRDER

    Directory of Open Access Journals (Sweden)

    Kh. M. Muselemov

    2017-01-01

    Full Text Available Objectives. The aim of the present work is to study the influence of design parameters on the stress-deformed state of a sprengel crane girder; to compile the tables and corresponding graphs illustrating changes in internal force factors in the characteristic cross-sections of the system elements under consideration. The article describes the study of the stress-deformed state (SDS of a metal strut-framed crane girder.Methods. Numerical methods of analysis based on the use of the Green's function are used during solving this problem. A dimensionless parameter is introduced, depending on which the tables and graphs are constructed. According to the known algorithm, the calculations of internal force factors in the sections of the considered construction are performed.Results. Depending on the dimensionless parameter characterising the geometry and physical features of the system, tables of bending moments and transverse forces are compiled. According to these tables, the appropriate graphs are plotted in order to choose easily the optimal design parameters.Conclusion. The dependence of the moments and transverse forces on the dimensionless parameter k was found, the corresponding graphs were plotted and the metal costs for the girders were calculated. The minimum values of the moments and transverse forces are established to take place when the dimensionless parameter k values are close to zero. The most economical was a strut-framed crane girder having k = 0.0001. The most uneconomical had k = 0.05 and k =∞. Eventually, the sprengel girders were found to be more profitable as compared to conventional crane girders. In the examples considered in the article, the metal savings amounted up to 14%. The presented methodology allows the calculation and designing of strut-framed crane girders with two racks to be carried out. 

  2. Design and test of box girder for a large wind turbine blade

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Tesauro, Angelo; Bitsche, Robert

    This report is covering the structural design and full scale test of a box girder as a part of the project “Demonstration of new blade design using manufacturing process simulations” supported by the EUDP program. A box girder with a predetermined outer geometry was designed using new inventions...... that the manufacturing process could include the new inventions. Subsequently the box girder was transported to the blade test facility at DTU Wind Energy. A series of test was performed with the blade to investigate the behaviour during loading, and finally the girder was loaded to ultimate failure. The report includes...... the description of the test setup, the test and an overview over the results from the test performed on the box girder. During the final test the box girder failed at 58 % of the expected ultimate load. Unfortunately, no definite conclusion could be made concerning the failure mechanism....

  3. Synthesis and evaluation of lightweight concrete research relevant to the AASHTO LRFD bridge design specifications : potential revisions for definition and mechanical properties.

    Science.gov (United States)

    2012-11-01

    Much of the fundamental basis for the current lightweight concrete provisions in the AASHTO LRFD Bridge : Design Specifications is based on research of lightweight concrete (LWC) from the 1960s. The LWC that was : part of this research used tradition...

  4. A Damage Prognosis Method of Girder Structures Based on Wavelet Neural Networks

    Directory of Open Access Journals (Sweden)

    Rumian Zhong

    2014-01-01

    Full Text Available Based on the basic theory of wavelet neural networks and finite element model updating method, a basic framework of damage prognosis method is proposed in this paper. Firstly, a damaged I-steel beam model testing is used to verify the feasibility and effectiveness of the proposed damage prognosis method. The results show that the predicted results of the damage prognosis method and the measured results are very well consistent, and the maximum error is less than 5%. Furthermore, Xinyihe Bridge in the Beijing-Shanghai Highway is selected as the engineering background, and the damage prognosis is conducted based on the data from the structural health monitoring system. The results show that the traffic volume will increase and seasonal differences will decrease in the next year and a half. The displacement has a slight increase and seasonal characters in the critical section of mid span, but the strain will increase distinctly. The analysis results indicate that the proposed method can be applied to the damage prognosis of girder bridge structures and has the potential for the bridge health monitoring and safety prognosis.

  5. Wave induced extreme hull girder loads on containerships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Pedersen, Preben Terndrup; Shi, Bill

    2009-01-01

    This paper provides simple but rational procedures for prediction of extreme wave – induced sectional hull girder forces with reasonable engineering accuracy. The procedures take into account main ship hull characteristics such as: length, breadth, draught, block coefficient, bow flare coefficient......, forward speed and hull flexibility. The vertical hull girder loads are evaluated for specific operational profiles. Firstly a quadratic strip theory is presented which can give separate predictions for the hogging and sagging bending moments and shear forces and for hull girder loads. Then this procedure...... is based on rational methods it can be applied for novel single hull ship types not presently covered by the rules of the classification societies or to account for specific operational profiles....

  6. Monitoring Bridge Dynamic Responses Using Fiber Bragg Grating Tiltmeters.

    Science.gov (United States)

    Xiao, Feng; Chen, Gang S; Hulsey, J Leroy

    2017-10-20

    In bridge health monitoring, tiltmeters have been used for measuring rotation and curvature; however, their application in dynamic parameter identification has been lacking. This study installed fiber Bragg grating (FBG) tiltmeters on the bearings of a bridge and monitored the dynamic rotational angle. The dynamic features, including natural frequencies and mode shapes, have been identified successfully. The innovation presented in this paper is the first-time use of FBG tiltmeter readings to identify the natural frequencies of a long-span steel girder bridge. The identified results have been verified using a bridge finite element model. This paper introduces a new method for the dynamic monitoring of a bridge using FBG tiltmeters. Limitations and future research directions are also discussed in the conclusion.

  7. Monitoring Bridge Dynamic Responses Using Fiber Bragg Grating Tiltmeters

    Directory of Open Access Journals (Sweden)

    Feng Xiao

    2017-10-01

    Full Text Available In bridge health monitoring, tiltmeters have been used for measuring rotation and curvature; however, their application in dynamic parameter identification has been lacking. This study installed fiber Bragg grating (FBG tiltmeters on the bearings of a bridge and monitored the dynamic rotational angle. The dynamic features, including natural frequencies and mode shapes, have been identified successfully. The innovation presented in this paper is the first-time use of FBG tiltmeter readings to identify the natural frequencies of a long-span steel girder bridge. The identified results have been verified using a bridge finite element model. This paper introduces a new method for the dynamic monitoring of a bridge using FBG tiltmeters. Limitations and future research directions are also discussed in the conclusion.

  8. Bridges Dynamic Parameters Identification Based On Experimental and Numerical Method Comparison in Regard with Traffic Seismicity

    Science.gov (United States)

    Krkošková, Katarína; Papán, Daniel; Papánová, Zuzana

    2017-10-01

    The technical seismicity negatively affects the environment, buildings and structures. Technical seismicity means seismic shakes caused by force impulse, random process and unnatural origin. The vibration influence on buildings is evaluated in the Eurocode 8 in Slovak Republic, however, the Slovak Technical Standard STN 73 0036 includes solution of the technical seismicity. This standard also classes bridges into the group of structures that are significant in light of the technical seismicity - the group “U”. Using the case studies analysis by FEM simulation and comparison is necessary because of brief norm evaluation of this issue. In this article, determinate dynamic parameters by experimental measuring and numerical method on two real bridges are compared. First bridge, (D201 - 00) is Scaffold Bridge on the road I/11 leading to the city of Čadca and is situated in the city of Žilina. It is eleven - span concrete road bridge. The railway is the obstacle, which this bridge spans. Second bridge (M5973 Brodno) is situated in the part of Žilina City on the road of I/11. It is concrete three - span road bridge built as box girder. The computing part includes 3D computational models of the bridges. First bridge (D201 - 00) was modelled in the software of IDA Nexis as the slab - wall model. The model outputs are natural frequencies and natural vibration modes. Second bridge (M5973 Brodno) was modelled in the software of VisualFEA. The technical seismicity corresponds with the force impulse, which was put into this model. The model outputs are vibration displacements, velocities and accelerations. The aim of the experiments was measuring of the vibration acceleration time record of bridges, and there was need to systematic placement of accelerometers. The vibration acceleration time record is important during the under - bridge train crossing, about the first bridge (D201 - 00) and the vibration acceleration time domain is important during deducing the force

  9. FIP Symposium 1997 (South Africa); FIP Symposium 1997 (Minami Africa) ni sankashite

    Energy Technology Data Exchange (ETDEWEB)

    Niwano, T. [Oriental Construction Co. Ltd., Tokyo (Japan); Shinagawa, K.; Takahashi, T.

    1997-07-31

    FIP (Federation Internationale de la Precontrainte) Symposium was held in Johannesburg, South Africa. Ikeda and others were sent by the Japan Prestressed Concrete Engineering Association to participate the symposium and visit some bridges in Hong Kong and South Africa. As the keynote addresses, the trends of PC in South Africa, Europe, America, East Asia and Australia was reported. Japanese papers among 105 presented papers are as follows: Iwasaki`s `Construction method of the railway PC skew slab bridge, Natori-Gawa bridge`, Toda`s `Construction of the suspended slab bridge longest in the world, Yume Tsuri-bashi`, Iizuka`s `Experiment on earthquake characteristics of precast concrete columns` and Sugita`s `Study on concrete using high-activity rice hull ash`. The group visited Kap Shui Mun bridge (Hong Kong) of 750m long constructed by Japanese JV which is the 5-span continuous complex cable stayed bridge, and featured by PC box girder structure of side spans. The group also visited Gouritz River PC bridge in South Africa. 5 refs., 10 figs.

  10. Students design composite bridges

    NARCIS (Netherlands)

    Stark, J.W.B.; Galjaard, J.C.; Brekelmans, J.W.P.M.

    1999-01-01

    The paper gives an overview of recent research on steel-concrete composite bridge design by students of Delft University of Technology doing their master's thesis. Primary objective of this research was to find possibilities for application of steel-concrete composite bridges in the Netherlands,

  11. Field dynamic testing on a Cyprus concrete highway bridge using Wireless Sensor Network (WSN)

    Science.gov (United States)

    Votsis, Renos A.; Kyriakides, Nicholas; Tantele, Elia A.; Chrysostomou, Christis Z.; Onoufriou, Toula

    2014-08-01

    The aims of the bridge management authorities are to ensure that bridges fulfil their purpose and functionality during their design life. So, it is important to identify and quantify the deterioration of the structural condition early so that a timely application of an intervention will avoid more serious problems and increased costs at a later stage. A measure to enhance the effectiveness of the existing structural evaluation by visual inspection is instrumental monitoring using sensors. The activities performed in this process belong to the field of Structural Health Monitoring (SHM). The SHM offers opportunities for continuous or periodic monitoring on bridges and technological advances allow nowadays the employment of wireless sensors networks (WSN) for this task. A SHM application using WSN was implemented on a multi-span reinforced concrete (RC) highway bridge in Limassol with the objective to study its dynamic characteristics and performance. Part of the specific bridge will be replaced and this offered a unique opportunity for measurements before and after construction so that apparent changes in the dynamic characteristics of the bridge will be identified after the repairing work. The measurements provided indications on the frequencies and mode shapes of the bridge and the response amplitude during the passing of traffic. The latter enabled the investigation of the dependency of the bridge's structural damping to the amplitude of vibration induced by the passing of traffic. The results showed that as the excitation increases the magnitude of modal damping increases as well.

  12. Steel framing strategies for highly skewed bridges to reduce/eliminate distortion near skewed supports.

    Science.gov (United States)

    2014-05-01

    Different problems in straight skewed steel I-girder bridges are often associated with the methods used for detailing the cross-frames. Use of theoretical terms to describe these detailing methods and absence of complete and simplified design approac...

  13. Embodied Energy Optimization of Prestressed Concrete Slab Bridge Decks

    Directory of Open Access Journals (Sweden)

    Julián Alcalá

    2018-04-01

    Full Text Available This paper presents one approach to the analysis and design of post-tensioned cast-in-place concrete slab bridge decks. A Simulated Annealing algorithm is applied to two objective functions: (i the economic cost; and (ii the embodied energy at different stages of production materials, transport, and construction. The problem involved 33 discrete design variables: five geometrical ones dealing with the thickness of the slab, the inner and exterior web width, and two flange thicknesses; concrete type; prestressing cables, and 26 variables for the reinforcement set-up. The comparison of the results obtained shows two different optimum families, which indicates that the traditional criteria of economic optimization leads to inefficient designs considering the embodied energy. The results indicate that the objectives are not competing functions, and that optimum energy designs are close to the optimum cost designs. The analysis also showed that the savings of each kW h of energy consumed carries an extra cost of 0.49€. The best cost solution presents 5.3% more embodied energy. The best energy solution is 9.7% more expensive than that of minor cost. In addition, the results have showed that the best cost solutions are not the best energy solutions.

  14. 77 FR 53251 - Annual Materials Report on New Bridge Construction and Bridge Rehabilitation

    Science.gov (United States)

    2012-08-31

    ... INFORMATION CONTACT: Ms. Ann Shemaka, Office of Bridge Technology, (202) 366-1575, or via email at [email protected] or Mr. Thomas Everett, Office of Bridge Technology, (202) 366-4675, or via email at thomas... the NBI: steel, concrete, pre-stressed concrete, and other. The category ``other'' includes wood...

  15. Cohesive fracture model for functionally graded fiber reinforced concrete

    International Nuclear Information System (INIS)

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-01-01

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  16. Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction

    Science.gov (United States)

    2017-09-01

    Concrete bridge decks are directly exposed to daily traffic loads and may experience some surface cracking caused by excessive stress or fatigue accumulation, which requires repair or replacement. Among typical bridges in North America, bridge decks ...

  17. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel

    International Nuclear Information System (INIS)

    Tewary, N.K.; Kundu, A.; Nandi, R.; Saha, J.K.; Ghosh, S.K.

    2016-01-01

    Highlights: • Microstructure and corrosion performance are compared for two structural steels. • Microstructure evolution shows primarily ferrite-pearlite in both the steels. • Steels show higher corrosion rate in 1% HCl solution than in 3.5% NaCl solution. • The corrosion products show the presence of oxide, hydroxide and oxy-hydroxides. • The corroded surface reveals morphologies like flowery, cotton balls and rosette. - Abstract: A comparison on microstructure and corrosion performance has been made between the two structural steels used in old railway girder bridge (Sample A) and modern grades of weathering structural steel (Sample B). The microstructures, viewed under optical microscope and scanning electron microscope (SEM), show mainly ferrite-pearlite phase constituents in both the steels, A and B. The phase fraction analysis shows higher amount of pearlite in steel A compared to that of steel B. The grain size of steel A is larger than that of steel B under identical processing condition. The immersion corrosion test in 3.5% NaCl shows that the corrosion rate of steel A increases with time, while the same for steel B decreases with time. On the other hand, corrosion test in 1% HCl shows that the corrosion rate of both steel A and B is higher as compared to that of NaCl which always decreases with time. The XRD analysis of corrosion products show the presence of many oxides, hydroxide and oxy-hydroxide like Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH), Akaganeite (β-FeOOH), Magnetite (Fe_3O_4) and Maghemite (γ-Fe_2O_3) in both the steels. The SEM images of corroded surfaces reveal different morphologies like flowery, cotton balls and rosette etc. which indicate that the corrosion products primarily contain Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH) and Akaganeite (β-FeOOH).

  18. Ultra-high performance fiber-reinforced concrete (UHPFRC) for infrastructure rehabilitation Volume II : behavior of ultra-high strength concrete bridge deck panels compared to conventional stay-in-place deck panels

    Science.gov (United States)

    2017-08-01

    The remarkable features of ultra-high performance concrete (UHPC) have been reported. Its application in bridge construction has been an active research area in recent years, attributed to its higher compressive strength, higher ductility and reduced...

  19. Numerical/experimental research on welded joints in aluminium truss girders

    NARCIS (Netherlands)

    van Hove, B.W.E.M.; Soetens, F.; Mazzolani, F.M.; Bellucci, F.; Faggiano, B.; Squillace, A.

    2016-01-01

    Welded joints in a 30 meter span aluminium truss girder were investigated numerically and experimentally. Since aluminium design rules for welded K-and N-joints in CHS truss girders were lacking the joints were checked using steel design rules. Calculations showed that the N-joints were governing

  20. Computer modeling of road bridge for simulation moving load

    Directory of Open Access Journals (Sweden)

    Miličić Ilija M.

    2016-01-01

    Full Text Available In this paper is shown computational modelling one span road structures truss bridge with the roadway on the upper belt of. Calculation models were treated as planar and spatial girders made up of 1D finite elements with applications for CAA: Tower and Bridge Designer 2016 (2nd Edition. The conducted computer simulations results are obtained for each comparison of the impact of moving load according to the recommendations of the two standards SRPS and AASHATO. Therefore, it is a variant of the bridge structure modeling application that provides Bridge Designer 2016 (2nd Edition identical modeled in an environment of Tower. As important information for the selection of a computer applications point out that the application Bridge Designer 2016 (2nd Edition we arent unable to treat the impacts moving load model under national standard - V600. .

  1. Behaviour of Steel Fibre Reinforced Rubberized Continuous Deep Beams

    Science.gov (United States)

    Sandeep, MS; Nagarajan, Praveen; Shashikala, A. P.

    2018-03-01

    Transfer girders and pier caps, which are in fact deep beams, are critical structural elements present in high-rise buildings and bridges respectively. During an earthquake, failure of lifeline structures like bridges and critical structural members like transfer girders will result in severe catastrophes. Ductility is the key factor that influences the resistance of any structural member against seismic action. Structural members cast using materials having higher ductility will possess higher seismic resistance. Previous research shows that concrete having rubber particles (rubcrete) possess better ductility and low density in comparison to ordinary concrete. The main hindrance to the use of rubcrete is the reduction in compressive and tensile strength of concrete due to the presence of rubber. If these undesirable properties of rubcrete can be controlled, a new cementitious composite with better ductility, seismic performance and economy can be developed. A combination of rubber particles and steel fibre has the potential to reduce the undesirable effect of rubcrete. In this paper, the effect of rubber particles and steel fibre in the behaviour of two-span continuous deep beams is studied experimentally. Based on the results, optimum proportions of steel fibre and rubber particles for getting good ductile behaviour with less reduction in collapse load is found out.

  2. Dowel Behavior of Rebars in Small Concrete Block for Sliding Slab Track on Railway Bridges

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Lee

    2018-01-01

    Full Text Available In recent years, several studies have investigated the sliding slab track for railway bridges. In the design of sliding slab tracks, one of the most important considerations is to evaluate the shear capacity of the lateral supporting concrete blocks in which dowel rebars are embedded. The predictions of the dowel behavior of rebars by existing models are considerably different. Therefore, in this study, the actual dowel behavior of the rebars embedded in a small concrete block was extensively investigated through experiments. Test variables were concrete compressive strength, dowel rebar diameter and yield strength, specimen thickness, and dowel rebar spacing. Existing model predictions were considerably different from test results. The maximum dowel force increased as concrete compressive strength and dowel rebar diameter increased, while it did not increase considerably with other test variables. Unlike in existing models, the shear slip at the maximum dowel force decreased as the dowel rebar diameter increased. Existing models significantly underestimated the maximum dowel force of the dowel rebars with small diameters and overestimated it for the dowel rebars with large diameters. This work can be useful for developing a more rational model to represent the actual dowel behavior of the rebars embedded in small concrete blocks.

  3. Transfer and development length of prestressing tendons in full-scale AASHTO prestressed concrete girders using self-consolidating concrete.

    Science.gov (United States)

    2009-03-01

    Self-consolidating concrete (SCC) is a highly workable concrete that flows through densely reinforced or : complex structural elements under its own weight. The benefits of using SCC include: a) Reducing labor costs : by eliminating the need for mech...

  4. Wind tunnel experiments on unstable self-excited vibration of sectional girders

    Science.gov (United States)

    Král, Radomil; Pospíšil, Stanislav; Náprstek, Jiří

    2014-01-01

    In this paper, a wind tunnel analysis of two degrees-of-freedom system represented by sectional girders is carried out. Besides an evaluation of the aeroelastic coefficients, the analysis is focused on the influence of the natural frequency ratio on the initiation of unstable vibration, which can be of practical interest. On the phenomenological level, the paper also discusses experimentally ascertained response regimes, with an emphasis on their stability character. The attention is paid to the memory effect in the response described by the hysteresis loop together with the separation curves determining the stability boundaries. The influence of initial disturbance on the stability is examined. Two types of cross-sections were investigated: (i) rectangular one with the aspect ratio 1:5, and (ii) bridge-like cross-section with comparable principal dimensions. For both types of cross-sections, the limits of the stability are significantly affected by an intentionally introduced initial disturbance. This holds especially with regard to the rectangular profile where the separation curves create very narrow sub-domains between a stable and an unstable response, while the bridge-like cross-section demonstrates much stable behaviour.

  5. Experimental Analysis of Stiffness of the Riveted Steel Railway Bridge Deck Members’ Joints

    Directory of Open Access Journals (Sweden)

    Gocál Jozef

    2014-12-01

    Full Text Available The paper deals with the real behaviour of the riveted steel railway bridge deck members’ connections with respect to their bending stiffness. Attention is paid to the stringer-to-cross beam connection as well as the cross beam-to-main girder connection. The stiffness of the two connections is investigated on the basis of evaluation of the experimentally determined stress response of the observed structural members to the actual traffic load on an existing railway bridge.

  6. Investigation of Ultimate Strength of Composite Open-Web Joist-Girders

    OpenAIRE

    Showalter, Sheldon Lee

    1999-01-01

    The goal of this research was to study several methods of generating composite action using open-web joist-girders, designed and manufactured by Nucor Corporation. In addition to comparing the relative performance of these systems, it was intended to determine whether the current accepted design procedure for composite joists could be extended to joist-girders.

  7. Deterioration of Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Chloride ingress is a common cause of deterioration of reinforced concrete bridges. Concrete may be exposed to chloride by seawater or de-icing salts. The chloride initiates corrosion of the reinforcement, which through expansion disrupts the concrete. In addition, the corrosion reduces the cross...

  8. Spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2015-04-01

    TxDOT uses prestressed slab beam bridges for short-span bridges ranging from approximately 3050 ft in : length. These bridges have precast, pretensioned slab beams placed immediately adjacent to one another : with a cast-in-place slab made composi...

  9. Skewed steel bridges, part ii : cross-frame and connection design to ensure brace effectiveness : technical summary.

    Science.gov (United States)

    2017-08-01

    Skewed bridges in Kansas are often designed such that the cross-frames are carried parallel to the skew angle up to 40, while many other states place cross-frames perpendicular to the girder for skew angles greater than 20. Skewed-parallel cross-...

  10. Skewed steel bridges, part ii : cross-frame and connection design to ensure brace effectiveness : final report.

    Science.gov (United States)

    2017-08-01

    Skewed bridges in Kansas are often designed such that the cross-frames are carried parallel to the skew angle up to 40, while many other states place cross-frames perpendicular to the girder for skew angles greater than 20. Skewed-parallel cross-...

  11. A Finite Segment Method for Skewed Box Girder Analysis

    Directory of Open Access Journals (Sweden)

    Xingwei Xue

    2018-01-01

    Full Text Available A finite segment method is presented to analyze the mechanical behavior of skewed box girders. By modeling the top and bottom plates of the segments with skew plate beam element under an inclined coordinate system and the webs with normal plate beam element, a spatial elastic displacement model for skewed box girder is constructed, which can satisfy the compatibility condition at the corners of the cross section for box girders. The formulation of the finite segment is developed based on the variational principle. The major advantage of the proposed approach, in comparison with the finite element method, is that it can simplify a three-dimensional structure into a one-dimensional structure for structural analysis, which results in significant saving in computational times. At last, the accuracy and efficiency of the proposed finite segment method are verified by a model test.

  12. Structural Behavior of a Long-Span Partially Earth-Anchored Cable-Stayed Bridge during Installation of a Key Segment by Thermal Prestressing

    Directory of Open Access Journals (Sweden)

    Sang-Hyo Kim

    2016-08-01

    Full Text Available This study investigated structural behavior of long-span partially earth-anchored cable-stayed bridges with a main span length of 810 m that use a new key segment closing method based on a thermal prestressing technique. A detailed construction sequence analysis matched with the free cantilever method (FCM was performed using a three-dimensional finite element (FE model of a partially earth-anchored cable-stayed bridge. The new method offers an effective way of connecting key segments by avoiding large movements resulting from the removal of the longitudinal restraint owing to the asymmetry of axial forces in the girders near the pylons. The new method develops new member forces through the process of heating the cantilever system before installing the key segment and cooling the system continuously after installing key segments. The resulting forces developed by the thermal process enhance the structural behavior of partially earth-anchored cable-stayed bridges owing to decreased axial forces in the girders.

  13. Practical cable tension adjustment based upon the satisfaction concept of bridge designers; Sekkeisha no manzokudo wo koryo shita fuzzy cable choryoku choseiho

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyoshi, M.; Tanaka, H. [Hitachi Zosen, Tokyo (Japan)] Furuta, H. [Kansai Univ., Osaka (Japan)

    1998-07-21

    Cable tension adjustment of bridge beam of cable stayed bridge and so forth that uses cable as a structural element is classified into (1) pre-stress adjustment of cable at design level, (2) slim adjustment required at erection level. The former deals with the structurally high dimensional statically indeterminate structures like cable-stayed bridges and is a process for carrying out economical design by making the stress resultant of main girder small due to the introduction of appropriate pre-stress stress on this cable. The later is the process of getting rid off the errors caused in cable tension and camber of girder and tower regarding various errors such as design, fabrication and erection errors. The authors developed analysis method using fuzzy regression analysis and this has been applied in number of practical bridges. In this research, much more practical method is developed where the aspire of designer can be introduced easily by applying the satisfaction concept. By using this, pre-stress adjustment and shim adjustment of cable can be possible in a practical way. 9 refs., 7 figs., 8 tabs.

  14. Design and construction of Chiburiko Bridge (stress ribbon bridge). Chiburiko bashi (tsurishoban kyo) no sekkei to seko

    Energy Technology Data Exchange (ETDEWEB)

    Kamisakoda, K; Tokuyama, S; Sano, K; Onuma, K [Kashima Corp., Tokyo (Japan)

    1992-07-30

    Chiburiko Bridge lies across Chiburiko which is a lake for agricultural water, and is used by people, carts and cars for administration. It is a stressed-ribbon bridge with the road surface made with concrete covered bands of cables stretched between abutments, and is the first highway bridge in Japan. A report is made on the plan and construction of the bridge. Integration of the precast slab with the cast-in-place concrete as well as mutual integration of the precast slabs are validated by the use of a reproduced model of a part of the bridge. Floor slabs are suspended by cables, and can be constructed with no form nor support by integrating cast-in-place concrete with the precast slabs on mutually joined precast slabs. It has been said that the stressed-ribbon bridge has a structure suitable for long span bridges because it has a simple structure. Studies, however, seems to be necessary on the impact caused by running of vehicles and on the wind resisting stability. 3 refs., 17 figs., 2 tabs.

  15. Exciting test of a floating type cable stayed bridge and its response observation under the typhoon; Furotiingu keishiki shachokyo (Utagenkabashi) no kishinki shiken to taifuji oto kansoku

    Energy Technology Data Exchange (ETDEWEB)

    Uno, K. [Kyushu Kyoritsu Univ., Kitakyushu (Japan). Faculty of Engineering; Aso, T. [Yamaguchi Univ., Ube (Japan). Faculty of Engineering; Kitagawa, S. [Kyushu International Univ., Kitakyushu (Japan). Faculty of Economy; Kabashima, S.

    1995-09-20

    Recently, in case of the planning and designing of bridges, of course its practicality and execution stability are considered, but consideration for landscape also is a large problem. In particular, the selection of the bridge type is very important in order to protect the beautiful natural landscape. The cable stayed bridge has become to be executed often, owing to its elegant style, however, it becomes important theme clarify the antiseismic and wind stability because of its complicated structure system and very slender girder. In this paper, the results of the dynamic characteristics of a floating type cable stayed bridge (length 292.1 m and width 14.9 m) and the observation of its dynamic behavior under the typhoon are reported. Microtremor measurement was performed to determine the dynamic characteristics of the bridge under construction. After the construction of the bridge, the excitation test was carried out in order to confirm its natural frequencies, vibration modes and damping constants. From the results of the observation of the dynamic behavior of the girder and cables under the typhoon, the wind stability of this bridge was confirmed. 10 refs., 13 figs., 9 tabs.

  16. GFRP seismic strengthening and structural heath monitoring of Portage Creek Bridge concrete columns

    International Nuclear Information System (INIS)

    Huffman, S.; Bagchi, A.; Mufti, A.; Neale, K.; Sargent, D.; Rivera, E.

    2006-01-01

    Located in Victoria British Columbia (BC), Canada, the Portage Creek Bridge is a 124m long, three-span structure with a reinforced concrete piers and abutments on H piles. The bridge was designed prior to the introduction of current bridge seismic design codes and construction practices. Therefore it was not designed to resist the earthquake forces as required by today's standards. The bridge is on a route classified as a Municipal Disaster Route scheduled to be retrofitted to prevent collapse during a design seismic event, with a return period of 475 years (i.e., an event with 105 probability of exceedance in 50 years). Conventional materials and methods were used to retrofit most of the bridge. The dynamic analysis of the bridge predicted the two tall columns of Pier No. 1 will form plastic hinges under an earthquake resulting an additional shear to the short columns of Pier No. 2. A non-liner static pushover analysis indicated the short columns will not be able to form plastic hinges prior to failure in shear. The innovative solution of Fiber Reinforced Polymer wraps (FRPs) was chosen to strengthen the short columns for shear without increasing the moment capacity. The FRP wraps and the bridge were instrumented as one of 36 demonstration projects across Canada sponsored by ISIS (Intelligent Sensing for Innovative Structure) Canada, federally funded Network of Centers of Excellence, to access the performance of FRP and the use of FOS (Fiber Optic Sensors) for Structural Health Monitoring (SHM). The two columns of the bridge pier were strengthened with GFRP (Glass Fiber Reinforced Polymer) wraps with eight bi-directional rosette type strain gauges and four long gauge fiber optic sensors attached to the outer layer of the wraps. In addition, two 3-D Crossbow accelerometers are installed on the pier cap above the columns and a traffic web-cam mounted above the deck at the pier location. The data is collected through high sped internet line to an interactive web page

  17. Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

    International Nuclear Information System (INIS)

    Ho, Duc Duy; Hong, Dong Soo; Kim, Jeong Tae

    2010-01-01

    This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified

  18. Evaluation of High-Speed Railway Bridges Based on a Nondestructive Monitoring System

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2016-01-01

    Full Text Available Recently, trains’ velocities in Korea increased more than the speed used in the design of some bridges. Accordingly, this paper demonstrates the evaluation of a railway bridge due to high-speed trains’ movement. A nondestructive monitoring system is used to assess the bridge performance under train speeds of 290, 360, 400 and 406 km/h. This system is comprised of a wireless short-term acceleration system and strain monitoring sensors attached to the bridge girder. The results of the analytical methods in time and frequency domains are presented. The following conclusions are obtained: the cross-correlation models for accelerations and strain measurements are effective to predict the performance of the bridge; the static behavior is increased with train speed developments; and the vibration, torsion, fatigue and frequency contents analyses of the bridge show that the bridge is safe under applied trains’ speeds.

  19. Numerical analysis of dynamic response of vehicle–bridge coupled system on long-span continuous girder bridge

    OpenAIRE

    An, Lipeng; Li, Dejian; Yu, Peng; Yuan, Peng

    2016-01-01

    To systematically study the vehicle–bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle–bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the “set-in-right-posi...

  20. Measurements of bridges' vibration characteristics using a mobile phone

    Directory of Open Access Journals (Sweden)

    Z. M. C. Pravia

    Full Text Available ABSTRACTThis research presents an alternative way to perform a bridge inspection, which considers the dynamics parameters from the structure. It shows an experimental phase with use of a mobile phone to extract the accelerations answers from two concrete bridges, from those records is feasible to obtain natural frequencies using the Fast Fourier Transform (FFT.Numerical models with uses finite element model (FEM allow to determine the natural frequencies from the two concrete bridges and compare with the experimental phase of each one. The final results shows it's possible to use mobiles phones to extract vibration answers from concrete bridges and define the structural behavior of bridges from natural frequencies, this procedure could be used to evaluate bridges with lower costs.

  1. Bridge monitoring by interferometric deformation sensors

    Science.gov (United States)

    Inaudi, Daniele; Vurpillot, Samuel; Casanova, Nicoletta

    1996-09-01

    In many concrete bridges, the deformations are the most relevant parameter to be monitored in both short and long- terms. Strain monitoring gives only local information about the material behavior and too many such sensors would therefore be necessary to gain a complete understanding of the bridge behavior. We have found that fiber optic deformation sensors, with measurement bases of the order of one to a few meters, can give useful information both during the first days after concrete pouring and in the long term. In a first phase it is possible to monitor the thermal expansion due to the exothermic setting reaction and successively the thermal and drying shrinkages. Thanks to the long sensor basis, the detection of a crack traverse to the measurement region becomes probable and the evolution of cracks can therefore be followed with a reduced number of sensors. In the long-term it is possible to measure the geometric deformations and therefore the creeping of the bridge under static loads, especially under its own weight. In the past two years, our laboratory has installed hundreds of fiber optic deformation sensors in more than five concrete, composite steel-concrete, refurbished and enlarged bridges (road, highway and railway bridges). The measuring technique relies on low-coherence interferometry and offers a resolution down to a few microns even for long-term measurements. This contribution briefly discusses the measurement technique and then focuses on the development of a reliable sensor for direct concrete embedding and on the experimental results obtained on these bridges.

  2. Betonreparationers holdbarhed (Durability of Concrete Repairs)

    DEFF Research Database (Denmark)

    Brimnes, Eydbjørn; Dali, Bogi í; Larsen, Erik Stoklund

    1999-01-01

    Concrete repairs on 11 pillars on bridges built in the sixties and repaired 8 to 9 years ago have been examined. Especially the chloride penetration in the repair concrete have been measured. Chloride penetration in the repair concrete is much lower than in the original concrete....

  3. Effect of Ground Motion Characteristics on the Seismic Response of a Monumental Concrete Arch Bridge

    Science.gov (United States)

    Caglayan, B. Ozden; Ozakgul, Kadir; Tezer, Ovunc

    2008-07-01

    Railway network in Turkey dates back to more than a hundred years ago and according to official records, there are approximately 18,000 railway bridges with spans varying between 50 cm up to 150 meters. One of them is a monumental concrete arch bridge with a total length of 210 meters having three major spans of 30 meters and a height of 65 meters, located in an earthquake-prone region in southern part of the country. Three-dimensional finite element model of the bridge was generated using a commercially available general finite element analysis software and based on the outcomes of a series of in-depth acceleration measurements that were conducted on-site, the model was refined. Types of ground motion records were used to investigate the seismic response and vulnerability of this massive structure in order to provide information regarding (i) damage-susceptible regions of the structure for monitoring purposes, and, (ii) seismic loads to be taken into account during evaluation and possible strengthening phases for this type of structures.

  4. Effect of Ground Motion Characteristics on the Seismic Response of a Monumental Concrete Arch Bridge

    International Nuclear Information System (INIS)

    Caglayan, B. Ozden; Ozakgul, Kadir; Tezer, Ovunc

    2008-01-01

    Railway network in Turkey dates back to more than a hundred years ago and according to official records, there are approximately 18,000 railway bridges with spans varying between 50 cm up to 150 meters. One of them is a monumental concrete arch bridge with a total length of 210 meters having three major spans of 30 meters and a height of 65 meters, located in an earthquake-prone region in southern part of the country. Three-dimensional finite element model of the bridge was generated using a commercially available general finite element analysis software and based on the outcomes of a series of in-depth acceleration measurements that were conducted on-site, the model was refined. Types of ground motion records were used to investigate the seismic response and vulnerability of this massive structure in order to provide information regarding (i) damage-susceptible regions of the structure for monitoring purposes, and, (ii) seismic loads to be taken into account during evaluation and possible strengthening phases for this type of structures

  5. Dynamic Response of a Long-Span Concrete-Filled Steel Tube Tied Arch Bridge and the Riding Comfort of Monorail Trains

    Directory of Open Access Journals (Sweden)

    Hongye Gou

    2018-04-01

    Full Text Available In this study, a dynamic response analysis procedure is proposed and applied to investigate the dynamic responses of a straddle-type concrete-filled steel tube tied arch bridge under train and truck loadings. A numerical model of the coupled monorail train–bridge system is established to investigate the dynamic behaviors of the bridge under moving trains. A refined three-dimensional finite element model is built for the bridge and a 15 degrees-of-freedom vehicle model is presented for the train. The numerical model is validated using in-situ test results and then used to analyze the dynamic displacement and acceleration of the bridge and the trains on the bridge. Based on the simulation results, the impact factor of the bridge is investigated and the riding comfort of the trains is evaluated. The investigation results show that the impact factor of vehicle loads reaches the maximum value when the resonance of the bridge is induced by the moving vehicles. The effect of train braking predominates the longitudinal vibration of the bridge but is negligible in the transverse and vertical directions. The vehicle speed is the dominating factor for the riding comfort of the train.

  6. Precast Pearl-Chain concrete arch bridges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2015-01-01

    A Pearl-Chain Bridge is a closed-spandrel arch bridge consisting of a number of straight pre-fabricated so called Super-Light Deck elements put together in an arch shape by post-tensioning cables. Several Pearl-Chain arches can be positioned adjacent to each other by a crane to achieve a bridge...... of a desired width. On top of the arch is a filling material to level out the surface of the above road. The filling only transfers vertical loads to the arch. The geometry and material properties of Super-Light Decks are presented, and we refer to several fullscale tests of Pearl-Chain arches where...... the technology was used. We also study other important components and details in the Pearl-Chain Bridge concept and review the effects of different types of loads. A theoretical case study of a circular 30 m span Pearl-Chain Bridge is presented showing the influence of a number of parameters: The number of post...

  7. Nonlinear Analysis of External Prestressed Reinforced Concrete Beams with BFRP and CFRP

    Directory of Open Access Journals (Sweden)

    Haleem K. Hussain

    2017-05-01

    Full Text Available The traditional strengthening methods for concrete structure (girders, beams, columns…. consuming time and could be an economical, a new modern repair methods using the Carbon Fiber Reinforced Polymers (CFRP and Basalt Fiber Reinforced Polymer (BFRP as a laminate strips or bars,and considered a competitive solution that will increase the life-cycle of repaired structures. This study investigated the strengthen reinforced concrete girder. Nonlinear analysis have been adopted to the models using FEM analysis (ANSYS to simulate the theoretical results compared with experimental results.Using finite element packages, more efficient and better analyses can be made to fully understand the response of individual structural components and their contribution to a structure as a whole.Three type of material are used in this study as an external prestressed wire (steel, CFRP and BFRP. The prestressed beam is modeled as simply supported beam with two concentrated point load. The results showed that all tested strengthening beam increased the load carryingcapacity of the beams depend on prestressing force. Obtained Result was compared for different type of beam.This study also was enlarged to include using CFRP and BFRPbarwhich are light weight and moredurable, lead to ease of handling and maintenance. The research conducted analytical work to evaluate the effectiveness of concrete beams reinforced normally by the use of CFRP and BFRP bars. The results showed a significant gain in the beam’s ultimate capacities using CFRP bars comparing with beam reinforced with BFRP bar and reference beam

  8. Damage Detection for Continuous Bridge Based on Static-Dynamic Condensation and Extended Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2014-01-01

    Full Text Available As an effective and classical method about physical parameter identification, extended Kalman filtering (EKF algorithm is widely used in structural damage identification, but the equations and solutions for the structure with bending deformation are not established based on EKF. The degrees of freedom about rotation can be eliminated by the static condensation method, and the dynamic condensation method considering Rayleigh damping is proposed in order to establish the equivalent and simplified modal based on complex finite element model such as continuous girder bridge. According to the requirement of bridge inspection and health monitoring, the online and convenient damage detection method based on EKF is presented. The impact excitation can be generated only on one location by one hammer actuator, and the signal in free vibration is analyzed. The deficiency that the complex excitation information is needed based on the traditional method is overcome. As a numerical example, a three-span continuous girder bridge is simulated, and the corresponding stiffness, the damage location and degree, and the damping parameter are identified accurately. It is verified that the method is suitable for the dynamic signal with high noise-signal ratio; the convergence speed is fast and this method is feasible for application.

  9. Analysis of Temperature and Longitudinal Stress of Very Large Flat Steel Box Girder in Cold Areas%寒冷地区特大扁平钢箱梁温度及纵向应力分析

    Institute of Scientific and Technical Information of China (English)

    胡铁明; 苟红兵; 张冠华; 丁科翔

    2015-01-01

    为指导寒冷地区钢箱梁桥的设计 ,以主跨436 m的钢箱梁斜拉桥——辽河特大桥为研究对象 ,对其扁平钢箱梁进行了为期8个月的温度监测 ,采用对比分析、极值分析、概率统计等方法分析钢箱梁跨中截面温度及纵向应力日变化趋势、总体变化规律及温度对纵向应力的影响情况.结果表明 :环境温度在20~45 ℃时 ,桥梁设计规范计算得到的钢箱梁顶板温度最大值小于实际监测值 ;钢箱梁连续24 h温度变化服从正弦曲线分布 ,纵向应力每天前6 h变化服从线性分布 ,后18 h服从高斯曲线分布 ;24h内温度极值点时的温度效应为其它活荷载总效应的5.7~6.5倍 ;顶板冬季最冷月平均纵向应力相比夏季最热月低12~35 M Pa ,底板冬季最冷月平均纵向应力相比夏季低12~16 M Pa.%To direct the design of steel box girder bridge in cold areas , the Liaohe River Bridge ,a steel box girder cable-stayed bridge with a main span of 436 m ,was taken as the study background ,the flat steel box girder of which experienced temperature monitoring lasting 8 months.A series of analytical methods ,including contrastive analysis ,ultimate value analysis and probabilistic computing were adopted to analyze the trend of daily variation of midspan cross-sec-tion temperature and longitudinal stress of steel box girder as well as the general variation law and the effect of temperature on longitudinal stress.The results of the analysis indicate that the maxi-mum value of the top plate temperature of steel box girder calculated in accordance with the bridge design specification is less than the actual measured value w hen the ambient temperature is around 20~45℃.The 24 h continuous temperature variation of the steel box girder conforms to the sinu-soidal distribution ,the first 6 h variation of longitudinal stress in each day complies with linear dis-tribution and the following 18 h longitudinal stress variation obeys Gaussian

  10. Analysis, prediction, and case studies of early-age cracking in bridge decks

    Science.gov (United States)

    ElSafty, Adel; Graeff, Matthew K.; El-Gharib, Georges; Abdel-Mohti, Ahmed; Mike Jackson, N.

    2016-06-01

    Early-age cracking can adversely affect strength, serviceability, and durability of concrete bridge decks. Early age is defined as the period after final setting, during which concrete properties change rapidly. Many factors can cause early-age bridge deck cracking including temperature change, hydration, plastic shrinkage, autogenous shrinkage, and drying shrinkage. The cracking may also increase the effect of freeze and thaw cycles and may lead to corrosion of reinforcement. This research paper presents an analysis of causes and factors affecting early-age cracking. It also provides a tool developed to predict the likelihood and initiation of early-age cracking of concrete bridge decks. Understanding the concrete properties is essential so that the developed tool can accurately model the mechanisms contributing to the cracking of concrete bridge decks. The user interface of the implemented computer Excel program enables the user to input the properties of the concrete being monitored. The research study and the developed spreadsheet were used to comprehensively investigate the issue of concrete deck cracking. The spreadsheet is designed to be a user-friendly calculation tool for concrete mixture proportioning, temperature prediction, thermal analysis, and tensile cracking prediction. The study also provides review and makes recommendations on the deck cracking based mainly on the Florida Department of Transportation specifications and Structures Design Guidelines, and Bridge Design Manuals of other states. The results were also compared with that of other commercially available software programs that predict early-age cracking in concrete slabs, concrete pavement, and reinforced concrete bridge decks. The outcome of this study can identify a set of recommendations to limit the deck cracking problem and maintain a longer service life of bridges.

  11. New technique of railway bridges in Hokuriku Shinkansen; Hokuriku Shinkansen tetsudokyo no gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Miyabayashi, H. [Japan Railway Construction Public Corp., Tokyo (Japan)

    1996-09-01

    This paper presents new technologies of the railway bridges in Hokuriku Shinkansen. Hokuriku Shinkansen of 117km between Takasaki and Nagano is a part of Shinkansen connecting Tokyo with Nagano by nearly 1.5 hours. Its construction is in promotion under severe financial condition, and cost reduction is an essential target. Among the concrete bridges in this section, Kirizumigawa bridge, a prestressed concrete strutted 3-span continuous beam bridge, adopted a lowering erection method for its slant pier. In this method featured by high safety and profitability, the rib component of a concrete arch bridge is vertically erected on a arch support, and installed by swinging it toward the central span. In addition, a cantilever method was adopted to keep the scenery of a national park. Daini Chikumagawa bridge with the longest span of 133.9m among concrete railway bridges is the first cable-stayed prestressed concrete bridge in Shinkansen. Yashiro Minami and Kita bridges of 105m and 90m in central span are the extradosed bridges which were adopted as optimum structure for lowering the beam height of meddle-sized railway bridges. 3 refs., 12 figs., 2 tabs.

  12. Improved concretes for corrosion resistance

    Science.gov (United States)

    1997-07-01

    The deterioration of various reinforced concrete bridge components containing conventional black steel reinforcement is the most important problem facing U.S. highway agencies. A major cause of this concrete deterioration (cracking, delamination, and...

  13. Prestressed concrete. Composite material perfectly utilizing the merits of steel and concrete; Puresutoresu concrete. Ko to concreteto no tokucho wo kanzen ni ikashita fukugo sozai

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, M. [Kyokuto Kogen Concrete Shinko Co. Ltd., Tokyo (Japan)

    1996-10-15

    Since the early stage of the development of the prestressed concrete (PC) manufacturing techniques, it has been said that forming a single PC structure by uniting precast segments with PC steel material into one is a construction method making the most of the feature of PC. This paper roughly describes the history of the development of PC and concrete examples of PC, centering on the construction techniques effectively utilizing the principle of PC and its materials. Especially, a PC bridge is superior to a steel bridge with respect to noise and vibration, so that the construction works of replacing railway steel bridges and railway elevated bridges by PC bridges have come to be seen in many places recently. In order to increase the span of a PC bridge, the reduction of the weight is a major factor. Therefore, an outer cable system has come to be used so as to reduce the thickness is cross section of the web of a PC beam as much as possible. The changes of the maximum span of cable stayed bridge are listed in a table in comparison of PC bridges with steel bridges. 29 refs., 9 figs., 1 tab.

  14. Durability of Materials in Pearl-Chain Bridges

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller

    . The construction of the Pearl-Chain arch is simple. The arch is assembled on its side, next to the road that the bridge will span, by placing a number of plane prefabricated Super-Light Decks that consist of lightweight aggregate concrete and conventional concrete, in the desired arch shape. Mortar joints are cast...... is stabilized by casting a fill material between the spandrel walls of the arch. Finally, the road surface is cast on top of the fill material. New bridges are designed for a service lifetime of at least 100 years. Hence, the specifications of the materials used in Pearl-Chain Bridges are high. This PhD study...... and pervious concrete were also investigated. The most suitable fill material for Pearl-Chain Bridges depends on the particular bridge design; the results obtained and presented in the present PhD study provide guidance on how to decide which fill material is most suitable regarding strength, permeability...

  15. Analysis on Adhesively-Bonded Joints of FRP-steel Composite Bridge under Combined Loading : Arcan Test Study and Numerical Modeling

    NARCIS (Netherlands)

    Jiang, X.; Qiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2016-01-01

    The research presented in this paper is an experimental study and numerical analysis on mechanical behavior of the adhesively-bonded joint between FRP sandwich bridge deck and steel girder. Generally, there are three typical stress states in the adhesively-bonded joint: shear stress, tensile stress,

  16. Human Errors and Bridge Management Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Nowak, A. S.

    on basis of reliability profiles for bridges without human errors are extended to include bridges with human errors. The first rehabilitation distributions for bridges without and with human errors are combined into a joint first rehabilitation distribution. The methodology presented is illustrated...... for reinforced concrete bridges....

  17. Field vibration test of a long-span cable-stayed bridge by large exciters. Daishinpuku kashin ni yoru chodai shachokyo no jikkyo shindo jikken

    Energy Technology Data Exchange (ETDEWEB)

    Okauchi, I. (Chuo University, Tokyo (Japan). Faculty of Science and Engineering); Miyata, T. (Yokohama National University, Yokohama (Japan). Faculty of Engineering); Sasaki, N. (Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)); Tatsumi, M.

    1992-10-15

    Long-span cable-stayed bridge requires indispensably discussions on safety against gale and earthquake, and correct assessment on its inherent vibration characteristics at the design stage is critical. However, theoretical assessment on structural decay is difficult, hence it is desirable to make measurement and verification upon its completion. This paper reports the result of measurements and considerations on a three-span continuous steel cable-stayed bridge with a length of 790 m (185 m + 420 m + 185 m) spanning between Hitsuishi Island and Iwakuro Island in the Kojima-Sakaide route of the Honshu-Shikoku connecting bridge. Large shaking machines were used to give girders vibrations with large amplitudes (10 cm at maximum), and high-accuracy measurements were made. The measurements verified the reasonability of the dynamic design for the bridge. The measured value of the logarithmic decay rate [delta] as the major experimental data presented that bending vibration is large as a whole, with torsional vibration somewhat smaller, and all the design values were on safety side. Confirmation was made on amplitude dependence of the decay rate, the inherent modes of low-order vibrations, and coupled behaviors among the girders, cables, and towers. 16 refs., 13 figs., 3 tabs.

  18. Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction : research brief

    Science.gov (United States)

    2017-09-01

    This study is to develop simulation methodology to conduct the dynamic assessment of bridge deck performance subjected to traffic. Concrete bridge decks are exposed to daily traffic loads and may experience some surface cracking caused by excessive s...

  19. Thermal changes of the environment and their influence on reinforced concrete structures

    Science.gov (United States)

    Fojtik, R.; Cajka, R.

    2018-04-01

    The thermal expansion of concrete elements concerns both monolithic and prefabricated structures. Inappropriate design of dilation segments may cause minor but even larger failures. Critical environment factors are temperature-changing operations, such as unheated underground garages, where temperature fluctuations may occur depending on the exterior conditions. This paper numerically and experimentally analyses the thermal deformation of selected girders in the underground garages and the consequent structure failures, their causes, possible prevention and appropriate remediation.

  20. Modeling reinforced concrete durability : [summary].

    Science.gov (United States)

    2014-06-01

    Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...

  1. A 2.5-dimensional method for the prediction of structure-borne low-frequency noise from concrete rail transit bridges.

    Science.gov (United States)

    Li, Qi; Song, Xiaodong; Wu, Dingjun

    2014-05-01

    Predicting structure-borne noise from bridges subjected to moving trains using the three-dimensional (3D) boundary element method (BEM) is a time consuming process. This paper presents a two-and-a-half dimensional (2.5D) BEM-based procedure for simulating bridge-borne low-frequency noise with higher efficiency, yet no loss of accuracy. The two-dimensional (2D) BEM of a bridge with a constant cross section along the track direction is adopted to calculate the spatial modal acoustic transfer vectors (MATVs) of the bridge using the space-wave number transforms of its 3D modal shapes. The MATVs calculated using the 2.5D method are then validated by those computed using the 3D BEM. The bridge-borne noise is finally obtained through the MATVs and modal coordinate responses of the bridge, considering time-varying vehicle-track-bridge dynamic interaction. The presented procedure is applied to predict the sound pressure radiating from a U-shaped concrete bridge, and the computed results are compared with those obtained from field tests on Shanghai rail transit line 8. The numerical results match well with the measured results in both time and frequency domains at near-field points. Nevertheless, the computed results are smaller than the measured ones for far-field points, mainly due to the sound radiation from adjacent spans neglected in the current model.

  2. Design of pedestrian truss bridge with Sengon-Rubber laminated veneer lumber

    Science.gov (United States)

    Herbudiman, B.; Pranata, Y. A.; Pangestu, L.

    2017-12-01

    Timber bridges are one of the bridge that has long been used, but nowadays, large dimension of sawn timber has limited supply and also it is not environmental-friendly. Laminated veneer lumber (LVL) is a engineered wood that becomes one of the promising alternative, because it is made from lower quality wood that processed to be used as a more quality one. The bridge planned to be a pedestrian truss bridge with length of 9 m, width of 3 m, height of 2.5 m, and using bolt and steel plate as its connection system. Mechanical properties of LVL obtained directly from laboratory test result. Bridge modeling and planning for wood construction refers to SNI 7973:2013, while the loading refers to SNI 1725:2016. Based on the modelling and calculation, the dimension of truss frame and girder beam which are 9 cm x 9 cm and 9 cm x 18 cm have adequate strengths and satisfy deflection requirement.

  3. Design and Construction of Operation Bridge for Research Reactor

    International Nuclear Information System (INIS)

    Jung, Kwangsub; Choi, Jinbok; Lee, Jongmin; Oh, Jinho

    2015-01-01

    The operation bridge contains a lower working deck mounted on a saddle that travels on rails. Upright members are mounted on the saddle to support the upper structure and two hoist monorails. The saddle contains an anti-derail system that is composed of seismic lugs and guide rollers. The operation bridge travels along the rails to transport the fuel assembly, irradiated object, and reactor components in the pools by using tools. Hoists are installed at the top girder. The hoist is suspended from the monorail by means of a motor driven trolley that runs along the monorail. Movements of hoist and trolley are controlled by using the control pendant switch. Processes of design and construction of the operation bridge for the research reactor are introduced. The operation bridge is designed under consideration of functions of handling equipment in the pool and operational limits for safety. Structural analysis is carried out to evaluate the structural integrity in the seismic events. Tests and inspections are also performed during fabrication and installation to confirm the function and safety of the operation bridge

  4. Modeling damage in concrete pavements and bridges.

    Science.gov (United States)

    2010-09-01

    This project focused on micromechanical modeling of damage in concrete under general, multi-axial loading. A : continuum-level, three-dimensional constitutive model based on micromechanics was developed. The model : accounts for damage in concrete by...

  5. Progress of admixtures and quality of concrete. 2. ; Approaches to ultra-high-strength concrete. Konwa zairyo no shinpo to concrete no hinshitsu. 2. ; Chokokyodo concrete eno approach

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, T. (Shimizu Construction Co. Ltd., Tokyo (Japan)); Abe, M. (Building Research Institute, Tsukuba (Japan))

    1994-02-15

    Ultra-high-strength concrete of 600 kgf/cm[sup 2] or more is reviewed. MDF (macro defect free) cement, spheroidal cement and mechanically stabilized cement have been developed for ultra-high-strength concrete, however, in general, DSP (densified system containing homogeneously arranged ultra-fine particles) technique is now usual in which a water-cement ratio is reduced by use of advanced air entraining and water reducing agents and cured concrete is densified by use of ultra-fine particles as admixture. Four kinds of substances such as naphthalene system and polycarboxylic acid system are used as air entraining and water reducing agents, and silica fume is used as ultra-fine particle admixture which can be effectively replaced with blast furnace slag or fly ash. Various use examples of ultra-high-strength concrete such as an ocean platform are found in the world, however, only some examples such as a PC truss bridge and the main tower of a PC cable stayed bridge in Japan. 22 refs., 10 figs., 2 tabs.

  6. Study and application of micrometric alignment on the prototype girders of the CLIC Two-Beam Module

    CERN Document Server

    Gazis, Nikolaos; Mainaud-Durand, Hélène; Samochkine, Alexandre; Anastasopoulos, Michail

    2011-01-01

    The Compact LInear Collider (CLIC), currently under study at CERN, aims at the development of a Multi-TeV e+ e- collider. The micro-precision CLIC RF-structures will have an accelerating gradient of 100 MV/m and will be mounted and aligned on specially developed supporting girders. The girder fabrication constraints are dictated by stringent physics requirements. The micrometric pre-alignment over several kilometers of girders, allow for the CLIC structures to fulfill their acceleration and collision functionality. Study of such girders and their sophisticated alignment method, is a challenging case involving dedicated mechanical design as well as prototype production and experimental testing.

  7. Large scale testing of nitinol shape memory alloy devices for retrofitting of bridges

    International Nuclear Information System (INIS)

    Johnson, Rita; Emmanuel Maragakis, M; Saiid Saiidi, M; Padgett, Jamie E; DesRoches, Reginald

    2008-01-01

    A large scale testing program was conducted to determine the effects of shape memory alloy (SMA) restrainer cables on the seismic performance of in-span hinges of a representative multiple-frame concrete box girder bridge subjected to earthquake excitations. Another objective of the study was to compare the performance of SMA restrainers to that of traditional steel restrainers as restraining devices for reducing hinge displacement and the likelihood of collapse during earthquakes. The results of the tests show that SMA restrainers performed very well as restraining devices. The forces in the SMA and steel restrainers were comparable. However, the SMA restrainer cables had minimal residual strain after repeated loading and exhibited the ability to undergo many cycles with little strength and stiffness degradation. In addition, the hysteretic damping that was observed in the larger ground accelerations demonstrated the ability of the materials to dissipate energy. An analytical study was conducted to assess the anticipated seismic response of the test setup and evaluate the accuracy of the analytical model. The results of the analytical simulation illustrate that the analytical model was able to match the responses from the experimental tests, including peak stresses, strains, forces, and hinge openings

  8. Principles of Bridge Reliability

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Nowak, Andrzej S.

    The paper gives a brief introduction to the basic principles of structural reliability theory and its application to bridge engineering. Fundamental concepts like failure probability and reliability index are introduced. Ultimate as well as serviceability limit states for bridges are formulated......, and as an example the reliability profile and a sensitivity analyses for a corroded reinforced concrete bridge is shown....

  9. Investigation of Concrete Electrical Resistivity As a Performance Based Test

    OpenAIRE

    Malakooti, Amir

    2017-01-01

    The purpose of this research project was to identify the extent that concrete resistivity measurements (bulk and/or surface) can be used as a performance based lab test to improve the quality of concrete in Utah bridge decks. By allowing UDOT to specify a required resistivity, concrete bridge deck quality will increase and future maintenance costs will decrease. This research consisted of two phases: the field phase and the lab phase. In the field phase, concrete samples were gathered from...

  10. Linear Cracking in Bridge Decks

    Science.gov (United States)

    2018-03-01

    Concrete cracking in bridge decks remains an important issue relative to deck durability. Cracks can allow increased penetration of chlorides, which can result in premature corrosion of the reinforcing steel and subsequent spalling of the concrete de...

  11. Monitoring calculation of closure change of Extradosed Cable-stayed Bridge

    Science.gov (United States)

    Shi, Jing Xian; Ran, Zhi Hong

    2018-06-01

    During the construction of extradosed cable-stayed bridge in Yunnan province, China, the construction unit has made certain changes in the construction process of the closure section due to environmental restrictions: remove the hanging basket after the closure, the sling shall not be provided in closure section, the function of the sling is realized by the hanging basket on the 16th beam. In case of this change, the bridge has been constructed to section 15th. In order to ensure the smooth and orderly progress of each stage in the closure phase, this article is arranged according to the construction plan, appropriate adjustment of related procedures, checking the bridge safety at all stages of construction, the stress and force of the main girder are compared to ensure the safety of the construction after closure changes. Adjust the height of the beam of the 16th and 17th to adapt the new construction plan, and the bridge closure smoothly.

  12. Bridge-in-a-backpack(TM) task 3.3 : investigate soil-structure interaction-modeling and experimental results of concrete filled FRP tube arches.

    Science.gov (United States)

    2015-12-01

    This report includes fulfillment of Task 3.3 of a multi-task contract to further enhance concrete filled FRP tubes, or : the Bridge in a Backpack. Task 3 is an investigation of soil-structure interaction for the FRP tubes. Task 3.3 is the : modeling ...

  13. Design proposal for ultimate shear strength of tapered steel plate girders

    Directory of Open Access Journals (Sweden)

    A. Bedynek

    2017-03-01

    Full Text Available Numerous experimental and numerical studies on prismatic plate girders subjected to shear can be found in the literature. However, the real structures are frequently designed as non-uniform structural elements. The main objective of the research is the development of a new proposal for the calculation of the ultimate shear resistance of tapered steel plate girders taking into account the specific behaviour of such members. A new mechanical model is presented in the paper and it is used to show the differences between the behaviour of uniform and tapered web panels subjected to shear. EN 1993-1-5 design specifications for the determination of the shear strength for rectangular plates are improved in order to assess the shear strength of tapered elements. Numerical studies carried out on tapered steel plate girders subjected to shear lead to confirm the suitability of the mechanical model and the proposed design expression.

  14. Soportes apoyados sobre vigas pretensadas (EE. UU.

    Directory of Open Access Journals (Sweden)

    Editorial, Equipo

    1965-12-01

    Full Text Available This work has been awarded a prize by the Prestreesed Concrete Institute. It refers to a number of flyovers on the Arroyo Seco, of California. This river has been canalized, to help drainage in case of heavy rainfall. The canal runs through a highly populated zone, and a motor road and accessory ramps had to cross the canal. The resulting design involves three prestressed girders, lightly arched in a parabolic outline, resting on each river shore, running along the line of the bridge, over the canal. It was decided that the bridge piles should not rest on the river bed, in order not to reduce its flow capacity. The girders of a maximum length of 39 ms, are box shaped, and stiffened with thin diaphragms. The cylindrical pile, 1.50 m in diameter, is an integral part of the girder, and applies to it a concentrated load of about 4000 tons. The girders rest on reinforced concrete cubes, which in turn are supported by concrete slabs and piles driven into the soil.Esta obra ha sido premiada por el Prestressed Concrete Institute y se refiere a una serie de pasos superiores sobre el Arroyo Seco, en California, que se ha canalizado para servir de desagüe en el caso de avenidas torrenciales. El canal se halla en una zona de edificación densa y se trata del paso—sobre aquél—de una autopista y rampas de acceso. La solución adoptada consistió en tres vigas pretensadas, ligeramente arqueadas con perfil parabólico, apoyadas en las dos márgenes y situadas en correspondencia con los tres soportes, sobre el propio canal, ya que ninguno de aquéllos debía apoyarse en el lecho de este último al objeto de no disminuir su capacidad de desagüe. Las vigas—de unos 39 m de longitud la mayor—son del tipo cajón, rigidizadas con unos diafragmas de pequeño espesor. El soporte cilíndrico, de 1,50 m de diámetro, se solidariza con la viga y le transmite una notable carga concentrada, del orden de 4.000 toneladas. Los apoyos de estas vigas son simples dados

  15. Committee VI.1. Extreme Hull Girder Loading

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2000-01-01

    Committee Mandate. Evaluate and develop direct calculation procedures for extreme wawe loads on ship hull girders. Due consideration shall be given to stochastic and non-linear effects. The procedures shall be assessed by comparison with in-service experiences, model tests and more refined...

  16. Fatigue strength of field welded joints in I-section girders of thick flange plates with cope hole details; Sukarappu wo yusuru atsuita I gata danmen keta genba yosetsu tsugitebu no hiro kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Minami, K.; Miki, C.; Tateishi, K. [Tokyo Institute of Technology, Tokyo (Japan)

    1997-10-15

    Field welding an I-section girder forms details having scallop at the web, whereas the presence of the scallop causes shear deformation and localized stress concentration. Therefore the details in joints with low fatigue strength are ranked as class G in the fatigue design guideline published by JSSC. With special notice on the effect of shear, the present study has varied the phase by using multiple number of jacks; so loaded that the direction of the shear force will change; assumed field welding of a bridge constructed with a few number of main girders; and verified fatigue strength at thick flange plates. In addition, in order to improve the fatigue strength, elucidation was given on the effect of grinder finish at boxing welds. From these results, items to be considered were made clear when structural details are designed and fabricated, in which I-section girders having scallop are welded in fields. Furthermore, it was considered that stress in web plate jointing welding bead becomes relatively higher than local stress in boxing, which was indicated as a point requiring precaution. 8 refs., 20 figs., 2 tabs.

  17. Design and construction of Ogawa bridge; Ogawa bashi no sekkei to seko

    Energy Technology Data Exchange (ETDEWEB)

    Hori, T.; Chigira, F. [Kajima Corp., Tokyo (Japan); Sakao, H.

    1995-09-30

    Ogawa bridge 230m long by 15.5m wide has been planned on the national road No.401 at Katashina-mura in Gunma Prefecture. Structure mode is two spans continuous PC cable-stayed obliquely system, and a main tower is H type (height: 56m from the road surface) and is located at the center of the bridge alone. This place corresponding to the entrance of Oze famous national park, the main tower is designed so as to have bulge, imaging Mizubasho (lysichiton camtschatcense), from the middle part of the pier to the lower part of the main tower. Arrangement of the cables is designed as two faces of hung fun type and one side face is composed of 13 steel strands (dia. 15.2mm wire x 27 (partly 19); covered with PE tube) in front and rear respectively. A main girder is the box type PC block 2.3m height by 4m or 3m long, and 3m long one is for fastening with a cable. Centering on the main tower, the girder blocks are successively connected in front and rare alternatively and are fastened with cables in part. This overhanging connection work is carried out by two special movable conveyers `Wagens`. 26 figs., 2 tabs.

  18. Improving Fatigue Strength of polymer concrete using nanomaterials.

    Science.gov (United States)

    2016-11-30

    Polymer concrete (PC) is that type of concrete where the cement binder is replaced with polymer. PC is often used to improve friction and protect structural substrates in reinforced concrete and orthotropic steel bridges. However, its low fatigue per...

  19. Delamination detection in reinforced concrete using thermal inertia

    International Nuclear Information System (INIS)

    Del Grande, N K; Durbin, P F.

    1998-01-01

    We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks. Key Words: Pulsed Thermal Imaging, Thermal Inertia, Detection Of Concrete Bridgedeck Delaminations

  20. Development of a Skewed Pipe Shear Connector for Precast Concrete Structures.

    Science.gov (United States)

    Kim, Sang-Hyo; Choi, Jae-Gu; Park, Sejun; Lee, Hyunmin; Heo, And Won-Ho

    2017-05-13

    Joint connection methods, such as shear key and loop bar, improve the structural performance of precast concrete structures; consequently, there is usually decreased workability or constructional efficiency. This paper proposes a high-efficiency skewed pipe shear connector. To resist shear and pull-out forces, the proposed connectors are placed diagonally between precast concrete segments and a cast-in-place concrete joint part on a girder. Design variables (such as the pipe diameter, length, and insertion angle) have been examined to investigate the connection performance of the proposed connector. The results of our testing indicate that the skewed pipe shear connectors have 50% higher ductility and a 15% higher ratio of maximum load to yield strength as compared to the corresponding parameters of the loop bar. Finite element analysis was used for validation. The resulting validation indicates that, compared to the loop bar, the skewed pipe shear connector has a higher ultimate shear and pull-out resistance. These results indicate that the skewed pipe shear connector demonstrates more idealized behavior than the loop bar in precast concrete structures.

  1. 75 FR 62181 - Annual Materials Report on New Bridge Construction and Bridge Rehabilitation

    Science.gov (United States)

    2010-10-07

    ... INFORMATION CONTACT: Ms. Ann Shemaka, Office of Bridge Technology, HIBT-30, (202) 366-1575, or Mr. Thomas Everett, Office of Bridge Technology, HIBT-30, (202) 366-4675, Federal Highway Administration, 1200 New... is categorized by the following material types, which are identified in the NBI: steel, concrete, pre...

  2. 76 FR 55160 - Annual Materials Report on New Bridge Construction and Bridge Rehabilitation

    Science.gov (United States)

    2011-09-06

    ... INFORMATION CONTACT: Ms. Ann Shemaka, Office of Bridge Technology, HIBT-30, (202) 366-1575, or Mr. Thomas Everett, Office of Bridge Technology, HIBT-30, (202) 366-4675, Federal Highway Administration, 1200 New... is categorized by the following material types, which are identified in the NBI: steel, concrete, pre...

  3. Non-destructive testing (NDT) of a segmental concrete bridge scheduled for demolition, with a focus on condition assessment and corrosion detection of internal tendons.

    Science.gov (United States)

    2017-05-01

    The service life and durability of prestressed concrete in bridges are vulnerable to corrosion damages due to many factors such as construction, material, and environment. To ensure public safety, it is important to inspect these structures and to de...

  4. Dynamic response of a typical synchrotron magnet/girder assembly

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Smith, R.K.; Vogt, M.E.

    1993-06-01

    In the Advanced Photon Source, the synchrotron booster ring accelerates positrons to the required energy level of 7 GeV. The positrons are then injected into the storage ring where they continue to orbit for 10--15 h. The storage ring quadrupoles have very stringent vibration criteria that must be satisfied to ensure that beam emittance growth is within acceptable limits, viz., <10%. Because the synchrotron booster ring is not operated after particle insertion into the storage ring, its vibration response is not a critical issue relative to the performance of the storage ring beam. Nevertheless, the synchrotron pulses at a frequency of 2 Hz, and if a vibration response frequency of the synchrotron magnet/girder assembly were to coincide with the pulsation frequency or its near harmonics, large-amplitude motion could result, with the effect that it could compromise the operation of the synchrotron. Due to the complex dynamics of the synchrotron magnet/girder assembly, it is necessary to measure the dynamic response of a prototypic assembly and its components to ensure that the inherent dynamic response frequencies are not equal to 2 Hz or any near harmonics. Dynamic-response measurement of the synchrotron girder assembly and component magnets is the subject of this report

  5. Energy-based damping evaluation of cable-stayed bridges and its application to Tsurumi Tsubasa bridge; Shachokyo shindo gensui no energy teki hyokaho to Tsurumi Tsubasakyo eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H. [Saitama University, Saitama (Japan). Faculty of Engineering; Takano, H.; Ogasawara, M.; Shimosato, T. [Metropolitan Expressway Public Corp., Tokyo (Japan); Kato, M.; Kato, H. [NKK Corp., Tokyo (Japan)

    1996-07-21

    This paper provides and discusses a more common energy-based evaluation method of vibration damping in cable-stayed bridges. This method was applied to data obtained from the field vibration test of the Tsurumi Tsubasa Bridge. The damping was defined as dissipation energy in one cycle against the total potential energy. The dissipation energy from shoe friction, aerodynamic damping, and dampers for cables was added to the method proposed by Yamaguchi, et. al., in which the energy of girders, towers, and cables were quantitated, and the dissipation energy was determined from the loss factor of each constituent, to evaluate the damping of whole bridge. Thus, a more common energy-based evaluation method was provided. This method was applied to the damping obtained from the field vibration test of Tsurumi Tsubasa Bridge. Consequently, it was found that the damping of whole bridge was significantly affected by the shoe friction, aerodynamic damping, and dampers for cables. Distinguished damping characteristics of the Tsurumi Tsubasa Bridge could be explained by the energy-based evaluation. Validity of the energy-based evaluation method for damping of cable-stayed bridges was demonstrated. 15 refs., 9 figs., 6 tabs.

  6. Monitoring of prestress losses using long-gauge fiber optic sensors

    Science.gov (United States)

    Abdel-Jaber, Hiba; Glisic, Branko

    2017-04-01

    Prestressed concrete has been increasingly used in the construction of bridges due to its superiority as a building material. This has necessitated better assessment of its on-site performance. One of the most important indicators of structural integrity and performance of prestressed concrete structures is the spatial distribution of prestress forces over time, i.e. prestress losses along the structure. Time-dependent prestress losses occur due to dimensional changes in the concrete caused by creep and shrinkage, in addition to strand relaxation. Maintaining certain force levels in the strands, and thus the concrete cross-sections, is essential to ensuring stresses in the concrete do not exceed design stresses, which could cause malfunction or failure of the structure. This paper presents a novel method for monitoring prestress losses based on long-gauge fiber optic sensors embedded in the concrete during construction. The method includes the treatment of varying environmental factors such as temperature to ensure accuracy of results in on-site applications. The method is presented as applied to a segment of a post-tensioned pedestrian bridge on the Princeton University campus, Streicker Bridge. The segment is a three-span continuous girder supported on steel columns, with sensors embedded at key locations along the structure during construction in October 2009. Temperature and strain measurements have been recorded intermittently since construction. The prestress loss results are compared to estimates from design documents.

  7. Evaluation of several types of curing and protective materials for concrete : final report on part II : installation report and initial condition survey of bridge decks.

    Science.gov (United States)

    1970-01-01

    Thirty-nine test panels were installed on three interstate bridges to evaluate several combinations of curing and protective treatments for concrete. Panels were cured with white pigmented liquid membrane and white polyethylene, both with and without...

  8. Laboratory Testing of Precast Bridge Beck Panel Transverse Connections for Use in Accelerated Bridge Construction

    OpenAIRE

    Porter, Scott D.

    2009-01-01

    Precast concrete bridge deck panels have been used for decades to accelerate bridge construction. Cracking of the transverse connection between panels is a common problem that can damage deck overlays and cause connection leaking leading to corrosion of lower bridge elements. To better understand the behavior of bridge deck transverse female-to-female connections, shear and moment lab testing were performed at Utah State University for the Utah Department of Transportation. Two existing UDOT ...

  9. On the Influence of Hull Girder Flexibility on the Wave

    DEFF Research Database (Denmark)

    Seng, Sopheak; Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher

    2012-01-01

    Numerical predictions and model test results of the wave induced bending moments in a 9,400 TEU post-Panamax container vessel are presented for two regular wave scenarios. Different numerical procedures have been applied: a linear and non-linear time-domain strip theory and a direct calculation (...... (CFD) solving the Navier-Stokes equations with the free surface captured by a volume-of-fluid (VOF) method. In all procedures the flexibility of the hull girder is modelled as a non-uniform Timoshenko beam. It is observed that the non-linear models agree well with the model tests...... and as there is no occurrence of severe slamming in the cases considered, the inexpensive non-linear strip theory is as accurate as the direct CFD calculation method. In a comparison with the results using the rigid body assumption, the increase in the vertical bending moment (VBM) amidships due to the flexibility of the hull...... girder is found to be approximately 7% (peak-to-peak amplitude) in general. The non-linear responses, however, contain over-harmonic frequencies which may coincide with the natural frequency of the two-node vertical bending mode inducing resonance. In that case the hull girder flexibility causes...

  10. Exodermic bridge deck performance evaluation.

    Science.gov (United States)

    2010-07-01

    In 1998, the Wisconsin DOT completed a two"leaf bascule bridge in Green Bay with an exodermic deck system. The exodermic deck consisted of 4.5"in thick cast"in"place reinforced concrete supported by a 5.19"in tall unfilled steel grid. The concrete an...

  11. Assessment of structural condition of Libeň Bridge

    Directory of Open Access Journals (Sweden)

    Kněž Petr

    2017-01-01

    Full Text Available The paper presents diagnostic and load tests of the Inundation bridge which is part of a group of bridges called The Libeň bridge group in Prague. The Libeň bridge group consists of two arched and several framed bridges spanning the Vltava river. One of the vaulted bridges consists of 5 arches and the other vaulted bridge (called Inundation bridge consists of only one arch. Arched bridges are extraordinary structures with both technical and historical value. Since the inundation bridge has the largest arch of whole group, it was selected for testing purposes. The bridge is assembled with three-hinged arch made of concrete. The hinges are made of reinforced concrete and lead contact slabs. Detailed measurements of geometry and material properties were made on the bridge. Based on these measurements a computer model was created to verify the behavior of the structure. Both static and dynamic calculations were performed. Measurements of dynamic characteristics were made during normal operation and with hydraulic vibration exciter. This article will focus on comparing the results of dynamic calculation of the modeled structure and properties measured on real structure excited by hydraulic vibration exciter.

  12. Fatigue testing of wood-concrete composite beams.

    Science.gov (United States)

    2013-05-01

    Currently, wood-concrete composite structural members are usually applied in building structures. There are a relatively small number (in the low 100s) of known bridge applications involving wood-concrete composites. A problem with using these novel ...

  13. Development of a smart timber bridge girder with fiber optic sensors

    Science.gov (United States)

    James Wacker; Ursula Deza; Brent M. Phares; Terry J. Wipf

    2010-01-01

    Past timber bridge evaluation and maintenance efforts in the USA have principally focused on the internal integrity of timber components using various non-destructive evaluation tools to supplement visual inspection data. This project is part of a comprehensive effort to develop smart structure concepts for improving the long-term performance, maintenance, and...

  14. Surface Chloride Levels in Colorado Structural Concrete

    Science.gov (United States)

    2018-01-01

    This project focused on the chloride-induced corrosion of reinforcing steel in structural concrete. The primary goal of this project is to analyze the surface chloride concentration level of the concrete bridge decks throughout Colorado. The study in...

  15. Expected damages of retrofitted bridges with RC jacketing

    Science.gov (United States)

    Montes, O.; Jara, J. M.; Jara, M.; Olmos, B. A.

    2015-07-01

    The bridge infrastructure in many countries of the world consists of medium span length structures built several decades ago and designed for very low seismic forces. Many of them are reinforced concrete structures that according to the current code regulations have to be rehabilitated to increase their seismic capacity. One way to reduce the vulnerability of the bridges is by using retrofitting techniques that increase the strength of the structure or by incorporating devices to reduce the seismic demand. One of the most common retrofit techniques of the bridges substructures is the use of RC jacketing; this research assesses the expected damages of seismically deficient medium length highway bridges retrofitted with reinforced concrete jacketing, by conducting a parametric study. We select a suite of twenty accelerograms of subduction earthquakes recorded close to the Pacific Coast in Mexico. The original structures consist of five 30 m span simple supported bridges with five pier heights of 5 m, 10 m, 15 m 20 and 25 m and the analyses include three different jacket thickness and three steel ratios. The bridges were subjected to the seismic records and non-linear time history analyses were carried out by using the OpenSEEs Plataform. Results allow selecting the reinforced concrete jacketing that better improves the expected seismic behavior of the bridge models.

  16. Expected damages of retrofitted bridges with RC jacketing

    International Nuclear Information System (INIS)

    Montes, O; Jara, J M; Jara, M; Olmos, B A

    2015-01-01

    The bridge infrastructure in many countries of the world consists of medium span length structures built several decades ago and designed for very low seismic forces. Many of them are reinforced concrete structures that according to the current code regulations have to be rehabilitated to increase their seismic capacity. One way to reduce the vulnerability of the bridges is by using retrofitting techniques that increase the strength of the structure or by incorporating devices to reduce the seismic demand. One of the most common retrofit techniques of the bridges substructures is the use of RC jacketing; this research assesses the expected damages of seismically deficient medium length highway bridges retrofitted with reinforced concrete jacketing, by conducting a parametric study. We select a suite of twenty accelerograms of subduction earthquakes recorded close to the Pacific Coast in Mexico. The original structures consist of five 30 m span simple supported bridges with five pier heights of 5 m, 10 m, 15 m 20 and 25 m and the analyses include three different jacket thickness and three steel ratios. The bridges were subjected to the seismic records and non-linear time history analyses were carried out by using the OpenSEEs Plataform. Results allow selecting the reinforced concrete jacketing that better improves the expected seismic behavior of the bridge models. (paper)

  17. A new multiconstraint method for determining the optimal cable stresses in cable-stayed bridges.

    Science.gov (United States)

    Asgari, B; Osman, S A; Adnan, A

    2014-01-01

    Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.

  18. A New Multiconstraint Method for Determining the Optimal Cable Stresses in Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    B. Asgari

    2014-01-01

    Full Text Available Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM. The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.

  19. Long Span Bridges in Scandinavia

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen

    1998-01-01

    The first Scandinavian bridge with a span of more than 500 m was the Lillebælt Suspension Bridge opened to traffic in 1970.Art the end of the 20th century the longest span of any European bridge is found in the Storebælt East Bridge with a main span of 1624 m. Also the third longest span in Europe...... is found in Scandinavia - the 1210 m span of the Höga Kusten Bridge in Sweden.The Kvarnsund Bridge in Norway was at the completion in 1991 the longest cable-stayed bridge in the world, and the span of 530 m is still thge longest for cable-stayed bridges in concrete. The Øresund Bridge with its sapn of 490...

  20. Design of a Maglev Vibration Test Platform for the Research of Maglev Vehicle-girder Coupled Vibration Problem

    Directory of Open Access Journals (Sweden)

    Zhou Danfeng

    2017-01-01

    Full Text Available The maglev vehicle-girder coupled vibration problem has been encountered in many maglev test or commercial lines, which significantly degrade the performance of the maglev train. In previous research on the principle of the coupled vibration problem, it has been discovered that the fundamental model of the maglev girder can be simplified as a series of mass-spring resonators of different but related resonance frequencies, and that the stability of the vehicle-girder coupled system can be investigated by separately examining the stability of each mass-spring resonator – electromagnet coupled system. Based on this conclusion, a maglev test platform, which includes a single electromagnetic suspension control system, is built for experimental study of the coupled vibration problem. The guideway of the test platform is supported by a number of springs so as to change its flexibility. The mass of the guideway can also be changed by adjusting extra weights attached to it. By changing the flexibility and mass of the guideway, the rules of the maglev vehicle-girder coupled vibration problem are to be examined through experiments, and related theory on the vehicle-girder self-excited vibration proposed in previous research is also testified.

  1. Quality control and in-service inspection technology for hybrid-composite girder bridges.

    Science.gov (United States)

    2014-08-01

    This report describes efforts to develop quality control tools and in-service inspection technologies for the fabrication and construction of Hybrid Composite Beams (HCBs). HCBs are a new bridge technology currently being evaluated by the Missouri De...

  2. Translations on Eastern Europe, Political, Sociological and Military Affairs, Number 1579

    Science.gov (United States)

    1978-08-23

    front of the bridge abutments . The weight-volume ratio was so selected that the rail girders and the road- way or track plates would float in the...respect to the required posi- tion. 2-3 Abutment with Highway Connection ThP abutment , in its silkiest form, consists of a railroad tie stack; but...it c£ Sso be built up of massive prefabricated parts or locally prepared concrete. A portion of the start-up approach/ and braking forces is di

  3. Covered Bridge Security Manual

    Science.gov (United States)

    Brett Phares; Terry Wipf; Ryan Sievers; Travis Hosteng

    2013-01-01

    The design, construction, and use of covered timber bridges is all but a lost art in these days of pre-stressed concrete, high-performance steel, and the significant growth both in the volume and size of vehicles. Furthermore, many of the existing covered timber bridges are preserved only because of their status on the National Registry of Historic Places or the...

  4. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2016-09-01

    Full Text Available This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor.

  5. Implementing statistical analysis in multi-channel acoustic impact-echo testing of concrete bridge decks: Determining thresholds for delamination detection

    Science.gov (United States)

    Hendricks, Lorin; Spencer Guthrie, W.; Mazzeo, Brian

    2018-04-01

    An automated acoustic impact-echo testing device with seven channels has been developed for faster surveying of bridge decks. Due to potential variations in bridge deck overlay thickness, varying conditions between testing passes, and occasional imprecise equipment calibrations, a method that can account for variations in deck properties and testing conditions was necessary to correctly interpret the acoustic data. A new methodology involving statistical analyses was therefore developed. After acoustic impact-echo data are collected and analyzed, the results are normalized by the median for each channel, a Gaussian distribution is fit to the histogram of the data, and the Kullback-Leibler divergence test or Otsu's method is then used to determine the optimum threshold for differentiating between intact and delaminated concrete. The new methodology was successfully applied to individual channels of previously unusable acoustic impact-echo data obtained from a three-lane interstate bridge deck surfaced with a polymer overlay, and the resulting delamination map compared very favorably with the results of a manual deck sounding survey.

  6. Impact response of RC rock-shed girder with sand cushion under falling load

    International Nuclear Information System (INIS)

    Bhatti, Abdul Qadir; Kishi, Norimitsu

    2010-01-01

    Research highlights: → An applicability of FE model of RC girders with sand cushion has been investigated. → Experimental and numerical results of Impact force, reaction force and displacement have been performed. → Cracks obtained from numerical models are in good agreement with the experimental ones. → Reaction force-displacement loops agree well between numerical and experimental results. → The configuration of the hysteretic loop at failure of RC girders can be approximated by a parallelogram. - Abstract: In order to establish a proper finite element model of prototype RC girder with sand element for impact response analysis, dynamic response analysis of RC girders with sand cushion subjected to impact force due to weight falling from the height of H = 2.5, 5, 7.5 and 10 m was performed to improve the state of the art of protective design for real scale rock-sheds by using LS-DYNA code. An applicability of proposed model was discussed comparing with experimental results (e.g. impact force, reaction force and displacement waves). From this study, dynamic characteristics of impact response can be better simulated by using the proposed model. As a result, when the sand cushion was set up, the impact force, reaction force, mid-span displacement waves, distribution of reaction force-displacement loops, and crack patterns obtained from the numerical analysis are in good agreement with those from the experimental results.

  7. A device for displaying defects in concrete

    International Nuclear Information System (INIS)

    Zouboff, Vadim; Darnault, Claude; Leloup, J.-C.

    1973-01-01

    The device comprises a common gamma source, located on one side of the concrete block to be examined on the opposite side, a detecting unit comprising a collimator and a photo-multiplier detector connected to a display unit and moving along rails parallel to the concrete block face. That device is used for displaying concrete defects in particular injection deficiencies in the pre-stress sheaths of concrete used for the building of bridges or tunnels [fr

  8. Structural response of full-scale concrete bridges subjected to high load magnitudes

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Schmidt, Jacob Wittrup; Jensen, Thomas Westergaard

    -shaped concrete elements. The test method is outlined in the paper, which includes a description of a novel test-rig used to apply a high magnitude loading. It was shown that the test rig could perform controlled testing in only one day, which is an important aspect, since available time (due to traffic...... disturbance) often is an issue when testing on site. Also, different types of measuring equipment such as lasers, LVDT’s and DIC-cameras was investigated, in order to evaluate the deformations during loading of one of the OT-beam bridges. The monitoring equipment was studied to verify if such equipment...... efficiently could be used for in-situ measurements. The load was applied semi-deformation controlled by a combination of dead load and hydraulic jacks. The novel high magnitude loading-rig worked well. It was also possible to achieve good readings from the monitoring equipment in combination with the applied...

  9. Optimization of the box-girder of overhead crane with constrained ...

    African Journals Online (AJOL)

    haroun

    Keywords: Overhead crane - Box-girder - New bat algorithm - level of ... much more efficiency and robustness compared to the genetic algorithm (GA) and PSO ...... optimization: developments, applications and resources," in Evolutionary.

  10. Evaluation of external exposure during building and operation of concrete bridges constructions that reuse the conditionally released steels - 59120

    International Nuclear Information System (INIS)

    Panik, Michal; Necas, Vladimir

    2012-01-01

    This paper presents ongoing results of the project presented at ICEM'10 [1] related to the topics of reusing the conditionally released materials from decommissioning. The subject of the reuse of conditionally released materials in this case is modeling of bridge constructions which reuse the conditionally released steel in the form of reinforcement bars for the concrete bridges. A general approach for the project was presented at ICEM'10. The activities of the project continue in evaluating the individual effective doses from the external exposure based on reused conditionally released steels separately for public and for professionals (the internal exposure will be evaluated in next stages of the project). Evaluated scenarios are related to critical groups of professionals constructing the bridges (worker's scenarios). The computer code VISIPLAN 3D ALARA 4.0 planning tool was used for the calculation of the individual effective dose for professionals. Various limits of the annual individual effective dose are used for the evaluation of calculation results. The aim of the ongoing modeling is to develop a set of data of maximal radioactivity concentration for individual radionuclides in the conditionally released steel used in the bridges model constructions in order not to exceed the limits for the individual effective dose. (authors)

  11. Nondestructive testing for bridge diagnosis

    International Nuclear Information System (INIS)

    Oshima, Toshiyuki; Mikami, Shuichi; Yamazaki, Tomoyuki

    1997-01-01

    There are many motivations for bridge diagnosis using Nondestructive testing (NDT) to monitor its integrity. The measured frequency and damping on real bridge are compared in one figure as a function of span length and general aspects are explained. These date were measured in every construction of bridges and applied to design new bridges. Ultrasonic testing is also well used for concrete and steel members mainly to detect internal damages or delaminations. Detail analysis on reflected waves gives us more accurate information about the defect. Experimental results are shown as examples in this paper.

  12. Rational and Safe Design of Concrete Transportation Structures for Size Effect and Multi-Decade Sustainability

    Science.gov (United States)

    2012-10-01

    The overall goal of this project was to improve the safety and sustainability in the design of large : prestressed concrete bridges and other transportation structures. The safety of large concrete : structures, including bridges, has been insufficie...

  13. Final Environmental Assessment, Horse Creek Bridge Replacement

    Science.gov (United States)

    2010-10-01

    existing bridge pipes that have failed and replace the failed structure with a new, prefabricated pedestrian bridge within the original bridge footprint...vehicles, nor designed for support of standard passenger vehicle loads. The bridge would be a single prefabricated unit consisting of a steel grate...placed on new concrete abutments built on the existing foundations on the creek banks, and put in place by a crane operating from the vehicle parking

  14. stress distribution in continuo ribution in continuous thin ribution

    African Journals Online (AJOL)

    eobe

    studied stresses in thin-walled box girder bridges but stress distribution walled box girder bridges .... the classical thin plate theory and trigonometric series. Lertsima et al. ..... remedied by applying spline finite strip method. Compared to other ...

  15. comparative evaluation of the flexural strength of concrete and colcrete

    African Journals Online (AJOL)

    concrete and polymer concrete, from continuous researches being carried out on. 13 ... COMPARATIVE EVALUATION OF THE FLEXURAL STRENGTH OF CONCRETE AND COLCRETE advantage of being able to use larger sizes of ... and low permeability, colcrete has found applications in tunnel linings, dams, bridges.

  16. Seismic retrofit of spliced sleeve connections for precast bridge piers.

    Science.gov (United States)

    2017-03-01

    Grouted Splice Sleeve (GSS) connectors are being considered for connecting bridge columns, footings, and pier caps in Accelerated Bridge Construction (ABC). A repair technique for precast reinforced concrete bridge column-to-footing and column-to-pie...

  17. Modeling reinforced concrete durability.

    Science.gov (United States)

    2014-06-01

    This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...

  18. Mössbauer characterization of the corrossion products of steels in civil works: Suspension bridge and reinforced concrete

    Science.gov (United States)

    Kounde, B.; Raharinaivo, A.; Olowe, A. A.; Rezel, D.; Bauer, Ph.; Génin, J. M. R.

    1989-03-01

    The rusting condition of the cables of suspension bridges is usually evaluated by self-induction measurements. This method assumes that rusts of same chemical composition have always the same magnetic properties. Unfortunately in some cases, this assumption has shown to be questionable and this study has demonstrated that Mössbauer spectroscopy supplies additional information on the nature of some detected defects. In the case of reinforced concrete, it has been empirically pointed out that the content of agressive element, e.g. Cl- ions, should be under a trigger. Mössbauer studies have demonstrated the physical meaning of this practical rule.

  19. Evaluation and Comparison of Freeze-Thaw Tests and Air Void Analysis of Pervious Concrete

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Kevern, John T.

    2016-01-01

    Pearl-Chain Bridge technology is an innovative precast arch bridge solution which uses pervious concrete as fill material. To ensure longevity of the bridge superstructure it is necessary that the per-vious concrete fill is designed to be freeze-thaw durable; however, no standards exist on how...... to eval-uate the freeze-thaw resistance of fresh or hardened pervious concrete and correspondingly what constitutes acceptable freeze-thaw durability. A greater understanding of the correlation between the freeze-thaw performance and the air void structure of pervious concrete is needed. In the present...... study six pervious concrete mixes were exposed to freeze-thaw testing, and their air void structure was analyzed using an automated linear-traverse method. It was found that there is a miscorrelation between these two test methods in their assumption of whether or not the large interconnected voids...

  20. Seismic performance evaluation of an historical concrete deck arch bridge using survey and drawing of the damages, in situ tests, dynamic identification and pushover analysis

    Science.gov (United States)

    Bergamo, Otello; Russo, Eleonora; Lodolo, Fabio

    2017-07-01

    The paper describes the performance evaluation of a retrofit historical multi-span (RC) deck arch bridge analyzed with in situ tests, dynamic identification and FEM analysis. The peculiarity of this case study lies in the structural typology of "San Felice" bridge, an historical concrete arch bridge built in the early 20th century, a quite uncommon feature in Italy. The preservation and retrofit of historic cultural heritage and infrastructures has been carefully analyzed in the international codes governing seismic response. A complete survey of the bridge was carried out prior to sketching a drawing of the existing bridge. Subsequently, the study consists in four steps: material investigation and dynamic vibration tests, FEM analysis and calibration, retrofit assessment, pushover analysis. The aim is to define an innovative approach to calibrate the FEM analysis through modern experimental investigations capable of taking structural deterioration into account, and to offer an appropriate and cost-effective retrofitting strategy.

  1. Application study on the first cable-stayed bridge with CFRP cables in China

    Directory of Open Access Journals (Sweden)

    Kuihua Mei

    2015-08-01

    Full Text Available In order to push forward the development of CFRP cable-stayed bridge and accumulate experiences, the study on the application of the first cable-stayed bridge with CFRP cables in China was carried out. The design essentials of main components of the bridge were introduced and its integral performances, including static properties, dynamic properties and seismic response were analyzed using finite element method. A new bond-type anchorage was developed and the processes of fabricating and installing CFRP cables were elaborated. Based on the results of construction simulation, a tension scheme for bridge was propound. During constructing, the stresses and displacement of girder and pylon, as well as the forces and stresses of cables, were tested. The results indicate that all sections of the bridge could meet the requirements of the ultimate bearing capacity and normal service; the performance of the anchorage is good and the stresses in each cable system are similar; the tested values accord well with the calculated values. Further, creep deformation of the resin in anchorages under service load is not obvious. All these results demonstrate that the first application of CFRP cables in the cable-stayed bridge in China is successful.

  2. Numerical simulation of CFRP-repaired reinforced concrete columns.

    Science.gov (United States)

    2014-07-01

    The overarching goal of this study was to investigate the influence of repair to individual reinforced concrete bridge columns on the : post-repair seismic performance of the bridge system. A method was developed to rapidly repair an earthquake-damag...

  3. Modification of Displacement Coefficient Method in Estimation of Target Displacement for Regular Concrete Bridges Based on ASCE 41-06 Standard

    Directory of Open Access Journals (Sweden)

    Seyed Bahram Beheshti-Aval

    2015-06-01

    Full Text Available Displacement Coefficient Method (DCM stipulated in the ASCE 41-06 standard is becoming the preferred method for seismic rehabilitation of buildings in many high-seismic-hazard countries. Applications of the method for non-building constructions such as bridges are beyond the scope of this standard. Thus its application to this kind of structure should be approached with care. Target displacement has reasonable accuracy for buildings with strong columns and weak beams, where there is the development of plastic hinges. Due to high stiffness and strength of the deck relative to the piers in most bridges, this mechanism does not occur, and it is necessary to evaluate the accuracy of DCM for such structures. In this research, an attempt is made to evaluate the credibility of DCM in the ASCE/SEI 41-06 standard for estimating target drifts in concrete regular bridges under strong ground motions. To apply the extension of the method to bridge structures, the definition of new correction factor CB, which should be multiplied to previous coefficients, is required. This novel coefficient can improve the accuracy of the mentioned method in accessing seismic displacement demands. The coefficient is presented for soil types A to D based on NEHRP soil classification. The validity of the modified DCM is examined for several bridges with use of nonlinear dynamic analysis. Good correlation is found between both procedures.

  4. Puente Willow Creek en Monterrey, California

    Directory of Open Access Journals (Sweden)

    Editorial, Equipo

    1965-09-01

    Full Text Available Of the 10 awards given every year by the Prestressed Concrete Institute for the most outstanding prestressed concrete projects, two have been awarded in California this year, one of them to the Willow Creek bridge, near Monterrey. The prestressed, double T girders of this bridge were made at a workshop, a great distance from the bridge site. These are 24 m long, 1.35 m high, and are stabilized by transversal diaphragms, 20 cm in thickness. The table deck is of reinforced concrete, being 8.85 m wide and 20 cm thick. The structure is straightforward, slender, and adapts itself pleasantly to the background. It has seven spans and crosses over a secondary road, in addition to bridging the Willow stream. The supporting piles are hollow, of rectangular cross section, and over them a cross beam carries the five girders and the deck itself. The end abutments consist of vertical reinforced concrete walls, and supporting, soil filled, structures. The above information was supplied by the California Road Department.De los diez premios que anualmente concede el Prestressed Concrete Institute para las obras de hormigón pretensado más notables, dos han correspondido a California y uno de ellos al puente de Willow Creek, situado en la región de Monterrey. Las vigas de hormigón pretensado, con sección en forma de doble T, se prefabricaron en un taller situado a gran distancia del puente. Tienen 24 m de longitud y 1,35 m de canto, estando arriostradas con diafragmas transversales de 20 cm de espesor. La losa del tablero, de hormigón armado, tiene 8,85 m de anchura y 20 cm de espesor. La estructura es sencilla, esbelta y armoniza perfectamente con el paisaje que la circunda. Tiene siete tramos y salva un paso inferior secundario y el arroyo Willow. Los soportes, se apoyan sobre pilotes, algunos de gran altura; son huecos, de sección rectangular y terminan en una cruceta que sirve de sostén a las cinco vigas que soportan la losa del tablero. Los estribos

  5. Aeroelastic Response from Indicial Functions with a Finite Element Model of a Suspension Bridge

    Science.gov (United States)

    Mikkelsen, O.; Jakobsen, J. B.

    2017-12-01

    The present paper describes a comprehensive analysis of the aeroelastic bridge response in time-domain, with a finite element model of the structure. The main focus is on the analysis of flutter instability, accounting for the wind forces generated by the bridge motion, including twisting as well as vertical and horizontal translation, i.e. all three global degrees of freedom. The solution is obtained by direct integration of the equations of motion for the bridge-wind system, with motion-dependent forces approximated from flutter derivatives in terms of rational functions. For the streamlined bridge box-girder investigated, the motion dependent wind forces related to the along-wind response are found to have a limited influence on the flutter velocity. The flutter mode shapes in the time-domain and the frequency domain are consistent, and composed of the three lowest symmetrical vertical modes coupled with the first torsional symmetric mode. The method applied in this study provides detailed response estimates and contributes to an increased understanding of the complex aeroelastic behaviour of long-span bridges.

  6. Precast concrete elements for accelerated bridge construction : laboratory testing, field testing, and evaluation of a precast concrete bridge, Black Hawk County.

    Science.gov (United States)

    2009-01-01

    The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa : DOT Office of Bridges and Structures. Black Hawk County (BHC) has developed a precast modified beam-in-slab bridge (PMBI...

  7. Improving Thermal Insulation Properties for Prefabricated Wall Components Made Of Lightweight Aggregate Concrete with Open Structure

    Science.gov (United States)

    Abramski, Marcin

    2017-10-01

    Porous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. Reducing of the concrete density can be obviously obtained by using lightweight aggregate (e.g. pumice). The concrete density can be further minimized by using specially graded coarse aggregate and little-to-no fine aggregates. In this way a large number of air voids arise. The aggregate particles are coated by a cement paste and bonded together with it just in contact points. Such an extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets. The need of improving thermal insulation properties was an inspiration for the prefabrication plant managers, engineers and a scientific staff of the Technical University of Kaiserslautern / Germany to realise an interesting project. Its aim was to reduce the heat transfer coefficient for the wall components. Three different wall structure types were designed and compared in full-scale laboratory tests with originally produced wall components in terms of load-carrying capacity and stiffness. The load was applied perpendicularly to the wall plane. As the components are not originally used for load-bearing walls, but for curtain walls only, the wind load is the main load for them. The wall components were tested in horizontal position and the load was applied vertically. Totally twelve wall components 8.00 × 2.00 × 0.25m (three for every series) were produced in the prefabrication plant and tested in the University of Kaiserslautern laboratory. The designed and tested components differed from each other in the amount of expanded polystyrene (EPS), which was placed in the plant inside the wall structure. The minimal amount of it was designed in the

  8. Analysis and assessment of microbial biofilm-mediated concrete deterioration.

    Science.gov (United States)

    2008-10-01

    Inspections of bridge substructures in Texas identified surface deterioration of reinforced concrete columns on : bridges continuously exposed water. Initial hypothesis were that the surface deterioration was a result of the : acidity of the water in...

  9. Seismic fragility curves of bridge piers accounting for ground motions in Korea

    Science.gov (United States)

    Nguyen, Duy-Duan; Lee, Tae-Hyung

    2018-04-01

    Korea is located in a slight-to-moderate seismic zone. Nevertheless, several studies pointed that the peak earthquake magnitude in the region can be reached to approximately 6.5. Accordingly, a seismic vulnerability evaluation of the existing structures accounting for ground motions in Korea is momentous. The purpose of this paper is to develop seismic fragility curves for bridge piers of a steel box girder bridge equipped with and without base isolators based on a set of ground motions recorded in Korea. A finite element simulation platform, OpenSees, is utilized to perform nonlinear time history analyses of the bridges. A series of damage states is defined based on a damage index which is expressed in terms of the column displacement ductility ratio. The fragility curves based on Korean motions were thereafter compared with the fragility curves generated using worldwide earthquakes to assess the effect of the two ground motion groups on the seismic fragility curves of the bridge piers. The results reveal that both non- and base-isolated bridge piers are less vulnerable during the Korean ground motions than that under worldwide earthquakes.

  10. Impact of Underwater Explosions on Concrete Bridge Foundations

    Science.gov (United States)

    2016-06-01

    structural component. Because of the curved structure, arch bridges have a high bending force resistance. When the bridge is loaded, a horizontal force...V. Kedrinskii, “ Rarefaction waves and bubbly cavitation in real liquid,” presented at the Fourth International Symposium on Cavitation, Pasadena

  11. Structural strength deterioration of coastal bridge piers considering non-uniform corrosion in marine environments

    Science.gov (United States)

    Guo, Anxin; Yuan, Wenting; Li, Haitao; Li, Hui

    2018-04-01

    In the aggressive marine environment over a long-term service period, coastal bridges inevitably sustain corrosion-induced damage due to high sea salt and humidity. This paper investigates the strength reduction of coastal bridges, especially focusing on the effects of non-uniform corrosion along the height of bridge piers. First, the corrosion initiation time and the degradation of reinforcement and concrete are analyzed for bridge piers in marine environments. To investigate the various damage modes of the concrete cover, a discretization method with fiber cells is used for calculating time-dependent interaction diagrams of cross-sections of the bridge piers at the atmospheric zone and the splash and tidal zone under a combination of axial force and bending moment. Second, the shear strength of these aging structures is analyzed. Numerical simulation indicates that the strength of a concrete pier experiences dramatic reduction from corrosion initiation to the spalling of the concrete cover. Strength loss in the splash and tidal zone is more significant than in the atmospheric zone when structures' service time is assumed to be the same.

  12. Durability performance of submerged concrete structures - phase 2 : [summary].

    Science.gov (United States)

    2015-10-01

    Thousands of Florida bridges have steel-reinforced concrete piling foundations standing : in salt water. Over time, chloride ions in the water can migrate through the concrete to : attack the steel inside. The Florida Department of Transportation (FD...

  13. Bridge condition assessment based on long-term strain monitoring

    Science.gov (United States)

    Sun, LiMin; Sun, Shouwang

    2011-04-01

    In consideration of the important role that bridges play as transportation infrastructures, their safety, durability and serviceability have always been deeply concerned. Structural Health Monitoring Systems (SHMS) have been installed to many long-span bridges to provide bridge engineers with the information needed in making rational decisions for maintenance. However, SHMS also confronted bridge engineers with the challenge of efficient use of monitoring data. Thus, methodologies which are robust to random disturbance and sensitive to damage become a subject on which many researches in structural condition assessment concentrate. In this study, an innovative probabilistic approach for condition assessment of bridge structures was proposed on the basis of long-term strain monitoring on steel girder of a cable-stayed bridge. First, the methodology of damage detection in the vicinity of monitoring point using strain-based indices was investigated. Then, the composition of strain response of bridge under operational loads was analyzed. Thirdly, the influence of temperature and wind on strains was eliminated and thus strain fluctuation under vehicle loads is obtained. Finally, damage evolution assessment was carried out based on the statistical characteristics of rain-flow cycles derived from the strain fluctuation under vehicle loads. The research conducted indicates that the methodology proposed is qualified for structural condition assessment so far as the following respects are concerned: (a) capability of revealing structural deterioration; (b) immunity to the influence of environmental variation; (c) adaptability to the random characteristic exhibited by long-term monitoring data. Further examination of the applicability of the proposed methodology in aging bridge may provide a more convincing validation.

  14. Low Cost Wireless Fatigue Crack Monitoring System Using RFID Arrays

    Science.gov (United States)

    2018-03-23

    The use of welded steel cover plates had been a common design practice to increase beam section capacity in regions ofhigh torsion for decades. Many steel girder bridges with cover plates are still in service. Steel girder bridges are subject to cycl...

  15. A numerical study on the structural integrity of self-anchored cable-stayed suspension bridges

    Directory of Open Access Journals (Sweden)

    Paolo Lonetti

    2016-10-01

    Full Text Available A generalized numerical model for predicting the structural integrity of self-anchored cable-stayed suspension bridges considering both geometric and material nonlinearities is proposed. The bridge is modeled by means of a 3D finite element approach based on a refined displacement-type finite element approximation, in which geometrical nonlinearities are assumed in all components of the structure. Moreover, nonlinearities produced by inelastic material and second order effects in the displacements are considered for girder and pylon elements, which combine gradual yielding theory with CRC tangent modulus concept. In addition, for the elements of the suspension system, i.e. stays, hangers and main cable, a finite plasticity theory is adopted to fully evaluate both geometric and material nonlinearities. In this framework, the influence of geometric and material nonlinearities on the collapse bridge behavior is investigated, by means of a comparative study, which identifies the effects produced on the ultimate bridge behavior of several sources of bridge nonlinearities involved in the bridge components. Results are developed with the purpose to evaluate numerically the influence of the material and geometric characteristics of self-anchored cable-stayed suspension bridges with respect also to conventional bridge based on cablestayed or suspension schemes

  16. Overview of the National Timber Bridge Inspection Study

    Science.gov (United States)

    James P. Wacker; Brian K. Brashaw; Frank Jalinoos

    2013-01-01

    As many engineers begin to implement life cycle cost analyses within the preliminary bridge design phase, there is a significant need for more reliable data on the expected service life of highway bridges. Many claims are being made about the expected longevity of concrete and steel bridges, but few are based on actual performance data. Because engineers are least...

  17. Practical assessment of magnetic methods for corrosion detection in an adjacent precast, prestressed concrete box-beam bridge

    Science.gov (United States)

    Fernandes, Bertrand; Titus, Michael; Nims, Douglas Karl; Ghorbanpoor, Al; Devabhaktuni, Vijay Kumar

    2013-06-01

    Magnetic methods are progressing in the detection of corrosion in prestressing strands in adjacent precast, prestressed concrete box-beam bridges. This study is the first field trial of magnetic strand defect detection systems on an adjacent box-beam bridge. A bridge in Fayette County, Ohio, which was scheduled for demolition, was inspected. Damage to prestressed box-beams is often due to corrosion of the prestressing strands. The corroded strands show discontinuities and a reduced cross-sectional area. These changes, due to corrosion, are reflected in the magnetic signatures of the prestressing steel. Corrosion in the prestressing steel was detected using two magnetic methods, namely the 'magnetic flux leakage' (MFL) and the 'induced magnetic field'. The purpose of these tests was to demonstrate the ability of the magnetic methods to detect hidden corrosion in box-beams in the field and tackle the logistic problem of inspecting box-beams from the bottom. The inspections were validated by dissecting the bottom of the box-beams after the inspections. The results showed that the MFL method can detect hidden corrosion and strand breaks. Both magnetic field methods were also able to estimate corrosion by detecting the effective cross-sectional area of the strand in sections of the beams. Thus, it was shown that the magnetic methods can be used to predict hidden corrosion in prestressing strands of box-beams.

  18. A software prototype for assessing the reliability of a concrete bridge superstructure subjected to chloride-induced reinforcement corrosion

    DEFF Research Database (Denmark)

    Schneider, Ronald; Thöns, Sebastian; Fischer, Johannes

    2014-01-01

    state of the box girder and a structural model for evaluating the overall system reliability. The condition model is based on a dynamic Bayesian network (DBN) model which considers the spatial variation of the corrosion process. Inspection data are included in the calculation of the system reliability...

  19. Time-variant flexural reliability of RC beams with externally bonded CFRP under combined fatigue-corrosion actions

    International Nuclear Information System (INIS)

    Bigaud, David; Ali, Osama

    2014-01-01

    Time-variant reliability analysis of RC highway bridges strengthened with carbon fibre reinforced polymer CFRP laminates under four possible competing damage modes (concrete crushing, steel rupture after yielding, CFRP rupture and FRP plate debonding) and three degradation factors is analyzed in terms of reliability index β using FORM. The first degradation factor is chloride-attack corrosion which induces reduction in steel area and concrete cover cracking at characteristic key times (corrosion initiation, severe surface cover cracking). The second degradation factor considered is fatigue which leads to damage in concrete and steel rebar. Interaction between corrosion and fatigue crack growth in steel reinforcing bars is implemented. The third degradation phenomenon is the CFRP properties deterioration due to aging. Considering these three degradation factors, the time-dependent flexural reliability profile of a typical simple 15 m-span intermediate girder of a RC highway bridge is constructed under various traffic volumes and under different corrosion environments. The bridge design options follow AASHTO-LRFD specifications. Results of the study have shown that the reliability is very sensitive to factors governing the corrosion. Concrete damage due to fatigue slightly affects reliability profile of non-strengthened section, while service life after strengthening is strongly related to fatigue damage in concrete. - Highlights: • We propose a method to follow the time-variant reliability of strengthened RC beams. • We consider multiple competing failure modes of CFRP strengthened RC beams. • We consider combined degradation mechanisms (corrosion, fatigue, ageing of CFRP)

  20. 78 FR 52232 - 2013 Temporary Closure of I-65 (I-70/I-65 South Split Interchange) in the City of Indianapolis

    Science.gov (United States)

    2013-08-22

    ... southbound bridge girders and lowering the pavement section from south of Morris Street to north of Fletcher... immediately. FOR FURTHER INFORMATION CONTACT: Ms. Crystal Jones, Office of Freight Management and Operations..., which consists of replacing the northbound and southbound bridge girders and lowering the pavement...

  1. Alignment and girder position of MSE septa in the new LSS4 extraction channel of the SPS

    CERN Document Server

    Balhan, B; Rizzo, A; Weterings, W; CERN. Geneva. SPS and LHC Division

    2002-01-01

    For the extraction of the beam from the Super Proton Synchrotron (SPS) to ring 2 of the Large Hadron Collider (LHC) and the CERN Neutrino to Gran Sasso (CNGS)facility, a new fast-extraction system is being constructed in the long straight section LSS4 of the SPS. Besides extraction bumpers, enlarged aperture quadrupoles and extraction kicker magnets (MKE), six conventional DC septum magnets (MSE) are used. These magnets are mounted on a single rigid support girder, pre-aligned so as to follow the trajectory of the extracted beam and optimise the available aperture. The girder has been motorised in order to optimise the local SPS aperture during setting up, so as to avoid the risk of circulating beam impact on the septum coils. In this note, we briefly present the trajectory and apertures of the beam, we describe the calculations and methods that have been used to determine the magnet position on the girder, and finally we report on the details of the girder movement and alignment.

  2. Onboard monitoring of fatigue damage rates in the hull girder

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup

    2011-01-01

    Most new advanced ships have extensive data collection systems to be used for continuous monitoring of engine and hull performance, for voyage performance evaluation etc. Such systems could be expanded to include also procedures for stress monitoring and for decision support, where the most...... critical wave-induced ship extreme responses and fatigue damage accumulation can be estimated for hypothetical changes in ship course and speed in the automatically estimated wave environment.The aim of this paper is to outline a calculation procedure for fatigue damage rate prediction in hull girders...... taking into account whipping stresses. It is conceptually shown how such a method, which integrates onboard estimation of sea states, can be used to deduce decision support with respect to the accumulated fatigue damage in the hull girder.The paper firstly presents a set of measured full-scale wave...

  3. Fatigue Performance of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Jun, Zhang; Stang, Henrik

    1996-01-01

    The objective of the present study is to obtain basic data of fibre reinforced concrete under fatigue load and to set up a theoretical model based on micromechanics. In this study, the bridging stress in fiber reinforced concrete under cyclic tensile load was investigted in details. The damage...... mechanism of the interface between fiber and matrix was proposed and a rational model given. Finally, the response of a steel fiber reinforced concrete beam under fatigue loading was predicted based on this model and compared with experimental results....

  4. Structural health monitoring of the Gröndals Bridge in Sweden: the behaviour of CFRP strengthening in cold temperature

    Science.gov (United States)

    Hejll, Arvid; Täljsten, Björn; Carolin, Anders

    2006-03-01

    To obtain a better knowledge of existing structures behaviour monitoring can be used. The use of monitoring in bridge structures by the use of instruments to assess the integrity of structures is not new and there are reports from structures tested as early as in the 19th century according to ISIS Canada1 However, the term SHM (Structural Health Monitoring) is relatively new to civil engineering and the driving force to implement SHM comes from recognising the limitations of conventional visual inspections and evaluations using conservative codes of practice. The possibilities to monitor existing structures with help of the rapidly evolving Information Technology are to day carried out. The objective of SHM is to monitor the in-situ behaviour of a structure accurately and efficiently, to assess its performance under various service conditions, to detect damage or deterioration, and to determine the health or condition of the structure1. In Sweden strengthening and periodic monitoring of a large freivorbau bridge (pre-stresed concrete box girder bridge) has been carried out, the Gröndals Bridge. The bridge is located in Stockholm and is approximately 400 m in length with a free span of 120 m. It was opened to tram traffic in year 2000. Just after opening cracks were noticed in the webs, these cracks have then increased, the size of the largest cracks exceeded 0.5 mm, and at the end of year 2001 the bridge was temporarily strengthened. This was carried out with externally placed prestressed steel stays. The reason for cracking is quite clear but the responsibility is still debated. Nevertheless, it was evidently that the bridge needed to be strengthened. The strengthening methods used were CFRP plates in the Service Limit State (SLS) and prestressed dywidag stays in the Ultimate Limit State (ULS). The strengthening was carried out during year 2002. At the same time monitoring of the bridge commenced, using LVDT crack gauges as well as optical fibre sensors. This

  5. Ultra thin continuously reinforced concrete pavement research in south Africa

    CSIR Research Space (South Africa)

    Perrie, BD

    2007-08-01

    Full Text Available Ultra thin continuously reinforced concrete pavements (UTCRCP), in literature also referred to as Ultra Thin Reinforced High Performance Concrete (UTHRHPC), have been used in Europe successfully as a rehabilitation measure on steel bridge decks...

  6. Design, fabrication and erection of Queen Mall Bridge; Queen mall kyo no sekkei seisaku kasetsu

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M.; Ishii, A.; Shinohara, T. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1997-12-20

    This paper describes design, fabrication and erection of Queen Mall Bridge, which is a new landmark in Minato-Mirai Yokohama. This bridge is two-span continuous cable stayed pedestrian bridge with a roof, and has a length 72.2 m, a width 18 m and a weight about 1,050 t. This bridge connects between the Queen`s Square and the second floor of Pacifico Yokohama. Achieving harmonious impression of the newly designed bridge in this area, glass roof was employed and all-weld method was applied to the in-site jointing of main girders and main tower in addition to the essential structural design. Since all-weld method was applied to the in-site jointing, highly accurate fabrication was considered during the in-site jointing. Due to the heavy traffic of the road below the bridge, the erection time was shortened under the severe erection conditions at night by large block method. Especially, accuracy control was considered for the whole shape management. Pre-assemble of all members was conducted just near the erection site, only 500 m away from the site, to shorten the construction time. 1 ref., 5 figs.

  7. 3 long bridges of dream were realized Opening of West Seto Motorway; Yume no 3 kakyo ga jitsugen/nishiseto jidoshado haitsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-10

    Onomichi-Imabari route/Setouchi Simanami Thruway, which adorned the finish of Honshu-Shikoku projects was completed on 1st, May. With this completion, 3 long bridges of dream were completely realized, following to Kojima-Sakaide (1988) and Kobe-Naruto (1998). This time, 5 bridges of this Motorway, the world's longest cable stayed bridge Tatara Long Bridge, world's first 3 continuous suspension bridge Kurushima Strait No.1{approx}No.3 bridge and New Onomichi Long Bridge, were opened. 10 bridges including 5 bridges (In-noshima Long Bridge, Ikeguchi Bridge, Omishima Bridge, Hakata/Oshima Long Bridge and Oshima Long Bridge) already under service connect 9 islands between Onomichi, Hiroshima Prefecture and Imabari, Ehime Prefecture, with a route 59 km long. Characteristic design was adopted for each bridge to demonstrate world's highest bridge erection technology of Japan. In a series of concrete construction to support superstructure of these bridges, underwater non-segregation type concrete with low hydration heat cement mainly for foundation and substructure, and high fluidity concrete for dense reinforcement layout were adopted. (translated by NEDO)

  8. Hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.

    1996-01-01

    As part of the maintenance policy of the Dutch Ministry of Transport, Civil Engineering Division, hydrophobic treatment of concrete was considered as an additional protective measure against penetration of aggressive substances, for instance deicing salts in bridge decks. A set of tests was designed

  9. A Polish approach to FRP bridges

    Science.gov (United States)

    Siwowski, Tomasz; Rajchel, Mateusz

    2017-12-01

    The paper presents initial results of a new approach to FRP composite bridge construction that is presently being developed and tested in Poland. The concept combines lightweight concrete with FRP composites to create a durable highly optimised structure. The paper describes the bridge system itself and presents the research results on its development. The basic design is presented together with research results on its development: FEM analysis and a range of static test results of full-scale bridge beam experiments. The paper finishes with some test results of a full scale bridge that was constructed near Rzeszow in December 2015.

  10. Creep and shrinkage effects on integral abutment bridges

    Science.gov (United States)

    Munuswamy, Sivakumar

    Integral abutment bridges provide bridge engineers an economical design alternative to traditional bridges with expansion joints owing to the benefits, arising from elimination of expensive joints installation and reduced maintenance cost. The superstructure for integral abutment bridges is cast integrally with abutments. Time-dependent effects of creep, shrinkage of concrete, relaxation of prestressing steel, temperature gradient, restraints provided by abutment foundation and backfill and statical indeterminacy of the structure introduce time-dependent variations in the redundant forces. An analytical model and numerical procedure to predict instantaneous linear behavior and non-linear time dependent long-term behavior of continuous composite superstructure are developed in which the redundant forces in the integral abutment bridges are derived considering the time-dependent effects. The redistributions of moments due to time-dependent effects have been considered in the analysis. The analysis includes nonlinearity due to cracking of the concrete, as well as the time-dependent deformations. American Concrete Institute (ACI) and American Association of State Highway and Transportation Officials (AASHTO) models for creep and shrinkage are considered in modeling the time dependent material behavior. The variations in the material property of the cross-section corresponding to the constituent materials are incorporated and age-adjusted effective modulus method with relaxation procedure is followed to include the creep behavior of concrete. The partial restraint provided by the abutment-pile-soil system is modeled using discrete spring stiffness as translational and rotational degrees of freedom. Numerical simulation of the behavior is carried out on continuous composite integral abutment bridges and the deformations and stresses due to time-dependent effects due to typical sustained loads are computed. The results from the analytical model are compared with the

  11. A calculation model for the noise from steel railway bridges

    NARCIS (Netherlands)

    Janssens, M.H.A.; Thompson, D.J.

    1996-01-01

    The sound level of a train crossing a steel railway bridge is usually about 10 dB higher than on plain track. In the Netherlands there are many such bridges which, for practical reasons, cannot be replaced by more intrinsically quiet concrete bridges. A computational model is described for the

  12. Construction of a composite cable stayed bridge. Karnali river bridge in Nepal. Gosei shachokyo no kensetsu. Karnali kawa kyoryo

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, M.; Nakamura, K.; Shimodoi, H.; Amako, M.; Miyoshi, S.; Haruta, M.; Okada, S.; Kuroki, S. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1994-07-20

    The present report reports the construction of Karnali River Bridge in Nepal by Kawasaki Heavy Industries, Ltd. The present bridge is a composite cable stayed bridge, two-spanned with a main span length of 325m and side span length of 175m. Having an about 125m-high single tower, it is 11.3m in breadth and 3m in main truss height. The main truss is supported by both faces of 30 cables per face, i.e., 60 cables. (Each of both main and side spans has 15 cables per face.) The design and construction are described with the following their itemization: design (bending moment properties in the erected system, composite structure of main truss and stress analysis at the time of erection). Wind resisting measures (measures for the wind resistant stability at the time of erection of both tower and main truss cantilever). Fabrication and transportation of steel structural members. Fabrication of precast floor plates (concrete mixing, and fabrication and curing of floor plates). Construction of tower foundation (tremie concrete and air concrete). Erection of upper structures (erection of tower, both main and side spans, and accuracy management). 14 figs., 4 tabs.

  13. Modal analysis of railway bridge hangers using artificial and ambient excitation

    Science.gov (United States)

    Link, M.; Weiland, M.; Yu, F.

    2002-12-01

    This paper describes the methods used and results obtained from analysing some resonance phenomena which were observed on a steel railway bridge. These phenomena were visible on the slender hangers connecting the arch girder and the main truss girder under certain wind conditions. The paper describes the set up of a vibration monitoring system designed to measure the vibration response of the hangers together with the wind velocity and the wind direction over a period of several months under operational conditions. These data should yield the basis for correlating the wind and the structural characteristics. In addition artificial impulse hammer excitation was used to measure the modal characteristics (natural frequencies and modes of the hangers separately. The results of these tests compared well with those obtained from applying some “output only" modal identification techniques to the operational response data with unknown excitation forces. The results also compared well to analytical predictions and were used to identify the axial forces in the hangers by updating the axial force minimising the test/analysis deviations. The results allowed to estimate the fatigue life of the hangers confirming the need for the design of anti- vibration devices.

  14. Seismic Material Properties of Reinforced Concrete and Steel Casing Composite Concrete in Elevated Pile-Group Foundation

    Directory of Open Access Journals (Sweden)

    Zhou Mi

    2015-09-01

    Full Text Available The paper focuses on the material mechanics properties of reinforced concrete and steel casing composite concrete under pseudo-static loads and their application in structure. Although elevated pile-group foundation is widely used in bridge, port and ocean engineering, the seismic performance of this type of foundation still need further study. Four scale-specimens of the elevated pile-group foundation were manufactured by these two kinds of concrete and seismic performance characteristic of each specimen were compared. Meanwhile, the special soil box was designed and built to consider soil-pile-superstructure interaction. According to the test result, the peak strength of strengthening specimens is about 1.77 times of the others and the ultimate displacement is 1.66 times of the RC specimens. Additionally, the dissipated hysteric energy capability of strengthening specimens is more than 2.15 times of the others as the equivalent viscous damping ratio is reduced by 50%. The pinching effect of first two specimens is more obvious than latter two specimens and the hysteretic loops of reinforced specimens are more plumpness. The pseudo-static tests also provided the data to quantitatively assessment the positive effect of steel casing composite concrete in aseismatic design of bridge.

  15. Cost and Ecological Feasibility of using UHPC in Highway Bridges

    Science.gov (United States)

    2017-11-15

    There is a growing interest in expanding the use of Ultra-high performance concrete (UHPC) from bridge deck joints for accelerated bridge construction to complex architectural and advanced structural applications. The high costs currently associated ...

  16. Feasibility analysis of ultra high performance concrete for prestressed concrete bridge applications.

    Science.gov (United States)

    2010-07-01

    UHPC is an emerging material technology in which concrete develops very high : compressive strengths and exhibits improved tensile strength and toughness. A : comprehensive literature and historical application review was completed to determine the :...

  17. Research notes : listening to bridges.

    Science.gov (United States)

    2008-09-01

    The Federal Highway Administration requires owners of structurally deficient bridges to repair, replace, restrict truck loads, or conduct analysis and testing to maintain a safe highway system. Past experiments on reinforced concrete beams showed aco...

  18. Semiempirical Methodology for Estimating the Service Life of Concrete Deck Panels Strengthened with Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Eon-Kyoung Kim

    2014-01-01

    Full Text Available Deterioration of concrete bridge decks affects their durability, safety, and function. It is therefore necessary to conduct structural rehabilitation of damaged concrete decks by strengthening them with fiber-reinforced polymer. Of the recent studies on the strengthened structures, most have focused on static behavior; only a few studies have investigated fatigue behavior. Accurate analysis of fatigue in concrete deck performance requires a more realistic simulated moving load. This study developed a theoretical live-load model to reflect the effect of moving vehicle loads, based on a statistical approach to the measurement of real traffic loads over various time periods in Korea. It assessed the fatigue life and strengthening effect of bridge decks strengthened with either carbon fiber sheets or grid carbon fiber polymer plastic using probabilistic and reliability analyses. It used extrapolations and simulations to derive maximum load effects for time periods ranging from 1 day to 75 years. Limited fatigue tests were conducted and probabilistic and reliability analyses were carried out on the strengthened concrete bridge deck specimens to predict the extended fatigue life. Analysis results indicated that strengthened concrete decks provide sufficient resistance against increasing truck loads during the service life of a bridge.

  19. Discussion on design and stress checking of cast-in-place bracket

    Science.gov (United States)

    Xi, Tang Xian; Yong, He; Hu, Sun Shuan

    2018-04-01

    The cast-in-place bracket is the main support structure in the construction of bridge. Its strength, stiffness and stability have a direct impact on the quality and the safety of bridge construction. The design and calculation of the bracket in the prestressed concrete box girder are analyzed in this paper. The models including Bailey beam, steel crossbeam and steel columns are established by the finite element software. The strength, stiffness and stability of each model under the most unfavorable load are analyzed by MIDAS Civil. The analysis results verify that the support plan meets the relevant specifications and construction requirements. The feasibility of the support scheme was verified well accordingly. The paper can provide reference and guidance for similar engineering construction.

  20. Study on Repaired Earthquake-Damaged Bridge Piers under Seismic Load

    Directory of Open Access Journals (Sweden)

    Jun Deng

    2015-01-01

    Full Text Available The concrete bridge pier damaged during earthquakes need be repaired to meet the design standards. Steel tube as a traditional material or FRP as a novel material has become popular to repair the damaged reinforced concrete (RC bridge piers. In this paper, experimental and finite element (FE studies are employed to analyze the confinement effectiveness of the different repair materials. The FE method was used to calculate the hysteretic behavior of three predamaged circle RC bridge piers repaired with steel tube, basalt fiber reinforced polymer (BFRP, and carbon fiber reinforced polymer (CFRP, respectively. Meanwhile, the repaired predamaged circle concrete bridge piers were tested by pseudo-static cyclic loading to study the seismic behavior and evaluate the confinement effectiveness of the different repair materials and techniques. The FE analysis and experimental results showed that the repaired piers had similar hysteretic curves with the original specimens and all the three repair techniques can restore the seismic performance of the earthquake-damaged piers. Steel tube jacketing can significantly improve the lateral stiffness and peak load of the damaged pier, while the BFRP and CFRP sheets cannot improve these properties due to their thin thickness.