WorldWideScience

Sample records for concentrative nucleoside transporters

  1. Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4;#8201;Å

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Zachary Lee; Cheong, Cheom-Gil; Lee, Seok-Yong (Duke)

    2012-07-11

    Nucleosides are required for DNA and RNA synthesis, and the nucleoside adenosine has a function in a variety of signalling processes. Transport of nucleosides across cell membranes provides the major source of nucleosides in many cell types and is also responsible for the termination of adenosine signalling. As a result of their hydrophilic nature, nucleosides require a specialized class of integral membrane proteins, known as nucleoside transporters (NTs), for specific transport across cell membranes. In addition to nucleosides, NTs are important determinants for the transport of nucleoside-derived drugs across cell membranes. A wide range of nucleoside-derived drugs, including anticancer drugs (such as Ara-C and gemcitabine) and antiviral drugs (such as zidovudine and ribavirin), have been shown to depend, at least in part, on NTs for transport across cell membranes. Concentrative nucleoside transporters, members of the solute carrier transporter superfamily SLC28, use an ion gradient in the active transport of both nucleosides and nucleoside-derived drugs against their chemical gradients. The structural basis for selective ion-coupled nucleoside transport by concentrative nucleoside transporters is unknown. Here we present the crystal structure of a concentrative nucleoside transporter from Vibrio cholerae in complex with uridine at 2.4 {angstrom}. Our functional data show that, like its human orthologues, the transporter uses a sodium-ion gradient for nucleoside transport. The structure reveals the overall architecture of this class of transporter, unravels the molecular determinants for nucleoside and sodium binding, and provides a framework for understanding the mechanism of nucleoside and nucleoside drug transport across cell membranes.

  2. Human concentrative nucleoside transporter 3 transfection with ultrasound and microbubbles in nucleoside transport deficient HEK293 cells greatly increases gemcitabine uptake.

    Science.gov (United States)

    Paproski, Robert J; Yao, Sylvia Y M; Favis, Nicole; Evans, David; Young, James D; Cass, Carol E; Zemp, Roger J

    2013-01-01

    Gemcitabine is a hydrophilic clinical anticancer drug that requires nucleoside transporters to cross plasma membranes and enter cells. Pancreatic adenocarcinomas with low levels of nucleoside transporters are generally resistant to gemcitabine and are currently a clinical problem. We tested whether transfection of human concentrative nucleoside transporter 3 (hCNT3) using ultrasound and lipid stabilized microbubbles could increase gemcitabine uptake and sensitivity in HEK293 cells made nucleoside transport deficient by pharmacologic treatment with dilazep. To our knowledge, no published data exists regarding the utility of using hCNT3 as a therapeutic gene to reverse gemcitabine resistance. Our ultrasound transfection system--capable of transfection of cell cultures, mouse muscle and xenograft CEM/araC tumors--increased hCNT3 mRNA and (3)H-gemcitabine uptake by >2,000- and 3,400-fold, respectively, in dilazep-treated HEK293 cells. Interestingly, HEK293 cells with both functional human equilibrative nucleoside transporters and hCNT3 displayed 5% of (3)H-gemcitabine uptake observed in cells with only functional hCNT3, suggesting that equilibrative nucleoside transporters caused significant efflux of (3)H-gemcitabine. Efflux assays confirmed that dilazep could inhibit the majority of (3)H-gemcitabine efflux from HEK293 cells, suggesting that hENTs were responsible for the majority of efflux from the tested cells. Oocyte uptake transport assays were also performed and provided support for our hypothesis. Gemcitabine uptake and efflux assays were also performed on pancreatic cancer AsPC-1 and MIA PaCa-2 cells with similar results to that of HEK293 cells. Using the MTS proliferation assay, dilazep-treated HEK293 cells demonstrated 13-fold greater resistance to gemcitabine compared to dilazep-untreated HEK293 cells and this resistance could be reversed by transfection of hCNT3 cDNA. We propose that transfection of hCNT3 cDNA using ultrasound and microbubbles may be a

  3. Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation.

    Science.gov (United States)

    Rius, Maria; Stresemann, Carlo; Keller, Daniela; Brom, Manuela; Schirrmacher, Esther; Keppler, Dietrich; Lyko, Frank

    2009-01-01

    The DNA methyltransferase inhibitors 5-azacytidine (5-azaCyd) and 5-aza-2'-deoxycytidine have found increasing use for the treatment of myeloid leukemias and solid tumors. Both nucleoside analogues must be transported into cells and phosphorylated before they can be incorporated into DNA and inactivate DNA methyltransferases. The members of the human equilibrative and concentrative nucleoside transporter families mediate transport of natural nucleosides and some nucleoside analogues into cells. However, the molecular identity of the transport proteins responsible for mediating the uptake of 5-azanucleosides has remained unknown. To this end, we have generated a stably transfected Madin-Darby canine kidney strain II cell line expressing recombinant hCNT1. An antiserum directed against hCNT1 specifically detected the protein in the apical membrane of hCNT1-expressing Madin-Darby canine kidney cells. Using [14C]5-azaCyd, we show here that hCNT1 mediated the Na+-dependent uptake of this drug with a Km value of 63 micromol/L. Na+-dependent transport of radiolabeled cytidine, uridine, and 5-fluoro-5'-deoxyuridine further showed the functionality of the transporter. hCNT1-expressing cells were significantly more sensitive to 5-azaCyd, and drug-dependent covalent trapping of DNA methyltransferase 1 was substantially more pronounced. Importantly, these results correlated with a significant sensitization of hCNT1-expressing cells toward the demethylating effects of 5-azaCyd and 5-aza-2'-deoxycytidine. In conclusion, our study identifies 5-azaCyd as a novel substrate for hCNT1 and provides direct evidence that hCNT1 is involved in the DNA-demethylating effects of this drug.

  4. Vectorial transport of nucleoside analogs from the apical to the basolateral membrane in double-transfected cells expressing the human concentrative nucleoside transporter hCNT3 and the export pump ABCC4.

    Science.gov (United States)

    Rius, Maria; Keller, Daniela; Brom, Manuela; Hummel-Eisenbeiss, Johanna; Lyko, Frank; Keppler, Dietrich

    2010-07-01

    The identification of the transport proteins responsible for the uptake and the efflux of nucleosides and their metabolites enables the characterization of their vectorial transport and a better understanding of their absorption, distribution, and elimination. Human concentrative nucleoside transporters (hCNTs/SLC28A) are known to mediate the transport of natural nucleosides and some nucleoside analogs into cells in a sodium-dependent and unidirectional manner. On the other hand, several human multidrug resistance proteins [human ATP-binding cassette transporter, subfamily C (ABCC)] cause resistance against nucleoside analogs and mediate transport of phosphorylated nucleoside derivatives out of the cells in an ATP-dependent manner. For the integrated analysis of uptake and efflux of these compounds, we established a double-transfected Madin-Darby canine kidney (MDCK) II cell line stably expressing the human uptake transporter hCNT3 in the apical membrane and the human efflux pump ABCC4 in the basolateral membrane. The direction of transport was from the apical to the basolateral compartment, which is in line with the unidirectional transport and the localization of both recombinant proteins in the MDCKII cells. Recombinant hCNT3 mediated the transport of several known nucleoside substrates, and we identified 5-azacytidine as a new substrate for hCNT3. It is of interest that coexpression of both transporters was confirmed in pancreatic adenocarcinomas, which represent an important clinical indication for the therapeutic use of nucleoside analogs. Thus, our results establish a novel cell system for studies on the vectorial transport of nucleosides and their analogs from the apical to the basolateral compartment. The results contribute to a better understanding of the cellular transport characteristics of nucleoside drugs.

  5. Involvement of Concentrative Nucleoside Transporter 1 in Intestinal Absorption of Trifluridine Using Human Small Intestinal Epithelial Cells.

    Science.gov (United States)

    Takahashi, Koichi; Yoshisue, Kunihiro; Chiba, Masato; Nakanishi, Takeo; Tamai, Ikumi

    2015-09-01

    TAS-102, which is effective for refractory metastatic colorectal cancer, is a combination drug of anticancer trifluridine (FTD; which is derived from pyrimidine nucleoside) and FTD-metabolizing enzyme inhibitor tipiracil hydrochloride (TPI) at a molecular ratio of 1:0.5. To evaluate the intestinal absorption mechanism of FTD, the uptake and transcellular transport of FTD by human small intestinal epithelial cell (HIEC) monolayer as a model of human intestinal epithelial cells was investigated. The uptake and membrane permeability of FTD by HIEC monolayers were saturable, Na(+) -dependent, and inhibited by nucleosides. These transport characteristics are mostly comparable with those of concentrative nucleoside transporters (CNTs). Moreover, the uptake of FTD by CNT1-expressing Xenopus oocytes was the highest among human CNT transporters. The obtained Km and Vmax values of FTD by CNT1 were 69.0 μM and 516 pmol/oocyte/30 min, respectively. The transcellular transport of FTD by Caco-2 cells, where CNT1 is heterologously expressed, from apical to basolateral side was greater than that by Mock cells. In conclusion, these results demonstrated that FTD exhibits high oral absorption by the contribution of human CNT1. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Renal transepithelial transport of nucleosides.

    Science.gov (United States)

    Nelson, J A; Vidale, E; Enigbokan, M

    1988-01-01

    Previous work from this and other laboratories has suggested that the mammalian kidney has unique mechanisms for handling purine nucleosides. For example, in humans and in mice, adenosine undergoes net renal reabsorption whereas deoxyadenosine is secreted [Kuttesch and Nelson: Cancer Chemother. Pharmacol. 8, 221 (1982)]. The relationships between these renal transport systems and classical renal organic cation and anion, carbohydrate, and cell membrane nucleoside transport carriers are not established. To investigate possible relationships between such carriers, we have tested effects of selected classical transport inhibitors on the renal clearances of adenosine, deoxyadenosine, 5'-deoxy-5-fluorouridine (5'-dFUR), and 5-fluorouracil in mice. The secretion of deoxyadenosine and 5'-dFUR, but not the reabsorption of adenosine or 5-fluorouracil, was prevented by the classical nucleoside transport inhibitors, dipyridamole and nitrobenzylthioinosine. Cimetidine, an inhibitor of the organic cation secretory system, also inhibited the secretion of 5'-dFUR, although it did not inhibit deoxyadenosine secretion in earlier studies [Nelson et al.: Biochem. Pharmacol. 32, 2323 (1983)]. The specific inhibitor of glucose renal reabsorption, phloridzin, failed to inhibit the reabsorption of adenosine or the secretion of deoxyadenosine. Failure of the nucleoside transport inhibitors and phloridzin to prevent adenosine reabsorption suggests that adenosine reabsorption may occur via a unique process. On the other hand, inhibition of the net secretion of deoxyadenosine and 5'-dFUR by dipyridamole and nitrobenzylthioinosine implies a role for the carrier that is sensitive to these compounds in the renal secretion (active transport) of these nucleosides.

  7. Nucleoside transporters and liver cell growth

    National Research Council Canada - National Science Library

    Valdés, Raquel; Mata, João F; Del Santo, Belén; Pastor-Anglada, Marçal; Felipe, Antonio; Casado, F Javier

    1998-01-01

    .... This review summarizes work performed in our laboratory on these transport systems, particularly nucleoside transporters, which are up-regulated in physiological situations associated with liver cell growth...

  8. Red Fluorescent Protein pH Biosensor to Detect Concentrative Nucleoside Transport

    National Research Council Canada - National Science Library

    Danielle E. Johnson; Hui-wang Ai; Peter Wong; James D. Young; Robert E. Campbell; Joseph R. Casey

    2009-01-01

    .... We describe a new approach to monitor H + /uridine co-transport in cultured mammalian cells, using a pH-sensitive monomeric red fluorescent protein variant, mNectarine, whose development and characterization are also reported here...

  9. The SLC28 (CNT) and SLC29 (ENT) nucleoside transporter families: a 30-year collaborative odyssey.

    Science.gov (United States)

    Young, James D

    2016-06-15

    Specialized nucleoside transporter (NT) proteins are required for passage of nucleosides and hydrophilic nucleoside analogues across biological membranes. Physiologic nucleosides serve as central salvage metabolites in nucleotide biosynthesis, and nucleoside analogues are used as chemotherapeutic agents in the treatment of cancer and antiviral diseases. The nucleoside adenosine modulates numerous cellular events via purino-receptor cell signalling pathways. Human NTs are divided into two structurally unrelated protein families: the SLC28 concentrative nucleoside transporter (CNT) family and the SLC29 equilibrative nucleoside transporter (ENT) family. Human CNTs are inwardly directed Na(+)-dependent nucleoside transporters found predominantly in intestinal and renal epithelial and other specialized cell types. Human ENTs mediate bidirectional fluxes of purine and pyrimidine nucleosides down their concentration gradients and are ubiquitously found in most, possibly all, cell types. Both protein families are evolutionarily old: CNTs are present in both eukaryotes and prokaryotes; ENTs are widely distributed in mammalian, lower vertebrate and other eukaryote species. This mini-review describes a 30-year collaboration with Professor Stephen Baldwin to identify and understand the structures and functions of these physiologically and clinically important transport proteins.

  10. Two nucleoside transporters in Lactococcus lactis with different substrate specificities

    DEFF Research Database (Denmark)

    Martinussen, Jan; Sørensen, Claus; Jendresen, Christian Bille

    2010-01-01

    at both genetic and physiological level, using mutagenesis and by measuring the growth and uptake of nucleosides in the different mutants supplemented with different nucleosides. Two high affinity transporters were identified: BmpA-NupABC was shown to be an ABC transporter with the ability to actively...

  11. Transport of pyrimidine nucleosides in cells of Escherichia coli K 12.

    Science.gov (United States)

    Mygind, B; Munch-Petersen

    1975-11-15

    1. The transport of pyrimidine mucleosides into cells of Escherichis coli has been investigated in mutant strains which cannot metabolize these nucleosides. Such cells transport and concentrate purimidine mucleosides several hindredfold. 2. The transport is inhibited by energy poisons and by sulfhydryl reagents. 3. Pyrimidine mucleosides compete mutually for transport. Adenosine is also a strong competitor while guanosine and inosine are weak competitors. 4. The rate of pyrimidine mucleoside transport is shown to be under control of the cytR and deoR gene products, which are also known to regulate the synthesis of nucleoside-catabolizing enzymes. The transport system is repressed by growth on glucose, as is the synthesis of the enzymes.

  12. Nucleobase and nucleoside transport and integration into plant metabolism

    Directory of Open Access Journals (Sweden)

    Christopher eGirke

    2014-09-01

    Full Text Available Nucleotide metabolism is an essential process in all living organisms. Besides newly synthesized nucleotides, the recycling (salvage of partially degraded nucleotides i.e. nucleosides and nucleobases serves to keep the homeostasis of the nucleotide pool. Both types of metabolites are substrates of at least six families of transport proteins in Arabidopsis thaliana (Arabidopsis with a total of 49 members. In the last years several members of such transport proteins have been analyzed allowing to present a more detailed picture of nucleoside and nucleobase transport and the physiological function of these processes. Besides functioning in nucleotide metabolism it turned out that individual members of the before named transporters exhibit the capacity to transport a wide range of different substrates including vitamins and phytohormones. The aim of this review is to summarize the current knowledge on nucleobase and nucleoside transport processes in plants and integrate this into nucleotide metabolism in general. Thereby, we will focus on those proteins which have been characterized at the biochemical level.

  13. Nucleobase and nucleoside transport and integration into plant metabolism.

    Science.gov (United States)

    Girke, Christopher; Daumann, Manuel; Niopek-Witz, Sandra; Möhlmann, Torsten

    2014-01-01

    Nucleotide metabolism is an essential process in all living organisms. Besides newly synthesized nucleotides, the recycling (salvage) of partially degraded nucleotides, i.e., nucleosides and nucleobases serves to keep the homeostasis of the nucleotide pool. Both types of metabolites are substrates of at least six families of transport proteins in Arabidopsis thaliana (Arabidopsis) with a total of 49 members. In the last years several members of such transport proteins have been analyzed allowing to present a more detailed picture of nucleoside and nucleobase transport and the physiological function of these processes. Besides functioning in nucleotide metabolism it turned out that individual members of the before named transporters exhibit the capacity to transport a wide range of different substrates including vitamins and phytohormones. The aim of this review is to summarize the current knowledge on nucleobase and nucleoside transport processes in plants and integrate this into nucleotide metabolism in general. Thereby, we will focus on those proteins which have been characterized at the biochemical level.

  14. Investigating the role of nucleoside transporters in the resistance of colorectal cancer to 5-fluorouracil therapy.

    Science.gov (United States)

    Phua, Lee Cheng; Mal, Mainak; Koh, Poh Koon; Cheah, Peh Yean; Chan, Eric Chun Yong; Ho, Han Kiat

    2013-03-01

    Resistance to 5-fluorouracil (5FU) poses a constant challenge to the management of colorectal cancer (CRC). Consistent efforts were called for to identify molecular markers that can effectively predict patients' response. This study investigated the role of nucleoside transporters, particularly human equilibrative nucleoside transporter 1 (hENT1), in predicting clinical treatment outcome with 5FU-based therapy. Expression of a panel of nucleoside transporters in biopsied tumors from 7 CRC patients was measured by real-time PCR prior to 5FU-based chemotherapy. To provide mechanistic support for the role of hENT1 in 5FU resistance, cell viability of Caco-2 cells was measured, following incubation with varying concentrations of 5FU and a hENT1 inhibitor. Biopsied tumors were further subjected to global metabonomic profiling using gas chromatography/mass spectrometry. High hENT1 levels in tumor tissue correlated with poor clinical response to 5FU. Corroborating with the clinical findings, chemical inhibition of hENT1 in Caco-2 cells resulted in an augmentation of 5FU efficacy. Metabonomic profiling revealed that the pretreatment metabotype associated with non-responders to 5FU therapy was distinct from metabotype of responders (partial least-squares discriminant analysis Q(2) (cumulative) = 0.898, R(2)X = 0.513, R(2)Y = 0.996). This is the first clinical report on the relationships of intratumoral expression of nucleoside transporters and tumor metabotype with response to 5FU among CRC patients. Coupled to the in vitro findings, our preliminary data suggested hENT1 to be a potential codeterminant of clinical response to 5FU.

  15. Transport of A1 adenosine receptor agonist tecadenoson by human and mouse nucleoside transporters: evidence for blood-brain barrier transport by murine equilibrative nucleoside transporter 1 mENT1.

    Science.gov (United States)

    Lepist, Eve-Irene; Damaraju, Vijaya L; Zhang, Jing; Gati, Wendy P; Yao, Sylvia Y M; Smith, Kyla M; Karpinski, Edward; Young, James D; Leung, Kwan H; Cass, Carol E

    2013-04-01

    The high density of A1 adenosine receptors in the brain results in significant potential for central nervous system (CNS)-related adverse effects with A1 agonists. Tecadenoson is a selective A1 adenosine receptor agonist with close similarity to adenosine. We studied the binding and transmembrane transport of tecadenoson by recombinant human equilibrative nucleoside transporters (hENTs) hENT1 and hENT2, and human concentrative nucleoside transporters (hCNTs) hCNT1, hCNT2, and hCNT3 in vitro and by mouse mENT1 in vivo. Binding affinities of the five recombinant human nucleoside transporters for tecadenoson differed (hENT1 > hCNT1 > hCNT3 > hENT2 > hCNT2), and tecadenoson was transported largely by hENT1. Pretreatment of mice with a phosphorylated prodrug of nitrobenzylmercaptopurine riboside, an inhibitor of mENT1, significantly decreased brain exposure to tecadenoson compared with that of the untreated (control) group, suggesting involvement of mENT1 in transport of tecadenoson across the blood-brain barrier (BBB). In summary, ENT1 was shown to mediate the transport of tecadenoson in vitro with recombinant and native human protein and in vivo with mice. The micromolar apparent Km value of tecadenoson for transport by native hENT1 in cultured cells suggests that hENT1 will not be saturated at clinically relevant (i.e., nanomolar) concentrations of tecadenoson, and that hENT1-mediated passage across the BBB may contribute to the adverse CNS effects observed in clinical trials. In contrast, in cases in which a CNS effect is desired, the present results illustrate that synthetic A1 agonists that are transported by hENT1 could be used to target CNS disorders because of enhanced delivery to the brain.

  16. Expression and functional activity of nucleoside transporters in human choroid plexus

    Directory of Open Access Journals (Sweden)

    Grujicic Danica

    2010-01-01

    Full Text Available Abstract Background Human equilibrative nucleoside transporters (hENTs 1-3 and human concentrative nucleoside transporters (hCNTs 1-3 in the human choroid plexus (hCP play a role in the homeostasis of adenosine and other naturally occurring nucleosides in the brain; in addition, hENT1, hENT2 and hCNT3 mediate membrane transport of nucleoside reverse transcriptase inhibitors that could be used to treat HIV infection, 3'-azido-3'-deoxythymidine, 2'3'-dideoxycytidine and 2'3'-dideoxyinosine. This study aimed to explore the expression levels and functional activities of hENTs 1-3 and hCNTs 1-3 in human choroid plexus. Methods Freshly-isolated pieces of lateral ventricle hCP, removed for various clinical reasons during neurosurgery, were obtained under Local Ethics Committee approval. Quantification of mRNAs that encoded hENTs and hCNTs was performed by the hydrolysis probes-based reverse transcription real time-polymerase chain reaction (RT-qPCR; for each gene of interest and for 18 S ribosomal RNA, which was an endogenous control, the efficiency of PCR reaction (E and the quantification cycle (Cq were calculated. The uptake of [3H]inosine by the choroid plexus pieces was investigated to explore the functional activity of hENTs and hCNTs in the hCP. Results RT-qPCR revealed that the mRNA encoding the intracellularly located transporter hENT3 was the most abundant, with E-Cq value being only about 40 fold less that the E-Cq value for 18 S ribosomal RNA; mRNAs encoding hENT1, hENT2 and hCNT3 were much less abundant than mRNA for the hENT3, while mRNAs encoding hCNT1 and hCNT2 were of very low abundance and not detectable. Uptake of [3H]inosine by the CP samples was linear and consisted of an Na+-dependent component, which was probably mediated by hCNT3, and Na+-independent component, mediated by hENTs. The latter component was not sensitive to inhibition by S-(4-nitrobenzyl-6-thioinosine (NBMPR, when used at a concentration of 0.5 μM, a finding that

  17. Importance of mammalian nuclear-envelope nucleoside triphosphatase in nucleo-cytoplasmic transport of ribonucleoproteins.

    Science.gov (United States)

    Agutter, P S; McCaldin, B; McArdle, H J

    1979-09-15

    The nucleoside triphosphate-stimulated efflux of RNA from isolated nuclei was studied under a range of conditions, and the effects of these conditions on the process were compared with the properties of the nucleoside triphosphatase located in the pore complex. A marked similarity between the rate of efflux and the rate of nucleoside triphosphate hydrolysis was apparent, in terms of substrate specificity, sensitivity to treatment with insolubilized trypsin, kinetics and the effects of increased ionic strength and of many inhibitors. These results are taken, in view of earlier evidence, to suggest that the activity of the nucleoside triphosphatase is a prerequisite for nucleo-cytoplasmic RNA transport in vivo. There are some indications that the nuclear-envelope lipid is also involved in regulating the efflux process.

  18. Human Equilibrative Nucleoside Transporter 1 (hENT1 in Pancreatic Adenocarcinoma: Towards Individualized Treatment Decisions

    Directory of Open Access Journals (Sweden)

    Jennifer L. Spratlin

    2010-12-01

    Full Text Available Pancreatic cancer is one of the most lethal cancers, where curative surgical resections are rare and less than 5% of patients experience long-term survival. Despite numerous clinical trials, improvements in the systemic treatment of this disease have been limited. Gemcitabine, a nucleoside analogue, is still considered the standard of care chemotherapy for most patients in the advanced disease setting. To exert its cytotoxic effects, gemcitabine must enter cells via nucleoside transporters, most notably human equilibrative nucleoside transporter 1 (hENT1. Increasingly strong evidence suggests hENT1 is a prognostic biomarker in gemcitabine-treated pancreatic cancer, and may well be a predictive biomarker of gemcitabine efficacy. In this review, we synthesize the literature surrounding hENT1 in pancreatic cancer, identify the key outstanding questions, and suggest strategies to prospectively evaluate the clinical utility of hENT1 in future clinical studies.

  19. Two nucleoside transporters in Lactococcus lactis with different substrate specificities

    DEFF Research Database (Denmark)

    Martinussen, Jan; Sørensen, Claus; Jendresen, Christian Bille

    2010-01-01

    In an alternative to biosynthesis of nucleotides, most organisms are capable of exploiting exogenous nucleotide sources. In order to do so, the nucleotide precursors must pass the membrane, which requires the presence of transporters. Normally, phosphorylated compounds are not subject to transport...

  20. Thermodynamics and kinetics of inhibitor binding to human equilibrative nucleoside transporter subtype-1.

    Science.gov (United States)

    Rehan, Shahid; Ashok, Yashwanth; Nanekar, Rahul; Jaakola, Veli-Pekka

    2015-12-15

    Many nucleoside transport inhibitors are in clinical use as anti-cancer, vasodilator and cardioprotective drugs. However, little is known about the binding energetics of these inhibitors to nucleoside transporters (NTs) due to their low endogenous expression levels and difficulties in the biophysical characterization of purified protein with ligands. Here, we present kinetics and thermodynamic analyses of inhibitor binding to the human equilibrative nucleoside transporter-1 (hENT1), also known as SLC29A1. Using a radioligand binding assay, we obtained equilibrium binding and kinetic rate constants of well-known NT inhibitors--[(3)H]nitrobenzylmercaptopurine ribonucleoside ([(3)H]NBMPR), dilazep, and dipyridamole--and the native permeant, adenosine, to hENT1. We observed that the equilibrium binding affinities for all inhibitors decreased whereas, the kinetic rate constants increased with increasing temperature. Furthermore, we found that binding is enthalpy driven and thus, an exothermic reaction, implying that the transporter does not discriminate between its inhibitors and substrates thermodynamically. This predominantly enthalpy-driven binding by four chemically distinct ligands suggests that the transporter may not tolerate diversity in the type of interactions that lead to high affinity binding. Consistent with this, the measured activation energy of [(3)H]NBMPR association was relatively large (20 kcal mol(-1)) suggesting a conformational change upon inhibitor binding. For all three inhibitors the enthalpy (ΔH°) and entropy (ΔS°) contributions to the reaction energetics were determined by van't Hoff analysis to be roughly similar (25-75% ΔG°). Gains in enthalpy with increasing polar surface area of inhibitors suggest that the binding is favored by electrostatic or polar interactions between the ligands and the transporter.

  1. Kinetic analysis of ligand binding to the Ehrlich cell nucleoside transporter: Pharmacological characterization of allosteric interactions with the sup 3 Hnitrobenzylthioinosine binding site

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, J.R. (Department of Pharmacology and Toxicology, University of Western Ontario, London (Canada))

    1991-06-01

    Kinetic analysis of the binding of {sup 3}Hnitrobenzylthioinosine ({sup 3}H NBMPR) to Ehrlich ascites tumor cell plasma membranes was conducted in the presence and absence of a variety of nucleoside transport inhibitors and substrates. The association of {sup 3}H NBMPR with Ehrlich cell membranes occurred in two distinct phases, possibly reflecting functional conformation changes in the {sup 3}HNBMPR binding site/nucleoside transporter complex. Inhibitors of the equilibrium binding of {sup 3}HNBMPR, tested at submaximal inhibitory concentrations, generally decreased the rate of association of {sup 3}HNBMPR, but the magnitude of this effect varied significantly with the agent tested. Adenosine and diazepam had relatively minor effects on the association rate, whereas dipyridamole and mioflazine slowed the rate dramatically. Inhibitors of nucleoside transport also decreased the rate of dissociation of {sup 3}HNBMPR, with an order of potency significantly different from their relative potencies as inhibitors of the equilibrium binding of {sup 3}HNBMPR. Dilazep, dipyridamole, and mioflazine were effective inhibitors of both {sup 3}HNBMPR dissociation and equilibrium binding. The lidoflazine analogue R75231, on the other hand, had no effect on the rate of dissociation of {sup 3}HNBMPR at concentrations below 300 microM, even though it was one of the most potent inhibitors of {sup 3}HNBMPR binding tested (Ki less than 100 nM). In contrast, a series of natural substrates for the nucleoside transport system enhanced the rate of dissociation of {sup 3}HNBMPR with an order of effectiveness that paralleled their relative affinities for the permeant site of the transporter. The most effective enhancers of {sup 3}HNBMPR dissociation, however, were the benzodiazepines diazepam, chlordiazepoxide, and triazolam.

  2. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1 for antimalarial drug development

    Directory of Open Access Journals (Sweden)

    Roman Deniskin

    2016-04-01

    Full Text Available Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs. Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1. Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1 homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([3H]adenosine and pyrimidines ([3H]uridine, whereas wild type (fui1Δ yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM, compared to guanosine (14.9 μM and adenosine (142 μM. For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range. IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1. The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel

  3. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1) for antimalarial drug development.

    Science.gov (United States)

    Deniskin, Roman; Frame, I J; Sosa, Yvett; Akabas, Myles H

    2016-04-01

    Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1) homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([(3)H]adenosine) and pyrimidines ([(3)H]uridine), whereas wild type (fui1Δ) yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM), compared to guanosine (14.9 μM) and adenosine (142 μM). For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range). IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR) had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1). The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel antimalarial drugs

  4. Curcumin and its cyclohexanone analogue inhibited human Equilibrative nucleoside transporter 1 (ENT1) in pancreatic cancer cells.

    Science.gov (United States)

    Revalde, Jezrael L; Li, Yan; Wijeratne, Tharaka S; Bugde, Piyush; Hawkins, Bill C; Rosengren, Rhonda J; Paxton, James W

    2017-03-29

    Our group investigated combining the phytochemical curcumin and gemcitabine in a liposome, to improve gemcitabine's activity against pancreatic tumours. While optimising the curcumin: gemcitabine ratio for co-encapsulation, we found that increasing curcumin concentrations relative to gemcitabine resulted in antagonistic interactions. As curcumin is a promiscuous transporter inhibitor; we suspected that increased resistance occurred via inhibition of Equilibrative nucleoside transporter 1 (ENT1)-mediated gemcitabine uptake. To test our hypothesis, we determined whether curcumin and a related analogue, 2,6-bis((3-methoxy-4-hydroxyphenyl)methylene)-cyclohexanone (or A13), inhibited ENT1-mediated accumulation of [(3)H]uridine and [(3)H]gemcitabine into pancreatic cancer cells. We then confirmed the inhibition of gemcitabine accumulation by investigating whether curcumin/A13 could increase gemcitabine resistance in growth inhibition assays. We found that curcumin and A13 concentration-dependently inhibited the ENT1-mediated accumulation of both uridine and gemcitabine in MIA PaCa-2 and PANC-1 cells. We also found that non-toxic concentrations of curcumin and A13 significantly increased the resistance of both cell lines to gemcitabine. Increased resistance only occurred when curcumin/A13 was co-incubated with gemcitabine, and not with sequential exposure (i.e., curcumin first, followed by gemcitabine, or vice versa). We also found that the curcumin analogue (3E,5E)-3,5-bis[(2-fluorophenyl)methylene]-4-piperidinone (or EF24) did not inhibit gemcitabine accumulation, making it more suitable in combinations than curcumin/A13. From these results, we concluded that curcumin and A13 are inhibitors of the ENT1 transporter, but only at high concentrations (2-20µM). Curcumin is unlikely to inhibit gemcitabine uptake in tumours but may interfere with the oral absorption of ENT1 substrates due to high gut concentrations readily achievable from over-the-counter tablets/capsules.

  5. The role of human equilibrative nucleoside transporter 1 on the cellular transport of the DNA methyltransferase inhibitors 5-azacytidine and CP-4200 in human leukemia cells.

    Science.gov (United States)

    Hummel-Eisenbeiss, Johanna; Hascher, Antje; Hals, Petter-Arnt; Sandvold, Marit Liland; Müller-Tidow, Carsten; Lyko, Frank; Rius, Maria

    2013-09-01

    The nucleoside analog 5-azacytidine is an archetypical drug for epigenetic cancer therapy, and its clinical effectiveness has been demonstrated in the treatment of myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML). However, therapy resistance in patients with MDS/AML remains a challenging issue. Membrane proteins that are involved in drug uptake are potential mediators of drug resistance. The responsible proteins for the transport of 5-azacytidine into MDS/AML cells are unknown. We have now systematically analyzed the expression and activity of various nucleoside transporters. We identified the human equilibrative nucleoside transporter 1 (hENT1) as the most abundant nucleoside transporter in leukemia cell lines and in AML patient samples. Transport assays using [¹⁴C]5-azacytidine demonstrated Na⁺-independent uptake of the drug into the cells, which was inhibited by S-(4-nitrobenzyl)-6-thioinosine (NBTI), a hENT1 inhibitor. The cellular toxicity of 5-azacytidine and its DNA demethylating activity were strongly reduced after hENT1 inhibition. In contrast, the cellular activity of the 5-azacytidine derivative 5-azacytidine-5'-elaidate (CP-4200), a nucleoside transporter-independent drug, persisted after hENT1 inhibition. A strong dependence of 5-azacytidine-induced DNA demethylation on hENT1 activity was also confirmed by array-based DNA methylation profiling, which uncovered hundreds of loci that became demethylated only when hENT1-mediated transport was active. Our data establish hENT1 as a key transporter for the cellular uptake of 5-azacytidine in leukemia cells and raise the possibility that hENT1 expression might be a useful biomarker to predict the efficiency of 5-azacytidine treatments. Furthermore, our data suggest that CP-4200 may represent a valuable compound for the modulation of transporter-related 5-azacytidine resistances.

  6. Nucleoside transporter expression and activity is regulated during granulocytic differentiation of NB4 cells in response to all-trans-retinoic acid.

    Science.gov (United States)

    Flanagan, Sheryl A; Meckling, Kelly A

    2007-07-01

    NB4 cells express multiple nucleoside transporters (NTs), including: hENT1 (es), and hENT2 (ei), and the CNT subtype referred to as, csg; a concentrative sensitive guanosine specific transporter. csg activity is a distinguishing feature of the NB4 cell line and its presence suggests a particular requirement of these cells for guanosine salvage. Proliferation and differentiation pathways determine, in part, the number of NTs in cells and tissues. In this study, all-trans-retinoic acid (ATRA)-induced granulocytic differentiation of NB4 cells resulted in biphasic changes in guanosine transport. Transient increases in csg and es activity, the result of an increase in V(max) (pmol/muls) of both transporter systems, served as early markers of differentiation while expression of a fully differentiated phenotype was accompanied by a selective loss of csg activity and the return of es activity to that of proliferating cells. Intracellular incorporation of [(3)H]-guanosine decreased as cells matured despite increased transport rates and suggested a reduced intracellular requirement of NB4-granulocytes compared to their proliferating counterparts. Whether a loss of csg activity could serve to assess clinical response to differentiation therapies is not known. Nitrobenzylthioinosine (NBMPR) binding sites within nuclear membrane (NM) preparations, suggested the presence of functional intracellular NTs. An increase in plasma membrane (PM) associated transporters coincided with the early increase in guanosine transport and a decrease in NBMPR binding to NM fractions and suggests that intracellular NTs may serve as a reserve pool for translocation to the (PM) when additional transport capacity is required. The modulation of transporters during differentiation could potentially regulate drug bioavailability and cytotoxicity and should be evaluated prior to combining differentiating agents with traditional nucleoside analogs in the treatment of APL.

  7. Lack of the nucleoside transporter ENT1 results in the Augustine-null blood type and ectopic mineralization.

    Science.gov (United States)

    Daniels, Geoff; Ballif, Bryan A; Helias, Virginie; Saison, Carole; Grimsley, Shane; Mannessier, Lucienne; Hustinx, Hein; Lee, Edmond; Cartron, Jean-Pierre; Peyrard, Thierry; Arnaud, Lionel

    2015-06-04

    The Augustine-negative alias At(a-) blood type, which seems to be restricted to people of African ancestry, was identified half a century ago but remains one of the last blood types with no known genetic basis. Here we report that a nonsynonymous single nucleotide polymorphism in SLC29A1 (rs45458701) is responsible for the At(a-) blood type. The resulting p.Glu391Lys variation in the last extracellular loop of the equilibrative nucleoside transporter 1 (ENT1; also called SLC29a1) is known not to alter its ability to transport nucleosides and nucleoside analog drugs. Furthermore, we identified 3 individuals of European ancestry who are homozygous for a null mutation in SLC29A1 (c.589+1G>C) and thus have the Augustine-null blood type. These individuals lacking ENT1 exhibit periarticular and ectopic mineralization, which confirms an important role for ENT1/SLC29A1 in human bone homeostasis as recently suggested by the skeletal phenotype of aging Slc29a1(-/-) mice. Our results establish Augustine as a new blood group system and place SLC29A1 as a new candidate gene for idiopathic disorders characterized with ectopic calcification/mineralization.

  8. Arabidopsis SOI33/AtENT8 Gene Encodes a Putative Equilibrative Nucleoside Transporter That Is Involved in Cytokinin Transport In Planta

    Institute of Scientific and Technical Information of China (English)

    Jiaqiang SUN; Naoya HIROSE; Xingchun WANG; Pei WEN; Li XUE; Hitoshi SAKAKIBARA; Jianru ZUO

    2005-01-01

    The plant phytohormone cytokinin plays an important role in many facets of plant growth and development by regulating cell division and differentiation. Recent studies have shed significant light into the mechanisms of cytokinin metabolism and signaling. However, little is known about how the hormone is transported in planta, although it has been proposed that the hormone is presumably transported in nucleoside-conjugated forms. Here, we report the identification and characterization of cytokinin transport ers in Arabidopsis. We previously reported that a gain-of-function mutation in the PGA22/AtIPT8 gene caused overproduction of cytokinins in planta. In an effort to screen for suppressor of pga22/atipt8 (soi) mutants, we identified a mutant soi33-1. Molecular and genetic analyses indicated that SOI33 encodes a putative equilibrative nucleoside transporter (ENT), previously designated as AtENT8. Members of this small gene family are presumed to be involved in the transport of nucleosides in eukaryotic cells. Under conditions of nitrogen starvation, loss-of-function mutations in SOI33/AtENT8 or in a related gene AtENT3 cause a reduced sensitivity to the nucleoside-type cytokinins isopentenyladenine riboside (iPR) and trans zeatin riboside (tZR), but display a normal response to the free base-type cytokinins isopentenyladenine (iP) and trans-zeatin (tZ). Conversely, overexpression of SOI33/AtENT8 renders transgenic plants hyper sensitive to iPR but not to iP. An in planta measurement experiment indicated that uptake efficiency of 3H labeled iPR was reduced more than 40% in soi33 and atent3 mutants. However, a mutation inAtENT1 had no substantial effect on the cytokinin response and iPR uptake efficiency. Our results suggest that SOI33/ AtENT8 and AtENT3 are involved in the transport of nucleoside-type cytokinins in Arabidopsis.

  9. Nucleoside phosphorylation in amide solutions

    Science.gov (United States)

    Schoffstall, A. M.; Kokko, B.

    1978-01-01

    The paper deals with phosphorylation in possible prebiotic nonaqueous solvents. To this end, phosphorylation of nucleosides using inorganic phosphates in amide solutions is studied at room and elevated temperatures. Reaction proceeds most readily in formamide and N-methylformamide. Products obtained at elevated temperature are nucleotides, nucleoside 2',3'-cyclic phosphates, and when the phosphate concentration is high, nucleoside diphosphates. At room temperature, adenosine afforded a mixture of nucleotides, but none of the cyclic nucleotide. Conditions leading to the highest relative percentage of cyclic nucleotide involve the use of low concentrations of phosphate and an excess of nucleoside.

  10. Uptake of NO-releasing drugs by the P2 nucleoside transporter in trypanosomes

    Directory of Open Access Journals (Sweden)

    L. Soulère

    1999-11-01

    Full Text Available Nitric oxide (NO· has been identified as a principal regulatory molecule of the immune system and the major cytotoxic mediator of activated immune cells. NO· can also react rapidly with a variety of biological species, particularly with the superoxide radical anion O2·- at almost diffusion-limited rates to form peroxynitrite anion (ONOO-. ONOO- and its proton-catalyzed decomposition products are capable of oxidizing a great diversity of biomolecules and can act as a source of toxic hydroxyl radicals. As a consequence, a strategy for the development of molecules with potential trypanocidal activities could be developed to increase the concentration of nitric oxide in the parasites through NO·-releasing compounds. In this way, the rate of formation of peroxynitrite from NO· and O2·- would be faster than the rate of dismutation of superoxide radicals by superoxide dismutases which constitute the primary antioxidant enzymatic defense system in trypanosomes. The adenosine transport systems of parasitic protozoa, which are also in certain cases implicated in the selective uptake of active drugs such as melarsoprol or pentamidine, could be exploited to specifically target these NO·-releasing compounds inside the parasites. In this work, we present the synthesis, characterization and biological evaluation of a series of molecules that contain both a group which would specifically target these drugs inside the parasites via the purine transporter, and an NO·-donor group that would exert a specific pharmacological effect by increasing NO level, and thus the peroxynitrite concentration inside the parasite.

  11. Equilibrative nucleoside (ENTs) and cationic amino acid (CATs) transporters: implications in foetal endothelial dysfunction in human pregnancy diseases.

    Science.gov (United States)

    Casanello, Paola; Escudero, Carlos; Sobrevia, Luis

    2007-01-01

    Gestational diabetes (GD, characterized by abnormal D-glucose metabolism), intrauterine growth restriction (IUGR, a disease associated with reduced oxygen delivery (hypoxia) to the foetus), and preeclampsia (PE, a pregnancy complication characterized by high blood pressure, proteinuria and increased vascular resistance), induce foetal endothelial dysfunction with implications in adult life and increase the risk of vascular diseases. Synthesis of nitric oxide (NO) and uptake of L-arginine (the NO synthase (NOS) substrate) and adenosine (a vasoactive endogenous nucleoside) by the umbilical vein endothelium is altered in pregnancies with GD, IUGR or PE. Mechanisms underlying these alterations include differential expression of equilibrative nucleoside transporters (ENTs), cationic amino acid transporters (CATs), and NOS. Modulation of ENTs, CATs, and NOS expression and activity in endothelium involves protein kinase C (PKC), mitogen-activated protein kinases p42 and p44 (p42/44(mapk)), calcium, and phosphatidyl inositol 3 kinase (PI3k), among others. Elevated extracellular D-glucose and hypoxia alter human endothelial function. However, information regarding the transcriptional modulation of ENTs, CATs, and NOS is limited. This review focuses on the effect of transcriptional and post-transcriptional regulatory mechanisms involved in the modulation of ENTs and CATs, and NOS expression and activity, and the consequences for foetal endothelial function in GD, IUGR and PE. The available information will contribute to a better understanding of the cell and molecular basis of the altered vascular endothelial function in these pregnancy diseases and will emphasize the key role of this type of epithelium in placental function and the normal foetal development and growth.

  12. Nucleotides, Nucleosides, and Nucleobases

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank; Dandanell, Gert; Hove-Jensen, Bjarne

    2008-01-01

    We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene...

  13. Expression, purification and functional characterization of human equilibrative nucleoside transporter subtype-1 (hENT1) protein from Sf9 insect cells.

    Science.gov (United States)

    Rehan, Shahid; Jaakola, Veli-Pekka

    2015-10-01

    Human equilibrative nucleoside transporter-1 (hENT1) is the major plasma membrane transporter involved in transportation of natural nucleosides as well as nucleoside analog drugs, used in anti-cancer and anti-viral therapies. Despite extensive biochemical and pharmacological studies, little is known about the structure-function relationship of this protein. The major obstacles to purification include a low endogenous expression level, the lack of an efficient expression and purification protocol, and the hydrophobic nature of the protein. Here, we report protein expression, purification and functional characterization of hENT1 from Sf9 insect cells. hENT1 expressed by Sf9 cells is functionally active as demonstrated by saturation binding with a Kd of 1.2±0.2nM and Bmax of 110±5pmol/mg for [(3)H]nitrobenzylmercaptopurine ribonucleoside ([(3)H]NBMPR). We also demonstrate purification of hENT1 using FLAG antibody affinity resin in lauryl maltose neopentyl glycol detergent with a Kd of 4.3±0.7nM. The yield of hENT1 from Sf9 cells was ∼0.5mg active transporter per liter of culture. The purified protein is functionally active, stable, homogenous and appropriate for further biophysical and structural studies.

  14. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters.

    Directory of Open Access Journals (Sweden)

    Cheng Ma

    Full Text Available Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in

  15. Yeast-based High-Throughput Screen Identifies Plasmodium falciparum Equilibrative Nucleoside Transporter 1 Inhibitors That Kill Malaria Parasites

    Science.gov (United States)

    Frame, I. J.; Deniskin, Roman; Rinderspacher, Alison; Katz, Francine; Deng, Shi-Xian; Moir, Robyn D.; Adjalley, Sophie H.; Coburn-Flynn, Olivia; Fidock, David A.; Willis, Ian M.; Landry, Donald W.; Akabas, Myles H.

    2015-01-01

    Equilibrative transporters are potential drug targets, however most functional assays involve radioactive substrate uptake that is unsuitable for high-throughput screens (HTS). We developed a robust yeast-based growth assay that is potentially applicable to many equilibrative transporters. As proof of principle, we applied our approach to Equilibrative Nucleoside Transporter 1 of the malarial parasite Plasmodium falciparum (PfENT1). PfENT1 inhibitors might serve as novel antimalarial drugs since PfENT1-mediated purine import is essential for parasite proliferation. To identify PfENT1 inhibitors, we screened 64,560 compounds and identified 171 by their ability to rescue the growth of PfENT1-expressing fui1Δ yeast in the presence of a cytotoxic PfENT1 substrate, 5-fluorouridine (5-FUrd). In secondary assays, nine of the highest activity compounds inhibited PfENT1-dependent growth of a purine auxotrophic yeast strain with adenosine as the sole purine source (IC50 0.2–2 µM). These nine compounds completely blocked [3H]adenosine uptake into PfENT1-expressing yeast and erythrocyte-free trophozoite-stage parasites (IC50 5–50 nM), and inhibited chloroquine-sensitive and -resistant parasite proliferation (IC50 5–50 µM). Wild-type (WT) parasite IC50 values were up to four-fold lower compared to PfENT1-knockout (pfent1Δ) parasites. pfent1Δ parasite killing showed a delayed-death phenotype not observed with WT. We infer that in parasites, the compounds inhibit both PfENT1 and a secondary target with similar efficacy. The secondary target identity is unknown, but its existence may reduce the likelihood of parasites developing resistance to PfENT1 inhibitors. Our data support the hypothesis that blocking purine transport through PfENT1 may be a novel and compelling approach for antimalarial drug development. PMID:25602169

  16. Human equilibrative nucleoside transporter 1 and carcinoma of the ampulla of Vater: expression differences in tumour histotypes

    Science.gov (United States)

    Perrone, G.; Morini, S.; Santini, D.; Rabitti, C.; Vincenzi, B.; Alloni, R.; Antinori, A.; Magistrelli, P.; Lai, R.; Cass, C.; Mackey, J.R.; Coppola, R.; Tonini, G.; Onetti Muda, A.

    2010-01-01

    The human equilibrative nucleoside transporter 1 (hENT1) is the major means by which gemcitabine enters human cells; recent evidence exists that hENT1 is expressed in carcinoma of the ampulla of Vater and that it should be considered as a molecular prognostic marker for patients with resected ampullary cancer. Aim of the present study is to evaluate the variations of hENT1 expression in ampullary carcinomas and to correlate such variations with histological subtypes and clinicopathological parameters. Forty-one ampullary carcinomas were histologically classified into intestinal, pancreaticobiliary and unusual types. hENT1 and Ki67 expression were evaluated by immunohistochemistry, and apoptotic cells were identified by the terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate biotin nick end labelling (TUNEL) method. hENT1 overexpression was detected in 63.4% ampullary carcinomas. A significant difference in terms of hENT1 and Ki67 expression was found between intestinal vs. pancreaticobiliary types (P=0.03 and P=0.009 respectively). Moreover, a significant statistical positive correlation was found between apoptotic and proliferative Index (P=0.036), while no significant correlation was found between hENT1 and apoptosis. Our results on hENT1 expression suggest that classification of ampullary carcinoma by morphological subtypes may represent an additional tool in prospective clinical trials aimed at examining treatment efficacy; in addition, data obtained from Ki67 and TUNEL suggest a key role of hENT1 in tumour growth of ampullary carcinoma. PMID:20839414

  17. Human equilibrative nucleoside transporter 1 and carcinoma of the ampulla of Vater: expression differences in tumour histotypes

    Directory of Open Access Journals (Sweden)

    G. Perrone

    2010-09-01

    Full Text Available The human equilibrative nucleoside transporter 1 (hENT1 is the major means by which gemcitabine enters human cells; recent evidence exists that hENT1 is expressed in carcinoma of the ampulla of Vater and that it should be considered as a molecular prognostic marker for patients with resected ampullary cancer. Aim of the present study is to evaluate the variations of hENT1 expression in ampullary carcinomas and to correlate such variations with histological subtypes and clinicopathological parameters. Forty-one ampullary carcinomas were histologically classified into intestinal, pancreaticobiliary and unusual types. hENT1 and Ki67 expression were evaluated by immunohistochemistry, and apoptotic cells were identified by the terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate biotin nick end labelling (TUNEL method. hENT1 overexpression was detected in 63.4% ampullary carcinomas. A significant difference in terms of hENT1 and Ki67 expression was found between intestinal vs. pancreaticobiliary types (P=0.03 and P=0.009 respectively. Moreover, a significant statistical positive correlation was found between apoptotic and proliferative Index (P=0.036, while no significant correlation was found between hENT1 and apoptosis. Our results on hENT1 expression suggest that classification of ampullary carcinoma by morphological subtypes may represent an additional tool in prospective clinical trials aimed at examining treatment efficacy; in addition, data obtained from Ki67 and TUNEL suggest a key role of hENT1 in tumour growth of ampullary carcinoma.

  18. Disrupted plasma membrane localization and loss of function reveal regions of human equilibrative nucleoside transporter 1 involved in structural integrity and activity.

    Science.gov (United States)

    Nivillac, Nicole M I; Wasal, Karanvir; Villani, Daniela F; Naydenova, Zlatina; Hanna, W J Brad; Coe, Imogen R

    2009-10-01

    Human Equilibrative Nucleoside Transporter 1 (hENT1) is an integral membrane protein that transports nucleosides and analog drugs across cellular membranes. Very little is known about intracellular processing and localization of hENT1. Here we show that disruption of a highly conserved triplet (PWN) near the N-terminus, or the last eight C-terminal residues (two hydrophobic triplets separated by a positive arginine) result in loss of plasma membrane localization and/or transport function. To understand the role of specific residues within these regions, we studied the localization patterns of N- or C-terminal deletion and/or substitution mutants of GFP-hENT1 using confocal microscopy. Quantification of GFP-hENT1 (mutant and wildtype) protein at the plasma membrane was conducted using nitrobenzylthioinosine (NBTI) binding. Functionality of the GFP-hENT1 mutants was determined by heterologous expression in Xenopus laevis oocytes followed by measurement of uridine uptake. Mutation of the proline within the PWN motif disrupts plasma membrane localization. C-terminal mutations (primarily within the hydrophobic triplets) lead to hENT1 retention within the cell (e.g. in the ER). Some mutants still localize to the plasma membrane but show reduced transport activity. These data suggest that these two regions contribute to the structural integrity and thus correct processing and function of hENT1.

  19. Optimal concentration for sugar transport in plants

    OpenAIRE

    Jensen, Kaare H; Savage, Jessica A; Holbrook, N. Michele

    2013-01-01

    Vascular plants transport energy in the form of sugars from the leaves where they are produced to sites of active growth. The mass flow of sugars through the phloem vascular system is determined by the sap flow rate and the sugar concentration. If the concentration is low, little energy is transferred from source to sink. If it is too high, sap viscosity impedes flow. An interesting question is therefore at which concentration is the sugar flow optimal. Optimization of sugar flow and transpor...

  20. Optimal concentration for sugar transport in plants.

    Science.gov (United States)

    Jensen, Kaare H; Savage, Jessica A; Holbrook, N Michele

    2013-06-06

    Vascular plants transport energy in the form of sugars from the leaves where they are produced to sites of active growth. The mass flow of sugars through the phloem vascular system is determined by the sap flow rate and the sugar concentration. If the concentration is low, little energy is transferred from source to sink. If it is too high, sap viscosity impedes flow. An interesting question is therefore at which concentration is the sugar flow optimal. Optimization of sugar flow and transport efficiency predicts optimal concentrations of 23.5 per cent (if the pressure differential driving the flow is independent of concentration) and 34.5 per cent (if the pressure is proportional to concentration). Data from more than 50 experiments (41 species) collected from the literature show an average concentration in the range from 18.2 per cent (all species) to 21.1 per cent (active loaders), suggesting that the phloem vasculature is optimized for efficient transport at constant pressure and that active phloem loading may have developed to increase transport efficiency.

  1. Decrease of vitamin D concentration in patients with HIV infection on a non nucleoside reverse transcriptase inhibitor-containing regimen

    Directory of Open Access Journals (Sweden)

    Colebunders Robert

    2010-11-01

    Full Text Available Abstract Background Vitamin D is an important determinant of bone health and also plays a major role in the regulation of the immune system. Interestingly, vitamin D status before the start of highly active antiretroviral therapy (HAART has been recently associated with HIV disease progression and overall mortality in HIV-positive pregnant women. We prospectively studied vitamin D status in HIV individuals on HAART in Belgium. We selected samples from HIV-positive adults starting HAART with a pre-HAART CD4 T-cell count >100 cells/mm3 followed up for at least 12 months without a treatment change. We compared 25-hydroxyvitamin D plasma [25-(OHD] concentration in paired samples before and after 12 months of HAART. 25-(OHD levels are presented using two different cut-offs: Results Vitamin D deficiency was common before HAART, the frequency of plasma 25-(OHD concentrations below 20 ng/ml and 30 below ng/ml was 43.7% and 70.1% respectively. After 12 months on HAART, the frequency increased to 47.1% and 81.6%. HAART for 12 months was associated with a significant decrease of plasma 25-(OHD concentration (p = 0.001. Decreasing plasma 25-(OHD concentration on HAART was associated in the multivariate model with NNRTI-based regimen (p = 0.001 and lower body weight (p = 0.008. Plasma 25-(OHD concentrations decreased significantly in both nevirapine and efavirenz-containing regimens but not in PI-treated patients. Conclusions Vitamin D deficiency is frequent in HIV-positive individuals and NNRTI therapy further decreases 25-(OHD concentrations. Consequently, vitamin D status need to be checked regularly in all HIV-infected patients and vitamin D supplementation should be given when needed.

  2. Synthesis of novel l-rhamnose derived acyclic C-nucleosides with substituted 1,2,3-triazole core as potent sodium-glucose co-transporter (SGLT) inhibitors.

    Science.gov (United States)

    Putapatri, Siddamal Reddy; Kanwal, Abhinav; Banerjee, Sanjay K; Kantevari, Srinivas

    2014-03-15

    Sodium-glucose co-transporter (SGLT) inhibitors are a novel class of therapeutic agents for the treatment of type 2 diabetes by preventing renal glucose reabsorption. In our efforts to identify novel inhibitors of SGLT, we synthesized a series of l-rhamnose derived acyclic C-nucleosides with 1,2,3-triazole core. The key β-ketoester building block 4 prepared from l-rhamnose in five steps, was reacted with various aryl azides to produce the respective 1,2,3-triazole derivatives in excellent yields. Deprotection of acetonide group gave the desired acyclic C-nucleosides 7a-o. All the new compounds were screened for their sodium-glucose co-transporters (SGLT1 and SGLT2) inhibition activity using recently developed cell-based nonradioactive fluorescence glucose uptake assay. Among them, 7m with IC50: 125.9nM emerged as the most potent SGLT2 inhibitor. On the other hand compound 7d exhibited best selectivity for inhibition of SGLT2 (IC50: 149.1nM) over SGLT1 (IC50: 693.2nM). The results presented here demonstrated the utility of acyclic C-nucleosides as novel SGLT inhibitors for future investigations.

  3. Current prodrug strategies for improving oral absorption of nucleoside analogues

    Directory of Open Access Journals (Sweden)

    Youxi Zhang

    2014-04-01

    Full Text Available Nucleoside analogues are first line chemotherapy in various severe diseases: AIDS (acquired immunodeficiency disease syndrome, cytomegalovirus infections, cancer, etc. However, many nucleoside analogues exhibit poor oral bioavailability because of their high polarity and low intestinal permeability. In order to get around this drawback, prodrugs have been utilized to improve lipophilicity by chemical modification of the parent drug. Alternatively, prodrugs targeting transporters present in the intestine have been applied to promote the transport of the nucleoside analogues. Valacyclovir and valganciclovir are two classic valine ester prodrugs transported by oligopeptide transporter 1. The ideal prodrug achieves delivery of a parent drug by attaching a non-toxic moiety that is stable during transport, but is readily degraded to the parent drug once at the target. This article presents advances of prodrug approaches for enhancing oral absorption of nucleoside analogues.

  4. Antimalarial action of nitrobenzylthioinosine in combination with purine nucleoside antimetabolites.

    Science.gov (United States)

    Gero, A M; Scott, H V; O'Sullivan, W J; Christopherson, R I

    1989-04-01

    The infection of human erythrocytes by two strains of the human malarial parasite, Plasmodium falciparum (FCQ-27 or the multi-drug-resistant strain K-1), markedly changed the transport characteristics of the nucleosides, adenosine and tubercidin, compared to uninfected erythrocytes. A component of the transport of these nucleosides was insensitive to the classical mammalian nucleoside transport inhibitor nitrobenzylthioinosine (NBMPR). In vitro studies with tubercidin demonstrated ID50 values of 0.43 and 0.51 microM for FCQ-27 and K-1, respectively. In addition, the nucleoside transport inhibitors NBMPR, nitrobenzylthioguanosine (NBTGR), dilazep and dipyridamole also independently exhibited antimalarial activity in vitro. The combination of tubercidin and NBMPR or NBTGR in vitro demonstrated synergistic activity, whilst tubercidin together with dilazep or dipyridamole showed subadditive activity. Analysis by HPLC indicated that NBMPR could permeate the infected cell membrane and provided evidence for the catabolism of NBMPR in vitro, with subsequent alteration of the purine pool in the infected erythrocyte. These observations further indicated the possibility of the utilization of cytotoxic nucleosides against P. falciparum infection in conjunction with a nucleoside transport inhibitor to protect the host tissue.

  5. Dynamic Gradient Directed Molecular Transport and Concentration in Hydrogel Films.

    Science.gov (United States)

    Tsai, Tsung-Han; Ali, Mohammad A; Jiang, Zhelong; Braun, Paul V

    2017-04-24

    Materials which selectively transport molecules along defined paths offer new opportunities for concentrating, processing and sensing chemical and biological agents. Here, we present the use of traveling ionic waves to drive molecular transport and concentration of hydrophilic molecules entrained within a hydrogel. The traveling ionic wave is triggered by the spatially localized introduction of ions, which through a dissipative ion exchange process, converts quaternary ammonium groups in the hydrogel from hydrophilic to hydrophobic. Through a reaction-diffusion process, the hydrophobic region expands with a sharp transition at the leading edge; it is this sharp gradient in hydrophilicity that drives the transport of hydrophilic molecules dispersed within the film. The traveling wave moved up to 450 μm within 30 min, while the gradient length remained 20 μm over this time. As an example of the potential of molecular concentration using this approach, a 70-fold concentration of a hydrophilic dye was demonstrated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Concentration polarization: Electrodeposition and transport phenomena at overlimiting current

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder

    and the boundary layer model, we reveal a number of issues, which invalidate most previous attempts at modeling microchannel concentration polarization using a slip model. Returning to concentration polarization in a bulk system, we study the effects of water splitting at a permselective membrane. We investigate...... this coupled chemical and transport effect using two simple models of the reaction kinetics. The principal investigations are performed using numerical simulations, but in addition we derive an analytical model for the transport in the system. The analytical model reveals an important link between the current...... of salt ions and the current of water ions. This link seemingly exists independent of the specific reaction kinetics, and could help in furthering the understanding of the water splitting process. A fit of the model to experimental data from the literature shows quite good agreement, and provides some...

  7. Urinary nucleosides as biological markers for patients with colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Yu-Fang Zheng; Jun Yang; Xin-Jie Zhao; Bo Feng; Hong-Wei Kong; Ying-Jie Chen; Shen Lv; Min-Hua Zheng; Guo-Wang Xu

    2005-01-01

    AIM: Fourteen urinary nucleosides, primary degradation products of tRNA, were evaluated to know the potential as biological markers for patients with colorectal cancer.METHODS: The concentrations of 14 kinds of urinary nucleosides from 52 patients with colorectal cancer, 10patients with intestinal villous adenoma and 60 healthy adults were determined by column switching high performance liquid chromatography method.RESULTS: The mean levels of 12 kinds of urinary nucleosides (except uridine and guanosine) in the patients with colorectal cancer were significantly higher than those in patients with intestinal villous adenoma or the healthy adults. Using the levels of 14 kinds of urinary nucleosides as the data vectors for principal component analysis, 71% (37/52) patients with colorectal cancer were correctly classified from healthy adults, in which the identification rate was much higher than that of CEA method (29%).Only 10% (1/10) of patients with intestinal villous adenoma were indistinguishable from patients with colorectal cancer. The levels of m1G, Pseu and m1A were positively related with tumor size and Duke's stages of colorectal cancer. When monitoring the changes in urinary nucleoside concentrations of patients with colorectal cancer associated with surgery, it was found that the overall correlations with clinical assessment were 84% (27/32)and 91% (10/11) in response group and progressive group, respectively.CONCLUSION: These findings indicate that urinary nucleosides determined by column switching high performance liquid chromatography method may be useful as biological markers for colorectal cancer.

  8. Design, synthesis, and evaluation of 2-diethanolamino-4,8-diheptamethyleneimino-2-(N-aminoethyl-N-ethanolamino)-6-(N,N-diethanolamino)pyrimido[5,4-d]pyrimidine-fluorescein conjugate (8MDP-fluor), as a novel equilibrative nucleoside transporter probe.

    Science.gov (United States)

    Lin, Wenwei; Buolamwini, John K

    2011-06-15

    Nucleoside transporters are integral membrane glycoproteins that play critical roles in physiological nucleoside and nucleobase fluxes, and influence the efficacy of many nucleoside chemotherapy drugs. Fluorescent reporter ligands/substrates have been shown to be useful in the analysis of nucleoside transporter (NT) protein expression and discovery of new NT inhibitors. In this study, we have developed a novel dipyridamole (DP)-based equilibrative nucleoside transporter 1 (ENT1) fluorescent probe. The potent ENT1 and ENT2 inhibitor analogue of dipyridamole, 2,6-bis(diethanolamino)-4,8-diheptamethyleneiminopyrimido[5,4-d]pyrimidine (4, 8MDP), was modified to replace one β-hydroxyethyl group of the amino substituent at the 2-position with a β-aminoethyl group and then conjugated through the amino group to 6-(fluorescein-5-carboxamido)hexanoyl moiety to obtain a new fluorescent molecule, 2-diethanolamino-4,8-diheptamethyleneimino-2-(N-aminoethyl-N-ethanolamino)-6-(N,N-diethanolamino)pyrimido[5,4-d]pyrimidine-fluorescein conjugate, designated 8MDP-fluorescein (8MDP-fluor, 6). The binding affinities of 8MDP-fluor at ENT1 and ENT2 are reflected by the uridine uptake inhibitory K(i) values of 52.1 nM and 285 nM, respectively. 8MDP-fluor was successfully demonstrated to be a flow cytometric probe for ENT1 comparable to the nitrobenzylmercaptopurine riboside (NBMPR) analogue ENT1 fluorescent probe SAENTA-X8-fluorescein (SAENTA-fluor, 1). This is the first reported dipyridamole-based ENT1 fluorescent probe, which adds a novel tool for probing ENT1, and possibly ENT2.

  9. Liposome reconstitution and transport assay for recombinant transporters.

    Science.gov (United States)

    Johnson, Zachary Lee; Lee, Seok-Yong

    2015-01-01

    Secondary active transporters are responsible for the cellular uptake of many biologically important molecules, including neurotransmitters, nutrients, and drugs. Because of their physiological and clinical importance, a method for assessing their transport activity in vitro is necessary to gain a better understanding of how these transporters function at the molecular level. In this chapter, we describe a protocol for reconstituting the concentrative nucleoside transporter from Vibrio cholerae into proteoliposomes. We then describe a radiolabeled substrate uptake assay that can be used to functionally characterize the transporter. These methods are relatively common and can be applied to other secondary active transporters, with or without some modification.

  10. Effect of ionizing radiation on nucleoside metabolism in Physarum polycephalum. [. gamma. rays; reduced DNA synthesis results in increased deoxynucleoside triphosphate concentration in plasmodia

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.H.; Littman, S.R.; Evans, T.E.

    1978-12-01

    The pool sizes and specific activities of deoxynucleoside triphosphates (dNTPs) were determined in control and irradiated S-phase plasmodia of Physarum polycephalum following incubation in the presence of labeled deoxynucleosides. Irradiation (10-kR /sup 60/Co ..gamma.. radiation) was found to increase the intraplasmodial concentrations of all four dNTPs to a similar extent (127 to 158% of the control value). The increase in dNTP concentrations generally paralleled a radiation-induced decrease in the rate of DNA synthesis. The results suggest that the increase in dNTP levels is caused by a reduction in the rate of their utilization for DNA synthesis. The effect of irradiation on the specific activity of the dNTPs depended upon the labeled precursor utilized. Thus, when thymidine, deoxyadenosine, or deoxyuridine was used, the specific activities of TTP, dATP, or TTP, and dCTP, respectively, were reduced to about 50% of the control values. However, when deoxycytidine was used as the labeled precursor, the specific activities of dCTP and TTP were either unchanged or actually increased in the irradiated samples. It is concluded that the phosphorylation of deoxycytidine is increased in irradiated plasmodia.

  11. Non-linear absorption for concentrated solar energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es

  12. Humic acid transport in saturated porous media:Influence of flow velocity and influent concentration

    Institute of Scientific and Technical Information of China (English)

    Xiaorong Wei; Mingan Shao; Lina Du; Robert Horton

    2014-01-01

    Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces.A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations.Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients,which resulted in an increased fraction of HA being retained in columns.Consequently,retardation factors were increased and the transport of HA through the columns was delayed.These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix.Accordingly,this attachment should be considered in studies of HA behavior in porous media.

  13. Humic acid transport in saturated porous media: influence of flow velocity and influent concentration.

    Science.gov (United States)

    Wei, Xiaorong; Shao, Mingan; Du, Lina; Horton, Robert

    2014-12-01

    Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces. A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations. Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients, which resulted in an increased fraction of HA being retained in columns. Consequently, retardation factors were increased and the transport of HA through the columns was delayed. These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix. Accordingly, this attachment should be considered in studies of HA behavior in porous media.

  14. Effect of fuel concentration on cargo transport by a team of Kinesin motors

    Science.gov (United States)

    Takshak, Anjneya; Mishra, Nirvantosh; Kulkarni, Aditi; Kunwar, Ambarish

    2017-02-01

    Eukaryotic cells employ specialized proteins called molecular motors for transporting organelles and vesicles from one location to another in a regulated and directed manner. These molecular motors often work collectively in a team while transporting cargos. Molecular motors use cytoplasmic ATP as fuel, which is hydrolyzed to generate mechanical force. While the effect of ATP concentration on cargo transport by single Kinesin motor function is well understood, it is still unexplored, both theoretically and experimentally, how ATP concentration would affect cargo transport by a team of Kinesin motors. For instance, how does fuel concentration affect the travel distances and travel velocities of cargo? How cooperativity of Kinesin motors engaged on a cargo is affected by ATP concentration? To answer these questions, here we develop mechano-chemical models of cargo transport by a team of Kinesin motors. To develop these models we use experimentally-constrained mechano-chemical model of a single Kinesin motor as well as earlier developed mean-field and stochastic models of load sharing for cargo transport. Thus, our new models for cargo transport by a team of Kinesin motors include fuel concentration explicitly, which was not considered in earlier models. We make several interesting predictions which can be tested experimentally. For instance, the travel distances of cargos are very large at limited ATP concentrations in spite of very small travel velocity. Velocities of cargos driven by multiple Kinesin have a Michaelis-Menten dependence on ATP concentration. Similarly, cooperativity among the engaged Kinesin motors on the cargo shows a Michaelis-Menten type dependence, which attains a maximum value near physiological ATP concentrations. Our new results can be potentially useful in controlling artificial nano-molecular shuttles precisely for targeted delivery in various nano-technological applications.

  15. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.

    Science.gov (United States)

    Niu, Guoqing; Tan, Huarong

    2015-02-01

    The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics.

  16. Effects of the Deregulation on the Concentration of the Brazilian Air Transportation Industry

    Science.gov (United States)

    Guterres, Marcelo Xavier; Muller, Carlos

    2003-01-01

    This paper addresses the effects of the deregulation of the Brazilian air transportation industry in terms of the concentration of the market. We will show some metrics that are commonly used to study the concentration of the industry. This paper uses the Herfindhal- Hirschman Index. This index tends to zero in the competitive scenario, with a large number of small firms, and to one in case of a monopolistic scenario. The paper analyses the dynamics of the concentration of the Brazilian domestic air transportation market, in order to evaluate the effects of deregulation. We conclude that the Brazilian market presents oligopoly characteristics and aspects in its current structure that maintain the market concentrated in spite of the Deregulation measures adopted by the aeronautical authority. Keywords: Herfindhal-Hirschman Index, concentration, Deregulation

  17. Effect of low-concentration rhamnolipid biosurfactant on Pseudomonas aeruginosa transport in natural porous media

    Science.gov (United States)

    Liu, Guansheng; Zhong, Hua; Jiang, Yongbing; Brusseau, Mark L.; Huang, Jiesheng; Shi, Liangsheng; Liu, Zhifeng; Liu, Yang; Zeng, Guangming

    2017-01-01

    Enhanced transport of microbes in subsurface is a focus in bioaugmentation applications for remediation of groundwater. In this study, the effect of low-concentration monorhamnolipid biosurfactant on transport of Pseudomonas aeruginosa ATCC 9027 in natural porous media (silica sand and a sandy soil) with or without hexadecane as the nonaqueous phase liquids (NAPLs) was studied with miscible-displacement experiments using artificial groundwater as the background solution. Transport of two types of cells was investigated, glucose-grown and hexadecane-grown cells with lower and higher cell surface hydrophobicity (CSH), respectively. A clean-bed colloid deposition model was used to calculate deposition rate coefficients (k) for quantitative assessment on the effect of the rhamnolipid on the transport. In the absence of NAPLs, significant cell retention was observed in the sand (81% and 82% for glucose-grown and hexadecane-grown cells, respectively). Addition of low-concentration rhamnolipid enhanced cell transport, with 40 mg/L of rhamnolipid reducing retention to 50% and 60% for glucose-grown and hexadecane-grown cells, respectively. The k values for both glucose-grown and hexadecane-grown cells correlated linearly with rhamnolipid-dependent CSH quantitatively measured using a bacterial-adhesion-to-hydrocarbon method. Retention of cells by the soil was nearly complete (>99%). Forty milligrams per liter of rhamnolipid reduced the retention to 95%. The presence of NAPLs in the sand enhanced the retention of hexadecane-grown cells with higher CSH. Transport of cells in the presence of NAPLs was enhanced by rhamnolipid at all concentrations tested, and the relative enhancement was greater than in the absence of NAPLs. This study shows the importance of hydrophobic interaction on bacterial transport in natural porous media and the potential of using low-concentration rhamnolipid for facilitating cell transport in subsurface for bioaugmentation efforts.

  18. Synthesis of Nucleoside Derivatives Containing Benzophenoxazinone Moiety

    Institute of Scientific and Technical Information of China (English)

    Yu GAO; Wu Xin ZOU; Ling WU; Jin Shui LI; Ji Tao WANG; Ji Ben MENG

    2004-01-01

    Two new nucleoside derivatives containing benzophenoxazinone moiety were synthesized. Their luminescence spectra show that they have strong near infrared fluorescence. Our study provides a new method for direct introduction of near infrared fluorescent probe to bioactive molecules.

  19. Sediment transport capacity of concentrated flows on steep loessial slope with erodible beds.

    Science.gov (United States)

    Xiao, Hai; Liu, Gang; Liu, Puling; Zheng, Fenli; Zhang, Jiaqiong; Hu, Feinan

    2017-05-24

    Previous research on sediment transport capacity has been inadequate and incomplete in describing the detachment and transport process of concentrated flows on slope farmlands during rill development. An indoor concentrated flow scouring experiment was carried out on steep loessial soil slope with erodible bed to investigate the sediment transport capacity under different flow rates and slope gradients. The results indicated that the sediment transport capacity increases with increasing flow rate and slope gradient, and these relationships can be described by power functions and exponential functions, respectively. Multivariate, nonlinear regression analysis showed that sediment transport capacity was more sensitive to slope gradient than to flow rate, and it was more sensitive to unit discharge per unit width than to slope gradient for sediment transport capacity in this study. When similar soil was used, the results were similar to those of previous research conducted under both erodible and non-erodible bed conditions. However, the equation derived from previous research under non-erodible bed conditions with for river bed sand tends to overestimate sediment transport capacity in our experiment.

  20. Experimental studies on resistance characteristics of high concentration red mud in pipeline transport

    Institute of Scientific and Technical Information of China (English)

    WANG Xing; QU Yuan-yuan; HU Wei-wei; CHEN Jie; ZHAO Xue-yi; WU Miao

    2008-01-01

    Red mud will flow in paste form under high pressure during pipeline transport. It belongs to a two-phase flow of materials with high viscosity and a high concentration of non-sedimentation, homogeneous solid-liquids. In pipeline transport, its resistance char-acteristics will be influenced by such factors as grain size, velocity, concentration, density,grain composition and pipe diameter etc.. With the independently developed small-sized tube-type pressure resistance test facility, studied the resistance characteristics of red mud concerning the three influencing factors, paste concentration, velocity and pipe diameter,which attract the most attention in projects. The fine grain size of the red mud is d50=13.02 μm. According to the experimental results, the pressure loss in transport will in-crease along with the increase of velocity and will fall along with the increase of pipe di-ameter. A 1% difference in paste concentration will result in a 50%~100% difference in pipeline resistance loss. These experimental data is hoped to be direct guidance to the design of high concentration and viscous material pipeline transport system.

  1. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations

    Science.gov (United States)

    Busschaert, Nathalie; Park, Seong-Hyun; Baek, Kyung-Hwa; Choi, Yoon Pyo; Park, Jinhong; Howe, Ethan N. W.; Hiscock, Jennifer R.; Karagiannidis, Louise E.; Marques, Igor; Félix, Vítor; Namkung, Wan; Sessler, Jonathan L.; Gale, Philip A.; Shin, Injae

    2017-07-01

    Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.

  2. Concentration statistics of solute transport for the near field zone of an estuary

    Science.gov (United States)

    Galesic, Morena; Andricevic, Roko; Gotovac, Hrvoje; Srzic, Veljko

    2016-08-01

    Rivers are considered as one of the most influential hydrological pathways for the waterborne transport and therefore estuaries are critical areas for a pollution hazard that might lead to eutrophication and general water quality deterioration. This paper is investigating the near field mixing in the estuary as the result of a combination of small scale turbulent diffusion and a larger scale variation of the advective mean velocities. In this work concentration moments were developed directly from the fundamental advection-diffusion equation for the case of continuous, steady, conservative solute transport with the dominant stream flow mean velocity. The concentration statistics were developed considering depth integrated velocity field with mean velocity attenuation due to the wind induced currents and sea tides. In order to perform further studies of developed concentration moments, a set of velocity measurements in the local river Žrnovnica estuary near Split, Croatia, was conducted and numerical random walk particle tracking model was used to run the transport simulations based on measured velocity fields. The numerical model has confirmed quantitatively first two concentration moments, which are utilized to calculate the point concentration probability density function (pdf) often needed to assess the risk of exceeding the allowed concentration values in the estuary.

  3. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay

    DEFF Research Database (Denmark)

    Bach, Cathrine Carlsen; Henriksen, Tine Brink; Bossi, Rossana

    2015-01-01

    differences between the paired samples ranged between -77 and +38% for individual perfluoroalkyl acids. In most cases concentrations were lower in the delayed and transported samples, e.g. the relative difference was -29% (95% confidence interval -30; -27) for perfluorooctane sulfonate. For perfluorooctanoate...

  4. SOME RECENT FINDINGS IN THE BIOTECHNOLOGY OF BIOLOGICALLY IMPORTANT NUCLEOSIDES

    Directory of Open Access Journals (Sweden)

    A. Mikhailopulo

    2013-08-01

    Full Text Available Some recent findings in the biotechnology of biologically important nucleosides will be discussed, viz., (i a new strategy of the cascade one-pot transformation of D-pentoses into nucleosides based on the extension and deepening of the knowledge of the mechanism of functioning of the ribokinase, phosphopentomutase, and uridine, thymidine and purine nucleoside (PNP phosphorylases, and the role of different factors (structural, electronic, stereochemical in the glycoside bond formation, (ii the modern chemistries of the chemo-enzymatic syntheses of nucleosides, (iii the transglycosylation reaction using natural and sugar modified nucleosides as donors of carbohydrate residues and heterocyclic bases as acceptors catalyzed by nucleoside phosphorylases (NP.

  5. Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations.

    Science.gov (United States)

    Luoto, Heidi H; Nordbo, Erika; Baykov, Alexander A; Lahti, Reijo; Malinen, Anssi M

    2013-12-01

    Membrane-bound Na(+)-pyrophosphatase (Na(+)-PPase), working in parallel with the corresponding ATP-energized pumps, catalyzes active Na(+) transport in bacteria and archaea. Each ~75-kDa subunit of homodimeric Na(+)-PPase forms an unusual funnel-like structure with a catalytic site in the cytoplasmic part and a hydrophilic gated channel in the membrane. Here, we show that at subphysiological Na(+) concentrations (Conservative substitutions of gate Glu(242) and nearby Ser(243) and Asn(677) residues reduced the catalytic and transport functions of the enzyme but did not affect the Na(+) dependence of H(+) transport, whereas a Lys(681) substitution abolished H(+) (but not Na(+)) transport. All four substitutions markedly decreased PPase affinity for the activating Na(+) ion. These results are interpreted in terms of a model that assumes the presence of two Na(+)-binding sites in the channel: one associated with the gate and controlling all enzyme activities and the other located at a distance and controlling only H(+) transport activity. The inherent H(+) transport activity of Na(+)-PPase provides a rationale for its easy evolution toward specific H(+) transport.

  6. Relationship between plasma growth hormone concentration and cellular sodium transport in acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Herlitz, H.; Jonsson, O.; Bengtsson, B.-Aa. (Departments of Nephrology, Urology and Endocrinology, University of Goeteborg, Goeteborg (Sweden))

    1992-01-01

    We investigated the relationship between mean plasma growth hormone (GH) concentration and cellular sodium transport in untreated and treated acromegaly. Seventeen patients (age 55 [+-] 3 years) with active acromegaly were studied with respect to plasma GH (mean of 24 h GH profile) and erythrocyte electrolyte content as well as transmembrane sodium transport. The patients were reinvestigated two weeks after successful surgery (N = 14) and again after one year (N = 13). Erythrocyte electrolytes were analyzed by flame photometry and sodium influx and efflux rate constant determined by in vitro incubation using a modified Keyne's formula. In patients with active acromegaly there was a significant positive correlation between IGF-1 and cellular sodium transport, while GH tended to show a negative relatonship to the same parameter. After successful treatment, both IGF-1 and GH disclosed a positive relationship to cellular sodium transport. After one year, a significant increase in erythrocyte sodium content was seen in the patients compared to the preoperative situation. In conclusion, if this is a generalized phenomonen the results are compatible with a sodium-retaining effect of GH via stimulation of transmembrane sodium transport. In active acromegaly this may be counteracted by a sodium transport inhibitor giving the reverse relationship between GH and cellular sodium transport. (au).

  7. Transport of ultracold atoms between concentric traps via spatial adiabatic passage

    CERN Document Server

    Polo, Joan; Busch, Thomas; Ahufinger, Verònica; Mompart, Jordi

    2015-01-01

    Spatial adiabatic passage processes for ultracold atoms trapped in tunnel-coupled cylindrically symmetric concentric potentials are investigated. Specifically, we discuss the matter-wave analogue of the rapid adiabatic passage (RAP) technique for a high fidelity and robust loading of a single atom into a harmonic ring potential from a harmonic trap, and for its transport between two concentric rings. We also consider a system of three concentric rings and investigate the transport of a single atom between the innermost and the outermost rings making use of the matter-wave analogue of the stimulated Raman adiabatic passage (STIRAP) technique. We describe the RAP-like and STIRAP-like dynamics by means of a two- and a three-state models, respectively, obtaining good agreement with the numerical simulations of the corresponding two-dimensional Schr\\"odinger equation.

  8. Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size.

    Science.gov (United States)

    Wang, Chao; Bobba, Aparna Devi; Attinti, Ramesh; Shen, Chongyang; Lazouskaya, Volha; Wang, Lian-Ping; Jin, Yan

    2012-07-03

    Investigations on factors that affect the fate and transport of nanoparticles (NPs) remain incomplete to date. In the present study, we conducted column experiments using 8 and 52 nm silica NPs to examine the effects of NPs' concentration and size on their retention and transport in saturated porous media. Results showed that higher particle number concentration led to lower relative retention and greater surface coverage. Smaller NPs resulted in higher relative retention and lower surface coverage. Meanwhile, evaluation of size effect based on mass concentration (mg/L) vs particle number concentration (particles/mL) led to different conclusions. A set of equations for surface coverage calculation was developed and applied to explain the different results related to the size effects when a given mass concentration (mg/L) and a given particle number concentration were used. In addition, we found that the retained 8 nm NPs were released upon lowered solution ionic strength, contrary to the prediction by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The study herein highlights the importance of NPs' concentration and size on their behavior in porous media. To the best of our knowledge, it is the first report of an improved equation for surface coverage calculation using column breakthrough data.

  9. Assessment of exposure to respirable particles (PM2.5 concentrations in public transportation

    Directory of Open Access Journals (Sweden)

    M. Mohammadian

    2006-01-01

    Full Text Available Background and purpose: High concentrations of respirable particles may cause high incidence of respiratory diseases and mortality. Epidemiological exposure assessment is based on fixed site measurements in ambient air. However, major studies reported good relationship between indoor fine particulate air concentrations and personal exposure. This study is focussed on personal exposure to PM2.5 in different transportation modes and factors that cause high indoor PM2.5 levels.Materials and Methods: In this study, a calibrated real time monitor (MicroDust Pro was used to measure PM2.5 levels in 3 mode of transportation (bus, car and train on the same route. Results were also compared with PM10 concentrations measured by fixed site monitors. A small Poly Urethane Foam (PFU filter was designed for PM2.5 size fraction monitoring and a small personal sampling pump was used to provide a continuous airflow through the gravimetric adaptor and photo detector.Results: The mean PM2.5 concentration measured in the train was lower than the mean fixed site PM10 concentration. However, the mean PM2.5 levels in car and bus were much higher than those mean PM10 concentrations measured by fixed site monitors. Boarding, picking up, dropping off, and movement of passengers inside the bus and train were significantly related to short-term increases in PM2.5 concentrations. However, stopping at the traffic light was the most important factor associated with peak PM2.5 concentrations inside the car.Conclusion: Penetration of particles that were created by road traffic and resuspension of fine particles in the vehicles were the most important factors that may increase respirable particles in transportation modes.

  10. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay.

    Directory of Open Access Journals (Sweden)

    Cathrine Carlsen Bach

    Full Text Available In studies of perfluoroalkyl acids, the validity and comparability of measured concentrations may be affected by differences in the handling of biospecimens. We aimed to investigate whether measured plasma levels of perfluoroalkyl acids differed between blood samples subjected to delay and transportation prior to processing and samples with immediate processing and freezing.Pregnant women recruited at Aarhus University Hospital, Denmark, (n = 88 provided paired blood samples. For each pair of samples, one was immediately processed and plasma was frozen, and the other was delayed and transported as whole blood before processing and freezing of plasma (similar to the Danish National Birth Cohort. We measured 12 perfluoroalkyl acids and present results for compounds with more than 50% of samples above the lower limit of quantification.For samples taken in the winter, relative differences between the paired samples ranged between -77 and +38% for individual perfluoroalkyl acids. In most cases concentrations were lower in the delayed and transported samples, e.g. the relative difference was -29% (95% confidence interval -30; -27 for perfluorooctane sulfonate. For perfluorooctanoate there was no difference between the two setups [corresponding estimate 1% (0, 3]. Differences were negligible in the summer for all compounds.Transport of blood samples and processing delay, similar to conditions applied in some large, population-based studies, may affect measured perfluoroalkyl acid concentrations, mainly when outdoor temperatures are low. Attention to processing conditions is needed in studies of perfluoroalkyl acid exposure in humans.

  11. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations

    DEFF Research Database (Denmark)

    Hespel, P; Richter, Erik

    1990-01-01

    1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet......, resulting in either low (glycogen-depleted rats), normal (control rats) or high (supercompensated rats) muscle glycogen concentrations at the time their hindlimbs were perfused. 2. Compared with control rats, pre-contraction muscle glycogen concentration was approximately 40% lower in glycogen-depleted rats......, whereas it was 40% higher in supercompensated rats. Muscle glycogen break-down correlated positively (r = 0.76; P less than 0.001) with pre-contraction muscle glycogen concentration. 3. Glucose uptake during contractions was approximately 50% higher in glycogen-depleted hindquarters than in control...

  12. Nucleoside Inhibitors of Tick-Borne Encephalitis Virus

    Science.gov (United States)

    Eyer, Luděk; Valdés, James J.; Gil, Victor A.; Nencka, Radim; Hřebabecký, Hubert; Šála, Michal; Salát, Jiří; Černý, Jiří; Palus, Martin; De Clercq, Erik

    2015-01-01

    Tick-borne encephalitis virus (TBEV) is a leading cause of human neuroinfections in Europe and Northeast Asia. There are no antiviral therapies for treating TBEV infection. A series of nucleoside analogues was tested for the ability to inhibit the replication of TBEV in porcine kidney cells and human neuroblastoma cells. The interactions of three nucleoside analogues with viral polymerase were simulated using advanced computational methods. The nucleoside analogues 7-deaza-2′-C-methyladenosine (7-deaza-2′-CMA), 2′-C-methyladenosine (2′-CMA), and 2′-C-methylcytidine (2′-CMC) inhibited TBEV replication. These compounds showed dose-dependent inhibition of TBEV-induced cytopathic effects, TBEV replication (50% effective concentrations [EC50]of 5.1 ± 0.4 μM for 7-deaza-2′-CMA, 7.1 ± 1.2 μM for 2′-CMA, and 14.2 ± 1.9 μM for 2′-CMC) and viral antigen production. Notably, 2′-CMC was relatively cytotoxic to porcine kidney cells (50% cytotoxic concentration [CC50] of ∼50 μM). The anti-TBEV effect of 2′-CMA in cell culture diminished gradually after day 3 posttreatment. 7-Deaza-2′-CMA showed no detectable cellular toxicity (CC50 > 50 μM), and the antiviral effect in culture was stable for >6 days posttreatment. Computational molecular analyses revealed that compared to the other two compounds, 7-deaza-2′-CMA formed a large cluster near the active site of the TBEV polymerase. High antiviral activity and low cytotoxicity suggest that 7-deaza-2′-CMA is a promising candidate for further investigation as a potential therapeutic agent in treating TBEV infection. PMID:26124166

  13. [Substrate specificity and kinetic properties of a soluble nucleoside triphosphatase from bovine kidneys].

    Science.gov (United States)

    Sivuk, V F; Rusina, I M; Luchko, T A; Makarchikov, A F

    2008-01-01

    Soluble nucleoside triphosphatase differing in its properties from all known proteins with NTPase activity was partially purified from bovine kidneys. The enzyme has pH optimum of 7.5, molecular mass of 60 kDa, as estimated by gel chromatography, and shows an absolute dependence on divalent metal ions. NTPase obeyed Michaelis-Menten kinetics in the range of substrate concentration tested from 45 to 440 microM; the apparent Km for inosine-5'-triphosphate was calculated to be 23.3 microM. The enzyme was found to possess a broad substrate specificity, being capable of hydrolyzing various nucleoside-5'-tri- as well as diphosphates.

  14. Concentration of membrane antigens by forward transport and trapping in neuronal growth cones.

    Science.gov (United States)

    Sheetz, M P; Baumrind, N L; Wayne, D B; Pearlman, A L

    1990-04-20

    Formation of the nervous system requires that neuronal growth cones follow specific paths and then stop at recognition signals, sensed at the growth cone's leading edge. We used antibody-coated gold particles viewed by video-enhanced differential interference contrast microscopy to observe the distribution and movement of two cell surface molecules, N-CAM and the 2A1 antigen, on growth cones of cultured cortical neurons. Gold particles are occasionally transported forward at 1-2 microns/s to the leading edge where they are trapped but continue to move. Concentration at the edge persists after cytochalasin D treatment or ATP depletion, but active movements to and along edges cease. We also observed a novel outward movement of small cytoplasmic aggregates at 1.8 microns/s in filopodia. We suggest that active forward transport and trapping involve reversible attachment of antigens to and transport along cytoskeletal elements localized to edges of growth cones.

  15. Synthesis of Methoxyethyl Nucleoside Dimer Phosphoramidates

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Gi Weon; Kang, Yong Han [Hanyang University, Ansan (Korea, Republic of)

    2016-05-15

    Four types of methoxyethyl (MOE) nucleoside phosphoramidites, which are categorized as second-generation building blocks of antisense oligonucleotide drugs, were synthesized. Also, three types of MOE nucleoside dimer phosphoramidites were synthesized to increase the efficiency and oligomer purity in solid phase synthesis. The block-like dimer phosphoramidites can prevent or minimize the formation of the (N-1) mer impurity, thereby affording the fabrication of pure oligonucleotides and reducing the synthesis time by performing coupling reactions in the order of 2 + 2 + 2.

  16. Simulation of suspended sediment transport initialized with satellite derived suspended sediment concentrations

    Indian Academy of Sciences (India)

    Ratheesh Ramakrishnan; A S Rajawat

    2012-10-01

    Suspended sediment transport in the Gulf of Kachchh is simulated utilizing the suspended sediment concentration (SSC) derived from Oceansat OCM imagery, as the initial condition in MIKE-21 Mud Transport model. Optimization of the model mud parameters, like settling velocity and critical shear stress for erosion are realized with respect to the sediment size distribution and the bottom bed materials observed in the Gulf. Simulated SSCs are compared with alternate OCM derived SSC. The results are observed to be impetus where the model is able to generate the spatial dynamics of the sediment concentrations. Sediment dynamics like deposition, erosion and dispersion are explained with the simulated tidal currents and OCM derived sediment concentrations. Tidal range is observed as the important physical factor controlling the deposition and resuspension of sediments within the Gulf. From the simulation studies; maximum residual current velocities, tidal fronts and high turbulent zones are found to characterise the islands and shoals within the Gulf, which results in high sediment concentrations in those regions. Remarkable variability in the bathymetry of the Gulf, different bed materials and varying tidal conditions induces several circulation patterns and turbulence creating the unique suspended sediment concentration pattern in the Gulf.

  17. Relationship between brain serotonin transporter binding, plasma concentration and behavioural effect of selective serotonin reuptake inhibitors

    OpenAIRE

    2005-01-01

    The present study was undertaken to characterise the relationship between in vivo brain serotonin transporter (SERT) binding, plasma concentration and pharmacological effect of selective serotonin reuptake inhibitors (SSRIs) in mice. Oral administration of fluvoxamine, fluoxetine, paroxetine and sertraline at pharmacologically relevant doses exerted dose- and time-dependent binding activity of brain SERT as revealed by significant increases in KD for specific [3H]paroxetine binding, and the i...

  18. Localized auxin peaks in concentration-based transport models of the shoot apical meristem.

    Science.gov (United States)

    Draelants, Delphine; Avitabile, Daniele; Vanroose, Wim

    2015-05-06

    We study the formation of auxin peaks in a generic class of concentration-based auxin transport models, posed on static plant tissues. Using standard asymptotic analysis, we prove that, on bounded domains, auxin peaks are not formed via a Turing instability in the active transport parameter, but via simple corrections to the homogeneous steady state. When the active transport is small, the geometry of the tissue encodes the peaks' amplitude and location: peaks arise where cells have fewer neighbours, that is, at the boundary of the domain. We test our theory and perform numerical bifurcation analysis on two models that are known to generate auxin patterns for biologically plausible parameter values. In the same parameter regimes, we find that realistic tissues are capable of generating a multitude of stationary patterns, with a variable number of auxin peaks, that can be selected by different initial conditions or by quasi-static changes in the active transport parameter. The competition between active transport and production rate determines whether peaks remain localized or cover the entire domain. In particular, changes in the auxin production that are fast with respect to the cellular life cycle affect the auxin peak distribution, switching from localized spots to fully patterned states. We relate the occurrence of localized patterns to a snaking bifurcation structure, which is known to arise in a wide variety of nonlinear media, but has not yet been reported in plant models.

  19. Effects of trans-Eurasian transport of air pollutants on surface ozone concentrations over Western China

    Science.gov (United States)

    Li, Xiaoyuan; Liu, Junfeng; Mauzerall, Denise L.; Emmons, Louisa K.; Walters, Stacy; Horowitz, Larry W.; Tao, Shu

    2014-11-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  20. Effects of trans-Eurasian transport of anthropogenic pollutants on surface ozone concentrations over China

    Science.gov (United States)

    Liu, J.; Li, X.; Mauzerall, D. L.; Emmons, L. K.; Horowitz, L. W.; Guo, Y.; Tao, S.

    2015-12-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies as well as a fully-tagged approach, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  1. Nonlinear concentration gradients regulated by the width of channels for observation of half maximal inhibitory concentration (IC50) of transporter proteins.

    Science.gov (United States)

    Abe, Yuta; Kamiya, Koki; Osaki, Toshihisa; Sasaki, Hirotaka; Kawano, Ryuji; Miki, Norihisa; Takeuchi, Shoji

    2015-08-21

    This paper describes a simple microfluidic device that can generate nonlinear concentration gradients. We changed the "width" of channels that can drastically shorten the total microfluidic channel length and simplify the microfluidic network design rather than the "length" of channels. The logarithmic concentration gradients generated by the device were in good agreement with those obtained by simulation. Using this device, we evaluated a probable IC50 value of the ABC transporter proteins by the competitive transport assays at five different logarithmic concentrations. This probable IC50 value was in good agreement with an IC50 value (0.92 μM) obtained at the diluted concentrations of seven points.

  2. Carboranyl Nucleosides & Oligonucleotides for Neutron Capture Therapy Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schinazi, Raymond F.

    2004-12-01

    This proposal enabled us to synthesize and develop boron-rich nucleosides and oligonucleotide analogues for boron neutron capture therapy (BNCT) and the treatment of various malignancies. First, we determined the relationship between structure, cellular accumulation and tissue distribution of 5-o-carboranyl-2'-deoxyuridine (D-CDU) and its derivatives D-ribo-CU and 5-o-carboranyluracil (CU), to potentially target brain and other solid tumors for neutron capture therapy. Synthesized carborane containing nucleoside derivatives of CDU, D- and L-enantiomers of CDU, D-ribo-CU and CU were used. We measured tissue disposition in xenografted mice bearing 9479 human prostate tumors xenografts and in rats bearing 9L gliosarcoma isografts in their flanks and intracranially. The accumulation of D-CDU, 1-({beta}-L-arabinosyl)-5-o-carboranyluracil, D-ribo-CU, and CU were also studied in LnCap human prostate tumor cells and their retention was measured in male nude mice bearing LnCap and 9479 human prostate tumor xenografts. D-CDU, D-ribo-CU and CU levels were measured after administration in mice bearing 9479 human prostate tumors in their flanks. D-CDU achieved high cellular concentrations in LnCap cells and up to 2.5% of the total cellular compound was recovered in the 5'-monophosphorylated form. D-CDU cellular concentrations were similar in LnCap and 9479 tumor xenografts. Studies in tumor bearing animals indicated that increasing the number of hydroxyl moieties in the sugar constituent of the carboranyl nucleosides lead to increased rate and extent of renal elimination, a decrease in serum half-lives and an increased tissue specificity. Tumor/brain ratios were greatest for CDU and D-ribo-CU, while tumor/prostate ratios were greatest with CU. CDU and D-ribo-CU have potential for BNCT of brain malignancies, while CU may be further developed for prostate cancer. A method was developed for the solid phase synthesis of oligonucleotides containing (ocarboran-1-yl

  3. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    Science.gov (United States)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  4. Evaluating Transport Properties and Ionic Dissociation of LiPF6 in Concentrated Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhange; Higa, Kenneth; Han, Kee Sung; Srinivasan, Venkat

    2017-08-17

    The presence of lithium hexafluorophosphate (LiPF6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This work, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and the generalized. Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.

  5. Transgenic Restoration of Urea Transporter A1 Confers Maximal Urinary Concentration in the Absence of Urea Transporter A3.

    Science.gov (United States)

    Klein, Janet D; Wang, Yanhua; Mistry, Abinash; LaRocque, Lauren M; Molina, Patrick A; Rogers, Richard T; Blount, Mitsi A; Sands, Jeff M

    2016-05-01

    Urea has a critical role in urinary concentration. Mice lacking the inner medullary collecting duct (IMCD) urea transporter A1 (UT-A1) and urea transporter A3 (UT-A3) have very low levels of urea permeability and are unable to concentrate urine. To investigate the role of UT-A1 in the concentration of urine, we transgenically expressed UT-A1 in knockout mice lacking UT-A1 and UT-A3 using a construct with a UT-A1 gene that cannot be spliced to produce UT-A3. This construct was inserted behind the original UT-A promoter to yield a mouse expressing only UT-A1 (UT-A1(+/+)/UT-A3(-/-)). Western blot analysis demonstrated UT-A1 in the inner medulla of UT-A1(+/+)/UT-A3(-/-) and wild-type mice, but not in UT-A1/UT-A3 knockout mice, and an absence of UT-A3 in UT-A1(+/+)/UT-A3(-/-) and UT-A1/UT-A3 knockout mice. Immunohistochemistry in UT-A1(+/+)/UT-A3(-/-) mice also showed negative UT-A3 staining in kidney and other tissues and positive UT-A1 staining only in the IMCD. Urea permeability in isolated perfused IMCDs showed basal permeability in the UT-A1(+/+)/UT-A3(-/-) mice was similar to levels in wild-type mice, but vasopressin stimulation of urea permeability in wild-type mice was significantly greater (100% increase) than in UT-A1(+/+)/UT-A3(-/-) mice (8% increase). Notably, basal urine osmolalities in both wild-type and UT-A1(+/+)/UT-A3(-/-) mice increased upon overnight water restriction. We conclude that transgenic expression of UT-A1 restores basal urea permeability to the level in wild-type mice but does not restore vasopressin-stimulated levels of urea permeability. This information suggests that transgenic expression of UT-A1 alone in mice lacking UT-A1 and UT-A3 is sufficient to restore urine-concentrating ability.

  6. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

    Energy Technology Data Exchange (ETDEWEB)

    Rawl, Richard R [ORNL; Scofield, Patricia A [ORNL; Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL

    2010-04-01

    The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low

  7. Atmospheric speciated mercury concentrations on an island between China and Korea: sources and transport pathways

    Directory of Open Access Journals (Sweden)

    G.-S. Lee

    2015-11-01

    Full Text Available As a global pollutant, mercury (Hg is of particular concern in East Asia where anthropogenic emissions are the largest. In this study, speciated Hg concentrations were measured in the western most island in Korea, located between China and the Korean mainland to identify the importance of local, regional and distant Hg sources. Various tools including correlations with other pollutants, conditional probability function, and back-trajectory based analysis consistently indicated that Korean sources were important for gaseous oxidized mercury (GOM whereas, for total gaseous mercury (TGM and particulate bound mercury (PBM, long-range and regional transport were also important. A trajectory cluster based approach considering both Hg concentration and the fraction of time each cluster was impacting the site was developed to quantify the effect of Korean sources and out-of-Korean source. This analysis suggests that Korean sources contributed approximately 55 % of the GOM and PBM while there were approximately equal contributions from Korean and out-of-Korean sources for the TGM measured at the site. The ratio of GOM / PBM decreased when the site was impacted by long-range transport, suggesting that this ratio may be a useful tool for identifying the relative significance of local sources vs. long-range transport. The secondary formation of PBM through gas-particle partitioning with GOM was found to be important at low temperatures and high relative humidity.

  8. Transport and Retention of Concentrated Oil-in-Water Emulsions in Sandy Porous Media

    Science.gov (United States)

    Muller, K.; Esahani, S. G.; Steven, C. C.; Ramsburg, A.

    2015-12-01

    Oil-in-water emulsions are widely employed to promote biotic reduction of contaminants; however, emulsions can also be used to encapsulate and deliver active ingredients required for long-term subsurface treatment. Our research focuses on encapsulating alkalinity-releasing particles in oil-in-water emulsions for sustained control of subsurface pH. Typical characteristics of these emulsions include kinetically stable for >20 hr; 20% soybean oil; 1 g/mL density; 8-10 cP viscosity; and 1.5 μm droplet d50, with emulsions developed for favorable subsurface delivery. The viscosity of the oil-in-water emulsions was found to be a function of oil content. Ultimately we aim to model both emulsion delivery and alkalinity release (from retained emulsion droplets) to provide a description of pH treatment. Emulsion transport and retention was investigated via a series of 1-d column experiments using varying particle size fractions of Ottawa sand. Emulsions were introduced for approximately two pore volumes followed by a flush of background solution (approx. ρ=1 g/mL; μ=1cP). Emulsion breakthrough curves exhibit an early fall on the backside of the breakthrough curve along with tailing. Deposition profiles are found to be hyper-exponential and unaffected by extended periods of background flow. Particle transport models established for dilute suspensions are unable to describe the transport of the concentrated emulsions considered here. Thus, we explore the relative importance of additional processes driving concentrated droplet transport and retention. Focus is placed on evaluating the role of attachment-detachment-straining processes, as well as the influence of mixing from both viscous instabilities and variable water saturation due to deposited mass.

  9. Expression of transporters involved in urine concentration recovers differently after cessation of lithium treatment.

    Science.gov (United States)

    Blount, Mitsi A; Sim, Jae H; Zhou, Rong; Martin, Christopher F; Lu, Wei; Sands, Jeff M; Klein, Janet D

    2010-03-01

    Patients receiving lithium therapy, an effective treatment for bipolar disorder, often present with acquired nephrogenic diabetes insipidus. The nephrotoxic effects of lithium can be detected 3 wk after the start of treatment and many of these symptoms may disappear in a few weeks after lithium use is stopped. Most patients, however, still have a urine-concentrating defect years after ending treatment. This prompted an investigation of the transporters involved in the urine concentration mechanism, UT-A1, UT-A3, aquaporin-2 (AQP2), and NKCC2, after discontinuing lithium therapy. Sprague-Dawley rats fed a Li2CO3-supplemented diet produced large volumes of dilute urine after 14 days. After lithium treatment was discontinued, urine osmolality returned to normal within 14 days but urine volume and urine urea failed to reach basal levels. Western blot and immunohistochemical analyses revealed that both urea transporters UT-A1 and UT-A3 were reduced at 7 and 14 days of lithium treatment and both transporters recovered to basal levels 14 days after discontinuing lithium administration. Similar analyses demonstrated a decrease in AQP2 expression after 7 and 14 days of lithium therapy. AQP2 expression increased over the 7 and 14 days following the cessation of lithium but failed to recover to normal levels. NKCC2 expression was unaltered during the 14-day lithium regimen but did increase 14 days after the treatment was stopped. In summary, the rapid restoration of UT-A1 and UT-A3 as well as the increased expression of NKCC2 are critical components to the reestablishment of urine concentration after lithium treatment.

  10. Triazolothienopyrimidine inhibitors of urea transporter UT-B reduce urine concentration.

    Science.gov (United States)

    Yao, Chenjuan; Anderson, Marc O; Zhang, Jicheng; Yang, Baoxue; Phuan, Puay-Wah; Verkman, A S

    2012-07-01

    Urea transport (UT) proteins facilitate the concentration of urine by the kidney, suggesting that inhibition of these proteins could have therapeutic use as a diuretic strategy. We screened 100,000 compounds for UT-B inhibition using an optical assay based on the hypotonic lysis of acetamide-loaded mouse erythrocytes. We identified a class of triazolothienopyrimidine UT-B inhibitors; the most potent compound, UTB(inh)-14, fully and reversibly inhibited urea transport with IC(50) values of 10 nM and 25 nM for human and mouse UT-B, respectively. UTB(inh)-14 competed with urea binding at an intracellular site on the UT-B protein. UTB(inh)-14 exhibited low toxicity and high selectivity for UT-B over UT-A isoforms. After intraperitoneal administration of UTB(inh)-14 in mice to achieve predicted therapeutic concentrations in the kidney, urine osmolality after administration of 1-deamino-8-D-arginine-vasopressin was approximately 700 mosm/kg H(2)O lower in UTB(inh)-14-treated mice than vehicle-treated mice. UTB(inh)-14 also increased urine output and reduced urine osmolality in mice given free access to water. UTB(inh)-14 did not reduce urine osmolality in UT-B knockout mice. In summary, these data provide proof of concept for the potential utility of UT inhibitors to reduce urinary concentration in high-vasopressin, fluid-retaining conditions. The diuretic mechanism of UT inhibitors may complement the action of conventional diuretics, which target sodium transport.

  11. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    Science.gov (United States)

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI.

  12. Influence of atmospheric stability and transport on CH{sub 4} concentrations in northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    García, M. Ángeles, E-mail: magperez@fa1.uva.es; Sánchez, M. Luisa; Pérez, Isidro A.; Ozores, Marta I.; Pardo, Nuria

    2016-04-15

    Continuous methane (CH{sub 4}) concentrations were measured in Northern Spain over two years (2011–2012) by multi-point sampling at 1.8, 3.7 and 8.3 m using a Picarro analyser. The technique is based on cavity ring-down spectroscopy. The contrast in mean concentrations was about 1.2 ppb, with 95th percentiles differing by 2.2 ppb and mean minimum concentrations proving similar. Temporal variations of CH{sub 4} were also analysed, with a similar seasonal variability being found for the three heights. The highest CH{sub 4} concentrations were obtained in late autumn and winter and the lowest in summer, yielding a range of 52 ppb. This variation may depend on the active photochemical reaction with OH radical during a period of intense solar radiation and changes in soil conditions together with variations in emissions. Peak concentration levels were recorded at night-time, between 5:00–7:00 GMT, with mean values ranging between 1920 and 1923 ppb. The lowest value, around 1884 ppb, was obtained at 16:00 GMT. This diurnal variation was mainly related to vertical mixing and photochemistry. Therefore, CH{sub 4} concentrations were also examined using the bulk Richardson number (R{sub B}) as a stability indicator. Four groups were distinguished: unstable cases, situations with pure shear flow, transitional stages and drainage flows. The highest contrast in mean CH{sub 4} concentrations between lower and upper heights was obtained for the transition and drainage cases, mainly associated to high concentrations from nearby sources. The impact of long range transport was analysed by means of 3-day isobaric backward air mass trajectories, which were calculated taking into account origins from Europe, Africa, the Atlantic Ocean and Local conditions. Assessment of the results showed the influence of S and SE wind sectors, especially with Local conditions associated with low winds. Finally, an estimation of the background CH{sub 4} concentration in the study period provided an

  13. Analytical theories of transport in concentrated electrolyte solutions from the MSA.

    Science.gov (United States)

    Dufrêche, J-F; Bernard, O; Durand-Vidal, S; Turq, P

    2005-05-26

    Ion transport coefficients in electrolyte solutions (e.g., diffusion coefficients or electric conductivity) have been a subject of extensive studies for a long time. Whereas in the pioneering works of Debye, Hückel, and Onsager the ions were entirely characterized by their charge, recent theories allow specific effects of the ions (such as the ion size dependence or the pair association) to be obtained, both from simulation and from analytical theories. Such an approach, based on a combination of dynamic theories (Smoluchowski equation and mode-coupling theory) and of the mean spherical approximation (MSA) for the equilibrium pair correlation, is presented here. The various predicted equilibrium (osmotic pressure and activity coefficients) and transport coefficients (mutual diffusion, electric conductivity, self-diffusion, and transport numbers) are in good agreement with the experimental values up to high concentrations (1-2 mol L(-1)). Simple analytical expressions are obtained, and for practical use, the formula are given explicitly. We discuss the validity of such an approach which is nothing but a coarse-graining procedure.

  14. Numerical Study on the Charge Transport in a Space between Concentric Circular Cylinders

    Directory of Open Access Journals (Sweden)

    Y. K. Suh

    2014-01-01

    Full Text Available Electrification is one of the key factors to be considered in the design of power transformers utilizing dielectric liquid as a coolant. Compared with enormous quantity of experimental and analytical studies on electrification, numerical simulations are very few. This paper describes essential elements of numerical solution methods for the charge transport equations in a space between concentric cylinders. It is found that maintaining the conservation property of the convective terms in the governing equations is of the uttermost importance for numerical accuracy, in particular at low reaction rates. Parametric study on the charge transport on the axial plane of the annular space with a predetermined velocity shows that when the convection effect is weak the solutions tend to a one-dimensional nature, where diffusion is simply balanced by conduction. As the convection effect is increased the contours of charge distribution approach the fluid streamlines. Thus, when the conduction effect is weak, charge distribution tends to be uniform and the role of the convection effect becomes insignificant. At an increased conduction effect, on the other hand, the fluid motion transports the charge within the electric double layers toward the top and bottom boundaries leading to an increased amount of total charge in the domain.

  15. Prenatal transportation stress alters temperament and serum cortisol concentrations in suckling Brahman calves.

    Science.gov (United States)

    Littlejohn, B P; Price, D M; Banta, J P; Lewis, A W; Neuendorff, D A; Carroll, J A; Vann, R C; Welsh, T H; Randel, R D

    2016-02-01

    This experiment examined the relationship between prenatal stress and subsequent calf temperament through weaning. The prenatal stressor used was repeated transportation of pregnant Brahman cows for 2 h at 60 ± 5, 80 ± 5, 100 ± 5, 120 ± 5, and 140 ± 5 d of gestation. Prenatally stressed calves ( = 41) were compared with controls ( = 44; dams did not undergo transportation during pregnancy) from 2 wk of age until weaning (average age at weaning = 174.8 ± 1.3 d). Temperament was defined by pen score (PS; 1 = calm and 5 = excitable), exit velocity (EV; m/sec), and temperament score (TS; (PS + EV)/2) and was recorded for each calf on d -168, -140, -112, -84, -56, -28, and 0 relative to weaning (d 0 = weaning). Cortisol concentrations were determined in serum samples obtained on d -168, -140, -28, and 0 relative to weaning. Birth weight and weaning weight were not different between treatment groups ( > 0.1). Pen score was greater ( = 0.03) in prenatally stressed calves (2.84 ± 0.21) relative to controls (2.31 ± 0.21). Exit velocity was greater ( Brahman calves that were prenatally stressed were more temperamental and had greater circulating serum concentrations of cortisol than control calves.

  16. Xenobiotic, bile acid, and cholesterol transporters: function and regulation.

    Science.gov (United States)

    Klaassen, Curtis D; Aleksunes, Lauren M

    2010-03-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of

  17. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M. J.; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E.; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L.; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A. F.; Springston, Stephen R.; Tomlinson, Jason M.; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N.; Kulmala, Markku; Machado, Luiz A. T.; Artaxo, Paulo; Andreae, Meinrat O.; Petäjä, Tuukka; Martin, Scot T.

    2016-10-24

    A necessary prerequisite of cloud formation, aerosol particles represent one of the largest uncertainties in computer simulations of climate change1,2, in part because of a poor understanding of processes under natural conditions3,4. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions5-7. Cloud condensation nuclei (CCN) in clean Amazonia are mostly produced by the growth of smaller particles in the boundary layer8-10, whereas these smaller particles themselves 31 appear to be produced elsewhere5,11. Key questions are in what part of the atmosphere they might 32 be produced and what could be the transport processes that deliver them to the boundary layer, where they grow into CCN. Here, using recent aircraft measurements above central Amazonia, we show high concentrations of small particles in the lower free troposphere. The particle size spectrum shifts towards larger sizes with decreasing altitude, implying particle growth as air descends from the free troposphere towards Earth's surface. Complementary measurements at ground sites show that free tropospheric air having high concentrations of small particles (diameters of less than 50 nm) is transported into the boundary layer during precipitation events, both by strong convective downdrafts and by weaker downward motions in the trailing stratiform region. This vertical transport helps maintain the population of small particles and ultimately CCN in the boundary layer, thereby playing an important role in controlling the climate state under natural conditions. In contrast, this mechanism becomes masked under polluted conditions, which sometimes prevail at times in Amazonia as well as over other tropical continental regions5,12.

  18. Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size

    Science.gov (United States)

    Accurately predicting the fate and transport of graphene oxide (GO) in porous media is critical to assess its environmental impact. In this work, sand column experiments were conducted to determine the effect of input concentration and grain size on transport, retention, and size perturbation of GO ...

  19. Study of metal concentrations in the environment near diesel transport routes

    Science.gov (United States)

    Kuo, Chung-Yih; Wang, Jing-Ya; Chang, Shih-Hsien; Chen, Mei-Chun

    In recent years, a river-dredging project has been executed in Nantou, Taiwan. A large number of diesel vehicles carrying gravel and sand shuttle back and forth on the main traffic roads (Tai-16 and Tai-21). The purpose of this study is to figure out the levels of metals contributed by those vehicles to the surrounding environment. Eight stations along the roadside of diesel transport routes were selected as exposure sites, while a small village located about 9 km away from the diesel transport routes was selected as the control site. The mass concentrations of coarse and fine particulate matter indicated that contributions from traffic fleets resulted in a higher percentage of coarse particulate matter in the ambient air at exposure sites in comparison with that at control site. Significantly higher values of EC (elemental carbon) concentrations and ratios of EC/OC (organic carbon) at exposure sites indicate that diesel vehicles at exposure sites contributed a greater amount of pollutants than gasoline vehicles. Exposure site concentrations for all metals measured (Fe, Al, Mn, Pb, Zn, Cu, Ni, Mo and As) for fine and coarse particulate matter were all higher than those at the control site. Recorded levels of metal contents in road dust and riverside soil near Tai-16 and Tai-21 showed that while the traffic fleet did not increase the metal contents of crustal elements in the road dust, it did significantly increase the metal contents of traffic-related elements. Enrichment factors (EFs) were calculated with respect to road dust (EF road) and with respect to the samples of riverside soil (EF river). Among these metals, Mo was the most highly-enriched metal. The extremely high EF river value (4300) of Mo indicates that these stations were highly polluted by diesel emission. Whereas the significantly high EF road value (810) of Mo implies that a considerable of Mo was emitted from tailpipe of diesel vehicles.

  20. Antiproliferative activity of bicyclic benzimidazole nucleosides: synthesis, DNA-binding and cell cycle analysis.

    Science.gov (United States)

    Sontakke, Vyankat A; Lawande, Pravin P; Kate, Anup N; Khan, Ayesha; Joshi, Rakesh; Kumbhar, Anupa A; Shinde, Vaishali S

    2016-04-26

    An efficient route was developed for synthesis of bicyclic benzimidazole nucleosides from readily available d-glucose. The key reactions were Vörbruggen glycosylation and ring closing metathesis (RCM). Primarily, to understand the mode of DNA binding, we performed a molecular docking study and the binding was found to be in the minor groove region. Based on the proposed binding model, UV-visible and fluorescence spectroscopic techniques using calf thymus DNA (CT-DNA) demonstrated a non-intercalative mode of binding. Antiproliferative activity of nucleosides was tested against MCF-7 and MDA-MB-231 breast cancer cell lines and found to be active at low micromolar concentrations. Compounds and displayed significant antiproliferative activity as compared to and with the reference anticancer drug, doxorubicin. Cell cycle analysis showed that nucleoside induced cell cycle arrest at the S-phase. Confocal microscopy has been performed to validate the induction of cellular apoptosis. Based on these findings, such modified bicyclic benzimidazole nucleosides will make a significant contribution to the development of anticancer drugs.

  1. Distribution of Nucleosides in Populations of Cordyceps cicadae

    OpenAIRE

    Wen-Bo Zeng; Hong Yu; Feng Ge; Jun-Yuan Yang; Zi-Hong Chen; Yuan-Bing Wang; Yong-Dong Dai; Alison Adams

    2014-01-01

    A rapid HPLC method had been developed and used for the simultaneous determination of 10 nucleosides (uracil, uridine, 2'-deoxyuridine, inosine, guanosine, thymidine, adenine, adenosine, 2'-deoxyadenosine and cordycepin) in 10 populations of Cordyceps cicadae, in order to compare four populations of Ophicordyceps sinensis and one population of Cordyceps militaris. Statistical analysis system (SAS) 8.1 was used to analyze the nucleoside data. The pattern of nucleoside distribution was analyzed...

  2. Radionuclide transport along a boreal hill slope - elevated soil water concentrations in riparian forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Lidman, Fredrik; Boily, Aasa; Laudon, Hjalmar [Dept. of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeaa (Sweden); Koehler, Stephan J. [Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. 7050, 750 07 Uppsala (Sweden)

    2014-07-01

    The transport of radionuclides from forest ecosystems and out into surface waters is a crucial process for understanding the long-term fate of radionuclides in the boreal landscape. Boreal forests are typically dominated by podzol soils, but the streams draining the forests are often lined by highly organic, often peat-like soils, which the radionuclides must pass through in order to reach the stream. This so-called riparian zone therefore represents a fundamentally different biogeochemical environment than ordinary forest soils, e.g. by exhibiting significantly lower pH and higher concentrations of organic colloids, which significantly can affect the mobility of many radionuclides. Since the riparian zone is the last terrestrial environment that the groundwater is in contact with before it enters the stream, previous research has demonstrated its profound impact on the stream water chemistry. Hence, the riparian soils should also be important for the transport and accumulation of radionuclides. Therefore, soil water was sampled using suction lysimeters installed at different depths along a 22 m long forested hill slope transect in northern Sweden, following the flow pathway of the groundwater from the uphill podzol to the riparian zone near the stream channel. The analyses included a wide range of hydrochemical parameters and many radiologically important elements, e.g. U, Th, Ni, C, Sr, Cs, REEs and Cl. The sampling was repeated ten times throughout a year in order to also capture the temporal variability of the soil water chemistry. The water chemistry of the investigated transect displayed a remarkable change as the groundwater approached the stream channel. Strongly increased concentrations of many elements were observed in the riparian soils. For instance, the concentrations of Th were more than 100 times higher than in the riparian zone than in the uphill forest, suggesting that the riparian zone may be a hotspot for radionuclide accumulation. The reason

  3. Multiple SLC and ABC Transporters Contribute to the Placental Transfer of Entecavir.

    Science.gov (United States)

    Ma, Zhiyuan; Yang, Xi; Jiang, Ting; Bai, Mengru; Zheng, Caihong; Zeng, Su; Sun, Dongli; Jiang, Huidi

    2017-03-01

    Entecavir (ETV), a nucleoside analog with high efficacy against hepatitis B virus, is recommended as a first-line antiviral drug for the treatment of chronic hepatitis B. However, scant information is available on the use of ETV in pregnancy. To better understand the safety of ETV in pregnant women, we aimed to demonstrate whether ETV could permeate placental barrier and the underlying mechanism. Our study showed that small amount of ETV could permeate across placenta in mice. ETV accumulation in activated or nonactivated BeWo cells (treated with or without forskolin) was sharply reduced in the presence of 100 µM of adenosine, cytidine, and in Na(+) free medium, indicating that nucleoside transporters possibly mediate the uptake of ETV. Furthermore, ETV was proved to be a substrate of concentrative nucleoside transporter (CNT) 2 and CNT3, of organic cation transporter (OCT) 3, and of breast cancer resistance protein (BCRP) using transfected cells expressing respective transporters. The inhibition of ETV uptake in primary human trophoblast cells further confirmed that equilibrative nucleoside transporter (ENT) 1/2, CNT2/3, OCT3, and organic cation/carnitine transporter (OCTN) 2 might be involved in ETV transfer in human placenta. Therefore, ETV uptake from maternal circulation to trophoblast cells was possibly transported by CNT2/3, ENT1/2, and OCTN2, whereas ETV efflux from trophoblast cells to fetal circulation was mediated by OCT3, and efflux from trophoblast cells to maternal circulation might be mediated by BCRP, multidrug resistance-associated protein 2, and P-glycoprotein. The information obtained in the present study may provide a basis for the use of ETV in pregnancy. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Modeling reactive geochemical transport of concentrated aqueous solutions in variably saturated media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin

    2004-01-28

    Concentrated aqueous solutions (CAS) have unique thermodynamic and physical properties. Chemical components in CAS are incompletely dissociated, especially those containing divalent or polyvalent ions. The problem is further complicated by the interaction between CAS flow processes and the naturally heterogeneous sediments. As the CAS migrates through the porous media, the composition may be altered subject to fluid-rock interactions. To effectively model reactive transport of CAS, we must take into account ion-interaction. A combination of the Pitzer ion-interaction and the ion-association model would be an appropriate way to deal with multiple-component systems if the Pitzer' parameters and thermodynamic data of dissolved components and the related minerals are available. To quantify the complicated coupling of CAS flow and transport, as well as the involved chemical reactions in natural and engineered systems, we have substantially extended an existing reactive biogeochemical transport code, BIO-CORE{sup 2D}{copyright}, by incorporating a comprehensive Pitzer ion-interaction model. In the present paper, the model, and two test cases against measured data were briefly introduced. Finally we present an application to simulate a laboratory column experiment studying the leakage of the high alkaline waste fluid stored in Hanford (a site of the U.S. Department of Energy, located in Washington State, USA). With the Pitzer ion-interaction ionic activity model, our simulation captures measured pH evolution. The simulation indicates that all the reactions controlling the pH evolution, including cation exchanges, mineral precipitation and dissolution, are coupled.

  5. Impact of bioethanol fuel implementation in transport based on modelled acetaldehyde concentration in the urban environment.

    Science.gov (United States)

    Sundvor, Ingrid; López-Aparicio, Susana

    2014-10-15

    This study shows the results obtained from emission and air dispersion modelling of acetaldehyde in the city of Oslo and associated with the circulation of bioethanol vehicles. Two scenarios of bioethanol implementation, both realistic and hypothetical, have been considered under winter conditions; 1) realistic baseline scenario, which corresponds to the current situation in Oslo where one bus line is running with bioethanol (E95; 95% ethanol-5% petrol) among petrol and diesel vehicles; and 2) a hypothetical scenario characterized by a full implementation of high-blend bioethanol (i.e. E85) as fuel for transportation, and thus an entire bioethanol fleet. The results indicate that a full implementation of bioethanol will have a certain impact on urban air quality due to direct emissions of acetaldehyde. Acetaldehyde emissions are estimated to increase by 233% and concentration levels increase up to 650% with regard to the baseline.

  6. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    Science.gov (United States)

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M. J.; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E.; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L.; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A. F.; Springston, Stephen R.; Tomlinson, Jason M.; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N.; Kulmala, Markku; Machado, Luiz A. T.; Artaxo, Paulo; Andreae, Meinrat O.; Petäjä, Tuukka; Martin, Scot T.

    2016-11-01

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  7. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall.

    Science.gov (United States)

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M J; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A F; Springston, Stephen R; Tomlinson, Jason M; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N; Kulmala, Markku; Machado, Luiz A T; Artaxo, Paulo; Andreae, Meinrat O; Petäjä, Tuukka; Martin, Scot T

    2016-11-17

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  8. Mechanical stress and glucose concentration modulate glucose transport in cultured rat podocytes.

    Science.gov (United States)

    Lewko, Barbara; Bryl, Ewa; Witkowski, Jacek M; Latawiec, Elzbieta; Angielski, Stefan; Stepinski, Jan

    2005-02-01

    Recent studies show that mechanical stress modifies both morphology and protein expression in podocytes. Ambient glucose is another factor modulating protein synthesis in these cells. In diabetes, podocytes experience elevated glucose concentrations as well as mechanical strain generated by high intracapillary pressures. Both these factors are responsible for podocyte injury, leading to impairment of kidney glomerular function. In the present study, we examined the effects of glucose concentration and mechanical stress on glucose uptake in podocytes. Following a 24 h pre-incubation in low (2.5 mM, LG), normal (5.6 mM, NG) or high (30 mM, HG) glucose media, cultured rat podocytes were exposed to 4 h mechanical stress. We used the labelled glucose analogue, [3H]2-deoxy-D-glucose, to measure glucose uptake. The distribution of facilitative glucose transporters GLUT2 and GLUT4 was assessed by flow cytometry. In the control (static) cells, glucose uptake was similar in the three glucose groups. In mechanically stressed podocytes, glucose uptake increased 2-fold in the LG and NG groups but increased 3-fold in the HG group. In the NG cells, mechanical load increased the membrane expression of GLUT2 and reduced the membrane-bound GLUT4. In stretched HG cells, the membrane expression of both GLUT2 and GLUT4 was decreased. High glucose decreased the plasma membrane GLUT2 content in the stretched cells, whereas both static and stretched podocytes showed an elevation in GLUT4. Mechanical stress potentiated glucose uptake in podocytes and this effect was enhanced by high ambient glucose. The decreased expression of GLUT2 and GLUT4 on the surface of stretched cells suggests that the activity of other glucose transporters may be regulated by mechanical stress in podocytes.

  9. Lidar detection of high concentrations of ozone and aerosol transported from northeastern Asia over Saga, Japan

    Science.gov (United States)

    Uchino, Osamu; Sakai, Tetsu; Izumi, Toshiharu; Nagai, Tomohiro; Morino, Isamu; Yamazaki, Akihiro; Deushi, Makoto; Yumimoto, Keiya; Maki, Takashi; Tanaka, Taichu Y.; Akaho, Taiga; Okumura, Hiroshi; Arai, Kohei; Nakatsuru, Takahiro; Matsunaga, Tsuneo; Yokota, Tatsuya

    2017-02-01

    To validate products of the Greenhouse gases Observing SATellite (GOSAT), we observed vertical profiles of aerosols, thin cirrus clouds, and tropospheric ozone with a mobile-lidar system that consisted of a two-wavelength (532 and 1064 nm) polarization lidar and a tropospheric ozone differential absorption lidar (DIAL). We used these lidars to make continuous measurements over Saga (33.24° N, 130.29° E) during 20-31 March 2015. High ozone and high aerosol concentrations were observed almost simultaneously in the altitude range 0.5-1.5 km from 03:00 to 20:00 Japan Standard Time (JST) on 22 March 2015. The maximum ozone volume mixing ratio was ˜ 110 ppbv. The maxima of the aerosol extinction coefficient and optical depth at 532 nm were 1.2 km-1 and 2.1, respectively. Backward trajectory analysis and the simulations by the Model of Aerosol Species IN the Global AtmospheRe (MASINGAR) mk-2 and the Meteorological Research Institute Chemistry-Climate Model, version 2 (MRI-CCM2), indicated that mineral dust particles from the Gobi Desert and an air mass with high ozone and aerosol (mainly sulfate) concentrations that originated from the North China Plain could have been transported over the measurement site within about 2 days. These high ozone and aerosol concentrations impacted surface air quality substantially in the afternoon of 22 March 2015. After some modifications of its physical and chemical parameters, MRI-CCM2 approximately reproduced the high ozone volume mixing ratio. MASINGAR mk-2 successfully predicted high aerosol concentrations, but the predicted peak aerosol optical thickness was about one-third of the observed value.

  10. Total gaseous concentrations in mercury in Seoul, Korea: Local sources compared to long-range transport from China and Japan

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Mi; Kim, Seung-Hee [Graduate School of Public Health, Department of Environmental Health, Seoul National University, Yeongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Holsen, Thomas M. [Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699 (United States); Yi, Seung-Muk [Graduate School of Public Health, Department of Environmental Health, Seoul National University, Yeongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Yeongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of)], E-mail: yiseung@snu.ac.kr

    2009-03-15

    Total gaseous mercury (TGM) and carbon monoxide (CO) were measured every 5 min and hourly, respectively, in Seoul, Korea, from February 2005 through December 2006. The mean concentrations of TGM and CO were 3.44 {+-} 2.13 ng m{sup -3} and 613 {+-} 323 ppbv, respectively. TGM and CO concentrations were highest during the winter and lowest during the summer. In total, 154 high TGM concentration events were identified: 86 were classified as long-range transport events and 68 were classified as local events. The TGM and CO concentrations were well correlated during all long-range transport events and were weakly correlated during local events. Five-day backward trajectory analysis for long-range transport events showed four potential source regions: China (79%), Japan (13%), the Yellow Sea (6%), and Russia (2%). Our results suggest that measured {delta}TGM/{delta}CO can be used to identify long-range transported mercury and to estimate mercury emissions from long-range transport. - This study identified long-range transport from China and local sources of elevated TGM concentrations in Seoul, Korea using the relationship between {delta}TGM and {delta}CO.

  11. PM10 Concentration Estimates over Costa Rica using Chemical Transport Modeling Techniques

    Science.gov (United States)

    Briceno-Castillo, J. S.; Vidaurre, G.; Herrera, J.; Mora, R.; Rivera-fernandez, E. R.; Duran-Quesada, A. M.

    2016-12-01

    Aerosol pollution has become a major issue in Costa Rica because of the urban development that induces an increase in vehicle and industrial emissions. The Metropolitan area in Costa Rica is a valley ( 1,967 km2 area) with a population of 2.6 million. This area concentrates 60% of the country's total industry and 57% of its vehicle emissions. In addition, this area is impacted by biogenic emissions coming from national forests surround it and windblown dust from the Sahara Desert transported by the Trade winds. PM10 and other criteria pollutants have been measured in the past 12 years. However, those monitor stations are single points of observation and do not represent the spatial and temporal resolution that the Costa Rican national government requires for long term policy decisions and health effects assessments. This investigation uses the Weather Research and Forecasting model coupled with Chemistry version 3.7 (WRF-Chem) to forecast PM10 concentration over Costa Rica in 2013. The temporal scales take into consideration the dry, rainy, and transition seasons of the country. The spatial domain was constructed with a master domain (27 km resolution) and multiple nested-domains (9, 3, and 1 km respectively) that include the total area of Costa Rica. The meteorology data bases for this model are from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (Era-Interim; Dee et al. 2011). In addition, the chemical transport model uses emissions inventories from the PREP-CHEM-SRC tool, because of the lack of an appropriate national emission inventory for this investigation. The total average of PM10 observed at the metropolitan area of Costa Rica was 26±9 μgm-3 in 2013. According to the World Health Organization, this result exceeds the PM10 standard established in the air quality guidelines (WHO 2005). The final goal of this investigation is to evaluate the chemical transport simulations with ground-level measurements from more than 10

  12. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    Science.gov (United States)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  13. Cytotoxicity and cellular uptake of pyrimidine nucleosides for imaging herpes simplex type-1 thymidine kinase (HSV-1 TK) expression in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Kevin W.; Duan Weili; Xu Lihua; Zhou Aihua; Moharram, Sameh; Knaus, Edward E.; McEwan, Alexander J.B.; Wiebe, Leonard I. E-mail: leonard.wiebe@ualberta.ca

    2004-07-01

    In vivo transfer of the herpes simplex virus type-1 thymidine kinase (HSV-1 TK) gene, with subsequent administration of antiviral drugs such as ganciclovir, has emerged as a promising gene therapy protocol for treating proliferative disorders. The in vitro cytotoxicities (IC{sub 50}) for two series of 5-iodo- and (E)-5-(2-iodovinyl)-substituted 2'-deoxy- and 2'-deoxy-2'-fluoro-pyrimidine nucleosides ranged from millimolar to low nanomolar concentrations in mammalian tumor cell lines (KBALB; R-970-5; 143B; EMT-6) and their counterparts engineered to express HSV-1 TK (KBALB-STK; 143B-LTK). Their HSV-1 TK selectivity indices ranged from one (nonselective) to one million (highly selective) based on cytotoxicity, with FIRU being the least toxic to all cell lines, and FIAU being most toxic. HSV-1 TK selectivity, based on uptake, ranged from 10 to 140, with IVDU being most selective for HSV-1 TK expressing cells, followed by IVFRU, FIRU, FIAU, IVFAU and finally IUDR. Phosphorylation of [{sup 125}I]FIAU led to incorporation of the radiolabel into nucleic acids, whereas IVFRU and FIRU radioactivity was trapped primarily in the nucleotide pool. These data indicate that cytotoxicity does not depend on initial metabolic trapping (e.g., phosphorylation), but on elaboration of the mononucleotides to more cytotoxic anabolites. Lipophilicities and nucleoside transport rates of the six nucleosides tested were within narrow ranges. This supports the premise that cellular biochemistry, and not cellular bioavailability, is responsible for the observed broad range of cytotoxicity and trapping. In vivo biodistribution studies with 5-[{sup 125}I]iodo-2'-fluoro-2'-deoxyribouridine (FIRU), 5-[{sup 125}I]iodo-2'-fluoro-2'-deoxyarabinouridine (FIAU) and (E)-5-(2-[{sup 125}I]iodovinyl)-2'-fluoro-2'-deoxyuridine (IVFRU) demonstrate selective accumulation of all three radiotracers in HSV-1 TK-expressing KBABK-STK tumors, compared to their very low

  14. Detergent inhibited, heat labile nucleoside triphosphatase in cores of avian myeloblastosis virus

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank

    1978-01-01

    Endogenous DNA synthesis was studied in isolated core particles of avian myeloblastosis virus. It was found that cores contained an enzymatic activity which rapidly converted the added nucleoside triphosphates to diphosphates (but not further) at 0 degrees C, thus inhibiting DNA synthesis. This t....... This triphosphatase probably originates from the viral membranes. In the cores the enzyme is completely inactivated by low concentrations (0.02%) of Nonident P-40. Also, the enzyme is very thermolabile and denatures rapidly at 38 degrees C....

  15. C5-Modified nucleosides exhibiting anticancer activity.

    Science.gov (United States)

    Lee, Yoon-Suk; Park, Sun Min; Kim, Hwan Mook; Park, Song-Kyu; Lee, Kiho; Lee, Chang Woo; Kim, Byeang Hyean

    2009-08-15

    We describe (i) a simple method for the synthesis of C5-modified nucleosides from 5-iodo-2'-deoxyuridine and (ii) their activity against six types of human cancer cell lines (HCT15, MM231, NCI-H23, NUGC-3, PC-3, ACHN). We generated nitrile oxides in situ from oximes using a commercial bleaching agent; their cycloadditions with 5-ethynyl-2'-deoxyuridine yielded isoxazole derivatives possessing activity against the cancer cell lines. We synthesized several azides from benzylic bromides and their click reactions with 5-ethynyl-2'-deoxyuridine provided triazole derivatives.

  16. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    Science.gov (United States)

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application. Copyright

  17. Transport of maternal cholesterol to the fetus is affected by maternal plasma cholesterol concentrations in the golden Syrian hamster.

    Science.gov (United States)

    Burke, Katie T; Colvin, Perry L; Myatt, Leslie; Graf, Gregory A; Schroeder, Friedhelm; Woollett, Laura A

    2009-06-01

    The fetus has a high requirement for cholesterol and synthesizes cholesterol at elevated rates. Recent studies suggest that fetal cholesterol also can be obtained from exogenous sources. The purpose of the current study was to examine the transport of maternal cholesterol to the fetus and determine the mechanism responsible for any cholesterol-driven changes in transport. Studies were completed in pregnant hamsters with normal and elevated plasma cholesterol concentrations. Cholesterol feeding resulted in a 3.1-fold increase in the amount of LDL-cholesterol taken up by the fetus and a 2.4-fold increase in the amount of HDL-cholesterol taken up. LDL-cholesterol was transported to the fetus primarily by the placenta, and HDL-cholesterol was transported by the yolk sac and placenta. Several proteins associated with sterol transport and efflux, including those induced by activated liver X receptor, were expressed in hamster and human placentas: NPC1, NPC1L1, ABCA2, SCP-x, and ABCG1, but not ABCG8. NPC1L1 was the only protein increased in hypercholesterolemic placentas. Thus, increasing maternal lipoprotein-cholesterol concentrations can enhance transport of maternal cholesterol to the fetus, leading to 1) increased movement of cholesterol down a concentration gradient in the placenta, 2) increased lipoprotein secretion from the yolk sac (shown previously), and possibly 3) increased placental NPC1L1 expression.

  18. Experimental study on filtering,transporting, concentrating and focusing of microparticles based on optically induced dielectrophoresis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The key problem to be solved for the dielectrophoresis (DEP) application is to provide dynamically reconfigurable microelectrodes and low-cost methodology for bioparticle manipulation.The emergence of optically induced DEP (ODEP) based on photoconductive effect provides a potential solution for the above problem.In this paper,an ODEP chip is designed and fabricated,and the corresponding experimental platform was established,whereupon four types of particle manipulation regimes–filtering,transporting,concentrating and focusing based on ODEP are experimentally demonstrated and the operating performances are quantitatively analyzed.The experiment results show that the functions and performances of ODEP manipulation are heavily dependent on the geometrical shape,scales and speed of optical patterns,actuating signal frequency and the electric conductivity of the solution.The manipulation efficiency can increase by more than 50% via increasing the optical line width.Moreover,the efficiency is obviously affected by the inclination angle of the optical oblique lines in the manipulation of particle focusing.Additionally,the maximum velocity of particles increases with the increment of the inside radius and the thickness of the optical trapping ring.Particle manipulation efficiency is always related to signal frequency and solution conductivity,and empirically,satisfactory performance and high efficiency are obtained when the solution electric conductivity ranges from 5×10-4 S/m to 5×10-3 S/m.

  19. Size- and concentration-dependent deposition of fluorescent silica colloids in saturated sand columns: transport experiments and modeling.

    Science.gov (United States)

    Vitorge, Elsa; Szenknect, Stéphanie; Martins, Jean M F; Gaudet, Jean-Paul

    2013-08-01

    This study investigates the size and concentration effects on the transport of silica colloids in columns of sandy aquifer material. Colloid transport experiments were performed with specifically developed fluorescent labeled silica colloids in columns of a repacked natural porous medium under hydro-geochemical conditions representative of sandy aquifers. Breakthrough curves and vertical deposition profiles of colloids were measured for various colloid concentrations and sizes. The results showed that for a given colloid concentration injected, deposition increased when increasing the size of the colloids. For a given colloid size, retention was also shown to be highly concentration-dependent with a non-monotonous pattern presenting low and high concentration specificities. Deposition increases when increasing both size and injected concentration, until a threshold concentration is reached, above which retention decreases, thus increasing colloid mobility. Results observed above the threshold concentration agree with a classical blocking mechanism typical of a high concentration regime. Results observed at lower colloid concentrations were not modeled with a classical blocking model and a depth- and time-dependent model with a second order kinetic law was necessary to correctly fit the experimental data in the entire range of colloid concentrations with a single set of parameters for each colloidal size. The colloid deposition mechanisms occuring at low concentrations were investigated through a pore structure analysis carried out with Mercury Intrusion Porosimetry and image analysis. The determined pore size distribution permitted estimation of the maximal retention capacity of the natural sand as well as some low flow zones. Altogether, these results stress the key role of the pore space geometry of the sand in controlling silica colloids deposition under hydro-geochemical conditions typical of sandy aquifers. Our results also showed originally that colloid

  20. In Silico Investigation of Flavonoids as Potential Trypanosomal Nucleoside Hydrolase Inhibitors

    Directory of Open Access Journals (Sweden)

    Christina Hung Hung Ha

    2015-01-01

    Full Text Available Human African Trypanosomiasis is endemic to 37 countries of sub-Saharan Africa. It is caused by two related species of Trypanosoma brucei. Current therapies suffer from resistance and public accessibility of expensive medicines. Finding safer and effective therapies of natural origin is being extensively explored worldwide. Pentamidine is the only available therapy for inhibiting the P2 adenosine transporter involved in the purine salvage pathway of the trypanosomatids. The objective of the present study is to use computational studies for the investigation of the probable trypanocidal mechanism of flavonoids. Docking experiments were carried out on eight flavonoids of varying level of hydroxylation, namely, flavone, 5-hydroxyflavone, 7-hydroxyflavone, chrysin, apigenin, kaempferol, fisetin, and quercetin. Using AutoDock 4.2, these compounds were tested for their affinity towards inosine-adenosine-guanosine nucleoside hydrolase and the inosine-guanosine nucleoside hydrolase, the major enzymes of the purine salvage pathway. Our results showed that all of the eight tested flavonoids showed high affinities for both hydrolases (lowest free binding energy ranging from −10.23 to −7.14 kcal/mol. These compounds, especially the hydroxylated derivatives, could be further studied as potential inhibitors of the nucleoside hydrolases.

  1. Rating mass concentration of airborne dust in the road transport depending on the type of pollution transport routes.

    OpenAIRE

    PÁVEK, Miroslav

    2014-01-01

    In the thesis the values of air pollution re-suspended solid pollutants on the diameter of 10 micrometres (PM10) during the movement of vehicles of different categories of polluted roads routes. Measurements were carried out on three lines of transport operation of various vehicle categories as diverse weight and the type of pollution road. Measured values and analysis results show that the resulting air pollution in the vicinity of the road affects several factors. The main factors include t...

  2. Concentration-dependent enantioselective transport of chiral timolol maleate across hairless mice skin upon using various concentrations of chiral terpene enhancer (D-Limonene.

    Directory of Open Access Journals (Sweden)

    Mohsen I. Afouna

    2013-12-01

    Full Text Available The objective of the present study was to examine the relationship between different concentrations of the chiral enhancer D- Limonene (D-LM on the solubility of individual enantiomers and racemate Timolol maleate (TM The preferential improvement of D-LM on S-TM, R-TM, and racemate transported across the hairless mice skin was also investigated. For solubility studies, excess of R-, S-, or racemate with different concentrations of D-LM were prepared. The samples were agitated, centrifuged, filtered and analyzed using HPLC with a chiral column at a wavelength of 294 nm. For skin transport studies, formulations containing 0.5% solutions of S-TM, R-TM, or racemate in a buffer solution with predetermined concentrations of D-LM were studied. Samples of 1 ml were withdrawn and quantitatively analyzed for their TM contents. Steady-state fluxes (Jss, permeability coefficients and the enhancement factor were calculated. The studies showed that D-LM significantly increased the solubility of the enantiomeric, as well as, the racemate forms of TM in a concentration dependent manner. The permeation studies showed that the presence of D-LM significantly increased the flux values of both enantiomers and racemate. However, D-LM preferentially increased the permeability characteristics of the S-isomer compared to those of the R-isomer. Solubilities of the enantiomeric and the racemate forms of TM were found to be a single-valued function of D-LM concentration. Moreover, the addition of D-LM increased the transport of the S-TM, R-TM enantiomers and the racemate across the hairless mice skin. In conclusion, all the tested formulations, the overall permeability characteristics of the therapeutically active TM (i.e., S-TM proved to be superior to those obtained with the R-TM either as enantiomer or racemate

  3. An Efficient and Facile Methodology for Bromination of Pyrimidine and Purine Nucleosides with Sodium Monobromoisocyanurate (SMBI

    Directory of Open Access Journals (Sweden)

    Roger Stromberg

    2013-10-01

    Full Text Available An efficient and facile strategy has been developed for bromination of nucleosides using sodium monobromoisocyanurate (SMBI. Our methodology demonstrates bromination at the C-5 position of pyrimidine nucleosides and the C-8 position of purine nucleosides. Unprotected and also several protected nucleosides were brominated in moderate to high yields following this procedure.

  4. Sucrose Concentration Gradients along the Post-Phloem Transport Pathway in the Maternal Tissues of Developing Wheat Grains.

    Science.gov (United States)

    Fisher, D. B.; Wang, N.

    1995-10-01

    Sucrose concentrations were measured in serial frozen sections of the post-phloem transport pathway in developing wheat (Triticum aestivum L.) grains. In normally importing grains, there was an approximately linear concentration gradient along the pathway, with a difference between the ends of the pathway of about 180 mM. This indicates an unusually low resistance for cell-to-cell transport, due perhaps to the large size-exclusion limit for the pathway. However, the existence of concentration gradients raises presently unresolvable questions about the relative contributions of diffusion versus bulk flow to transport within the symplast. The concentration gradient disappeared when sucrose movement ceased (i.e. in excised grains or when endosperm cavities of attached grains were perfused with p-chloromercuribenzene sulfonate [PCMBS] or with 1660 mOsm sorbitol). PCMBS appeared to block solute release into the endosperm cavity, whereas the sorbitol treatment, previously shown to cause localized plasmolysis in the chalaza, appeared to block movement across the chalaza. Sieve element/companion cell unloading appears to be an important control point for assimilate import. The sucrose concentration gradient and, probably, turgor and osmotic gradients are extremely steep there. PCMBS blocked import without affecting the sucrose concentration in the vascular parenchyma around the phloem. Thus, blockage of unloading was more complex than a simple "backing up" of solutes in the vascular parenchyma.

  5. Studies on yeast nucleoside triphosphate-nucleoside diphosphate transphosphorylase (nucleoside diphosphokinase). IV. Steady-state kinetic properties with thymidine nucleotides (including 3'-azido-3'-deoxythymidine analogues).

    Science.gov (United States)

    Kuby, S A; Fleming, G; Alber, T; Richardson, D; Takenaka, H; Hamada, M

    1991-01-01

    A study of the steady-state kinetics of the crystalline brewer's yeast (Saccharomyces carlsbergensis) nucleoside diphosphokinase, with the magnesium complexes of the adenine and thymidine nucleotides as reactants, has led to a postulated kinetic mechanism which proceeds through a substituted enzyme. This agrees with the earlier conclusions of Garces and Cleland [Biochemistry 1969; 8:633-640] who characterized a reaction between the magnesium complexes of the adenine and uridine nucleotides. An advantage of using thymidine nucleotides as reactants is that they permit accurate, rapid and continuous assays of the enzymatic activity in coupled-enzymatic tests. Through measurements of the initial velocities and product inhibition studies, the Michaelis constants, maximum velocities, and inhibition constants could be evaluated for the individual substrates. Competitive substrate inhibition was encountered at relatively high substrate concentrations, which also permitted an evaluation of their ability to act as 'dead-end' inhibitors. The Michaelis constants for the 3'-azido-3'-deoxythymidine (AzT) analogues were also evaluated and, although these values were only somewhat higher than those of their natural substrates, the Km's for the adenine nucleotides as paired substrates were lower and the Vmax's were drastically reduced. The pharmacological implications of these observations are touched upon and extrapolated to the cases where therapeutic doses of AzT may be employed.

  6. Effect of Porosity and Concentration Polarization on Electrolyte Diffusive Transport Parameters through Ceramic Membranes with Similar Nanopore Size

    Directory of Open Access Journals (Sweden)

    Virginia Romero

    2014-08-01

    Full Text Available Diffusive transport through nanoporous alumina membranes (NPAMs produced by the two-step anodization method, with similar pore size but different porosity, is studied by analyzing membrane potential measured with NaCl solutions at different concentrations. Donnan exclusion of co-ions at the solution/membrane interface seem to exert a certain control on the diffusive transport of ions through NPAMs with low porosity, which might be reduced by coating the membrane surface with appropriated materials, as it is the case of SiO2. Our results also show the effect of concentration polarization at the membrane surface on ionic transport numbers (or diffusion coefficients for low-porosity and high electrolyte affinity membranes, which could mask values of those characteristic electrochemical parameters.

  7. Relationships Between Temperament and Transportation With Rectal Temperature and Serum Concentrations of Cortisol and Epinephrine in Bulls

    Science.gov (United States)

    This study investigated whether temperament influences rectal temperature and serum concentrations of cortisol and epinephrine in response to transportation. Brahman bulls were selected based on temperament score (average of exit velocity, EV, and pen score, PS) measured 28 days prior to weaning wit...

  8. Concentration and Transport of Nitrate by the Mat-Forming Sulfur Bacterium Thioploca Rid E-1821-2011

    DEFF Research Database (Denmark)

    FOSSING, H.; GALLARDO, VA; JØRGENSEN, BB

    1995-01-01

    , at between 40 and 280 m water depth. The metabolism of this marine bacterium(5,6) remained a mystery until long after its discovery(1,7). We report here that Thioploca cells are able to concentrate nitrate to up to 500 mM in a liquid vacuole that occupies >80% of the cell volume. Gliding filaments transport...

  9. MEMBRANE-TRANSPORT OF METHOTREXATE IN A SQUAMOUS CARCINOMA CELL-LINE ADAPTED TO LOW FOLATE CONCENTRATIONS

    NARCIS (Netherlands)

    van der Laan, B.F.A.M.; Jansen, G; VANGESTEL, JA; SCHORNAGEL, JH; HORDIJK, GJ

    1991-01-01

    Membrane transport characteristics of the folate analogue methotrexate (MTX) were studied in a human squamous carcinoma cell line of the head and neck (HNSCC) adapted to grow in tissue culture media with nanomolar reduced folate concentrations (SCC-11B-LF), as compared to SCC-11B cells grown in stan

  10. Transport Phenomena Projects: Natural Convection between Porous, Concentric Cylinders--A Method to Learn and to Innovate

    Science.gov (United States)

    Saatadjian, Esteban; Lesage, Francois; Mota, Jose Paulo B.

    2013-01-01

    A project that involves the numerical simulation of transport phenomena is an excellent method to teach this subject to senior/graduate chemical engineering students. The subject presented here has been used in our senior/graduate course, it concerns the study of natural convection heat transfer between two concentric, horizontal, saturated porous…

  11. Novel purine nucleoside analogues for hematological malignancies.

    Science.gov (United States)

    Korycka, Anna; Lech-Marańda, Ewa; Robak, Tadeusz

    2008-06-01

    Recently, the search for more effective and safer antineoplastic agents has led to synthesis and introduction into preclinical and clinical studies of a few new purine nucleoside analogues (PNA). Three of them: clofarabine (CAFdA), nelarabine, and forodesine (immucillin H, BCX-1777), despite belonging to the same group of drugs such as PNA, have shown some differences concerning their active forms, metabolic properties and mechanism of action. However, all these drugs have demonstrated promising activity in patients with relapsed and refractory acute lymphoblastic leukemia (ALL). CAFdA was approved for the therapy of relapsed or refractory ALL in the third line of treatment. It has proved promising in pediatric patients as well as in some patients who are able to proceed to allogenic hematopietic stem cell transplantation (HSCT). Moreover, the drug exhibits an efficacy in acute myeloid leukemia (AML), blast crisis of chronic myelogenous leukemia (CML-BP) and myelodysplastic syndrome (MDS). Nelarabine is recommended for T-ALL and T-cell lymphoblastic lymphoma (T-LBL) with the overall response rates ranging from 11 to 60%. However, the use of the drug is limited by potentially severe neurotoxicity. Forodesine is a purine nucleoside phosphorylase (PNP) inhibitor and it has shown activity in relapsed and refractory T- and B-cells leukemias as well as in cutaneous T-cell lymphoma (CTCL). Recently patented, a few of inventions in the field of pharmaceutical preparation of new PNA have also been published. Great hopes are currently set on the use of these drugs in the treatment of lymphoid and myeloid malignancies in adult and in pediatric patients, however ongoing studies will help to define their role in the standard therapy.

  12. [Non-nucleoside reverse transcriptase inhibitors].

    Science.gov (United States)

    Joly, V; Yeni, P

    2000-06-01

    The non-nucleoside reverse transcriptase inhibitors (NNRTIs) directly inhibit the HIV-1 reverse transcriptase (RT) by binding in a reversible and non-competitive manner to the enzyme. The currently available NNRTIs are nevirapine, delavirdine, and efavirenz; other compounds are under evaluation. NNRTIs are extensively metabolized in the liver through cytochrome P450, leading to pharmacokinetic interactions with compounds utilizing the same metabolic pathway, particularly PIs, whose plasma levels are altered in the presence of NNRTIs. NNRTIs are drugs with a low genetic barrier, i.e. a single mutation in RT genoma induces a high-level of phenotypic resistance, preventing the use of NNRTIs as monotherapy. In naive patients, several trials have shown the value of NNRTIs in combination with nucleosides and/or protease inhibitors. Small pilot studies have shown that NNRTIs may be useful as second-line therapy. However, due to the rapid emergence of resistant virus to these compounds in case of incomplete viral suppression, NNRTIs should not be added to current failing antiretroviral regimen. The most common side-effect reported with nevirapine and delavirdine is rash. The incidence of rash is rather similar under these two compounds, but severe rash is less frequent with delavirdine. The most common adverse reactions reported with efavirenz are central nervous system complaints such as dizziness. Rash is reported less frequently than with nevirapine or delavirdine, and is usually mild. NNRTIs resistance mutations are located in the amino acid residues aligning the NNRTI-binding "pocket" site. High-level resistance is often associated with a single point mutation which develops within this site (especially codon groups 100 - 108 and 181 - 190). Patients failing on one NNRTI are very likely to possess multiple NNRTI resistance mutations. NNRTIs should always be used as part of a potent antiretroviral therapy to insure suppression of viral replication, thus circumventing

  13. Combining PET biodistribution and equilibrium dialysis assays to assess the free brain concentration and BBB transport of CNS drugs

    Science.gov (United States)

    Gunn, Roger N; Summerfield, Scott G; Salinas, Cristian A; Read, Kevin D; Guo, Qi; Searle, Graham E; Parker, Christine A; Jeffrey, Phil; Laruelle, Marc

    2012-01-01

    The passage of drugs in and out of the brain is controlled by the blood–brain barrier (BBB), typically, using either passive diffusion across a concentration gradient or active transport via a protein carrier. In-vitro and preclinical measurements of BBB penetration do not always accurately predict the in-vivo situation in humans. Thus, the ability to assay the concentration of novel drug candidates in the human brain in vivo provides valuable information for derisking of candidate molecules early in drug development. Here, positron emission tomography (PET) measurements are combined with in-vitro equilibrium dialysis assays to enable assessment of transport and estimation of the free brain concentration in vivo. The PET and equilibrium dialysis data were obtained for 36 compounds in the pig. Predicted P-glycoprotein (P-gp) status of the compounds was consistent with the PET/equilibrium dialysis results. In particular, Loperamide, a well-known P-gp substrate, exhibited a significant concentration gradient consistent with active efflux and after inhibition of the P-gp process the gradient was removed. The ability to measure the free brain concentration and assess transport of novel compounds in the human brain with combined PET and equilibrium dialysis assays can be a useful tool in central nervous system (CNS) drug development. PMID:22274741

  14. Final report on LDRD project: A phenomenological model for multicomponent transport with simultaneous electrochemical reactions in concentrated solutions

    Energy Technology Data Exchange (ETDEWEB)

    CHEN,KEN S.; EVANS,GREGORY H.; LARSON,RICHARD S.; NOBLE,DAVID R.; HOUF,WILLIAM G.

    2000-01-01

    A phenomenological model was developed for multicomponent transport of charged species with simultaneous electrochemical reactions in concentrated solutions, and was applied to model processes in a thermal battery cell. A new general framework was formulated and implemented in GOMA (a multidimensional, multiphysics, finite-element computer code developed and being enhanced at Sandia) for modeling multidimensional, multicomponent transport of neutral and charged species in concentrated solutions. The new framework utilizes the Stefan-Maxwell equations that describe multicomponent diffusion of interacting species using composition-insensitive binary diffusion coefficients. The new GOMA capability for modeling multicomponent transport of neutral species was verified and validated using the model problem of ternary gaseous diffusion in a Stefan tube. The new GOMA-based thermal battery computer model was verified using an idealized battery cell in which concentration gradients are absent; the full model was verified by comparing with that of Bernardi and Newman (1987) and validated using limited thermal battery discharge-performance data from the open literature (Dunning 1981) and from Sandia (Guidotti 1996). Moreover, a new Liquid Chemkin Software Package was developed, which allows the user to handle manly aspects of liquid-phase kinetics, thermodynamics, and transport (particularly in terms of computing properties). Lastly, a Lattice-Boltzmann-based capability was developed for modeling pore- or micro-scale phenomena involving convection, diffusion, and simplified chemistry; this capability was demonstrated by modeling phenomena in the cathode region of a thermal battery cell.

  15. Promotion of human adipose-derived stem cell proliferation mediated by exogenous nucleosides.

    Science.gov (United States)

    Rodríguez-Serrano, Fernando; Alvarez, Pablo; Caba, Octavio; Picón, Manuel; Marchal, Juan A; Perán, Macarena; Prados, José; Melguizo, Consolación; Rama, Ana R; Boulaiz, Houria; Aránega, Antonia

    2010-09-01

    Adult stem cells are becoming the best option for regenerative medicine because they have low tumourigenic potential and permit autologous transplantation, even without in vitro culture. Our objectives were to evaluate the effects of exogenous nucleosides on the proliferation of hASCs (human adipose-derived stem cells), with or without co-treatment with 5-aza (5-azacytidine), and to analyse the expression of lamin A/C during cardiomyocyte differentiation of these cells. We isolated hASCs from human lipoaspirates that were positive for mesenchymal stem cell markers. We found that 5-aza induces a dose-dependent inhibition of hASC proliferation [IC50 (inhibitory concentration 50): 5.37 microM], whereas exogenous nucleosides significantly promote the proliferation of hASCs and partially revert the antiproliferative effect of the drug. Multipotentiality of isolated hASCs was confirmed by adipogenic, osteogenic and cardiomyogenic induction. 5-Aza-induced cells expressed cardiac troponins I and T and myosin light chain 2, myocardial markers that were directly correlated with lamin A/C expression. Our results support the importance of the nucleoside supplementation of media to improve conditions for the expansion and maintenance of hASCs in culture. In addition, the quantification of lamin A/C expression appears to be a good marker for the characterization of cardiomyocyte differentiation of stem cells that has rarely been used.

  16. nucleoside DNA methyltransferase 1 inhibitors for treating epi ...

    African Journals Online (AJOL)

    Keywords: Epi-mutation, DNA methyltransferase, Non-nucleoside, DNMT1 inhibitor, Docking .... associated genes [18] and the effect could not be ... compound that may inhibit DNA methylation non- ... potential of which is over estimated [16];.

  17. Palladium-Catalyzed Modification of Unprotected Nucleosides, Nucleotides, and Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Kevin H. Shaughnessy

    2015-05-01

    Full Text Available Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.

  18. A Modular Approach to Phosphoglycosyltransferase Inhibitors Inspired by Nucleoside Antibiotics

    NARCIS (Netherlands)

    Walvoort, Marthe T C; Lukose, Vinita; Imperiali, Barbara

    2015-01-01

    Phosphoglycosyltransferases (PGTs) represent "gatekeeper" enzymes in complex glycan assembly pathways by catalyzing transfer of a phosphosugar from an activated nucleotide diphosphosugar to a membrane-resident polyprenol phosphate. The unique structures of selected nucleoside antibiotics, such as tu

  19. The design, fabrication and maintenance of semi-trailers employed in the highway transport of weight-concentrated radioactive loads

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, D.S. [Allied-Signal Inc., Metropolis, IL (United States)

    1991-12-31

    Transportation of weight-concentrated radioactive loads by truck is an essential part of a safe and economical nuclear industry. This proposed standard presents guidance and performance criteria for the safe transport of these weight-concentrated radioactive loads. ANSI N14.30 will detail specific requirements for the design, fabrication, testing, in-service inspections, maintenance and certification of the semi-trailers to be employed in said service. Furthermore, guidelines for a quality assurance program are also enumerated. This standard would apply to any semi-trailer that may or may not be specifically designed to carry weight-concentrated loads. Equipment not suitable per the criteria established in the standard would be removed from service. The nature of the nuclear industry and the need for a positive public perception of the various processes and players, mandates that the highway transportation of weight-concentrated radioactive loads be standardized and made inherently safe. This proposed standard takes a giant step in that direction.

  20. Distribution of nucleosides in populations of Cordyceps cicadae.

    Science.gov (United States)

    Zeng, Wen-Bo; Yu, Hong; Ge, Feng; Yang, Jun-Yuan; Chen, Zi-Hong; Wang, Yuan-Bing; Dai, Yong-Dong; Adams, Alison

    2014-05-14

    A rapid HPLC method had been developed and used for the simultaneous determination of 10 nucleosides (uracil, uridine, 2'-deoxyuridine, inosine, guanosine, thymidine, adenine, adenosine, 2'-deoxyadenosine and cordycepin) in 10 populations of Cordyceps cicadae, in order to compare four populations of Ophicordyceps sinensis and one population of Cordyceps militaris. Statistical analysis system (SAS) 8.1 was used to analyze the nucleoside data. The pattern of nucleoside distribution was analyzed in the sampled populations of C. cicadae, O. sinensis and C. militaris, using descriptive statistical analysis, nested analysis and Q cluster analysis. The total amount of the 10 nucleosides in coremium was 1,463.89-5,678.21 µg/g in 10 populations of C. cicadae, 1,369.80-3,941.64 µg/g in sclerotium. The average contents of the 10 analytes were 4,392.37 µg/g and 3,016.06 µg/g in coremium and sclerotium, respectively. The coefficient of variation (CV) of nucleosides ranged from 8.36% to 112.36% in coremium of C. cicadae, and from 10.77% to 155.87% in sclerotium of C. cicadae. The CV of the nucleosides was wide within C. cicadae populations. The nested variation analysis by the nine nucleosides' distribution indicated that about 42.29% of the nucleoside variability in coremium was attributable to the differentiation among populations, and the remaining 57.71% resided in the populations. It was also shown that about 28.94% of the variation in sclerotium was expressed between populations, while most of the variation (71.06%) corresponded to the populations.

  1. The Nucleoside Uridine Isolated in the Gas Phase**

    Science.gov (United States)

    Peña, Isabel; Cabezas, Carlos; Alonso, José L.

    2016-01-01

    Herein we present the first experimental observation of the isolated nucleoside uridine, placed in the gas phase by laser ablation and characterized by Fourier transform microwave techniques. Free from the bulk effects of their native environments, anti/C2’-endo-g+ conformation has been revealed as the most stable form of uridine. Intramolecular hydrogen bonds involving uracil and ribose moieties have been found to play an important role in the stabilization of the nucleoside. PMID:25683559

  2. Synthesis of coumarin or ferrocene labeled nucleosides via Staudinger ligation

    Directory of Open Access Journals (Sweden)

    Kois Pavol

    2006-11-01

    Full Text Available Abstract Background Reaction of azides with triaryl phosphines under mild conditions gives iminophosphoranes which can react with almost any kind of electrophilic reagent, e.g. aldehydes/ketones to form imines or esters to form amides. This so-called Staudinger ligation has been employed in a wide range of applications as a general tool for bioconjugation including specific labeling of nucleic acids. Results A new approach for the preparation of labeled nucleosides via intermolecular Staudinger ligation is described. Reaction of azidonucleosides with triphenylphosphine lead to iminophosphorane intermediates, which react subsequently with derivatives of coumarin or ferrocene to form coumarin or ferrocene labeled nucleosides. Fluorescent properties of coumarin labeled nucleosides are determined. Conclusion New coumarin and ferrocene labeled nucleosides were prepared via intermolecular Staudinger ligation. This reaction joins the fluorescent coumarin and biospecific nucleoside to the new molecule with promising fluorescent and electrochemical properties. The isolated yields of products depend on the structure of azidonucleoside and carboxylic acids. A detailed study of the kinetics of the Staudinger ligation with nucleoside substrates is in progress.

  3. Flexibility as a Strategy in Nucleoside Antiviral Drug Design.

    Science.gov (United States)

    Peters, H L; Ku, T C; Seley-Radtke, K L

    2015-01-01

    As far back as Melville Wolfrom's acyclic sugar synthesis in the 1960's, synthesis of flexible nucleoside analogues have been an area of interest. This concept, however, went against years of enzyme-substrate binding theory. Hence, acyclic methodology in antiviral drug design did not take off until the discovery and subsequent FDA approval of such analogues as Acyclovir and Tenofovir. More recently, the observation that flexible nucleosides could overcome drug resistance spawned a renewed interest in the field of nucleoside drug design. The next generation of flexible nucleosides shifted the focus from the sugar moiety to the nucleobase. With analogues such as Seley-Radtke "fleximers", and Herdewijn's C5 substituted 2'-deoxyuridines, the area of base flexibility has seen great expansion. More recently, the marriage of these methodologies with acyclic sugars has resulted in a series of acyclic flex-base nucleosides with a wide range of antiviral properties, including some of the first to exhibit anti-coronavirus activity. Various flexible nucleosides and their corresponding nucleobases will be compared in this review.

  4. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    CERN Document Server

    Nielsen, Christoffer P

    2013-01-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in qualitative agreement with experimental results published in the literature. The analytical results are furthermore in agreement with direct numerical simulations. As part of the analysis, we find approximate solutions to the classical problem of pure salt transport across an ion-selective interface. These solutions provide closed-form expressions for the current-voltage characteristics, which include the overlimiting current due to the development of an extended space charge region. Finally, we discuss how the addition of an acid or a base affects the transport properties of the system and thus provide predictions accessible to further experimental tests of the model.

  5. Potential data used for validation of concentration statistics obtained using analytical model for conservative transport in an estuary

    Science.gov (United States)

    Galesic, Morena; Andricevic, Roko; Divic, Vladimir; Mateus, Marcos; Pinto, Ligia

    2016-04-01

    Coastal areas worldwide are important and sensitive ecosystems. Rivers are considered to be one of the most influential hydrological pathways for the waterborne transport and therefore estuaries are critical areas for a pollution hazard. To describe that hazard, the risk of exceeding the allowed concentration values of the pollution substance in such environment is often used. The analytical model calculates concentration statistics directly from the fundamental advective-diffusion equation for the case of continuous, steady conservative transport with the dominant stream flow mean velocity such is the case of low tide estuaries. Similar analytical models were previously proposed in atmosphere (Sullivan, 2004) and in groundwater (Andricevic, 2008). Knowing the main velocity and initial mass coming from the river, this kind of approach enables one a direct prediction of one-point concentration probability density function (pdf) which is then used to define the risk of exceeding the allowed concentration for certain water body. In this work we investigate how different data can be used for validation of the developed analytical model for conservative transport in an estuary. Two different types of measurement are being conducted at the local river Zrnovnica near city of Split, one measuring velocity and the other measuring salinity and temperature. Velocity data are used as an input to a numerical random walk particle tracking model to calculate the concentration moments. The salinity data are used as inverse proxy substance, hence the concentration moments are calculated directly from the inverse measured values. The results are highly affected by the scale effect, as the analytical model is developed at the point, while both numerical and measured values are smoothed over the grid size and over the sampling volume, respectively. However, the measured salinity, as concentration proxy, proved more resemblance to the concentration moment's shape, while numerical model

  6. Study on trend analysis of greenhouse gas reduction policy and its countermeasure in Korea: concentrated on transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hwa Jin; Oh, So Young [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    The objective of this study is to recommend a countermeasure to climate change and energy saving. It analyzed reduction policies in domestic and abroad relating to the greenhouse gas reduction especially on automobiles among transportation sector, which shows the highest increase rate of greenhouse gas emission among major greenhouse gas emission sector. Then it estimated a reduction capacity for each reduction scenario concentrated on estimable measures with the potential reduction amount. 26 refs., 23 figs., 39 tabs.

  7. Prenatal Transportation Stress Alters Temperament and Serum Cortisol Concentrations in Suckling Brahman Calves

    Science.gov (United States)

    This experiment examined the relationship between prenatal stress and subsequent calf temperament through weaning. The prenatal stressor utilized was repeated transportation of pregnant Brahman cows for 2 hours at 60, 80, 100, 120, and 140 days of gestation. Prenatally stressed calves (n = 41) were ...

  8. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder; Bruus, Henrik

    2014-01-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in ...

  9. Concentration Dependent Speciation and Mass Transport Properties of Switchable Polarity Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Aaron D. Wilson; Christopher J. Orme

    2014-12-01

    Tertiary amine switchable polarity solvents (SPS) consisting of predominantly water, tertiary amine, and tertiary ammonium and bicarbonate ions were produced at various concentrations for three different amines: N,N-dimethylcyclohexylamine, N,N-dimethyloctylamine, and 1 cyclohexylpiperidine. For all concentrations, physical properties were measured including viscosity, molecular diffusion coefficients, freezing point depression, and density. Based on these measurements a variation on the Mark Houwink equation was developed to predict the viscosity of any tertiary amine SPS as a function of concentration using the amine’s molecular mass. The observed physical properties allowed the identification of solution state speciation of non-osmotic SPS, where the amine to carbonic acid ratio is significantly greater than one. These results indicate that at most concentrations the stoichiometric excess amine is involved in solvating a proton with two amines. The physical properties of osmotic SPS have consistent concentration dependence behavior over a wide range of concentrations; this consistence suggests osmotic pressures based on low concentrations freezing point studies can be reliably extrapolated to higher concentrations.

  10. Enhanced SO2 Concentrations Observed over Northern India: Role of Long-range Transport

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, C.; Lal, S.; Naja, M.; Chand, Duli; Venkataramani, S.; Joshi, H.; Pant, P.

    2013-01-17

    Volcanic emissions and coal burning are among the major sources of SO2 over the continental environment. In this study, we show episodes of long-range transport of volcanic SO2 from Africa to Northern India using satellite observations. Monthly averaged SO2 from OMI were of the order of 0.6-0.9 DU during November, 2008 over the Indo-Gangetic Plain (IGP), which far exceeded background values (<0.3 DU) retrieved from observations across different locations over North India during 2005-2010. The columnar SO2 loadings were much higher on November 6 over most of the IGP and even exceeded 6 DU, a factor of 10 higher than background levels at some places. These enhanced SO2 levels were, however, not reciprocated in satellite derived NO2 or CO columns, indicating transport from a non-anthropogenic source of SO2. Backward trajectory analysis revealed strong winds in the free troposphere, which originated from the Dalaffilla volcanic eruption over the Afar region of Ethiopia during November 4-6, 2008. Wind streams and stable atmospheric conditions were conducive to the long-range transport of volcanic plume into the IGP. As most of the local aerosols over IGP region are below 3 km, a well separated layer at 4-5 km is observed from CALIPSO, most likely as a result of this transport. Apart from known anthropogenic sources, the additional transport of volcanic SO2 over the IGP region would have implications to air quality and radiation balance over this region.

  11. Distribution of Nucleosides in Populations of Cordyceps cicadae

    Directory of Open Access Journals (Sweden)

    Wen-Bo Zeng

    2014-05-01

    Full Text Available A rapid HPLC method had been developed and used for the simultaneous determination of 10 nucleosides (uracil, uridine, 2'-deoxyuridine, inosine, guanosine, thymidine, adenine, adenosine, 2'-deoxyadenosine and cordycepin in 10 populations of Cordyceps cicadae, in order to compare four populations of Ophicordyceps sinensis and one population of Cordyceps militaris. Statistical analysis system (SAS 8.1 was used to analyze the nucleoside data. The pattern of nucleoside distribution was analyzed in the sampled populations of C. cicadae, O. sinensis and C. militaris, using descriptive statistical analysis, nested analysis and Q cluster analysis. The total amount of the 10 nucleosides in coremium was 1,463.89–5,678.21 µg/g in 10 populations of C. cicadae, 1,369.80–3,941.64 µg/g in sclerotium. The average contents of the 10 analytes were 4,392.37 µg/g and 3,016.06 µg/g in coremium and sclerotium, respectively. The coefficient of variation (CV of nucleosides ranged from 8.36% to 112.36% in coremium of C. cicadae, and from 10.77% to 155.87% in sclerotium of C. cicadae. The CV of the nucleosides was wide within C. cicadae populations. The nested variation analysis by the nine nucleosides’ distribution indicated that about 42.29% of the nucleoside variability in coremium was attributable to the differentiation among populations, and the remaining 57.71% resided in the populations. It was also shown that about 28.94% of the variation in sclerotium was expressed between populations, while most of the variation (71.06% corresponded to the populations.

  12. [Utility of a pneumatic system to transport erythrocyte concentrates: pilot study].

    Science.gov (United States)

    Castillo-Torres, Noemí Patricia; Virgen-Díaz, Surid; León-Olvera, Daira L; Hernández-Pérez, Ana L; Calderón-Abbo, Moisés C

    2014-01-01

    INTRODUCCIÓN: los sistemas de transporte de componentes eritrocitarios deben ser seguros y modernos. En este trabajo se analiza la seguridad de un sistema neumático como medio de transporte de concentrados eritrocitarios del servicio de transfusiones al servicio de la terapia posquirúrgica. MÉTODOS: se estudiaron las muestras piloto de 50 concentrados eritrocitarios, previa homogeneización del tubo con pinza rotatoria. Se obtuvieron 1.5 mL de la muestra antes de enviar el concentrado eritrocitario por el sistema neumático y 1.5 mL después de su llegada a su destino. Las muestras fueron colocadas en tubos de cristal para su análisis. También se analizaron la concentración de hemoglobina, el nivel de hematócrito y la concentración de potasio extracelular.

  13. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations.

    Science.gov (United States)

    Melnykov, Artem V

    2016-01-01

    The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.

  14. Transport of Fluorescently Labeled Hydroxyapatite Nanoparticles in Saturated Granular Media at Environmentally Relevant Concentrations of Surfactants

    Science.gov (United States)

    Little is known about the mobility of engineered nanoparticles (ENPs) in granular media at environmentally relevant concentration of surfactant, which represents a critical knowledge gap in employing ENPs for in-situ remediation of contaminated groundwater. In this study, transpo...

  15. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    OpenAIRE

    Nielsen, Christoffer Peder; Bruus, Henrik

    2013-01-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in qualitative agreement with experimental results published in the literature. The analytical results are furthermore in agreement with direct numerical simulations. As part of the analysis, we find app...

  16. A STUDY OF THE NUCLEOSIDE TRI- AND DIPHOSPHATE ACTIVITIES OF RAT LIVER MICROSOMES

    Science.gov (United States)

    Ernster, Lars; Jones, Lois C.

    1962-01-01

    Rat liver microsomes catalyze the hydrolysis of the triphosphates of adenosine, guanosine, uridine, cytidine, and inosine into the corresponding diphosphates and inorganic orthophosphate. The activities are stimulated by Na2S2O4, and inhibited by atebrin, chlorpromazine, sodium azide, and deaminothyroxine. Sodium deoxycholate inhibits the ATPase activity in a progressive manner; the release of orthophosphate from GTP and UTP is stimulated by low, and inhibited by high, concentrations of deoxycholate, and that from CTP and ITP is unaffected by low, and inhibited by high, concentrations of deoxycholate. Subfractionation of microsomes with deoxycholate into ribosomal, membrane, and soluble fractions reveals a concentration of the triphosphatase activity in the membrane fraction. Rat liver microsomes also catalyze the hydrolysis of the diphosphates of the above nucleosides into the corresponding monophosphates and inorganic orthophosphate. Deoxycholate strongly enhances the GDPase, UDPase, and IDPase activities while causing no activation or even inhibition of the ADPase and CDPase activities. The diphosphatase is unaffected by Na2S2O4 and is inhibited by azide and deaminothyroxine but not by atebrin or chlorpromazine. Upon fractionation of the microsomes with deoxycholate, a large part of the GDPase, UDPase, and IDPase activities is recovered in the soluble fraction. Mechanical disruption of the microsomes with an Ultra Turrax Blender both activates and releases the GDPase, UDPase, and IDPase activities, and the former effect occurs more readily than the latter. The GDPase, UDPase, and IDPase activities of the rat liver cell reside almost exclusively in the microsomal fraction, as revealed by comparative assays of the mitochondrial, microsomal, and final supernatant fractions of the homogenate. The microsomes exhibit relatively low nucleoside monophosphatase and inorganic pyrophosphatase activities, and these are unaffected by deoxycholate or mechanical treatment

  17. Novel carbocyclic nucleosides containing a cyclobutyl ring. Guanosine and adenosine analogues

    OpenAIRE

    Borges, JER; Fernandez, F.; Garcia, X.; Hergueta, AR; Lopez, C; Andrei, Graciela; Snoeck, Robert; Witvrouw, Myriam; Balzarini, Jan; De Clercq, Erik

    1998-01-01

    (1R,cis)-2-(3-Amino-2,2-dimethylcyclobutyl)ethanol (4) was used as a precursor in the synthesis of cyclobutyl nucleoside analogues containing guanine, 8-azaguanine, adenine or 8-azaadenine. All the compounds were evaluated as antiviral agents in a variety of assay systems. Some activity was noted for compound 13, 17, 19 and 20 against vaccinia virus and for compounds 11, 12, 13, 17, 19 and 20 against herpes simplex virus, at concentrations that were up to 10-fold below the cytotoxic concentra...

  18. New insights into the synergism of nucleoside analogs with radiotherapy.

    Science.gov (United States)

    Lee, Michael W; Parker, William B; Xu, Bo

    2013-09-26

    Nucleoside analogs have been frequently used in combination with radiotherapy in the clinical setting, as it has long been understood that inhibition of DNA repair pathways is an important means by which many nucleoside analogs synergize. Recent advances in our understanding of the structure and function of deoxycytidine kinase (dCK), a critical enzyme required for the anti-tumor activity for many nucleoside analogs, have clarified the mechanistic role this kinase plays in chemo- and radio-sensitization. A heretofore unrecognized role of dCK in the DNA damage response and cell cycle machinery has helped explain the synergistic effect of these agents with radiotherapy. Since most currently employed nucleoside analogs are primarily activated by dCK, these findings lend fresh impetus to efforts focused on profiling and modulating dCK expression and activity in tumors. In this review we will briefly review the pharmacology and biochemistry of the major nucleoside analogs in clinical use that are activated by dCK. This will be followed by discussions of recent advances in our understanding of dCK activation via post-translational modifications in response to radiation and current strategies aimed at enhancing this activity in cancer cells.

  19. EFFECT OF PH AND CONCENTRATION ON THE TRANSPORT OF NAPHTHALENE IN SATURATED AQUIFER MEDIA

    Science.gov (United States)

    Sorption is one of the primary mechanisms for retarding the movement of organic contaminants in groundwater. Sorption of hydrophobic compounds such as toluene, naphthalene, and DDT is generally assumed to be linearly proportional to solution phase concentration. In the present re...

  20. Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe(0) nanoparticles in sand columns.

    Science.gov (United States)

    Phenrat, Tanapon; Kim, Hye-Jin; Fagerlund, Fritjof; Illangasekare, Tissa; Tilton, Robert D; Lowry, Gregory V

    2009-07-01

    The effect of particle concentration, size distribution (polydispersity) and magnetic attractive forces (Fe(0) content) on agglomeration and transport of poly(styrene sulfonate) (PSS) modified NZVI was studied in water-saturated sand (d(p) = 300 microm) columns. Particle concentrations ranged from 0.03 to 6 g/L in 5 mM NaCl/5 mM NaHCO3 at a pore water velocity of 3.2 x 10(-4) m/s. Three NZVI dispersions with different intrinsic particle size distributions obtained from sequential sedimentation are compared. The influence of magnetic attraction (Fe(0) content) on NZVI agglomeration and deposition in porous media is assessed by comparing the deposition behavior of PSS-modified NZVI (magnetic) having different Fe(0) contents with PSS-modified hematite (nonmagnetic) with the same surface modifier. At low particle concentration (30 mg/L) all particles were mobile in sand columns regardless of size or magnetic attractive forces. At high concentration (1 to 6 g/L), deposition of the relatively monodisperse dispersion containing PSS-modified NZVI (hydrodynamic radius (R(H)) = 24 nm) with the lowest Fe(0) content (4 wt%) is low (attachment efficiency (alpha) = 2.5 x 10(-3)), insensitive to particle concentration, and similar to PSS-modified hematite. At 1 to 6 g/L, the attachment efficiency of polydisperse dispersions containing both primary particles and sintered aggregates (R(H) from 15 to 260 nm) of PSS-modified NZVI with a range of Fe(0) content (10-60%) is greater (alpha = 1.2 x 10(-2) to 7.2 x 10(-2) and is sensitive to particle size distribution. The greater attachment for larger, more polydisperse Fe(0) nanoparticles with higher Fe(0) content is a result of their agglomeration during transport in porous media because the magnetic attractive force between particles increases with the sixth power of particle/agglomerate radius. A filtration model that considers agglomeration in porous media and subsequent deposition explains the observed transport of polydisperse PSS

  1. Synthesis and Antiviral Activity of 3-Aminoindole Nucleosides of 2-Acetamido-2-deoxy-D-glucose

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, Adel A. H.; Elessawy, Farag A.; Barakat, Yousif A. [Menoufia Univ., Shebin El-Koam (Egypt); Ellatif, Mona M. Abd [The British Univ. in Egypt, Cairo (Egypt)

    2012-10-15

    A new method for the construction of 3-aminoindole nucleosides of 2-acetamido-2-deoxy-D-glucose based is presented. Nitration and acetylation of the indole nucleosides by acetic anhydride-nitric acid mixture followed by reduction using silver catalyst (SNSM) impregnated on silica gel, afforded the corresponding amino indole nucleosides. The nucleosides were tested for antiviral activity against hepatitis B virus (HBV) to show different degrees of antiviral activities or inhibitory actions.

  2. Electrical and thermal transport properties of Y bxCo4Sb12 filled skutterudites with ultrahigh carrier concentrations

    Directory of Open Access Journals (Sweden)

    Yulong Li

    2015-11-01

    Full Text Available For filled skutterudites, element Yb is one of the most common and important fillers. However, the optimal carrier concentration range in Y bxCo4Sb12 filled skutterudites has not been determined as a result of the low Yb filling fraction limit. In this study, a non-equilibrium fabrication process (MS-SPS process, consisting of a melt-spinning method and a spark plasma sintering technique, has been applied to prepare Y bxCo4Sb12 samples. The Yb filling fraction is successfully extended to 0.35, which provides the possibility to clarify the optimal carrier concentration range for Yb-filled skutterudites. High carrier concentrations, with a maximum of around 1 × 1021 cm−3, were achieved in the MS-SPS Y bxCo4Sb12 samples due to the significantly enhanced Yb filling fractions. The phase compositions, lattice parameters, electrical and thermal transport properties of the MS-SPS Y bxCo4Sb12 samples with high carrier concentrations were systematically investigated. An optimal carrier concentration range of around 5 ∼ 6 × 1020 cm−3, corresponding to the actual Yb filling fraction of around 0.21∼0.26, has been determined, which displays the highest thermoelectric performance in Y bxCo4Sb12 thermoelectric materials.

  3. The induction of Sinorhizobium meliloti C4-dicarboxylate transport system(Dct)is regulated by oxygen concentration

    Institute of Scientific and Technical Information of China (English)

    WEN Jin; NAN Beiyan; Fergal O'Gara; WANG Yiping

    2005-01-01

    The Sinorhizobium meliloti C4-dicarboxylate transport (Dct) system is essential for symbiotic nitrogen fixation. The dctA gene, encoding the C4-dicarboxylate permease, is expressed in both free living and symbiotic cells. But in free living cells expression of dctD and dctB is absolutely required for the expression of dctA. In this study, in order to investigate the effect of oxygen concentration on the induction of Dct system, E. coli DH5α strain which carries the plasmid-encoded dctABD operon was used in tube assays. It was found that the specific induction of Dct system occurred only at a certain depth under the surface of M63- 0.6% agar media, suggesting that Dct system could respond to oxygen concentration during succinate-induced expression. Furthermore, when measured at different oxygen concentrations, the highest expression level was observed at oxygen concentration of 2%. Thus, we predict that in addition to dicarboxylates, the induction of Dct system may also regulated by oxygen concentration.

  4. Milestones in the discovery of antiviral agents: nucleosides and nucleotides

    Directory of Open Access Journals (Sweden)

    Erik de Clercq

    2012-12-01

    Full Text Available In this review article, a number of milestones in the antiviral research field on nucleosides and nucleotides are reviewed in which the author played a significant part, especially in the initial stages of their development. Highlighted are the amino acyl esters of acyclovir, particularly valacyclovir (VACV, brivudin (BVDU and the valine ester of Cf1743 (FV-100, the 2′,3′-dideoxynucleosides (nucleoside reverse transcriptase inhibitors, NRTIs, the acyclic nucleoside phosphonates (S-HPMPA, (S-HPMPC (cidofovir and alkoxyalkyl esters thereof (HDP-, ODE-CDV, adefovir and adefovir dipivoxil, tenofovir and tenofovir disoproxil fumarate (TDF, combinations containing TDF and emtricitabine, i.e., Truvada®, Atripla®, Complera®/Eviplera® and the Quad pill, and the phosphonoamidate derivatives GS-7340, GS-9131, GS-9191 and GS-9219.

  5. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels

    DEFF Research Database (Denmark)

    Pennathur, Sumita; Kristensen, Jesper; Crumrine, Andrew

    2011-01-01

    Nanochannel ion transport is known to be governed by surface charge at low ionic concentrations. In this talk, we show that this surface charge is dominated by hydronium ions arising from dissolution of ambient atmospheric carbon dioxide. By refining the electrokinetic model of the nanochannel...... the surface reaction equilibrium constant for silica/hydronium reactions. The model describes our experimental data with aqueous potassium chloride solutions in 165-nm-high silica nanochannels well, and furthermore, by comparing model predictions with measurements in bulk and in nanochannels with hydrochloric...

  6. Inverse constraints for emission fluxes of atmospheric tracers estimated from concentration measurements and Lagrangian transport

    Science.gov (United States)

    Pisso, Ignacio; Patra, Prabir; Breivik, Knut

    2015-04-01

    Lagrangian transport models based on times series of Eulerian fields provide a computationally affordable way of achieving very high resolution for limited areas and time periods. This makes them especially suitable for the analysis of point-wise measurements of atmospheric tracers. We present an application illustrated with examples of greenhouse gases from anthropogenic emissions in urban areas and biogenic emissions in Japan and of pollutants in the Arctic. We asses the algorithmic complexity of the numerical implementation as well as the use of non-procedural techniques such as Object-Oriented programming. We discuss aspects related to the quantification of uncertainty from prior information in the presence of model error and limited number of observations. The case of non-linear constraints is explored using direct numerical optimisation methods.

  7. Quantitative Analysis of Major Factors Affecting Black Carbon Transport and Concentrations in the Unique Atmospheric Structures of Urban Environment

    Science.gov (United States)

    Liang, Marissa Shuang

    Black carbon (BC) from vehicular emission in transportation is a principal component of particulate matters ≤ 2.5 mum (PM2.5). PM2.5 and other diesel emission pollutants (e.g., NOx) are regulated by the Clean Air Act (CAA) according to the National Ambient Air Quality standards (NAAQS). This doctoral dissertation details a study on transport behaviors of black carbon and PM2.5 from transportation routes, their relations with the atmospheric structure of an urban formation, and their relations with the use of biodiesel fuels. The results have implications to near-road risk assessment and to the development of sustainable transportation solutions in urban centers. The first part of study quantified near-roadside black carbon transport as a function of particulate matter (PM) size and composition, as well as microclimatic variables (temperature and wind fields) at the interstate highway I-75 in northern Cincinnati, Ohio. Among variables examined, wind speed and direction significantly affect the roadside transport of black carbon and hence its effective emission factor. Observed non-Gaussian dispersion occurred during low wind and for wind directions at acute angles or upwind to the receptors, mostly occurring in the morning hours. Meandering of air pollutant mass under thermal inversion is likely the driving force. In contrary, Gaussian distribution predominated in daytime of strong downwinds. The roles of urban atmospheric structure, wind fields, and the urban heat island (UHI) effects were further examined on pollutant dispersion and transport. Spatiotemporal variations of traffic flow, atmospheric structure, ambient temperature and PM2.5 concentration data from 14 EPA-certified NAAQS monitoring stations, were analyzed in relation to land-use in the Cincinnati metropolitan area. The results show a decade-long UHI effects with higher interior temperature than that in exurban, and a prominent nocturnal thermal inversion frequent in urban boundary layer. The

  8. Nucleoside H-boranophosphonates: synthesis and properties of a new class of nucleotide analogs.

    Science.gov (United States)

    Higashida, Renpei; Kawanaka, Toshihide; Oka, Natsuhisa; Wada, Takeshi

    2007-01-01

    Nucleoside H-boranophosphonates were synthesized via the condensation reactions of appropriately protected nucleosides with monopyridinium H-boranophosphonate. The condensation reactions gave only the mono-esterified products under the optimized conditions without formation of di-esterified byproducts. Deprotection of the condensation products was achieved under basic conditions to afford the fully-deprotected nucleoside H-boranophosphonates in excellent yields.

  9. Concentrations and transport of atrazine in the Delaware River-Perry Lake system, northeast Kansas, July 1993 through September 1995

    Science.gov (United States)

    Pope, L.M.; Brewer, L.D.; Foley, G.A.; Morgan, S.C.

    1996-01-01

    A study of the distribution and transport of atrazine in surface water in the 1,117 square-mile Delaware River Basin in northeast Kansas was conducted from July 1992 through September 1995. The purpose of this report is to present information to assess the present (1992-95) conditions and possible future changes in the distribution and magnitude of atrazine concentrations, loads, and yields spatially, temporally, and in relation to hydrologic conditions and land-use characteristics. A network of 11 stream-monitoring and sample-collection sites was established within the basin. Stream- water samples were collected during a wide range of hydrologic conditions throughout the study. Nearly 5,000 samples were analyzed by enzyme- linked immunosorbent assay (ELISA) for triazine herbicide concentrations. Daily mean triazine herbicide concentrations were calculated for all sampling sites and subsequently used to estimate daily mean atrazine concentrations with a linear- regression relation between ELISA-derived triazine concentrations and atrazine concentrations determined by gas chromatography/mass spectrometry for 141 dual-analyzed surface-water samples. During May, June, and July, time-weighted, daily mean atrazine concentrations in streams in the Delaware River Basin commonly exceeded the value of 3.0-ug/L (micrograms per liter) annual mean Maximum Contaminant Level (MCL) established by the U.S. Environmental Protection Agency for drinking-water supplies. Time-weighted, daily mean concentrations equal to or greater than 20 ug/L were not uncommon. However, most time- weighted, daily mean concentrations were less than 1.0 ug/L from August through April. The largest time-weighted, monthly mean atrazine concentrations occurred during May, June, and July. Most monthly mean concentrations between August and April were less than 0.50 ug/L. Large differences were documented in monthly mean concentrations within the basin. Sites receiving runoff from the northern and

  10. The effect of a concentration-dependent viscosity on particle transport in a channel flow with porous walls

    KAUST Repository

    Herterich, James G.

    2014-02-02

    The transport of a dilute suspension of particles through a channel with porous walls, accounting for the concentration dependence of the viscosity, is analyzed. In particular, we study two cases of fluid permeation through the porous channel walls: (1) at a constant flux and (2) dependent on the pressure drop across the wall. We also consider the effect of mixing the suspension first compared with point injection by considering inlet concentration distributions of different widths. We find that a pessimal inlet distribution width exists that maximizes the required hydrodynamic pressure for a constant fluid influx. The effect of an external hydrodynamic pressure, to compensate for the reduced transmembrane pressure difference due to osmotic pressure, is investigated. © 2014 American Institute of Chemical Engineers.

  11. Nucleoside triphosphate synthesis catalysed by adenylate kinase is ADP dependent

    DEFF Research Database (Denmark)

    Willemoës, Martin; Kilstrup, Mogens

    2005-01-01

    Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP+(d)NDPADP+(d)NTP. This reaction, suggested to occur by the tran......Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP+(d)NDPADP+(d)NTP. This reaction, suggested to occur...

  12. Synthesis of Novel 1,3-Dioxolane Nucleoside Analogues

    Institute of Scientific and Technical Information of China (English)

    蔡冬梅; 林昆华; 李明宗; 温集武; 李鸿艳; 尤田耙

    2004-01-01

    Novel 1,3-dioxolane C-nucleoside analogues of tiazofurin 2-(2-hydroxymethyl-1,3-dioxolan-4-yl)-1,3-thiazole-4-carboxamide as well as N-nucleoside analogues of substituted imidazoles 1-(2-hydroxymethyl-1,3-dioxolan-4-yl)-4-nitroimidazole and 1-(2-hydroxymethyl-1,3-dioxolan-4-yl)-4,5-dicyanoimidazole were synthesized frommethyl acrylate through a multistep procedure. Their structures were confirmed by IR, 1H NMR, 13C NMR spectra and elemental analysis.

  13. Enantiomeric Synthesis of Novel Apiosyl Nucleosides as Potential Antiviral Agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ai Hong; Hong, Joon Hee [Chosun University, Gwangju (Korea, Republic of)

    2004-02-15

    A series of 2',3'-dideoxy-3'-fluoro-D-apiosyl nucleosides 15, 16, 17 and 18 were synthesized enantiomerically with L-Gulonic-{gamma}-lactone as the starting material. The reduction of butenolide 1 with DIBAL-H followed by the Luche procedure afforded the allylic alcohol 2. Ozonolysis and the reduction of compound 4 induced the cyclized lactol, which was acetylated to give the acetate 7. Condensation of the acetate 7 with silylated pyrimidine (N{sup 4}-benzoyl cytosine) and a purine base (6-chloropurine) under Vorbruggen conditions and deblocking afforded a series of fluorinated apiosyl nucleosides

  14. Synthesis of some novel hydrazono acyclic nucleoside analogues

    Directory of Open Access Journals (Sweden)

    Mohammad N. Soltani Rad

    2010-05-01

    Full Text Available The syntheses of novel hydrazono acyclic nucleosides similar to miconazole scaffolds are described. In this series of acyclic nucleosides, pyrimidine as well as purine and other azole derivatives replaced the imidazole function in miconazole and the ether group was replaced with a hydrazone moiety using phenylhydrazine. To interpret the dominant formation of (E-hydrazone derivatives rather than (Z-isomers, PM3 semiempirical quantum mechanic calculations were carried out which indicated that the (E-isomers had the lower heats of formation.

  15. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    Science.gov (United States)

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  16. Tracking of magnetic flux concentrations over a five-day observation, and an insight into surface magnetic flux transport

    Directory of Open Access Journals (Sweden)

    Iida Yusuke

    2016-01-01

    Full Text Available The solar dynamo problem is the question of how the cyclic variation in the solar magnetic field is maintained. One of the important processes is the transport of magnetic flux by surface convection. To reveal this process, the dependence of the squared displacement of magnetic flux concentrations on the elapsed time is investigated in this paper via a feature-recognition technique and a continual five-day magnetogram. This represents the longest time scale over which a satellite observation has ever been performed for this problem. The dependence is found to follow a power law and differ significantly from that of diffusion transport. Furthermore, there is a change in the behavior at a spatial scale of 103.8 km. A super-diffusion behavior with an index of 1.4 is found at smaller scales, while changing to a sub-diffusion behavior with an index of 0.6 on larger ones. We interpret this difference in the transport regime as coming from the network-flow pattern.

  17. Tracking of magnetic flux concentrations over a five-day observation and an insight into surface magnetic flux transport

    CERN Document Server

    Iida, Y

    2016-01-01

    The solar dynamo problem is the question of how the cyclic variation in the solar magnetic field is maintained. One of the important processes is the transport of magnetic flux by surface convection. To reveal this process, the dependence of the squared displacement of magnetic flux concentrations upon the elapsed time is investigated in this paper via a feature-recognition technique and a continual five-day magnetogram. This represents the longest time scale over which a satellite observation has ever been performed for this problem. The dependence is found to follow a power-law and differ significantly from that of diffusion transport. Furthermore there is a change in the behavior at a spatial scale of 10^{3.8} km. A super-diffusion behavior with an index of 1.4 is found on smaller scales, while changing to a sub-diffusion behavior with an index of 0.6 on larger ones. I interpret this difference in the transport regime as coming from the network-flow pattern.

  18. A comparison of particle-tracking and solute transport methods for simulation of tritium concentrations and groundwater transit times in river water

    OpenAIRE

    Gusyev, M. A.; D. Abrams; Toews, M. W.; U. Morgenstern; M. K. Stewart

    2014-01-01

    The purpose of this study is to simulate tritium concentrations and groundwater transit times in river water with particle-tracking (MODPATH) and compare them to solute transport (MT3DMS) simulations. Tritium measurements in river water are valuable for the calibration of particle-tracking and solute transport models as well as for understanding of watershed storage dynamics. In a previous study, we simulated tritium concentrations in river water of the western Lake Taupo...

  19. Nucleoside triphosphate synthesis catalysed by adenylate kinase is ADP dependent

    DEFF Research Database (Denmark)

    Willemoes, Martin; Kilstrup, M.

    2005-01-01

    Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP + (d)NDP ¿ ADP + (d)NTP. This reaction, suggested to occur...

  20. [Quantitative analysis of nucleosides in four Cordyceps genus by HPLC].

    Science.gov (United States)

    Qian, Zheng-Ming; Li, Wen-Qing; Wang, Chuan-Xi; Zhou, Miao-Xia; Sun, Min-Tian; Gao, Hao; Li, Wen-Jia

    2016-07-01

    To compare the main nucleosides in Cordyceps genus herbs (C. sinensis, C. millitaris, Hirsutella sinensis and C. sobolifera), an HPLC method for simultaneous determination of uridine, inosine, guanosine, adenosine and cordycepine in Cordyceps genus herbs was developed. The sample was extracted with 0.5% phosphoric acid solution to prepare test solution. The separation was performed on a Zorbax SB-Aq (4.6 mm×150 mm, 5 μm) column with gradient elution by 0.04 mol•L⁻¹ potassium dihydrogen phosphate solution and acetonitrile, column temperature 30 ℃,flow rate 0.8 mL•min⁻¹,and detection wavelength 260 nm. The content of nucleosides in four Cordyceps genus herbs was evaluated by fingerprint analysis and hierarchical cluster analysis (HCA). The calibration curves of five nucleosides showed good linear regression (r>0.99) and the average recoveries were between 95.0% and 105.0%. The contents of the five nucleosides in the four Cordyceps genus herbs were different and could be obviously distinguished by HCA. The fingerprint analysis result showed that the similarity between C. sinensis and the others was less than 0.9. The method was accurate and reliable, which can be used for quality control of Cordyceps genus herbs. Copyright© by the Chinese Pharmaceutical Association.

  1. Deoxyribonucleoside kinases activate nucleoside antibiotics in severely pathogenic bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Shannon, O.; Clausen, A.R.;

    2007-01-01

    Common bacterial pathogens are becoming progressively more resistant to traditional antibiotics, representing a major public-health crisis. Therefore, there is a need for a variety of antibiotics with alternative modes of action. In our study, several nucleoside analogs were tested against...... alternative for combating pathogenic bacteria....

  2. Synthesis, bioanalysis and pharmacology of nucleoside and nucleotide analogs

    NARCIS (Netherlands)

    Jansen, R.S.

    2009-01-01

    Nucleoside analogs are an important class of drugs in anticancer and antiviral therapy. The compounds are, however, only active after intracellular conversion to their mono-, di- and triphosphate nucleotide form. In this thesis the development of sensitive liquid chromatography coupled to tandem mas

  3. Synthesis and Bioactivity of Novel Trisubstituted Triazole Nucleosides.

    Science.gov (United States)

    Wen, Yi-ning; Zhang, Zhi-feng; Liu, Ning-ning; Xiang, Yu-hong; Zhang, Zhuo-yong; Andrei, Graciela; Snoeck, Robert; Schols, Dominique; Zhang, Qing-shan; Wu, Qin-pei

    2016-01-01

    A series of novel trisubstituted 1,2,3-triazole purine nucleosides were efficiently synthesized via Huisgen 1,3-dipolar cycloaddition in good yields. Bioactivity against cytomegalovirus (CMV) and varicella-zoster virus (VZV) in human embryonic lung cell cultures was evaluated and all compounds show low antiviral activity.

  4. Synthesis of Peptidomimetic Conjugates of Acyclic Nucleoside Phosphonates

    Science.gov (United States)

    Serpi, Michaela; Zakharova, Valeria M.; Krylov, Ivan S.; McKenna, Charles E.

    2010-01-01

    Cyclic nucleoside phosphonates connected through a P-O-C linkage to a promoiety represent a class of prodrugs designed to overcome the low oral bioavailability of parent antiviral acyclic nucleoside phosphonates. In our prodrug approach, a non-toxic promoiety such as an amino acid or dipeptide is conjugated to the cyclic form of the parent drug by esterification of the phosphonic acid moiety by an alcoholic amino acid side chain (Ser, Tyr, and analogues) or through a glycol linker. For the biological evaluation and investigation of the pharmacokinetic profiles of these modified nucleoside phosphonates, a reliable synthetic procedure that allows preparation of sufficient amount of potential prodrugs is needed. This unit describes a method for generating peptidomimetic conjugates of two potent antiviral acyclic nucleoside phosphonates: 1-[(2S)-3-hydroxy-2-phosphonomethoxypropyl]cytosine ((S)-HPMPC, and 9-[(2S)-3-hydroxy-2-phosphonomethoxypropyl]adenine ((S)-HPMPA). Two alternate strategies allowing synthesizing selected amino acid, dipeptide, or ethylene glycol-linked amino acid prodrugs of (S)-HPMPC and (S)-HPMPA in solution and using a solid-phase approach are presented. PMID:21154529

  5. Examination of Inter-relationships among Atmospheric Transport Patterns, Ozone Concentrations, and Human Health Endpoints in New York State

    Science.gov (United States)

    Garcia, Valerie Cover

    In its mission to protect human health and the environment, the United States (U.S.) Environmental Protection Agency (EPA) implemented the NOx Budget Trading Program (NBP) to reduce the emissions of nitrogen oxides (NOx) in the Eastern U.S., with the intent of reducing ambient concentrations of both NOx and the secondarily-formed ozone chemicals. These pollutants and their precursors can be transported downwind, contributing to pollutant levels at locations much farther from the emission sources, potentially impacting human health in downwind areas. This study investigates the health risks in New York State (NYS) from exposure to polluted air parcels transported from the Midwest. Back-trajectories are performed from several sites within NYS for ten summers (June, July and August from 1997 to 2006) to identify days that the air parcel passed through the Ohio River Valley (ORV) region within 48 hours back in time. The ORV zone is defined as a boundary encompassing relatively high-emitting power plants in the Midwest and is used as an indicator variable to represent the transport of ozone from this area into NYS in an epidemiology analysis. The ORV zone variable and the daily maximum 8-hr average ozone concentrations are then used as the main health effects in a Generalized Additive Model (GAM) to investigate potential associations between these two variables and respiratory-related hospital admissions. The results of the analysis indicate that the risk of being admitted to the hospital for a respiratory-related illness on days that air parcels are transported from the Midwest is elevated in NYS sub-regions 2, 3 and 6. In addition, the risk of respiratory-related hospital admission from exposure to ozone is elevated in Regions 2 and 4. Two time periods before the implementation of the NBP and after the implementation of the NBP (summers of 1997 -- 2000 and 2004 -- 2006, respectively) were also examined, but an analysis of the number of summers needed to conduct the

  6. Two nucleoside uptake systems in Lactococcus lactis: Competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools

    DEFF Research Database (Denmark)

    Martinussen, Jan; Wadskov-Hansen, Steen Lyders Lerche; Hammer, Karin

    2003-01-01

    in Lactococcus lactis were investigated by measuring the uptake of radioactively labeled nucleosides. The K. for for inosine, cytidine, and uridine was determined to be in the micromolar range. Furthermore, it was found that cytidine and inosine are competitive inhibitors of each other, whereas no competition...

  7. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    Science.gov (United States)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  8. Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters.

    Directory of Open Access Journals (Sweden)

    Yu-Kun Jennifer Zhang

    Full Text Available BACKGROUND: Diurnal fluctuation of bile acid (BA concentrations in the enterohepatic system of mammals has been known for a long time. Recently, BAs have been recognized as signaling molecules beyond their well-established roles in dietary lipid absorption and cholesterol homeostasis. METHODS AND RESULTS: The current study depicted diurnal variations of individual BAs detected by ultra-performance liquid chromatography/mass spectrometry (UPLC/MS in serum and livers collected from C57BL/6 mice fed a regular chow or a chow containing cholestyramine (resin. Circadian rhythms of mRNA of vital BA-related nuclear receptors, enzymes, and transporters in livers and ilea were determined in control- and resin-fed mice, as well as in farnesoid X receptor (FXR null mice. The circadian profiles of BAs showed enhanced bacterial dehydroxylation during the fasting phase and efficient hepatic reconjugation of BAs in the fed phase. The resin removed more than 90% of BAs with β-hydroxy groups, such as muricholic acids and ursodeoxycholic acid, from serum and livers, but did not exert as significant influence on CA and CDCA in both compartments. Both resin-fed and FXR-null mouse models indicate that BAs regulate their own biosynthesis through the FXR-regulated ileal fibroblast growth factor 15. BA flux also influences the daily mRNA levels of multiple BA transporters. CONCLUSION: BA concentration and composition exhibit circadian variations in mouse liver and serum, which influences the circadian rhythms of BA metabolizing genes in liver and ileum. The diurnal variations of BAs appear to serve as a signal that coordinates daily nutrient metabolism in mammals.

  9. Record high peaks in PCB concentrations in the Arctic atmosphere due to long-range transport of biomass burning emissions

    Directory of Open Access Journals (Sweden)

    S. Eckhardt

    2007-05-01

    Full Text Available Soils and forests in the boreal region of the northern hemisphere are recognised as having a large capacity for storing air-borne Persistent Organic Pollutants (POPs, such as the polychlorinated biphenyls (PCBs. Following reductions of primary emissions of various legacy POPs, there is an increasing interest and debate about the relative importance of secondary re-emissions on the atmospheric levels of POPs. In spring of 2006, biomass burning emissions from agricultural fires in Eastern Europe were transported to the Zeppelin station on Svalbard, where record-high levels of many air pollutants were recorded (Stohl et al., 2007. Here we report on the extremely high concentrations of PCBs that were also measured during this period. 21 out of 32 PCB congeners were enhanced by more than two standard deviations above the long-term mean concentrations. In July 2004, about 5.8 million hectare of boreal forest burned in North America, emitting a pollution plume which reached the Zeppelin station after a travel time of 3–4 weeks (Stohl et al., 2006. Again, 12 PCB congeners were elevated above the long-term mean by more than two standard deviations, with the less chlorinated congeners being most strongly affected. We propose that these abnormally high concentrations were caused by biomass burning emissions. Based on enhancement ratios with carbon monoxide and known emissions factors for this species, we estimate that 130 and 66 μg PCBs were released per kilogram dry matter burned, respectively. To our knowledge, this is the first study relating atmospheric PCB enhancements with biomass burning. The strong effects on observed concentrations far away from the sources, suggest that biomass burning is an important source of PCBs for the atmosphere.

  10. The chemoenzymatic synthesis of clofarabine and related 2′-deoxyfluoroarabinosyl nucleosides: the electronic and stereochemical factors determining substrate recognition by E. coli nucleoside phosphorylases

    Directory of Open Access Journals (Sweden)

    Ilja V. Fateev

    2014-07-01

    Full Text Available Two approaches to the synthesis of 2-chloro-9-(2-deoxy-2-fluoro-β-D-arabinofuranosyladenine (1, clofarabine were studied. The first approach consists in the chemical synthesis of 2-deoxy-2-fluoro-α-D-arabinofuranose-1-phosphate (12a, 2FAra-1P via three step conversion of 1,3,5-tri-O-benzoyl-2-deoxy-2-fluoro-α-D-arabinofuranose (9 into the phosphate 12a without isolation of intermediary products. Condensation of 12a with 2-chloroadenine catalyzed by the recombinant E. coli purine nucleoside phosphorylase (PNP resulted in the formation of clofarabine in 67% yield. The reaction was also studied with a number of purine bases (2-aminoadenine and hypoxanthine, their analogues (5-aza-7-deazaguanine and 8-aza-7-deazahypoxanthine and thymine. The results were compared with those of a similar reaction with α-D-arabinofuranose-1-phosphate (13a, Ara-1P. Differences of the reactivity of various substrates were analyzed by ab initio calculations in terms of the electronic structure (natural purines vs analogues and stereochemical features (2FAra-1P vs Ara-1P of the studied compounds to determine the substrate recognition by E. coli nucleoside phosphorylases. The second approach starts with the cascade one-pot enzymatic transformation of 2-deoxy-2-fluoro-D-arabinose into the phosphate 12a, followed by its condensation with 2-chloroadenine thereby affording clofarabine in ca. 48% yield in 24 h. The following recombinant E. coli enzymes catalyze the sequential conversion of 2-deoxy-2-fluoro-D-arabinose into the phosphate 12a: ribokinase (2-deoxy-2-fluoro-D-arabinofuranose-5-phosphate, phosphopentomutase (PPN; no 1,6-diphosphates of D-hexoses as co-factors required (12a, and finally PNP. The substrate activities of D-arabinose, D-ribose and D-xylose in the similar cascade syntheses of the relevant 2-chloroadenine nucleosides were studied and compared with the activities of 2-deoxy-2-fluoro-D-arabinose. As expected, D-ribose exhibited the best substrate

  11. PhoU Allows Rapid Adaptation to High Phosphate Concentrations by Modulating PstSCAB Transport Rate in Sinorhizobium meliloti.

    Science.gov (United States)

    diCenzo, George C; Sharthiya, Harsh; Nanda, Anish; Zamani, Maryam; Finan, Turlough M

    2017-09-15

    Maintenance of cellular phosphate homeostasis is essential for cellular life. The PhoU protein has emerged as a key regulator of this process in bacteria, and it is suggested to modulate phosphate import by PstSCAB and control activation of the phosphate limitation response by the PhoR-PhoB two-component system. However, a proper understanding of PhoU has remained elusive due to numerous complications of mutating phoU, including loss of viability and the genetic instability of the mutants. Here, we developed two sets of strains of Sinorhizobium meliloti that overcame these limitations and allowed a more detailed and comprehensive analysis of the biological and molecular activities of PhoU. The data showed that phoU cannot be deleted in the presence of phosphate unless PstSCAB is inactivated also. However, phoU deletions were readily recovered in phosphate-free media, and characterization of these mutants revealed that addition of phosphate to the environment resulted in toxic levels of PstSCAB-mediated phosphate accumulation. Phosphate uptake experiments indicated that PhoU significantly decreased the PstSCAB transport rate specifically in phosphate-replete cells but not in phosphate-starved cells and that PhoU could rapidly respond to elevated environmental phosphate concentrations and decrease the PstSCAB transport rate. Site-directed mutagenesis results suggested that the ability of PhoU to respond to phosphate levels was independent of the conformation of the PstSCAB transporter. Additionally, PhoU-PhoU and PhoU-PhoR interactions were detected using a bacterial two-hybrid screen. We propose that PhoU modulates PstSCAB and PhoR-PhoB in response to local, internal fluctuations in phosphate concentrations resulting from PstSCAB-mediated phosphate import.IMPORTANCE Correct maintenance of cellular phosphate homeostasis is critical in all kingdoms of life and in bacteria involves the PhoU protein. This work provides novel insights into the role of the Sinorhizobium

  12. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge

    Science.gov (United States)

    Pardi, Norbert; Secreto, Anthony J.; Shan, Xiaochuan; Debonera, Fotini; Glover, Joshua; Yi, Yanjie; Muramatsu, Hiromi; Ni, Houping; Mui, Barbara L.; Tam, Ying K.; Shaheen, Farida; Collman, Ronald G.; Karikó, Katalin; Danet-Desnoyers, Gwenn A.; Madden, Thomas D.; Hope, Michael J.; Weissman, Drew

    2017-01-01

    Monoclonal antibodies are one of the fastest growing classes of pharmaceutical products, however, their potential is limited by the high cost of development and manufacturing. Here we present a safe and cost-effective platform for in vivo expression of therapeutic antibodies using nucleoside-modified mRNA. To demonstrate feasibility and protective efficacy, nucleoside-modified mRNAs encoding the light and heavy chains of the broadly neutralizing anti-HIV-1 antibody VRC01 are generated and encapsulated into lipid nanoparticles. Systemic administration of 1.4 mg kg−1 of mRNA into mice results in ∼170 μg ml−1 VRC01 antibody concentrations in the plasma 24 h post injection. Weekly injections of 1 mg kg−1 of mRNA into immunodeficient mice maintain trough VRC01 levels above 40 μg ml−1. Most importantly, the translated antibody from a single injection of VRC01 mRNA protects humanized mice from intravenous HIV-1 challenge, demonstrating that nucleoside-modified mRNA represents a viable delivery platform for passive immunotherapy against HIV-1 with expansion to a variety of diseases. PMID:28251988

  13. Increasing conclusiveness of metabonomic studies by chem-informatic preprocessing of capillary electrophoretic data on urinary nucleoside profiles.

    Science.gov (United States)

    Szymańska, E; Markuszewski, M J; Capron, X; van Nederkassel, A-M; Heyden, Y Vander; Markuszewski, M; Krajka, K; Kaliszan, R

    2007-01-17

    Nowadays, bioinformatics offers advanced tools and procedures of data mining aimed at finding consistent patterns or systematic relationships between variables. Numerous metabolites concentrations can readily be determined in a given biological system by high-throughput analytical methods. However, such row analytical data comprise noninformative components due to many disturbances normally occurring in analysis of biological samples. To eliminate those unwanted original analytical data components advanced chemometric data preprocessing methods might be of help. Here, such methods are applied to electrophoretic nucleoside profiles in urine samples of cancer patients and healthy volunteers. The electrophoretic nucleoside profiles were obtained under following conditions: 100 mM borate, 72.5 mM phosphate, 160 mM SDS, pH 6.7; 25 kV voltage, 30 degrees C temperature; untreated fused silica capillary 70 cm effective length, 50 microm I.D. Different most advanced preprocessing tools were applied for baseline correction, denoising and alignment of electrophoretic data. That approach was compared to standard procedure of electrophoretic peak integration. The best results of preprocessing were obtained after application of the so-called correlation optimized warping (COW) to align the data. The principal component analysis (PCA) of preprocessed data provides a clearly better consistency of the nucleoside electrophoretic profiles with health status of subjects than PCA of peak areas of original data (without preprocessing).

  14. Estimation of Secondary Compounds Concentrations Contributed by Biogenic VOC With Chemical Transport Model in the Central Area of Japan

    Science.gov (United States)

    Yamamoto, K.; Kanemaru, A.; Okumura, M.; Tohno, S.

    2008-12-01

    Biogenic VOC (BVOC) has comparably large contribution to generation of secondary air pollutants, such as photochemical oxidant or urban aerosol. In this study a BVOC emission inventory in the Kansai area, which is located in the central part of Japan, based on the field observation was developed. Some validations of the inventory were conducted by estimating the concentration distribution of oxidants with this developed and an existing BVOC emission inventory in Kansai area by meteorological model MM5 and atmospheric chemical transport model CMAQ. In the development of BVOC emission, the vegetation map by the Biodiversity Center of Japan which had been arranged as basic information on natural environmental preservation in a regional standard mesh (the third mesh) in 1999 was used. In this study isoprene and the mono-terpene were taken up as BVOC. Quercus crispula and Quercus serrata were selected as the source of isoprene, and Cryptomeria japonica, Chamaecyparis obtuse, Quercus phillyraeoides, Pinus densiflora, and Pinus thunbergii were selected as sources of mono-terpene. The parameter of the basic emission rate included in the model was decided by arranging the result of the observation in Kansai Research Center of Forestry and Forest Products Research Institute in each season. This emission flux from each species were calculated by G93 model by Guenther et al. and meteorological fields for the model, such as temperatures and sunlight intensities, were renewed hour by hour, therefore, this emission inventory has a high time resolution according to the season and time. In calculating meteorological fields, meteorological model MM5 Ver.3.7 was conducted in Japanese standard mesh in the selected five days of April, July, and October in 2004, and January 2005 respectively, and taking out the result of wind velocities and temperatures for substituting to the G93 model. Then atmospheric chemical transport model CMAQ Ver.4.6 with the emission inventories and

  15. Mutation in porcine Zip4-like zinc transporter is associated with pancreatic zinc concentration and apparent zinc absorption.

    Science.gov (United States)

    Siebert, Felicitas; Lühken, Gesine; Pallauf, Josef; Erhardt, Georg

    2013-03-28

    The aim of the present study was to analyse the sequence variability of the porcine Zip4-like Zn transporter gene and the association of identified sequence variants with average daily gain, apparent Zn absorption, plasma Zn concentration and Zn concentration in the liver and pancreas. For the purpose of the study, two different sample sets were used. Set one, which was used for sequencing and association analysis, included mRNA from intestinal tissue from thirty-five piglets of a feeding trial. Sample set two consisted of forty-six samples of genomic DNA from sperm or tissue of wild boars and several pig breeds and was used to genotype animals of different breeds. The sequence analysis of porcine Zip4-like complementary DNA in sample set one revealed the presence of seven nucleotide substitutions. Of these, six were synonymous, whereas a substitution of A with C in exon IX (XM_001925360 c.1430A>C) causes an amino acid exchange from glutamic acid to alanine (p.Glu477Ala). The association analysis revealed no influence of the six synonymous substitutions on Zn values, but the non-synonymous nucleotide exchange significantly increased Zn concentration in the pancreas and apparent Zn absorption of the piglets in week 2 of the feeding trial. The parentage of the piglets and the genotyping results in sample set two suggest a breed-specific presence of the A allele in Piétrain for this amino acid substitution. These results indicate that genotype influences the Zn absorption abilities of individual animals, which should be taken into consideration in animal breeding as well as for the selection of experimental animals.

  16. Simulation of CO2 concentrations at Tsukuba tall tower using WRF-CO2 tracer transport model

    Indian Academy of Sciences (India)

    Srabanti Ballav; Prabir K Patra; Yousuke Sawa; Hidekazu Matsueda; Ahoro Adachi; Shigeru Onogi; Masayuki Takigawa; Utpal K De

    2016-02-01

    Simulation of carbon dioxide (CO2) at hourly/weekly intervals and fine vertical resolution at the continental or coastal sites is challenging because of coarse horizontal resolution of global transport models. Here the regional Weather Research and Forecasting (WRF) model coupled with atmospheric chemistry is adopted for simulating atmospheric CO2 (hereinafter WRF-CO2) in nonreactive chemical tracer mode. Model results at horizontal resolution of 27 × 27 km and 31 vertical levels are compared with hourly CO2 measurements from Tsukuba, Japan (36.05°N, 140.13°E) at tower heights of 25 and 200 m for the entire year 2002. Using the wind rose analysis, we find that the fossil fuel emission signal from the megacity Tokyo dominates the diurnal, synoptic and seasonal variations observed at Tsukuba. Contribution of terrestrial biosphere fluxes is of secondary importance for CO2 concentration variability. The phase of synoptic scale variability in CO2 at both heights are remarkably well simulated the observed data (correlation coefficient >0.70) for the entire year. The simulations of monthly mean diurnal cycles are in better agreement with the measurements at lower height compared to that at the upper height. The modelled vertical CO2 gradients are generally greater than the observed vertical gradient. Sensitivity studies show that the simulation of observed vertical gradient can be improved by increasing the number of vertical levels from 31 in the model WRF to 37 (4 below 200 m) and using the Mellor–Yamada–Janjic planetary boundary scheme. These results have large implications for improving transport model simulation of CO2 over the continental sites.

  17. Compositions containing nucleosides and manganese and their uses

    Energy Technology Data Exchange (ETDEWEB)

    Daly, Michael J.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Levine, Rodney L.; Wehr, Nancy B.

    2015-11-17

    This invention encompasses methods of preserving protein function by contacting a protein with a composition comprising one or more purine or pyrimidine nucleosides (such as e.g., adenosine or uridine) and an antioxidant (such as e.g., manganese). In addition, the invention encompasses methods of treating and/or preventing a side effect of radiation exposure and methods of preventing a side effect of radiotherapy comprising administration of a pharmaceutically effective amount of a composition comprising one or more purine or pyrimidine nucleosides (such as e.g., adenosine or uridine) and an antioxidant (such as e.g., manganese) to a subject in need thereof. The compositions may comprise D. radiodurans extracts.

  18. Mildiomycin: a nucleoside antibiotic that inhibits protein synthesis.

    Science.gov (United States)

    Feduchi, E; Cosín, M; Carrasco, L

    1985-03-01

    Mildiomycin, a new nucleoside antibiotic, selectively inhibits protein synthesis in HeLa cells, and is less active in the inhibition of RNA or DNA synthesis. An increased inhibition of translation by mildiomycin is observed in cultured HeLa cells when they are permeabilized by encephalomyocarditis virus. This observation suggests that this antibiotic does not easily pass through the cell membrane, as occurs with other nucleoside and aminoglycoside antibiotics. The inhibition of translation is also observed in cell-free systems, such as endogenous protein synthesis in a rabbit reticulocyte lysate or the synthesis of polyphenylalanine directed by poly (U). Finally the mode of action of mildiomycin was investigated and the results suggest that the compound blocks the peptidyl-transferase center.

  19. Modified Nucleoside Triphosphates for in-vitro Selection Techniques

    Science.gov (United States)

    Iribarren, Adolfo; Dellafiore, María; Montserrat, Javier

    2016-05-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.

  20. An integrated system for the determination of the local, regional and long-transport contributions to Particulate Matter concentrations

    Science.gov (United States)

    Amodio, M.; Andriani, E.; Daresta, B. E.; de Gennaro, G.; di Gilio, A.; Ielpo, P.,; Placentino, C. M.; Trizio, L.; Tutino, M.

    2010-05-01

    Several epidemiological studies have shown the negative effects of air pollution on human health, which range from respiratory and cardiovascular disease to neurotoxic effects, and cancer. Most recent investigations have been focused on health toxicological features of Particulate Matter (PM) and its interactions with other pollutants: it was found that fine particles (PM2.5) could be an effective media to transport these pollutants deeply into the lung and to cause many kind of reactions which include oxidative stress, local pulmonary and systemic inflammatory responses (Künzli and Perez, 2009). Based on these implications on public health, many countries have developed plans to suggest effective control strategies which involve the identification of Particulate Matter sources, the quantitative estimation of the emission rates of the pollutants, the understanding of PM transport, mixing and transformation processes and the identification of main factors influencing PM concentrations. In this field, receptor models can be useful tools to estimate sources contributions to PM collected in an area under investigations. Different approaches to receptor model analysis can be distinguished on basis of whether chemical characteristics of emission sources are required to be known before the source apportionment. The multivariate approach could be preferred when a lack of information concerning sources profiles occurred (Hopke, 2003). In this work, the results obtained by applying an integrated approach in the monitoring of PM using several typologies of instrumentations will be shown. A prototype for the determination of the contributions of a single source (‘fugitive emission') on the fine PM concentrations has been developed: it consists of a Swam dual-channel sampler, an OPC Monitor, a sonic anemometer and a PBL Mixing monitor. The investigated site chosen for the application of prototype will be the iron and steel pole of Taranto (Apulia Region, South of Italy

  1. Purine nucleoside phosphorylase deficiency in two unrelated Saudi patients

    OpenAIRE

    Alangari, Abdullah; Al-Harbi, Abdullah; Al-Ghonaium, Abdulaziz; Santisteban, Ines; Hershfield, Michael

    2009-01-01

    Purine nucleoside phosphorylase (PNP) deficiency is a rare autosomal recessive metabolic disorder that results in combined immunodeficiency, neurologic dysfunction and autoimmunity. PNP deficiency has never been reported from Saudi Arabia or in patients with an Arabic ethnic background. We report on two Saudi girls with PNP deficiency. Both showed severe lymphopenia and neurological involvement. Sequencing of the PNP gene of one girl revealed a novel missense mutation Pro146>Leu in exon 4 due...

  2. Evaluation of anti-HIV-1 mutagenic nucleoside analogues.

    Science.gov (United States)

    Vivet-Boudou, Valérie; Isel, Catherine; El Safadi, Yazan; Smyth, Redmond P; Laumond, Géraldine; Moog, Christiane; Paillart, Jean-Christophe; Marquet, Roland

    2015-01-02

    Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of "lethal mutagenesis" that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively.

  3. Pan-pathway based interaction profiling of FDA-approved nucleoside and nucleobase analogs with enzymes of the human nucleotide metabolism.

    Directory of Open Access Journals (Sweden)

    Louise Egeblad

    Full Text Available To identify interactions a nucleoside analog library (NAL consisting of 45 FDA-approved nucleoside analogs was screened against 23 enzymes of the human nucleotide metabolism using a thermal shift assay. The method was validated with deoxycytidine kinase; eight interactions known from the literature were detected and five additional interactions were revealed after the addition of ATP, the second substrate. The NAL screening gave relatively few significant hits, supporting a low rate of "off target effects." However, unexpected ligands were identified for two catabolic enzymes guanine deaminase (GDA and uridine phosphorylase 1 (UPP1. An acyclic guanosine prodrug analog, valaciclovir, was shown to stabilize GDA to the same degree as the natural substrate, guanine, with a ΔT(agg around 7°C. Aciclovir, penciclovir, ganciclovir, thioguanine and mercaptopurine were also identified as ligands for GDA. The crystal structure of GDA with valaciclovir bound in the active site was determined, revealing the binding of the long unbranched chain of valaciclovir in the active site of the enzyme. Several ligands were identified for UPP1: vidarabine, an antiviral nucleoside analog, as well as trifluridine, idoxuridine, floxuridine, zidovudine, telbivudine, fluorouracil and thioguanine caused concentration-dependent stabilization of UPP1. A kinetic study of UPP1 with vidarabine revealed that vidarabine was a mixed-type competitive inhibitor with the natural substrate uridine. The unexpected ligands identified for UPP1 and GDA imply further metabolic consequences for these nucleoside analogs, which could also serve as a starting point for future drug design.

  4. Large-Eddy Simulation of pollutant dispersion around a cubical building: analysis of the turbulent mass transport mechanism by unsteady concentration and velocity statistics.

    Science.gov (United States)

    Gousseau, P; Blocken, B; van Heijst, G J F

    2012-08-01

    Pollutant transport due to the turbulent wind flow around buildings is a complex phenomenon which is challenging to reproduce with Computational Fluid Dynamics (CFD). In the present study we use Large-Eddy Simulation (LES) to investigate the turbulent mass transport mechanism in the case of gas dispersion around an isolated cubical building. Close agreement is found between wind-tunnel measurements and the computed average and standard deviation of concentration in the wake of the building. Since the turbulent mass flux is equal to the covariance of velocity and concentration, we perform a detailed statistical analysis of these variables to gain insight into the dispersion process. In particular, the fact that turbulent mass flux in the streamwise direction is directed from the low to high levels of mean concentration (counter-gradient mechanism) is explained. The large vortical structures developing around the building are shown to play an essential role in turbulent mass transport.

  5. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms.

    Science.gov (United States)

    Vergara-Jaque, Ariela; Fenollar-Ferrer, Cristina; Kaufmann, Desirée; Forrest, Lucy R

    2015-01-01

    Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to one or other side of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (a)symmetry of these systems has been successfully used as a bioinformatic tool, called "repeat-swap modeling" to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that nucleoside transport also

  6. Time, Concentration, and pH-Dependent Transport and Uptake of Anthocyanins in a Human Gastric Epithelial (NCI-N87) Cell Line

    Science.gov (United States)

    Atnip, Allison A.; Sigurdson, Gregory T.; Bomser, Joshua; Giusti, M. Mónica

    2017-01-01

    Anthocyanins are the largest class of water soluble plant pigments and a common part of the human diet. They may have many potential health benefits, including antioxidant, anti-inflammatory, anti-cancer, and cardioprotective activities. However, anthocyanin metabolism is not well understood. Studies suggest that anthocyanins absorption may occur in the stomach, in which the acidic pH favors anthocyanin stability. A gastric epithelial cell line (NCI-N87) has been used to study the behavior of anthocyanins at a pH range of 3.0–7.4. This work examines the effects of time (0–3 h), concentration (50–1500 µM), and pH (3.0, 5.0, 7.4) on the transport and uptake of anthocyanins using NCI-N87 cells. Anthocyanins were transported from the apical to basolateral side of NCI-N87 cells in time and dose dependent manners. Over the treatment time of 3 h the rate of transport increased, especially with higher anthocyanin concentrations. The non-linear rate of transport may suggest an active mechanism for the transport of anthocyanins across the NCI-N87 monolayer. At apical pH 3.0, higher anthocyanin transport was observed compared to pH 5.0 and 7.4. Reduced transport of anthocyanins was found to occur at apical pH 5.0. PMID:28218720

  7. Time, Concentration, and pH-Dependent Transport and Uptake of Anthocyanins in a Human Gastric Epithelial (NCI-N87 Cell Line

    Directory of Open Access Journals (Sweden)

    Allison A. Atnip

    2017-02-01

    Full Text Available Anthocyanins are the largest class of water soluble plant pigments and a common part of the human diet. They may have many potential health benefits, including antioxidant, anti-inflammatory, anti-cancer, and cardioprotective activities. However, anthocyanin metabolism is not well understood. Studies suggest that anthocyanins absorption may occur in the stomach, in which the acidic pH favors anthocyanin stability. A gastric epithelial cell line (NCI-N87 has been used to study the behavior of anthocyanins at a pH range of 3.0–7.4. This work examines the effects of time (0–3 h, concentration (50–1500 µM, and pH (3.0, 5.0, 7.4 on the transport and uptake of anthocyanins using NCI-N87 cells. Anthocyanins were transported from the apical to basolateral side of NCI-N87 cells in time and dose dependent manners. Over the treatment time of 3 h the rate of transport increased, especially with higher anthocyanin concentrations. The non-linear rate of transport may suggest an active mechanism for the transport of anthocyanins across the NCI-N87 monolayer. At apical pH 3.0, higher anthocyanin transport was observed compared to pH 5.0 and 7.4. Reduced transport of anthocyanins was found to occur at apical pH 5.0.

  8. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8×1014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.2×1016 to 2.5×1016 Bq and estimates for the facility in Indonesia vary from 6.1×1013 to 3.6×1014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

  9. Estimates of radioxenon released from Southern Hemisphere medical isotope production facilities using measured air concentrations and atmospheric transport modeling.

    Science.gov (United States)

    Eslinger, Paul W; Friese, Judah I; Lowrey, Justin D; McIntyre, Justin I; Miley, Harry S; Schrom, Brian T

    2014-09-01

    The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and (133)Xe data from three IMS sampling locations to estimate the annual releases of (133)Xe from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8 × 10(14) Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 2.2 × 10(16) to 2.4 × 10(16) Bq, estimates for the facility in Indonesia vary from 9.2 × 10(13) to 3.7 × 10(14) Bq and estimates for the facility in Argentina range from 4.5 × 10(12) to 9.5 × 10(12) Bq.

  10. The effect of a zero-concentration sink on contaminant transport and remedial-action designs for the Weldon Spring quarry, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Tomasko, D.

    1990-04-01

    One-dimensional analytical expressions are developed to simulate two processes in a homogeneous porous medium: contaminant transport through a porous medium that has a zero-concentration sink located at a finite distance from a step-function source; and contaminant transport through a porous medium that has an initial steady-state distribution corresponding to a constant strength source and zero-concentration sink separated by a finite distance. The governing equations are cast in dimensionless form, making use of the flow system's Peclet number. Evaluation of the analytical expressions is accomplished by numerical inversion of Laplace-space concentrations using either a full Fourier series approach with acceleration, or the Stehfest algorithm. The analytical expressions are used to evaluate possible contaminant conditions at the Weldon Spring quarry near Weldon Spring, Missouri. The following results have been found: contaminant concentrations should be at or near steady-state conditions; the spatial distribution of contaminants should be a function of the flow system's Peclet number; contaminant concentrations near the Femme Osage Slough should approach zero; contaminant concentrations near the quarry during dewatering and bulk-waste removal should monotonically decrease with time; and the spatial distribution of contaminants during remedial activities should be relatively flat, especially near the dewatering pumps. Future work will entail evaluating existing radionuclide or chemical concentration data to determine the applicability of the proposed contaminant transport model and to improve the hydrogeological conceptualization of the quarry area and vicinity. 20 refs., 27 figs.

  11. Emission of CO2 by the transport sector and the impact on the atmospheric concentration in Sao Paulo, Brazil.

    Science.gov (United States)

    Andrade, M. D. F.; Kitazato, C.; Perez-Martinez, P.; Nogueira, T.

    2014-12-01

    The Metropolitan Area of São Paulo (MASP) is impacted by the emission of 7 million vehicles, being 85% light-duty vehicles (LDV), 3% heavy-duty diesel vehicles (HDV)s, and 12% motorcycles. About 55% of LDVs burn a mixture of 78% gasoline and 22% ethanol (gasohol), 4% use hydrous ethanol (95% ethanol and 5% water), 38% are flex-fuel vehicles that are capable of burning both gasohol and hydrous ethanol and 3% use diesel (diesel + 5% bio-diesel). The owners of the flex-fuel vehicles decide to use ethanol or gasohol depending on the market price of the fuel. Many environmental programs were implemented to reduce the emissions by the LDV and HDV traffic; the contribution from the industrial sector has been decreasing as the industries have moved away from MASP, due to the high taxes applied to the productive sector. Due to the large contribution of the transport sector to CO2, its contribution is important in a regional scale. The total emission is estimated in 15327 million tons per year of CO2eq (60% by LDV, 38% HDV and 2% motorcycles). Measurements of CO2 performed with a Picarro monitor based on WS-CRDS (wavelength-scanned cavity ringdown spectroscopy) for the years 2012-2013 were performed. The sampling site was on the University of Sao Paulo campus (22o34´S, 46o44´W), situated in the west area of the city, surrounded by important traffic roads. The average data showed two peaks, one in the morning and the other in the afternoon, both associated with the traffic. Correlation analysis was performed between the concentrations and the number of vehicles, as a proxy for the temporal variation of the CO2 emission. The highest concentration was 430 ppm at 8:00am, associated to the morning peak hour of vehicles and the stable condition of the atmosphere. The average concentration was 406 ±12 ppm, considering all measured data. According to official inventories from the Environmental Agency (CETESB), the emission of CO2 has increased 39% from 1990 to 2008, associated

  12. Low Red Blood Cell Vitamin C Concentrations Induce Red Blood Cell Fragility: A Link to Diabetes Via Glucose, Glucose Transporters, and Dehydroascorbic Acid

    Directory of Open Access Journals (Sweden)

    Hongbin Tu

    2015-11-01

    Full Text Available Strategies to prevent diabetic microvascular angiopathy focus on the vascular endothelium. Because red blood cells (RBCs are less deformable in diabetes, we explored an original concept linking decreased RBC deformability to RBC ascorbate and hyperglycemia. We characterized ascorbate concentrations from human and mouse RBCs and plasma, and showed an inverse relationship between RBC ascorbate concentrations and deformability, measured by osmotic fragility. RBCs from ascorbate deficient mice were osmotically sensitive, appeared as spherocytes, and had decreased β-spectrin. These aberrancies reversed with ascorbate repletion in vivo. Under physiologic conditions, only ascorbate's oxidation product dehydroascorbic acid (DHA, a substrate for facilitated glucose transporters, was transported into mouse and human RBCs, with immediate intracellular reduction to ascorbate. In vitro, glucose inhibited entry of physiologic concentrations of dehydroascorbic acid into mouse and human RBCs. In vivo, plasma glucose concentrations in normal and diabetic mice and humans were inversely related to respective RBC ascorbate concentrations, as was osmotic fragility. Human RBC β-spectrin declined as diabetes worsened. Taken together, hyperglycemia in diabetes produced lower RBC ascorbate with increased RBC rigidity, a candidate to drive microvascular angiopathy. Because glucose transporter expression, DHA transport, and its inhibition by glucose differed for mouse versus human RBCs, human experimentation is indicated.

  13. Supplemental leucine and isoleucine affect expression of cationic amino acid transporters and myosin, serum concentration of amino acids, and growth performance of pigs.

    Science.gov (United States)

    Cervantes-Ramírez, M; Mendez-Trujillo, V; Araiza-Piña, B A; Barrera-Silva, M A; González-Mendoza, D; Morales-Trejo, A

    2013-01-24

    Leucine (Leu) participates in the activity of cationic amino acid (aa) transporters. Also, branched-chain aa [Leu, isoleucine (Ile), and valine (Val)] share intestinal transporters for absorption. We conducted an experiment with 16 young pigs (body weight of about 16 kg) to determine whether Leu and Ile affect expression of aa transporters b(0,+) and CAT-1 in the jejunum and expression of myosin in muscle, as well as serum concentration of essential aa, and growth performance in pigs. Dietary treatments were: wheat-based diets fortified with Lys, Thr, and Met; basal diet plus 0.50% Leu; basal diet plus 0.50% Ile, and basal diet plus 0.50% Leu and 0.50% Ile. After 28 days, the pigs were sacrificed to collect blood, jejunum, and semitendinosus and longissimus muscle samples. The effects of single and combined addition of Leu and Ile were analyzed. Leu alone or combined with Ile significantly decreased daily weight gain and reduced feed conversion. Leu and Ile, alone or in combination, significantly decreased expression of b(0,+) and significantly increased CAT-1. Ile alone or combined with Leu significantly decreased myosin expression in semitendinosus and significantly decreased it in longissimus muscle. Leu alone significantly decreased Lys, Ile and Thr serum concentrations; Ile significantly decreased Thr serum concentration; combined Leu and Ile significantly decreased Thr and significantly increased Val serum concentration. We conclude that dietary levels of Leu and Ile affect growth performance, expression of aa transporters and myosin, and aa serum concentrations in pigs.

  14. Regional-scale transport of air pollutants: impacts of southern California emissions on Phoenix ground-level ozone concentrations

    Directory of Open Access Journals (Sweden)

    J. Li

    2015-03-01

    Full Text Available In this study, WRF-Chem is utilized at high-resolution (1.333 km grid spacing for the innermost domain to investigate impacts of southern California anthropogenic emissions (SoCal on Phoenix ground-level ozone concentrations ([O3] for a pair of recent exceedance episodes. First, WRF-Chem Control simulations are conducted to evaluate model performance. Compared with surface observations of hourly ozone, CO, NOx, and wind fields, the Control simulations reproduce observed variability well. Simulated [O3] are within acceptance ranges recommended by the Environmental Protection Agency (EPA that characterize skillful experiments. Next, the relative contribution of SoCal and Arizona local anthropogenic emissions (AZ to ozone exceedance within the Phoenix metropolitan area is investigated via a trio of sensitivity simulations: (1 SoCal emissions are excluded, with all other emissions as in Control; (2 AZ emissions are excluded with all other emissions as in Control; and (3 SoCal and AZ emissions are excluded (i.e., all anthropogenic emissions are eliminated to account only for biogenic emissions [BEO]. Results for the selected events indicate the impacts of AZ emissions are dominant on daily maximum 8 h average (DMA8 [O3] in Phoenix. SoCal contributions to DMA8 [O3] for the Phoenix metropolitan area range from a few ppbv to over 30 ppbv (10–30% relative to Control experiments. [O3] from SoCal and AZ emissions exhibit the expected diurnal characteristics that are determined by physical and photochemical processes, while BEO contributions to DMA8 [O3] in Phoenix also play a key role. Finally, ozone transport processes and pathways within the lower troposphere are investigated. During daytime, pollutants (mainly ozone near the southern California coasts are pumped into the planetary boundary-layer over the southern California desert through the mountain chimney and pass channel effects, aiding eastward transport along the desert air basins in southern

  15. Bone marrow CFU-GM and human tumor xenograft efficacy of three antitumor nucleoside analogs.

    Science.gov (United States)

    Bagley, Rebecca G; Roth, Stephanie; Kurtzberg, Leslie S; Rouleau, Cecile; Yao, Min; Crawford, Jennifer; Krumbholz, Roy; Lovett, Dennis; Schmid, Steven; Teicher, Beverly A

    2009-05-01

    Nucleoside analogs are rationally designed anticancer agents that disrupt DNA and RNA synthesis. Fludarabine and cladribine have important roles in the treatment of hematologic malignancies. Clofarabine is a next generation nucleoside analog which is under clinical investigation. The bone marrow toxicity, tumor cell cytotoxicity and human tumor xenograft activity of fludarabine, cladribine and clofarabine were compared. Mouse and human bone marrow were subjected to colony forming (CFU-GM) assays over a 5-log concentration range in culture. NCI-60 cell line screening data were compared. In vivo, a range of clofarabine doses was compared with fludarabine for efficacy in several human tumor xenografts. The IC90 concentrations for fludarabine and cladribine for mouse CFU-GM were >30 and 0.93 microM, and for human CFU-GM were 8 and 0.11 microM, giving mouse to human differentials of >3.8- and 8.5-fold. Clofarabine produced IC90s of 1.7 microM in mouse and 0.51 microM in human CFU-GM, thus a 3.3-fold differential between species. In the NCI-60 cell line screen, fludarabine and cladribine showed selective cytotoxicity toward leukemia cell lines while for clofarabine there was no apparent selectivity based upon origin of the tumor cells. In vivo, clofarabine produced a dose-dependent increase in tumor growth delay in the RL lymphoma, the RPMI-8226 multiple myeloma, and HT-29 colon carcinoma models. The PC3 prostate carcinoma was equally responsive to clofarabine and fludarabine. Bringing together bone marrow toxicity data, tumor cell line cytotoxicity data, and human tumor xenograft efficacy provides valuable information for the translation of preclinical findings to the clinic.

  16. Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces.

    Science.gov (United States)

    Zhong, Hua; Liu, Guansheng; Jiang, Yongbing; Brusseau, Mark L; Liu, Zhifeng; Liu, Yang; Zeng, Guangming

    2016-03-01

    The success of effective bioaugmentation processes for remediation of soil and groundwater contamination requires effective transport of the injected microorganisms in the subsurface environment. In this study, the effect of low concentrations of monorhamnolipid biosurfactant solutions on transport of Pseudomonas aeruginosa in an ideal porous medium (glass beads) with hydrophilic or hydrophobic surfaces was investigated by conducting miscible-displacement experiments. Transport behavior was examined for both glucose-grown and hexadecane-grown cells, with low and high surface hydrophobicity, respectively. A clean-bed colloid deposition model was used for determination of deposition rate coefficients. Results show that cells with high surface hydrophobicity exhibit greater retention than cells with low surface hydrophobicity. Rhamnolipid affects cell transport primarily by changing cell surface hydrophobicity, with an additional minor effect by increasing solution ionic strength. There is a good linear relation between k and rhamnolipid-regulated cell surface hydrophobicity presented as bacterial-adhesion-to-hydrocarbon (BATH) rate of cells (R(2)=0.71). The results of this study show the importance of hydrophobic interaction for transport of bacterial cells in silica-based porous media, and the potential of using low-concentration rhamnolipid solutions for facilitating bacterial transport in bioaugmentation efforts.

  17. Two purine nucleoside phosphorylases in Bacillus subtilis. Purification and some properties of the adenosine-specific phosphorylase

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank

    1978-01-01

    Two purine nucleoside phosphorylases (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) were purified from vegetative Bacillus subtilis cells. One enzyme, inosine-guanosine phosphorylase, showed great similarity to the homologous enzyme of Bacillus cereus. It appeared...

  18. Novel inhibitors of Mycobacterium tuberculosis growth based on modified pyrimidine nucleosides and their analogues

    Science.gov (United States)

    Shmalenyuk, E. R.; Kochetkov, S. N.; Alexandrova, L. A.

    2013-09-01

    The review summarizes data on the synthesis and antituberculosis activity of pyrimidine nucleoside derivatives and their analogues. Enzymes from M. tuberculosis as promising targets for prototypes of new-generation drugs are considered. Nucleosides as inhibitors of drug-resistant M. tuberculosis strains are characterized. The bibliography includes 101 references.

  19. Synthesis of Antiviral Acyclic C-nucleosides Incorporating 4-Thiazolinones Structure

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan; CAO Ling-Hua

    2003-01-01

    @@ Carbohydrates are useful molecules to creatures. They take part in life processes in different ways. [ 1] C-nucleo sides are well known nucleoside analogues. A number of nucleoside analogues have been found to show a broad spectrum of biological activity, some of posses important anticancer and antiviral activities. [2

  20. Syntheses of Nucleoside Derivatives Containing Fmoc- or Trityl-protected Amino Acids

    Institute of Scientific and Technical Information of China (English)

    GUO Hui; ZOU Wu-xin; JI Qi; MA Yu-xin; MENG Ji-ben

    2005-01-01

    Facile direct esterification reactions between 2′,3′-O-isopropylidene-nucleosides and Fmoc- or trityl-protected amino acids via N,N-dicyclohexyl-carbodiimide(DCC) mediated condensation are described. These reactions offer a mild and convenient method to synthesize aminoacylated nucleoside derivatives.

  1. A procedure for the preparation and isolation of nucleoside-5’-diphosphates

    Directory of Open Access Journals (Sweden)

    Heidi J. Korhonen

    2015-04-01

    Full Text Available Tris[bis(triphenylphosphoranylideneammonium] pyrophosphate (PPN pyrophosphate was used in the SN2 displacements of the tosylate ion from 5’-tosylnucleosides to afford nucleoside-5’-diphosphates. Selective precipitation permitted the direct isolation of nucleoside-5’-diphosphates from crude reaction mixtures.

  2. Nucleoside H-boranophosphonates: a new class of boron-containing nucleotide analogues.

    Science.gov (United States)

    Higashida, Renpei; Oka, Natsuhisa; Kawanaka, Toshihide; Wada, Takeshi

    2009-05-14

    A study on the synthesis of nucleoside H-boranophosphonates, a new class of nucleotide analogues having a P-->BH(3) and a P-H group, via condensation of the corresponding nucleosides with H-boranophosphonate derivatives is described.

  3. In vivo phenotypic characterisation of nucleoside label-retaining cells in mouse periosteum

    Directory of Open Access Journals (Sweden)

    HM Cherry

    2014-03-01

    Full Text Available Periosteum is known to contain cells that, after isolation and culture-expansion, display properties of mesenchymal stromal/stem cells (MSCs. However, the equivalent cells have not been identified in situ mainly due to the lack of specific markers. Postnatally, stem cells are slow-cycling, long-term nucleoside-label-retaining cells. This study aimed to identify and characterise label-retaining cells in mouse periosteum in vivo. Mice received iodo-deoxy-uridine (IdU via the drinking water for 30 days, followed by a 40-day washout period. IdU+ cells were identified by immunostaining in conjunction with MSC and lineage markers. IdU-labelled cells were detected throughout the periosteum with no apparent focal concentration, and were negative for the endothelial marker von Willebrand factor and the pan-haematopoietic marker CD45. Subsets of IdU+ cells were positive for the mesenchymal/stromal markers vimentin and cadherin-11. IdU+ cells expressed stem cell antigen-1, CD44, CD73, CD105, platelet-derived growth factor receptor-α and p75, thereby displaying an MSC-like phonotype. Co-localisation was not detectable between IdU and the pericyte markers CD146, alpha smooth muscle actin or NG2, nor did IdU co-localise with β-galactosidase in a transgenic mouse expressing this reporter gene in pericytes and smooth muscle cells. Subsets of IdU+ cells expressed the osteoblast-lineage markers Runx2 and osteocalcin. The IdU+ cells expressing osteocalcin were lining the bone and were negative for the MSC marker p75. In conclusion, mouse periosteum contains nucleoside-label-retaining cells with a phenotype compatible with MSCs that are distinct from pericytes and osteoblasts. Future studies characterising the MSC niche in vivo could reveal novel therapeutic targets for promoting bone regeneration/repair.

  4. Transport of uranium concentrates: low specific activity versus logistic complexity; Transporte de concentrado de uranio: baixa atividade especifica versus complexidade logistica

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Pedro L.S.; Macedo, Eclesio F.; Carvalho, Leonardo B.; Carvalho, Renata R., E-mail: pedroluis@inb.gov.b, E-mail: eclesio@inb.gov.b, E-mail: leonardobernadino@inb.gov.b, E-mail: renatarangel@inb.gov.b [Industrias Nucleares do Brasil S.A., Caetite, BA (Brazil)

    2011-10-26

    This paper describes the case of radioactive material transport, according to pertinent documentation - nuclear material specifically in the form op ammonium diuranate, produced by Industrias Nucleares do Brasil S.A. - from the mine and physic-chemical processing at Caetite, Bahia, to the port of Salvador, state of Bahia, approaching the radiological protection aspects

  5. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway.

    Science.gov (United States)

    Becker, Sidney; Thoma, Ines; Deutsch, Amrei; Gehrke, Tim; Mayer, Peter; Zipse, Hendrik; Carell, Thomas

    2016-05-13

    The origin of life is believed to have started with prebiotic molecules reacting along unidentified pathways to produce key molecules such as nucleosides. To date, a single prebiotic pathway to purine nucleosides had been proposed. It is considered to be inefficient due to missing regioselectivity and low yields. We report that the condensation of formamidopyrimidines (FaPys) with sugars provides the natural N-9 nucleosides with extreme regioselectivity and in good yields (60%). The FaPys are available from formic acid and aminopyrimidines, which are in turn available from prebiotic molecules that were also detected during the Rosetta comet mission. This nucleoside formation pathway can be fused to sugar-forming reactions to produce pentosides, providing a plausible scenario of how purine nucleosides may have formed under prebiotic conditions.

  6. Transport of sucrose-modified nanoscale zero-valent iron in saturated porous media: role of media size, injection rate and input concentration.

    Science.gov (United States)

    Li, Hui; Zhao, Yong-sheng; Han, Zhan-tao; Hong, Mei

    2015-01-01

    The growing use of nanoscale zero-valent iron (NZVI) in the remediation of contaminated groundwater raises concerns regarding its transport in aquifers. Laboratory-scale sand-packed column experiments were conducted with bare and sucrose-modified NZVI (SM-NZVI) to improve our understanding of the transport of the nanoparticles in saturated porous media, as well as the role of media size, suspension injection rate and concentration on the nanoparticle behavior. As the main indicative parameters, the normalized effluent concentration was measured and the deposition rate coefficient (k) was calculated for different simulated conditions. Overall, compared to the high retention of bare NZVI in the saturated silica column, SM-NZVI suspension could travel through the coarse sand column easily. However, the transport of SM-NZVI particles was not very satisfactory in a smaller size granular matrix especially in fine silica sand. Furthermore, the value of k regularly decreased with the increasing injection rate of suspension but increased with suspension concentration, which could reflect the role of these factors in the SM-NZVI travel process. The calculation of k-value at the tests condition adequately described the experimental results from the point of deposition dynamics, which meant the assumption of first-order deposition kinetics for the transport of NZVI particles was reasonable and feasible.

  7. Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown.

    Science.gov (United States)

    Nikinmaa, Eero; Sievänen, Risto; Hölttä, Teemu

    2014-09-01

    Tree models simulate productivity using general gas exchange responses and structural relationships, but they rarely check whether leaf gas exchange and resulting water and assimilate transport and driving pressure gradients remain within acceptable physical boundaries. This study presents an implementation of the cohesion-tension theory of xylem transport and the Münch hypothesis of phloem transport in a realistic 3-D tree structure and assesses the gas exchange and transport dynamics. A mechanistic model of xylem and phloem transport was used, together with a tested leaf assimilation and transpiration model in a realistic tree architecture to simulate leaf gas exchange and water and carbohydrate transport within an 8-year-old Scots pine tree. The model solved the dynamics of the amounts of water and sucrose solute in the xylem, cambium and phloem using a fine-grained mesh with a system of coupled ordinary differential equations. The simulations predicted the observed patterns of pressure gradients and sugar concentration. Diurnal variation of environmental conditions influenced tree-level gradients in turgor pressure and sugar concentration, which are important drivers of carbon allocation. The results and between-shoot variation were sensitive to structural and functional parameters such as tree-level scaling of conduit size and phloem unloading. Linking whole-tree-level water and assimilate transport, gas exchange and sink activity opens a new avenue for plant studies, as features that are difficult to measure can be studied dynamically with the model. Tree-level responses to local and external conditions can be tested, thus making the approach described here a good test-bench for studies of whole-tree physiology.

  8. A Concentration Analysis In The Turkish Domestic Air Transportation Industry using with CRm and Herfindahl-Hirschman Indexes

    OpenAIRE

    Kiracı, Kasım; YAŞAR, Mehmet; Kayhan, Selçuk; Ustaömer, Temel Caner

    2017-01-01

    Concentration means that economic activities aredominated or owned by a small number of firms in any market. Accordingly, thereis a negative relationship between concentration ratio in the market and levelof competition. In other words, as the concentration rate increases,level of competition decreases and vice-versa. The low market concentrationratio and imperfect competition are common occurences in the emerging countriessuch as Turkey. In this study,concentration ratio and level of competi...

  9. Atmospheric mercury concentrations at two sites in the Kyushu Islands, Japan, and evidence of long-range transport from East Asia

    Science.gov (United States)

    Marumoto, Kohji; Hayashi, Masahiko; Takami, Akinori

    2015-09-01

    Continuous monitoring of atmospheric gaseous mercury at Fukuoka and Minamata in the Kyushu Islands, western Japan, was carried out from June 2012 to May 2013 to investigate the influence of long-range transport of mercury in the Asian region. Speciation data at Fukuoka indicated that approximately 99% of the atmospheric mercury was in the gaseous elemental form. The average concentration of gaseous elemental mercury (GEM) at Fukuoka was slightly higher than that of total gaseous mercury (TGM) at Minamata. Synchronous pollution events of higher concentrations of both GEM at Fukuoka and TGM at Minamata were frequently observed from late fall to early spring. We infer that these events occurred due to long-range transport of mercury rather than local, domestic emission sources because the two sites are far apart (about 150 km), and local sources would be unlikely to synchronously influence concentrations at both sites over such a long distance. The results of backward trajectory analyses indicated that these events occurred when air masses came from the Asian continent. In addition, the pollution events were often the result of cold fronts or migratory anticyclones that passed over the Kyushu Islands, often accompanied by descending cool and heavy air currents. Thus, these results indicate that, under specific climate conditions, higher concentrations of atmospheric mercury are transported to the Kyushu Islands from the Asian continent, and are evident in ground-based observations there.

  10. Nucleosides and ODN electrochemical detection onto boron doped diamond electrodes.

    Science.gov (United States)

    Fortin, Elodie; Chane-Tune, Jérôme; Mailley, Pascal; Szunerits, Sabine; Marcus, Bernadette; Petit, Jean-Pierre; Mermoux, Michel; Vieil, Eric

    2004-06-01

    Boron doped diamond (BDD) is a promising material for electroanalytical chemistry due mainly to its chemical stability, its high electrical conductivity and to the large amplitude of its electroactive window in aqueous media. The latter feature allowed us to study the direct oxidation of the two electroactive nucleosides, guanosine and adenosine. The BDD electrode was first activated by applying high oxidizing potentials, allowing to increase anodically its working potential window through the oxidation of CH surface groups into hydroxyl and carbonyl terminations. Guanosine (1.2 V vs. Ag/AgCl) and adenosine (1.5 V vs. Ag/AgCl) could then be detected electrochemically with an acceptable signal to noise ratio. The electrochemical signature of each oxidizable base was assessed using differential pulse voltammetry (DPV), in solutions containing one or both nucleosides. These experiments pointed out the existence of adsorption phenomena of the oxidized products onto the diamond surface. Scanning electrochemical microscopy (SECM) was used to investigate these adsorption effects at the microscopic scale. The usefulness of BDD electrodes for the direct electrochemical detection of synthetic oligonucleotides is also evidenced.

  11. Cladribine Analogues via O6-(Benzotriazolyl Derivatives of Guanine Nucleosides

    Directory of Open Access Journals (Sweden)

    Sakilam Satishkumar

    2015-10-01

    Full Text Available Cladribine, 2-chloro-2′-deoxyadenosine, is a highly efficacious, clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest in the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxytris(dimethylaminophosphonium hexafluorophosphate, we have evaluated the use of O6-(benzotriazol-1-yl-2′-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities, and the data are presented herein. Against hairy cell leukemia (HCL, T-cell lymphoma (TCL and chronic lymphocytic leukemia (CLL, cladribine was the most active against all. The bromo analogue of cladribine showed comparable activity to the ribose analogue of cladribine against HCL, but was more active against TCL and CLL. The bromo ribose analogue of cladribine showed activity, but was the least active among the C6-NH2-containing compounds. Substitution with alkyl groups at the exocyclic amino group appears detrimental to activity, and only the C6 piperidinyl cladribine analogue demonstrated any activity. Against adenocarcinoma MDA-MB-231 cells, cladribine and its ribose analogue were most active.

  12. An azide-modified nucleoside for metabolic labeling of DNA.

    Science.gov (United States)

    Neef, Anne B; Luedtke, Nathan W

    2014-04-14

    Metabolic incorporation of azido nucleoside analogues into living cells can enable sensitive detection of DNA replication through copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and strain-promoted azide-alkyne cycloaddition (SPAAC) "click" reactions. One major limitation to this approach is the poor chemical stability of nucleoside derivatives containing an aryl azide group. For example, 5-azido-2'-deoxyuridine (AdU) exhibits a 4 h half-life in water, and it gives little or no detectable labeling of cellular DNA. In contrast, the benzylic azide 5-(azidomethyl)-2'-deoxyuridine (AmdU) is stable in solution at 37 °C, and it gives robust labeling of cellular DNA upon addition of fluorescent alkyne derivatives. In addition to providing the first examples of metabolic incorporation into and imaging of azide groups in cellular DNA, these results highlight the general importance of assessing azide group stability in bioorthogonal chemical reporter strategies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Properties of mammalian nuclear-envelope nucleoside triphosphatase.

    Science.gov (United States)

    Agutter, P S; Cockrill, J B; Lavine, J E; McCaldin, B; Sim, R B

    1979-09-01

    The nucleoside triphosphatase activities of the nuclear envelopes from rat liver, pig liver and simian-virus-40-transformed mouse-embryo 3T3 cells were shown to exhibit similar parperties. All three preparations hydrolyse ATP, 2'-dATP, 3'-dATP, GTP, CTP and UTP in the presence of Mg2+, Ca2+, Mn2+ and Co2+ with a pH optimum of 8.0, are sensitive to inhibition by mercurials, arsenicals, quercetin, proflavin and adenosine 5'-[gamma-thio]triphosphate and are partially inactivated by exposure to high ionic strength. The kinetic behaviour is similar for all substrates irrespective of the source of material. The typical Eadie-Hofstee plot, which is concave upwards at pH 8.0 when the ionic strength is 20mM, becomes linear when the pH is increased to 8.5 or the ionic strength to 160mM. The overall evidence, particularly the labelling of only one polypeptide by [gamma-32P]ATP, suggests that under the conditions of preparation and assay used only one class of nucleoside triphosphatase active sites is detectable in nuclear envelopes. The importance of these results for an understanding of the role of the enzyme in vivo is discussed.

  14. Kinetic and biochemical characterization of Trypanosoma evansi nucleoside triphosphate diphosphohydrolase.

    Science.gov (United States)

    Weiss, Paulo Henrique Exterchoter; Batista, Franciane; Wagner, Glauber; Magalhães, Maria de Lourdes Borba; Miletti, Luiz Claudio

    2015-06-01

    Nucleoside triphosphate diphospho-hydrolases (NTPDases) catalyze the hydrolysis of several nucleosides tri and diphosphate playing major roles in eukaryotes including purinergic signaling, inflammation, hemostasis, purine salvage and host-pathogen interactions. These enzymes have been recently described in parasites where several evidences indicated their involvement in virulence and infection. Here, we have investigated the presence of NTPDase in the genome of Trypanosoma evansi. Based on the genomic sequence from Trypanosoma brucei, we have amplified an 1812 gene fragment corresponding to the T. evansi NTPDase gene. The protein was expressed in the soluble form and purified to homogeneity and enzymatic assays were performed confirming the enzyme identity. Kinetic parameters and substrate specificity were determined. The dependence of cations on enzymatic activity was investigated indicating the enzyme is stimulated by divalent cations and carbohydrates but inhibited by sodium. Bioinformatic analysis indicates the enzyme is a membrane bound protein facing the extracellular side of the cell with 98% identity to the T. brucei homologous NTPDase gene.

  15. Ribonucleic acid stimulation of mammalian liver nuclear-envelope nucleoside triphosphatase. A possible enzymic marker for the nuclear envelope.

    Science.gov (United States)

    Agutter, P S; Harris, J R; Stevenson, I

    1977-03-15

    1. The specific activity of rat and pig liver nuclear-envelope nucleoside triphosphatase (EC 3.6.1.3) decreases when the system is depleted of RNA. The activity can be restored by adding high concentrations of yeast RNA to the assay medium. 2. Exogenous RNA also increases the activity of the enzyme in control envelopes (not RNA-depleted). The effect appears to be largely specific for poly(A) and poly(G); it is not stimulated by rRNA or tRNA preparations, ribonuclease-hydrolysed RNA, AMP, or double- or single-stranded DNA. 3. Inhibitors of the enzyme, in concentrations at which half-maximal inhibition of the enzyme is achieved, do not affect the percentage stimulation of the enzyme by yeast RNA. 4. The simulation is abolished by the inclusion of 150 mM-KCl or -NaCl in the assay medium, but not by increasing the assay pH to 8.5. 5. The results are discussed in the light of the possible role of the nucleoside triphosphatase in vivo in nucleo-cytoplasmic ribonucleoprotein translocation. 6. It is proposed that poly(G)-stimulated Mg2+-activated adenosine triphosphatase activity should be adopted as an enzymic marker for the nuclear envelope.

  16. Imidazolium-based ionic liquid-type surfactant as pseudostationary phase in micellar electrokinetic chromatography of highly hydrophilic urinary nucleosides.

    Science.gov (United States)

    Rageh, Azza H; Pyell, Ute

    2013-11-05

    Ionic liquid (IL)-type surfactants have been shown to interact more strongly with polar compounds than traditionally used quaternary ammonium cationic surfactants. The aim of this study is to provide an alternative micellar electrokinetic chromatographic method (MEKC) for the analysis of urinary nucleosides in their ionic form at low surfactant concentration. This approach could overcome the use of high surfactant concentrations typically associated with the analysis of these highly hydrophilic metabolites as neutral species, which is frequently accompanied by high electric current, Joule heating and long analysis time. The investigated IL-type surfactant; 1-tetradecyl-3-methylimidazolium bromide (C14MImBr) is similar to the commonly employed cationic surfactant; tetradecyltrimethylammonium bromide (TTAB) but it provides a different separation selectivity. We employed C14MImBr micelles for the MEKC analysis of seven urinary nucleosides. The studied analytes possess a negative charge at pH 9.38 (exceptions are adenosine and cytidine which are neutral at this pH value). Borate imparts an additional negative charge to these compounds after complexation with the cis-diol functionality of the ribose unit, which in turn enables them to interact with the oppositely charged C14MImBr micelles via electrostatic (Coulomb) forces. The effect of the concentration of borate (the complexing, competing and buffering ion) on the effective electrophoretic mobilities and on the retention factors was investigated. The effective electrophoretic mobility data show that complexation between these nucleosides and borate occurs with high degree of complexation even at very low borate concentration (2.5 mmol L(-1) disodium tetraborate). In addition, we found that the retention factors are strongly dependent on the borate concentration being the highest when using the lowest borate concentration and they can be regulated by variation of either tetraborate concentration or the pH of the

  17. Effect of purine nucleoside analogue-acyclovir on the sperm parameters and testosterone production in rats.

    Science.gov (United States)

    Movahed, Elham; Sadrkhanlou, Rajabali; Ahmadi, Abbas; Nejati, Vahid; Zamani, Zahra

    2013-04-01

    Acyclovir (ACV), a synthetic purine nucleoside analogue derived from guanosine, is known to be toxic to gonads and the aim of this study was to evaluate the effect of ACV on the sperm parameters and testosterone production in rat. In this experimental study, forty adult male Wistar rats (220 ± 20 g) were randomly divided into five groups (n=8 for each group). One group served as control and one group served as sham control [distilled water was intraperitoneally (i.p.) injected]. ACV was administered intraperitoneally in the drug treatment groups (4, 16 and 48 mg/kg/day) for 15 days. Eighteen days after the last injection, rats were sacrificed by CO2 inhalation. After that, cauda epididymides were removed surgically. At the end, sperm concentrations in the cauda epididymis, sperm motility, morphology, viability, chromatin quality and DNA integrity were analyzed. Serum testosterone concentrations were determined. The results showed that ACV did not affect sperm count, but decreased sperm motility and sperm viability at 16 and 48 mg/kg dose-levels. Sperm abnormalities increased at 48 mg/kg dose-level of ACV. Further, ACV significantly increases DNA damage at 16 and 48 mg/kg dose-levels and chromatin abnormality at all doses. Besides, a significant decrease in serum testosterone concentrations was observed at 16 and 48 mg/ kg doses. The present results highly support the idea that ACV induces testicular toxicity by adverse effects on the sperm parameters and serum level of testosterone in male rats.

  18. A comparison of particle-tracking and solute transport methods for simulation of tritium concentrations and groundwater transit times in river water

    Science.gov (United States)

    Gusyev, M. A.; Abrams, D.; Toews, M. W.; Morgenstern, U.; Stewart, M. K.

    2014-08-01

    The purpose of this study is to simulate tritium concentrations and groundwater transit times in river water with particle-tracking (MODPATH) and compare them to solute transport (MT3DMS) simulations. Tritium measurements in river water are valuable for the calibration of particle-tracking and solute transport models as well as for understanding of watershed storage dynamics. In a previous study, we simulated tritium concentrations in river water of the western Lake Taupo catchment (WLTC) using a MODFLOW-MT3DMS model (Gusyev et al., 2013). The model was calibrated to measured tritium in river water at baseflows of the Waihaha, Whanganui, Whareroa, Kuratau, and Omori river catchments of the WLTC. Following from that work we now utilized the same MODFLOW model for the WLTC to calculate the pathways of groundwater particles (and their corresponding tritium concentrations) using steady-state particle tracking MODPATH model. In order to simulate baseflow tritium concentrations with MODPATH, transit time distributions (TTDs) are necessary to understand the lag time between the entry and discharge points of a tracer and are generated for the river networks of the five WLTC outflows. TTDs are used in the convolution integral with an input tritium concentration time series obtained from the precipitation measurements. The resulting MODPATH tritium concentrations yield a very good match to measured tritium concentrations and are similar to the MT3DMS-simulated tritium concentrations, with the greatest variation occurring around the bomb peak. MODPATH and MT3DMS also yield similar mean transit times (MTTs) of groundwater contribution to river baseflows, but the actual shape of the TTDs is strikingly different. While both distributions provide valuable information, the methodologies used to derive the TTDs are fundamentally different and hence must be interpreted differently. With the current MT3DMS model settings, only the methodology used with MODPATH provides the true TTD

  19. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells.

    Science.gov (United States)

    Yang, Tianle; Chan, Noel Yan-Ki; Sauve, Anthony A

    2007-12-27

    A new two-step methodology achieves stereoselective synthesis of beta-nicotinamide riboside and a series of related amide, ester, and acid nucleosides. Compounds were prepared through a triacetylated-nicotinate ester nucleoside, via coupling of either ethylnicotinate or phenylnicotinate with 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose. Nicotinamide riboside, nicotinic acid riboside, O-ethylnicotinate riboside, O-methylnicotinate riboside, and several N-alkyl derivatives increased NAD+ concentrations from 1.2-2.7-fold in several mammalian cell lines. These findings establish bioavailability and potent effects of these nucleosides in stimulating the increase of NAD+ concentrations in mammalian cells.

  20. Purine and pyrimidine nucleosides preserve human astrocytoma cell adenylate energy charge under ischemic conditions.

    Science.gov (United States)

    Balestri, Francesco; Giannecchini, Michela; Sgarrella, Francesco; Carta, Maria Caterina; Tozzi, Maria Grazia; Camici, Marcella

    2007-02-01

    The brain depends on both glycolysis and mitochondrial oxidative phosphorylation for maintenance of ATP pools. Astrocytes play an integral role in brain functions providing trophic supports and energy substrates for neurons. In this paper, we report that human astrocytoma cells (ADF) undergoing ischemic conditions may use both purine and pyrimidine nucleosides as energy source to slow down cellular damage. The cells are subjected to metabolic stress conditions by exclusion of glucose and incubation with oligomycin (an inhibitor of oxidative phosphorylation). This treatment brings about a depletion of the ATP pool, with a concomitant increase in the AMP levels, which results in a significant decrease of the adenylate energy charge. The presence of purine nucleosides in the culture medium preserves the adenylate energy charge, and improves cell viability. Besides purine nucleosides, also pyrimidine nucleosides, such as uridine and, to a lesser extent, cytidine, are able to preserve the ATP pool. The determination of lactate in the incubation medium indicates that nucleosides can preserve the ATP pool through anaerobic glycolysis, thus pointing to a relevant role of the phosphorolytic cleavage of the N-glycosidic bond of nucleosides which generates, without energy expense, the phosphorylated pentose, which through the pentose phosphate pathway and glycolysis can be converted to energetic intermediates also in the absence of oxygen. In fact, ADF cells possess both purine nucleoside phosphorylase and uridine phosphorylase activities.

  1. Synthesis and photophysical characterisation of a fluorescent nucleoside analogue that signals the presence of an abasic site in RNA.

    Science.gov (United States)

    Tanpure, Arun A; Srivatsan, Seergazhi G

    2012-11-05

    The synthesis and site-specific incorporation of an environment-sensitive fluorescent nucleoside analogue (2), based on a 5-(benzofuran-2-yl)pyrimidine core, into DNA oligonucleotides (ONs), and its photophysical properties within these ONs are described. Interestingly and unlike 2-aminopurine (a widely used nucleoside analogue probe), when incorporated into an ON and hybridised with a complementary ON, the emissive nucleoside 2 displays significantly higher emission intensity than the free nucleoside. Furthermore, photophysical characterisation shows that the fluorescence properties of the nucleoside analogue within ONs are significantly influenced by flanking bases, especially by guanosine. By utilising the responsiveness of the nucleoside to changes in base environment, a DNA ON reporter labelled with the emissive nucleoside 2 was constructed; this signalled the presence of an abasic site in a model depurinated sarcin/ricin RNA motif of a eukaryotic 28S rRNA.

  2. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels

    DEFF Research Database (Denmark)

    Pennathur, Sumita; Kristensen, Jesper; Crumrine, Andrew

    2011-01-01

    conductance for low salt concentrations, we identify a minimum conductance value before saturation at a value independent of salt concentration in the dilute limit. Our model self-consistently couples chemical equilibrium models of the silica wall and the electrolyte bulk, and is parameterized by only...

  3. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels

    DEFF Research Database (Denmark)

    Lund Jensen, Kristian; Kristensen, Jesper Toft; Crumrine, Andrew Michael

    2011-01-01

    the nanochannel conductance at low salt concentrations and identify a conductance minimum before saturation at a value independent of salt concentration in the dilute limit. Via the Poisson-Boltzmann equation, our model self-consistently couples chemical-equilibrium dissociation models of the silica wall...

  4. A revised estimate of copper emissions from road transport in UNECE-Europe and its impact on predicted copper concentrations

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.; Hulskotte, J.H.J.; Visschedijk, A.J.H.; Schaap, M.

    2007-01-01

    Comparisons of measured and model-predicted atmospheric copper concentrations show a severe underestimation of the observed concentrations by the models. This underestimation may be (partly) due to underestimated emissions of copper to air. Since the phase out of asbestos brake lining material, the

  5. [Effect of atmospheric CO2 concentration and nitrogen application level on absorption and transportation of nutrient elements in oilseed rape].

    Science.gov (United States)

    Wang, Wen-ming; Zhang, Zhen-hua; Song, Hai-xing; Liu, Qiang; Rong, Xiang-min; Guan, Chun-yun; Zeng, Jing; Yuan, Dan

    2015-07-01

    Effect of elevated atmospheric-CO2 (780 µmol . mol-1) on the absorption and transportation of secondary nutrient elements (calcium, magnesium, sulphur) and micronutrient elements (iron, manganese, zinc, molybdenum and boron) in oilseed rape at the stem elongation stage were studied by greenhouse simulated method. Compared with the ambient CO2 condition, the content of Zn in stem was increased and the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with no nitrogen (N) application; the contents of Ca, S, B and Zn were increased, and the contents of Mg, Mn, Mo and Fe were decreased under the elevated atmospheric CO2 with N application (0.2 g N . kg-1 soil); except the content of Mo in leaf was increased, the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with two levels of N application. Compared with the ambient CO2 condition, the amounts of Ca and S relative to the total amount of secondary nutrient elements in stem and the amounts of B and Zn relative to the total amount of micronutrient elements in stem were increased under the elevated-CO2 treatment with both levels of N application, and the corresponding values of Mg, Fe, Mn and Mo were decreased; no-N application treatment increased the proportion of Ca distributed into the leaves, and the proportion of Mg distributed into leaves was increased by the normal-N application level; the proportions of Mn, Zn and Mo distributed into the leaves were increased at both N application levels. Without N application, the elevation of atmospheric CO2 increased the transport coefficients of SFe, Mo and SS,B, but decreased the transport coefficients of SMg,Fe, SMg, Mn and SS,Fe, indicating the proportions of Mo, S transported into the upper part of plant tissues was higher than that of Fe, and the corresponding value of B was higher than that observed for S, the corresponding value of Mg was higher than that of Fe and Mn. Under normal-N application

  6. Interaction between N-Phospho-Amino Acids and Nucleoside in Aqueous Medium

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nucleosides were phosphorylated with different N- (O, O-diisopropyl) phosphoryl amino acids to give nucleoside mono phosphates in aqueous solution. 2', 3', and 5'-isomers had been confirmed by comparison with authentic samples on the basis of HPLC analysis. The conversion percentage of nucleoside indicated that N- (O, O-diisopropyl) phosphoryl aspartic acid reacted with adenosine and guanosine at a much higher rate than other kinds of N- phosphoryl amino acids, while phosphorylation of cytidine and uridine was relatively easy by using N- (O, O-diisopropyl) phosphoryl threonine. The result could give some clue to the prebiotic code origin of nucleic acid and protein.

  7. Genome shuffling improved the nucleosides production in Cordyceps kyushuensis.

    Science.gov (United States)

    Wang, Yanming; Zhang, Guoying; Zhao, Xuan; Ling, Jianya

    2017-10-20

    Genome shuffling was first applied to improve the production of nucleosides in Cordyceps kyushuensis. Six improved strains were selected for genome shuffling by UV and HNO2 mutagenesis. Ten improved genome shuffling strains with good genetic stability were obtained, among which, the production of cordycepin in R6 was 9.624 times higher than that of the ancestor. While in R18 and R19, the yield of cordycepin, adenosine, guanosine and uridine were all increased greatly compared with the ancestor. Based on the four phenotypes of the content of cordycepin, adenosine, guanosine and uridine, hierarchical clustering analysis (HCA) and principal component analysis (PCA) were applied to infer the relationships between genome shuffling strains and mutants. Copyright © 2017. Published by Elsevier B.V.

  8. Involvement of the cynABDS Operon and the CO2-Concentrating Mechanism in the Light-Dependent Transport and Metabolism of Cyanate by Cyanobacteria▿

    Science.gov (United States)

    Espie, George S.; Jalali, Farid; Tong, Tommy; Zacal, Natalie J.; So, Anthony K.-C.

    2007-01-01

    The cyanobacteria Synechococcus elongatus strain PCC7942 and Synechococcus sp. strain UTEX625 decomposed exogenously supplied cyanate (NCO−) to CO2 and NH3 through the action of a cytosolic cyanase which required HCO3− as a second substrate. The ability to metabolize NCO− relied on three essential elements: proteins encoded by the cynABDS operon, the biophysical activity of the CO2-concentrating mechanism (CCM), and light. Inactivation of cynS, encoding cyanase, and cynA yielded mutants unable to decompose cyanate. Furthermore, loss of CynA, the periplasmic binding protein of a multicomponent ABC-type transporter, resulted in loss of active cyanate transport. Competition experiments revealed that native transport systems for CO2, HCO3−, NO3−, NO2−, Cl−, PO42−, and SO42− did not contribute to the cellular flux of NCO− and that CynABD did not contribute to the flux of these nutrients, implicating CynABD as a novel primary active NCO− transporter. In the S. elongatus strain PCC7942 ΔchpX ΔchpY mutant that is defective in the full expression of the CCM, mass spectrometry revealed that the cellular rate of cyanate decomposition depended upon the size of the internal inorganic carbon (Ci) (HCO3− + CO2) pool. Unlike wild-type cells, the rate of NCO− decomposition by the ΔchpX ΔchpY mutant was severely depressed at low external Ci concentrations, indicating that the CCM was essential in providing HCO3− for cyanase under typical growth conditions. Light was required to activate and/or energize the active transport of both NCO− and Ci. Putative cynABDS operons were identified in the genomes of diverse Proteobacteria, suggesting that CynABDS-mediated cyanate metabolism is not restricted to cyanobacteria. PMID:17122352

  9. Involvement of the cynABDS operon and the CO2-concentrating mechanism in the light-dependent transport and metabolism of cyanate by cyanobacteria.

    Science.gov (United States)

    Espie, George S; Jalali, Farid; Tong, Tommy; Zacal, Natalie J; So, Anthony K-C

    2007-02-01

    The cyanobacteria Synechococcus elongatus strain PCC7942 and Synechococcus sp. strain UTEX625 decomposed exogenously supplied cyanate (NCO-) to CO2 and NH3 through the action of a cytosolic cyanase which required HCO3- as a second substrate. The ability to metabolize NCO- relied on three essential elements: proteins encoded by the cynABDS operon, the biophysical activity of the CO2-concentrating mechanism (CCM), and light. Inactivation of cynS, encoding cyanase, and cynA yielded mutants unable to decompose cyanate. Furthermore, loss of CynA, the periplasmic binding protein of a multicomponent ABC-type transporter, resulted in loss of active cyanate transport. Competition experiments revealed that native transport systems for CO2, HCO3-, NO3-, NO2-, Cl-, PO4(2-), and SO4(2-) did not contribute to the cellular flux of NCO- and that CynABD did not contribute to the flux of these nutrients, implicating CynABD as a novel primary active NCO- transporter. In the S. elongatus strain PCC7942 DeltachpX DeltachpY mutant that is defective in the full expression of the CCM, mass spectrometry revealed that the cellular rate of cyanate decomposition depended upon the size of the internal inorganic carbon (Ci) (HCO3- + CO2) pool. Unlike wild-type cells, the rate of NCO- decomposition by the DeltachpX DeltachpY mutant was severely depressed at low external Ci concentrations, indicating that the CCM was essential in providing HCO3- for cyanase under typical growth conditions. Light was required to activate and/or energize the active transport of both NCO- and Ci. Putative cynABDS operons were identified in the genomes of diverse Proteobacteria, suggesting that CynABDS-mediated cyanate metabolism is not restricted to cyanobacteria.

  10. Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides.

    Science.gov (United States)

    Neef, Anne B; Luedtke, Nathan W

    2011-12-20

    Commonly used metabolic labels for DNA, including 5-ethynyl-2'-deoxyuridine (EdU) and BrdU, are toxic antimetabolites that cause DNA instability, necrosis, and cell-cycle arrest. In addition to perturbing biological function, these properties can prevent metabolic labeling studies where subsequent tissue survival is needed. To bypass the metabolic pathways responsible for toxicity, while maintaining the ability to be metabolically incorporated into DNA, we synthesized and evaluated a small family of arabinofuranosyl-ethynyluracil derivatives. Among these, (2'S)-2'-deoxy-2'-fluoro-5-ethynyluridine (F-ara-EdU) exhibited selective DNA labeling, yet had a minimal impact on genome function in diverse tissue types. Metabolic incorporation of F-ara-EdU into DNA was readily detectable using copper(I)-catalyzed azide-alkyne "click" reactions with fluorescent azides. F-ara-EdU is less toxic than both BrdU and EdU, and it can be detected with greater sensitivity in experiments where long-term cell survival and/or deep-tissue imaging are desired. In contrast to previously reported 2'-arabino modified nucleosides and EdU, F-ara-EdU causes little or no cellular arrest or DNA synthesis inhibition. F-ara-EdU is therefore ideally suited for pulse-chase experiments aimed at "birth dating" DNA in vivo. As a demonstration, Zebrafish embryos were microinjected with F-ara-EdU at the one-cell stage and chased by BrdU at 10 h after fertilization. Following 3 d of development, complex patterns of quiescent/senescent cells containing only F-ara-EdU were observed in larvae along the dorsal side of the notochord and epithelia. Arabinosyl nucleoside derivatives therefore provide unique and effective means to introduce bioorthogonal functional groups into DNA for diverse applications in basic research, biotechnology, and drug discovery.

  11. Uridine Nucleoside Thiation: Gas-Phase Structures and Energetics

    Science.gov (United States)

    Hamlow, Lucas; Lee, Justin; Rodgers, M. T.; Berden, Giel; Oomens, Jos

    2016-06-01

    The naturally occurring thiated uridine nucleosides, 4-thiouridine (s4Urd) and 2-thiouridine (s2Urd), play important roles in the function and analysis of a variety of RNAs. 2-Thiouridine and its C5 modified analogues are commonly found in tRNAs and are believed to play an important role in codon recognition possibly due to their different structure, which has been shown by NMR to be predominantly C3'-endo. 2-Thiouridine may also play an important role in facilitating nonenzymatic RNA replication and transcription. 4-Thiouridine is a commonly used photoactivatable crosslinker that is often used to study RNA-RNA and RNA-protein cross-linking behavior. Differences in the base pairing between uracil and 4-thiouracil with adenine and guanine are an important factor in their role as a cross linker. The photoactivity of s4Urd may also aid in preventing near-UV lethality in cells. An understanding of their intrinsic structure in the gas-phase may help further elucidate the roles these modified nucleosides play in the regulation of RNAs. In this work, infrared multiple photon dissociation (IRMPD) action spectra of the protonated forms of s2Urd and s4Urd were collected in the IR fingerprint region. Structural information is determined by comparison with theoretical linear IR spectra generated from density functional theory calculations using molecular modeling to generate low-energy candidate structures. Present results are compared with analogous results for the protonated forms of uridine and 2'-deoxyuridine as well as solution phase NMR data and crystal structures.

  12. Trace-metal concentrations in African dust: effects of long-distance transport and implications for human health

    Science.gov (United States)

    Garrison, Virginia; Lamothe, Paul; Morman, Suzette; Plumlee, Geoffrey S.; Gilkes, Robert; Prakongkep, Nattaporn

    2010-01-01

    The Sahara and Sahel lose billions of tons of eroded mineral soils annually to the Americas and Caribbean, Europe and Asia via atmospheric transport. African dust was collected from a dust source region (Mali, West Africa) and from downwind sites in the Caribbean [Trinidad-Tobago (TT) and U.S. Virgin Islands (VI)] and analysed for 32 trace-elements. Elemental composition of African dust samples was similar to that of average upper continental crust (UCC), with some enrichment or depletion of specific trace-elements. Pb enrichment was observed only in dust and dry deposition samples from the source region and was most likely from local use of leaded gasoline. Dust particles transported long-distances (VI and TT) exhibited increased enrichment of Mo and minor depletion of other elements relative to source region samples. This suggests that processes occurring during long-distance transport of dust produce enrichment/depletion of specific elements. Bioaccessibility of trace-metals in samples was tested in simulated human fluids (gastric and lung) and was found to be greater in downwind than source region samples, for some metals (e.g., As). The large surface to volume ratio of the dust particles (<2.5 µm) at downwind sites may be a factor.

  13. Qualitative and quantitative analysis of glucosinolates and nucleosides in Radix Isatidis by HPLC and liquid chromatography tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Xiuming Wang

    2013-09-01

    Full Text Available Multi-component fingerprinting and quantitation of the glucosinolates and nucleosides in samples of Radix Isatidis have been carried out using high-performance liquid chromatography with diode-array detection and electrospray ionization tandem mass spectrometry (HPLC–DAD–ESI/MS. Five nucleosides together with one glucosinolate were identified by comparing retention times, ultraviolet spectra, mass spectra and/or empirical molecular formulae of reference compounds. Quantitation of these six compounds was carried out simultaneously by HPLC on a Phenomenex Luna C18 column using gradient elution with methanol and water and detection at 254 nm. All calibration curves were linear (r>0.9994 within test ranges. Limits of detection and quantitation were 0.33 ng and 2.50 ng on column, respectively. Intra- and inter-day precision (as relative standard deviation for all analytes was <2.19% with recoveries in the range 99.6%–101.8% at three concentration levels. The validated method was successfully applied to fingerprinting and assay of 25 batches of Radix Isatidis sourced from different geographical regions of China. The method is simple and reliable and has potential value in the quality control of Radix Isatidis.

  14. Gemcitabine-based therapy for pancreatic cancer using the squalenoyl nucleoside monophosphate nanoassemblies.

    Science.gov (United States)

    Maksimenko, Andrei; Caron, Joachim; Mougin, Julie; Desmaële, Didier; Couvreur, Patrick

    2015-03-30

    Gemcitabine is currently the most effective agent against advanced pancreatic cancer. However, the major therapeutic hurdles using gemcitabine include rapid inactivation by blood deaminases and fast development of cell chemoresistance, induced by down-regulation of deoxycytidine kinase or nucleoside transporters. To overcome the above drawbacks we designed recently a novel nanomedicine strategy based on squalenoyl prodrug of 5'-monophosphate gemcitabine (SQdFdC-MP). This amphiphilic conjugate self-organized in water into unilamellar vesicles with a mean diameter of 100 nm. In this study the antitumor efficacy of SQdFdC-MP nanoassemblies (NAs) on chemoresistant and chemosensitive pancreatic adenocarcinoma models have been investigated. Cell viability assays showed that SQdFdC-MP NAs displayed higher antiproliferative and cytotoxic effects, particularly in chemoresistant pancreatic tumor cells. In in vivo studies, SQdFdC-MP NAs decreased significantly the growth (∼70%) of human MiaPaCa2 xenografts, also preventing tumor cell invasion, whereas native dFdC did not display any anticancer activity when tumor growth inhibition was only 35% with SQdFdC NAs. These results correlated with a reduction of Ki-67 antigen and the induction of apoptosis mediated by caspase-3 activation in tumor cells. These findings demonstrated the feasibility of utilizing SQdFdC-MP NAs to make tumor cells more sensitive to gemcitabine and thus providing an efficient new therapeutic alternative for pancreatic adenocarcinoma.

  15. Purification and characteristics of functional properties of soluble nucleoside triphosphatase (apyrase) from bovine brain.

    Science.gov (United States)

    Sivuk, V F; Rusina, I M; Makarchikov, A F

    2008-09-01

    Soluble NTPase, differing in its properties from known proteins exhibiting NTPase activity, was purified from bovine brain to homogeneity. The enzyme has pH optimum at 7.5 and shows absolute dependence on bivalent cations and broad substrate specificity towards nucleoside-5 -tri- and -diphosphates, characteristics of apyrases. The NTPase follows Michaelis-Menten kinetics in the range of investigated substrate concentrations, the apparent K(m) values for UTP, ITP, GTP, CTP, CDP, and ATP being 86, 25, 41, 150, 500, and 260 microM, respectively. According to gel-filtration and SDS-PAGE data, the molecular mass of the enzyme is 60 kD. The NTPase is localized in the cytosol fraction and expressed in different bovine organs and tissues. Total NTPase activity of extracts of bovine organs and tissues decreases in the following order: liver > heart > skeletal muscle > lung > brain > spleen > kidney ~ small intestine. The enzyme activity can be regulated by acetyl-CoA, alpha-ketoglutarate, and fructose-1,6-diphosphate acting as activators in physiological concentrations, whereas propionate exhibits an inhibitory effect.

  16. Interplay between hopping and band transport in high-mobility disordered semiconductors at large carrier concentrations: The case of the amorphous oxide InGaZnO

    Science.gov (United States)

    Fishchuk, I. I.; Kadashchuk, A.; Bhoolokam, A.; de Jamblinne de Meux, A.; Pourtois, G.; Gavrilyuk, M. M.; Köhler, A.; Bässler, H.; Heremans, P.; Genoe, J.

    2016-05-01

    We suggest an analytic theory based on the effective medium approximation (EMA) which is able to describe charge-carrier transport in a disordered semiconductor with a significant degree of degeneration realized at high carrier concentrations, especially relevant in some thin-film transistors (TFTs), when the Fermi level is very close to the conduction-band edge. The EMA model is based on special averaging of the Fermi-Dirac carrier distributions using a suitably normalized cumulative density-of-state distribution that includes both delocalized states and the localized states. The principal advantage of the present model is its ability to describe universally effective drift and Hall mobility in heterogeneous materials as a function of disorder, temperature, and carrier concentration within the same theoretical formalism. It also bridges a gap between hopping and bandlike transport in an energetically heterogeneous system. The key assumption of the model is that the charge carriers move through delocalized states and that, in addition to the tail of the localized states, the disorder can give rise to spatial energy variation of the transport-band edge being described by a Gaussian distribution. It can explain a puzzling observation of activated and carrier-concentration-dependent Hall mobility in a disordered system featuring an ideal Hall effect. The present model has been successfully applied to describe experimental results on the charge transport measured in an amorphous oxide semiconductor, In-Ga-Zn-O (a-IGZO). In particular, the model reproduces well both the conventional Meyer-Neldel (MN) compensation behavior for the charge-carrier mobility and inverse-MN effect for the conductivity observed in the same a-IGZO TFT. The model was further supported by ab initio calculations revealing that the amorphization of IGZO gives rise to variation of the conduction-band edge rather than to the creation of localized states. The obtained changes agree with the one we

  17. Impact of the Atmospheric Transport on the Seasonal Variations and Trends of the Surface Ozone Concentration at Caucasian and Central European Mountain Sites

    Science.gov (United States)

    Tarasova, O. A.; Staehelin, J.; Senik, I. A.; Sosonkin, M. G.; Cui, J.; Prevot, A. S.

    2008-12-01

    An analysis of the atmospheric transport influence on the seasonal variations and trends of the surface ozone for two mountain sites, namely Kislovodsk High Mountain Station (KHMS) in Caucasus, Russia (43.7°N, 42.7°E, 2070 m asl.) and Jungfraujoch (JFJ) in Switzerland (46.5°N, 7.9°E, 3580 m asl) will be presented. Transport patterns are analyzed using 3D LAGRANTO trajectories. Main transport directions are obtained with the help of k-means trajectories clustering for the period 1990-2006. For each selected cluster average seasonal cycle and trends at two mountain locations are analyzed. Due to non-monotonous behavior of the trend the entire period is divided into two subsets (1991-2001 and 1997- 2006) which are studied separately. For both sites (JFJ and KHMS) the highest spring maximum is observed in May in the cluster, originating in East Asia and traveling to both sites with the longest contact with the upper free troposphere. Moreover, for both locations the excess of the summer maximum above the spring one is observed in the cluster of the local/regional transport due to ozone photochemical production in the polluted continental PBL. Trend of the surface ozone concentration at JFJ in 1991-2001 is connected with increased ozone concentrations in the free troposphere of mid latitude over West Atlantic/USA influenced by stratospheric concentration increase (most positive spring trend in trans-Atlantic clusters). The response to the regional European emission decrease observed in the local/regional advection cluster is less important but it is contributing to the seasonality of the trend. In 1997-2006 the trends at JFJ are more connected with European emissions regulations (the strongest trend are in the cluster of local/regional advection). The strong negative trends of the surface ozone concentrations at KHMS during both considered periods (1991-2001 and 1996-2007) are likely to be associated with different regime of emission (both of the local and regional

  18. Metabolic engineering of an industrial polyoxin producer for the targeted overproduction of designer nucleoside antibiotics.

    Science.gov (United States)

    Qi, Jianzhao; Liu, Jin; Wan, Dan; Cai, You-Sheng; Wang, Yinghu; Li, Shunying; Wu, Pan; Feng, Xuan; Qiu, Guofu; Yang, Sheng-Ping; Chen, Wenqing; Deng, Zixin

    2015-09-01

    Polyoxin and nikkomycin are naturally occurring peptidyl nucleoside antibiotics with potent antifungal bioactivity. Both exhibit similar structural features, having a nucleoside skeleton and one or two peptidyl moieties. Combining the refactoring of the polyoxin producer Streptomyces aureochromogenes with import of the hydroxypyridylhomothreonine pathway of nikkomycin allows the targeted production of three designer nucleoside antibiotics designated as nikkoxin E, F, and G. These structures were determined by NMR and/or high resolution mass spectrometry. Remarkably, the introduction of an extra copy of the nikS gene encoding an ATP-dependent ligase significantly enhanced the production of the designer antibiotics. Moreover, all three nikkoxins displayed improved bioactivity against several pathogenic fungi as compared with the naturally-occurring antibiotics. These data provide a feasible model for high efficiency generation of nucleoside antibiotics related to polyoxins and nikkomycins in a polyoxin cell factory via synthetic biology strategy.

  19. Acanthamoeba polyphaga mimivirus NDK: preliminary crystallographic analysis of the first viral nucleoside diphosphate kinase

    OpenAIRE

    Jeudy, Sandra; Coutard, Bruno; Lebrun, Régine; Abergel, Chantal

    2005-01-01

    A. polyphaga mimivirus, the largest known double-stranded DNA virus, is the first virus to exhibit a nucleoside diphosphate kinase gene. The expression and crystallization of the viral NDK are reported.

  20. The preparation of trisubstituted alkenyl nucleoside phosphonates under ultrasound-assisted olefin cross-metathesis.

    Science.gov (United States)

    Sari, Ozkan; Hamada, Manabu; Roy, Vincent; Nolan, Steven P; Agrofoglio, Luigi A

    2013-09-01

    Intermolecular ultrasound-assisted olefin cross-metathesis is reported. This approach allows an easy access to challenging trisubstituted alkenyl nucleoside phosphonates. Regioselective chemoenzymatic deacetylation and Mitsunobu coupling are also described.

  1. Nucleoside, nucleotide and oligonucleotide based amphiphiles: a successful marriage of nucleic acids with lipids.

    Science.gov (United States)

    Gissot, Arnaud; Camplo, Michel; Grinstaff, Mark W; Barthélémy, Philippe

    2008-04-21

    Amphiphilic molecules based on nucleosides, nucleotides and oligonucleotides are finding more and more biotechnological applications. This Perspective highlights their synthesis, supramolecular organization as well as their applications in the field of biotechnology.

  2. Modification of Purine and Pyrimidine Nucleosides by Direct C-H Bond Activation

    Directory of Open Access Journals (Sweden)

    Yong Liang

    2015-03-01

    Full Text Available Transition metal-catalyzed modifications of the activated heterocyclic bases of nucleosides as well as DNA or RNA fragments employing traditional cross-coupling methods have been well-established in nucleic acid chemistry. This review covers advances in the area of cross-coupling reactions in which nucleosides are functionalized via direct activation of the C8-H bond in purine and the C5-H or C6-H bond in uracil bases. The review focuses on Pd/Cu-catalyzed couplings between unactivated nucleoside bases with aryl halides. It also discusses cross-dehydrogenative arylations and alkenylations as well as other reactions used for modification of nucleoside bases that avoid the use of organometallic precursors and involve direct C-H bond activation in at least one substrate. The scope and efficiency of these coupling reactions along with some mechanistic considerations are discussed.

  3. An ABC-Type Cobalt Transport System Is Essential for Growth of Sinorhizobium melilotiat Trace Metal Concentrations ▿ †

    Science.gov (United States)

    Cheng, Jiujun; Poduska, Branislava; Morton, Richard A.; Finan, Turlough M.

    2011-01-01

    We report expression and mutant phenotypes for a gene cluster in Sinorhizobium meliloti, designated cbtJKL, that has been shown to encode an ABC-type cobalt transport system. Transcription of cbtJKLinitiated 384 nucleotides upstream from the cbtJtranslation start codon, and the resulting 5′ region contained a putative B12riboswitch. Expression of the cbtJKLgenes appeared to be controlled by (cobalt-loaded) cobalamin interacting at the B12riboswitch, since (i) a putative B12riboswitch was located within this large upstream region, (ii) cbtJtranscription was repressed upon addition of cobalt or vitamin B12, and (iii) deletions in the B12riboswitch resulted in constitutive cbtJKLtranscription. Insertion mutants in cbtJKLfailed to grow in LB medium, and growth was restored through the addition of cobalt but not other metals. This growth phenotype appeared to be due to the chelation of cobalt present in LB, and cbtJKLmutants also failed to grow in minimal medium containing the chelating agent EDTA unless the medium was supplemented with additional or excess cobalt. In uptake experiments, 57Co2+accumulation was high in wild-type cells expressing the cbtJKLgenes, whereas wild-type cells in which cbtJKLexpression was repressed showed reduced accumulation. In cbtJKLmutant cells, 57Co2+accumulation was reduced relative to that of the wild type, and presumably, this residual cobalt transport occurred via an alternate ion uptake system(s) that is not specific to cobalt. In symbiosis, the alternate system(s) appeared to mediate cobalt transport into bacteroid cells, as low cbtJKLexpression was detected in bacteroids and cbtJKLmutants formed N2-fixing nodules on alfalfa. PMID:21725018

  4. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.

    Science.gov (United States)

    Strutz, Tessa J; Hornbruch, Götz; Dahmke, Andreas; Köber, Ralf

    2016-08-01

    Successful groundwater remediation by injecting nanoscale zero-valent iron (NZVI) particles requires efficient particle transportation and distribution in the subsurface. This study focused on the influence of injection velocity and particle concentration on the spatial NZVI particle distribution, the deposition processes and on quantifying the induced decrease in hydraulic conductivity (K) as a result of particle retention by lab tests and numerical simulations. Horizontal column tests of 2m length were performed with initial Darcy injection velocities (q0) of 0.5, 1.5, and 4.1m/h and elemental iron input concentrations (Fe(0)in) of 0.6, 10, and 17g/L. Concentrations of Fe(0) in the sand were determined by magnetic susceptibility scans, which provide detailed Fe(0) distribution profiles along the column. NZVI particles were transported farther at higher injection velocity and higher input concentrations. K decreased by one order of magnitude during injection in all experiments, with a stronger decrease after reaching Fe(0) concentrations of about 14-18g/kg(sand). To simulate the observed nanoparticle transport behavior the existing finite-element code OGS has been successfully extended and parameterized for the investigated experiments using blocking, ripening, and straining as governing deposition processes. Considering parameter relationships deduced from single simulations for each experiment (e.g. deposition rate constants as a function of flow velocity) one mean parameter set has been generated reproducing the observations in an adequate way for most cases of the investigated realistic injection conditions. An assessment of the deposition processes related to clogging effects showed that the percentage of retention due to straining and ripening increased during experimental run time resulting in an ongoing reduction of K. Clogging is mainly evoked by straining which dominates particle deposition at higher flow velocities, while blocking and ripening play a

  5. Aqueous microwave-assisted cross-coupling reactions applied to unprotected nucleosides

    Science.gov (United States)

    Hervé, Gwénaëlle; Len, Christophe

    2015-01-01

    Metal catalyzed cross-coupling reactions have been the preferred tools to access to modified nucleosides (on the C5-position of pyrimidines and on the C7- or C8-positions of purines). Our objective is to focus this mini-review on the Suzuki-Miyaura and on the Heck cross-couplings of nucleosides using microwave irradiations which is an alternative technology compatible with green chemistry and sustainable development PMID:25741506

  6. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons

    KAUST Repository

    Hong, Seung Sae

    2012-03-27

    A topological insulator is the state of quantum matter possessing gapless spin-locking surface states across the bulk band gap, which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state by electron transport measurements. Here we report the surface-state-dominant transport in antimony-doped, zinc oxide-encapsulated Bi2Se3 nanoribbons with suppressed bulk electron concentration. In the nanoribbon with sub-10-nm thickness protected by a zinc oxide layer, we position the Fermi levels of the top and bottom surfaces near the Dirac point by electrostatic gating, achieving extremely low two-dimensional carrier concentration of 2×10 11cm-2. The zinc oxide-capped, antimony-doped Bi 2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications. © 2012 Macmillan Publishers Limited. All rights reserved.

  7. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.

    Science.gov (United States)

    Rahman, Tanzina; Millwater, Harry; Shipley, Heather J

    2014-11-15

    Aluminum oxide nanoparticles have been widely used in various consumer products and there are growing concerns regarding their exposure in the environment. This study deals with the modeling, sensitivity analysis and uncertainty quantification of one-dimensional transport of nano-sized (~82 nm) aluminum oxide particles in saturated sand. The transport of aluminum oxide nanoparticles was modeled using a two-kinetic-site model with a blocking function. The modeling was done at different ionic strengths, flow rates, and nanoparticle concentrations. The two sites representing fast and slow attachments along with a blocking term yielded good agreement with the experimental results from the column studies of aluminum oxide nanoparticles. The same model was used to simulate breakthrough curves under different conditions using experimental data and calculated 95% confidence bounds of the generated breakthroughs. The sensitivity analysis results showed that slow attachment was the most sensitive parameter for high influent concentrations (e.g. 150 mg/L Al2O3) and the maximum solid phase retention capacity (related to blocking function) was the most sensitive parameter for low concentrations (e.g. 50 mg/L Al2O3).

  8. Adsorption and transport of As (V) in soil columns: Effect of As concentration, pH and sediment properties

    Science.gov (United States)

    It has been proposed that ground water contaminated with low concentrations of As (V) be remediated by infiltration and recharge into infiltration basins using the subsurface materials to adsorb the metal. This low cost remediation scheme allows for production of water that meets the drinking water ...

  9. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica.

    Directory of Open Access Journals (Sweden)

    S Antony Ceasar

    Full Text Available Phosphorus (P is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12 in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet.

  10. Low-protein amino acid-supplemented diets for growing pigs: effect on expression of amino acid transporters, serum concentration, performance, and carcass composition.

    Science.gov (United States)

    Morales, A; Buenabad, L; Castillo, G; Arce, N; Araiza, B A; Htoo, J K; Cervantes, M

    2015-05-01

    Pigs fed protein-bound AA appear to have a higher abundance of AA transporters for their absorption in the jejunum compared with the duodenum. However, there is limited data about the effect of dietary free AA, readily available in the duodenum, on the duodenal abundance of AA transporters and its impact on pig performance. Forty-eight pigs (24.3 kg initial BW) distributed in 4 treatments were used to evaluate the effect of the CP level and form (free vs. protein bound) in which AA are added to diets on the expression of AA transporters in the 3 small intestine segments, serum concentration of AA, and performance. Dietary treatments based on wheat and soybean meal (SBM) were 1) low-CP (14%) diet supplemented with L-Lys, L-Thr, DL-Met, L-Leu, L-Ile, L-Val, L-His, L-Trp, and L-Phe (LPAA); 2) as in the LPAA but with added L-Gly as a N source (LPAA+N); 3) intermediate CP content (16%) supplemented with L-Lys HCl, L-Thr, and DL-Met (MPAA); and 4) high-CP (22%) diet (HP) without free AA. At the end of the experiment, 8 pigs from LPAA and HP were sacrificed to collect intestinal mucosa and blood samples and to dissect the carcasses. There were no differences in ADG, ADFI, G:F, and weights of carcass components and some visceral organs between treatments. Weights of the large intestine and kidney were higher in HP pigs (P protein in HP wheat-SBM diets without affecting pig performance; nonessential N does not seem to be limiting in very low-protein wheat-SBM diets for growing pigs. Also, the inclusion of free AA in the diet appears to affect their serum concentration and the expression of the AA transporter b0,+ in the duodenum of pigs.

  11. Characterizing baseline concentrations, proportions, and processes controlling deposition of river-transported bitumen-associated polycyclic aromatic compounds at a floodplain lake (Slave River Delta, Northwest Territories, Canada).

    Science.gov (United States)

    Elmes, Matthew C; Wiklund, Johan A; Van Opstal, Stacey R; Wolfe, Brent B; Hall, Roland I

    2016-05-01

    Inadequate knowledge of baseline conditions challenges ability for monitoring programs to detect pollution in rivers, especially where there are natural sources of contaminants. Here, we use paleolimnological data from a flood-prone lake ("SD2", informal name) in the Slave River Delta (SRD, Canada), ∼ 500 km downstream of the Alberta oil sands development and the bitumen-rich McMurray Formation to identify baseline concentrations and proportions of "river-transported bitumen-associated indicator polycyclic aromatic compounds" (indicator PACs; Hall et al. 2012) and processes responsible for their deposition. Results show that indicator PACs are deposited in SD2 by Slave River floodwaters in concentrations that are 45 % lower than those in sediments of "PAD31compounds", a lake upstream in the Athabasca Delta that receives Athabasca River floodwaters. Lower concentrations at SD2 are likely a consequence of sediment retention upstream as well as dilution by sediment influx from the Peace River. In addition, relations with organic matter content reveal that flood events dilute concentrations of indicator PACs in SD2 because the lake receives high-energy floods and the lake sediments are predominantly inorganic. This contrasts with PAD31 where floodwaters increase indicator PAC concentrations in the lake sediments, and concentrations are diluted during low flood influence intervals due to increased deposition of lacustrine organic matter. Results also show no significant differences in concentrations and proportions of indicator PACs between pre- (1967) and post- (1980s and 1990 s) oil sands development high flood influence intervals (t = 1.188, P = 0.279, d.f. = 6.136), signifying that they are delivered to the SRD by natural processes. Although we cannot assess potential changes in indicator PACs during the past decade, baseline concentrations and proportions can be used to enhance ongoing monitoring efforts.

  12. Nature's combinatorial biosynthesis and recently engineered production of nucleoside antibiotics in Streptomyces.

    Science.gov (United States)

    Chen, Shawn; Kinney, William A; Van Lanen, Steven

    2017-04-01

    Modified nucleosides produced by Streptomyces and related actinomycetes are widely used in agriculture and medicine as antibacterial, antifungal, anticancer and antiviral agents. These specialized small-molecule metabolites are biosynthesized by complex enzymatic machineries encoded within gene clusters in the genome. The past decade has witnessed a burst of reports defining the key metabolic processes involved in the biosynthesis of several distinct families of nucleoside antibiotics. Furthermore, genome sequencing of various Streptomyces species has dramatically increased over recent years. Potential biosynthetic gene clusters for novel nucleoside antibiotics are now apparent by analysis of these genomes. Here we revisit strategies for production improvement of nucleoside antibiotics that have defined mechanisms of action, and are in clinical or agricultural use. We summarize the progress for genetically manipulating biosynthetic pathways for structural diversification of nucleoside antibiotics. Microorganism-based biosynthetic examples are provided and organized under genetic principles and metabolic engineering guidelines. We show perspectives on the future of combinatorial biosynthesis, and present a working model for discovery of novel nucleoside natural products in Streptomyces.

  13. Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides.

    Science.gov (United States)

    Baldessari, Alicia; Iglesias, Luis E

    2012-01-01

    In this article, we describe the application of lipases in acylation and alcoholysis reactions on steroids and nucleosides. In the field of steroids, a variety of acetyl and fatty acid derivatives of androstanes, pregnanes, and cholestanes have been prepared through lipase-catalyzed acylation and alcoholysis reactions taking advantage of the high regio- and stereoselectivity of these enzymes. The substrates as well as the products show a high degree of biological activity as neurosteroids, hormones, and glucocorticoids. The regioselective preparation of diacylated nucleosides by means of an enzymatic alcoholysis allowed the synthesis of nucleosides prodrugs or modified nucleosides. The quantitative full deacylation and dealkoxycarbonylation of nucleosides and steroids is a mild synthetic method for the deprotection of these labile compounds. Some of the reported steroid and nucleoside products are novel, and it is not possible to obtain them satisfactorily by following traditional synthetic procedures. The advantages presented by this methodology, such as selectivity, mild reaction conditions, and low environmental impact, make the lipases an important tool in the application of the principles of Green Chemistry, offering a convenient way to prepare derivatives of natural compounds with a great potential in the pharmaceutical industry.

  14. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation.

    Science.gov (United States)

    Wang, Jie; Fang, Zhanqiang; Cheng, Wen; Yan, Xiaomin; Tsang, Pokeung Eric; Zhao, Dongye

    2016-03-01

    In this study, the effects of concentrations 0, 100, 250, 500, 750 and 1000 mg kg(-1) of nanoscale zero-valent iron (nZVI) on germination, seedlings growth, physiology and toxicity mechanisms were investigated. The results showed that nZVI had no effect on germination, but inhibited the rice seedlings growth in higher concentrations (>500 mg kg(-1) nZVI). The highest suppression rate of the length of roots and shoots reached 46.9% and 57.5%, respectively. The 1000mg kg(-1) nZVI caused the highest suppression rates for chlorophyll and carotenoids, at 91.6% and 85.2%, respectively. In addition, the activity of antioxidant enzymes was altered by the translocation of nanoparticles and changes in active iron content. Visible symptoms of iron deficiency were observed at higher concentrations, at which the active iron content decreased 61.02% in the shoots, but the active iron content not decreased in roots. Interestingly, the total and available amounts of iron in the soil were not less than those in the control. Therefore, the plants iron deficiency was not caused by (i) deficiency of available iron in the soil and (ii) restraint of the absorption that plant takes in the available iron, while induced by (ⅲ) the transport of active iron from the root to the shoot was blocked. The cortex tissues were seriously damaged by nZVI which was transported from soil to the root, these were proved by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). This current study shows that the mechanism of iron deficiency in rice seedling was due to transport of active iron from the root to the shoot blocked, which was caused by the uptake of nZVI.

  15. Transport and concentration processes in the multidimensional zero-pressure gas dynamics model with the energy conservation law

    CERN Document Server

    Albeverio, S; Shelkovich, V M

    2011-01-01

    We introduce integral identities to define delta-shock wave type solutions for the multidimensional zero-pressure gas dynamics Using these integral identities, the Rankine-Hugoniot conditions for delta-shocks are obtained. We derive the balance laws describing mass, momentum, and energy transport from the area outside the delta-shock wave front onto this front. These processes are going on in such a way that the total mass, momentum, and energy are conserved and at the same time mass and energy of the moving delta-shock wave front are increasing quantities. In addition, the total kinetic energy transfers into the total internal energy. The process of propagation of delta-shock waves is also described. These results can be used in modeling of mediums which can be treated as a {pressureless continuum} (dusty gases, two-phase flows with solid particles or droplets, granular gases).

  16. Abnormal serum thyroid hormones concentration with healthy functional gland: a review on the metabolic role of thyroid hormones transporter proteins.

    Science.gov (United States)

    Azad, Reza Mansourian

    2011-03-01

    Laboratory findings can definitely help the patients not to enter into status, where the damage might be happen due to a miss-diagnosis based on clinical assessment alone. The secondary disease accompanied with thyroid patients should also carefully check out due to the interference which some diseases can cause in the amount of serum thyroid hormone, particularly the free thyroxin. The dilemma over thyroid clinical diagnosis occur due to variation on serum thyroid hormone which initiated by other non-thyroidal disorders which can play an important roles in metabolic disorders of thyroid hormone due to the alteration which occur on the serum level of thyroid hormone transporter proteins. The majority of serum thyroid hormones of up to 95-99% are bound to the carrier proteins mainly to Thyroxin-Binding Globulins (TBG), some transthyretin already known as pre-albumin and albumin which are all synthesis in the liver and any modification which alter their production may alter the status of thyroid hormones. It seems TBG, transthyretin and albumin carries 75, 20, 5% of thyroid hormones within blood circulation, respectively. The dilemma facing the thyroid hormones following disruption of thyroid hormone transporter protein synthesis originate from this fact that any alteration of these protein contribute to the alteration of total thyroid and free serum thyroid hormones which are in fact the biologically active form of thyroid hormones. The subsequent of latter implication result in miss-understanding and miss-diagnosis of thyroid function tests, with possible wrongly thyroid clinical care, followed by undesired therapy of otherwise healthy thyroid.

  17. Anti-HIV efficacy and biodistribution of nucleoside reverse transcriptase inhibitors delivered as squalenoylated prodrug nanoassemblies.

    Science.gov (United States)

    Hillaireau, Hervé; Dereuddre-Bosquet, Nathalie; Skanji, Rym; Bekkara-Aounallah, Fawzia; Caron, Joachim; Lepêtre, Sinda; Argote, Sébastien; Bauduin, Laurent; Yousfi, Rahima; Rogez-Kreuz, Christine; Desmaële, Didier; Rousseau, Bernard; Gref, Ruxandra; Andrieux, Karine; Clayette, Pascal; Couvreur, Patrick

    2013-07-01

    Due to their hydrophilic nature, most nucleoside reverse transcriptase inhibitors (NRTIs) display a variable bioavailability after oral administration and a poor control over their biodistribution, thus hampering their access to HIV sanctuaries. The limited cellular uptake and activation in the triphosphate form of NRTIs further restrict their efficacy and favour the emergence of viral resistance. We have shown that the conjugation of squalene (sq) to the nucleoside analogues dideoxycytidine (ddC) and didanosine (ddI) leads to amphiphilic prodrugs (ddC-sq and ddI-sq) that spontaneously self-organize in water as stable nanoassemblies of 100-300 nm. These nanoassemblies can also be formulated with polyethylene glycol coupled to either cholesterol (Chol-PEG) or squalene (sq-PEG). When incubated with peripheral blood mononuclear cells (PBMCs) in vitro infected with HIV, the NRTI-sq prodrugs enhanced the antiviral efficacy of the parent NRTIs, with a 2- to 3-fold decrease of the 50% effective doses and a nearly 2-fold increase of the selectivity index. This was also the case with HIV-1 strains resistant to ddC and/or ddI. The enhanced antiviral activity of ddI-sq was correlated with an up to 5-fold increase in the intracellular concentration of the corresponding pharmacologically active metabolite ddA-TP. The ddI-sq prodrug was further investigated in vivo by the oral route, the preferred route of administration of NRTIs. Pharmacokinetics studies performed on rats showed that the prodrug maintained low amounts of free ddI in the plasma. Administration of (3)H-ddI-sq led to radioactivity levels higher in the plasma and relevant organs in HIV infection as compared to administration of free (3)H-ddI. Taken together, these results show the potential of the squalenoylated prodrugs of NRTIs to enhance their absorption and improve their biodistribution, but also to enhance their intracellular delivery and antiviral efficacy towards HIV-infected cells.

  18. Determination of nucleosides in Cordyceps sinensis and Ganoderma lucidum by high performance liquid chromatography method

    Science.gov (United States)

    Khan, Masood Shah; Parveen, Rabea; Mishra, Kshipra; Tulsawani, Rajkumar; Ahmad, Sayeed

    2015-01-01

    Background: Nucleosides are supportive in the regulation and modulation of various physiological processes in body, they acts as precursors in nucleic acid synthesis, enhance immune response, help in absorption of iron and influence the metabolism of fatty acids. Cordyceps sinensis and Ganoderma lucidum are well-known for its use in traditional medicine of China, Nepal and India. They are rich in nucleosides such as adenine, adenosine, cordycepin, etc. Hence, a simple, economic and accurate high-performance liquid chromatography (HPLC) analytical method was proposed for determination of adenine and adenosine for the quality control of plants. Materials and Methods: Chromatographic experiments were conducted on YL9100 HPLC system (South Korea). Reversed-phase chromatography was performed on a C18 column with methanol and dihydrogen phosphate as the mobile phase in isocratic elution method at a flow rate of 1.0 mL/min. Detection was carried out at 254 nm, which gives a sharp peak of adenine and adenosine at a retention time of 6.53 ± 0.02 min and 12.41 ± 0.02, respectively. Results and Discussion: Linear regression analysis data for the calibration plot showed a good linear relationship between response and concentration in the range of 25–200 µg/mL for adenosine and 100–800 µg/mL for adenine with regression coefficient of 0.999 and 0.996, respectively. The adenine was found 0.16% and 0.71% w/w in G. lucidum and in C. sinensis, respectively, and adenosine was found to be 0.14% w/w in G. lucidum whereas absent in C. sinensis. Conclusion: The developed HPLC method for the quantification of adenosine and adenine can be used for the quality control and standardization of crude drug and for the different herbal formulations, in which adenine and adenosine are present as major constituents. The wide linearity range, sensitivity, accuracy, and simple mobile phase imply the method is suitable for routine quantification of adenosine and adenine with high precision and

  19. Determination of nucleosides in Cordyceps sinensis and Ganoderma lucidum by high performance liquid chromatography method

    Directory of Open Access Journals (Sweden)

    Masood Shah Khan

    2015-01-01

    Full Text Available Background: Nucleosides are supportive in the regulation and modulation of various physiological processes in body, they acts as precursors in nucleic acid synthesis, enhance immune response, help in absorption of iron and influence the metabolism of fatty acids. Cordyceps sinensis and Ganoderma lucidum are well-known for its use in traditional medicine of China, Nepal and India. They are rich in nucleosides such as adenine, adenosine, cordycepin, etc. Hence, a simple, economic and accurate high-performance liquid chromatography (HPLC analytical method was proposed for determination of adenine and adenosine for the quality control of plants. Materials and Methods: Chromatographic experiments were conducted on YL9100 HPLC system (South Korea. Reversed-phase chromatography was performed on a C18 column with methanol and dihydrogen phosphate as the mobile phase in isocratic elution method at a flow rate of 1.0 mL/min. Detection was carried out at 254 nm, which gives a sharp peak of adenine and adenosine at a retention time of 6.53 ± 0.02 min and 12.41 ± 0.02, respectively. Results and Discussion: Linear regression analysis data for the calibration plot showed a good linear relationship between response and concentration in the range of 25–200 µg/mL for adenosine and 100–800 µg/mL for adenine with regression coefficient of 0.999 and 0.996, respectively. The adenine was found 0.16% and 0.71% w/w in G. lucidum and in C. sinensis, respectively, and adenosine was found to be 0.14% w/w in G. lucidum whereas absent in C. sinensis. Conclusion: The developed HPLC method for the quantification of adenosine and adenine can be used for the quality control and standardization of crude drug and for the different herbal formulations, in which adenine and adenosine are present as major constituents. The wide linearity range, sensitivity, accuracy, and simple mobile phase imply the method is suitable for routine quantification of adenosine and adenine with

  20. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities.

    Science.gov (United States)

    Wang, Pei; Lu, Yonglong; Wang, Tieyu; Fu, Yaning; Zhu, Zhaoyun; Liu, Shijie; Xie, Shuangwei; Xiao, Yang; Giesy, John P

    2014-07-01

    Perfluoroalkyl acids (PFAAs) are emerging contaminants that have raised great concern in recent years. While PFAAs manufacturing becomes regulated in developed countries, production has been partly shifted to China. Eight fluoropolymer manufacturing facilities located in the South Bohai coastal region, one of the most populated areas of China, have been used to manufacture PFAA-related substances since 2001. The environmental consequence of the intensive production of PFAAs in this region remains largely unknown. We analyzed 17 PFAAs in twelve coastal rivers of this region, and found staggeringly high concentrations of perfluorooctanoic acid (PFOA) ranging from 0.96 to 4534.41 ng/L. The highest concentration was observed in the Xiaoqing River which received effluents from certain fluoropolymer facilities. Principal component analysis indicated similar sources of several perfluoroalkyl carboxylic acids (PFCAs) in all rivers, which indicated that atmospheric transport, wastewater treatment and surface runoff also acted as important supplements to direct discharge to surface water.

  1. Novel non-nucleoside inhibitors of HIV-1 reverse transcriptase. 1. Tricyclic pyridobenzo- and dipyridodiazepinones.

    Science.gov (United States)

    Hargrave, K D; Proudfoot, J R; Grozinger, K G; Cullen, E; Kapadia, S R; Patel, U R; Fuchs, V U; Mauldin, S C; Vitous, J; Behnke, M L

    1991-07-01

    Novel pyrido[2,3-b][1,4]benzodiazepinones (I), pyrido[2,3-b][1,5]benzodiazepinones (II), and dipyrido[3,2-b:2',3'-e][1,4]diazepinones (III) were found to inhibit human immunodeficiency virus type 1 (HIV-1) reverse transcriptase in vitro at concentrations as low as 35 nM. In all three series, small substituents (e.g., methyl, ethyl, acetyl) are preferred at the lactam nitrogen, whereas slightly larger alkyl moieties (e.g., ethyl, cyclopropyl) are favored at the other (N-11) diazepinone nitrogen. In general, lipophilic substituents are preferred on the A ring, whereas substitution on the C ring generally reduces potency relative to the corresponding compounds with no substituents on the aromatic rings. Maximum potency is achieved with methyl substitution at the position ortho to the lactam nitrogen atom; however, in this case an unsubstituted lactam nitrogen is preferred. Additional substituents on the A ring can be readily tolerated. The dipyridodiazepinone derivative 11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2',3'-e] [1,4]diazepin-6-one (96, nevirapine) is a potent (IC50 = 84 nM) and and selective non-nucleoside inhibitor of HIV-1 reverse transcriptase, and has been chosen for clinical evaluation.

  2. Synthesis of acylamino acid esters of nucleoside 5'-phosphates and their investigation with PMR and CD spectra.

    Science.gov (United States)

    Azhayev, A V; Popovkina, S V; Tarussova, N B; Kirpichnikov, M P; Florentiev, V L; Krayevsky, A A; Kukhanova, M K; Gottikh, B P

    1977-01-01

    The acylamino acid esters of nucleoside 5'-phosphates are synthesized via condensation of N-(N'-acylaminoacyl) imidazoles with nucleoside 5'-phosphates. The PMR and CD spectra of the esters obtained are studied. The 3'-isomers of the substances under study are observed to have a shift in the conformational N in equilibrium S equilibrium of the carbohydrate moiety in favour of the S-form as compared to the initial nucleosides and their 2'-acyl esters. PMID:909771

  3. A Case Study On the Relative Influence of Free Tropospheric Subsidence, Long Range Transport and Local Production in Modulating Ozone Concentrations over Qatar

    Science.gov (United States)

    Ayoub, Mohammed; Ackermann, Luis; Fountoukis, Christos; Gladich, Ivan

    2016-04-01

    The Qatar Environment and Energy Research Institute (QEERI) operates a network of air quality monitoring stations (AQMS) around the Doha metropolitan area and an ozonesonde station with regular weekly launches and occasional higher frequency launch experiments (HFLE). Six ozonesondes were launched at 0700 LT/0400 UTC and 1300 LT/1000 UTC over a three day period between 10-12 September, 2013. We present the analysis of the ozonesonde data coupled with regional chemical transport modeling over the same time period using WRF-Chem validated against both the ozonesonde and surface AQMS measurements. The HFLE and modeling show evidence of both subsidence and transboundary transport of ozone during the study period, coupled with a strong sea breeze circulation on the 11th of September resulting in elevated ozone concentrations throughout the boundary layer. The development of the sea breeze during the course of the day and influence of the early morning residual layer versus daytime production is quantified. The almost complete titration of ozone in the morning hours of 11 September, 2013 is attributed to local vehicular emissions of NOx and stable atmospheric conditions prevailing over the Doha area. The relative contribution of long range transport of ozone along the Arabian Gulf coast and local urban emissions are discussed.

  4. Sanitary landfill local-scale flow and transport modeling in support of alternative concentrations limit demonstrations, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, V.A.; Beach, J.A.; Statham, W.H.; Pickens, J.F. [INTERA, Inc., Austin, TX (United States)

    1993-02-19

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal.

  5. Doubling the CO{sub 2} concentration enhanced the activity of carbohydrate-metabolism enzymes, source carbohydrate production, photoassimilate transport, and sink strength for Opuntia ficus-indica

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ning; Nobel, P.S. [Univ. of California, Los Angeles, CA (United States)

    1996-03-01

    After exposure to a doubled CO{sub 2} concentration of 750 {mu}mol mol{sup -1} air for about 3 months, glucose and starch in the chlorenchyma of basal cladodes of Opuntia ficus-indica increased 175 and 57%, respectively, compared with the current CO{sub 2} concentration of 370 {mu}mol mol{sup -1}, but sucrose content was virtually unaffected. Doubling the CO{sub 2} concentration increased the noncturnal malate production in basal cladodes by 75%, inorganic phosphate (Pi) by 32% soluble starch synthase activity by 30%, and sucrose-Pi synthase activity by 146%, but did not affect the activity of hexokinase. Doubling CO{sub 2} accelerated phloem transport of sucrose out of the basal cladodes, resulting in a 73% higher dry weight for the daughter cladodes. Doubling CO{sub 2} increased the glucose content in 14-d-old daughter cladodes by 167%, increased nocturnal malate production by 22%, decreased total amino acid content by 61%, and increased soluble starch synthase activity by 30% and sucrose synthase activity by 62%. No downward acclimation of photosynthesis during long-term exposure to elevated CO{sub 2} concentrations occurs for O. ficus-indica, consistent with its higher source capacity and sink strength than under current CO{sub 2}. These changes apparently do not result in Pi limitation of photosynthesis or suppression of genes governing photosynthesis for this perennial Crassulacean acid metabolism species, as occur for some annual crops.

  6. Substrate specificity of pyrimidine nucleoside phosphorylases of NP-II family probed by X-ray crystallography and molecular modeling

    Science.gov (United States)

    Balaev, V. V.; Lashkov, A. A.; Prokofev, I. I.; Gabdulkhakov, A. G.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-09-01

    Pyrimidine nucleoside phosphorylases, which are widely used in the biotechnological production of nucleosides, have different substrate specificity for pyrimidine nucleosides. An interesting feature of these enzymes is that the three-dimensional structure of thymidine-specific nucleoside phosphorylase is similar to the structure of nonspecific pyrimidine nucleoside phosphorylase. The three-dimensional structures of thymidine phosphorylase from Salmonella typhimurium and nonspecific pyrimidine nucleoside phosphorylase from Bacillus subtilis in complexes with a sulfate anion were determined for the first time by X-ray crystallography. An analysis of the structural differences between these enzymes demonstrated that Lys108, which is involved in the phosphate binding in pyrimidine nucleoside phosphorylase, corresponds to Met111 in thymidine phosphorylases. This difference results in a decrease in the charge on one of the hydroxyl oxygens of the phosphate anion in thymidine phosphorylase and facilitates the catalysis through SN2 nucleophilic substitution. Based on the results of X-ray crystallography, the virtual screening was performed for identifying a potent inhibitor (anticancer agent) of nonspecific pyrimidine nucleoside phosphorylase, which does not bind to thymidine phosphorylase. The molecular dynamics simulation revealed the stable binding of the discovered compound—2-pyrimidin-2-yl-1H-imidazole-4-carboxylic acid—to the active site of pyrimidine nucleoside phosphorylase.

  7. Suiciding of lymphocytic precursor cells by tritiated nucleosides, in vitro.

    Science.gov (United States)

    Uyeki, E M; Nishimura, T; Bisel, T U

    1978-02-01

    Differences in suiciding by various tritiated nucleosides were observed between two functional assays for in vitro lymphocytic precursor cell development, the hemolysin plaque-forming cell (PFC) assay and the B lymphocytic colony-forming cell (CFC-L) assay, using BDF1 mouse spleen cells. PFC growth was markedly reduced by an early (days 0-1) pulse of tritiated deoxyadenosine ([3H]dAdo), but relatively unaffected by a pulse of tritiated thymidine ([3H]dThd) during the same interval. In contrast, CFC-L formation significantly dropped after an early (day 0) [3H]dThd pulse, as well as after pulses of [3H]dAdo and the corresponding tritiated ribosides, uridine and adenosine. This implied a cycling state in an early lymphocytic precursor cell, as opposed to the PFC insensitivity to an early [3H]dThd pulse. The response pattern of colonies and clusters to [3H]dThd supported our notion of a delayed suiciding of CFC contributing to the increase in cluster numbers.

  8. Antibacterial Nucleoside-Analog Inhibitor of Bacterial RNA Polymerase.

    Science.gov (United States)

    Maffioli, Sonia I; Zhang, Yu; Degen, David; Carzaniga, Thomas; Del Gatto, Giancarlo; Serina, Stefania; Monciardini, Paolo; Mazzetti, Carlo; Guglierame, Paola; Candiani, Gianpaolo; Chiriac, Alina Iulia; Facchetti, Giuseppe; Kaltofen, Petra; Sahl, Hans-Georg; Dehò, Gianni; Donadio, Stefano; Ebright, Richard H

    2017-06-15

    Drug-resistant bacterial pathogens pose an urgent public-health crisis. Here, we report the discovery, from microbial-extract screening, of a nucleoside-analog inhibitor that inhibits bacterial RNA polymerase (RNAP) and exhibits antibacterial activity against drug-resistant bacterial pathogens: pseudouridimycin (PUM). PUM is a natural product comprising a formamidinylated, N-hydroxylated Gly-Gln dipeptide conjugated to 6'-amino-pseudouridine. PUM potently and selectively inhibits bacterial RNAP in vitro, inhibits bacterial growth in culture, and clears infection in a mouse model of Streptococcus pyogenes peritonitis. PUM inhibits RNAP through a binding site on RNAP (the NTP addition site) and mechanism (competition with UTP for occupancy of the NTP addition site) that differ from those of the RNAP inhibitor and current antibacterial drug rifampin (Rif). PUM exhibits additive antibacterial activity when co-administered with Rif, exhibits no cross-resistance with Rif, and exhibits a spontaneous resistance rate an order-of-magnitude lower than that of Rif. PUM is a highly promising lead for antibacterial therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. DNA nucleoside composition and methylation in several species of microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, E.E.; Dunahay, T.G.; Brown, L.M. (National Renewable Energy Lab., Golden, CO (United States))

    1992-06-01

    Total DNA was isolated from 10 species of microalgae, including representatives of the Chlorophyceae (Chlorella ellipsoidea, Chlamydomonas reinhardtii, and Monoraphidium minutum), Bacillariophyceae (Cyclotella cryptica, Navicula saprophila, Nitzschia pusilla, and Phaeodactylum tricornutum), Charophyceae (Stichococcus sp.), Dinophyceae (Crypthecodinium cohnii), and Prasinophyceae (Tetraselmis suecica). Control samples of Escherichia coli and calf thymus DNA were also analyzed. The nucleoside base composition of each DNA sample was determined by reversed-phase high performance liquid chromatography. All samples contained 5-methyldeoxycytidine, although at widely varying levels. In M. minutum, about one-third of the cytidine residues were methylated. Restriction analysis supported this high degree of methylation in M. minutum and suggested that methylation is biased toward 5[prime]-CG dinucleotides. The guanosine + cytosine (GC) contents of the green algae were, with the exception of Stichococcus sp., consistently higher than those of the diatoms. Monoraphidium minutum exhibited an extremely high GC content of 71%. Such a value is rare among eukaryotic organisms and might indicate an unusual codon usage. This work is important for developing strategies for transformation and gene cloning in these algae. 46 refs., 1 fig., 2 tabs.

  10. Rapid Method To Determine Intracellular Drug Concentrations in Cellular Uptake Assays: Application to Metformin in Organic Cation Transporter 1-Transfected Human Embryonic Kidney 293 Cells.

    Science.gov (United States)

    Chien, Huan-Chieh; Zur, Arik A; Maurer, Tristan S; Yee, Sook Wah; Tolsma, John; Jasper, Paul; Scott, Dennis O; Giacomini, Kathleen M

    2016-03-01

    Because of the importance of intracellular unbound drug concentrations in the prediction of in vivo concentrations that are determinants of drug efficacy and toxicity, a number of assays have been developed to assess in vitro unbound concentrations of drugs. Here we present a rapid method to determine the intracellular unbound drug concentrations in cultured cells, and we apply the method along with a mechanistic model to predict concentrations of metformin in subcellular compartments of stably transfected human embryonic kidney 293 (HEK293) cells. Intracellular space (ICS) was calculated by subtracting the [(3)H]-inulin distribution volume (extracellular space, ECS) from the [(14)C]-urea distribution volume (total water space, TWS). Values obtained for intracellular space (mean ± S.E.M.; μl/10(6) cells) of monolayers of HEK cells (HEK-empty vector [EV]) and cells overexpressing human organic cation transporter 1 (HEK-OCT1), 1.21± 0.07 and 1.25±0.06, respectively, were used to determine the intracellular metformin concentrations. After incubation of the cells with 5 µM metformin, the intracellular concentrations were 26.4 ± 7.8 μM and 268 ± 11.0 μM, respectively, in HEK-EV and HEK-OCT1. In addition, intracellular metformin concentrations were lower in high K(+) buffer (140 mM KCl) compared with normal K(+) buffer (5.4 mM KCl) in HEK-OCT1 cells (54.8 ± 3.8 μM and 198.1 ± 11.2 μM, respectively; P < 0.05). Our mechanistic model suggests that, depending on the credible range of assumed physiologic values, the positively charged metformin accumulates to particularly high levels in endoplasmic reticulum and/or mitochondria. This method together with the computational model can be used to determine intracellular unbound concentrations and to predict subcellular accumulation of drugs in other complex systems such as primary cells.

  11. Study on flow rate measurement in pipeline transportation for concentrated ore slurry%精矿浆体管道输送流量检测研究

    Institute of Scientific and Technical Information of China (English)

    何成; 王耀南; 邹伟生

    2012-01-01

    针对精矿浆体管道输送流量难以准确检测的问题,在浆体管道输送试验基地进行输运试验与研究.分析精矿流体特性与浆体浓度变化及气泡等对电磁流量计检测流量的影响.设计一种基于多传感器信息融合的流量检测系统,给出其检测系统结构框图.提取流体状态的特征量:差压波动系数、流量波动系数、浆体密度等,并研究其与流量的相关性.将精矿浆体管道输送过程划分为5个阶段,根据特征量识别所获数据所处阶段.采用分层产生式规则的专家系统对每个阶段检测的流量进行真伪辨别和融合修正处理.给出了带浆停泵再启动与多泵串联批量输送铁精矿浆体的流量试验曲线,说明系统能在各种工况下准确地检测输送流量.%Aiming at the problem that the flow rate in pipeline transportation for concentrated ore slurry can hardly be measured accurately, experiment and research were carried out in a slurry pipeline transportation engineering test base. The effects of concentrated ore slurry density and bubble on flow rate measurement are analyzed. A flow rate measurement system was designed based on multisensor information fusion. The block diagram of the measurement system structure is given. The characteristics representing the flow rate state such as differential pressure fluctuation coefficient, flow rate fluctuation coefficient, slurry density and etc. Are calculated and analyzed. The long-distance pipeline transportation process of concentrated ore slurry is divided into five stages. The stage for the obtained data is identified according to the characteristic. An expert system based on hierarchical production rules is adopted to carry out the authenticity identification and fusion modification processing of the measured flow rate in each stage. The flow experiment curves for shutdown and restart-up with slurry, multi-pump series batch transportation of concentrated ore slurry are given

  12. Hydrological and environmental conditions as key drivers for spatial and seasonal changes in PCDD/PCDF concentrations, transport and deposition along urban cascade reservoirs.

    Science.gov (United States)

    Urbaniak, Magdalena; Skowron, Aleksandra; Zieliński, Marek; Zalewski, Maciej

    2012-09-01

    To investigate the drivers for transport and deposition of 17 2,3,7,8-substituted PCDDs/PCDFs along an urban river, water samples from five reservoirs located along the river course were collected in January and July 2008. The concentrations of 17 congeners of PCDD/PCDF were determined and compared to environmental - physical, chemical and biological - conditions. The obtained data revealed that the concentration of the sum of toxic PCDDs/PCDFs in water samples differ between reservoirs as well as between seasons, ranging from 12.04 pg L(-1) in UP (first in the cascade) to 1327.94 pg L(-1) in PR (last in the cascade) during winter of 2008; and from 34.94 pg L(-1) in UP to 1352.50 pg L(-1) in TR (next to last) in summer 2008. In comparison, water samples collected from the river had a concentration several times lower at the first two sites (sites no. 1 and 4) and no detectable values at the last three stations (sites no. 7, 8, 10). The obtained data demonstrated strong or moderate correlations between the sum of 17 PCDDs/PCDFs and TEQ in reservoir water samples and physical, chemical and biological conditions, such as: Mg(2+) (R=0.82; R=0.80, respectively), SO(4)(2-) (R=0.80; R=0.80, respectively), K(+) (R=0.80; R=0.80, respectively), Ca(2+) (R=0.67, R=0.70, respectively), OSM (R=0.63, R=0.70, respectively). In addition, the positive strong correlation between TEQ concentrations and the water temperature (R=0.63) and chlorophyll a content (R=0.90) was noted. The violent weather conditions occurred during the research season with periods of intensive storm events (up to 32 mm in mid July), and thus the increased river flow velocity (up to 0.45 m(3)s(-1)) could have a direct and indirect influence on PCDDs/PCDFs concentration through changes in the sedimentation/resuspension ratio and consequently in transport, deposition and degradation processes along the river/reservoirs.

  13. The essential oil from Lippia alba induces biochemical stress in the silver catfish (Rhamdia quelen after transportation

    Directory of Open Access Journals (Sweden)

    Joseânia Salbego

    Full Text Available This study investigated the effects of the essential oil (EO from Lippia alba on biochemical parameters related to oxidative stress in the brain and liver of silver catfish (Rhamdia quelen after six hours of transport. Fish were transported in plastic bags and divided into three treatments groups: control, 30 µL L- 1 EO from L.alba and 40 µL L-1 EO from L.alba. Prior to transport, the fish were treated with the EO from L. alba (200 µL L -1 for three minutes, except for the control group. Fish transported in bags containing the EO did not have any alterations in acetylcholinesterase, ecto -nucleoside triphosphate diphosphohydrolase and 5'nucleotidase activity in the brain or superoxide dismutase activity in the liver. The hepatic catalase (CAT, glutathione-S-transferase (GST, glutathione peroxidase (GPx, nonprotein thiol and ascorbic acid levels were significantly lower compared to the control group. However, the hepatic thiobarbituric acid- reactive substances, protein oxidation levels and the lipid peroxidation/catalase+glutathione peroxidase (LPO/CAT+GPx ratio were significantly higher in fish transported with both concentrations of the EO, indicating oxidative stress in the liver. In conclusion, considering the hepatic oxidative stress parameters analyzed in the present experiment, the transport of previously sedated silver catfish in water containing 30 or 40 µL L-1 of EO from L. alba is less effective than the use of lower concentrations.

  14. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges.

    Science.gov (United States)

    Chen, Guang; Hu, Qingdi; Luo, Le; Yang, Tianyuan; Zhang, Song; Hu, Yibing; Yu, Ling; Xu, Guohua

    2015-12-01

    Potassium (K) absorption and translocation in plants rely upon multiple K transporters for adapting varied K supply and saline conditions. Here, we report the expression patterns and physiological roles of OsHAK1, a member belonging to the KT/KUP/HAK gene family in rice (Oryza sativa L.). The expression of OsHAK1 is up-regulated by K deficiency or salt stress in various tissues, particularly in the root and shoot apical meristem, the epidermises and steles of root, and vascular bundles of shoot. Both oshak1 knockout mutants in comparison to their respective Dongjin or Manan wild types showed a dramatic reduction in K concentration and stunted root and shoot growth. Knockout of OsHAK1 reduced the K absorption rate of unit root surface area by ∼50-55 and ∼30%, and total K uptake by ∼80 and ∼65% at 0.05-0.1 and 1 mm K supply level, respectively. The root net high-affinity K uptake of oshak1 mutants was sensitive to salt stress but not to ammonium supply. Overexpression of OsHAK1 in rice increased K uptake and K/Na ratio. The positive relationship between K concentration and shoot biomass in the mutants suggests that OsHAK1 plays an essential role in K-mediated rice growth and salt tolerance over low and high K concentration ranges.

  15. Atmospheric transport of urban-derived NH(x): Evidence from nitrogen concentration and delta(15)N in epilithic mosses at Guiyang, SW China.

    Science.gov (United States)

    Liu, Xue-Yan; Xiao, Hua-Yun; Liu, Cong-Qiang; Li, You-Yi; Xiao, Hong-Wei

    2008-12-01

    Nitrogen concentration and delta15N in 175 epilithic moss samples were investigated along four directions from urban to rural sites in Guiyang, SW China. The spatial variations of moss N concentration and delta15N revealed that atmospheric N deposition is dominated by NHx-N from two major sources (urban sewage NH3 and agricultural NH3), the deposition of urban-derived NHx followed a point source pattern characterized by an exponential decline with distance from the urban center, while the agricultural-derived NHx was shown to be a non-point source. The relationship between moss N concentration and distance (y=1.5e(-0.13x)+1.26) indicated that the maximum transporting distance of urban-derived NHx averaged 41 km from the urban center, and it could be determined from the relationship between moss delta(15)N and distance [y=2.54ln(x)-12.227] that urban-derived NHx was proportionally lower than agricultural-derived NHx in N deposition at sites beyond 17.2 km from the urban center. Consequently, the variation of urban-derived NHx with distance from the urban center could be modeled as y=56.272e(-0.116x)-0.481 in the Guiyang area.

  16. Transport, biomass burning, and in-situ formation contribute to fine particle concentrations at a remote site near Grand Teton National Park

    Science.gov (United States)

    Schurman, M. I.; Lee, T.; Desyaterik, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L.

    2015-07-01

    Ecosystem health and visibility degradation due to fine-mode atmospheric particles have been documented in remote areas and motivate particle characterization that can inform mitigation strategies. This study explores submicron (PM1) particle size, composition, and source apportionment at Grand Teton National Park using High-Resolution Time-of-Flight Aerosol Mass Spectrometer data with Positive Matrix Factorization and MODIS fire information. Particulate mass averages 2.08 μg/m3 (max = 21.91 μg/m3) of which 75.0% is organic; PMF-derived Low-Volatility Oxygenated Organic Aerosol (LV-OOA) averages 61.1% of PM1 (or 1.05 μg/m3), with sporadic but higher-concentration biomass burning (BBOA) events contributing another 13.9%. Sulfate (12.5%), ammonium (8.7%), and nitrate (3.8%) are generally low in mass. Ammonium and sulfate have correlated time-series and association with transport from northern Utah and the Snake River Valley. A regionally disperse and/or in situ photochemical LV-OOA source is suggested by 1) afternoon concentration enhancement not correlated with upslope winds, anthropogenic NOx, or ammonium sulfate, 2) smaller particle size, higher polydispersity, and lower levels of oxidation during the day and in comparison to a biomass burning plume inferred to have traveled ∼480 km, and 3) lower degree of oxidation than is usually observed in transported urban plumes and alpine sites with transported anthropogenic OA. CHN fragment spectra suggest organic nitrogen in the form of nitriles and/or pyridines during the day, with the addition of amine fragments at night. Fires near Boise, ID may be the source of a high-concentration biomass-burning event on August 15-16, 2011 associated with SW winds (upslope from the Snake River Valley) and increased sulfate, ammonium, nitrate, and CHN and CHON fragments (nominally, amines and organonitrates). Comparison to limited historical data suggests that the amounts and sources of organics and inorganics presented here

  17. Apoplastic Nucleoside Accumulation in Arabidopsis Leads to Reduced Photosynthetic Performance and Increased Susceptibility Against Botrytis cinerea.

    Science.gov (United States)

    Daumann, Manuel; Fischer, Marietta; Niopek-Witz, Sandra; Girke, Christopher; Möhlmann, Torsten

    2015-01-01

    Interactions between plant and pathogen often occur in the extracellular space and especially nucleotides like ATP and NAD have been identified as key players in this scenario. Arabidopsis mutants accumulating nucleosides in the extracellular space were generated and studied with respect to susceptibility against Botrytis cinerea infection and general plant fitness determined as photosynthetic performance. The mutants used are deficient in the main nucleoside uptake system ENT3 and the extracellular nucleoside hydrolase NSH3. When grown on soil but not in hydroponic culture, these plants markedly accumulate adenosine and uridine in leaves. This nucleoside accumulation was accompanied by reduced photosystem II efficiency and altered expression of photosynthesis related genes. Moreover, a higher susceptibility toward Botrytis cinerea infection and a reduced induction of pathogen related genes PR1 and WRKY33 was observed. All these effects did not occur in hydroponically grown plants substantiating a contribution of extracellular nucleosides to these effects. Whether reduced general plant fitness, altered pathogen response capability or more direct interactions with the pathogen are responsible for these observations is discussed.

  18. Apoplastic nucleoside accumulation in Arabidopsis leads to reduced photosynthetic performance and increased susceptibility against Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Manuel eDaumann

    2015-12-01

    Full Text Available ABSTRACT Interactions between plant and pathogen often occur in the extracellular space and especially nucleotides like ATP and NAD have been identified as key players in this scenario. Arabidopsis mutants accumulating nucleosides in the extracellular space were generated and studied with respect to susceptibility against Botrytis cinerea infection and general plant fitness determined as photosynthetic performance. The mutants used are deficient in the main nucleoside uptake system ENT3 and the extracellular nucleoside hydrolase NSH3. When grown on soil but not in hydroponic culture, these plants markedly accumulate adenosine and uridine in leaves. This nucleoside accumulation was accpmpanied by reduced photosystem II efficiency and altered expression of photosynthesis related genes. Moreover, a higher susceptibility towards Botrytis cinerea infection and a reduced induction of pathogen related genes PR1 and WRKY33 was observed. All these effects did not occur in hydroponically grown plants substantiating a contribution of extracellular nucleosides to these effects. Whether reduced general plant fitness, altered pathogen response capability or more direct interactions with the pathogen are responsible for these observations is discussed.

  19. Polymorphisms in sodium-dependent vitamin C transporter genes and plasma, aqueous humor and lens nucleus ascorbate concentrations in an ascorbate depleted setting.

    Science.gov (United States)

    Senthilkumari, Srinivasan; Talwar, Badri; Dharmalingam, Kuppamuthu; Ravindran, Ravilla D; Jayanthi, Ramamurthy; Sundaresan, Periasamy; Saravanan, Charu; Young, Ian S; Dangour, Alan D; Fletcher, Astrid E

    2014-07-01

    We have previously reported low concentrations of plasma ascorbate and low dietary vitamin C intake in the older Indian population and a strong inverse association of these with cataract. Little is known about ascorbate levels in aqueous humor and lens in populations habitually depleted of ascorbate and no studies in any setting have investigated whether genetic polymorphisms influence ascorbate levels in ocular tissues. Our objectives were to investigate relationships between ascorbate concentrations in plasma, aqueous humor and lens and whether these relationships are influenced by Single Nucleotide Polymorphisms (SNPs) in sodium-dependent vitamin C transporter genes (SLC23A1 and SLC23A2). We enrolled sixty patients (equal numbers of men and women, mean age 63 years) undergoing small incision cataract surgery in southern India. We measured ascorbate concentrations in plasma, aqueous humor and lens nucleus using high performance liquid chromatography. SLC23A1 SNPs (rs4257763, rs6596473) and SLC23A2 SNPs (rs1279683 and rs12479919) were genotyped using a TaqMan assay. Patients were interviewed for lifestyle factors which might influence ascorbate. Plasma vitamin C was normalized by a log10 transformation. Statistical analysis used linear regression with the slope of the within-subject associations estimated using beta (β) coefficients. The ascorbate concentrations (μmol/L) were: plasma ascorbate, median and inter-quartile range (IQR), 15.2 (7.8, 34.5), mean (SD) of aqueous humor ascorbate, 1074 (545) and lens nucleus ascorbate, 0.42 (0.16) (μmol/g lens nucleus wet weight). Minimum allele frequencies were: rs1279683 (0.28), rs12479919 (0.30), rs659647 (0.48). Decreasing concentrations of ocular ascorbate from the common to the rare genotype were observed for rs6596473 and rs12479919. The per allele difference in aqueous humor ascorbate for rs6596473 was -217 μmol/L, p ascorbate of -0.085 μmol/g, p ascorbate on aqueous humor ascorbate were higher for the GG

  20. High black carbon and ozone concentrations during pollution transport in the Himalayas: Five years of continuous observations at NCO-P global GAW station

    Institute of Scientific and Technical Information of China (English)

    A.Marinoni; P.Cristofanelli; P.Laj; R.Duchi; D.Putero; F.Calzolari; T.C.Landi

    2013-01-01

    To study the influence of polluted air-mass transport carrying ozone (O3) and black carbon (BC) in the high H-hmalayas,since March 2006 the Nepal Climate Observatory at Pyramid (NCO-P) GAW-WMO global station (Nepal,5079 m a.s.l.) is operative.During the first 5-year measurements,the O3 and BC concentrations have shown a mean value of 48 ± 12 ppb (± standard deviation) and 208 ± 374 ng/m3,respectively.Both O3 and BC showed well defined seasonal cycles with maxima during pre-monsoon (O3:61.3 ± 7.7 ppbV; BC:444 ± 433 ng/m3) and minima during the summer monsoon (O3:40.1 ± 12.4 ppbV; BC∶ 64 ± 101 ng/m3).The analysis of the days characterised by the presence of a significant BC increase with respect to the typical seasonal cycle identified 156 days affected by "acute" pollution events,corresponding to 9.1% of the entire data-set.Such events mostly occur in the pre-monsoon period,when the O3 diurnal variability is strongly related to the transport of polluted air-mass rich on BC.On average,these "acute" pollution events were characterised by dramatic increases of BC (352%) and O3 (29%) levels compared with the remaining days.

  1. High black carbon and ozone concentrations during pollution transport in the Himalayas: five years of continuous observations at NCO-P global GAW station.

    Science.gov (United States)

    Marinoni, A; Cristofanelli, P; Laj, P; Duchi, R; Putero, D; Calzolari, F; Landi, T C; Vuillermoz, E; Maione, M; Bonasoni, P

    2013-08-01

    To study the influence of polluted air-mass transport carrying ozone (O3) and black carbon (BC) in the high Himalayas, since March 2006 the Nepal Climate Observatory at Pyramid (NCO-P) GAW-WMO global station (Nepal, 5079 m a.s.l.) is operative. During the first 5-year measurements, the O3 and BC concentrations have shown a mean value of 48 +/- 12 ppb (+/- standard deviation) and 208 +/- 374 ng/m3, respectively. Both O3 and BC showed well defined seasonal cycles with maxima during pre-monsoon (O3: 61.3 +/- 7.7 ppbV; BC: 444 +/- 433 ng/m3) and minima during the summer monsoon (O3: 40.1 +/- 12.4 ppbV; BC: 64 +/- 101 ng/m3). The analysis of the days characterised by the presence of a significant BC increase with respect to the typical seasonal cycle identified 156 days affected by "acute" pollution events, corresponding to 9.1% of the entire data-set. Such events mostly occur in the pre-monsoon period, when the O3 diurnal variability is strongly related to the transport of polluted air-mass rich on BC. On average, these "acute" pollution events were characterised by dramatic increases of BC (352%) and O3 (29%) levels compared with the remaining days.

  2. Effects of dietary nitrogen concentration on messenger RNA expression and protein abundance of urea transporter-B and aquaporins in ruminal papillae from lactating Holstein cows

    DEFF Research Database (Denmark)

    Røjen, Betina Amdisen; Poulsen, Søren Brandt; Theil, Peter Kappel

    2011-01-01

    To test the hypothesis that dietary N concentrations affect gut epithelial urea transport by modifying the expression of urea transporter B (UT-B) and aquaporins (AQP), the mRNA expression and protein abundance of UT-B and AQP3, AQP7, AQP8, and AQP10 were investigated in ruminal papillae from 9...... lactating dairy cows. Ruminal papillae were harvested from cows fed low N (12.9% crude protein) and high N (17.1% crude protein) diets in a crossover design with 21-d periods. The mRNA expression was determined by real-time reverse transcription-PCR and protein abundance by immunoblotting. The mRNA...... expression of UT-B was not affected by dietary treatment, whereas mRNA expression of AQP3, 7, and 10 were greater in the high N compared with the low N fed cows. Using peptide-derived rabbit antibodies to cow AQP3, 7, and 8, immunoblotting revealed bands of approximately 27, 27, and 24 kDa in ruminal...

  3. Effects of dietary protein and amino acid levels on the expression of selected cationic amino acid transporters and serum amino acid concentration in growing pigs.

    Science.gov (United States)

    García-Villalobos, Héctor; Morales-Trejo, Adriana; Araiza-Piña, Benedicto A; Htoo, John K; Cervantes-Ramírez, Miguel

    2012-08-01

    The absorption of lysine is facilitated by leucine, but there is no information regarding the effect of crude protein, lysine and leucine levels on the expression of cationic amino acid transporters in pigs. Therefore, an experiment was conducted with 20 pigs (14.9 +/- 0.62 kg initial body weight) to evaluate the effect of two protein levels, and the content of lysine, threonine, methionine and leucine in low crude protein diets on the expression of b(0,+) and CAT-1 mRNA in jejunum, Longissimus dorsi and Semitendinosus muscles and serum concentration of amino acids. Treatments were as follows: (i) wheat-soybean meal diet, 20% crude protein (Control); (ii) wheat diet deficient in lysine, threonine and methionine (Basal diet); (iii) Basal diet plus 0.70% L-lysine, 0.27% L-threonine, 0.10% DL-methionine (Diet LTM); (iv) Diet LTM plus 0.80% L-leucine (Diet LTM + Leu). Despite the Basal diet, all diets were formulated to meet the requirements of lysine, threonine and methionine; Diet LTM + Leu supplied 60% excess of leucine. The addition of lysine, threonine and methionine in Diet LTM increased the expression of b(0,+) in jejunum and CAT-1 in the Semitendinosus and Longissiums muscles and decreased CAT-1 in jejunum; the serum concentration of lysine was also increased (p Pigs fed the Control diet expressed less b(0,+) in jejunum, and CAT-1 in the Semitendinosus and Longissiums muscles expressed more CAT-1 in jejunum (p dietary amino acids, affect the expression of cationic amino acid transporters in pigs fed wheat-based diets.

  4. Concentration polarization effects on the macromolecular transport in the presence of non-uniform magnetic field: A numerical study using a lumen-wall model

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpourfard, M., E-mail: Mohammadpour@azaruniv.edu [Department of Mechanical Engineering, Azarbaijan Shahid Madani University, Tabriz 53751-71379 (Iran, Islamic Republic of); Aminfar, H., E-mail: hh_aminfar@tabrizu.ac.ir [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Khajeh, K., E-mail: khajeh.k.2005@gmail.com [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2014-04-01

    In this paper, the concentration polarization phenomena in a two dimensional tube under steady state conditions containing ferrofluid (blood and 4 vol% Fe{sub 3}O{sub 4}) is reported in the presence of non-uniform magnetic field. Lumen-wall model has been used for solving the mass transport equation. Hemodynamics parameters such as flow rate, viscosity, wall shear stress (WSS) and the macromolecules surface concentration which accumulate on the blood vessel wall, influenced the formation and progression of atherosclerosis disease. Effective parameters on the low density lipoprotein (LDL) surface concentration (LSC) such as: the wall filtration velocity, inlet Reynolds number and WSS under applied non-uniform magnetic field have been examined. Numerical solution of governing equations of the flow field have been obtained by using the single-phase model and the control volume technique. Magnetic field is generated by an electric current going through a thin and straight wire oriented perpendicular to the tube. Results show WSS in the vicinity of magnetic field source increased and LSC decreased along the wall. - Highlights: • In this paper the concentration polarization phenomena of blood flow is reported in the presence of non-uniform magnetic field. • In presence of non-uniform magnetic field LSC will decrease along the wall due to the increasing the velocity gradients near the magnetic source. • When non-uniform magnetic field intensity increases, LSC along the wall becomes lower. • Non-uniform magnetic field can affects the flow more in low Reynolds numbers.

  5. Influence of long-range atmospheric transport pathways and climate teleconnection patterns on the variability of surface (210)Pb and (7)Be concentrations in southwestern Europe.

    Science.gov (United States)

    Grossi, C; Ballester, J; Serrano, I; Galmarini, S; Camacho, A; Curcoll, R; Morguí, J A; Rodò, X; Duch, M A

    2016-12-01

    The variability of the atmospheric concentration of the (7)Be and (210)Pb radionuclides is strongly linked to the origin of air masses, the strength of their sources and the processes of wet and dry deposition. It has been shown how these processes and their variability are strongly affected by climate change. Thus, a deeper knowledge of the relationship between the atmospheric radionuclides variability measured close to the ground and these atmospheric processes could help in the analysis of climate scenarios. In the present study, we analyze the atmospheric variability of a 14-year time series of (7)Be and (210)Pb in a Mediterranean coastal city using a synergy of different indicators and tools such as: the local meteorological conditions, global and regional climate indexes and a lagrangian atmospheric transport model. We particularly focus on the relationships between the main pathways of air masses and sun spots occurrence, the variability of the local relative humidity and temperature conditions, and the main modes of regional climate variability, such as the North Atlantic Oscillation (NAO) and the Western Mediterranean Oscillation (WeMO). The variability of the observed atmospheric concentrations of both (7)Be and (210)Pb radionuclides was found to be mainly positively associated to the local climate conditions of temperature and to the pathways of air masses arriving at the station. Measured radionuclide concentrations significantly increase when air masses travel at low tropospheric levels from central Europe and the western part of the Iberian Peninsula, while low concentrations are associated with westerly air masses. We found a significant negative correlation between the WeMO index and the atmospheric variability of both radionuclides and no significant association was observed for the NAO index.

  6. Doubling the CO2 Concentration Enhanced the Activity of Carbohydrate-Metabolism Enzymes, Source Carbohydrate Production, Photoassimilate Transport, and Sink Strength for Opuntia ficus-indica.

    Science.gov (United States)

    Wang, N.; Nobel, P. S.

    1996-01-01

    After exposure to a doubled CO2 concentration of 750 [mu]mol mol-1 air for about 3 months glucose and starch in the chlorenchyma of basal cladodes of Opuntia ficus-indica increased 175 and 57%, respectively, compared with the current CO2 concentration of 370 [mu]mol mol-1, but sucrose content was virtually unaffected. Doubling the CO2 concentration increased the nocturnal malate production in basal cladodes by 75%, inorganic phosphate (Pi) by 32%, soluble starch synthase activity by 30%, and sucrose-Pi synthase activity by 146%, but did not affect the activity of hexokinase. Doubling CO2 accelerated phloem transport of sucrose out of the basal cladodes, resulting in a 73% higher dry weight for the daughter cladodes. Doubling CO2 increased the glucose content in 14-d-old daughter cladodes by 167%, increased nocturnal malate production by 22%, decreased total amino acid content by 61%, and increased soluble starch synthase activity by 30% and sucrose synthase activity by 62%. No downward acclimation of photosynthesis during long-term exposure to elevated CO2 concentrations occurs for O. ficus-indica (M. Cui, P.M. Miller, P.S. Nobel [1993] Plant Physiol 103: 519-524; P.S. Nobel, A.A. Israel [1994] J Exp Bot 45: 295-303), consistent with its higher source capacity and sink strength than under current CO2. These changes apparently do not result in Pi limitation of photosynthesis or suppression of genes governing photosynthesis for this perennial Crassulacean acid metabolism species, as occur for some annual crops. PMID:12226228

  7. Doubling the CO2 Concentration Enhanced the Activity of Carbohydrate-Metabolism Enzymes, Source Carbohydrate Production, Photoassimilate Transport, and Sink Strength for Opuntia ficus-indica.

    Science.gov (United States)

    Wang, N.; Nobel, P. S.

    1996-03-01

    After exposure to a doubled CO2 concentration of 750 [mu]mol mol-1 air for about 3 months glucose and starch in the chlorenchyma of basal cladodes of Opuntia ficus-indica increased 175 and 57%, respectively, compared with the current CO2 concentration of 370 [mu]mol mol-1, but sucrose content was virtually unaffected. Doubling the CO2 concentration increased the nocturnal malate production in basal cladodes by 75%, inorganic phosphate (Pi) by 32%, soluble starch synthase activity by 30%, and sucrose-Pi synthase activity by 146%, but did not affect the activity of hexokinase. Doubling CO2 accelerated phloem transport of sucrose out of the basal cladodes, resulting in a 73% higher dry weight for the daughter cladodes. Doubling CO2 increased the glucose content in 14-d-old daughter cladodes by 167%, increased nocturnal malate production by 22%, decreased total amino acid content by 61%, and increased soluble starch synthase activity by 30% and sucrose synthase activity by 62%. No downward acclimation of photosynthesis during long-term exposure to elevated CO2 concentrations occurs for O. ficus-indica (M. Cui, P.M. Miller, P.S. Nobel [1993] Plant Physiol 103: 519-524; P.S. Nobel, A.A. Israel [1994] J Exp Bot 45: 295-303), consistent with its higher source capacity and sink strength than under current CO2. These changes apparently do not result in Pi limitation of photosynthesis or suppression of genes governing photosynthesis for this perennial Crassulacean acid metabolism species, as occur for some annual crops.

  8. Synthesis of azole nucleoside analogues of D-pinitol as potential antitumor agents.

    Science.gov (United States)

    Zhan, Tianrong; Lou, Hongxiang

    2007-05-07

    A convenient strategy is reported for the synthesis of azole nucleoside analogues of D-pinitol (=3-O-methyl-D-chiro-inositol). The key intermediate 3-O-methyl-4,5-epoxy-D-chiro-inositol was obtained in excellent yield via an epoxidation from mono-methanesulfonate of D-pinitol. The process of opening of the epoxy ring by azole-bases appeared strongly regioselective in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene. All newly synthesized carbocyclic azole nucleosides were assayed against lung and bladder cancer in vitro. Only the triazole and benzotriazole nucleoside analogues inhibited the growth of human lung cancer cell lines (PG) with EC(50) of 11.3 and 22.6 microM, respectively, and showed much less inhibitory activity against human bladder cell lines (T(24)).

  9. Quantitative hepatitis B surface antigen analysis in hepatitis B e antigen-positive nucleoside-naive patients treated with entecavir

    NARCIS (Netherlands)

    R.G. Gish; T. Chang; C.L. Lai (Chen); R.A. de Man (Robert); A. Gadano; C. Llamoso (Cyril); H. Tang (Hui)

    2013-01-01

    textabstractBackground: Entecavir is a potent nucleoside analogue for treating chronic hepatitis B (CHB). Quantitative hepatitis B surface antigen (qHBsAg) levels are predictive of response to interferon-α in CHB treatment; however, the clinical utility of qHBsAg in nucleoside/nucleotide

  10. Apoptosis induced by nucleosides in the human hepatoma HepG2

    Institute of Scientific and Technical Information of China (English)

    Suh-Ching Yang; Che-Lin Chiu; Chi-Chang Huang; Jiun-Rong Chen

    2005-01-01

    AIM: To investigate the apoptotic effects of nucleosides on the human hepatoma HepG2.METHODS: The nucleosides included inosine (I), cytidine(C), uridine (U), thymidine (T), adenosine (A), and guanosine (G). Cells were incubated by the mediums with or without nucleosides at 37 ℃ in a 50 mL/L CO2 humidified atmosphere.RESULTS: It was found that the cell viabilities were significantly decreased, when cells were treated with 30 mmol/L I, 30 mmol/L C, 30 mmol/L U, 30 mmol/L T,0.5 mmol/L A, and 0.5 mmol/L G after 12 h incubation (P<0.05). About the apoptotic phenomenon, the cell percentages of sub-G1 cells were significantly increased in the mediums containing nucleosides such as C, U, T,A, and G (P<0.05). Furthermore, the caspase-3 activity was increased, when the cells were incubated with T(P<0.05). The protein expressions of p53 and p21 showed no difference in each group. To investigate the mechanism of apoptosis induced by nucleosides, it was found that the contents of soluble Fas ligand contents were increased in HepG2 cells following I, U, T, and A treatment (P<0.05).But, TNF-α and cytochrome c were undetectable.CONCLUSION: Thymidine may induce the apoptosis in HepG2, but the effective dosages and reactive time must be investigated in the future study. However, the apoptosis-inducing abilities of other nucleosides were still unclear in this study.

  11. 6-Methylpurine derived sugar modified nucleosides: Synthesis and evaluation of their substrate activity with purine nucleoside phosphorylases.

    Science.gov (United States)

    Hassan, Abdalla E A; Abou-Elkhair, Reham A I; Parker, William B; Allan, Paula W; Secrist, John A

    2016-04-01

    6-Methylpurine (MeP) is cytotoxic adenine analog that does not exhibit selectivity when administered systemically, and could be very useful in a gene therapy approach to cancer treatment involving Escherichia coli PNP. The prototype MeP releasing prodrug, 9-(β-d-ribofuranosyl)-6-methylpurine, MeP-dR has demonstrated good activity against tumors expressing E. coli PNP, but its antitumor activity is limited due to toxicity resulting from the generation of MeP from gut bacteria. Therefore, we have embarked on a medicinal chemistry program to identify non-toxic MeP prodrugs that could be used in conjunction with E. coli PNP. In this work, we report on the synthesis of 9-(6-deoxy-β-d-allofuranosyl)-6-methylpurine (3) and 9-(6-deoxy-5-C-methyl-β-d-ribo-hexofuranosyl)-6-methylpurine (4), and the evaluation of their substrate activity with several phosphorylases. The glycosyl donors; 1,2-di-O-acetyl-3,5-di-O-benzyl-α-d-allofuranose (10) and 1-O-acetyl-3-O-benzyl-2,5-di-O-benzoyl-6-deoxy-5-C-methyl-β-d-ribohexofuran-ose (15) were prepared from 1,2:5,6-di-O-isopropylidine-α-d-glucofuranose in 9 and 11 steps, respectively. Coupling of 10 and 15 with silylated 6-methylpurine under Vorbrüggen glycosylation conditions followed conventional deprotection of the hydroxyl groups furnished 5'-C-methylated-6-methylpurine nucleosides 3 and 4, respectively. Unlike 9-(6-deoxy-α-l-talo-furanosyl)-6-methylpurine, which showed good substrate activity with E. coli PNP mutant (M64V), the β-d-allo-furanosyl derivative 3 and the 5'-di-C-methyl derivative 4 were poor substrates for all tested glycosidic bond cleavage enzymes.

  12. Synthesis of Novel Homo-N-Nucleoside Analogs Composed of a Homo-1,4-Dioxane Sugar Analog and Substituted 1,3,5-Triazine Base Equivalents

    Directory of Open Access Journals (Sweden)

    Qiang Yu

    2008-12-01

    Full Text Available Enantioselective syntheses from dimethyl tartrate of 1,3,5-triazine homo-N-nucleoside analogs, containing a 1,4-dioxane moiety replacing the sugar unit in natural nucleosides, were accomplished. The triazine heterocycle in the nucleoside analogs was further substituted with combinations of NH2, OH and Cl in the 2,4-triazine positions.

  13. Highly selective capture of nucleosides with boronic acid functionalized polymer brushes prepared by atom transfer radical polymerization.

    Science.gov (United States)

    Cheng, Ting; Zhu, Shuqiang; Zhu, Bin; Liu, Xiaoyan; Zhang, Haixia

    2016-04-01

    The nucleoside or modified nucleoside level in biological fluids reflects the pathological or physiological state of the body. Boronate affinity absorbents are widely used to selectively extract nucleosides from complex samples. In this work, a novel functionalized absorbent was synthesized by attaching 4-mercaptophenylboronic acid to gold nanoparticles on modified attapulgite. The surface of the attapulgite was modified by poly(acryloyloxyethyltrimethyl ammonium chloride) by atom transfer radical polymerization, creating many polymer brushes on the surface. The resultant material exhibited superior binding capacity (30.83 mg/g) for adenosine and was able to capture cis-diol nucleosides from 1000-fold interferences. Finally, to demonstrate its potential for biomolecule extraction, this boronate affinity material was used to preconcentrate nucleosides from human urine and plasma.

  14. Biotransformation of 2,6-diaminopurine nucleosides by immobilized Geobacillus stearothermophilus.

    Science.gov (United States)

    De Benedetti, Eliana C; Rivero, Cintia W; Britos, Claudia N; Lozano, Mario E; Trelles, Jorge A

    2012-01-01

    An efficient and green bioprocess to obtain 2,6-diaminopurine nucleosides using thermophilic bacteria is herein reported. Geobacillus stearothermophilus CECT 43 showed a conversion rate of 90 and 83% at 2 h to obtain 2,6-diaminopurine-2'-deoxyriboside and 2,6-diaminopurine riboside, respectively. The selected biocatalyst was successfully stabilized in an agarose matrix and used to produce up to 23.4 g of 2,6-diaminopurine-2'-deoxyriboside in 240 h of process. These nucleoside analogues can be used as prodrug precursors or in antisense oligonucleotide synthesis.

  15. In situ enzymatic removal of orthophosphate by the nucleoside phosphorylase catalyzed phosphorolysis of nicotinamide riboside.

    Science.gov (United States)

    Shriver, J W; Sykes, B D

    1982-09-01

    An enzymatic orthophosphate removal system is described which can be effectively used to continuously remove orthophosphate from biochemical samples. The phosphorolysis of nicotinamide riboside is catalyzed by calf spleen nucleoside phosphorylase to give ribose-1-PO4 and nicotinamide along with a proton. At pH 8 the production of ribose-1-PO4 from orthophosphate is essentially quantitative. This reaction can be monitored optically or by 31P nuclear magnetic resonance (NMR). Equations are given for determining the time required to remove a given amount of phosphate from a typical NMR sample with a known amount of nucleoside phosphorylase. The effects of a competing orthophosphate-producing reaction are considered.

  16. Versatile synthesis of amino acid functionalized nucleosides via a domino carboxamidation reaction

    Directory of Open Access Journals (Sweden)

    Vicky Gheerardijn

    2014-11-01

    Full Text Available Functionalized oligonucleotides have recently gained increased attention for incorporation in modified nucleic acid structures both for the design of aptamers with enhanced binding properties as well as the construction of catalytic DNA and RNA. As a shortcut alternative to the incorporation of multiple modified residues, each bearing one extra functional group, we present here a straightforward method for direct linking of functionalized amino acids to the nucleoside base, thus equipping the nucleoside with two extra functionalities at once. As a proof of principle, we have introduced three amino acids with functional groups frequently used as key-intermediates in DNA- and RNAzymes via an efficient and straightforward domino carboxamidation reaction.

  17. Facile synthesis of 1',2'-cis-beta-pyranosyladenine nucleosides.

    Science.gov (United States)

    Ando, Takayuki; Shinohara, Hisashi; Luo, Xiong; Kandeel, Mahmoud; Kitade, Yukio

    2007-12-10

    1',2'-cis-beta-Glycosyladenine nucleosides, such as beta-altroside, beta-mannoside, and beta-idoside, were efficiently synthesized from the corresponding 1',2'-trans-beta-6-chloropurine derivatives, beta-glucoside, and beta-galactoside. Nucleophilic substitution of the O-trifluoromethanesulfonyl groups at the C-2' and/or 3' was carried out using tetrabutylammonium acetate or cesium acetate under mild conditions. Subsequent deprotection and amidation afforded the desired compounds, 1',2'-cis-beta-pyranosyladenine nucleosides.

  18. BCX4430, a novel nucleoside analog, effectively treats yellow fever in a Hamster model.

    Science.gov (United States)

    Julander, Justin G; Bantia, Shanta; Taubenheim, Brian R; Minning, Dena M; Kotian, Pravin; Morrey, John D; Smee, Donald F; Sheridan, William P; Babu, Yarlagadda S

    2014-11-01

    No effective antiviral therapies are currently available to treat disease after infection with yellow fever virus (YFV). A Syrian golden hamster model of yellow fever (YF) was used to characterize the effect of treatment with BCX4430, a novel adenosine nucleoside analog. Significant improvement in survival was observed after treatment with BCX4430 at 4 mg/kg of body weight per day dosed intraperitoneally (i.p.) twice daily (BID). Treatment with BCX4430 at 12.5 mg/kg/day administered i.p. BID for 7 days offered complete protection from mortality and also resulted in significant improvement of other YF disease parameters, including weight loss, serum alanine aminotransferase levels (6 days postinfection [dpi]), and viremia (4 dpi). In uninfected hamsters, BCX4430 at 200 mg/kg/day administered i.p. BID for 7 days was well tolerated and did not result in mortality or weight loss, suggesting a potentially wide therapeutic index. Treatment with BCX4430 at 12 mg/kg/day i.p. remained effective when administered once daily and for only 4 days. Moreover, BCX4430 dosed at 200 mg/kg/day i.p. BID for 7 days effectively treated YF, even when treatment was delayed up to 4 days after virus challenge, corresponding with peak viral titers in the liver and serum. BCX4430 treatment did not preclude a protective antibody response, as higher neutralizing antibody (nAb) concentrations corresponded with increasing delays of treatment initiation, and greater nAb responses resulted in the protection of animals from a secondary challenge with YFV. In summary, BCX4430 is highly active in a hamster model of YF, even when treatment is initiated at the peak of viral replication.

  19. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K.; Cassera, M.; Almo, S.; Schramm, V.

    2007-01-01

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.

  20. Neurotransmitter transporters

    DEFF Research Database (Denmark)

    Gether, Ulrik; Andersen, Peter H; Larsson, Orla M

    2006-01-01

    The concentration of neurotransmitters in the extracellular space is tightly controlled by distinct classes of membrane transport proteins. This review focuses on the molecular function of two major classes of neurotransmitter transporter that are present in the cell membrane of neurons and....../or glial cells: the solute carrier (SLC)1 transporter family, which includes the transporters that mediate the Na(+)-dependent uptake of glutamate, and the SLC6 transporter family, which includes the transporters that mediate the Na(+)-dependent uptake of dopamine, 5-HT, norepinephrine, glycine and GABA....... Recent research has provided substantial insight into the structure and function of these transporters. In particular, the recent crystallizations of bacterial homologs are of the utmost importance, enabling the first reliable structural models of the mammalian neurotransmitter transporters...

  1. 受限高浓度电解质溶液的电动力学输运%Electrokinetics transport of confined electrolyte solution in high concentration

    Institute of Scientific and Technical Information of China (English)

    李堃; 袁志山; 纪安平; 司伟; 蔺卡宾; 杨浩杰; 马建; 沙菁; 陈云飞

    2016-01-01

    为了解释有关纳米通道内离子输运特性的一系列违反经典流体力学和电迁移理论的实验现象的内在机理,通过分子动力学模拟的方法,研究了受限高浓度NaCl溶液的离子电流和迁移率等电动力学输运特性。结果显示,跨膜电压和接入电阻是导致单层石墨烯纳米孔的离子电流随孔径呈线性增长的重要原因。受限电解质溶液与体态溶液的本质区别是除了固液界面的边界效应外,跨膜电压造成的局部超大电场将导致电迁移速率随电场强度增加出现非线性增长的Wien效应。同时,离子迁移率随溶液浓度升高而下降。产生这些变化的微观机理除了离子氛屏蔽效应外,还有离子对形成和离子碰撞等离子间微观相互作用。%To explain the mechanism of ion transport in nanochannel behind a series of phenomena which can not be explained by classical fluid mechanics and electrical transport theory,by all-atom molecular dynamics (MD)simulations,ionic current and ion mobility as well as other electrokinetics transport properties of confined sodium chloride solution are investigated.The results indicate that transmembrane voltage and access resistance have a significant contribution to the linear growth of the ionic current of monolayer graphene nanopore with pore diameter increasing.The essential differ-ence between confined electrolyte solution and bulk solution is that despite the boundary effect on solid-liquid interface,ultra-high localized electrical field caused by transmembrane voltage leads to the Wien effect,that is,ion mobility nonlinearly increases with electrical field rising.Furthermore, the ion mobility decreases as the bulk concentration increases.In addition to the ionic atmosphere effect,the microscopic mechanism is the interaction between ions including ion pair formation and the ion-ion collisions.

  2. Global high-resolution simulations of CO2 and CH4 using a NIES transport model to produce a priori concentrations for use in satellite data retrievals

    Directory of Open Access Journals (Sweden)

    S. Maksyutov

    2013-01-01

    Full Text Available The Greenhouse gases Observing SATellite (GOSAT measures column-averaged dry air mole fractions of carbon dioxide and methane (XCO2 and XCH4, respectively. Since the launch of GOSAT, model-simulated three-dimensional concentrations from a National Institute for Environmental Studies offline tracer Transport Model (NIES TM have been used as a priori concentration data for operational near real-time retrievals of XCO2 and XCH4 from GOSAT short-wavelength infrared spectra at NIES. Although the choice of a priori profile has only a minor effect on retrieved XCO2 or XCH4, a realistic simulation with minimal deviation from observed data is desirable. In this paper, we describe the newly developed version of NIES TM that has been adapted to provide global and near real-time concentrations of CO2 and CH4 using a high-resolution meteorological dataset, the Grid Point Value (GPV prepared by the Japan Meteorological Agency. The spatial resolution of the NIES TM is set to 0.5° × 0.5° in the horizontal in order to utilise GPV data, which have a resolution of 0.5° × 0.5°, 21 pressure levels and a time interval of 3 h. GPV data are provided to the GOSAT processing system with a delay of several hours, and the near real-time model simulation produces a priori concentrations driven by diurnally varying meteorology. A priori variance–covariance matrices of CO2 and CH4 are also derived from the simulation outputs and observation-based reference data for each month of the year at a resolution of 0.5° × 0.5° and 21 pressure levels. Model performance is assessed by comparing simulation results with the GLOBALVIEW dataset and other observational data. The overall root-mean-square differences between model predictions and GLOBALVIEW analysis are estimated to be 1.45 ppm and 12.52 ppb for CO2 and CH4, respectively, and the seasonal correlation coefficients are 0.87 for CO2 and 0.53 for CH4. The model showed good performance particularly at oceanic and free

  3. Global warming, plant paraquat resistance, and light signal transduction through nucleoside diphosphate kinase as a paradigm for increasing food supply.

    Science.gov (United States)

    Hasunuma, Kohji; Yoshida, Yusuke; Haque, Mohamed Emdadul; Wang, Ni-yan; Fukamatsu, Yosuke; Miyoshi, Osamu; Lee, Bumkyu

    2011-10-01

    Light signal transduction was studied in extracts of mycelia of the fungus Neurospora crassa, and the third internodes of dark-grown Pisum sativum cv Alaska. Both processes increased the phosphorylation of nucleoside diphosphate kinase (NDPK). NDPK may function as a carrier of reduction equivalents, as it binds NADH, thereby providing electrons to transform singlet oxygen to superoxide by catalases (CAT). As the C-termini of NDPK interact with CAT which receive singlet oxygen, emitted from photoreceptors post light perception (which is transmitted to ambient triplet oxygen), we hypothesize that this may increase phospho-NDPK. Singlet oxygen, emitted from the photoreceptor, also reacts with unsaturated fatty acids in membranes thereby forming malonedialdehyde, which in turn could release ions from, e.g., the thylacoid membrane thereby reducing the rate of photosynthesis. A mutant of Alaska pea, which exhibited two mutations in chloroplast NDPK-2 and one mutation in mitochondrial localized NDPK-3, was resistant to reactive oxygen species including singlet oxygen and showed an increase in the production of carotenoids, anthocyanine, and thereby could reduce the concentration of singlet oxygen. The reduction of the concentration of singlet oxygen is predicted to increase the yield of crop plants, such as Alaska pea, soybean, rice, wheat, barley, and sugarcane. This approach to increase the yield of crop plants may contribute not only to enhance food supply, but also to reduce the concentration of CO(2) in the atmosphere.

  4. Carbocyclic nucleoside analogues: classification, target enzymes, mechanisms of action and synthesis

    Science.gov (United States)

    Matyugina, E. S.; Khandazhinskaya, A. P.; Kochetkov, Sergei N.

    2012-08-01

    Key biological targets (S-adenosyl-L-homocysteine hydrolase, telomerase, human immunodeficiency virus reverse transcriptase, herpes virus DNA polymerase and hepatitis B virus DNA polymerase) and the mechanisms of action of carbocyclic nucleoside analogues are considered. Structural types of analogues are discussed. Methods of synthesis for the most promising compounds and the spectrum of their biological activities are described. The bibliography includes 126 references.

  5. Phosphorylation of nm23/nucleoside diphosphate kinase by casein kinase 2 in vitro

    DEFF Research Database (Denmark)

    Engel, M; Issinger, O G; Lascu, I;

    1994-01-01

    We have investigated phosphorylation of human nucleoside diphosphate kinase (NDPK) and of homologous NDPK from different species by human casein kinase 2 (CK-2). The human NDPK isotypes A and B were phosphorylated by CK-2 in vitro both when the purified proteins and total lysate of HL-60 leukemia...

  6. Investigation of proton affinities and gas phase vibrational spectra of protonated nucleosides, deoxynucleosides, and their analogs

    NARCIS (Netherlands)

    Ung, H.U.; Huynh, K.T.; Poutsma, J.C.; Oomens, J.; Berden, G.; Morton, T.H.

    2015-01-01

    DNA nucleobases make use of hydrogen bonding, whether in associating to form the Watson-Crick double-helix or in producing alternative structures such as the G-quadruplex or the i-motif. Nucleoside proton-bound dimers provide an avenue for investigating characteristics that they possess within the

  7. Metabolome analysis via comprehensive two-dimensional liquid chromatography: identification of modified nucleosides from RNA metabolism.

    Science.gov (United States)

    Willmann, Lucas; Erbes, Thalia; Krieger, Sonja; Trafkowski, Jens; Rodamer, Michael; Kammerer, Bernd

    2015-05-01

    Modified nucleosides derived from the RNA metabolism constitute an important chemical class, which are discussed as potential biomarkers in the detection of mammalian breast cancer. Not only the variability of modifications, but also the complexity of biological matrices such as urinary samples poses challenges in the analysis of modified nucleosides. In the present work, a comprehensive two-dimensional liquid chromatography mass spectrometry (2D-LC-MS) approach for the analysis of modified nucleosides in biological samples was established. For prepurification of urinary samples and cell culture supernatants, we performed a cis-diol specific affinity chromatography using boronate-derivatized polyacrylamide gel. In order to establish a 2D-LC method, we tested numerous column combinations and chromatographic conditions. In order to determine the target compounds, we coupled the 2D-LC setup to a triple quadrupole mass spectrometer performing full scans, neutral loss scans, and multiple reaction monitoring (MRM). The combination of a Zorbax Eclipse Plus C18 column with a Zorbax Bonus-RP column was found to deliver a high degree of orthogonality and adequate separation. By application of 2D-LC-MS approaches, we were able to detect 28 target compounds from RNA metabolism and crosslinked pathways in urinary samples and 26 target compounds in cell culture supernatants, respectively. This is the first demonstration of the applicability and benefit of 2D-LC-MS for the targeted metabolome analysis of modified nucleosides and compounds from crosslinked pathways in different biological matrices.

  8. Activities of adenine nucleotide and nucleoside degradation enzymes in platelets of rats infected by Trypanosoma evansi.

    Science.gov (United States)

    Oliveira, Camila B; Da Silva, Aleksandro S; Vargas, Lara B; Bitencourt, Paula E R; Souza, Viviane C G; Costa, Marcio M; Leal, Claudio A M; Moretto, Maria B; Leal, Daniela B R; Lopes, Sonia T A; Monteiro, Silvia G

    2011-05-31

    Nucleotide and nucleoside-degrading enzymes, such as nucleoside triphosphate diphosphohydrose (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are present in the surface membranes of platelets, involved in clotting disturbances of Trypanosoma evansi-infected animals. Thus, this study was aimed at evaluating the activities of these enzymes in platelets of rats experimentally infected with T. evansi. Animals were divided into four groups, according to the level of parasitemia. Blood samples were collected on days 3 (group A: at the beginning of parasitemia), 5 (group B: high parasitemia) and 15 (group C: chronic infection), post-infection. Group D (control group) was composed of non-infected animals for platelet count, separation and enzymatic assays. Animals from groups A and B showed marked thrombocytopenia, but platelet count was not affected in chronically infected rats. NTPDase, 5'-nucleotidase and ADA activities decreased (pplatelets from rats of groups A and B, when compared to the control group. In group C, only NTPDase and 5'-nucleoside activities decreased (pplatelet count and nucleotide/nucleoside hydrolysis were positive and statistically significant (pPlatelet aggregation was decreased in all infected groups, in comparison to the control group (pplatelets of T. evansi-infected animals might be related to thrombocytopenia, that by reducing the number of platelets, there was less release of ATP and ADP. Another possibility being suggested is that changes have occurred in the membrane of these cells, decreasing the expression of these enzymes in the cell membrane.

  9. Use of nucleoside (tide) analogues in patients with hepatitis B-related acute liver failure

    DEFF Research Database (Denmark)

    Dao, Doan Y; Seremba, Emmanuel; Ajmera, Veeral;

    2012-01-01

    The efficacy of nucleoside(tide) analogues (NA) in the treatment of acute liver failure due to hepatitis B virus (HBV-ALF) remains controversial. We determined retrospectively the impact of NAs in a large cohort of patients with HBV-ALF....

  10. ACTIVATION OF G-PROTEINS BY RECEPTOR-STIMULATED NUCLEOSIDE DIPHOSPHATE KINASE IN DICTYOSTELIUM

    NARCIS (Netherlands)

    Bominaar, Anthony A.; Molijn, Anco C.; Pestel, Martine; Veron, Michel; Haastert, Peter J.M. van

    Recently, interest in the enzyme nucleoside diphosphate kinase (EC 2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase

  11. Aspartic acid based nucleoside phosphoramidate prodrugs as potent inhibitors of hepatitis C virus replication.

    Science.gov (United States)

    Maiti, Munmun; Maiti, Mohitosh; Rozenski, Jef; De Jonghe, Steven; Herdewijn, Piet

    2015-05-14

    In view of a persistent threat to mankind, the development of nucleotide-based prodrugs against hepatitis C virus (HCV) is considered as a constant effort in many medicinal chemistry groups. In an attempt to identify novel nucleoside phosphoramidate analogues for improving the anti-HCV activity, we have explored, for the first time, aspartic acid (Asp) and iminodiacetic acid (IDA) esters as amidate counterparts by considering three 2'-C-methyl containing nucleosides, 2'-C-Me-cytidine, 2'-C-Me-uridine and 2'-C-Me-2'-fluoro-uridine. Synthesis of these analogues required protection for the vicinal diol functionality of the sugar moiety and the amino group of the cytidine nucleoside to regioselectively perform phosphorylation reaction at the 5'-hydroxyl group. Anti-HCV data demonstrate that the Asp-based phosphoramidates are ∼550 fold more potent than the parent nucleosides. The inhibitory activity of the Asp-ProTides was higher than the Ala-ProTides, suggesting that Asp would be a potential amino acid candidate to be considered for developing novel antiviral prodrugs.

  12. Pd0-Catalyzed Methyl Transfer on Nucleosides and Oligonucleotides, Envisaged as a PET Tracer

    Directory of Open Access Journals (Sweden)

    Eric Fouquet

    2013-11-01

    Full Text Available The methyl transfer reaction from activated monomethyltin, via a modified Stille coupling reaction, was studied under “ligandless” conditions on fully deprotected 5'-modified nucleosides and one dinucleotide. The reaction was optimized to proceed in a few minutes and quantitative yield, even under dilute conditions, thus affording a rapid and efficient new method for oligonucleotide labelling with carbon-11.

  13. Organometallic nucleoside analogues with ferrocenyl linker groups: synthesis and cancer cell line studies.

    Science.gov (United States)

    Nguyen, Huy V; Sallustrau, Antoine; Balzarini, Jan; Bedford, Matthew R; Eden, John C; Georgousi, Niki; Hodges, Nikolas J; Kedge, Jonathan; Mehellou, Youcef; Tselepis, Chris; Tucker, James H R

    2014-07-10

    Examples of organometallic compounds as nucleoside analogues are rare within the field of medicinal bioorganometallic chemistry. We report on the synthesis and properties of two chiral ferrocene derivatives containing a nucleobase and a hydroxyalkyl group. These so-called ferronucleosides show promising anticancer activity, with cytostatic studies on five different cancer cell lines indicating that both functional groups are required for optimal activity.

  14. An efficient and green preparation of 5-aminophosphonate substituted pyrimidine nucleosides under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Xin Ying Zhang; Ying Ying Qu; Xue Sen Fan

    2010-01-01

    An environmentally benign and highly efficient one-pot preparation of α-aminophosphonates under solvent-free conditions was developed.By employing this method,5-aminophosphonate substituted pyrimidine nucleosides were synthesized in good to excellent yields starting from 5-formyl-2'-deoxyuridine,aniline and dimethylphosphite.

  15. Viral fitness: relation to drug resistance mutations and mechanisms involved: nucleoside reverse transcriptase inhibitor mutations.

    Science.gov (United States)

    Weber, Jan; Henry, Kenneth R; Arts, Eric J; Quiñones-Mateu, Miguel E

    2007-03-01

    Nucleoside and nucleotide reverse transcriptase inhibitors constitute the backbone of highly active antiretroviral therapy in the treatment of HIV-1 infection. One of the major obstacles in achieving the long-term efficacy of anti-HIV-1 therapy is the development of resistance. The advent of resistance mutations is usually accompanied by a change in viral replicative fitness. This review focuses on the most common nucleoside reverse transcriptase inhibitor-associated mutations and their effects on HIV-1 replicative fitness. Recent studies have explained the two main mechanisms of resistance to nucleoside reverse transcriptase inhibitors and their role in HIV-1 replicative fitness. The first involves mutations directly interfering with binding or incorporation and seems to impact replicative fitness more adversely than the second mechanism, which involves enhanced excision of the newly incorporated analogue. Further studies have helped explain the antagonistic effects between amino acid substitutions, K65R, L74V, M184V, and thymidine analogue mutations, showing how viral replicative fitness influences the evolution of thymidine analogue resistance pathways. Nucleoside reverse transcriptase inhibitor resistance mutations impact HIV-1 replicative fitness to a lesser extent than protease resistance mutations. The monitoring of viral replicative fitness may help in the management of HIV-1 infection in highly antiretroviral-experienced individuals.

  16. Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function

    Directory of Open Access Journals (Sweden)

    Ville Y. P. Väre

    2017-03-01

    Full Text Available RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA’s cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.

  17. Intersubunit ionic interactions stabilize the nucleoside diphosphate kinase of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Georgescauld, Florian; Moynie, Lucile; Habersetzer, Johann;

    2013-01-01

    Most nucleoside diphosphate kinases (NDPKs) are hexamers. The C-terminal tail interacting with the neighboring subunits is crucial for hexamer stability. In the NDPK from Mycobacterium tuberculosis (Mt) this tail is missing. The quaternary structure of Mt-NDPK is essential for full enzymatic acti...

  18. Investigation of proton affinities and gas phase vibrational spectra of protonated nucleosides, deoxynucleosides, and their analogs

    NARCIS (Netherlands)

    H.U. Ung; K.T. Huynh; J.C. Poutsma; J. Oomens; G. Berden; T.H. Morton

    2015-01-01

    DNA nucleobases make use of hydrogen bonding, whether in associating to form the Watson-Crick double-helix or in producing alternative structures such as the G-quadruplex or the i-motif. Nucleoside proton-bound dimers provide an avenue for investigating characteristics that they possess within the i

  19. Analysis of the Nucleoside Content of Cordyceps sinensis Using the Stepwise Gradient Elution Technique of Thin-Layer Chromatography

    Institute of Scientific and Technical Information of China (English)

    MA,King-Wah(马敬桦); CHAU,Foo-Tim(周福添); WU,Jian-Yong(吴建勇)

    2004-01-01

    Nucleoside is the main class of active components in Cordyceps sinensis. Thin-layer chromatography (TLC) is one of the most commonly used methods in pharmacopoeias for analyzing chemical components of herbal medicine. Since the isocratic elution method cannot be applied successfully in TLC analysis for separating all the nucleoside components, the stepwise gradient elution has been developed in this work to separate eight nucleoside standards with success. In this way, quantitative analyses of the samples of Cordyceps sinensis were achieved via the proposed TLC procedure coupled with the scanning densitometric techniques of CAMAG and TLCQA methods for qualitative and quantitative analysis.

  20. In Vitro Infection of Trypanosoma cruzi Causes Decrease in Glucose Transporter Protein-1 (GLUT1 Expression in Explants of Human Placental Villi Cultured under Normal and High Glucose Concentrations

    Directory of Open Access Journals (Sweden)

    Luciana Mezzano

    2012-01-01

    Full Text Available Trypanosoma cruzi, the etiologic Chagas' disease agent, induces changes in protein pattern of the human placenta syncytiotrophoblast. The glucose transporter protein-1 (GLUT1 is the primary isoform involved in transplacental glucose transport. We carried out in vitro assays to determine if T. cruzi infection would induce changes in placental GLUT1 protein expression under normal and high concentration of glucose. Using Western blot and immunohistological techniques, GLUT1 expression was determined in normal placental villi cultured under normal or high concentrations of glucose, with or without in vitro T. cruzi infection, for 24 and 48 hours. High glucose media or T. cruzi infection alone reduced GLUT1 expression. A yet more accentuated reduction was observed when infection and high glucose condition took place together. We inform, for the first time, that T. cruzi infection may induce reduction of GLUT1 expression under normal and high glucose concentrations, and this effect is synergic to high glucose concentrations.

  1. Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of theophylline containing acetylenes and theophylline containing 1,2,3-triazoles with variant nucleoside derivatives.

    Science.gov (United States)

    Ruddarraju, Radhakrishnam Raju; Murugulla, Adharvana Chari; Kotla, Ravindar; Chandra Babu Tirumalasetty, Muni; Wudayagiri, Rajendra; Donthabakthuni, Shobha; Maroju, Ravichandar; Baburao, K; Parasa, Lakshmana Swamy

    2016-11-10

    A new series of theophylline containing acetylene derivatives (6a-6b and 7-13) and theophylline containing 1,2,3-triazoles with variant nucleoside derivatives (20-32) have been designed and synthesized. These compounds were screened for anticancer and antimicrobial activity. Further the computational docking and 2D QSAR were performed using MOE software to identify novel scaffolds. The results showed that compound 29 and 30 exhibit significant cytotoxic effect on all four cancer cells such as lung (A549), colon (HT-29), breast (MCF-7) and melanoma (A375) with IC50 values of 2.56, 2.19, 1.89, 4.89 μM and 3.57, 2.90, 2.10, 5.81 μM respectively. Whereas quite different results were observed for these compounds in antimicrobial studies. Compounds 11, 21 and 26 have exhibited significant minimum inhibitory concentrations (MIC) against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. The docking studies demonstrate that compound 27, 28, 29 and 30 have good dock score and binding affinities with various therapeutic targets in cancer cell proliferation. In addition these compounds have shown acceptable correlation with bioassay results in the regression plots generated in 2D QSAR models. This is the first report to demonstrate the theophylline containing acetylene derivatives and theophylline containing 1,2,3-triazole nucleoside hybrids as potential anticancer and antimicrobial agents with comprehensive in silico analysis.

  2. Protective Mechanisms of S. lycopersicum Aqueous Fraction (Nucleosides and Flavonoids on Platelet Activation and Thrombus Formation: In Vitro, Ex Vivo and In Vivo Studies

    Directory of Open Access Journals (Sweden)

    Eduardo Fuentes

    2013-01-01

    Full Text Available The purpose of this research was to investigate mechanisms of antiplatelet action of bioactive principle from S. lycopersicum. Aqueous fraction had a high content of nucleosides (adenosine, guanosine, and adenosine 5′-monophosphate by HPLC analysis. Also aqueous fraction presented flavonoids content. Aqueous fraction inhibited platelet activation by 15 ± 6% (P<0.05. Fully spread of human platelets on collagen in the presence of aqueous fraction was inhibited from 15 ± 1 to 9 ± 1 μm2 (P<0.001. After incubation of whole blood with aqueous fraction, the platelet coverage was inhibited by 55 ± 12% (P<0.001. Platelet ATP secretion and aggregation were significantly inhibited by the aqueous fraction. At the same concentrations that aqueous fraction inhibits platelet aggregation, levels of sCD40L significantly decreased and the intraplatelet cAMP levels increased. In addition, SQ22536, an adenylate cyclase inhibitor, attenuated the effect of aqueous fraction toward ADP-induced platelet aggregation and intraplatelet level of cAMP. Platelet aggregation ex vivo (human study and thrombosis formation in vivo (murine model were inhibited by aqueous fraction. Finally, aqueous fraction may be used as a functional ingredient adding antiplatelet activities (nucleosides and flavonoids to processed foods.

  3. Ecto-nucleoside triphosphate diphosphohydrolase 2 modulates local ATP-induced calcium signaling in human HaCaT keratinocytes.

    Directory of Open Access Journals (Sweden)

    Chia-Lin Ho

    Full Text Available Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis.

  4. Intratidal and neap-spring variations of suspended sediment concentrations and sediment transport processes in the North Branch of the Changjiang Estuary

    Institute of Scientific and Technical Information of China (English)

    LI Zhanhai; LI Michael Z; DAI Zhijun; ZHAO Fangfang; LI Jiufa

    2015-01-01

    Profiles of tidal current and suspended sediment concentration (SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3in neap tide to 3.5 kg/m3 in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are respon-sible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Settling occurs at the slack water periods to cause SSC troughs and formation of a thin fluff layer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.

  5. Pharmacological reversal of histone methylation presensitizes pancreatic cancer cells to nucleoside drugs: in vitro optimization and novel nanoparticle delivery studies

    National Research Council Canada - National Science Library

    Hung, Sau Wai; Mody, Hardik; Marrache, Sean; Bhutia, Yangzom D; Davis, Franklin; Cho, Jong Hyun; Zastre, Jason; Dhar, Shanta; Chu, Chung K; Govindarajan, Rajgopal

    2013-01-01

    ...), in improving the chemosensitivity of pancreatic cancer to nucleoside analogs (i.e., gemcitabine). DZNep brought delayed but selective cytotoxicity to pancreatic cancer cells without affecting normal human pancreatic ductal epithelial...

  6. Crucial roles of thymidine kinase 1 and deoxyUTPase in incorporating the antineoplastic nucleosides trifluridine and 2'-deoxy-5-fluorouridine into DNA.

    Science.gov (United States)

    Sakamoto, Kazuki; Yokogawa, Tatsushi; Ueno, Hiroyuki; Oguchi, Kei; Kazuno, Hiromi; Ishida, Keiji; Tanaka, Nozomu; Osada, Akiko; Yamada, Yukari; Okabe, Hiroyuki; Matsuo, Kenichi

    2015-01-01

    Trifluridine (FTD) and 2'-deoxy-5-fluorouridine (FdUrd), a derivative of 5-fluorouracil (5-FU), are antitumor agents that inhibit thymidylate synthase activity and their nucleotides are incorporated into DNA. However, it is evident that several differences occur in the underlying antitumor mechanisms associated with these nucleoside analogues. Recently, TAS-102 (composed of FTD and tipiracil hydrochloride, TPI) was shown to prolong the survival of patients with colorectal cancer who received a median of 2 prior therapies, including 5-FU. TAS-102 was recently approved for clinical use in Japan. These data suggest that the antitumor activities of TAS-102 and 5-FU proceed via different mechanisms. Thus, we analyzed their properties in terms of thymidine salvage pathway utilization, involving membrane transporters, a nucleoside kinase, a nucleotide-dephosphorylating enzyme, and DNA polymerase α. FTD incorporated into DNA with higher efficiency than FdUrd did. Both FTD and FdUrd were transported into cells by ENT1 and ENT2 and were phosphorylated by thymidine kinase 1, which showed a higher catalytic activity for FTD than for FdUrd. deoxyUTPase (DUT) did not recognize dTTP and FTD-triphosphate (F3dTTP), whereas deoxyuridine-triphosphate (dUTP) and FdUrd-triphosphate (FdUTP) were efficiently degraded by DUT. DNA polymerase α incorporated both F3dTTP and FdUTP into DNA at sites aligned with adenine on the opposite strand. FTD-treated cells showed differing nuclear morphologies compared to FdUrd-treated cells. These findings indicate that FTD and FdUrd are incorporated into DNA with different efficiencies due to differences in the substrate specificities of TK1 and DUT, causing abundant FTD incorporation into DNA.

  7. Nucleoside modifications in RNA limit activation of 2'-5'-oligoadenylate synthetase and increase resistance to cleavage by RNase L.

    Science.gov (United States)

    Anderson, Bart R; Muramatsu, Hiromi; Jha, Babal K; Silverman, Robert H; Weissman, Drew; Karikó, Katalin

    2011-11-01

    The interferon-induced enzymes 2'-5'-oligoadenylate synthetase (OAS) and RNase L are key components of innate immunity involved in sensory and effector functions following viral infections. Upon binding target RNA, OAS is activated to produce 2'-5'-linked oligoadenylates (2-5A) that activate RNase L, which then cleaves single-stranded self and non-self RNA. Modified nucleosides that are present in cellular transcripts have been shown to suppress activation of several RNA sensors. Here, we demonstrate that in vitro transcribed, unmodified RNA activates OAS, induces RNase L-mediated ribosomal RNA (rRNA) cleavage and is rapidly cleaved by RNase L. In contrast, RNA containing modified nucleosides activates OAS less efficiently and induces limited rRNA cleavage. Nucleoside modifications also make RNA resistant to cleavage by RNase L. Examining translation in RNase L(-/-) cells and mice confirmed that RNase L activity reduces translation of unmodified mRNA, which is not observed with modified mRNA. Additionally, mRNA containing the nucleoside modification pseudouridine is translated longer and has an extended half-life. The observation that modified nucleosides in RNA reduce 2-5A pathway activation joins OAS and RNase L to the list of RNA sensors and effectors whose functions are limited when RNA is modified, confirming the role of nucleoside modifications in suppressing immune recognition of RNA.

  8. Dereplication of known nucleobase and nucleoside compounds in natural product extracts by capillary electrophoresis-high resolution mass spectrometry.

    Science.gov (United States)

    Chen, Junhui; Shi, Qian; Wang, Yanlong; Li, Zhaoyong; Wang, Shuai

    2015-03-26

    Nucleobase and nucleoside compounds exist widely in various organisms. An often occurring problem in the discovery of new bioactive compounds from natural products is reisolation of known nucleobase and nucleoside compounds. To resolve this problem, a capillary electrophoresis-high resolution mass spectrometry (CE-HR-MS) method providing both rapid separation and accurate mass full-scan MS data was developed for the first time to screen and dereplicate known nucleobase and nucleoside compounds in crude extracts of natural products. Instrumental parameters were optimized to obtain optimum conditions for CE separation and electrospray ionization-time-of-flight mass spectrometry (ESI-TOF/MS) detection. The proposed method was verified to be precise, reproducible, and sensitive. Using this method, known nucleobase and nucleoside compounds in different marine medicinal organisms including Syngnathus acus Linnaeus; Hippocampus japonicus Kaup and Anthopleura lanthogrammica Berkly were successfully observed and identified. This work demonstrates that CE-HR-MS combined with an accurate mass database may be used as a powerful tool for dereplicating known nucleobase and nucleoside compounds in different types of natural products. Rapid dereplication of known nucleobase and nucleoside compounds allows researchers to focus on other leads with greater potential to yield new substances.

  9. Dereplication of Known Nucleobase and Nucleoside Compounds in Natural Product Extracts by Capillary Electrophoresis-High Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Junhui Chen

    2015-03-01

    Full Text Available Nucleobase and nucleoside compounds exist widely in various organisms. An often occurring problem in the discovery of new bioactive compounds from natural products is reisolation of known nucleobase and nucleoside compounds. To resolve this problem, a capillary electrophoresis-high resolution mass spectrometry (CE-HR-MS method providing both rapid separation and accurate mass full-scan MS data was developed for the first time to screen and dereplicate known nucleobase and nucleoside compounds in crude extracts of natural products. Instrumental parameters were optimized to obtain optimum conditions for CE separation and electrospray ionization-time-of-flight mass spectrometry (ESI-TOF/MS detection. The proposed method was verified to be precise, reproducible, and sensitive. Using this method, known nucleobase and nucleoside compounds in different marine medicinal organisms including Syngnathus acus Linnaeus; Hippocampus japonicus Kaup and Anthopleura lanthogrammica Berkly were successfully observed and identified. This work demonstrates that CE-HR-MS combined with an accurate mass database may be used as a powerful tool for dereplicating known nucleobase and nucleoside compounds in different types of natural products. Rapid dereplication of known nucleobase and nucleoside compounds allows researchers to focus on other leads with greater potential to yield new substances.

  10. Can Crystal Symmetry and Packing Influence the Active Site Conformation of Homohexameric Purine Nucleoside Phosphorylases?

    Directory of Open Access Journals (Sweden)

    Marija Luić

    2016-06-01

    Full Text Available It is generaly believed that enzymes retain most of their functionality in the crystal form due to the large solvent content of protein crystals. This is facilitated by the fact that their natural environment in solution is not too far from the one found in the crystal form. Nevertheless, if the nature of the enzyme is such to require conformational changes, overcoming of the crystal packing constraints may prove to be too difficult. Such conformational change is present in one class of enzymes (purine nucleoside phosphorylases, that is the subject of our scientific interest for many years. The influence of crystal symmetry and crystal packing on the conformation of the active sites in the case of homohexameric purine nucleoside phosphorylases is presented and analysed. This work is licensed under a Creative Commons Attribution 4.0 International License.

  11. Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine arabinoside.

    Science.gov (United States)

    Wei, Xiao-Kun; Ding, Qing-Bao; Zhang, Lu; Guo, Yong-Li; Ou, Lin; Wang, Chang-Lu

    2008-07-01

    Nucleoside phosphorylases (NPases) were found to be induced in Enterobacter aerogenes DGO-04, and cytidine and cytidine 5'-monophosphate (CMP) were the best inducers. Five mmol/L to fifteen mmol/L cytidine or CMP could distinctly increase the activities of purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase) and thymidine phosphorylase (TPase) when they were added into medium from 0 to 8 h. In the process of enzymatic synthesis of adenine arabinoside from adenine and uracil arabinoside with wet cells of Enterobacter aerogenes DGO-04 induced by cytidine or CMP, the reaction time could be shortened from 36 to 6 h. After enzymatic reaction the activity of NPase in the cells induced remained higher than that in the cells uninduced.

  12. Crystal structures of HIV-1 reverse transcriptase complexes with thiocarbamate non-nucleoside inhibitors.

    Science.gov (United States)

    Spallarossa, Andrea; Cesarini, Sara; Ranise, Angelo; Ponassi, Marco; Unge, Torsten; Bolognesi, Martino

    2008-01-25

    O-Phthalimidoethyl-N-arylthiocarbamates (TCs) have been recently identified as a new class of potent HIV-1 reverse transcriptase (RT) non-nucleoside inhibitors (NNRTIs), by means of computer-aided drug design techniques [Ranise A. Spallarossa, S. Cesarini, F. Bondavalli, S. Schenone, O. Bruno, G. Menozzi, P. Fossa, L. Mosti, M. La Colla, et al., Structure-based design, parallel synthesis, structure-activity relationship, and molecular modeling studies of thiocarbamates, new potent non-nucleoside HIV-1 reverse transcriptase inhibitor isosteres of phenethylthiazolylthiourea derivatives, J. Med. Chem. 48 (2005) 3858-3873]. To elucidate the atomic details of RT/TC interaction and validate an earlier TC docking model, the structures of three RT/TC complexes were determined at 2.8-3.0A resolution by X-ray crystallography. The conformations adopted by the enzyme-bound TCs were analyzed and compared with those of bioisosterically related NNRTIs.

  13. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    Science.gov (United States)

    Abramchik, Yu. A.; Timofeev, V. I.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2015-07-01

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P21 and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamer is the biological active form of E. coli. purine nucleoside phosphorylase.

  14. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Abramchik, Yu. A., E-mail: inna@ns.crys.ras.ru; Timofeev, V. I., E-mail: espiov@ibch.ru; Zhukhlistova, N. E., E-mail: tostars@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Muravieva, T. I.; Esipov, R. S. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Kuranova, I. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2015-07-15

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamer is the biological active form of E. coli. purine nucleoside phosphorylase.

  15. Three-dimensional structure of E. Coli purine nucleoside phosphorylase at 0.99 Å resolution

    Science.gov (United States)

    Timofeev, V. I.; Abramchik, Yu. A.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2016-03-01

    Purine nucleoside phosphorylases (PNPs) catalyze the reversible phosphorolysis of nucleosides and are key enzymes involved in nucleotide metabolism. They are essential for normal cell function and can catalyze the transglycosylation. Crystals of E. coli PNP were grown in microgravity by the capillary counterdiffusion method through a gel layer. The three-dimensional structure of the enzyme was determined by the molecular-replacement method at 0.99 Å resolution. The structural features are considered, and the structure of E. coli PNP is compared with the structures of the free enzyme and its complexes with purine base derivatives established earlier. A comparison of the environment of the purine base in the complex of PNP with formycin A and of the pyrimidine base in the complex of uridine phosphorylase with thymidine revealed the main structural features of the base-binding sites. Coordinates of the atomic model determined with high accuracy were deposited in the Protein Data Bank (PDB_ID: 4RJ2).

  16. Cloning, Expression, and Purification of Nucleoside Diphosphate Kinase from Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Juhi Sikarwar

    2013-01-01

    Full Text Available Acinetobacter baumannii is a multidrug resistant pathogenic bacteria associated with hospital acquired infections. This bacterium possesses a variety of resistance mechanisms which makes it more difficult to control the bacterium with conventional drugs, and, so far no effective drug treatment is available against it. Nucleoside diphosphate kinase is an important enzyme, which maintains the total nucleotide triphosphate pool inside the cell by the transfer of γ-phosphate from NTPs to NDPs. The role of nucleoside diphosphate kinase (Ndk has also been observed in pathogenesis in other organisms. However, intensive studies are needed to decipher its other putative roles in Acinetobacter baumannii. In the present study, we have successfully cloned the gene encoding Ndk and achieved overexpression in bacterial host BL-21 (DE3. The overexpressed protein is further purified by nickel-nitrilotriacetic acid (Ni-NTA chromatography.

  17. Cloning, Expression, and Purification of Nucleoside Diphosphate Kinase from Acinetobacter baumannii

    Science.gov (United States)

    Sikarwar, Juhi; Kaushik, Sanket; Sinha, Mau; Kaur, Punit; Sharma, Sujata; Singh, Tej P.

    2013-01-01

    Acinetobacter baumannii is a multidrug resistant pathogenic bacteria associated with hospital acquired infections. This bacterium possesses a variety of resistance mechanisms which makes it more difficult to control the bacterium with conventional drugs, and, so far no effective drug treatment is available against it. Nucleoside diphosphate kinase is an important enzyme, which maintains the total nucleotide triphosphate pool inside the cell by the transfer of γ-phosphate from NTPs to NDPs. The role of nucleoside diphosphate kinase (Ndk) has also been observed in pathogenesis in other organisms. However, intensive studies are needed to decipher its other putative roles in Acinetobacter baumannii. In the present study, we have successfully cloned the gene encoding Ndk and achieved overexpression in bacterial host BL-21 (DE3). The overexpressed protein is further purified by nickel-nitrilotriacetic acid (Ni-NTA) chromatography. PMID:23662205

  18. Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine arabinoside

    Institute of Scientific and Technical Information of China (English)

    Xiao-kun WEI; Qing-bao DING; Lu ZHANG; Yong-li GUO; Lin OU; Chang-lu WANG

    2008-01-01

    Nucleoside phosphorylases (NPases) were found to be induced in Enterobacter aerogenes DGO-04, and cytidine and cytidine 5'-monophosphate (CMP) were the best inducers. Five mmol/L to fifteen mmol/L cytidine or CMP could distinctly increase the activities of purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase) and thymidine phosphorylase (TPase) when they were added into medium from 0 to 8 h. In the process of enzymatic synthesis of adenine arabinoside from adenine and uracil arabinoside with wet cells ofEnterobacter aerogenes DCJO-04 induced by cytidine or CMP, the reaction time could be shortened from 36 to 6 h. After enzymatic reaction the activity of NPase in the cells induced remained higher than that in the cells uninduced.

  19. Rapid and liquid-based selection of genetic switches using nucleoside kinase fused with aminoglycoside phosphotransferase.

    Directory of Open Access Journals (Sweden)

    Masahiro Tominaga

    Full Text Available The evolutionary design of genetic switches and circuits requires iterative rounds of positive (ON- and negative (OFF- selection. We previously reported a rapid OFF selection system based on the kinase activity of herpes simplex virus thymidine kinase (hsvTK on the artificial mutator nucleoside dP. By fusing hsvTK with the kanamycin resistance marker aminoglycoside-(3'-phosphotransferase (APH, we established a novel selector system for genetic switches. Due to the bactericidal nature of kanamycin and nucleoside-based lethal mutagenesis, both positive and negative selection could be completed within several hours. Using this new selector system, we isolated a series of homoserine lactone-inducible genetic switches with different expression efficiencies from libraries of the Vibrio fischeri lux promoter in two days, using only liquid handling.

  20. Synthesis of Nucleoside Analogues with Potential Antiviral Activity against Negative Strand RNA Virus Targets

    Science.gov (United States)

    1989-11-01

    75 out by the same enzyme responsible for the first phosphorylation. The primary target for their activity is the DNA polymerisation reaction against...was the 229 first nucleoside analogue to have clinical usage for the treatment of herpetic eye infections. It was closely followed by 5...sequence and also to see whether it was possible to make an acid chloride in the presence of hydroxyl groups or whether polymerisation or other side

  1. Comparison of Clostridium difficile detection by monolayer and by inhibition of nucleoside uptake

    Energy Technology Data Exchange (ETDEWEB)

    Fuhr, J.E.; Trent, D.J.; Collmann, I.R.

    1987-02-01

    Detection and identification of Clostridium difficile toxin by traditional monolayer assay were compared with results obtained by a new procedure based on toxin-dependent inhibition of target cell uptake of a radioactive nucleoside. A high degree of correlation was noted between the two determinations. Although the new procedure was quantitative and objective, its value is seen at present as a rapid screen that may support results obtained in monolayers and as a potential assay for other, currently unidentified, toxins.

  2. Inhibitory Effect of Bridged Nucleosides on Thermus aquaticus DNA Polymerase and Insight into the Binding Interactions.

    Directory of Open Access Journals (Sweden)

    Sung-Kun Kim

    Full Text Available Modified nucleosides have the potential to inhibit DNA polymerases for the treatment of viral infections and cancer. With the hope of developing potent drug candidates by the modification of the 2',4'-position of the ribose with the inclusion of a bridge, efforts were focused on the inhibition of Taq DNA polymerase using quantitative real time PCR, and the results revealed the significant inhibitory effects of 2',4'-bridged thymidine nucleoside on the polymerase. Study on the mode of inhibition revealed the competitive mechanism with which the 2',4'-bridged thymidine operates. With a Ki value of 9.7 ± 1.1 μM, the 2',4'-bridged thymidine proved to be a very promising inhibitor. Additionally, docking analysis showed that all the nucleosides including 2',4'-bridged thymidine were able to dock in the active site, indicating that the substrate analogs reflect a structural complementarity to the enzyme active site. The analysis also provided evidence that Asp610 was a key binding site for 2',4'-bridged thymidine. Molecular dynamics (MD simulations were performed to further understand the conformational variations of the binding. The root-mean-square deviation (RMSD values for the peptide backbone of the enzyme and the nitrogenous base of the inhibitor stabilized within 0.8 and 0.2 ns, respectively. Furthermore, the MD analysis indicates substantial conformational change in the ligand (inhibitor as the nitrogenous base rotated anticlockwise with respect to the sugar moiety, complemented by the formation of several new hydrogen bonds where Arg587 served as a pivot axis for binding formation. In conclusion, the active site inhibition of Taq DNA polymerase by 2',4'-bridged thymidine suggests the potential of bridged nucleosides as drug candidates.

  3. Novel indazole non-nucleoside reverse transcriptase inhibitors using molecular hybridization based on crystallographic overlays.

    Science.gov (United States)

    Jones, Lyn H; Allan, Gill; Barba, Oscar; Burt, Catherine; Corbau, Romuald; Dupont, Thomas; Knöchel, Thorsten; Irving, Steve; Middleton, Donald S; Mowbray, Charles E; Perros, Manos; Ringrose, Heather; Swain, Nigel A; Webster, Robert; Westby, Mike; Phillips, Chris

    2009-02-26

    A major problem associated with non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the treatment of HIV is their lack of resilience to mutations in the reverse transcriptase (RT) enzyme. Using structural overlays of the known inhibitors efavirenz and capravirine complexed in RT as a starting point, and structure-based drug design techniques, we have created a novel series of indazole NNRTIs that possess excellent metabolic stability and mutant resilience.

  4. Synthesis of triazole-nucleoside phosphoramidites and their use in solid-phase oligonucleotide synthesis.

    Science.gov (United States)

    Peel, Brandon J; Efthymiou, Tim C; Desaulniers, Jean-Paul

    2014-12-19

    Triazole-backbone oligonucleotides are macromolecules that have one or more triazole units that are acting as a backbone mimic. Triazoles within the backbone have been used within oligonucleotides for a variety of applications. This unit describes the preparation and synthesis of two triazole-nucleoside phosphoramidites [uracil-triazole-uracil (UtU) and cytosine-triazole-uracil (CtU)] based on a PNA-like scaffold, and their incorporation within oligonucleotides.

  5. The Synthesis and Study of Azole Carboxamide Nucleosides as Agents Active Against RNA Viruses.

    Science.gov (United States)

    1986-09-15

    azole heterocycles and the corresponding nucleosides structurally related to ribavirin have been synthesized. 1,2,4-Triazole, thiazole, pyrrole... Structurally Related to Pyrazofurin . . . .. .. . 18 4. Synthesis of 4-Amino-8-(O--D-ribofuranosylamino)- pyrimido[5,4-dJpyrimidine and Other Miscellaneous...strains of rhinovirus , more than thirty adenovirus strains and over sixty coxsackie and echovirus strains are known. It is virtually impossible or

  6. Determination of nucleosides and nucleobases in the pollen of Typha angustifolia by UPLC-PDA-MS.

    Science.gov (United States)

    Tao, Wei-Wei; Duan, Jin-Ao; Yang, Nian-Yun; Guo, Sheng; Zhu, Zhen-Hua; Tang, Yu-Ping; Qian, Da-Wei

    2012-01-01

    The pollen of Typha angustifolia L. has been used traditionally for the treatment of dysmenorrhea, stranguria and metrorrhagia in China. Recently, nucleosides and nucleobases have been proven as important bioactive compounds. Exploration of the nucleoside and nucleobase profiles from the pollen of T. angustifolia is important for improving its therapeutic value and could be convenient for its quality evaluation. To establish an UPLC-PDA-MS method for simultaneous determination of nucleosides and nucleobases in the pollen of T. angustifolia. The analysis was performed on an Acuity UPLCHSS T3 column with a gradient elution of 5 mM ammonium acetate and methanol solution at a flow rate of 0.3 mL/min. Satisfactory separation of these compounds was obtained in less than 12 min. All calibration curves showed good linear regression (r²  > 0.9995). The method provided good accuracy, precision, recovery, and sensitivity for the quantification of the 10 compounds analysed. The UPLC method established is very helpful for optimising their content and could be convenient for quality evaluation of the pollen of T. angustifolia, which has not been reported as far as we are aware. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Toxicity of nucleoside analogues used to treat AIDS and the selectivity of the mitochondrial DNA polymerase.

    Science.gov (United States)

    Lee, Harold; Hanes, Jeremiah; Johnson, Kenneth A

    2003-12-23

    Incorporation of nucleoside analogues by the mitochondrial DNA polymerase has been implicated as the primary cause underlying many of the toxic side effects of these drugs in HIV therapy. Recent success in reconstituting recombinant human enzyme has afforded a detailed mechanistic analysis of the reactions governing nucleotide selectivity of the polymerase and the proofreading exonuclease. The toxic side effects of nucleoside analogues are correlated with the kinetics of incorporation by the mitochondrial DNA polymerase, varying over 6 orders of magnitude in the sequence zalcitabine (ddC) > didanosine (ddI metabolized to ddA) > stavudine (d4T) > lamivudine (3TC) > tenofovir (PMPA) > zidovudine (AZT) > abacavir (metabolized to carbovir, CBV). In this review, we summarize our current efforts to examine the mechanistic basis for nucleotide selectivity by the mitochondrial DNA polymerase and its role in mitochondrial toxicity of nucleoside analogues used to treat AIDS and other viral infections. We will also discuss the promise and underlying challenges for the development of new analogues with lower toxicity.

  8. The chemistry of nicotinamide adenine dinucleotide (NAD) analogues containing C-nucleosides related to nicotinamide riboside.

    Science.gov (United States)

    Pankiewicz, Krzysztof W; Watanabe, Kyoichi A; Lesiak-Watanabe, Krystyna; Goldstein, Barry M; Jayaram, Hiremagalur N

    2002-04-01

    Oncolytic C-nucleosides, tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide) and benzamide riboside (3-beta-D-ribofuranosylbenzamide) are converted in cell into active metabolites thiazole-4-carboxamide- and benzamide adenine dinucleotide, TAD and BAD, respectively. TAD and BAD as NAD analogues were found to bind at the nicotinamide adenine dinucleotide (cofactor NAD) site of inosine monophosphate dehydrogenase (IMPDH), an important target in cancer treatment. The synthesis and evaluation of anticancer activity of a number of C-nucleosides related to tiazofurin and nicotinamide riboside then followed and are reviewed herein. Interestingly, pyridine C-nucleosides (such as C-nicotinamide riboside) are not metabolized into the corresponding NAD analogues in cell. Their conversion by chemical methods is described. As dinucleotides these compounds show inhibition of IMPDH in low micromolar level. Also, the synthesis of BAD in metabolically stable bis(phosphonate) form is discussed indicating the usefulness of such preformed inhibitors in drug development. Among tiazofurin analogues, Franchetti and Grifantini found, that the replacement of the sulfur by oxygen (as in oxazafurin) but not the removal of nitrogen (tiophenfurin) of the thiazole ring resulted in inactive compounds. The anti cancer activity of their synthetic dinucleotide analogues indicate that inactive compounds are not only poorly metabolized in cell but also are weak inhibitors of IMPDH as dinucleotides.

  9. An unusual UMP C-5 methylase in nucleoside antibiotic polyoxin biosynthesis

    Directory of Open Access Journals (Sweden)

    Wenqing Chen

    2016-07-01

    Full Text Available ABSTRACT Polyoxin is a group of structurally-related peptidyl nucleoside antibiotics bearing C-5 modifications on the nucleoside skeleton. Although the structural diversity and bioactivity preference of polyoxin are, to some extent, affected by such modifications, the biosynthetic logic for their occurence remains obscure. Here we report the identification of PolB in polyoxin pathway as an unusual UMP C-5 methylase with thymidylate synthase activity which is responsible for the C-5 methylation of the nucleoside skeleton. To probe its molecular mechanism, we determined the crystal structures of PolB alone and in complexes with 5-Br UMP and 5-Br dUMP at 2.15 Å, 1.76 Å and 2.28 Å resolutions, respectively. Loop 1 (residues 117–131, Loop 2 (residues 192–201 and the substrate recognition peptide (residues 94–102 of PolB exhibit considerable conformational flexibility and adopt distinct structures upon binding to different substrate analogs. Consistent with the structural findings, a PolB homolog that harbors an identical function from Streptomyces viridochromogenes DSM 40736 was identified. The discovery of UMP C5-methylase opens the way to rational pathway engineering for polyoxin component optimization, and will also enrich the toolbox for natural nucleotide chemistry.

  10. Well-to-wheel analysis of renewable transport fuels: synthetic natural gas from wood gasification and hydrogen from concentrated solar energy[Dissertation 17437

    Energy Technology Data Exchange (ETDEWEB)

    Felder, R.

    2007-07-01

    -to-wheel approach of the study: the supply of the relevant chemical and energetic sources is first presented, followed by the processing to energy carriers, energy transport and distribution and lastly the conversion to useful energy. The study focuses on the gasification and methanation of wood, and hydrogen production using concentrating solar power technologies: the solar thermal ZnO dissociation (STD), the solar carbo-thermic ZnO reduction, which is also an ongoing research project at PSI, and electrolysis using solar thermal electricity, which is the benchmark for the solar thermo-chemical pathways. The fuels are compared to alternative hydrogen production pathways and the standard fuels of today. Chapter D summarizes assumptions for cost calculations of the assessed fuels, again with a focus on concentrating solar power technologies. Results (chapter E) show that a reduction of greenhouse gas emissions by 70% compared to conventional fuels can be achieved with both the solar and the wood methanation options. Environmental issues for STD are particulate emissions, resource consumption and land use associated with the construction of the steel-based concentrating heliostat field. For SNG, particulate and NO{sub x} emissions in the frame of forestry and plant operation are the main issues. According to the Ecoindicator '99 methodology, the total environmental impact for both STD and SNG is reduced by about 40% compared to an advanced gasoline car. Production and supply costs for STD are about 2.5-3.5 times as high as for steam methane reforming, the standard technology of today, also resulting in a relatively low eco-efficiency. SNG demands about twice the production costs of the conventional fuels gasoline and diesel, but shows a high eco-efficiency because of environmental advantages and the relatively economic car construction. No clearly preferable fuel could be identified. From an ecological point of view, hydrogen produced from hydropower and used in a fuel cell car

  11. Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, U.S.A. 2. Mathematical modeling

    Science.gov (United States)

    Jackman, A.P.; Walters, R.A.; Kennedy, V.C.

    1984-01-01

    Three models describing solute transport of conservative ion species and another describing transport of species which adsorb linearly and reversibly on bed sediments are developed and tested. The conservative models are based on three different conceptual models of the transient storage of solute in the bed. One model assumes the bed to be a well-mixed zone with flux of solute into the bed proportional to the difference between stream concentration and bed concentration. The second model assumes solute in the bed is transported by a vertical diffusion process described by Fick's law. The third model assumes that convection occurs in a selected portion of the bed while the mechanism of the first model functions everywhere. The model for adsorbing species assumes that the bed consists of particles of uniform size with the rate of uptake controlled by an intraparticle diffusion process. All models are tested using data collected before, during and after a 24-hr. pulse injection of chloride, strontium, potassium and lead ions into Uvas Creek near Morgan Hill, California, U.S.A. All three conservative models accurately predict chloride ion concentrations in the stream. The model employing the diffusion mechanism for bed transport predicts better than the others. The adsorption model predicts both strontium and potassium ion concentrations well during the injection of the pulse but somewhat overestimates the observed concentrations after the injection ceases. The overestimation may be due to the convection of solute deep into the bed where it is retained longer than the 3-week post-injection observation period. The model, when calibrated for strontium, predicts potassium equally well when the adsorption equilibrium constant for strontium is replaced by that for potassium. ?? 1984.

  12. Estimation of apparent binding constant of complexes of selected acyclic nucleoside phosphonates with β-cyclodextrin by affinity capillary electrophoresis.

    Science.gov (United States)

    Šolínová, Veronika; Mikysková, Hana; Kaiser, Martin Maxmilián; Janeba, Zlatko; Holý, Antonín; Kašička, Václav

    2016-01-01

    Affinity capillary electrophoresis (ACE) has been applied to estimation of apparent binding constant of complexes of (R,S)-enantiomers of selected acyclic nucleoside phosphonates (ANPs) with chiral selector β-cyclodextrin (βCD) in aqueous alkaline medium. The noncovalent interactions of five pairs of (R,S)-enantiomers of ANPs-based antiviral drugs and their derivatives with βCD were investigated in the background electrolyte (BGE) composed of 35 or 50 mM sodium tetraborate, pH 10.0, and containing variable concentration (0-25 mM) of βCD. The apparent binding constants of the complexes of (R,S)-enantiomers of ANPs with βCD were estimated from the dependence of effective electrophoretic mobilities of (R,S)-enantiomers of ANPs (measured simultaneously by ACE at constant reference temperature 25°C inside the capillary) on the concentration of βCD in the BGE using different nonlinear and linear calculation methodologies. Nonlinear regression analysis provided more precise and accurate values of the binding constants and a higher correlation coefficient as compared to the regression analysis of the three linearized plots of the effective mobility dependence on βCD concentration in the BGE. The complexes of (R,S)-enantiomers of ANPs with βCD have been found to be relatively weak - their apparent binding constants determined by the nonlinear regression analysis were in the range 13.3-46.4 L/mol whereas the values from the linearized plots spanned the interval 12.3-55.2 L/mol.

  13. Structural and Preclinical Studies of Computationally Designed Non-Nucleoside Reverse Transcriptase Inhibitors for Treating HIV infection

    Energy Technology Data Exchange (ETDEWEB)

    Kudalkar, Shalley N.; Beloor, Jagadish; Chan, Albert H.; Lee, Won-Gil; Jorgensen, William L.; Kumar, Priti; Anderson, Karen S.

    2017-02-06

    The clinical benefits of HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are hindered by their unsatisfactory pharmacokinetic (PK) properties along with the rapid development of drug-resistant variants. However, the clinical efficacy of these inhibitors can be improved by developing compounds with enhanced pharmacological profiles and heightened antiviral activity. We used computational and structure-guided design to develop two next-generation NNRTI drug candidates, compounds I and II, which are members of a class of catechol diethers. We evaluated the preclinical potential of these compounds in BALB/c mice because of their high solubility (510 µg/ml for compound I and 82.9 µg/ml for compound II), low cytotoxicity, and enhanced antiviral activity against wild-type (WT) HIV-1 RT and resistant variants. Additionally, crystal structures of compounds I and II with WT RT suggested an optimal binding to the NNRTI binding pocket favoring the high anti-viral potency. A single intraperitoneal dose of compounds I and II exhibited a prolonged serum residence time of 48 hours and concentration maximum (Cmax) of 4000- to 15,000-fold higher than their therapeutic/effective concentrations. These Cmax values were 4- to 15-fold lower than their cytotoxic concentrations observed in MT-2 cells. Compound II showed an enhanced area under the curve (0–last) and decreased plasma clearance over compound I and efavirenz, the standard of care NNRTI. Hence, the overall (PK) profile of compound II was excellent compared with that of compound I and efavirenz. Furthermore, both compounds were very well tolerated in BALB/c mice without any detectable acute toxicity. Taken together, these data suggest that compounds I and II possess improved anti-HIV-1 potency, remarkable in vivo safety, and prolonged in vivo circulation time, suggesting strong potential for further development as new NNRTIs for the potential treatment of HIV infection.

  14. The First Synthesis and Anti-retroviral Activity of 5',5'-Difluoro-3'-Hydroxy-Apiosyl Nucleoside Cyclomonophosphonic Acid Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyeon; Hong, Joon Hee [Chosun University, Gwangju (Korea, Republic of)

    2016-04-15

    The first synthesis of novel 5',5'-difluoro-30-hydroxy apiose nucleoside cyclomonophosphonic acid analogs was performed as potent anti-retroviral agents. Phosphonation was performed by direct displacement of a triflate intermediate with diethyl(lithiodifluoromethyl) phosphonate to give the corresponding(α, α-difluoroalkyl) phosphonate. Condensation successfully proceeded from a glycosyl donor with persilylated bases to yield the nucleoside phosphonate analogs. Deprotection of diethyl phosphonates provided the target nucleoside cyclomonophosphonic acid analogs. The synthesized nucleoside analogs were subjected to anti-viral screening against the human immunodeficiency virus-1 (HIV-1). Cytosine analogs show significant anti-HIV activity.

  15. Determination of nucleoside analog mono-, di-, and tri-phosphates in cellular matrix by solid phase extraction and ultra-sensitive LC-MS/MS detection.

    Science.gov (United States)

    Bushman, Lane R; Kiser, Jennifer J; Rower, Joseph E; Klein, Brandon; Zheng, Jia-Hua; Ray, Michelle L; Anderson, Peter L

    2011-09-10

    An ultra-sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assay was developed and validated to facilitate the assessment of clinical pharmacokinetics of nucleotide analogs from lysed intracellular matrix. The method utilized a strong anion exchange isolation of mono-(MP), di-(DP), and tri-phosphates (TP) from intracellular matrix. Each fraction was then dephosphorylated to the parent moiety yielding a molar equivalent to the original nucleotide analog intracellular concentration. The analytical portion of the methodology was optimized in specific nucleoside analog centric modes (i.e. tenofovir (TFV) centric, zidovudine (ZDV) centric), which included desalting/concentration by solid phase extraction and detection by LC-MS/MS. Nucleotide analog MP-, DP-, and TP-determined on the TFV centric mode of analysis include TFV, lamivudine (3TC), and emtricitibine (FTC). The quantifiable linear range for TFV was 2.5-2000 fmol/sample, and that for 3TC/FTC was 0.1 200 pmol/sample. Nucleoside analog MP-, DP-, and TP-determined on the ZDV centric mode of analysis included 3TC and ZDV. The quantifiable linear range for 3TC was 0.1 100 pmol/sample, and 5-2000 fmol/sample for ZDV. Stable labeled isotopic internal standards facilitated accuracy and precision in alternative cell matrices, which supported the intended use of the method for MP, DP, and TP determinations in various cell types. The method was successfully applied to clinical research samples generating novel intracellular information for TFV, FTC, ZDV, and 3TC nucleotides. This document outlines method development, validation, and application to clinical research.

  16. A non-invasive method of measuring concentrations of rubidium in rat skeletal muscle in vivo by 87Rb nuclear magnetic resonance spectroscopy: implications for the measurement of cation transport activity in vivo.

    Science.gov (United States)

    Syme, P D; Dixon, R M; Allis, J L; Aronson, J K; Grahame-Smith, D G; Radda, G K

    1990-03-01

    1. We have used n.m.r. spectroscopy to measure rubidium concentrations in the skeletal muscle of live intact rats. Using a 1.9 T superconducting magnet and an ear-phone coil tuned to both protons (1H) and rubidium (87Rb), it was possible to make measurements of both tissue rubidium content and water content, and from these measurements to obtain the rubidium concentration. 2. The n.m.r. estimate of rubidium concentration in muscle in vivo was found to be a constant 31% (SEM 4%) of that estimated by flame atomic absorption spectroscopy in an extract of excised muscle. This is close to the predicted theoretical n.m.r. visibility of 33%. The visibility was constant for muscle rubidium concentrations ranging between 10 and 34 mmol/l. 3. Rubidium concentration measurement by this method is unaffected by variations in sample geometry, sample volume, tissue conductivity, coil tuning and amplifier gain. 4. By using this method to measure changes in tissue rubidium concentration with time in the same animal, it should now be possible to assess the activity of ion transport systems, such as sodium- and potassium-activated adenosine triphosphatase in vivo, by measuring the rates of change of tissue rubidium concentrations during the administration of rubidium salts. 5. This method could also be used to measure the absolute concentration of any n.m.r.-visible nucleus and could be applied to man.

  17. Derivation of generalized Darcy's law and Fick's law for transport of high concentration species in porous media

    NARCIS (Netherlands)

    Hassanizadeh; S.M.*

    1985-01-01

    In dit rapport wordt een afleiding gegeven voor de algemene vorm van de wet van Darcy en de wet van Fick voor het transport van in water opgeloste stoffen in een poreus medium. De afleiding is gebaseerd op een algemene thermodynamische theorie.

  18. Fine sediment transport by tidal asymmetry in the high-concentrated Ems River: indications for a regime shift in response to channel deepening

    NARCIS (Netherlands)

    Winterwerp, J.C.

    2010-01-01

    This paper describes an analysis of the observed up-river transport of fine sediments in the Ems River, Germany/Netherlands, using a 1DV POINT MODEL, accounting for turbulence-induced flocculation and sediment-induced buoyancy destruction. From this analysis, it is inferred that the net up-river tra

  19. First in situ determination of gas transport coefficients (DO2, DAr and DN2) from bulk gas concentration measurements (O2, N2, Ar) in natural sea ice

    DEFF Research Database (Denmark)

    Crabeck, O.; Delille, B.; Rysgaard, Søren

    2014-01-01

    evolution of an internal gas peak within the ice, we deduced the bulk gas transport coefficients for oxygen (DO2), argon (DAr), and nitrogen (DN2). The values fit to the few existing estimates from experimental work, and are close to the diffusivity values in water (1025 cm2 s21). We suggest that gas...

  20. Prediction of brain target site concentrations on the basis of CSF PK : impact of mechanisms of blood-to-brain transport and within brain distribution

    NARCIS (Netherlands)

    Westerhout, J.

    2014-01-01

    In the development of drugs for the treatment of central nervous system (CNS) disorders, the prediction of human CNS drug action is a big challenge. Direct measurement of brain extracellular fluid (brainECF) concentrations is highly restricted in human. Therefore, unbound drug concentrations in huma

  1. Prediction of brain target site concentrations on the basis of CSF PK : impact of mechanisms of blood-to-brain transport and within brain distribution

    NARCIS (Netherlands)

    Westerhout, J.

    2014-01-01

    In the development of drugs for the treatment of central nervous system (CNS) disorders, the prediction of human CNS drug action is a big challenge. Direct measurement of brain extracellular fluid (brainECF) concentrations is highly restricted in human. Therefore, unbound drug concentrations in

  2. Evaluation of molecularly imprinted polymers using 2',3',5'-tri-O-acyluridines as templates for pyrimidine nucleoside recognition.

    Science.gov (United States)

    Krstulja, Aleksandra; Lettieri, Stefania; Hall, Andrew J; Delépée, Raphael; Favetta, Patrick; Agrofoglio, Luigi A

    2014-10-01

    In this paper, we describe the synthesis and evaluation of molecularly imprinted polymers (MIPs), prepared using 2',3',5'-tri-O-acyluridines as 'dummy' templates, for the selective recognition of uridine nucleosides. The MIPs were synthesised using a non-covalent approach with 2,6-bis-acrylamidopyridine (BAAPy) acting as the binding monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent. The MIPs were evaluated in terms of capacity, selectivity and specificity by analytical and frontal liquid chromatography measurements. The results obtained in organic mobile phases suggest that the nucleosides are specifically bound to the polymer by the complementary hydrogen bonding motifs of the binding monomer and the nucleoside bases. The MIPs exhibited relatively high imprinting factors for 2',3',5'-tri-O-acyluridines, while they did not show any binding capacity for other nucleosides lacking the imide moiety on their base. Moreover, the presence of ester-COO groups in the EGDMA cross-linker may lead to the formation of additional hydrogen bonds with the 2',3' and/or 5'-OH of sugar part, allowing enhancement of the recognition of the uridine nucleosides. In aqueous media, results show that the binding is driven by hydrophobic interactions.

  3. The halo-substituent effect on Pseudomonas cepacia lipase-mediated regioselective acylation of nucleosides: A comparative investigation.

    Science.gov (United States)

    Wang, Zhao-Yu; Bi, Yan-Hong; Yang, Rong-Ling; Duan, Zhang-Qun; Nie, Ling-Hong; Li, Xiang-Qian; Zong, Min-Hua; Wu, Jie

    2015-10-20

    In this work, comparative experiments were explored to investigate the substrate specificity of Pseudomonas cepacia lipase in regioselective acylation of nucleosides carrying various substituents (such as the H, F, Cl, Br, I) at 2'- and 5-positions. Experimental data indicated that the catalytic performance of the enzyme depended very much on the halo-substituents in nucleosides. The increased bulk of 2'-substituents in ribose moiety of the nucleoside might contribute to the improved 3'-regioselectivity (90-98%, nucleosides a-d) in enzymatic decanoylation, while the enhancement of regioselectivity (93-99%) in 3'-O-acylated nucleosides e-h could be attributable to the increasing hydrophobicity of the halogen atoms at 5-positions. With regard to the chain-length selectivity, P. cepacia lipase displayed the highest 3'-regioselectivity toward the longer chain (C14) as compared to shorter (C6 and C10) ones. The position, orientation and property of the substituent, specific structure of the lipase's active site, and acyl structure could account for the diverse results.

  4. A novel nucleoside kinase from Burkholderia thailandensis: a member of the phosphofructokinase B-type family of enzymes.

    Science.gov (United States)

    Ota, Hiroko; Sakasegawa, Shin-Ichi; Yasuda, Yuko; Imamura, Shigeyuki; Tamura, Tomohiro

    2008-12-01

    The genome of the mesophilic Gram-negative bacterium Burkholderia thailandensis contains an open reading frame (i.e. the Bth_I1158 gene) that has been annotated as a putative ribokinase and PFK-B family member. Notably, although the deduced amino acid sequence of the gene showed only 29% similarity to the recently identified nucleoside kinase from hyperthermophilic archaea Methanocaldococcus jannaschii, 15 of 17 residues reportedly involved in the catalytic activity of M. jannaschii nucleoside kinase were conserved. The gene was cloned and functionally overexpressed in Rhodococcus erythropolis, and the purified enzyme was characterized biochemically. The substrate specificity of the enzyme was unusually broad for a bacterial PFK-B protein, and the specificity extended not only to purine and purine-analog nucleosides but also to uridine. Inosine was the most effective phosphoryl acceptor, with the highest k(cat)/K(m) value (80 s(-1).mm(-1)) being achieved when ATP served as the phosphoryl donor. By contrast, this enzyme exhibited no activity toward ribose, indicating that the recombinant enzyme was a nucleoside kinase rather than a ribokinase. To our knowledge, this is the first detailed analysis of a bacterial nucleoside kinase in the PFK-B family.

  5. Environment-responsive fluorescent nucleoside analogue probe for studying oligonucleotide dynamics in a model cell-like compartment.

    Science.gov (United States)

    Pawar, Maroti G; Srivatsan, Seergazhi G

    2013-11-21

    The majority of fluorescent nucleoside analogue probes that have been used in the in vitro study of nucleic acids are not suitable for cell-based biophysical assays because they exhibit excitation maxima in the UV region and low quantum yields within oligonucleotides. Therefore, we propose that the photophysical characterization of oligonucleotides labeled with a fluorescent nucleoside analogue in reverse micelles (RM), which are good biological membrane models and UV-transparent, could provide an alternative approach to studying the properties of nucleic acids in a cell-like confined environment. In this context, we describe the photophysical properties of an environment-sensitive fluorescent uridine analogue (1), based on the 5-(benzo[b]thiophen-2-yl)pyrimidine core, in micelles and RM. The emissive nucleoside, which is polarity- and viscosity-sensitive, reports the environment of the surfactant assemblies via changes in its fluorescence properties. The nucleoside analogue, incorporated into an RNA oligonucleotide and hybridized to its complementary DNA and RNA oligonucleotides, exhibits a significantly higher fluorescence intensity, lifetime, and anisotropy in RM than in aqueous buffer, which is consistent with the environment of RM. Collectively, our results demonstrate that nucleoside 1 could be utilized as a fluorescent label to study the function of nucleic acids in a model cellular milieu.

  6. In vivo reshaping the catalytic site of nucleoside 2'-deoxyribosyltransferase for dideoxy- and didehydronucleosides via a single amino acid substitution.

    Science.gov (United States)

    Kaminski, Pierre Alexandre; Dacher, Priscilla; Dugué, Laurence; Pochet, Sylvie

    2008-07-18

    Nucleoside 2'-deoxyribosyltransferases catalyze the transfer of 2-deoxyribose between bases and have been widely used as biocatalysts to synthesize a variety of nucleoside analogs. The genes encoding nucleoside 2'-deoxyribosyltransferase (ndt) from Lactobacillus leichmannii and Lactobacillus fermentum underwent random mutagenesis to select variants specialized for the synthesis of 2',3'-dideoxynucleosides. An Escherichia coli strain, auxotrophic for uracil and unable to use 2',3'-dideoxyuridine, cytosine, and 2',3'-dideoxycytidine as a source of uracil was constructed. Randomly mutated lactobacilli ndt libraries from two species, L. leichmannii and L. fermentum, were screened for the production of uracil with 2',3'-dideoxyuridine as a source of uracil. Several mutants suitable for the synthesis of 2',3'-dideoxynucleosides were isolated. The nucleotide sequence of the corresponding genes revealed a single mutation (G --> A transition) leading to the substitution of a small aliphatic amino acid by a nucleophilic one, A15T (L. fermentum) or G9S (L. leichmannii), respectively. We concluded that the "adaptation" of the nucleoside 2'-deoxyribosyltransferase activity to 2,3-dideoxyribosyl transfer requires an additional hydroxyl group on a key amino acid side chain of the protein to overcome the absence of such a group in the corresponding substrate. The evolved proteins also display significantly improved nucleoside 2',3'-didehydro-2',3'-dideoxyribosyltransferase activity.

  7. Inhibition by cromoglycate and some flavonoids of nucleoside diphosphate kinase and of exocytosis from permeabilized mast cells.

    Science.gov (United States)

    Martin, M. W.; O'Sullivan, A. J.; Gomperts, B. D.

    1995-01-01

    1. The anti-allergic compound, cromoglycate, is reported to possess affinity for, and to suppress the autophosphorylation of a 72kDa protein having the sequence of nucleoside diphosphate kinase (NDPK). 2. We have tested the ability of cromoglycate, and a panel of ten structurally related flavonoids of plant origin, to inhibit the NDPK reaction and the exocytotic process of permeabilized mast cells. The conditions of permeabilization (use of an isotonic medium based on sodium glutamate) were selected to ensure that NDPK activity would be an essential component in the induction of Ca(2+)-induced exocytosis in which ATP is required for generation of GTP. For comparison, we also measured the inhibition of exocytosis induced by GTP-gamma-S; this proceeds in the absence of ATP and bypasses the need for NDPK activity. 3. We found that cromoglycate does not discriminate between Ca2+ and GTP-gamma-S-induced exocytosis and is a poor inhibitor of NDPK activity. Concentrations in the millimolar range are required for inhibition of all these functions. By comparison, many of the flavonoids are effective at concentrations in the micromolar range. 4. While we were unable to discern any systematic relationships between their ability to inhibit the three functions, two compounds, quercetin and genistein, inhibit Ca(2+)-induced, but not GTP-gamma-S-induced exocytosis. Inhibition of the late stages of the stimulus-response pathway in mast cells by these compounds is therefore likely to be due to inhibition of NDPK and the consequent failure to generate GTP. PMID:7582506

  8. Simultaneous quantification and splenocyte-proliferating activities of nucleosides and bases in Cervi cornu Pantotrichum

    Directory of Open Access Journals (Sweden)

    Ying Zong

    2014-01-01

    Full Text Available Background: Cervi Cornu Pantotrichum has been a well known traditional Chinese medicine, which is young horn of Cervus Nippon Temminck (Hualurong: HLR. At present, the methods used for the quality control of Cervi Cornu Pantotrichum show low specificity. Objective: To describe a holistic method based on chemical characteristics and splenocyte-proliferating activities to evaluate the quality of HLR. Materials and Methods: The nucleosides and bases from HLR were identified by high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS, and six of them were chosen to be used for simultaneous HPLC quantification according to the results of proliferation of mouse splenocytes in vitro. Results: In this study, eight nucleosides and bases have been identified. In addition, uracil, hypoxanthine, uridine, inosine, guanosine, and adenosine were chosen to be used for simultaneous HPLC quantification. Simultaneous quantification of these six substances was performed on ten groups of HLR under the condition of a TIANHE Kromasil C 18 column (5 μm, 4.6 mm × 250 mm i.d. and a gradient elution of water and acetonitrile. Of the ten groups, HLR displayed the highest total nucleoside contents (TNC, sum of adenosine and uracil, 0.412 mg/g with the strongest splenocyte-proliferating activities. Conclusion: These results suggest that TNC (such as particularly highly contained adenosine and uracil in HLR has a certain correlation with the activity of splenocyte-proliferating, and it may be used as a quality control for HLR. This comprehensive method could be applied to other traditional Chinese medicines to ameliorate their quality control.

  9. Enhancement of peripheral nerve regrowth by the purine nucleoside analog and cell cycle inhibitor, roscovitine

    Directory of Open Access Journals (Sweden)

    Vincent Law

    2016-10-01

    Full Text Available Peripheral nerve regeneration is a slow process that can be associated with limited outcomes and thus, a search for novel and effective therapy for peripheral nerve injury and disease is crucial. Here, we found that roscovitine, a synthetic purine nucleoside analog, enhances neurite outgrowth in neuronal-like PC12 cells. Furthermore, ex vivo analysis of pre-injured adult rat dorsal root ganglion neurons showed that roscovitine enhances neurite regrowth in these cells. Likewise, in vivo transected sciatic nerves in rats locally perfused with roscovitine had augmented repopulation of new myelinated axons beyond the transection zone. By mass spectrometry, we found that roscovitine interacts with tubulin and actin. It interacts directly with tubulin and causes a dose-dependent induction of tubulin polymerization as well as enhances GTP-dependent tubulin polymerization. Conversely, roscovitine interacts indirectly with actin and counteracts the inhibitory effect of Cdk5 on Arp2/3-dependent actin polymerization, and thus, causes actin polymerization. Moreover, in the presence of neurotrophic factors such as NGF, roscovitine-enhanced neurite outgrowth is mediated by increased activation of the ERK1/2 and p38 MAPK pathways. Since microtubule and F-actin dynamics are critical for axonal regrowth, the ability of roscovitine to activate the ERK1/2 and p38 MAPK pathways, and support polymerization of tubulin and actin indicate a major role for this purine nucleoside analog in the promotion of axonal regeneration. Together, our findings demonstrate a therapeutic potential for the purine nucleoside analog, roscovitine, in peripheral nerve injury.

  10. Enhancement of Peripheral Nerve Regrowth by the Purine Nucleoside Analog and Cell Cycle Inhibitor, Roscovitine.

    Science.gov (United States)

    Law, Vincent; Dong, Sophie; Rosales, Jesusa L; Jeong, Myung-Yung; Zochodne, Douglas; Lee, Ki-Young

    2016-01-01

    Peripheral nerve regeneration is a slow process that can be associated with limited outcomes and thus a search for novel and effective therapy for peripheral nerve injury and disease is crucial. Here, we found that roscovitine, a synthetic purine nucleoside analog, enhances neurite outgrowth in neuronal-like PC12 cells. Furthermore, ex vivo analysis of pre-injured adult rat dorsal root ganglion (DRG) neurons showed that roscovitine enhances neurite regrowth in these cells. Likewise, in vivo transected sciatic nerves in rats locally perfused with roscovitine had augmented repopulation of new myelinated axons beyond the transection zone. By mass spectrometry, we found that roscovitine interacts with tubulin and actin. It interacts directly with tubulin and causes a dose-dependent induction of tubulin polymerization as well as enhances Guanosine-5'-triphosphate (GTP)-dependent tubulin polymerization. Conversely, roscovitine interacts indirectly with actin and counteracts the inhibitory effect of cyclin-dependent kinases 5 (Cdk5) on Actin-Related Proteins 2/3 (Arp2/3)-dependent actin polymerization, and thus, causes actin polymerization. Moreover, in the presence of neurotrophic factors such as nerve growth factor (NGF), roscovitine-enhanced neurite outgrowth is mediated by increased activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways. Since microtubule and F-actin dynamics are critical for axonal regrowth, the ability of roscovitine to activate the ERK1/2 and p38 MAPK pathways and support polymerization of tubulin and actin indicate a major role for this purine nucleoside analog in the promotion of axonal regeneration. Together, our findings demonstrate a therapeutic potential for the purine nucleoside analog, roscovitine, in peripheral nerve injury.

  11. The Crystal Structure of Streptococcus pyogenes Uridine Phosphorylase Reveals a Distinct Subfamily of Nucleoside Phosphorylases

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Timothy H.; Christoffersen, S.; Allan, Paula W.; Parker, William B.; Piskur, Jure; Serra, I.; Terreni, M.; Ealick, Steven E. (Cornell); (Pavia); (Lund); (Southern Research)

    2011-09-20

    Uridine phosphorylase (UP), a key enzyme in the pyrimidine salvage pathway, catalyzes the reversible phosphorolysis of uridine or 2'-deoxyuridine to uracil and ribose 1-phosphate or 2'-deoxyribose 1-phosphate. This enzyme belongs to the nucleoside phosphorylase I superfamily whose members show diverse specificity for nucleoside substrates. Phylogenetic analysis shows Streptococcus pyogenes uridine phosphorylase (SpUP) is found in a distinct branch of the pyrimidine subfamily of nucleoside phosphorylases. To further characterize SpUP, we determined the crystal structure in complex with the products, ribose 1-phosphate and uracil, at 1.8 {angstrom} resolution. Like Escherichia coli UP (EcUP), the biological unit of SpUP is a hexamer with an ?/? monomeric fold. A novel feature of the active site is the presence of His169, which structurally aligns with Arg168 of the EcUP structure. A second active site residue, Lys162, is not present in previously determined UP structures and interacts with O2 of uracil. Biochemical studies of wild-type SpUP showed that its substrate specificity is similar to that of EcUP, while EcUP is {approx}7-fold more efficient than SpUP. Biochemical studies of SpUP mutants showed that mutations of His169 reduced activity, while mutation of Lys162 abolished all activity, suggesting that the negative charge in the transition state resides mostly on uracil O2. This is in contrast to EcUP for which transition state stabilization occurs mostly at O4.

  12. Analysis of the Main Nucleosides in Cordyceps Sinensis by LC/ESI-MS

    Directory of Open Access Journals (Sweden)

    Yun-Biao He

    2010-01-01

    Full Text Available A sensitive, selective and reliable liquid chromatography-mass spectrometry coupled with electrospray ionization interface method for simultaneous separation and determination of thymine, adenine, adenosine and cordycepin in Cordyceps sinensis has been established. The optimum separation for these analytes was achieved using a gradient elution system and a 2.0 × 150 mm Shimadzu VP-ODS column. 2-Chloroadenosine was used as internal standard for this assay. [M+H]+ions at m/z 127, 136, 268, 252 and 302 were chosen and selective ion monitoring (SIM mode was used for quantitative analysis of the four main nucleosides. The regression equations were linear in the range of 1.0–117.5 μg·mL-1 for thymine, 1.8-127.0 μg·mL-1 for adenine, 0.6-114.0 μg·mL-1 for adenosine and 0.5-107.5 μg·mL-1 for cordycepin. The limits of quantitation (LOQ and detection (LOD were 1.0 and 0.2 μg·mL-1 for thymine, 1.8 and 0.6 μg·mL-1 for adenine, 0.6 and 0.1 μg·mL-1 for adenosine and 0.5 and 0.1 μg·mL-1 for cordycepin, respectively. The recoveries of the four nucleosides ranged from 98.47 to 99.32%. The developed method was successfully used to determine nucleosides in Cordyceps sinensis from different sources.

  13. An intersubunit disulfide bridge stabilizes the tetrameric nucleoside diphosphate kinase of Aquifex aeolicus.

    Science.gov (United States)

    Boissier, Fanny; Georgescauld, Florian; Moynié, Lucile; Dupuy, Jean-William; Sarger, Claude; Podar, Mircea; Lascu, Ioan; Giraud, Marie-France; Dautant, Alain

    2012-06-01

    The nucleoside diphosphate kinase (Ndk) catalyzes the reversible transfer of the γ-phosphate from nucleoside triphosphate to nucleoside diphosphate. Ndks form hexamers or two types of tetramers made of the same building block, namely, the common dimer. The secondary interfaces of the Type I tetramer found in Myxococcus xanthus Ndk and of the Type II found in Escherichia coli Ndk involve the opposite sides of subunits. Up to now, the few available structures of Ndk from thermophiles were hexameric. Here, we determined the X-ray structures of four crystal forms of the Ndk from the hyperthermophilic bacterium Aquifex aeolicus (Aa-Ndk). Aa-Ndk displays numerous features of thermostable proteins and is made of the common dimer but it is a tetramer of Type I. Indeed, the insertion of three residues in a surface-exposed spiral loop, named the Kpn-loop, leads to the formation of a two-turn α-helix that prevents both hexamer and Type II tetramer assembly. Moreover, the side chain of the cysteine at position 133, which is not present in other Ndk sequences, adopts two alternate conformations. Through the secondary interface, each one forms a disulfide bridge with the equivalent Cys133 from the neighboring subunit. This disulfide bridge was progressively broken during X-ray data collection by radiation damage. Such crosslinks counterbalance the weakness of the common-dimer interface. A 40% decrease of the kinase activity at 60°C after reduction and alkylation of the protein corroborates the structural relevance of the disulfide bridge on the tetramer assembly and enzymatic function.

  14. Enantioselective Supramolecular Carriers for Nucleoside Drugs. A Thermodynamic and Kinetic Gas Phase Investigation

    Science.gov (United States)

    Fraschetti, Caterina; Filippi, Antonello; Crestoni, Maria Elisa; Villani, Claudio; Roselli, Graziella; Mortera, Stefano Levi; Speranza, Maurizio

    2012-10-01

    The enantioselective interactions between chiral tetra-amidic receptors and nucleosides have been investigated by the ESI-IT-MS and ESI-FT-ICR-MS methodologies. Configurational effects on the CID fragmentation of diastereomeric [ M H 2 •H•A] + aggregates (A = 2'-deoxycytidine dC, citarabine ( ara-C) were found to be mostly offset by isotope effect in [ S X 2 •H•A] + (X = H, D) differently from the results obtained on the analogues (A = cytidine C and gemcitabine G). This result points the involvement of two different nucleoside/tetraamide isoforms. The structural differences of the [ M H 2 •H•A] + (A = C and G) complexes vs. the [ M H 2 •H•A] + ( dC and ara-C) ones is fully confirmed by the kinetics of their uptake of the 2-aminobutane enantiomers, measured by FT-ICR mass spectrometry. Indeed, uptake of the 2-aminobutane enantiomers by [ M H n •H•A] + (n = 1,2; A = dC and ara-C) complexes is reversible, while that by [ M H n •H•A] + (n = 1,2; A = C and G) is not. The most encouraging result concerning the measured fragmentation and kinetic differences between C and ara-C, that are just epimers, indicates the possibility to subtly modulate the non-covalent drug/receptor interactions, through the electronic properties of the 2'-substituent on the nucleoside furanose ring, and furthermore on its three-dimensional position.

  15. Enhancement of Peripheral Nerve Regrowth by the Purine Nucleoside Analog and Cell Cycle Inhibitor, Roscovitine

    Science.gov (United States)

    Law, Vincent; Dong, Sophie; Rosales, Jesusa L.; Jeong, Myung-Yung; Zochodne, Douglas; Lee, Ki-Young

    2016-01-01

    Peripheral nerve regeneration is a slow process that can be associated with limited outcomes and thus a search for novel and effective therapy for peripheral nerve injury and disease is crucial. Here, we found that roscovitine, a synthetic purine nucleoside analog, enhances neurite outgrowth in neuronal-like PC12 cells. Furthermore, ex vivo analysis of pre-injured adult rat dorsal root ganglion (DRG) neurons showed that roscovitine enhances neurite regrowth in these cells. Likewise, in vivo transected sciatic nerves in rats locally perfused with roscovitine had augmented repopulation of new myelinated axons beyond the transection zone. By mass spectrometry, we found that roscovitine interacts with tubulin and actin. It interacts directly with tubulin and causes a dose-dependent induction of tubulin polymerization as well as enhances Guanosine-5′-triphosphate (GTP)-dependent tubulin polymerization. Conversely, roscovitine interacts indirectly with actin and counteracts the inhibitory effect of cyclin-dependent kinases 5 (Cdk5) on Actin-Related Proteins 2/3 (Arp2/3)-dependent actin polymerization, and thus, causes actin polymerization. Moreover, in the presence of neurotrophic factors such as nerve growth factor (NGF), roscovitine-enhanced neurite outgrowth is mediated by increased activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways. Since microtubule and F-actin dynamics are critical for axonal regrowth, the ability of roscovitine to activate the ERK1/2 and p38 MAPK pathways and support polymerization of tubulin and actin indicate a major role for this purine nucleoside analog in the promotion of axonal regeneration. Together, our findings demonstrate a therapeutic potential for the purine nucleoside analog, roscovitine, in peripheral nerve injury.

  16. Simultaneous quantification and splenocyte-proliferating activities of nucleosides and bases in Cervi cornu Pantotrichum

    Science.gov (United States)

    Zong, Ying; Wang, Yu; Li, Hang; Li, Na; Zhang, Hui; Sun, Jiaming; Niu, Xiaohui; Gao, Xiaochen

    2014-01-01

    Background: Cervi Cornu Pantotrichum has been a well known traditional Chinese medicine, which is young horn of Cervus Nippon Temminck (Hualurong: HLR). At present, the methods used for the quality control of Cervi Cornu Pantotrichum show low specificity. Objective: To describe a holistic method based on chemical characteristics and splenocyte-proliferating activities to evaluate the quality of HLR. Materials and Methods: The nucleosides and bases from HLR were identified by high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS), and six of them were chosen to be used for simultaneous HPLC quantification according to the results of proliferation of mouse splenocytes in vitro. Results: In this study, eight nucleosides and bases have been identified. In addition, uracil, hypoxanthine, uridine, inosine, guanosine, and adenosine were chosen to be used for simultaneous HPLC quantification. Simultaneous quantification of these six substances was performed on ten groups of HLR under the condition of a TIANHE Kromasil C18 column (5 μm, 4.6 mm × 250 mm i.d.) and a gradient elution of water and acetonitrile. Of the ten groups, HLR displayed the highest total nucleoside contents (TNC, sum of adenosine and uracil, 0.412 mg/g) with the strongest splenocyte-proliferating activities. Conclusion: These results suggest that TNC (such as particularly highly contained adenosine and uracil) in HLR has a certain correlation with the activity of splenocyte-proliferating, and it may be used as a quality control for HLR. This comprehensive method could be applied to other traditional Chinese medicines to ameliorate their quality control. PMID:25422536

  17. Nucleoside drugs induce cellular differentiation by caspase-dependent degradation of stem cell factors.

    Directory of Open Access Journals (Sweden)

    Tanja Musch

    Full Text Available BACKGROUND: Stem cell characteristics are an important feature of human cancer cells and play a major role in the therapy resistance of tumours. Strategies to target cancer stem cells are thus of major importance for cancer therapy. Differentiation therapy by nucleoside drugs represents an attractive approach for the elimination of cancer stem cells. However, even if it is generally assumed that the activity of these drugs is mediated by their ability to modulate epigenetic pathways, their precise mode of action remains to be established. We therefore analysed the potential of three nucleoside analogues to induce differentiation of the embryonic cancer stem cell line NTERA 2 D1 and compared their effect to the natural ligand retinoic acid. METHODOLOGY/PRINCIPAL FINDINGS: All nucleoside analogues analyzed, but not retinoic acid, triggered proteolytic degradation of the Polycomb group protein EZH2. Two of them, 3-Deazaneplanocin A (DZNep and 2'-deoxy-5-azacytidine (decitabine, also induced a decrease in global DNA methylation. Nevertheless, only decitabine and 1beta-arabinofuranosylcytosine (cytarabine effectively triggered neuronal differentiation of NT2 cells. We show that drug-induced differentiation, in contrast to retinoic acid induction, is caused by caspase activation, which mediates depletion of the stem cell factors NANOG and OCT4. Consistent with this observation, protein degradation and differentiation could be counteracted by co-treatment with caspase inhibitors or by depletion of CASPASE-3 and CASPASE-7 through dsRNA interference. In agreement with this, OCT4 was found to be a direct in-vitro-target of CASPASE-7. CONCLUSIONS/SIGNIFICANCE: We show that drug-induced differentiation is not a consequence of pharmacologic epigenetic modulation, but is induced by the degradation of stem-cell-specific proteins by caspases. Our results thus uncover a novel pathway that induces differentiation of embryonic cancer stem cells and is triggered by

  18. Influence of Quantum Dot Concentration on Carrier Transport in ZnO:TiO2 Nano-Hybrid Photoanodes for Quantum Dot-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Francis S. Maloney

    2016-10-01

    Full Text Available Zinc oxide nanowire and titanium dioxide nanoparticle (ZnO:TiO2 NW/NP hybrid films were utilized as the photoanode layer in quantum dot-sensitized solar cells (QDSSCs. CdSe quantum dots (QDs with a ZnS passivation layer were deposited on the ZnO:TiO2 NW/NP layer as a photosensitizer by successive ion layer adsorption and reaction (SILAR. Cells were fabricated using a solid-state polymer electrolyte and intensity-modulated photovoltage and photocurrent spectroscopy (IMVS/PS was carried out to study the electron transport properties of the cell. Increasing the SILAR coating number enhanced the total charge collection efficiency of the cell. The electron transport time constant and diffusion length were found to decrease as more QD layers were added.

  19. Squalenoyl nucleoside monophosphate nanoassemblies: new prodrug strategy for the delivery of nucleotide analogues.

    Science.gov (United States)

    Caron, Joachim; Reddy, L Harivardhan; Lepêtre-Mouelhi, Sinda; Wack, Séverine; Clayette, Pascal; Rogez-Kreuz, Christine; Yousfi, Rahima; Couvreur, Patrick; Desmaële, Didier

    2010-05-01

    4-(N)-1,1',2-trisnor-squalenoyldideoxycytidine monophosphate (SQddC-MP) and 4-(N)-1,1',2-trisnor-squalenoylgemcitabine monophosphate (SQdFdC-MP) were synthesized using phosphoramidite chemistry. These amphiphilic molecules self-assembled to about hundred nanometers size nanoassemblies in aqueous medium. Nanoassemblies of SQddC-MP displayed significant anti-HIV activity whereas SQdFdC-MP nanoassemblies displayed promising anticancer activity on leukemia cells. These results suggested that squalene conjugate of negatively charged nucleotide analogues efficiently penetrated within cells. Thus, we propose a new prodrug strategy for improved delivery of nucleoside analogues to ameliorate their biological efficacy.

  20. Distal sensory polyneuropathy in human immunodeficiency virus patients and nucleoside analogue antiretroviral agents

    Directory of Open Access Journals (Sweden)

    Jose Jimmy

    2007-01-01

    Full Text Available Distal sensory polyneuropathy, which occur commonly in human immunodeficiency virus (HIV patients can occur as a consequence of the disease itself or the antiretroviral treatment the patient is receiving. Among the antiretroviral agents, nucleoside analogues are commonly associated with neuropathy and the main underlying mechanism is thought to be the mitochondrial toxicity exhibited by these agents. Clinical presentation of antiretroviral induced neuropathy is similar to that associated with the HIV infection and in many patients they may overlap. Treatment is primarily symptomatic and certain pathogenesis-based approaches have shown promising results.

  1. Evaluation of localized bacterial infection using radioisotope-labeled nucleosides imaging modality

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Lee, Yong Jin; Lee, Tae Sup; Kim, Kwang Il; Lee, Kyo Chul; An, Gwang II; Cheon, Gi Jeong; Lim, Sang Moo [KIRAMS, Seoul (Korea, Republic of); Lim, Sang Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Conventional diagnostic methods for infections are difficult to distinguish localized bacterial infections from sites of sterile inflammation. For this reason, the importance of developing methods to image bacterial infections is widely recognized. In this study to acquire bacterial infection imaging with radiolabeled nucleosides, in vitro bacterial thymidine kinase (tk) activities of Salmonella typhimurium with [{sup 18}F]FLT and [{sup 125}I]IVDU were measured and localized infections model in BALB/c mice was imaged with [{sup 18}F]FLT or [{sup 125}I]FIAU

  2. Synthesis of conformationally locked carbocyclic 1,3-diazepinone nucleosides as inhibitors of cytidine deaminase.

    Science.gov (United States)

    Ludek, Olaf R; Schroeder, Gottfried K; Wolfenden, Richard; Marquez, Victor E

    2008-01-01

    We synthesized a series of carbocyclic nucleoside inhibitors of cytidine deaminase (CDA) based on a seven-membered 1,3-diazepin-2-one moiety. In the key step, the seven-membered ring was formed by a ring-closing-metathesis reaction. Therefore, the bis-allyl-urea moiety had to be protected by benzoylation in order to obtain an orientation suitable for ring closure. To our surprise, the analogue built on a flexible sugar template (4) showed a 100-fold stronger inhibition of CDA than the derivative with the preferred south-conformation.

  3. Synthesis of conformationally locked carbocyclic 1,3-diazepinone nucleosides as inhibitors of cytidine deaminase

    OpenAIRE

    Ludek, Olaf R.; Schroeder, Gottfried K.; Wolfenden, Richard; Marquez, Victor E.

    2008-01-01

    We synthesized a series of carbocyclic nucleoside inhibitors of cytidine deaminase (CDA) based on a seven-membered 1,3-diazepin-2-one moiety. In the key step, the seven-membered ring was formed by a ringclosing- metathesis reaction. Therefore, the bis-allylurea moiety had to be protected by benzoylation in order to obtain an orientation suitable for ring closure. To our surprise, the analogue built on a flexible sugar template (4) showed a 100-fold stronger inhibition of CDA than the derivati...

  4. Synthesis and in vitro growth inhibitory activity of novel silyl- and trityl-modified nucleosides

    CSIR Research Space (South Africa)

    Panayides, Jenny-Lee

    2016-06-01

    Full Text Available -Farkas d, Hajierah Davids d,e , Leonie Harmse d , M. E. Christine Rey f , Ivan R. Green g, Stephen C. Pelly g, Robert Kiss c, Alexander Kornienko h, Willem A. L. van Otterlo a,g,⇑ a Molecular Sciences Institute, School of Chemistry, University... & Medicinal Chemistry 24 (2016) 2716–2724 Synthesis and in vitro growth inhibitory activity of novel silyl- and trityl-modified nucleosides Jenny-Lee Panayides a,b, Véronique Mathieu c, Laetitia Moreno Y. Banuls c, Helen Apostolellis d, Nurit Dahan...

  5. Focus on Chirality of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors

    Directory of Open Access Journals (Sweden)

    Valeria Famiglini

    2016-02-01

    Full Text Available Chiral HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs are of great interest since one enantiomer is often more potent than the corresponding counterpart against the HIV-1 wild type (WT and the HIV-1 drug resistant mutant strains. This review exemplifies the various studies made to investigate the effect of chirality on the antiretroviral activity of top HIV-1 NNRTI compounds, such as nevirapine (NVP, efavirenz (EFV, alkynyl- and alkenylquinazolinone DuPont compounds (DPC, diarylpyrimidine (DAPY, dihydroalkyloxybenzyloxopyrimidine (DABO, phenethylthiazolylthiourea (PETT, indolylarylsulfone (IAS, arylphosphoindole (API and trifluoromethylated indole (TFMI The chiral separation, the enantiosynthesis, along with the biological properties of these HIV-1 NNRTIs, are discussed.

  6. Ethenoguanines undergo glycosylation by nucleoside 2'-deoxyribosyltransferases at non-natural sites.

    Directory of Open Access Journals (Sweden)

    Wenjie Ye

    Full Text Available Deoxyribosyl transferases and functionally related purine nucleoside phosphorylases are used extensively for synthesis of non-natural deoxynucleosides as pharmaceuticals or standards for characterizing and quantitating DNA adducts. Hence exploring the conformational tolerance of the active sites of these enzymes is of considerable practical interest. We have determined the crystal structure at 2.1 Å resolution of Lactobacillus helveticus purine deoxyribosyl transferase (PDT with the tricyclic purine 8,9-dihydro-9-oxoimidazo[2,1-b]purine (N2,3-ethenoguanine at the active site. The active site electron density map was compatible with four orientations, two consistent with sites for deoxyribosylation and two appearing to be unproductive. In accord with the crystal structure, Lactobacillus helveticus PDT glycosylates the 8,9-dihydro-9-oxoimidazo[2,1-b]purine at N7 and N1, with a marked preference for N7. The activity of Lactobacillus helveticus PDT was compared with that of the nucleoside 2'-deoxyribosyltransferase enzymes (DRT Type II from Lactobacillus leichmannii and Lactobacillus fermentum, which were somewhat more effective in the deoxyribosylation than Lactobacillus helveticus PDT, glycosylating the substrate with product profiles dependent on the pH of the incubation. The purine nucleoside phosphorylase of Escherichia coli, also commonly used in ribosylation of non-natural bases, was an order of magnitude less efficient than the transferase enzymes. Modeling based on published active-site structures as templates suggests that in all cases, an active site Phe is critical in orienting the molecular plane of the purine derivative. Adventitious hydrogen bonding with additional active site residues appears to result in presentation of multiple nucleophilic sites on the periphery of the acceptor base for ribosylation to give a distribution of nucleosides. Chemical glycosylation of O9-benzylated 8,9-dihydro-9-oxoimidazo[2,1-b]purine also resulted

  7. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry

    Science.gov (United States)

    Gaston, Kirk W; Limbach, Patrick A

    2014-01-01

    The analysis of ribonucleic acids (RNA) by mass spectrometry has been a valuable analytical approach for more than 25 years. In fact, mass spectrometry has become a method of choice for the analysis of modified nucleosides from RNA isolated out of biological samples. This review summarizes recent progress that has been made in both nucleoside and oligonucleotide mass spectral analysis. Applications of mass spectrometry in the identification, characterization and quantification of modified nucleosides are discussed. At the oligonucleotide level, advances in modern mass spectrometry approaches combined with the standard RNA modification mapping protocol enable the characterization of RNAs of varying lengths ranging from low molecular weight short interfering RNAs (siRNAs) to the extremely large 23 S rRNAs. New variations and improvements to this protocol are reviewed, including top-down strategies, as these developments now enable qualitative and quantitative measurements of RNA modification patterns in a variety of biological systems. PMID:25616408

  8. Screening of new non-nucleoside reverse transcriptase inhibitors of HIV-1 based on traditional Chinese medicines database

    Institute of Scientific and Technical Information of China (English)

    Tao Liu; Ai Xiu Li; You Pan Miao; Ke Zhu Wu; Yi Ma

    2009-01-01

    HIV-1 RT is an important target for the treatment of AIDS. There are two major classes of antiviral agents that inhibit HIV-1 RT have been identified, nucleoside RT inhibitors (NRTIs) and non-nucleoside RT inhibitors (NNRTIs). In this report, a noval class of non-nucleoside compound with potential RT inhibitory activity were found from the traditional Chinese medicines database (TCMD) using a combination of virtual screening, docking, molecular dynamic simulations, where results were ranked by scoring function of the docking tool. The result indicates that M4753 (a compound derived from TCMD) has not only the lowest bonding energy but also the best match in geometric conformation with the forthcoming NNRTIs. Accordingly M4753 might possibly become a promising lead compound of NNRTIs for AIDS therapy.

  9. Mutation in the phosphoribosylpyrophosphate synthetase gene (prs) that results in simultaneous requirements for purine and pyrimidine nucleosides, nicotinamide nucleotide, histidine, and tryptophan in Escherichia coli

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    1988-01-01

    , histidine, tryptophan, and nicotinamide mononucleotide were all added to the growth medium. Viability of the strain was dependent upon mutations in genes of the nucleoside salvage pathways that improved the utilization of exogenous nucleosides. The properties of the strain are those expected of a PRPP...

  10. Sensitive assessment of the virologic outcomes of stopping and restarting non-nucleoside reverse transcriptase inhibitor-based antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Anna Maria Geretti

    Full Text Available BACKGROUND: Non-nucleoside reverse transcriptase inhibitor (NNRTI-resistant mutants have been shown to emerge after interruption of suppressive NNRTI-based antiretroviral therapy (ART using routine testing. The aim of this study was to quantify the risk of resistance by sensitive testing and correlate the detection of resistance with NNRTI concentrations after treatment interruption and virologic responses after treatment resumption. METHODS: Resistance-associated mutations (RAMs and NNRTI concentrations were studied in plasma from 132 patients who interrupted suppressive ART within SMART. RAMs were detected by Sanger sequencing, allele-specific PCR, and ultra-deep sequencing. NNRTI concentrations were measured by sensitive high-performance liquid chromatography. RESULTS: Four weeks after NNRTI interruption, 19/31 (61.3% and 34/39 (87.2% patients showed measurable nevirapine (>0.25 ng/ml or efavirenz (>5 ng/ml concentrations, respectively. Median eight weeks after interruption, 22/131 (16.8% patients showed ≥1 NNRTI-RAM, including eight patients with NNRTI-RAMs detected only by sensitive testing. The adjusted odds ratio (OR of NNRTI-RAM detection was 7.62 (95% confidence interval [CI] 1.52, 38.30; p = 0.01 with nevirapine or efavirenz concentrations above vs. below the median measured in the study population. Staggered interruption, whereby nucleos(tide reverse transcriptase inhibitors (NRTIs were continued for median nine days after NNRTI interruption, did not prevent NNRTI-RAMs, but increased detection of NRTI-RAMs (OR 4.25; 95% CI 1.02, 17.77; p = 0.03. After restarting NNRTI-based ART (n = 90, virologic suppression rates <400 copies/ml were 8/13 (61.5% with NNRTI-RAMs, 7/11 (63.6% with NRTI-RAMs only, and 51/59 (86.4% without RAMs. The ORs of re-suppression were 0.18 (95% CI 0.03, 0.89 and 0.17 (95% CI 0.03, 1.15 for patients with NNRTI-RAMs or NRTI-RAMs only respectively vs. those without RAMs (p = 0.04. CONCLUSIONS

  11. In vitro and ex vivo inhibition of human telomerase by anti-HIV nucleoside reverse transcriptase inhibitors (NRTIs but not by non-NRTIs.

    Directory of Open Access Journals (Sweden)

    Kyle R Hukezalie

    Full Text Available Telomerase is a specialized reverse transcriptase responsible for the de novo synthesis of telomeric DNA repeats. In addition to its established reverse transcriptase and terminal transferase activities, recent reports have revealed unexpected cellular activities of telomerase, including RNA-dependent RNA polymerization. This telomerase characteristic, distinct from other reverse transcriptases, indicates that clinically relevant reverse transcriptase inhibitors might have unexpected telomerase inhibition profiles. This is particularly important for the newer generation of RT inhibitors designed for anti-HIV therapy, which have reported higher safety margins than older agents. Using an in vitro primer extension assay, we tested the effects of clinically relevant HIV reverse transcriptase inhibitors on cellular telomerase activity. We observed that all commonly used nucleoside reverse transcriptase inhibitors (NRTIs, including zidovudine, stavudine, tenofovir, didanosine and abacavir, inhibit telomerase effectively in vitro. Truncated telomere synthesis was consistent with the expected mode of inhibition by all tested NRTIs. Through dose-response experiments, we established relative inhibitory potencies of NRTIs on in vitro telomerase activity as compared to the inhibitory potencies of the corresponding dideoxynucleotide triphosphates. In contrast to NRTIs, the non-nucleoside reverse transcriptase inhibitors (NNRTIs nevirapine and efavirenz did not inhibit the primer extension activity of telomerase, even at millimolar concentrations. Long-term, continuous treatment of human HT29 cells with select NRTIs resulted in an accelerated loss of telomere repeats. All tested NRTIs exhibited the same rank order of inhibitory potencies on telomerase and HIV RT, which, according to published data, were orders-of-magnitude more sensitive than other DNA polymerases, including the susceptible mitochondria-specific DNA polymerase gamma. We concluded that

  12. A multi-step process of viral adaptation to a mutagenic nucleoside analogue by modulation of transition types leads to extinction-escape.

    Directory of Open Access Journals (Sweden)

    Rubén Agudo

    Full Text Available Resistance of viruses to mutagenic agents is an important problem for the development of lethal mutagenesis as an antiviral strategy. Previous studies with RNA viruses have documented that resistance to the mutagenic nucleoside analogue ribavirin (1-β-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide is mediated by amino acid substitutions in the viral polymerase that either increase the general template copying fidelity of the enzyme or decrease the incorporation of ribavirin into RNA. Here we describe experiments that show that replication of the important picornavirus pathogen foot-and-mouth disease virus (FMDV in the presence of increasing concentrations of ribavirin results in the sequential incorporation of three amino acid substitutions (M296I, P44S and P169S in the viral polymerase (3D. The main biological effect of these substitutions is to attenuate the consequences of the mutagenic activity of ribavirin -by avoiding the biased repertoire of transition mutations produced by this purine analogue-and to maintain the replicative fitness of the virus which is able to escape extinction by ribavirin. This is achieved through alteration of the pairing behavior of ribavirin-triphosphate (RTP, as evidenced by in vitro polymerization assays with purified mutant 3Ds. Comparison of the three-dimensional structure of wild type and mutant polymerases suggests that the amino acid substitutions alter the position of the template RNA in the entry channel of the enzyme, thereby affecting nucleotide recognition. The results provide evidence of a new mechanism of resistance to a mutagenic nucleoside analogue which allows the virus to maintain a balance among mutation types introduced into progeny genomes during replication under strong mutagenic pressure.

  13. A multi-step process of viral adaptation to a mutagenic nucleoside analogue by modulation of transition types leads to extinction-escape.

    Science.gov (United States)

    Agudo, Rubén; Ferrer-Orta, Cristina; Arias, Armando; de la Higuera, Ignacio; Perales, Celia; Pérez-Luque, Rosa; Verdaguer, Nuria; Domingo, Esteban

    2010-08-26

    Resistance of viruses to mutagenic agents is an important problem for the development of lethal mutagenesis as an antiviral strategy. Previous studies with RNA viruses have documented that resistance to the mutagenic nucleoside analogue ribavirin (1-β-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) is mediated by amino acid substitutions in the viral polymerase that either increase the general template copying fidelity of the enzyme or decrease the incorporation of ribavirin into RNA. Here we describe experiments that show that replication of the important picornavirus pathogen foot-and-mouth disease virus (FMDV) in the presence of increasing concentrations of ribavirin results in the sequential incorporation of three amino acid substitutions (M296I, P44S and P169S) in the viral polymerase (3D). The main biological effect of these substitutions is to attenuate the consequences of the mutagenic activity of ribavirin -by avoiding the biased repertoire of transition mutations produced by this purine analogue-and to maintain the replicative fitness of the virus which is able to escape extinction by ribavirin. This is achieved through alteration of the pairing behavior of ribavirin-triphosphate (RTP), as evidenced by in vitro polymerization assays with purified mutant 3Ds. Comparison of the three-dimensional structure of wild type and mutant polymerases suggests that the amino acid substitutions alter the position of the template RNA in the entry channel of the enzyme, thereby affecting nucleotide recognition. The results provide evidence of a new mechanism of resistance to a mutagenic nucleoside analogue which allows the virus to maintain a balance among mutation types introduced into progeny genomes during replication under strong mutagenic pressure.

  14. Design, synthesis and evaluation of constrained methoxyethyl (cMOE) and constrained ethyl (cEt) nucleoside analogs.

    Science.gov (United States)

    Seth, Punit P; Siwkowski, Andrew; Allerson, Charles R; Vasquez, Guillermo; Lee, Sam; Prakash, Thazha P; Kinberger, Garth; Migawa, Michael T; Gaus, Hans; Bhat, Balkrishen; Swayze, Eric E

    2008-01-01

    Antisense drug discovery technology is a powerful method to modulate gene expression in animals and represents a novel therapeutic platform.(1) We have previously demonstrated that replacing 2'O-methoxyethyl (MOE, 2) residues in second generation antisense oligonucleotides (ASOs) with LNA (3) nucleosides improves the potency of some ASOs in animals. However, this was accompanied with a significant increase in the risk for hepatotoxicity.(2) We hypothesized that replacing LNA with novel nucleoside monomers that combine the structural elements of MOE and LNA might mitigate the toxicity of LNA while maintaining potency. To this end we designed and prepared novel nucleoside analogs 4 (S-constrained MOE, S-cMOE) and 5 (R-constrained MOE, R-cMOE) where the ethyl chain of the 2'O-MOE moiety is constrained back to the 4' position of the furanose ring. As part of the SAR series, we also prepared nucleoside analogs 7 (S-constrained ethyl, S-cEt) and 8 (R-constrained Ethyl, R-cEt) where the methoxymethyl group in the cMOE nucleosides was replaced with a methyl substituent. A highly efficient synthesis of the nucleoside phosphoramidites with minimal chromatography purifications was developed starting from cheap commercially available starting materials. Biophysical evaluation revealed that the cMOE and cEt modifications hybridize complementary nucleic acids with the same affinity as LNA while greatly increasing nuclease stability. Biological evaluation of oligonucleotides containing the cMOE and cEt modification in animals indicated that all of them possessed superior potency as compared to second generation MOE ASOs and a greatly improved toxicity profile as compared to LNA.

  15. Effects of isoleucine on glucose uptake through the enhancement of muscular membrane concentrations of GLUT1 and GLUT4 and intestinal membrane concentrations of Na+/glucose co-transporter 1 (SGLT-1) and GLUT2.

    Science.gov (United States)

    Zhang, Shihai; Yang, Qing; Ren, Man; Qiao, Shiyan; He, Pingli; Li, Defa; Zeng, Xiangfang

    2016-08-01

    Knowledge of regulation of glucose transport contributes to our understanding of whole-body glucose homoeostasis and human metabolic diseases. Isoleucine has been reported to participate in regulation of glucose levels in many studies; therefore, this study was designed to examine the effect of isoleucine on intestinal and muscular GLUT expressions. In an animal experiment, muscular GLUT and intestinal GLUT were determined in weaning pigs fed control or isoleucine-supplemented diets. Supplementation of isoleucine in the diet significantly increased piglet average daily gain, enhanced GLUT1 expression in red muscle and GLUT4 expression in red muscle, white muscle and intermediate muscle (P<0·05). In additional, expressions of Na+/glucose co-transporter 1 and GLUT2 were up-regulated in the small intestine when pigs were fed isoleucine-supplemented diets (P<0·05). C2C12 cells were used to examine the expressions of muscular GLUT and glucose uptake in vitro. In C2C12 cells supplemented with isoleucine in the medium, cellular 2-deoxyglucose uptake was increased (P<0·05) through enhancement of the expressions of GLUT4 and GLUT1 (P<0·05). The effect of isoleucine was greater than that of leucine on glucose uptake (P<0·05). Compared with newborn piglets, 35-d-old piglets have comparatively higher GLUT4, GLUT2 and GLUT5 expressions. The results of this study demonstrated that isoleucine supplementation enhanced the intestinal and muscular GLUT expressions, which have important implications that suggest that isoleucine could potentially increase muscle growth and intestinal development by enhancing local glucose uptake in animals and human beings.

  16. Tropospheric distribution of sulphate aerosols mass and number concentration during INDOEX-IFP and its transport over the Indian Ocean: a GCM study

    Science.gov (United States)

    Verma, S.; Boucher, O.; Shekar Reddy, M.; Upadhyaya, H. C.; Le Van, P.; Binkowski, F. S.; Sharma, O. P.

    2012-07-01

    The sulphate aerosols mass and number concentration during the Indian Ocean Experiment (INDOEX) Intensive Field Phase-1999 (INDOEX-IFP) has been simulated using an interactive chemistry GCM. The model considers an interactive scheme for feedback from chemistry to meteorology with internally resolving microphysical properties of aerosols. In particular, the interactive scheme has the ability to predict both particle mass and number concentration for the Aitken and accumulation modes as prognostic variables. On the basis of size distribution retrieved from the observations made along the cruise route during IFP-1999, the model successfully simulates the order of magnitude of aerosol number concentration. The results show the southward migration of minimum concentrations, which follows ITCZ (Inter Tropical Convergence Zone) migration. Sulphate surface concentration during INDOEX-IFP at Kaashidhoo (73.46° E, 4.96° N) gives an agreement within a factor of 2 to 3. The measured aerosol optical depth (AOD) from all aerosol species at KCO was 0.37 ± 0.11 while the model simulated sulphate AOD ranged from 0.05 to 0.11. As sulphate constitutes 29% of the observed AOD, the model predicted values of sulphate AOD are hence fairly close to the measured values. The model thus has capability to predict the vertically integrated column sulphate burden. Furthermore, the model results indicate that Indian contribution to the estimated sulphate burden over India is more than 60% with values upto 40% over the Arabian Sea.

  17. N2-(1-Methoxycarbonylethyl)guanosine, a new nucleoside coupled with an amino acid derivative from Amanita exitialis

    Institute of Scientific and Technical Information of China (English)

    Yu Lang Chi; Hui Ye Zhang; Jing Hua Xue; Jing Hao; Mei Fang Liu; Xiao Yi Wei

    2009-01-01

    A new purine nucleoside coupled with an amino acid derivative, N2-(1-methoxycarbonylethyl)guanosine 1, along with βearboline and russulaceramide was isolated from the fruiting bodies ofAmanita exitialis, a newly described poisonous mushroom. Its structure was elucidated by spectroscopic methods. This is the first report of naturally occurring nucleosides in which an α-amino acid derivative is bonded through its a-amino nitrogen to a nucleobase aglycone by a C-N bond. The new compound was found to be toxic in brine shrimp lethality test (BST).

  18. L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular L-glutamate concentration in neuroinflammation

    Directory of Open Access Journals (Sweden)

    Takaki Junpei

    2012-12-01

    Full Text Available Abstract Background In the central nervous system, astrocytic L-glutamate (L-Glu transporters maintain extracellular L-Glu below neurotoxic levels, but their function is impaired with neuroinflammation. Microglia become activated with inflammation; however, the correlation between activated microglia and the impairment of L-Glu transporters is unknown. Methods We used a mixed culture composed of astrocytes, microglia, and neurons. To quantify L-Glu transporter function, we measured the extracellular L-Glu that remained 30 min after an application of L-Glu to the medium (the starting concentration was 100 μM. We determined the optimal conditions of lipopolysaccharide (LPS treatment to establish an inflammation model without cell death. We examined the predominant subtypes of L-Glu transporters and the changes in the expression levels of these transporters in this inflammation model. We then investigated the role of activated microglia in the changes in L-Glu transporter expression and the underlying mechanisms in this inflammation model. Results Because LPS (10 ng/mL, 72 h caused a significant increase in the levels of L-Glu remaining but did not affect cell viability, we adopted this condition for our inflammation model without cell death. GLAST was the predominant L-Glu transporter subtype, and its expression decreased in this inflammation model. As a result of their release of L-Glu, activated microglia were shown to be essential for the significant decrease in L-Glu uptake. The serial application of L-Glu caused a significant decrease in L-Glu uptake and GLAST expression in the astrocyte culture. The hemichannel inhibitor carbenoxolone (CBX inhibited L-Glu release from activated microglia and ameliorated the decrease in GLAST expression in the inflammation model. In addition, the elevation of the astrocytic intracellular L-Glu itself caused the downregulation of GLAST. Conclusions Our findings suggest that activated microglia trigger the

  19. Cloning, expression and characterization of a nucleoside diphosphate kinase (NDPK) gene from tobacco

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nucleoside diphosphate kinase (NDPK) is a housekeeping enzyme that maintains the intracellular levels of all (d)NTPs used in biosynthesis except ATP. Here we report that a full-length cDNA encoding nucleoside diphosphate kinase (NDPK) was cloned using yeast two-hybrid approach. A tobacco NDPK gene was obtained and designated as NtNDPK1 . NtNDPK1 is 704 bp in length and encodes a putative 16.2 kD protein of 148 amino acids. Phylogenic analysis showed that NtNDPK1 is highly homologous to other plant NDPK genes and identified as type Ⅰ (NDPK1). RNA-gel blot analysis showed that there was no significant difference of NtNDPK1 expression in roots, stems, leaves and buds. And expression of NtNDPK1 was induced by ABA and PEG and repressed by NaCl, but not significantly affected by Paraquat, wounding and low temperature (4℃) treatments, indicating that NtNDPK1 may play a certain role in response to abiotic stress. In vitro phosphorylation assay demonstrated that NtNDPK1 had autophosphorylation activity.

  20. Structural determinants of the 5'-methylthioinosine specificity of Plasmodium purine nucleoside phosphorylase.

    Directory of Open Access Journals (Sweden)

    Teraya M Donaldson

    Full Text Available Plasmodium parasites rely upon purine salvage for survival. Plasmodium purine nucleoside phosphorylase is part of the streamlined Plasmodium purine salvage pathway that leads to the phosphorylysis of both purines and 5'-methylthiopurines, byproducts of polyamine synthesis. We have explored structural features in Plasmodium falciparum purine nucleoside phosphorylase (PfPNP that affect efficiency of catalysis as well as those that make it suitable for dual specificity. We used site directed mutagenesis to identify residues critical for PfPNP catalytic activity as well as critical residues within a hydrophobic pocket required for accommodation of the 5'-methylthio group. Kinetic analysis data shows that several mutants had disrupted binding of the 5'-methylthio group while retaining activity for inosine. A triple PfPNP mutant that mimics Toxoplasma gondii PNP had significant loss of 5'-methylthio activity with retention of inosine activity. Crystallographic investigation of the triple mutant PfPNP with Tyr160Phe, Val66Ile, andVal73Ile in complex with the transition state inhibitor immucillin H reveals fewer hydrogen bond interactions for the inhibitor in the hydrophobic pocket.

  1. [Production and study of Bacillus subtilis mutants for genes involved in nucleoside catabolism].

    Science.gov (United States)

    Rumiantseva, E V; Sukhodolets, V V; Smirnov, Iu V

    1979-01-01

    By means of selection for a low thymine requirement the mutants fo thymine auxotrophs for deoxyriboaldolase (dra) and phosphodeoxyribomutase (drm) genes were obtained. Besides the mutants for pyrimidinenucleoside phosphorylase gene (pdp) were olso isolated using selection on the fluorodeoxyuridine resistance. The latter enzyme provides for pyrimidine nucleosides catabolism (thymidine, uridine) in Bacilli, as well as the conversion of exogenous thymine to thymidine in thymine auxotrophs. The data obtained when studying the deo-enzymes activities in various types of the mutants and also under the condition of induction by thymidine and acetoaldehyde are in accordance with the assumption that deoxyriboso-5-phosphate is an inductor of the deo-enzymes in Bacillus subtilis. The genes dra and pdp were tightly linked as it had been shown by the transformation experiments; in contrast, no linkage was revealed between dra and drm or pdp and drm. A secondary mutation (adn), not linked with dra and blocking the ability of bacteria to catabolise adenosine (purine nucleoside phosphorylase activity remains constant) was found in some dra-mutants.

  2. Acanthamoeba polyphaga mimivirus NDK: preliminary crystallographic analysis of the first viral nucleoside diphosphate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Jeudy, Sandra [Information Génomique et Structurale, CNRS UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Coutard, Bruno [Architecture et Fonction des Macromolecules Biologiques, CNRS UMR 6098, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Lebrun, Régine [IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Abergel, Chantal, E-mail: chantal.abergel@igs.cnrs-mrs.fr [Information Génomique et Structurale, CNRS UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France)

    2005-06-01

    A. polyphaga mimivirus, the largest known double-stranded DNA virus, is the first virus to exhibit a nucleoside diphosphate kinase gene. The expression and crystallization of the viral NDK are reported. The complete sequence of the largest known double-stranded DNA virus, Acanthamoeba polyphaga mimivirus, has recently been determined [Raoult et al. (2004 ▶), Science, 306, 1344–1350] and revealed numerous genes not expected to be found in a virus. A comprehensive structural and functional study of these gene products was initiated [Abergel et al. (2005 ▶), Acta Cryst. F61, 212–215] both to better understand their role in the virus physiology and to obtain some clues to the origin of DNA viruses. Here, the preliminary crystallographic analysis of the viral nucleoside diphosphate kinase protein is reported. The crystal belongs to the cubic space group P2{sub 1}3, with unit-cell parameter 99.425 Å. The self-rotation function confirms that there are two monomers per asymmetric unit related by a twofold non-crystallographic axis and that the unit cell thus contains four biological entities.

  3. [Nucleoside-5'-triphosphate hydrolysis in the liver and kidney of rats with chronic alloxan diabetes].

    Science.gov (United States)

    Rusina, I M; Makarchikov, A F; Makar, E A; Kubyshin, V L

    2006-01-01

    Activity and some properties of a soluble enzyme hydrolyzing nucleoside-5'-triphosphates were studied in the liver and kidney of normal and diabetic rats. The enzyme activity was shown to be reduced by 34% (p < 0.01) in the liver extracts of diabetic animals, while no difference was observed in the kidney. When ITP was used as substrate, the apparent Michaelis constant of the enzyme was significantly lower in the liver of controls as compared to experimental rats (32.3 +/- 1.3 microM and 54.3 +/- 1.0 microM, respectively, p < 0.01). The KM values of the enzyme in the kidney were not distinguishable in both groups. NTPase exhibits maximal activity at pH 7.0 and has a broad substrate specificity with respect to different nucleoside-5'-tri- and diphosphates. Molecular mass of the enzyme was estimated by gel filtration to be 63.7 +/- 0.9 kD.

  4. Highly reliable heterologous system for evaluating resistance of clinical herpes simplex virus isolates to nucleoside analogues.

    Science.gov (United States)

    Bestman-Smith, J; Schmit, I; Papadopoulou, B; Boivin, G

    2001-04-01

    Clinical resistance of herpes simplex virus (HSV) types 1 and 2 to acyclovir (ACV) is usually caused by the presence of point mutations within the coding region of the viral thymidine kinase (TK) gene. The distinction between viral TK mutations involved in ACV resistance or part of viral polymorphism can be difficult to evaluate with current methodologies based on transfection and homologous recombination. We have developed and validated a new heterologous system based on the expression of the viral TK gene by the protozoan parasite Leishmania, normally devoid of TK activity. The viral TK genes from 5 ACV-susceptible and 13 ACV-resistant clinical HSV isolates and from the reference strains MS2 (type 2) and KOS (type 1) were transfected as part of an episomal expression vector in Leishmania. The susceptibility of TK-recombinant parasites to ganciclovir (GCV), a closely related nucleoside analogue, was evaluated by a simple measurement of the absorbance of Leishmania cultures grown in the presence of the drug. Expression of the TK gene from ACV-susceptible clinical isolates resulted in Leishmania susceptibility to GCV, whereas expression of a TK gene with frameshift mutations or nucleotide substitutions from ACV-resistant isolates gave rise to parasites with high levels of GCV resistance. The expression of the HSV TK gene in Leishmania provides an easy, reliable, and sensitive assay for evaluating HSV susceptibility to nucleoside analogues and for assessing the role of specific viral TK mutations.

  5. A luciferase-based screening method for inhibitors of alphavirus replication applied to nucleoside analogues.

    Science.gov (United States)

    Pohjala, Leena; Barai, Vladimir; Azhayev, Alex; Lapinjoki, Seppo; Ahola, Tero

    2008-06-01

    Several members of the widespread alphavirus group are pathogenic, but no therapy is available to treat these RNA virus infections. We report here a quantitative assay to screen for inhibitors of Semliki Forest virus (SFV) replication, and demonstrate the effects of 29 nucleosides on SFV and Sindbis virus replication. The anti-SFV assay developed is based on a SFV strain containing Renilla luciferase inserted after the nsP3 coding region, yielding a marker virus in which the luciferase is cleaved out during polyprotein processing. The reporter-gene assay was miniaturized, automated and validated, resulting in a Z' value of 0.52. [3H]uridine labeling for 1 h at the maximal viral RNA synthesis time point was used as a comparative method. Anti-SFV screening and counter-screening for cell viability led to the discovery of several new SFV inhibitors. 3'-amino-3'-deoxyadenosine was the most potent inhibitor in this set, with an IC50 value of 18 microM in the reporter-gene assay and 2 microM in RNA synthesis rate detection. Besides the 3'-substituted analogues, certain N6-substituted nucleosides had similar IC50 values for both SFV and Sindbis replication, suggesting the applicability of this methodology to alphaviruses in general.

  6. Non-nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability

    Directory of Open Access Journals (Sweden)

    Iris Usach

    2013-09-01

    Full Text Available Introduction: Human immunodeficiency virus (HIV type-1 non-nucleoside and nucleoside reverse transcriptase inhibitors (NNRTIs are key drugs of highly active antiretroviral therapy (HAART in the clinical management of acquired immune deficiency syndrome (AIDS/HIV infection. Discussion: First-generation NNRTIs, nevirapine (NVP, delavirdine (DLV and efavirenz (EFV are drugs with a low genetic barrier and poor resistance profile, which has led to the development of new generations of NNRTIs. Second-generation NNRTIs, etravirine (ETR and rilpivirine (RPV have been approved by the Food and Drug Administration and European Union, and the next generation of drugs is currently being clinically developed. This review describes recent clinical data, pharmacokinetics, metabolism, pharmacodynamics, safety and tolerability of commercialized NNRTIs, including the effects of sex, race and age differences on pharmacokinetics and safety. Moreover, it summarizes the characteristics of next-generation NNRTIs: lersivirine, GSK 2248761, RDEA806, BILR 355 BS, calanolide A, MK-4965, MK-1439 and MK-6186. Conclusions: This review presents a wide description of NNRTIs, providing useful information for researchers interested in this field, both in clinical use and in research.

  7. Methylated nucleosides in tRNA and tRNA methyltransferases

    Directory of Open Access Journals (Sweden)

    Hiroyuki eHori

    2014-05-01

    Full Text Available To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s. Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon–anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.

  8. Synthesis and Biological Evaluation of Triazolyl 13α-Estrone–Nucleoside Bioconjugates

    Directory of Open Access Journals (Sweden)

    Brigitta Bodnár

    2016-09-01

    Full Text Available 2′-Deoxynucleoside conjugates of 13α-estrone were synthesized by applying the copper-catalyzed alkyne–azide click reaction (CuAAC. For the introduction of the azido group the 5′-position of the nucleosides and a propargyl ether functional group on the 3-hydroxy group of 13α-estrone were chosen. The best yields were realized in our hands when the 3′-hydroxy groups of the nucleosides were protected by acetyl groups and the 5′-hydroxy groups were modified by the tosyl–azide exchange method. The commonly used conditions for click reaction between the protected-5′-azidonucleosides and the steroid alkyne was slightly modified by using 1.5 equivalent of Cu(I catalyst. All the prepared conjugates were evaluated in vitro by means of MTT assays for antiproliferative activity against a panel of human adherent cell lines (HeLa, MCF-7 and A2780 and the potential inhibitory activity of the new conjugates on human 17β-hydroxysteroid dehydrogenase 1 (17β-HSD1 was investigated via in vitro radiosubstrate incubation. Some protected conjugates displayed moderate antiproliferative properties against a panel of human adherent cancer cell lines (the protected cytidine conjugate proved to be the most potent with IC50 value of 9 μM. The thymidine conjugate displayed considerable 17β-HSD1 inhibitory activity (IC50 = 19 μM.

  9. Expression of Genes for Drug Transporters in the Human Female Genital Tract and Modulatory Effect of Antiretroviral Drugs.

    Directory of Open Access Journals (Sweden)

    Karolin Hijazi

    Full Text Available Anti-retroviral (ARV -based microbicides are one of the strategies pursued to prevent HIV-1 transmission. Delivery of ARV drugs to subepithelial CD4+ T cells at concentrations for protection is likely determined by drug transporters expressed in the cervicovaginal epithelium. To define the role of drug transporters in mucosal disposition of topically applied ARV-based microbicides, these must be tested in epithelial cell line-based biopharmaceutical assays factoring the effect of relevant drug transporters. We have characterised gene expression of influx and efflux drug transporters in a panel of cervicovaginal cell lines and compared this to expression in cervicovaginal tissue. We also investigated the effect of dapivirine, darunavir and tenofovir, currently at advanced stages of microbicides development, on expression of drug transporters in cell lines. Expression of efflux ABC transporters in cervical tissue was best represented in HeLa, Ect1/E6E7 and End1/E6E7 cell lines. Expression of influx OCT and ENT transporters in ectocervix matched expression in Hela while expression of influx SLCO transporters in vagina was best reflected in VK2/E6E7 cell line. Stimulation with darunavir and dapivirine upregulated MRP transporters, including MRP5 involved in transport of tenofovir. Dapivirine also significantly downregulated tenofovir substrate MRP4 in cervical cell lines. Treatment with darunavir and dapivirine showed no significant effect on expression of BCRP, MRP2 and P-glycoprotein implicated in efflux of different ARV drugs. Darunavir strongly induced expression in most cell lines of CNT3 involved in cell uptake of nucleotide/nucleoside analogue reverse transcriptase inhibitors and SLCO drug transporters involved in cell uptake of protease inhibitors. This study provides insight into the suitability of cervicovaginal cell lines for assessment of ARV drugs in transport kinetics studies. The modulatory effect of darunavir and dapivirine on

  10. Identification of the source of benzene concentrations at Texas City during SHARP using an adjoint neighborhood-scale transport model and a receptor model

    Science.gov (United States)

    Buzcu-Guven, Birnur; Olaguer, Eduardo P.; Herndon, Scott C.; Kolb, Charles E.; Knighton, W. Berk; Cuclis, Alex E.

    2013-07-01

    Aerodyne Research Inc. mobile laboratory performed real-time in-situ measurements of volatile organic compounds, nitrogen oxides, and formaldehyde in Texas City, Texas on 7 May 2009 during the Formaldehyde and olefins from Large Industrial Releases experiment of the 2009 Study of Houston Atmospheric Radical Precursors (SHARP) campaign. Our goal was to identify and quantify emission sources within the largest industrial facility in Texas City most likely responsible for measured concentrations of benzene, an important VOC and hazardous air pollutant. The Houston Advanced Research Center inverse air quality model has been used to infer benzene emission rates from all potential source locations that could account for the benzene concentrations measured by the mobile lab in the vicinity of the facility. A Positive Matrix Factorization receptor model was also applied to the concentrations measured by the mobile lab, the results of which strongly supported the source attribution specified by the inverse model. The two independent source apportionment techniques both implicated flare, storage tank, and ultraformer units in the facility as significant contributors to emission plumes of elevated benzene concentrations observed by the mobile lab. The emissions of some of the flare and tank units were found to be greater than reported in emission inventories by about an order of magnitude.

  11. Visualization of Steady-State Ionic Concentration Profiles Formed in Electrolytes during Li-Ion Battery Operation and Determination of Mass-Transport Properties by in Situ Magnetic Resonance Imaging.

    Science.gov (United States)

    Krachkovskiy, Sergey A; Bazak, J David; Werhun, Peter; Balcom, Bruce J; Halalay, Ion C; Goward, Gillian R

    2016-06-29

    Accurate modeling of Li-ion batteries performance, particularly during the transient conditions experienced in automotive applications, requires knowledge of electrolyte transport properties (ionic conductivity κ, salt diffusivity D, and lithium ion transference number t(+)) over a wide range of salt concentrations and temperatures. While specific conductivity data can be easily obtained with modern computerized instrumentation, this is not the case for D and t(+). A combination of NMR and MRI techniques was used to solve the problem. The main advantage of such an approach over classical electrochemical methods is its ability to provide spatially resolved details regarding the chemical and dynamic features of charged species in solution, hence the ability to present a more accurate characterization of processes in an electrolyte under operational conditions. We demonstrate herein data on ion transport properties (D and t(+)) of concentrated LiPF6 solutions in a binary ethylene carbonate (EC)-dimethyl carbonate (DMC) 1:1 v/v solvent mixture, obtained by the proposed technique. The buildup of steady-state (time-invariant) ion concentration profiles during galvanostatic experiments with graphite-lithium metal cells containing the electrolyte was monitored by pure phase-encoding single point imaging MRI. We then derived the salt diffusivity and Li(+) transference number over the salt concentration range 0.78-1.27 M from a pseudo-3D combined PFG-NMR and MRI technique. The results obtained with our novel methodology agree with those obtained by electrochemical methods, but in contrast to them, the concentration dependences of salt diffusivity and Li(+) transference number were obtained simultaneously within the single in situ experiment.

  12. Joint analysis of deposition fluxes and atmospheric concentrations of inorganic nitrogen and sulphur compounds predicted by six chemistry transport models in the frame of the EURODELTAIII project

    Science.gov (United States)

    Vivanco, M. G.; Bessagnet, B.; Cuvelier, C.; Theobald, M. R.; Tsyro, S.; Pirovano, G.; Aulinger, A.; Bieser, J.; Calori, G.; Ciarelli, G.; Manders, A.; Mircea, M.; Aksoyoglu, S.; Briganti, G.; Cappelletti, A.; Colette, A.; Couvidat, F.; D'Isidoro, M.; Kranenburg, R.; Meleux, F.; Menut, L.; Pay, M. T.; Rouïl, L.; Silibello, C.; Thunis, P.; Ung, A.

    2017-02-01

    In the framework of the UNECE Task Force on Measurement and Modelling (TFMM) under the Convention on Long-range Transboundary Air Pollution (LRTAP), the EURODELTAIII project is evaluating how well air quality models are able to reproduce observed pollutant air concentrations and deposition fluxes in Europe. In this paper the sulphur and nitrogen deposition estimates of six state-of-the-art regional models (CAMx, CHIMERE, EMEP MSC-W, LOTOS-EUROS, MINNI and CMAQ) are evaluated and compared for four intensive EMEP measurement periods (25 Feb-26 Mar 2009; 17 Sep-15 Oct 2008; 8 Jan-4 Feb 2007 and 1-30 Jun 2006). For sulphur, this study shows the importance of including sea salt sulphate emissions for obtaining better model results; CMAQ, the only model considering these emissions in its formulation, was the only model able to reproduce the high measured values of wet deposition of sulphur at coastal sites. MINNI and LOTOS-EUROS underestimate sulphate wet deposition for all periods and have low wet deposition efficiency for sulphur. For reduced nitrogen, all the models underestimate both wet deposition and total air concentrations (ammonia plus ammonium) in the summer campaign, highlighting a potential lack of emissions (or incoming fluxes) in this period. In the rest of campaigns there is a general underestimation of wet deposition by all models (MINNI and CMAQ with the highest negative bias), with the exception of EMEP, which underestimates the least and even overestimates deposition in two campaigns. This model has higher scavenging deposition efficiency for the aerosol component, which seems to partly explain the different behaviour of the models. For oxidized nitrogen, CMAQ, CAMx and MINNI predict the lowest wet deposition and the highest total air concentrations (nitric acid plus nitrates). Comparison with observations indicates a general underestimation of wet oxidized nitrogen deposition by these models, as well as an overestimation of total air concentration for

  13. Physiologically based pharmacokinetic-pharmacodynamic modeling to predict concentrations and actions of sodium-dependent glucose transporter 2 inhibitor canagliflozin in human intestines and renal tubules.

    Science.gov (United States)

    Mori, Kazumi; Saito, Ryuta; Nakamaru, Yoshinobu; Shimizu, Makiko; Yamazaki, Hiroshi

    2016-11-01

    Canagliflozin is a recently developed sodium-glucose cotransporter (SGLT) 2 inhibitor that promotes renal glucose excretion and is considered to inhibit renal SGLT2 from the luminal side of proximal tubules. Canagliflozin reportedly inhibits SGLT1 weakly and suppresses postprandial plasma glucose, suggesting that it also inhibits intestinal SGLT1. However, it is difficult to measure the drug concentrations of these assumed sites of action directly. The pharmacokinetic-pharmacodynamic (PK/PD) relationships of canagliflozin remain poorly characterized. Therefore, a physiologically based pharmacokinetic (PBPK) model of canagliflozin was developed based on clinical data from healthy volunteers and it was used to simulate luminal concentrations in intestines and renal tubules. In small intestine simulations, the inhibition ratios for SGLT1 were predicted to be 40%-60% after the oral administration of clinical doses (100-300 mg/day). In contrast, inhibition ratios of canagliflozin for renal SGLT2 and SGLT1 were predicted to be approximately 100% and 0.2%-0.4%, respectively. These analyses suggest that canagliflozin only inhibits SGLT2 in the kidney. Using the simulated proximal tubule luminal concentrations of canagliflozin, the urinary glucose excretion rates in canagliflozin-treated diabetic patients were accurately predicted using the renal glucose reabsorption model as a PD model. Because the simulation of canagliflozin pharmacokinetics was successful, this PBPK methodology was further validated by successfully simulating the pharmacokinetics of dapagliflozin, another SGLT2 inhibitor. The present results suggest the utility of this PBPK/PD model for predicting canagliflozin concentrations at target sites and help to elucidate the pharmacological effects of SGLT1/2 inhibition in humans. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Concentrations and transport of suspended sediment, nutrients, and pesticides in the lower Mississippi-Atchafalaya River subbasin during the 2011 Mississippi River flood, April through July

    Science.gov (United States)

    Welch, Heather L.; Coupe, Richard H.; Aulenbach, Brent T.

    2014-01-01

    High streamflow associated with the April–July 2011 Mississippi River flood forced the simultaneous opening of the three major flood-control structures in the lower Mississippi-Atchafalaya River subbasin for the first time in history in order to manage the amount of water moving through the system. The U.S. Geological Survey (USGS) collected samples for analysis of field properties, suspended-sediment concentration, particle-size, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and up to 136 pesticides at 11 water-quality stations and 2 flood-control structures in the lower Mississippi-Atchafalaya River subbasin from just above the confluence of the upper Mississippi and Ohio Rivers downstream from April through July 2011. Monthly fluxes of suspended sediment, suspended sand, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, simazine, metolachlor, and acetochlor were estimated at 9 stations and 2 flood-control structures during the flood period. Although concentrations during the 2011 flood were within the range of what has been observed historically, concentrations decreased during peak streamflow on the lower Mississippi River. Prior to the 2011 flood, high concentrations of suspended sediment and nitrate were observed in March 2011 at stations downstream of the confluence of the upper Mississippi and Ohio Rivers, which probably resulted in a loss of available material for movement during the flood. In addition, the major contributor of streamflow to the lower Mississippi-Atchafalaya River subbasin during April and May was the Ohio River, whose water contained lower concentrations of suspended sediment, pesticides, and nutrients than water from the upper Mississippi River. Estimated fluxes for the 4-month flood period were still quite high and contributed approximately 50 percent of the estimated annual suspended sediment, nitrate, and total phosphorus fluxes in 2011; the largest fluxes were estimated at

  15. Use of Giardia, which appears to have a single nucleotide-sugar transporter for UDP-GlcNAc, to identify the UDP-Glc transporter of Entamoeba.

    Science.gov (United States)

    Banerjee, Sulagna; Cui, Jike; Robbins, Phillips W; Samuelson, John

    2008-05-01

    Nucleotide-sugar transporters (NSTs) transport activated sugars (e.g. UDP-GlcNAc) from the cytosol to the lumen of the endoplasmic reticulum or Golgi apparatus where they are used to make glycoproteins and glycolipids. UDP-Glc is an important component of the N-glycan-dependent quality control (QC) system for protein folding. Because Entamoeba has this QC system while Giardia does not, we hypothesized that transfected Giardia might be used to identify the UDP-Glc transporter of Entamoeba. Here we show Giardia membranes transport UDP-GlcNAc and have apyrases, which hydrolyze nucleoside-diphosphates to make the antiporter nucleoside-monophosphate. The only NST of Giardia (GlNst), which we could identify, transports UDP-GlcNAc in transfected Saccharomyces and is present in perinuclear and peripheral vesicles and increases in expression during encystation. Entamoeba membranes transport three nucleotide-sugars (UDP-Gal, UDP-GlcNAc, and UDP-Glc), and Entamoeba has three NSTs, one of which has been shown previously to transport UDP-Gal (EhNst1). Here we show recombinant EhNst2 transports UDP-Glc in transfected Giardia, while recombinant EhNst3 transports UDP-GlcNAc in transfected Saccharomyces. In summary, all three NSTs of Entamoeba and the single NST of Giardia have been molecularly characterized, and transfected Giardia provides a new system for testing heterologous UDP-Glc transporters.

  16. Compounds acting against HIV: Imidazo[1,2-a]pyridines as non-nucleoside reverse transcriptase inhibitors (NNRTIs)

    CSIR Research Space (South Africa)

    Bode, M

    2010-09-01

    Full Text Available A compound possessing anti-HIV activity similar to that of FDA-approved nevirapine was developed. It acts as a non-nucleoside reverse transcriptase inhibitor, the compound shows good cell permeability, and a quantitative structure activity...

  17. Synthesis of Novel Nucleoside Analog (3R)-2,3-Dideoxy-3- (N-hydroxy-N-methylamino)-L-arabinofuranosyl Uracil

    Institute of Scientific and Technical Information of China (English)

    Ji Cheng CHU; Hong Sheng GUO; Jun Biao CHANG; Kang ZHAO

    2004-01-01

    The synthesis of novel nucleoside analog (3R)-2,3-dideoxy-3-(N-hydroxy-N- methylamino)-L-arabinofuranosyl uracil was studied. A twelve-step synthetic route, started from L-ascorbic acid, was designed, and the final product was obtained in 20.8% yield.

  18. Colourimetric and spectroscopic discrimination between nucleotides and nucleosides using para-sulfonato-calix[4]arene capped silver nanoparticles.

    Science.gov (United States)

    Tauran, Yannick; Grosso, Marie; Brioude, Arnaud; Kassab, Rima; Coleman, Anthony W

    2011-09-28

    The complexation of nucleosides and nucleotides by hybrid nanoparticles capped by para-sulfonato-calix[4]arene shows clear discrimination between purine and pyrimidine based molecules. For the pyrimidine nucleotides there is appearance of a new absorption band around 550 nm, and a colour change from yellow to orange red and pink.

  19. Hypoxanthine production by ischemic heart demonstrated by high pressure liquid chromatography of blood purine nucleosides and oxypurines

    NARCIS (Netherlands)

    E. Harmsen; J.W. de Jong (Jan Willem); P.W.J.C. Serruys (Patrick)

    1981-01-01

    textabstractAn isocratic high pressure liquid chromatographic system was developed for the estimation of purine nucleosides and oxypurines in blood. Use was made of a reversed-phase column. Nucleotides derived from erythrocytes affected the separation; these compounds were removed with A12O3. The

  20. Hydrolytic Fitness of N-glycosyl Bonds: Comparing the Deglycosylation Kinetics of Modified, Alternative and Native Nucleosides

    Science.gov (United States)

    Rios, Andro C; Yu, Hiu T; Tor, Yitzhak

    2014-01-01

    Nature’s selection of the contemporary nucleobases in RNA and DNA continues to intrigue the origin of life community. While the prebiotic synthesis of the N-glycosyl bond has historically been a central area of investigation, variations in hydrolytic stabilities among the N-glycosyl bonds may have presented an additional selection pressure that contributed to nucleobase and nucleoside evolution. To experimentally probe this hypothesis, a systematic kinetic analysis of the hydrolytic deglycosylation reactions of modified, alternative and native nucleosides was undertaken. Rate constants were measured as a function of temperature (at pH 1) to produce Arrhenius and Eyring plots for extrapolation to 37°C and determination of thermodynamic activation parameters. Rate enhancements based on the differences in reaction rates of deoxyribo- and ribo-glycosidic bonds were found to vary under the same conditions. Rate constants of deoxynucleosides were also measured across the pH range of 1 – 3 (at 50°C), which highlighted how simple changes to the heterocycle alone can lead to significant variation in deglycosylation rates. The contemporary nucleosides exhibited the slowest deglycosylation rates in comparison to the non-native/alternative nucleosides, which we suggest as experimental support for nature’s selection of the fittest N-glycosyl bonds. PMID:25750482

  1. Use of a Novel 5′-Regioselective Phosphitylating Reagent for One-Pot Synthesis of Nucleoside 5′-Triphosphates from Unprotected Nucleosides

    Science.gov (United States)

    Caton-Williams, Julianne; Hoxhaj, Rudiona; Fiaz, Bilal

    2013-01-01

    The 5′-triphosphates are the building blocks for the enzymatic synthesis of DNAs and RNAs. This unit presents a protocol for the convenient synthesis of 2′-deoxyribo- and ribo-nucleoside 5′-triphosphates (dNTPs and NTPs) containing all the natural bases and the modified bases. This one-pot synthesis can also be applied to prepare the triphosphate analogs that contain sulfur or selenium atoms replacing the non-bridging oxygen atoms of the alpha phosphates of the triphosphates. These S- or Se-modified dNTPs and NTPs can be used to prepare diastereomerically-pure phosphorothioate nucleic acids (PS-NAs) or phosphoroselenoate nucleic acids (PSe-NAs, i.e., one type of selenium-derivatized nucleic acids: SeNA). Even without extensive purification, the synthesized dNTPs or NTPs are of high quality and can be directly used in DNA polymerization or RNA transcription. Synthesis and purification of the 5′-triphosphates, analysis and confirmation of natural and sulfur-or selenium-modified nucleic acids are described in this protocol unit. PMID:23512692

  2. The effect of long-range air mass transport pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: Quantification using clustering techniques.

    Science.gov (United States)

    Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D

    2015-01-01

    The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques.

  3. Human organic anion transporter 2 is an entecavir, but not tenofovir, transporter.

    Science.gov (United States)

    Furihata, Tomomi; Morio, Hanae; Zhu, Meiyan; Suzuki, Yuki; Ide, Hideyuki; Tsubota, Akihito; Fu, Zhongguo; Anzai, Naohiko; Chiba, Kan

    2017-02-01

    Entecavir (ETV) and tenofovir (TFV) are essential nucleoside analogues in current hepatitis B virus (HBV) treatments. Since these drugs target the HBV polymerase that is localized within human hepatocytes, determining of their cellular uptake process is an important step in fully understanding their pharmacological actions. However, the human hepatic transporters responsible for their uptake have remained unidentified. Therefore, this study aimed at identifying the primary ETV and TFV uptake transporter(s) in human hepatocytes. In transport assays, temperature-sensitive ETV and TFV uptake by human hepatocytes were observed, and their uptake were strongly inhibited by bromosulfophthalein, which is an inhibitor of organic anion transporters/organic anion transporting polypeptides (OATs/OATPs). Given these results, ETV and TFV uptake activities in several human OAT/OATP expression systems were examined. The results showed that, among the transporters tested, only OAT2 possessed ETV transport activity. On the other hand, none of the transporters showed any TFV uptake activity. To summarize, our results identify that human OAT2 is an ETV transporter, thereby suggesting that it plays an important part in the mechanisms underlying ETV antiviral activity. Furthermore, although the hepatic TFV transporters remain unknown, our results have, at least, clarified that these two anti-HBV drugs have different hepatocyte entry routes. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  4. Concentrations and transport of suspended sediment, nutrients, and pesticides in the lower Mississippi-Atchafalaya River subbasin during the 2011 Mississippi River flood, April through July

    Science.gov (United States)

    Welch, Heather L.; Coupe, Richard H.; Aulenbach, Brent T.

    2014-01-01

    High streamflow associated with the April–July 2011 Mississippi River flood forced the simultaneous opening of the three major flood-control structures in the lower Mississippi-Atchafalaya River subbasin for the first time in history in order to manage the amount of water moving through the system. The U.S. Geological Survey (USGS) collected samples for analysis of field properties, suspended-sediment concentration, particle-size, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and up to 136 pesticides at 11 water-quality stations and 2 flood-control structures in the lower Mississippi-Atchafalaya River subbasin from just above the confluence of the upper Mississippi and Ohio Rivers downstream from April through July 2011. Monthly fluxes of suspended sediment, suspended sand, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, simazine, metolachlor, and acetochlor were estimated at 9 stations and 2 flood-control structures during the flood period. Although concentrations during the 2011 flood were within the range of what has been observed historically, concentrations decreased during peak streamflow on the lower Mississippi River. Prior to the 2011 flood, high concentrations of suspended sediment and nitrate were observed in March 2011 at stations downstream of the confluence of the upper Mississippi and Ohio Rivers, which probably resulted in a loss of available material for movement during the flood. In addition, the major contributor of streamflow to the lower Mississippi-Atchafalaya River subbasin during April and May was the Ohio River, whose water contained lower concentrations of suspended sediment, pesticides, and nutrients than water from the upper Mississippi River. Estimated fluxes for the 4-month flood period were still quite high and contributed approximately 50 percent of the estimated annual suspended sediment, nitrate, and total phosphorus fluxes in 2011; the largest fluxes were estimated at

  5. Using UHPLC Q-Trap/MS as a complementary technique to in-depth mine UPLC Q-TOF/MS data for identifying modified nucleosides in urine.

    Science.gov (United States)

    Lu, Zhiwei; Wang, Qing; Wang, Meiling; Fu, Shuang; Zhang, Qingqing; Zhang, Zhixin; Zhao, Huizhen; Liu, Yuehong; Huang, Zhenhai; Xie, Ziye; Yu, Honghong; Gao, Xiaoyan

    2017-03-12

    Modified nucleosides, metabolites of RNA, are potential biomarkers of cancer before the appearance of morphological abnormalities. It is of great significance to comprehensively detect and identify nucleosides in human urine for discovery of cancer biomarkers. However, the lower abundance, the greater polarity and the matrix effects make it difficult to detect urinary nucleosides. In this paper, an integrated method consisted of sample preparation followed by ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC Q-TOF/MS) detection and primary identification, then ultra-high performance liquid chromatography coupled with hybrid triple quadrupole linear ion trap mass spectrometer (UHPLC Q-Trap/MS) further identification and validation were introduced. Firstly, to enrich the nucleosides and eliminate the urine matrix effects, different sorbent materials of solid phase extraction (SPE) and the elution conditions were screened. Secondly, UPLC Q-TOF/MS was used to acquire mass data in MS(E) mode. The structural formulas of nucleosides in urine sample were primarily identified according to retention time, accurate mass precursor ions and fragment ions from in-house database and online database. Thirdly, the preliminary identified nucleoside structures lacking of characteristic fragment ions were verified by UHPLC Q-Trap/MS in multiple reaction monitoring trigger enhanced product ion scan (MRM-EPI) and neutral loss scan (NL). At last, phenylboronic acid (PBA)-based SPE was utilized due to its higher MS signal and weaker matrix effects under optimized extraction conditions. Fifty-five nucleosides were primarily identified by UPLC Q-TOF/MS, among which 50 nucleosides were confirmed by UHPLC Q-Trap/MS. Five nucleosides, namely 4',5'-didehydro-5'-deoxyadenosine, 4',5'-didehydro-5'-deoxyinosine, isonicotinamide riboside, peroxywybutosine and hydroxywybutosine, were found from urine for the first time. The results will expand the Human

  6. Early Cellular Responses of Purine Nucleoside-mediated Protection of Hypoxia-induced Injuries of Neuronal PC12 Cells

    Directory of Open Access Journals (Sweden)

    Bettina Tomaselli

    2005-01-01

    Full Text Available Hypoxia in brain may lead to cell death by apoptosis and necrosis. In parallel adenosine, a powerful endogenous neuroprotectant is formed. We wanted to investigate the effect of adenosine and its purine nucleoside relatives, inosine and guanosine on early cellular responses to hypoxia. O2-sensitive neuronal PC12-cells were subjected to chemical hypoxia induced with rotenone, an inhibitor of mitochondrial complex I. Loss of viability after hypoxic insult was impressively rescued by adenosine, guanosine and inosine. PC12-cells mainly express the A2A adenosine receptor. Its inhibition with a specific antagonist (CSC induced cell death of PC12-cells, which could be salvaged by adenosine but not with guanosine or inosine. We have previously demonstrated the important role of mitogen activated protein kinases 1/2 (p42/44 MAPK in purine-mediated rescue. In this study we were interested in the involvement of protein kinases whose activities mediate these processes, including protein kinase A (PKA, phosphoinositide 3-kinase (PI3-K and protein kinase C-related kinases (PRK 1/2. Pharmacological inhibition of PKA and PI3-K increased hypoxia-induced toxicity and likewise also affected the rescue by purine nucleosides. Nerve growth factor (NGF and purine nucleosides induced an activation of PRK 1/2, which to our knowledge indicates for the first time that these kinases are potentially involved in purine nucleoside-mediated rescue of hypoxic neuronal cells. Results suggest that A2A receptor expressing cells are mainly dependent on the purine nucleoside adenosine for their rescue after hypoxic insult. In addition to PKA, PI3-K is an important effector molecule in A2A-mediated signaling and for the rescue of PC12-cells after hypoxic insult.

  7. Vertical transport rates and concentrations of OH and Cl radicals in the Tropical Tropopause Layer from observations of CO2 and halocarbons: implications for distributions of long- and short-lived chemical species

    Directory of Open Access Journals (Sweden)

    T. P. Bui

    2010-07-01

    Full Text Available Rates for large-scale vertical transport of air in the Tropical Tropopause Layer (TTL were determined using high-resolution, in situ observations of CO2 concentrations in the tropical upper troposphere and lower stratosphere during the NASA Tropical Composition, Cloud and Climate Coupling (TC4 campaign in August 2007. Upward movement of trace gases in the deep tropics was notably slower in TC4 than during the Costa Rica AURA Validation Experiment (CR-AVE, in January 2006. Transport rates in the TTL were combined with in situ measurements of chlorinated and brominated organic compounds from whole air samples to determine chemical loss rates for reactive chemical species, providing empirical vertical profiles for 24-h mean concentrations of hydroxyl radicals (OH and chlorine atoms in the TTL. The analysis shows that important short-lived species such as CHCl3, CH2Cl2, and CH2Br2 have longer chemical lifetimes than the time for transit of the TTL, implying that these species, which are not included in most models, could readily reach the stratosphere and make significant contributions of chlorine and/or bromine to stratospheric loading.

  8. Vertical transport rates and concentrations of OH and Cl radicals in the Tropical Tropopause Layer from Observations of CO2 and halocarbons: implications for distributions of long- and short-lived chemical species

    Directory of Open Access Journals (Sweden)

    T. P. Bui

    2010-03-01

    Full Text Available Rates for large-scale vertical transport of air in the Tropical Tropopause Layer (TTL were determined using high-resolution, in situ observations of CO2 concentrations in the tropical upper troposphere and lower stratosphere during the NASA Tropical Composition, Cloud and Climate Coupling (TC4 campaign in August 2007. Upward movement of trace gases in the deep tropics was notably slower in TC4 than during the Costa Rica AURA Validation Experiment (CR-AVE, in January 2006. Transport rates in the TTL were combined with in situ measurements of chlorinated and brominated organic compounds from whole air samples to determine chemical loss rates for reactive chemical species, providing empirical vertical profiles for 24-h mean concentrations of hydroxyl radicals (OH and chlorine atoms in the TTL. The analysis shows that important short-lived species such as CHCl3, CH2Cl2, and CH2Br2 have longer chemical lifetimes than the time for transit of the TTL, implying that these species, which are not included in most models, could readily reach the stratosphere and make significant contributions of chlorine and/or bromine to stratospheric loading.

  9. [Recent knowledge of the function of glucose transport molecules in cell membranes, of the regulation of their composition and of modification of their activity and changes in concentration in diseases (diabetes mellitus, Tumors)].

    Science.gov (United States)

    Kolb, E

    1991-11-01

    In the outer membrane of animal cells there exist different isoforms of glucose-transporters (GluT), that contain pores for the facilitative intake of glucose. The content of the various forms of GluT in the different cells is influenced by the stage of development and by the plasma-concentration of glucose. In the regulation of the glucose-concentration in the plasma the content of the skeletal musculature and of the adipose tissue in GluT type 4 plays an important role: It is insulin-dependent. In diabetes mellitus the content of the outer membranes of the cells of the mentioned tissues in GluT 4 is - in dependence of the degree of the disturbance - more or less reduced. The binding of insulin to the receptor in the musculature and in adipose tissue stimulates the transport of GluT 4 from the interior of the cells to the outer membrane. Fasting causes an increase in the content of GluT 4 in the musculature and a decrease in the adipose tissue. Tumor-cells have an increased uptake of glucose with the help of GluT.

  10. InterProScan Result: AV398327 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available AV398327 AV398327_4_ORF1 65C8DA7FC6C4D303 PANTHER PTHR10590 SODIUM/NUCLEOSIDE COTRA...NSPORTER 1.3e-109 T IPR008276 Concentrative nucleoside transporter Molecular Function: nucleoside:sodium sym

  11. InterProScan Result: AV405061 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available AV405061 AV405061_3_ORF2 400BDC036077591E PANTHER PTHR10590 SODIUM/NUCLEOSIDE COTRA...NSPORTER 1.8e-12 T IPR008276 Concentrative nucleoside transporter Molecular Function: nucleoside:sodium symp

  12. Ag concentration dependent transport properties of LiF-MoO{sub 3}-P{sub 2}O{sub 5} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nagarjuna, M.; Satyanarayana, T.; Ravi Kumar, V. [Department of Physics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid 521 201, A.P. (India); Veeraiah, N., E-mail: nvr8@rediffmail.co [Department of Physics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid 521 201, A.P. (India)

    2009-11-01

    LiF-MoO{sub 3}-P{sub 2}O{sub 5} glasses mixed with different concentrations of Ag{sub 2}O (ranging from 0 to 1.0 mol%) was prepared. D.C. conductivity and dielectric properties over a range of temperature have been investigated. The analysis of the results of d.c. conductivity has indicated that T>theta{sub D}/2, the small polaron hoping model seems to be fit and the conduction is adiabatic in nature. These results further indicated that there is a change over of conduction mechanism from electronic to ionic at about 0.4 mol% of Ag{sub 2}O. The low temperature part of a.c. conductivity is explained based on quantum mechanical tunneling model. The quantitative analysis of these results is further extended with the aid of the data on optical absorption, ESR and IR spectral studies.

  13. The Zinc Concentration in the Diet and the Length of the Feeding Period Affect the Methylation Status of the ZIP4 Zinc Transporter Gene in Piglets.

    Directory of Open Access Journals (Sweden)

    Diana Karweina

    Full Text Available High doses of zinc oxide are commonly used in weaned pig diets to improve performance and health. Recent reports show that this may also lead to an imbalanced zinc homeostasis in the animal. For a better understanding of the regulatory mechanisms of different zinc intakes, we performed a feeding experiment to assess potential epigenetic regulation of the ZIP4 gene expression via DNA methylation in the small intestine of piglets. Fifty-four piglets were fed diets with 57 (LZn, 164 (NZn or 2,425 (HZn mg Zn/kg feed for one or four weeks. The ZIP4 expression data provided significant evidence for counter-regulation of zinc absorption with higher dietary zinc concentrations. The CpG +735 in the second exon had a 56% higher methylation in the HZn group compared to the others after one week of feeding (8.0·10-4 < p < 0.035; the methylation of this CpG was strongly negatively associated with the expression of the long ZIP4 transcripts (p < 0.007. In the LZn and NZn diets, the expression of the long ZIP4 transcripts were lower after four vs. one week of feeding (2.9·10-4 < p < 0.017. The strongest switch leading to high DNA methylation in nearly all analysed regions was dependent on feeding duration or age in all diet groups (3.7·10-10 < p < 0.099. The data suggest that DNA methylation serves as a fine-tuning mechanism of ZIP4 gene regulation to maintain zinc homeostasis. Methylation of the ZIP4 gene may play a minor role in the response to very high dietary zinc concentration, but may affect binding of alternate zinc-responsive transcription factors.

  14. The Zinc Concentration in the Diet and the Length of the Feeding Period Affect the Methylation Status of the ZIP4 Zinc Transporter Gene in Piglets.

    Science.gov (United States)

    Karweina, Diana; Kreuzer-Redmer, Susanne; Müller, Uwe; Franken, Tobias; Pieper, Robert; Baron, Udo; Olek, Sven; Zentek, Jürgen; Brockmann, Gudrun A

    2015-01-01

    High doses of zinc oxide are commonly used in weaned pig diets to improve performance and health. Recent reports show that this may also lead to an imbalanced zinc homeostasis in the animal. For a better understanding of the regulatory mechanisms of different zinc intakes, we performed a feeding experiment to assess potential epigenetic regulation of the ZIP4 gene expression via DNA methylation in the small intestine of piglets. Fifty-four piglets were fed diets with 57 (LZn), 164 (NZn) or 2,425 (HZn) mg Zn/kg feed for one or four weeks. The ZIP4 expression data provided significant evidence for counter-regulation of zinc absorption with higher dietary zinc concentrations. The CpG +735 in the second exon had a 56% higher methylation in the HZn group compared to the others after one week of feeding (8.0·10-4 < p < 0.035); the methylation of this CpG was strongly negatively associated with the expression of the long ZIP4 transcripts (p < 0.007). In the LZn and NZn diets, the expression of the long ZIP4 transcripts were lower after four vs. one week of feeding (2.9·10-4 < p < 0.017). The strongest switch leading to high DNA methylation in nearly all analysed regions was dependent on feeding duration or age in all diet groups (3.7·10-10 < p < 0.099). The data suggest that DNA methylation serves as a fine-tuning mechanism of ZIP4 gene regulation to maintain zinc homeostasis. Methylation of the ZIP4 gene may play a minor role in the response to very high dietary zinc concentration, but may affect binding of alternate zinc-responsive transcription factors.

  15. Interactions between zinc transporter-8 gene (SLC30A8) and plasma zinc concentrations for impaired glucose regulation and type 2 diabetes.

    Science.gov (United States)

    Shan, Zhilei; Bao, Wei; Zhang, Yan; Rong, Ying; Wang, Xia; Jin, Yilin; Song, Yadong; Yao, Ping; Sun, Changhao; Hu, Frank B; Liu, Liegang

    2014-05-01

    Although both SLC30A8 rs13266634 single nucleotide polymorphism and plasma zinc concentrations have been associated with impaired glucose regulation (IGR) and type 2 diabetes (T2D), their interactions for IGR and T2D remain unclear. Therefore, to assess zinc-SLC30A8 interactions, we performed a case-control study in 1,796 participants: 218 newly diagnosed IGR patients, 785 newly diagnosed T2D patients, and 793 individuals with normal glucose tolerance. After adjustment for age, sex, BMI, family history of diabetes, and hypertension, the multivariable odds ratio (OR) of T2D associated with a 10 µg/dL higher plasma zinc level was 0.87 (95% CI 0.85-0.90). Meanwhile, the OR of SLC30A8 rs13266634 homozygous genotypes CC compared with TT was 1.53 (1.11-2.09) for T2D. Similar associations were found in IGR and IGR&T2D groups. Each 10 µg/dL increment of plasma zinc was associated with 22% (OR 0.78 [0.72-0.85]) lower odds of T2D in TT genotype carriers, 17% (0.83 [0.80-0.87]) lower odds in CT genotype carriers, and 7% (0.93 [0.90-0.97]) lower odds in CC genotype carriers (P for interaction = 0.01). Our study suggested that the C allele of rs13266634 was associated with higher odds of T2D, and higher plasma zinc was associated with lower odds. The inverse association of plasma zinc concentrations with T2D was modified by SLC30A8 rs13266634. Further studies are warranted to confirm our findings and clarify the mechanisms underlying the interaction between plasma zinc and the SLC30A8 gene in relation to T2D.

  16. Interaction of bis-aryl functionalized molecules with nucleosides and nucleic acids

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of novel molecules with a cyclen(1,4,7,10-tetraazacyclododecane) moiety appended on and bearing different aromatic fragments in the structures were synthesized and characterized.The binding activities of these compounds towards DNA were systematically studied by spectroscopic,viscometric and gel electrophoresis methods.The results suggest that the stacking interaction plays an important role in improving the DNA binding ability of the compounds.The binding modes of the compounds towards DNA are also affected by the sizes of the aromatic rings.The binding interaction between binaphthyl compound 1b and several nucleosides was studied by fluorescence titration.Stacking interaction and hydrophobic interaction play the key role in such non-selective binding process.

  17. Synthesis of Norcarbovir Analogues, the First Examples of Cyclobutene Nucleosides Unsubstituted at the Vinylic Position.

    Science.gov (United States)

    Gourdel-Martin, Marie-Edith; Huet, François

    1997-04-04

    Two cyclobutene nucleosides, 27 and 29, analogous to the yet unknown norcarbovir, and with adenine and hypoxanthine as the base moieties, respectively, were synthesized starting from cis-3-cyclobutene-1,2-dicarboxylic anhydride (6). Its reduction to lactone 9 followed by reaction with ammonia and then Hofmann rearrangement led to cyclic carbamate 15 which was the key intermediate of these syntheses. Its tert-butoxycarbonyl derivative 17 led to the ring opening of the heterocyclic moiety at low temperature. Compound 18 was thus obtained, and the successive benzylation and then treatment with hydrochloric acid yielded hydrochloride 21. Construction of bases was achieved in satisfying overall yields provided that mild experimental conditions from 21 to 27 or 29 were used to restrict the unwanted electrocyclic ring opening. Nitropyrimidine 31 was also prepared from 21 via the intermediate 23.

  18. Ether lipid-ester prodrugs of acyclic nucleoside phosphonates: activity against adenovirus replication in vitro.

    Science.gov (United States)

    Hartline, Caroll B; Gustin, Kortney M; Wan, William B; Ciesla, Stephanie L; Beadle, James R; Hostetler, Karl Y; Kern, Earl R

    2005-02-01

    The acyclic nucleoside phosphonate cidofovir (CDV) and its closely related analogue (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)-adenine ([S]-HPMPA) have been reported to have activity against many adenovirus (AdV) serotypes. A new series of orally active ether lipid-ester prodrugs of CDV and of (S)-HPMPA that have slight differences in the structure of their lipid esters were evaluated, in tissue-culture cells, for activity against 5 AdV serotypes. The results indicated that, against several AdV serotypes, the most active compounds were 15-2500-fold more active than the unmodified parent compounds and should be evaluated further for their potential to treat AdV infections in humans.

  19. Acanthamoeba polyphaga mimivirus NDK: preliminary crystallographic analysis of the first viral nucleoside diphosphate kinase.

    Science.gov (United States)

    Jeudy, Sandra; Coutard, Bruno; Lebrun, Régine; Abergel, Chantal

    2005-06-01

    The complete sequence of the largest known double-stranded DNA virus, Acanthamoeba polyphaga mimivirus, has recently been determined [Raoult et al. (2004), Science, 306, 1344-1350] and revealed numerous genes not expected to be found in a virus. A comprehensive structural and functional study of these gene products was initiated [Abergel et al. (2005), Acta Cryst. F61, 212-215] both to better understand their role in the virus physiology and to obtain some clues to the origin of DNA viruses. Here, the preliminary crystallographic analysis of the viral nucleoside diphosphate kinase protein is reported. The crystal belongs to the cubic space group P2(1)3, with unit-cell parameter 99.425 A. The self-rotation function confirms that there are two monomers per asymmetric unit related by a twofold non-crystallographic axis and that the unit cell thus contains four biological entities.

  20. Fludarabine nucleoside modulates nuclear "survival and death" proteins in resistant chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Henrich, Silke; Mactier, Swetlana; Best, Giles; Mulligan, Stephen P; Crossett, Ben; Christopherson, Richard Ian

    2011-12-01

    The nuclear mechanisms by which fludarabine nucleoside (F-ara-A) induces apoptosis have been investigated in human MEC1 cells derived from B-cell chronic lymphocytic leukemia. Upon treatment of cells with F-ara-A (100 μM, 72 hours), 15 nuclear proteins changed in abundance by more than 2-fold. Nuclear proteins up-regulated included calmodulin (4.3-fold), prohibitin (3.9-fold), β-actin variant (3.7-fold), and structure-specific recognition protein 1 (3.7-fold); those down-regulated included 60S ribosomal protein P2B (0.12-fold), fumarate hydratase (0.19-fold), splicing factor arginine/serine-rich 3 (0.35-fold), and replication protein A2 (0.42-fold). These changes in the levels of specific proteins promote survival or apoptosis; because the end result is apoptosis of MEC1 cells, apoptotic effects predominate.

  1. Structural characterization of purine nucleoside phosphorylase from human pathogen Helicobacter pylori.

    Science.gov (United States)

    Štefanić, Zoran; Mikleušević, Goran; Luić, Marija; Bzowska, Agnieszka; Leščić Ašler, Ivana

    2017-08-01

    Microaerophilic bacterium Helicobacer pylori is a well known human pathogen involved in the development of many diseases. Due to the evergrowing infection rate and increase of H. pylori antibiotic resistence, it is of utmost importance to find a new way to attack and eradicate H. pylori. The purine metabolism in H. pylori is solely dependant on the salvage pathway and one of the key enzymes in this pathway is purine nucleoside phosphorylase (PNP). In this timely context, we report here the basic biochemical and structural characterization of recombinant PNP from the H. pylori clinical isolate expressed in Escherichia coli. Structure of H. pylori PNP is typical for high molecular mass PNPs. However, its activity towards adenosine is very low, thus resembling more that of low molecular mass PNPs. Understanding the molecular mechanism of this key enzyme may lead to the development of new drug strategies and help in the eradication of H. pylori. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The limits of template-directed synthesis with nucleoside-5'-phosphoro(2-methyl)imidazolides

    Science.gov (United States)

    Hill, Aubrey R.; Orgel, Leslie E.; Wu, Taifeng

    1993-12-01

    In earlier work we have shown that C-rich templates containing isolated A, T or G residues and short oligo(G) sequences can be copied effectively using nucleoside-5'-phosphoro(2-methyl)imida-zolides as substrates. We now show that isolated A or T residues within an oligo(G) sequence are a complete block to copying and that an isolated C residue is copied inefficiently. Replication is possible only if there are two complementary oligonucleotides each of which acts as a template to facilitate the synthesis of the other. We emphasize the severity of the problems that need to be overcome to make possible non-enzymatic replication in homogeneous aqueous solution. We conclude that an efficient catalyst Was involved in the origin of polynucleotide replication.

  3. Azobenzene C-Nucleosides for Photocontrolled Hybridization of DNA at Room Temperature.

    Science.gov (United States)

    Goldau, Thomas; Murayama, Keiji; Brieke, Clara; Asanuma, Hiroyuki; Heckel, Alexander

    2015-12-01

    Herein, we report the reversible light-regulated destabilization of DNA duplexes by using azobenzene C-nucleoside photoswitches. The incorporation of two different azobenzene residues into DNA and their photoswitching properties are described. These new residues demonstrate a photoinduced destabilization effect comparable to the widely applied D-threoninol-linked azobenzene switch, which is currently the benchmark. The photoswitches presented herein show excellent photoswitching efficiencies in DNA duplexes - even at room temperature - which are superior to commonly used azobenzene-based nucleic acid photoswitches. In addition, these photoswitching residues exhibit high thermal stability and excellent fatigue resistance, thus rendering them one of the most efficient candidates for the regulation of duplex stability with light.

  4. Synthesis of spin-labeled riboswitch RNAs using convertible nucleosides and DNA-catalyzed RNA ligation.

    Science.gov (United States)

    Büttner, Lea; Seikowski, Jan; Wawrzyniak, Katarzyna; Ochmann, Anne; Höbartner, Claudia

    2013-10-15

    Chemically stable nitroxide radicals that can be monitored by electron paramagnetic resonance (EPR) spectroscopy can provide information on structural and dynamic properties of functional RNA such as riboswitches. The convertible nucleoside approach is used to install 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and 2,2,5,5-tetramethylpyrrolidin-1-oxyl (proxyl) labels at the exocyclic N(4)-amino group of cytidine and 2'-O-methylcytidine nucleotides in RNA. To obtain site-specifically labeled long riboswitch RNAs beyond the limit of solid-phase synthesis, we report the ligation of spin-labeled RNA using an in vitro selected deoxyribozyme as catalyst, and demonstrate the synthesis of TEMPO-labeled 53 nt SAM-III and 118 nt SAM-I riboswitch domains (SAM=S-adenosylmethionine).

  5. Simple and rapid synthesis of some nucleoside derivatives: structural and spectral characterization

    Directory of Open Access Journals (Sweden)

    Shagir A. Chowdhury

    2016-03-01

    Full Text Available In our present investigation a new series of nucleoside derivatives (2-13 were synthesized from uridine (1 via only two step reactions by direct acylation method. Firstly, uridine (1 was treated with 4-t-butylbenzoyl chloride in pyridine at -5ºC and afforded the 5´-O-(4-t-butylbenzoyluridine derivative (2 in an excellent yield. In order to obtain newer products, the 5´-O-uridine derivative was further transformed to a series of 2´,3´-di-O-acyl derivatives (2-13 containing a wide variety of functionalities in a single molecular framework. The yields of the compounds were more than 80%. The synthesized titled compounds were characterized by their physical properties, FTIR (Fourier transform infrared spectroscopy, 1H-NMR (Nuclear magnetic resonance spectroscopy and elemental analysis.

  6. Structure-Activity Relationships of Acyclic Selenopurine Nucleosides as Antiviral Agents

    Directory of Open Access Journals (Sweden)

    Pramod K. Sahu

    2017-07-01

    Full Text Available A series of acyclic selenopurine nucleosides 3a–f and 4a–g were synthesized based on the bioisosteric rationale between oxygen and selenium, and then evaluated for antiviral activity. Among the compounds tested, seleno-acyclovir (4a exhibited the most potent anti-herpes simplex virus (HSV-1 (EC50 = 1.47 µM and HSV-2 (EC50 = 6.34 µM activities without cytotoxicity up to 100 µM, while 2,6-diaminopurine derivatives 4e–g exhibited significant anti-human cytomegalovirus (HCMV activity, which is slightly more potent than the guanine derivative 4d, indicating that they might act as prodrugs of seleno-ganciclovir (4d.

  7. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation.

    Science.gov (United States)

    Saladino, Raffaele; Carota, Eleonora; Botta, Giorgia; Kapralov, Mikhail; Timoshenko, Gennady N; Rozanov, Alexei Y; Krasavin, Eugene; Di Mauro, Ernesto

    2015-05-26

    Liquid formamide has been irradiated by high-energy proton beams in the presence of powdered meteorites, and the products of the catalyzed resulting syntheses were analyzed by mass spectrometry. Relative to the controls (no radiation, or no formamide, or no catalyst), an extremely rich, variegate, and prebiotically relevant panel of compounds was observed. The meteorites tested were representative of the four major classes: iron, stony iron, chondrites, and achondrites. The products obtained were amino acids, carboxylic acids, nucleobases, sugars, and, most notably, four nucleosides: cytidine, uridine, adenosine, and thymidine. In accordance with theoretical studies, the detection of HCN oligomers suggests the occurrence of mechanisms based on the generation of radical cyanide species (CN·) for the synthesis of nucleobases. Given that many of the compounds obtained are key components of extant organisms, these observations contribute to outline plausible exogenous high-energy-based prebiotic scenarios and their possible boundary conditions, as discussed.

  8. Antimicrobial evaluation of new synthesized pyridine nucleosides under solvent-free conditions.

    Science.gov (United States)

    Rateb, Nora M; El-Deab, Hany A; Abdou, Ibrahim M

    2013-01-01

    Two series of novel 3-cyano-2-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyloxo) pyridines and 3-cyano-2-(2,3,5-tri-O-acetyl-β-D-ribofuranosyloxy)-4-trifluromethyl-6-phenyl pyridine were synthesized using efficient microwave methods. The targeted compounds were obtained in high yields by reacting 2-(1H)-pyridone or its salt with activated sugars using SiO₂ under solvent-free conditions. Ammonolysis of the resulted acetylated nucleosides produced 3-cyano-2-(β-D-glucopyranosyloxo)-pyridines and 3-cyano-2-(β-D-ribofuranosyloxy)-4-trifluoromethyl-6-phenyl pyridine. These new products were fully characterized using 1D and 2D NMR. These compounds were screened for their antibacterial activities against G(+) and G(-) bacteria and some found to exhibit better antibacterial activities than the control drug.

  9. Synthesis of Novel Uracil Non-Nucleoside Derivatives as Potential Reverse Transcriptase Inhibitors of HIV-1

    DEFF Research Database (Denmark)

    El-Brollosy, Nasser R.; Al-Deeb, Omar. A.; El-Emam, Ali A.

    2009-01-01

    Novel emivirine and TNK-651 analogues 5a-d were synthesized by reaction of chloromethyl ethyl ether and / or benzyl chloromethyl ether, respectively, with uracils having 5-ethyl and 6-(4-methylbenzyl) or 6-(3,4-dimethoxybenzyl) substituents. A series of new uracil non-nucleosides substituted at N-1...... with cyclopropylmethyloxymethyl 9a-d, 2-phenylethyloxymethyl 9e-h, and 3-phenylprop-1-yloxymethyl 9i-l were prepared on treatment of the corresponding uracils with the appropriate acetals 8a-c. Some of the tested compounds showed good activity against HIV-1 wild type. Among them, 1-cyclopropylmethyloxymethyl-5-ethyl-6......-(3,5-dimethylbenzyl)uracil 9c and 5-ethyl-6-(3,5-dimethylbenzyl)-1-(2-phenylethyloxymethyl)uracil 9g showed inhibitory potency equally to emivirine against HIV-1 wild type. Furthermore, compounds 9c and 9g showed marginal better activity against NNRTI resistant mutants than emivirine....

  10. Transition Path Sampling Study of the Reaction Catalyzed by Purine Nucleoside Phosphorylase

    Science.gov (United States)

    Saen-oon, Suwipa; Schramm, Vern L.; Schwartz, Steven D.

    2010-01-01

    The Transition Path Sampling (TPS) method is a powerful technique for studying rare events in complex systems, that allows description of reactive events in atomic detail without prior knowledge of reaction coordinates and transition states. We have applied TPS in combination with a hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) method to study the enzyme human purine nucleoside phosphorylase (hPNP). This enzyme catalyzes the reversible phosphorolysis of 6-oxypurine (deoxy)nucleosides to generate the corresponding purine base and (deoxy)ribose 1-phosphate. Hundreds of reactive trajectories were generated. Analysis of this transition path ensembles provides insight into the detailed mechanistic dynamics of reaction in the enzyme. Our studies have indicated a reaction mechanism involving the cleavage of the N-ribosidic bond to form transition states with substantial ribooxacarbenium ion character, that is then followed by conformational changes in the enzyme and the ribosyl group leading to migration of the anomeric carbon of the ribosyl group toward phosphate to form the product ribose 1-phosphate. This latter process is crucial in PNP, because several strong H-bonds form between active site residues in order to capture and align the phosphate nucleophile. Calculations of the commitment probability along reactive paths demonstrated the presence of a broad energy barrier at the transition state. Analysis of these transition state structures showed that bond-breaking and bond-forming distances are not a good choice for the reaction coordinate, but that the pseudorotational phase of the ribose ring is also a significant variable. PMID:20664707

  11. Purification, crystallization and preliminary structural analysis of nucleoside diphosphate kinase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Gauri [Molecular and Structural Biology Division, Central Drug Research Institute, PO Box 173, Chattar Manzil, Mahatma Gandhi Marg, Lucknow 226 001 (India); Aggarwal, Anita [Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007 (India); Mittal, Sonia [Molecular and Structural Biology Division, Central Drug Research Institute, PO Box 173, Chattar Manzil, Mahatma Gandhi Marg, Lucknow 226 001 (India); Singh, Yogendra [Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007 (India); Ramachandran, Ravishankar, E-mail: r-ravishankar@cdri.res.in [Molecular and Structural Biology Division, Central Drug Research Institute, PO Box 173, Chattar Manzil, Mahatma Gandhi Marg, Lucknow 226 001 (India)

    2007-12-01

    Nucleoside diphosphate kinase from B. anthracis has been crystallized. Preliminary crystallographic analysis shows that there is one monomer in the asymmetric unit of the crystal. Bacillus anthracis nucleoside diphosphate kinase (BaNdk) is an enzyme whose primary function is to maintain deoxynucleotide triphosphate (dNTP) pools by converting deoxynucleotide diphosphates to triphosphates using ATP as the major phosphate donor. Although the structures of Ndks from a variety of organisms have been elucidated, the enzyme from sporulating bacteria has not been structurally characterized to date. Crystals of the B. anthracis enzyme were grown using the vapour-diffusion method from a hanging drop consisting of 2 µl 10 mg ml{sup −1} protein in 50 mM Tris–HCl pH 8.0, 50 mM NaCl, 5 mM EDTA equilibrated against 500 µl reservoir solution consisting of 2.25 M ammonium formate and 0.1 M HEPES buffer pH 7.25. Diffraction data extending to 2.0 Å were collected at room temperature from a single crystal with unit-cell parameters a = b = 107.53, c = 52.3 Å. The crystals are hexagonal in shape and belong to space group P6{sub 3}22. The crystals contain a monomer in the asymmetric unit, which corresponds to a Matthews coefficient (V{sub M}) of 2.1 Å{sup 3} Da{sup −1} and a solvent content of about 36.9%.

  12. Aquaporin 3 (AQP3 participates in the cytotoxic response to nucleoside-derived drugs

    Directory of Open Access Journals (Sweden)

    Trigueros-Motos Laia

    2012-09-01

    Full Text Available Abstract Background Nucleoside analogs used in the chemotherapy of solid tumors, such as the capecitabine catabolite 5′-deoxy-5-fluorouridine (5′-DFUR trigger a transcriptomic response that involves the aquaglyceroporin aquaporin 3 along with other p53-dependent genes. Here, we examined whether up-regulation of aquaporin 3 (AQP3 mRNA in cancer cells treated with 5′-DFUR represents a collateral transcriptomic effect of the drug, or conversely, AQP3 participates in the activity of genotoxic agents. Methods The role of AQP3 in cell volume increase, cytotoxicity and cell cycle arrest was analyzed using loss-of-function approaches. Results 5′-DFUR and gemcitabine, but not cisplatin, stimulated AQP3 expression and cell volume, which was partially and significantly blocked by knockdown of AQP3. Moreover, AQP3 siRNA significantly blocked other effects of nucleoside analogs, including G1/S cell cycle arrest, p21 and FAS up-regulation, and cell growth inhibition. Short incubations with 5-fluorouracil (5-FU also induced AQP3 expression and increased cell volume, and the inhibition of AQP3 expression significantly blocked growth inhibition triggered by this drug. To further establish whether AQP3 induction is related to cell cycle arrest and apoptosis, cells were exposed to long incubations with escalating doses of 5-FU. AQP3 was highly up-regulated at doses associated with cell cycle arrest, whereas at doses promoting apoptosis induction of AQP3 mRNA expression was reduced. Conclusions Based on the results, we propose that the aquaglyceroporin AQP3 is required for cytotoxic activity of 5’-DFUR and gemcitabine in the breast cancer cell line MCF7 and the colon adenocarcinoma cell line HT29, and is implicated in cell volume increase and cell cycle arrest.

  13. Xenobiotic transporters: ascribing function from gene knockout and mutation studies.

    Science.gov (United States)

    Klaassen, Curtis D; Lu, Hong

    2008-02-01

    Transporter-mediated absorption, secretion, and reabsorption of chemicals are increasingly recognized as important determinants in the biological activities of many xenobiotics. In recent years, the rapid progress in generating and characterizing mice with targeted deletion of transporters has greatly increased our knowledge of the functions of transporters in the pharmacokinetics/toxicokinetics of xenobiotics. In this introduction, we focus on functions of transporters learned from experiments on knockout mice as well as humans and rodents with natural mutations of these transporters. We limit our discussion to transporters that either directly transport xenobiotics or are important in biliary excretion or cellular defenses, namely multidrug resistance, multidrug resistance-associated proteins, breast cancer resistance protein, organic anion transporting polypeptides, organic anion transporters, organic cation transporters, nucleoside transporters, peptide transporters, bile acid transporters, cholesterol transporters, and phospholipid transporters, as well as metal transporters. Efflux transporters in intestine, liver, kidney, brain, testes, and placenta can efflux xenobiotics out of cells and serve as barriers against the entrance of xenobiotics into cells, whereas many xenobiotics enter the biological system via uptake transporters. The functional importance of a given transporter in each tissue depends on its substrate specificity, expression level, and the presence/absence of other transporters with overlapping substrate preferences. Nevertheless, a transporter may affect a tissue independent of its local expression by altering systemic metabolism. Further studies on the gene regulation and function of transporters, as well as the interrelationship between transporters and phase I/II xenobiotic-metabolizing enzymes, will provide a complete framework for developing novel strategies to protect us from xenobiotic insults.

  14. 6-Methylpurine derived sugar modified nucleosides: Synthesis and in vivo antitumor activity in D54 tumor expressing M64V-Escherichia coli purine nucleoside phosphorylase.

    Science.gov (United States)

    Hassan, Abdalla E A; Abou-Elkhair, Reham A I; Parker, William B; Allan, Paula W; Secrist, John A

    2016-01-27

    Impressive antitumor activity has been observed with fludarabine phosphate against tumors that express Escherichia coli purine nucleoside phosphorylase (PNP) due to the liberation of 2-fluoroadenine in the tumor tissue. 6-Methylpurine (MeP) is another cytotoxic adenine analog that does not exhibit selectivity when administered systemically, and could be very useful in a gene therapy approach to cancer treatment involving E. coli PNP. The prototype MeP releasing prodrug 9-(2-deoxy-β-d-ribofuranosyl)-6-methylpurine (1) [MeP-dR] has demonstrated good activity against tumors expressing E. coli PNP, but its antitumor activity is limited due to toxicity resulting from the generation of MeP from gut bacteria. Therefore, we have embarked on a medicinal chemistry program to identify a combination of non-toxic MeP prodrugs and non-human adenosine glycosidic bond cleaving enzymes. The two best MeP-based substrates with M64V-E coli PNP, a mutant which was engineered to tolerate modification at the 5'-position of adenosine and its analogs, were 9-(6-deoxy-α-l-talofuranosyl)-6-methylpurine (3) [methyl(talo)-MeP-R] and 9-(α-l-lyxofuranosyl)6-methylpurine (4) [lyxo-MeP-R]. The detailed synthesis methyl(talo)-MeP-R and lyxo-MeP-R, and the evaluation of their substrate activity with 4 enzymes not normally associated with cancer patients is described. In addition, we have determined the intraperitoneal pharmacokinetic (ip-PK) properties of methyl(talo)-MeP-R and have determined its in vivo bystander activity in mice bearing D54 tumors that express M64V PNP. The observed good in vivo bystander activity of [methyl(talo)-MeP-R/M64V-E coli PNP combination suggests that these agents could be useful for the treatment of cancer.

  15. Simultaneous determination of the HIV nucleoside analogue reverse transcriptase inhibitors lamivudine, didanosine, stavudine, zidovudine and abacavir in human plasma by reversed phase high performance liquid chromatography.

    NARCIS (Netherlands)

    Verweij-van Wissen, C.P.W.G.M.; Aarnoutse, R.E.; Burger, D.M.

    2005-01-01

    A reversed phase high performance liquid chromatography method was developed for the simultaneous quantitative determination of the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine, didanosine, stavudine, zidovudine and abacavir in plasma. The method involved solid-phase extraction wit

  16. Bone mineral density changes in protease inhibitor-sparing vs. nucleoside reverse transcriptase inhibitor-sparing highly active antiretroviral therapy: data from a randomized trial

    DEFF Research Database (Denmark)

    Hansen, Ann-Brit Eg; Obel, N; Nielsen, H

    2011-01-01

    The aim of the study was to compare changes in bone mineral density (BMD) over 144 weeks in HIV-infected patients initiating nucleoside reverse transcriptase inhibitor (NRTI)-sparing or protease inhibitor-sparing highly active antiretroviral therapy (HAART).......The aim of the study was to compare changes in bone mineral density (BMD) over 144 weeks in HIV-infected patients initiating nucleoside reverse transcriptase inhibitor (NRTI)-sparing or protease inhibitor-sparing highly active antiretroviral therapy (HAART)....

  17. Human Factor Considered Safety Management of Maritime Transportation of Solid Bulk Concentrate%基于“人”的因素的海上运输易流态精选矿的安全管理

    Institute of Scientific and Technical Information of China (English)

    缪克银

    2012-01-01

    从介绍易流态精选矿的特性出发,深层次分析运输精选矿的风险致因,指出“人”的因素是所有事故原因中的主因,并具体提出保障易流态精选矿运输安全的管理措施.%Starting with an introduction of the property of solid bulk concentrate, we analyzed in—depth the causes of risks in its maritime transportation, pointed out that "human was the main factor in almost all the accidents discussed and finally proposed its safety management measures.

  18. Mediated proton transport through Nafion 117 membranes imbibed with varying concentrations of aqueous VOSO4 (VO2+) and NH4VO3 (VO2+) in 2 M H2SO4

    Science.gov (United States)

    Suarez, Sophia; Paterno, Domenec

    2016-11-01

    We performed an extensive study on Nafion 117 membrane imbibed with various concentrations of aqueous ammonium metavanadate (NH4VO3), and vanadyl sulfate (VOSO4), in 2 M H2SO4 over the temperature range of 20-100 °C, using 1H NMR and AC Impedance spectroscopies. The objective was to determine the effect of the tetravalent (VO2+) and pentavalent (VO2+) vanadium ions on the proton transport of Nafion 117.1H NMR chemical shift and linewidth data show greater short-range proton transport for the VO2+ imbibed membranes compared with the VO2+. However, the local environments seem to differ in that while the data for VO2+ imbibed membranes seem to follow more the trends observed for water hydrated Nafion 117, those for the VO2+ followed the trend of its aqueous bulk vanadium solvents, indicating that viscosity plays a larger role for the VO2+ imbibed membranes compared to the VO2+.

  19. Protective effect of taurine on hypochlorous acid toxicity to nuclear nucleoside triphosphatase in isolated nuclei from rat liver

    Institute of Scientific and Technical Information of China (English)

    Ju-Xiang Li; Yong-Zheng Pang; Chao-Shu Tang; Zai-Quan Li

    2004-01-01

    AIM: Taurine has been shown to be an effective scavenger of hypochlorous acid (HOCI). The role of HOCI is well established in tissue damage associated with inflammation and injury. In the present study, the effect of HOCI on nuclear nucleoside triphosphatase of hepatocytes and the ability of taurine to prevent this effect were investigated.METHODS: Isolated hepatic nuclei from rat liver were exposed to HOCI with or without taurine. The NTPase activity on nuclear envelope was assayed using ATP and GTP as substrates, respectively.RESULTS: The first series of experiments evaluated the toxicity of HOCl and the efficacy of taurine to protect NTPase.HOCI at 10-9-5×10-6 mol/L reduced nuclear NTPase activities in a concentration dependent manner (ATP and GTP as substrates) (P<0.01). HOCI at 10-6 mol/L reduced the NTPase activity by 65% (ATP as substrate) and 76% (GTP as substrate). Taurine (10-7 to 10-4 mol/L) was tested for protection against HOCI at 10-6 mol/L and the nuclei treated with 5x10-4 mol/L taurine exhibited only 20% and 12% reduction in NTPase activities compared to untreated controls. A second study was performed comparing taurine to glutathione (GSH). GSH and HOCI at 10-6 mol/L exhibited 46% and 67.4% reduction in NTPase activities compared with control. GSH (10-4 mol/L) which was incubated with the nuclei and HOCi still exhibited 44.2% and 44.8% reduction in NTPase activities of untreated control. Taurine with HOCI only exhibited 15.2% and 17.1% reduction in NTPase activities, which provided more powerful protection against HOCI than GSH. The third experiment was undertaken to evaluate the specificity of taurine against HOCI. Incubation of rat hepatic nuclei with Fe3+/H2O2 (1 m mol/L vS 5μ mol/L) resulted in a decrease in nuclear NTPase activities (P<0.01).When hepatic nuclei were incubated with Tau (10-4 mol/L) and Fe3+/H2O2 (1m mol/L vS 5μ mol/L), nuclear NTPase activities were only slightly increased as compared with that of incubation with Fe3+/H

  20. Discrimination between acid and alkali-labile phosphorylated residues on Immobilon: phosphorylation studies of nucleoside diphosphate kinase

    DEFF Research Database (Denmark)

    Biondi, R M; Walz, K; Issinger, O G

    1996-01-01

    to deplete phosphate from membranes incubated successively under acid and basic conditions. The technique was applied to the study of nucleoside diphosphate kinase (NDP kinase) phosphorylation. In this enzyme, autophosphorylation of active site histidine is an accepted intermediate step in the catalytic...... phosphate transfer activity of nucleoside diphosphate kinase (NDP kinase). Nonetheless, a significant degree of autophosphorylation on other residues has been reported by several laboratories, and the hypothesis has been advanced that this nonhistidine phosphorylation may play an important role in NDP...... of phosphoserine after strong acid hydrolysis of the histidine autophosphorylated enzyme is in fact a nonenzymatic transphosphorylation from phosphohistidine due to the harsh acid treatment. This methodology was also applied to in vivo phosphorylation studies of C. albicans NDP kinase. We believe...

  1. Virological efficacy of combination therapy with corticosteroid and nucleoside analogue for severe acute exacerbation of chronic hepatitis B.

    Science.gov (United States)

    Yasui, S; Fujiwara, K; Nakamura, M; Miyamura, T; Yonemitsu, Y; Mikata, R; Arai, M; Kanda, T; Imazeki, F; Oda, S; Yokosuka, O

    2015-02-01

    The short-term prognosis of patients with severe acute exacerbation of chronic hepatitis B (CHB) leading to acute liver failure is extremely poor. We have reported the efficacy of corticosteroid in combination with nucleoside analogue in the early stages, but virological efficacy has not been documented. Our aim was to elucidate the virological efficacy of this approach. Thirteen patients defined as severe acute exacerbation of CHB by our uniform criteria were prospectively examined for virological responses to treatment. Nucleoside analogue and sufficient dose of corticosteroids were introduced as soon as possible after the diagnosis of severe disease. Of the 13 patients, 7 (54%) survived, 5 (38%) died and 1 (8%) received liver transplantation. The decline of HBV DNA was significant between the first 2 weeks (P = 0.02) and 4 weeks (P analogue has sufficient virological effect against severe acute exacerbation of CHB, and a rapid decline of HBV DNA is conspicuous in survived patients.

  2. A flexible loop as a functional element in the catalytic mechanism of nucleoside hydrolase from Trypanosoma vivax.

    Science.gov (United States)

    Vandemeulebroucke, An; De Vos, Stefan; Van Holsbeke, Els; Steyaert, Jan; Versées, Wim

    2008-08-08

    The nucleoside hydrolase of Trypanosoma vivax hydrolyzes the N-glycosidic bond of purine nucleosides. Structural and kinetic studies on this enzyme have suggested a catalytic role for a flexible loop in the vicinity of the active sites. Here we present the analysis of the role of this flexible loop via the combination of a proline scan of the loop, loop deletion mutagenesis, steady state and pre-steady state analysis, and x-ray crystallography. Our analysis reveals that this loop has an important role in leaving group activation and product release. The catalytic role involves the entire loop and could only be perturbed by deletion of the entire loop and not by single site mutagenesis. We present evidence that the loop closes over the active site during catalysis, thereby ordering a water channel that is involved in leaving group activation. Once chemistry has taken place, the loop dynamics determine the rate of product release.

  3. Insights into Phosphate Cooperativity and Influence of Substrate Modifications on Binding and Catalysis of Hexameric Purine Nucleoside Phosphorylases

    Science.gov (United States)

    de Giuseppe, Priscila O.; Martins, Nadia H.; Meza, Andreia N.; dos Santos, Camila R.; Pereira, Humberto D’Muniz; Murakami, Mario T.

    2012-01-01

    The hexameric purine nucleoside phosphorylase from Bacillus subtilis (BsPNP233) displays great potential to produce nucleoside analogues in industry and can be exploited in the development of new anti-tumor gene therapies. In order to provide structural basis for enzyme and substrates rational optimization, aiming at those applications, the present work shows a thorough and detailed structural description of the binding mode of substrates and nucleoside analogues to the active site of the hexameric BsPNP233. Here we report the crystal structure of BsPNP233 in the apo form and in complex with 11 ligands, including clinically relevant compounds. The crystal structure of six ligands (adenine, 2′deoxyguanosine, aciclovir, ganciclovir, 8-bromoguanosine, 6-chloroguanosine) in complex with a hexameric PNP are presented for the first time. Our data showed that free bases adopt alternative conformations in the BsPNP233 active site and indicated that binding of the co-substrate (2′deoxy)ribose 1-phosphate might contribute for stabilizing the bases in a favorable orientation for catalysis. The BsPNP233-adenosine complex revealed that a hydrogen bond between the 5′ hydroxyl group of adenosine and Arg43* side chain contributes for the ribosyl radical to adopt an unusual C3’-endo conformation. The structures with 6-chloroguanosine and 8-bromoguanosine pointed out that the Cl6 and Br8 substrate modifications seem to be detrimental for catalysis and can be explored in the design of inhibitors for hexameric PNPs from pathogens. Our data also corroborated the competitive inhibition mechanism of hexameric PNPs by tubercidin and suggested that the acyclic nucleoside ganciclovir is a better inhibitor for hexameric PNPs than aciclovir. Furthermore, comparative structural analyses indicated that the replacement of Ser90 by a threonine in the B. cereus hexameric adenosine phosphorylase (Thr91) is responsible for the lack of negative cooperativity of phosphate binding in this

  4. ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA

    DEFF Research Database (Denmark)

    van den Born, E.; Vagbo, C. B.; Songe-Moller, L.

    2011-01-01

    RNA) methyltransferase domain, which generates the wobble nucleoside 5-methoxycarbonylmethyluridine (mcm(5)U) from its precursor 5-carboxymethyluridine (cm(5)U). In this study, we report that (R)- and (S)-5-methoxycarbonylhydroxymethyluridine (mchm(5)U), hydroxylated forms of mcm(5)U, are present in mammalian t...... into ( S)- mchm(5)U in tRNAUCCGly. These findings expand the function of the ALKBH oxygenases beyond nucleic acid repair and increase the current knowledge on mammalian wobble uridine modifications and their biogenesis....