WorldWideScience

Sample records for computing bulk radiative

  1. Fast methods of computing bulk radiative properties of inhomogeneous clouds illuminated by solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, P. [Colorado State Univ., Fort Collins, CO (United States)

    1995-09-01

    The use of cloud fraction as a means of incorporating horizontal cloud inhomogeneity in radiative transfer calculations is widespread in the atmospheric science community. This research attempts to bypass the use of cloud fraction in radiative transfer modeling for two-dimensional media. Gabriel describes two approximation techniques useful in calculating the domain averaged bulk radiative properties such as albedo, flux divergence and mean radiance that dispense with the need to use cloud fraction as a specifier of cloud inhomogeneity. The results suggest that the variability of the medium can largely be accounted for through the pseudo-source term, offering hope of parameterizing the equation of transfer in terms of the statistical properties of the medium. 1 fig.

  2. Radiation effects in bulk silicon

    Science.gov (United States)

    Claeys, Cor; Vanhellemont, Jan

    1994-01-01

    This paper highlights important aspects related to irradiation effects in bulk silicon. Some basic principles related to the interaction of radiation with material, i.e. ionization and atomic displacement, are briefly reviewed. A physical understanding of radiation effects strongly depends on the availability of appropriate analytical tools. These tools are critically accessed from a silicon bulk viewpoint. More detailed information, related to the properties of the bulk damage and some dedicated application aspects, is given for both electron and proton irradiations. Emphasis is placed on radiation environments encountered during space missions and on their influence on the electrical performance of devices such as memories and image sensors.

  3. Scientific computing on bulk synchronous parallel architectures

    NARCIS (Netherlands)

    Bisseling, R.H.; McColl, W.F.

    1993-01-01

    Bulk synchronous parallel architectures oer the prospect of achieving both scalable parallel performance and architecture independent parallel software. They provide a robust model on which to base the future development of general purpose parallel computing systems. In this paper, we theoretically

  4. Radiation Hardening of Computers

    Science.gov (United States)

    Nichols, D. K.; Smith, L. S.; Zoutendyk, J. A.; Giddings, A. E.; Hewlett, F. W.; Treece, R. K.

    1986-01-01

    Single-event upsets reduced by use of oversize transistors. Computers made less susceptible to ionizing radiation by replacing bipolar integrated circuits with properly designed, complementary metaloxide-semiconductor (CMOS) circuits. CMOS circuit chips made highly resistant to single-event upset (SEU), especially when certain feedback resistors are incorporated. Redesigned chips also consume less power than original chips.

  5. Dilepton radiation and bulk viscosity in heavy-ion collisions

    Science.gov (United States)

    Vujanovic, Gojko; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel S.; Jeon, Sangyong; Gale, Charles; Heinz, Ulrich

    2017-08-01

    Starting from IP-Glasma initial conditions, we investigate the effects of bulk pressure on thermal dilepton production at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) energies. Though results of the thermal dilepton v2 under the influence of both bulk and shear viscosity is presented for top RHIC energy, more emphasis is put on LHC energy where such a calculation is computed for the first time. The effects of the bulk pressure on thermal dilepton v2 at the LHC are explored through bulk-induced modifications on the dilepton yield.

  6. Performance of bulk SiC radiation detectors

    CERN Document Server

    Cunningham, W; Lamb, G; Scott, J; Mathieson, K; Roy, P; Bates, R; Thornton, P; Smith, K M; Cusco, R; Glaser, M; Rahman, M

    2002-01-01

    SiC is a wide-gap material with excellent electrical and physical properties that may make it an important material for some future electronic devices. The most important possible applications of SiC are in hostile environments, such as in car/jet engines, within nuclear reactors, or in outer space. Another area where the material properties, most notably radiation hardness, would be valuable is in the inner tracking detectors of particle physics experiments. Here, we describe the performance of SiC diodes irradiated in the 24 GeV proton beam at CERN. Schottky measurements have been used to probe the irradiated material for changes in I-V characteristics. Other methods, borrowed from III-V research, used to study the irradiated surface include atomic force microscope scans and Raman spectroscopy. These have been used to observe the damage to the materials surface and internal lattice structure. We have also characterised the detection capabilities of bulk semi-insulating SiC for alpha radiation. By measuring ...

  7. Bulk Nanostructured FCC Steels With Enhanced Radiation Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinghang; Hartwig, K. Ted; Allen, Todd; Yang, Yong

    2012-10-27

    The objective of this project is to increase radiation tolerance in austenitic steels through optimization of grain size and grain boundary (GB) characteristics. The focus will be on nanocrystalline austenitic Fe-Cr-Ni alloys with an fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via GB engineering. The combination of grain refinement and grain boundary engineering approaches allows us to tailor the material strength, ductility, and resistance to swelling by 1) changing the sink strength for point defects, 2) by increasing the nucleation barriers for bubble formation at GBs, and 3) by changing the precipitate distributions at boundaries. Compared to ferritic/martensitic steels, austenitic stainless steels (SS) possess good creep and fatigue resistance at elevated temperatures, and better toughness at low temperature. However, a major disadvantage of austenitic SS is that they are vulnerable to significant void swelling in nuclear reactors, especially at the temperatures and doses anticipated in the Advanced Burner Reactor. The lack of resistance to void swelling in austenitic alloys led to the switch to ferritic/martensitic steels as the preferred material for the fast reactor cladding application. Recently a type of austenitic stainless steel, HT-UPS, was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometersized carbides. Reducing the grain size and increasing the fraction of low energy grain boundaries should reduce the available radiation-produced point defects (due to the increased sink area of the grain boundaries), should make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and improve the strength and ductility under radiation by producing a higher

  8. Regular Bulk Solutions in Brane-Worlds with Inhomogeneous Dust and Generalized Dark Radiation

    Directory of Open Access Journals (Sweden)

    A. Herrera-Aguilar

    2015-01-01

    Full Text Available From the dynamics of a brane-world with matter fields present in the bulk, the bulk metric and the black string solution near the brane are generalized, when both the dynamics of inhomogeneous dust/generalized dark radiation on the brane-world and inhomogeneous dark radiation in the bulk as well are considered as exact dynamical collapse solutions. Based on the analysis on the inhomogeneous static exterior of a collapsing sphere of homogeneous dark radiation on the brane, the associated black string warped horizon is studied, as well as the 5D bulk metric near the brane. Moreover, the black string and the bulk are shown to be more regular upon time evolution, for suitable values for the dark radiation parameter in the model, by analyzing the soft physical singularities.

  9. Regular Bulk Solutions in Brane-worlds with Inhomogeneous Dust and Generalized Dark Radiation

    CERN Document Server

    Herrera-Aguilar, A; da Rocha, Roldao

    2015-01-01

    From the dynamics of a brane-world with matter fields present in the bulk, the bulk metric and the black string solution near the brane are generalized, when both the dynamics of inhomogeneous dust/generalized dark radiation on the brane-world and inhomogeneous dark radiation in the bulk as well are considered -- as exact dynamical collapse solutions. Based on the analysis on the inhomogeneous static exterior of a collapsing sphere of homogeneous dark radiation on the brane, the associated black string warped horizon is studied, as well as the 5D bulk metric near the brane. Moreover, the black string and the bulk are shown to be more regular upon time evolution, for suitable values for the dark radiation parameter in the model, by analyzing the physical soft singularities.

  10. Radiation Detection Computational Benchmark Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for

  11. Reliability of computer memories in radiation environment

    Directory of Open Access Journals (Sweden)

    Fetahović Irfan S.

    2016-01-01

    Full Text Available The aim of this paper is examining a radiation hardness of the magnetic (Toshiba MK4007 GAL and semiconductor (AT 27C010 EPROM and AT 28C010 EEPROM computer memories in the field of radiation. Magnetic memories have been examined in the field of neutron radiation, and semiconductor memories in the field of gamma radiation. The obtained results have shown a high radiation hardness of magnetic memories. On the other side, it has been shown that semiconductor memories are significantly more sensitive and a radiation can lead to an important damage of their functionality. [Projekat Ministarstva nauke Republike Srbije, br. 171007

  12. Climatic features of the Mediterranean Sea detected by the analysis of the longwave radiative bulk formulae

    Directory of Open Access Journals (Sweden)

    M. E. Schiano

    Full Text Available Some important climatic features of the Mediterranean Sea stand out from an analysis of the systematic discrepancies between direct measurements of longwave radiation budget and predictions obtained by the most widely used bulk formulae. In particular, under clear-sky conditions the results show that the surface values of both air temperature and humidity over the Mediterranean Sea are larger than those expected over an open ocean with the same amount of net longwave radiation. Furthermore, the twofold climatic regime of the Mediterranean region strongly affects the downwelling clear-sky radiation. This study suggests that a single bulk formula with constant numerical coefficients is unable to reproduce the fluxes at the surface for all the seasons.

    Key words: Meteorology and Atmospheric dynamics (radiative processes – Oceanography: general (marginal and semienclosed seas; marine meteorology

  13. Efficient Femtosecond Mid-infrared Pulse Generation by Dispersive Wave Radiation in Bulk Lithium Niobate Crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8-2.92 μm are generated using the single pump wavelengths from 1.25-1.45 μm. © 2014 Optical Society of America...

  14. Radiation management computer system for Monju

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Kei; Yasutomo, Katsumi [Fuji Electric Co. Ltd., Tokyo (Japan); Sudou, Takayuki [FFC, Ltd., Tokyo (Japan); Yamashita, Masahiro [Japan Nuclear Cycle Development Inst., Monju Construction Office, Tsuruga, Fukui (Japan); Hayata, Kenichi; Ueda, Hajime [Kosokuro Gijyutsu Service K.K., Tsuruga, Fukui (Japan); Hosokawa, Hideo [Nuclear Energy System Inc., Tsuruga, Fukui (Japan)

    2002-11-01

    Radiation management of nuclear power research institutes, nuclear power stations and other such facilities are strictly managed under Japanese laws and management policies. Recently, the momentous issues of more accurate radiation dose management and increased work efficiency has been discussed. Up to now, Fuji Electric Company has supplied a large number of Radiation Management Systems to nuclear power stations and related nuclear facilities. We introduce the new radiation management computer system with adopted WWW technique for Japan Nuclear Cycle Development Institute, MONJU Fast Breeder Reactor (MONJU). (author)

  15. Phaseless computational imaging with a radiating metasurface

    CERN Document Server

    Fromenteze, Thomas; Boyarsky, Michael; Gollub, Jonah; Smith, David R

    2016-01-01

    Computational imaging modalities support a simplification of the active architectures required in an imaging system and these approaches have been validated across the electromagnetic spectrum. Recent implementations have utilized pseudo-orthogonal radiation patterns to illuminate an object of interest---notably, frequency-diverse metasurfaces have been exploited as fast and low-cost alternative to conventional coherent imaging systems. However, accurately measuring the complex-valued signals in the frequency domain can be burdensome, particularly for sub-centimeter wavelengths. Here, computational imaging is studied under the relaxed constraint of intensity-only measurements. A novel 3D imaging system is conceived based on 'phaseless' and compressed measurements, with benefits from recent advances in the field of phase retrieval. In this paper, the methodology associated with this novel principle is described, studied, and experimentally demonstrated in the microwave range. A comparison of the estimated imag...

  16. Simulation of bulk aerosol direct radiative effects and its climatic feedbacks in South Africa using RegCM4

    Science.gov (United States)

    Tesfaye, M.; Botai, J.; Sivakumar, V.; Mengistu Tsidu, G.; Rautenbach, C. J. deW.; Moja, Shadung J.

    2016-05-01

    In this study, 12 year runs of the Regional Climate Model (RegCM4) have been used to analyze the bulk aerosol radiative effects and its climatic feedbacks in South Africa. Due to the geographical locations where the aerosol potential source regions are situated and the regional dynamics, the South African aerosol spatial-distribution has a unique feature. Across the west and southwest areas, desert dust particles are dominant. However, sulfate and carbonaceous aerosols are primarily distributed over the east and northern regions of the country. Analysis of the Radiative Effects (RE) shows that in South Africa the bulk aerosols play a role in reducing the net radiation absorbed by the surface via enhancing the net radiative heating in the atmosphere. Hence, across all seasons, the bulk aerosol-radiation-climate interaction induced statistically significant positive feedback on the net atmospheric heating rate. Over the western and central parts of South Africa, the overall radiative feedbacks of bulk aerosol predominantly induces statistically significant Cloud Cover (CC) enhancements. Whereas, over the east and southeast coastal areas, it induces minimum reductions in CC. The CC enhancement and RE of aerosols jointly induce radiative cooling at the surface which in turn results in the reduction of Surface Temperature (ST: up to -1 K) and Surface Sensible Heat Flux (SSHF: up to -24 W/m2). The ST and SSHF decreases cause a weakening of the convectively driven turbulences and surface buoyancy fluxes which lead to the reduction of the boundary layer height, surface pressure enhancement and dynamical changes. Throughout the year, the maximum values of direct and semi-direct effects of bulk aerosol were found in areas of South Africa which are dominated by desert dust particles. This signals the need for a strategic regional plan on how to reduce the dust production and monitoring of the dust dispersion as well as it initiate the need of further research on different

  17. Image similarity evaluation of the bulk-density-assigned synthetic CT derived from MRI of intracranial regions for radiation treatment.

    Directory of Open Access Journals (Sweden)

    Shin-Wook Kim

    Full Text Available Various methods for radiation-dose calculation have been investigated over previous decades, focusing on the use of magnetic resonance imaging (MRI only. The bulk-density-assignment method based on manual segmentation has exhibited promising results compared to dose-calculation with computed tomography (CT. However, this method cannot be easily implemented in clinical practice due to its time-consuming nature. Therefore, we investigated an automatic anatomy segmentation method with the intention of providing the proper methodology to evaluate synthetic CT images for a radiation-dose calculation based on MR images.CT images of 20 brain cancer patients were selected, and their MR images including T1-weighted, T2-weighted, and PETRA were retrospectively collected. Eight anatomies of the patients, such as the body, air, eyeball, lens, cavity, ventricle, brainstem, and bone, were segmented for bulk-density-assigned CT image (BCT generation. In addition, water-equivalent CT images (WCT with only two anatomies-body and air-were generated for a comparison with BCT. Histogram comparison and gamma analysis were performed by comparison with the original CT images, after the evaluation of automatic segmentation performance with the dice similarity coefficient (DSC, false negative dice (FND coefficient, and false positive dice (FPD coefficient.The highest DSC value was 99.34 for air segmentation, and the lowest DSC value was 73.50 for bone segmentation. For lens segmentation, relatively high FND and FPD values were measured. The cavity and bone were measured as over-segmented anatomies having higher FPD values than FND. The measured histogram comparison results of BCT were better than those of WCT in all cases. In gamma analysis, the averaged improvement of BCT compared to WCT was measured. All the measured results of BCT were better than those of WCT. Therefore, the results of this study show that the introduced methods, such as histogram comparison and

  18. Regular Bulk Solutions in Brane-Worlds with Inhomogeneous Dust and Generalized Dark Radiation

    National Research Council Canada - National Science Library

    Herrera-Aguilar, A; Kuerten, A. M; da Rocha, Roldão

    2015-01-01

      From the dynamics of a brane-world with matter fields present in the bulk, the bulk metric and the black string solution near the brane are generalized, when both the dynamics of inhomogeneous dust...

  19. Radiation Tolerant, FPGA-Based SmallSat Computer System

    Science.gov (United States)

    LaMeres, Brock J.; Crum, Gary A.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Radiation Tolerant, FPGA-based SmallSat Computer System (RadSat) computing platform exploits a commercial off-the-shelf (COTS) Field Programmable Gate Array (FPGA) with real-time partial reconfiguration to provide increased performance, power efficiency and radiation tolerance at a fraction of the cost of existing radiation hardened computing solutions. This technology is ideal for small spacecraft that require state-of-the-art on-board processing in harsh radiation environments but where using radiation hardened processors is cost prohibitive.

  20. Lagrangian computations of radiating fire plumes

    Science.gov (United States)

    Lakkis, Issam Adnan

    2000-09-01

    Modeling and simulation of fires are useful in determining their impact on nearby and distant objects, quantifying their environmental impact, improving fire suppression techniques, etc. Fires, essentially naturally aspirated combustion phenomena, are buoyancy driven diffusion flames in which the fuel supply rate is governed by the burn rate itself. It has been observed experimentally that the complex interaction between the flow, transport process and chemistry in a fire leads to large scale ``puffing'' an unsteady phenomenon manifested in the periodic ejection of bellowing smoke. The complexity of the phenomenon defies analytical treatment except at the very coarse grain level essentially using similarity principles. Numerical solutions based on ensemble averaging/closure and flow- combustion interaction models are encumbered by uncertainty and unproven hypotheses. A viable alternative is a numerical simulation of the unsteady governing equations with sufficient resolution to capture the important scales. In this work, contributions to a grid- free Lagrangian approach to simulate numerically fire plumes are suggested. The physical model incorporates unsteady buoyancy dynamics, transport of heat and mass by diffusion and convection, radiative transport of heat, and a single-step, infinite-rate chemical reaction with exothermic heat release. The numerical approach is based on the vortex method in which the unsteady conservation equations of vorticity, chemical species and energy are solved using a set of moving computational elements carrying time dependent quantities. A compatible approach is proposed to solve the radiative transport equations. Simulations of an axisymmetric plume are used to identify the dynamic mechanisms leading to ``puffing'', the processes which govern entrainment into the rising unsteady plume, burn rate, and overall observable quantities such as the flame height, radiation flux, etc. (Copies available exclusively from MIT Libraries, Rm. 14

  1. 3D computation of non-linear eddy currents: Variational method and superconducting cubic bulk

    Science.gov (United States)

    Pardo, Enric; Kapolka, Milan

    2017-09-01

    Computing the electric eddy currents in non-linear materials, such as superconductors, is not straightforward. The design of superconducting magnets and power applications needs electromagnetic computer modeling, being in many cases a three-dimensional (3D) problem. Since 3D problems require high computing times, novel time-efficient modeling tools are highly desirable. This article presents a novel computing modeling method based on a variational principle. The self-programmed implementation uses an original minimization method, which divides the sample into sectors. This speeds-up the computations with no loss of accuracy, while enabling efficient parallelization. This method could also be applied to model transients in linear materials or networks of non-linear electrical elements. As example, we analyze the magnetization currents of a cubic superconductor. This 3D situation remains unknown, in spite of the fact that it is often met in material characterization and bulk applications. We found that below the penetration field and in part of the sample, current flux lines are not rectangular and significantly bend in the direction parallel to the applied field. In conclusion, the presented numerical method is able to time-efficiently solve fully 3D situations without loss of accuracy.

  2. Investigation into Cloud Computing for More Robust Automated Bulk Image Geoprocessing

    Science.gov (United States)

    Brown, Richard B.; Smoot, James C.; Underwood, Lauren; Armstrong, C. Duane

    2012-01-01

    Geospatial resource assessments frequently require timely geospatial data processing that involves large multivariate remote sensing data sets. In particular, for disasters, response requires rapid access to large data volumes, substantial storage space and high performance processing capability. The processing and distribution of this data into usable information products requires a processing pipeline that can efficiently manage the required storage, computing utilities, and data handling requirements. In recent years, with the availability of cloud computing technology, cloud processing platforms have made available a powerful new computing infrastructure resource that can meet this need. To assess the utility of this resource, this project investigates cloud computing platforms for bulk, automated geoprocessing capabilities with respect to data handling and application development requirements. This presentation is of work being conducted by Applied Sciences Program Office at NASA-Stennis Space Center. A prototypical set of image manipulation and transformation processes that incorporate sample Unmanned Airborne System data were developed to create value-added products and tested for implementation on the "cloud". This project outlines the steps involved in creating and testing of open source software developed process code on a local prototype platform, and then transitioning this code with associated environment requirements into an analogous, but memory and processor enhanced cloud platform. A data processing cloud was used to store both standard digital camera panchromatic and multi-band image data, which were subsequently subjected to standard image processing functions such as NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), band stacking, reprojection, and other similar type data processes. Cloud infrastructure service providers were evaluated by taking these locally tested processing functions, and then

  3. Combined Bulk and Surface Radiation Damage Effects at Very High Fluences in Silicon Detectors: Measurements and TCAD Simulations

    CERN Document Server

    Moscatelli, F; Morozzi, A; Mendicino, R; Dalla Betta, G F; Bilei, G M

    2016-01-01

    In this work we propose a new combined TCAD radiation damage modelling scheme, featuring both bulk and surface radiation damage effects, for the analysis of silicon detectors aimed at the High Luminosity LHC. In particular, a surface damage model has been developed by introducing the relevant parameters (NOX, NIT) extracted from experimental measurements carried out on p-type substrate test structures after gamma irradiations at doses in the range 10-500 Mrad(Si). An extended bulk model, by considering impact ionization and deep-level cross-sections variation, was included as well. The model has been validated through the comparison of the simulation findings with experimental measurements carried out at very high fluences (2×1016 1 MeV equivalent n/cm2) thus fostering the application of this TCAD approach for the design and optimization of the new generation of silicon detectors to be used in future HEP experiments.

  4. Radiation hardness of silicon detectors manufactured on epitaxial material and FZ bulk enriched with oxygen, carbon, tin and platinum

    CERN Document Server

    Ruzin, A; Glaser, M; Lemeilleur, F; Talamonti, R; Watts, S; Zanet, A

    1999-01-01

    Recent results on the radiation hardness of silicon detectors fabricated on epitaxial and float zone bulk silicon enriched by various impurities, such as carbon, oxygen, tin and platinum are reported. A new methodology of measurements of electrical properties of the devices has been utilized in the experiment. It has been shown that in the case of irradiation by protons, oxygen enriched silicon has better radiation hardness than standard float zone silicon. The carbon enriched silicon detectors, on the other hand, exhibited significantly inferior radiation hardness compared to standard detectors. This study shows for the first time, a violation of the widely used normalization technique of the various particle irradiations by NIEL coefficients. The study has been carried out in the framework of the RD48 (ROSE) collaboration, which studies the radiation hardening of silicon detectors. (5 refs).

  5. Validation of radiative transfer computation with Monte Carlo method for ultra-relativistic background flow

    Science.gov (United States)

    Ishii, Ayako; Ohnishi, Naofumi; Nagakura, Hiroki; Ito, Hirotaka; Yamada, Shoichi

    2017-11-01

    We developed a three-dimensional radiative transfer code for an ultra-relativistic background flow-field by using the Monte Carlo (MC) method in the context of gamma-ray burst (GRB) emission. For obtaining reliable simulation results in the coupled computation of MC radiation transport with relativistic hydrodynamics which can reproduce GRB emission, we validated radiative transfer computation in the ultra-relativistic regime and assessed the appropriate simulation conditions. The radiative transfer code was validated through two test calculations: (1) computing in different inertial frames and (2) computing in flow-fields with discontinuous and smeared shock fronts. The simulation results of the angular distribution and spectrum were compared among three different inertial frames and in good agreement with each other. If the time duration for updating the flow-field was sufficiently small to resolve a mean free path of a photon into ten steps, the results were thoroughly converged. The spectrum computed in the flow-field with a discontinuous shock front obeyed a power-law in frequency whose index was positive in the range from 1 to 10 MeV. The number of photons in the high-energy side decreased with the smeared shock front because the photons were less scattered immediately behind the shock wave due to the small electron number density. The large optical depth near the shock front was needed for obtaining high-energy photons through bulk Compton scattering. Even one-dimensional structure of the shock wave could affect the results of radiation transport computation. Although we examined the effect of the shock structure on the emitted spectrum with a large number of cells, it is hard to employ so many computational cells per dimension in multi-dimensional simulations. Therefore, a further investigation with a smaller number of cells is required for obtaining realistic high-energy photons with multi-dimensional computations.

  6. Multi-detector computed tomography radiation doses in the follow ...

    African Journals Online (AJOL)

    2014-05-09

    detector computed tomography (MDCT) is the preferred modality for follow-up of paediatric neurosurgery patients. Serial imaging, however, has the disadvantage of an ionising radiation burden, which may be mitigated using the ...

  7. Radiation levels from computer monitor screens within Benue State ...

    African Journals Online (AJOL)

    Investigation of possible presence of soft X-ray levels from Computer Screens at distances of 0.5m and 1.0m was carried out within Benue State University, Makurdi, using ten different monitor models. Radiation measurement was carried out using a portable digital radiation meter, INSPECTOR 06250 (SE international Inc.

  8. Visualisation and quantification of water in bulk and rhizosphere soils using X-ray Computed Tomography

    Science.gov (United States)

    Tracy, Saoirse; Daly, Keith; Crout, Neil; Bennett, Malcolm; Pridmore, Tony; Foulkes, John; Roose, Tiina; Mooney, Sacha

    2015-04-01

    Understanding how water is distributed in soil and how it changes during the redistribution process or from root uptake is crucial for enhancing our understanding for managing soil and water resources. The application of X-ray Computed Tomography (CT) to soil science research is now well established; however few studies have utilised the technique for visualising water in pore spaces due to several inherent difficulties. Here we present a new method to visualise the water content of a soil in situ and in three-dimensions at successive drying matric potentials. A water release curve was obtained for different soil types using measurements from their real pore geometries. The water, soil, air and root phases from the images were segmented using image analysis techniques and quantified. These measurements allowed us to characterise pore size, shape and connectivity for both air filled pores and water. The non-destructive technique enabled water to be visualised in situ and repeated scanning allowed wetting patterns to be analysed. The experimental results were validated against conventional laboratory derived water release curves and specifically developed mechanistic models of soil-water-root interactions. Micro-scale revelations of the water-soil-root interfaces enabled us to make macro-scale predictions on water movement in soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models.

  9. Computer-based and web-based radiation safety training

    Energy Technology Data Exchange (ETDEWEB)

    Owen, C., LLNL

    1998-03-01

    The traditional approach to delivering radiation safety training has been to provide a stand-up lecture of the topic, with the possible aid of video, and to repeat the same material periodically. New approaches to meeting training requirements are needed to address the advent of flexible work hours and telecommuting, and to better accommodate individuals learning at their own pace. Computer- based and web-based radiation safety training can provide this alternative. Computer-based and web- based training is an interactive form of learning that the student controls, resulting in enhanced and focused learning at a time most often chosen by the student.

  10. A combined surface and bulk TCAD damage model for the analysis of radiation detectors operating at HL-LHC fluences

    Science.gov (United States)

    Morozzi, A.; Passeri, D.; Moscatelli, F.; Dalla Betta, G.-F.; Bilei, G. M.

    2016-12-01

    In this work we present the development and the application of a new TCAD modelling scheme to simulate the effects of radiation damage on silicon radiation detectors at the very high fluence levels expected at High Luminosity LHC (up to 2 × 1016 1MeV n/cm2). In particular, we propose a combined approach for the analysis of the surface effects (oxide charge build-up and interface trap states introduction) as well as bulk effects (deep level traps and/or recombination centers introduction). Experimental measurements have been carried out aiming at: i) extraction from simple test structures of relevant parameters to be included within the TCAD model and ii) validation of the new modelling scheme through comparison with measurements of different test structures (e.g. different technologies) before and after irradiation. The good agreements between experimental measurements and simulation findings foster the suitability of the TCAD modelling approach as a predictive tool for investigating the radiation detector behavior at different fluences and operating conditions. This would allow the design and optimization of innovative 3D and planar silicon detectors for future HL-LHC High Energy Physics experiments.

  11. Evaluation of Bulk and Surface Radiation Damage of Silicon Sensors for the ATLAS Upgrade

    CERN Document Server

    Mikeštíková, Marcela; Št'astný, Jan

    2015-01-01

    The electrical characteristics of different types of end-cap miniature n + -in- p strip sensors, ATLAS12A, were evaluated in Institute of Physics in Prague before and after proton and gamma irradiation. We report here on the bulk damage aspects, including the increase of leakage current and evaluation of the full depletion voltage and the surface damage, including the decrease of inter-strip resistance, changes in inter-strip capacitance and the effectiveness of punch-through protection structure. It was verified that different geometries of end-cap sensors do not influence their stability; the sensors should provide acceptable strip isolation and n ew gate PTP structure functions well even at the highest tested proton fluence 2× 10 15 n eq / cm 2

  12. Comparison of bulk and epitaxial 4H-SiC detectors for radiation hard particle tracking

    CERN Document Server

    Quinn, T; Bruzzi, M; Cunningham, W; Mathieson, K; Moll, M; Nelson, T; Nilsson, H E; Pintillie, I; Rahman, M; Reynolds, L; Sciortino, S; Sellin, P J; Strachan, H; Svensson, B G; Vaitkus, J

    2003-01-01

    Measurements and simulations have been carried out using bulk and epitaxial SiC detectors. Samples were irradiated to fluences of around 10**1**4 hardrons/cm**2. Material of thickness 40um gave a charge collection efficiency of 100% dropping to around 60% at 100mum thickness. Detailed MEDICI simulations incorporated the main defect levels in SiC, the vanadium center, Z-center and a mid-gap level as measured by deep level transient spectroscopy and other techniques. Calculated recombination currents and charge collection efficiencies at varying fluences were comparable to experimental data. The study suggests that SiC detectors will operate up to fluences around 10 **1**6/cm**2 as required by future particle physics experiments.

  13. Computer system in Prolog for legal consultation relating to radiations

    Energy Technology Data Exchange (ETDEWEB)

    Kaminishi, Tokishi; Matsuda, Hideharu; Koshino, Masao

    1988-05-01

    A computer consulting system on legal questions relating to radiations was developed, which system was described with Prolog in BASIC using personal computer. A remarkable feature of this system is easiness and simplicity in its operation. Furthermore the programming for answer is simple and flexible owing to Prolog. This consulting system is similar to CAI rather than Expert System. An outline of the system is described and several examples are shown with the executed results in this report.

  14. Alternative methods for computing sound radiation from vibrating surfaces

    Science.gov (United States)

    Bernhard, R. J.; Gardner, B. K.; Smith, D. C.

    1987-01-01

    The merits of various numerical and experimental methods for computing sound fields radiated from vibrating structures are examined. The finite difference method, the finite element method, direct boundary element method, indirect boundary element near-field acoustic holography, two-microphone methods, and spatial transformation of sound fields are considered. The proper utilization of the methods is discussed.

  15. Multi-detector computed tomography radiation doses in the follow ...

    African Journals Online (AJOL)

    Background: Multi-detector computed tomography (MDCT) is the preferred modality for follow-up of paediatric neurosurgery patients. Serial imaging, however, has the disadvantage of an ionising radiation burden, which may be mitigated using the 'as low as reasonably achievable' (ALARA) principle. Objectives: The ...

  16. Strategies for Computed Tomography Radiation Dose Reduction in Pediatric Neuroimaging.

    Science.gov (United States)

    Albert, Gregory W; Glasier, Charles M

    2015-08-01

    Radiation exposure from diagnostic imaging is a significant concern, particularly in the care of pediatric patients. Computed tomography (CT) scanning is a significant source of radiation. To demonstrate that diagnostic quality CT images can be obtained while minimizing the effective radiation dose to the patient. In this retrospective cross-sectional study, noncontrast head CT scan data were reviewed, and indications for scans and estimated radiation dose delivered were recorded. The estimated effective radiation dose (EERD) for each CT protocol was reviewed. We identified 251 head CT scans in a single month. Of these, 96 scans were using a low-dose shunt protocol with a mean EERD of 0.82 mSv. The remaining 155 scans were performed using the standard protocol, and the mean EERD was 1.65 mSv. Overall, the EERD was minimized while maintaining diagnostic scan quality. Although replacing a CT with magnetic resonance imaging is ideal to completely avoid ionizing radiation, this is not always practical or preferred. Therefore, it is important to have CT protocols in place that minimize radiation dose without sacrificing diagnostic quality. The protocols in place at our institution could be replicated at other academic and community hospitals and imaging centers.

  17. Recent improvements in detection performances of radiation detectors based on bulk semi-insulating InP

    CERN Document Server

    Dubecky, F; Necas, V; Sekacova, M; Fornari, R; Gombia, E; Bohácek, P; Krempasky, M; Pelfer, P G

    2002-01-01

    In this work, bulk semi-insulating (SI) InP wafers of four various producers have been used for the fabrication of radiation detectors. The tested detectors were prepared starting from the different materials in just one run in order to be sure that their performances were not influenced by technological processes. On one type of material various electrode technologies were used with the aim to analyze their role on the detector performances. The fabricated detectors were tested for detection performance by the sup 2 sup 4 sup 1 Am and sup 5 sup 7 Co gamma-ray sources at below room temperature. The best detector was calibrated and tested also using sup 1 sup 3 sup 3 Ba and sup 1 sup 3 sup 7 Cs gamma sources. The best detector gives an energy resolution of 7 keV FWHM and a charge collection efficiency (CCE) of 82% (59.5 keV photopeak) at a temperature of 216 K. According to our knowledge, these results are the best which have been obtained with InP radiation detectors till now. The operation of SI InP detector...

  18. Computational Challenges of 3D Radiative Transfer in Atmospheric Models

    Science.gov (United States)

    Jakub, Fabian; Bernhard, Mayer

    2017-04-01

    The computation of radiative heating and cooling rates is one of the most expensive components in todays atmospheric models. The high computational cost stems not only from the laborious integration over a wide range of the electromagnetic spectrum but also from the fact that solving the integro-differential radiative transfer equation for monochromatic light is already rather involved. This lead to the advent of numerous approximations and parameterizations to reduce the cost of the solver. One of the most prominent one is the so called independent pixel approximations (IPA) where horizontal energy transfer is neglected whatsoever and radiation may only propagate in the vertical direction (1D). Recent studies implicate that the IPA introduces significant errors in high resolution simulations and affects the evolution and development of convective systems. However, using fully 3D solvers such as for example MonteCarlo methods is not even on state of the art supercomputers feasible. The parallelization of atmospheric models is often realized by a horizontal domain decomposition, and hence, horizontal transfer of energy necessitates communication. E.g. a cloud's shadow at a low zenith angle will cast a long shadow and potentially needs to communication through a multitude of processors. Especially light in the solar spectral range may travel long distances through the atmosphere. Concerning highly parallel simulations, it is vital that 3D radiative transfer solvers put a special emphasis on parallel scalability. We will present an introduction to intricacies computing 3D radiative heating and cooling rates as well as report on the parallel performance of the TenStream solver. The TenStream is a 3D radiative transfer solver using the PETSc framework to iteratively solve a set of partial differential equation. We investigate two matrix preconditioners, (a) geometric algebraic multigrid preconditioning(MG+GAMG) and (b) block Jacobi incomplete LU (ILU) factorization. The

  19. Radiation from relativistic jets in blazars and the efficient dissipation of their bulk energy via photon breeding

    Science.gov (United States)

    Stern, Boris E.; Poutanen, Juri

    2008-02-01

    High-energy photons propagating in the magnetized medium with large velocity gradients can mediate energy and momentum exchange. Conversion of these photons into electron-positron pairs in the field of soft photons with the consequent isotropization and emission of new high-energy photons by Compton scattering can lead to the runaway cascade of the high-energy photons and electron-positron pairs fed by the bulk energy of the flow. This is the essence of the photon breeding mechanism. We study the problem of high-energy emission of relativistic jets in blazars via photon breeding mechanism using 2D ballistic model for the jet with the detailed treatment of particle propagation and interactions. Our numerical simulations from first principles demonstrate that a jet propagating in the soft radiation field of broad emission-line region can convert a significant fraction (up to 80 per cent) of its total power into radiation. We show that the gamma-ray background of similar energy density as observed at Earth is sufficient to trigger the photon breeding. The considered mechanism produces a population of high-energy leptons and, therefore, alleviates the need for Fermi-type particle acceleration models in relativistic flows. The mechanism reproduces basic spectral features observed in blazars including the blazar sequence (shift of spectral peaks towards lower energies with increasing luminosity). The significant deceleration of the jet at subparsec scales and the transversal gradient of the Lorentz factor (so-called structured jet) predicted by the model reconcile the discrepancy between the high Doppler factors determined by the fits to the spectra of TeV blazars and the low apparent velocities observed at very long baseline interferometry (VLBI) scales. The mechanism produces significantly broader angular distribution of radiation than that predicted by a simple model assuming the isotropic emission in the jet frame. This helps to reconcile the observed statistics and

  20. Has the use of computers in radiation therapy improved the accuracy in radiation dose delivery?

    Science.gov (United States)

    Van Dyk, J.; Battista, J.

    2014-03-01

    Purpose: It is well recognized that computer technology has had a major impact on the practice of radiation oncology. This paper addresses the question as to how these computer advances have specifically impacted the accuracy of radiation dose delivery to the patient. Methods: A review was undertaken of all the key steps in the radiation treatment process ranging from machine calibration to patient treatment verification and irradiation. Using a semi-quantitative scale, each stage in the process was analysed from the point of view of gains in treatment accuracy. Results: Our critical review indicated that computerization related to digital medical imaging (ranging from target volume localization, to treatment planning, to image-guided treatment) has had the most significant impact on the accuracy of radiation treatment. Conversely, the premature adoption of intensity-modulated radiation therapy has actually degraded the accuracy of dose delivery compared to 3-D conformal radiation therapy. While computational power has improved dose calibration accuracy through Monte Carlo simulations of dosimeter response parameters, the overall impact in terms of percent improvement is relatively small compared to the improvements accrued from 3-D/4-D imaging. Conclusions: As a result of computer applications, we are better able to see and track the internal anatomy of the patient before, during and after treatment. This has yielded the most significant enhancement to the knowledge of "in vivo" dose distributions in the patient. Furthermore, a much richer set of 3-D/4-D co-registered dose-image data is thus becoming available for retrospective analysis of radiobiological and clinical responses.

  1. Stochastic Effects in Computational Biology of Space Radiation Cancer Risk

    Science.gov (United States)

    Cucinotta, Francis A.; Pluth, Janis; Harper, Jane; O'Neill, Peter

    2007-01-01

    Estimating risk from space radiation poses important questions on the radiobiology of protons and heavy ions. We are considering systems biology models to study radiation induced repair foci (RIRF) at low doses, in which less than one-track on average transverses the cell, and the subsequent DNA damage processing and signal transduction events. Computational approaches for describing protein regulatory networks coupled to DNA and oxidative damage sites include systems of differential equations, stochastic equations, and Monte-Carlo simulations. We review recent developments in the mathematical description of protein regulatory networks and possible approaches to radiation effects simulation. These include robustness, which states that regulatory networks maintain their functions against external and internal perturbations due to compensating properties of redundancy and molecular feedback controls, and modularity, which leads to general theorems for considering molecules that interact through a regulatory mechanism without exchange of matter leading to a block diagonal reduction of the connecting pathways. Identifying rate-limiting steps, robustness, and modularity in pathways perturbed by radiation damage are shown to be valid techniques for reducing large molecular systems to realistic computer simulations. Other techniques studied are the use of steady-state analysis, and the introduction of composite molecules or rate-constants to represent small collections of reactants. Applications of these techniques to describe spatial and temporal distributions of RIRF and cell populations following low dose irradiation are described.

  2. Radiation Exposure of Abdominal Cone Beam Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, Anna M., E-mail: anni.sailer@mumc.nl [Maastricht University Medical Centre (MUMC), Department of Radiology (Netherlands); Schurink, Geert Willem H., E-mail: gwh.schurink@mumc.nl [Maastricht University Medical Centre, Department of Surgery (Netherlands); Wildberger, Joachim E., E-mail: j.wildberger@mumc.nl; Graaf, Rick de, E-mail: r.de.graaf@mumc.nl; Zwam, Willem H. van, E-mail: w.van.zwam@mumc.nl; Haan, Michiel W. de, E-mail: m.de.haan@mumc.nl; Kemerink, Gerrit J., E-mail: gerrit.kemerink@mumc.nl; Jeukens, Cécile R. L. P. N., E-mail: cecile.jeukens@mumc.nl [Maastricht University Medical Centre (MUMC), Department of Radiology (Netherlands)

    2015-02-15

    PurposeTo evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).MethodsThis prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patients’ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCT dose-related risk for cancer was assessed.ResultsMean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1–7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patients’ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.ConclusionsMean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight.

  3. Management of pediatric radiation dose using Agfa computed radiography

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzing, R. [Agfa Corp., Greenville, SC (United States)

    2004-10-01

    Radiation dose to patients and its management have become important considerations in modern radiographic imaging procedures, but they acquire particular significance in the imaging of children. Because of their longer life expectancy, children exposed to radiation are thought to have a significantly increased risk of radiation-related late sequelae compared to adults first exposed to radiation later in life. Therefore, current clinical thinking dictates that dose in pediatric radiography be minimized, while simultaneously ensuring sufficient diagnostic information in the image, and reducing the need for repeat exposures. Dose management obviously starts with characterization and control of the exposure technique. However, it extends farther through the imaging chain to the acquisition system, and even to the image processing techniques used to optimize acquired images for display. Further, other factors, such as quality control procedures and the ability to handle special pediatric procedures, like scoliosis exams, also come into play. The need for dose management in modern radiography systems has spawned a variety of different solutions, some of which are similar across different manufacturers, and some of which are unique. This paper covers the techniques used in Agfa Computed Radiography (CR) systems to manage dose in a pediatric environment. (orig.)

  4. Advanced Computational Methods for Thermal Radiative Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  5. First application of computed radiology to mammography with synchrotron radiation.

    Science.gov (United States)

    Quai, E; Longo, R; Zanconati, F; Jaconelli, G; Tonutti, M; Abrami, A; Arfelli, F; Dreossi, D; Tromba, G; Cova, M A

    2013-02-01

    The aim of this study was to evaluate the feasibility of phase-contrast mammography with synchrotron radiation using a high-resolution computed radiology (CR) system devoted to mammography. The study was performed at the Synchrotron Radiation for Medical Physics (SYRMEP) beamline of the Elettra synchrotron radiation (SR) facility in Trieste (Italy); X-ray beams were in the range 16-22 keV with a high degree of monochromaticity and spatial coherence. The CR system evaluated is the FCR Profect CS by Fujifilm Global. The first images were obtained from test objects and surgical breast specimens. Images obtained using SR and both screen-film and the CR system were compared with images of the same samples acquired with digital mammography equipment. In view of the good quality of the results obtained, the CR system was used in two mammographic examinations with SR. Images acquired using SR and both screen-film and CR were obtained with the same level of delivered dose. Image quality obtained with CR was similar or superior to that of screen-film images. Moreover, the digital images obtained with SR were always better than those acquired using the digital mammography system. Phase-contrast mammography with SR using the studied CR system is a feasible option.

  6. Efficient computation of coherent synchrotron radiation in a rectangular chamber

    Directory of Open Access Journals (Sweden)

    Robert L. Warnock

    2016-09-01

    Full Text Available We study coherent synchrotron radiation (CSR in a perfectly conducting vacuum chamber of rectangular cross section, in a formalism allowing an arbitrary sequence of bends and straight sections. We apply the paraxial method in the frequency domain, with a Fourier development in the vertical coordinate but with no other mode expansions. A line charge source is handled numerically by a new method that rids the equations of singularities through a change of dependent variable. The resulting algorithm is fast compared to earlier methods, works for short bunches with complicated structure, and yields all six field components at any space-time point. As an example we compute the tangential magnetic field at the walls. From that one can make a perturbative treatment of the Poynting flux to estimate the energy deposited in resistive walls. The calculation was motivated by a design issue for LCLS-II, the question of how much wall heating from CSR occurs in the last bend of a bunch compressor and the following straight section. Working with a realistic longitudinal bunch form of r.m.s. length 10.4  μm and a charge of 100 pC we conclude that the radiated power is quite small (28 W at a 1 MHz repetition rate, and all radiated energy is absorbed in the walls within 7 m along the straight section.

  7. Methods of computer experiment in gamma-radiation technologies using new radiation sources

    CERN Document Server

    Bratchenko, M I; Rozhkov, V V

    2001-01-01

    Presented id the methodology of computer modeling application for physical substantiation of new irradiation technologies and irradiators design work flow. Modeling tasks for irradiation technologies are structured along with computerized methods of their solution and appropriate types of software. Comparative analysis of available packages for Monte-Carlo modeling of electromagnetic processes in media is done concerning their application to irradiation technologies problems. The results of codes approbation and preliminary data on gamma-radiation absorbed dose distributions for nuclides of conventional sources and prospective Europium-based gamma-sources are presented.

  8. Studies on changes in bulks of body per dose and in the positioning of duodenum by respiration when treating pancreatic cancer patients with radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyeong Jun; Chun, Geum Seong; Park, Yeong Gyu [Dept. of Radiation Oncology, Seoul St Mary' s Hospital, Seoul (Korea, Republic of)

    2014-06-15

    In the case of treating pancreatic cancer, the importance is put on the spread of dose. Changes take place in duodenum in accordance with respiration. Thus, in this paper, I am going to trace the positioning of duodenum and the changes in bulks of body per dose by scanning the patients' Kilo voltage Cone-Beam CT using the hospital equipped CT-on rail System. Seeing three patients, I have acquired KVCBCT by using CT-on rail System and spotted the change in positioning at duodenum after comparing with the preliminary image of treatment plan by using SYNGO Software. Then, I followed the change in the bulk of duodenum and analyzed the changes in bulks of body on the same dose by transmitting the acquired KVCBCT into Pinnacle, a treatment plan system. The changes in the positioning shall be as set forth like this: 1.2 cm, 1.0 cm in Left-Right Direction, 0 cm, 0.8 cm in Craniocaudal Direction, 0.1 cm, and 1.0 cm in Anterior-Posterior Direction. Patient number one showed that his bulks in body had increased by maximum 460%, minimum 120%, the bulks in patient number two had increased by maximum 490%, minimum 160%, and the bulks of patient number three had increased by maximum 150%. But Minimum volume decreased 30%. Patient number one showed only a little bit of change at first when compared with the preliminary treatment plan. However, the dose increased the bulks in the patient's body: V{sub 10} 118%, V{sub 20} 117%, V{sub 30} 400%, and V{sub 40} 480% In treating patients with radiation therapy using 3D-CRT, the dose amount penetrated into duodenum needs to be minimized by planning appropriate treatment beforehand. In order to establish an appropriate treatment plan it is required to comprehend the changes at positioning of the duodenum by respiration and predict the changes in the bulks of duodenum by setting precise Planning Target Volume.

  9. Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry

    Science.gov (United States)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-04-01

    Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering statistical distributions of body morphometry in the paediatric population. The paediatric phantoms of the Virtual Population Series (IT’IS Foundation, Switzerland) were modified to match target anthropometric parameters, including body mass, body length, standing height and sitting height/stature ratio, determined from reference databases of the National Centre for Health Statistics and the National Health and Nutrition Examination Survey. The phantoms were selected as representative anchor phantoms for the newborn, 1, 2, 5, 10 and 15 years-old children, and were subsequently remodelled to create 1100 female and male phantoms with 10th, 25th, 50th, 75th and 90th body morphometries. Evaluation was performed qualitatively using 3D visualization and quantitatively by analysing internal organ masses. Overall, the newly generated phantoms appear very reasonable and representative of the main characteristics of the paediatric population at various ages and for different genders, body sizes and sitting stature ratios. The mass of internal organs increases with height and body mass. The comparison of organ masses of the heart, kidney, liver, lung and spleen with published autopsy and ICRP reference data for children demonstrated that they follow the same trend when correlated with age. The constructed hybrid computational phantom library opens up the prospect of comprehensive radiation dosimetry calculations and risk assessment for the paediatric population of different age groups and diverse anthropometric parameters.

  10. Cone beam computed tomography radiation dose and image quality assessments.

    Science.gov (United States)

    Lofthag-Hansen, Sara

    2010-01-01

    Diagnostic radiology has undergone profound changes in the last 30 years. New technologies are available to the dental field, cone beam computed tomography (CBCT) as one of the most important. CBCT is a catch-all term for a technology comprising a variety of machines differing in many respects: patient positioning, volume size (FOV), radiation quality, image capturing and reconstruction, image resolution and radiation dose. When new technology is introduced one must make sure that diagnostic accuracy is better or at least as good as the one it can be expected to replace. The CBCT brand tested was two versions of Accuitomo (Morita, Japan): 3D Accuitomo with an image intensifier as detector, FOV 3 cm x 4 cm and 3D Accuitomo FPD with a flat panel detector, FOVs 4 cm x 4 cm and 6 cm x 6 cm. The 3D Accuitomo was compared with intra-oral radiography for endodontic diagnosis in 35 patients with 46 teeth analyzed, of which 41 were endodontically treated. Three observers assessed the images by consensus. The result showed that CBCT imaging was superior with a higher number of teeth diagnosed with periapical lesions (42 vs 32 teeth). When evaluating 3D Accuitomo examinations in the posterior mandible in 30 patients, visibility of marginal bone crest and mandibular canal, important anatomic structures for implant planning, was high with good observer agreement among seven observers. Radiographic techniques have to be evaluated concerning radiation dose, which requires well-defined and easy-to-use methods. Two methods: CT dose index (CTDI), prevailing method for CT units, and dose-area product (DAP) were evaluated for calculating effective dose (E) for both units. An asymmetric dose distribution was revealed when a clinical situation was simulated. Hence, the CTDI method was not applicable for these units with small FOVs. Based on DAP values from 90 patient examinations effective dose was estimated for three diagnostic tasks: implant planning in posterior mandible and

  11. On the application of principal component analysis to the calculation of the bulk integral optical properties for radiation parameterizations in climate models.

    Science.gov (United States)

    Baran, Anthony J; Newman, Stuart M

    2017-03-01

    Rigorous electromagnetic computations required for the calculation of high-resolution monochromatic bulk integral optical properties of irregular atmospheric particles are onerous in memory and in time requirements. Here, it is shown that from a set of 145 monochromatic bulk integral ice optical properties, it is possible to reduce the set to eight hinge wavelengths by using the method of principal component analysis (PCA) regression. From the eight hinge wavelengths, the full set can be reconstructed to within root mean square errors of ≪1%. To obtain optimal reconstruction, the training set must cover as wide a range of parameter space as possible. Rigorous electromagnetic methods can now be routinely applied to represent accurately the integral optical properties of atmospheric particles in climate models.

  12. Er:YAG and CTH:YAG laser radiation: contact versus non-contact enamel ablation and sonic-activated bulk composite placement

    Science.gov (United States)

    Buckova, M.; Kasparova, M.; Dostalova, T.; Jelinkova, H.; Sulc, J.; Nemec, M.; Fibrich, M.; Bradna, P.; Miyagi, M.

    2013-05-01

    Laser radiation can be used for effective caries removal and cavity preparation without significant thermal effects, collateral damage of tooth structure, or patient discomfort. The aim of this study was to compare the quality of tissue after contact or non-contact Er:YAG and CTH:YAG laser radiation ablation. The second goal was to increase the sealing ability of hard dental tissues using sonic-activated bulk filling material with change in viscosity during processing. The artificial caries was prepared in intact teeth to simulate a demineralized surface and then the Er:YAG or CTH:YAG laser radiation was applied. The enamel artificial caries was gently removed by the laser radiation and sonic-activated composite fillings were inserted. A stereomicroscope and then a scanning electron microscope were used to evaluate the enamel surface. Er:YAG contact mode ablation in enamel was quick and precise; the cavity was smooth with a keyhole shaped prism and rod relief arrangement without a smear layer. The sonic-activated filling material was consistently regularly distributed; no cracks or microleakage in the enamel were observed. CTH:YAG irradiation was able to clean but not ablate the enamel surface; in contact and also in non-contact mode there was evidence of melting and fusing of the enamel.

  13. Computer Based Radiation Protection- A New Cd-Rom

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, T.; Bammer, M.; Ablber, M.

    2004-07-01

    Within the next few years, there'll be a lot of new challenges required from radiation protection. According to EU regulation[1] and the new austrian radiation protection law [2] regular additional training are requested. Patients protection in diagnostic and therapeutic usage of ionising radiation gains also more and more importance.[3] Not really surprisingly, the general population is definitely highly aware of the risks coming with the usage of radionuclides and x-rays in medicine. Furthermore, the nuclear power plant in Temelin, near the austrian border initiated a lively discussion about risks, necessity and use of ionising radiation in medicine and industry. It turned out to be a really hard job handling these topics in public. A brilliant didactics based on independent information and viewpoints was required. ARC Seibersdorf Research GmbH, represented by the department of medical technical applications and the radiation protection academy, developed an interactive CD-ROM covering several applications: Basics on radiation protection for medical and technical personnel ; preparation for a radiation protection training. Repetition of the main topics for graduates of a radiation protection training. Basics on radiation protection and emergency management for medical staff as well as for the general public. (Author)

  14. Methods and compositions for protection of cells and tissues from computed tomography radiation

    Energy Technology Data Exchange (ETDEWEB)

    Grdina, David J.

    2018-01-30

    Described are methods for preventing or inhibiting genomic instability and in cells affected by diagnostic radiology procedures employing ionizing radiation. Embodiments include methods of preventing or inhibiting genomic instability and in cells affected by computed tomography (CT) radiation. Subjects receiving ionizing radiation may be those persons suspected of having cancer, or cancer patients having received or currently receiving cancer therapy, and or those patients having received previous ionizing radiation, including those who are approaching or have exceeded the recommended total radiation dose for a person.

  15. Computational Fluid Dynamics Analysis on Radiation Error of Surface Air Temperature Measurement

    Science.gov (United States)

    Yang, Jie; Liu, Qing-Quan; Ding, Ren-Hui

    2017-01-01

    Due to solar radiation effect, current air temperature sensors inside a naturally ventilated radiation shield may produce a measurement error that is 0.8 K or higher. To improve air temperature observation accuracy and correct historical temperature of weather stations, a radiation error correction method is proposed. The correction method is based on a computational fluid dynamics (CFD) method and a genetic algorithm (GA) method. The CFD method is implemented to obtain the radiation error of the naturally ventilated radiation shield under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using the GA method. To verify the performance of the correction equation, the naturally ventilated radiation shield and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated temperature measurement platform serves as an air temperature reference. The mean radiation error given by the intercomparison experiments is 0.23 K, and the mean radiation error given by the correction equation is 0.2 K. This radiation error correction method allows the radiation error to be reduced by approximately 87 %. The mean absolute error and the root mean square error between the radiation errors given by the correction equation and the radiation errors given by the experiments are 0.036 K and 0.045 K, respectively.

  16. INTERACTION OF LASER RADIATION WITH MATTER: Influence of Ca and Pb impurities on the bulk optical strength of ultrapure NaCl and KCl crystals

    Science.gov (United States)

    Vinogradov, An V.; Voszka, R.; Kovalev, Valerii I.; Faĭzullov, F. S.; Janszky, J.

    1987-06-01

    A significant increase (by a factor of about 3) of the bulk damage threshold in the case of interaction of CO2 laser radiation pulses with ultrapure NaCl and KCl crystals grown in a reactive atmosphere was observed on introduction of divalent metal ions Ca and Pb in concentrations of 10-5-10-6 mol/mol. Impurities were introduced in concentrations of 10-8-10-3 and 2×10-7-10-4 mol/mol into the melts of KCl and NaCl, respectively. The concentration of other impurities (including OH) did not exceed ~10-6 mol/mol. A physical model was developed to account for the observed dependence on the basis of an analogy between a system of colloidal particles and F centers in a crystal and a liquid-vapor system.

  17. Proceedings of BulkTrans '89

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Papers were presented on bulk commodity demand; steel industry bulk trades; grains and the world food economy; steam coal and cement demand; shipping profitability; bulk carrier design and economics; bulk ports and terminals; ship unloading; computers in bulk terminals; and conveyors and stockyard equipment.

  18. The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL

    2009-01-01

    The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries.

  19. "Understanding" cosmological bulk viscosity

    OpenAIRE

    Zimdahl, Winfried

    1996-01-01

    A universe consisting of two interacting perfect fluids with the same 4-velocity is considered. A heuristic mean free time argument is used to show that the system as a whole cannot be perfect as well but neccessarily implies a nonvanishing bulk viscosity. A new formula for the latter is derived and compared with corresponding results of radiative hydrodynamics.

  20. Modelling terahertz radiation absorption and reflection with computational phantoms of skin and associated appendages

    Science.gov (United States)

    Vilagosh, Zoltan; Lajevardipour, Alireza; Wood, Andrew

    2018-01-01

    Finite-difference time-domain (FDTD) computational phantoms aid the analysis of THz radiation interaction with human skin. The presented computational phantoms have accurate anatomical layering and electromagnetic properties. A novel "large sheet" simulation technique is used allowing for a realistic representation of lateral absorption and reflection of in-vivo measurements. Simulations carried out to date have indicated that hair follicles act as THz propagation channels and confirms the possible role of melanin, both in nevi and skin pigmentation, to act as a significant absorber of THz radiation. A novel freezing technique has promise in increasing the depth of skin penetration of THz radiation to aid diagnostic imaging.

  1. Thermal computations for electronics conductive, radiative, and convective air cooling

    CERN Document Server

    Ellison, Gordon

    2010-01-01

    IntroductionPrimary mechanisms of heat flowConductionApplication example: Silicon chip resistance calculationConvectionApplication example: Chassis panel cooled by natural convectionRadiationApplication example: Chassis panel cooled only by radiation 7Illustrative example: Simple thermal network model for a heat sinked power transistorIllustrative example: Thermal network circuit for a printed circuit boardCompact component modelsIllustrative example: Pressure and thermal circuits for a forced air cooled enclosureIllustrative example: A single chip package on a printed circuit board-the proble

  2. Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry

    NARCIS (Netherlands)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-01-01

    Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering

  3. Radiation dose in paediatric computed tomography: risks and benefits

    African Journals Online (AJOL)

    The best available risk estimates suggest that paediatric CT will result in significantly increased lifetime radiation risk over adult CT. Studies have shown that lower milliampere-second (mAs) settings can be used for children without significant loss of information. Although the risk–benefit balance is still strongly tilted toward ...

  4. A Computational Model of Cellular Response to Modulated Radiation Fields

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Stephen J., E-mail: stephen.mcmahon@qub.ac.uk [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Butterworth, Karl T. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); McGarry, Conor K. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Trainor, Colman [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); O' Sullivan, Joe M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Hounsell, Alan R. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom)

    2012-09-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  5. GPU-based high-performance computing for radiation therapy.

    Science.gov (United States)

    Jia, Xun; Ziegenhein, Peter; Jiang, Steve B

    2014-02-21

    Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. The graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of study has been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this paper, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented.

  6. Computed radiography in scoliosis. Diagnostic information and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, A. [Dept. of Diagnostic Radiology, Univ. Hospital, Lund (Sweden); Jonsson, K. [Dept. of Diagnostic Radiology, Univ. Hospital, Lund (Sweden); Eklund, K. [Dept. of Diagnostic Radiology, Univ. Hospital, Lund (Sweden); Holje, G. [Dept. of Diagnostic Radiology, Univ. Hospital, Lund (Sweden); Pettersson, H. [Dept. of Diagnostic Radiology, Univ. Hospital, Lund (Sweden)

    1995-07-01

    The diagnostic information and radiation dose in scoliosis examinations performed with air-gap technique using stimulable phosphor imaging plates were determined in a prospective study. Overlapping p.a. images of the thoracic and lumbar spine in 9 patients were obtained with 4 different exposure settings according to patient size. Equal exposure settings were used for the 2 images. Two images of 18 were judged inferior in depicting the landmarks of scoliosis measurement, requiring re-exposure. Sixteen images were judged of adequate or good quality. The mean entrance doses in the central beam for the 4 patient groups were in the interval of 0.05 to 0.12 mGy for both images. The skin doses on the breasts were in the range of 0.00 to 0.03 mGy. The presented technique thus results in a low radiation dose with sufficient diagnostic information in radiography of scoliosis. (orig.).

  7. Simple formula for computing the Hubbell radiation rectangular source integral

    Energy Technology Data Exchange (ETDEWEB)

    Murley, Jonathan, E-mail: Jmurley@stu1.cs.upei.c [Department of Mathematics and Statistics, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3 (Canada); Saad, Nasser, E-mail: nsaad@upei.c [Department of Mathematics and Statistics, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3 (Canada)

    2011-01-15

    A simple analytic formula is derived for use in solving the Hubbell radiation rectangular source integrals H(a,b)={integral}{sub 0}{sup b}(x{sup 2}+1){sup -1/2}arctan(a(x{sup 2}+1){sup -1/2})dx,0

  8. A Computational Study of Hadron Radiation Damage to DNA Nucleobases

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai

    Radiation damage of biomolecules is a signicant contributor to both the onset and also possible curing of cancer. Such damage is largely the result of free radicals that can be created by the interaction of high-energetic photons or ions with water within cells. Understanding the details...... constants based on transition state theory. The investigations are performed with methods of increasing complexity ranging from pure gas-phase, through PCM solvation up to the very accurate and explicit QM/MM models of nucleobase water clusters through which also the importance of making conformational...

  9. Computation of radiation from wire antennas on conducting bodies

    DEFF Research Database (Denmark)

    Albertsen, N. Christian; Hansen, Jesper; Jensen, Niels E.

    1974-01-01

    A theoretical formulation, in terms of combined magnetic and electric field integral equations, is presented for the class of electromagnetic problems in which one or more wire antennas are connected to a conducting body of arbitrary shape. The formulation is suitable for numerical computation...

  10. Computation of the radiation Q of dielectric-loaded electrically small antennas in integral equation formulations

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2016-01-01

    A new technique for estimating the impedance frequency bandwidth of electrically small antennas loaded with magneto-dielectric material from a single-frequency simulation in a surface integral equation solver is presented. The estimate is based on the inverse of the radiation Q computed using newly...... derived expressions for the stored energy and the radiated power of arbitrary coupled electric and magnetic currents in free space....

  11. Computational Electromagnetic Studies for Low-Frequency Compensation of the Reflector Impulse-radiating Antenna

    Science.gov (United States)

    2015-03-26

    realized as constant- angular structures, such as biconical and bowtie antennas . Inevitably, the ge- ometry must be truncated at some point, so physical...COMPUTATIONAL ELECTROMAGNETIC STUDIES FOR LOW-FREQUENCY COMPENSATION OF THE REFLECTOR IMPULSE-RADIATING ANTENNA THESIS Casey E. Fillmore, Capt, USAF...ELECTROMAGNETIC STUDIES FOR LOW-FREQUENCY COMPENSATION OF THE REFLECTOR IMPULSE-RADIATING ANTENNA THESIS Presented to the Faculty Department of Electrical and

  12. A computation of the stratospheric diabatic circulation using an accurate radiative transfer model

    Science.gov (United States)

    Rosenfield, Joan E.; Schoeberl, Mark R.; Geller, Marvin A.

    1987-01-01

    The global diabatic circulation is computed for the months of January, April, July and October over the altitude region 100 to 0.1 mb using an accurate troposphere-stratosphere radiative transfer model, SBUV and SME ozone data, and NMC temperatures. There is high correlation between the level of wave activity and the local departure of the atmosphere from radiative equilibrium. An excess in the globally averaged net stratospheric heating from 40 to 50 km is computed for all months, and a deficit from 50 to 60 km is computed during solstice. A 20 percent uniform reduction in ozone from 40 to 50 km, or a temperature perturbation with an increase of 5 K at 1 mb, will bring the atmosphere into global radiative equilibrium without significant impact on the diabatic circulation. In the transitional months of April and October, the net heating in the fall hemispheres are very similar, while substantial differences exist between the spring hemispheres.

  13. Lung cancer screening with low-radiation dose computed tomography after liver transplantation.

    Science.gov (United States)

    Herrero, Jose Ignacio; Bastarrika, Gorka; D'Avola, Delia; Montes, Usua; Pueyo, Jesus; Iñarrairaegui, Mercedes; Pardo, Fernando; Quiroga, Jorge; Zulueta, Javier

    2013-10-29

    Background The prognosis of non-cutaneous malignancies after liver transplantation is dismal, mainly because most cases are diagnosed at advanced stages. In the last decade, studies have shown the potential role of screening for lung cancer with low-radiation dose computed tomography. Material and Methods Fifty-nine liver transplant recipients with a cumulative dose of smoking greater than 10 pack-years were enrolled in a lung cancer screening program using yearly low-radiation dose computed tomography. Results Lung cancer was diagnosed in 7 patients (11.8%), 5 of which were in stage Ia at diagnosis. Patients with lung cancer were significantly older (median age 66 vs. 58 years), had a higher cumulative history of smoking, and had emphysema more frequently than patients without cancer. Conclusions Screening for lung cancer with low-radiation dose computed tomography in liver transplant recipients results in the diagnosis of lung cancer in early stages.

  14. Computer simulations of radiation damage in protein crystals; Simulationsrechnungen zu Strahlenschaeden an Proteinkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Zehnder, M.

    2007-03-15

    The achievable resolution and the quality of the dataset of an intensity data collection for structure analysis of protein crystals with X-rays is limited among other factors by radiation damage. The aim of this work is to obtain a better quantitative understanding of the radiation damage process in proteins. Since radiation damage is unavoidable it was intended to look for the optimum ratio between elastically scattered intensity and radiation damage. Using a Monte Carlo algorithm physical processes after an inelastic photon interaction are studied. The main radiation damage consists of ionizations of the atoms through the electron cascade following any inelastic photon interaction. Results of the method introduced in this investigation and results of an earlier theoretical studies of the influence of Auger-electron transport in diamond are in a good agreement. The dependence of the radiation damage as a function of the energy of the incident photon was studied by computer-aided simulations. The optimum energy range for diffraction experiments on the protein myoglobin is 10-40 keV. Studies of radiation damage as a function of crystal volume and shape revealed that very small plate or rod shaped crystals suffer less damage than crystals formed like a cube with the same volume. Furthermore the influence of a few heavy atoms in the protein molecule on radiation damage was examined. Already two iron atoms in the unit cell of myoglobin increase radiation damage significantly. (orig.)

  15. From Interfaces to Bulk: Experimental-Computational Studies Across Time and Length Scales of Multi-Functional Ionic Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Perahia, Dvora [Clemson Univ., SC (United States); Grest, Gary S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-25

    Neutron experiments coupled with computational components have resulted in unprecedented understanding of the factors that impact the behavior of ionic structured polymers. Additionally, new computational tools to study macromolecules, were developed. In parallel, this DOE funding have enabled the education of the next generation of material researchers who are able to take the advantage neutron tools offer to the understanding and design of advanced materials. Our research has provided unprecedented insight into one of the major factors that limits the use of ionizable polymers, combining the macroscopic view obtained from the experimental techniques with molecular insight extracted from computational studies leading to transformative knowledge that will impact the design of nano-structured, materials. With the focus on model systems, of broad interest to the scientific community and to industry, the research addressed challenges that cut across a large number of polymers, independent of the specific chemical structure or the transported species.

  16. Computer image analysis of etched tracks from ionizing radiation

    Science.gov (United States)

    Blanford, George E.

    1994-01-01

    I proposed to continue a cooperative research project with Dr. David S. McKay concerning image analysis of tracks. Last summer we showed that we could measure track densities using the Oxford Instruments eXL computer and software that is attached to an ISI scanning electron microscope (SEM) located in building 31 at JSC. To reduce the dependence on JSC equipment, we proposed to transfer the SEM images to UHCL for analysis. Last summer we developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains. Tracks were formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. As part of a consortium effort to better understand the maturation of lunar soil and its relation to its infrared reflectance properties, we worked on lunar samples 67701,205 and 61221,134. These samples were etched for a shorter time (6 hours) than last summer's sample and this difference has presented problems for establishing the correct analysis conditions. We used computer counting and measurement of area to obtain preliminary track densities and a track density distribution that we could interpret for sample 67701,205. This sample is a submature soil consisting of approximately 85 percent mature soil mixed with approximately 15 percent immature, but not pristine, soil.

  17. Radiation therapy calculations using an on-demand virtual cluster via cloud computing

    CERN Document Server

    Keyes, Roy W; Arnold, Dorian; Luan, Shuang

    2010-01-01

    Computer hardware costs are the limiting factor in producing highly accurate radiation dose calculations on convenient time scales. Because of this, large-scale, full Monte Carlo simulations and other resource intensive algorithms are often considered infeasible for clinical settings. The emerging cloud computing paradigm promises to fundamentally alter the economics of such calculations by providing relatively cheap, on-demand, pay-as-you-go computing resources over the Internet. We believe that cloud computing will usher in a new era, in which very large scale calculations will be routinely performed by clinics and researchers using cloud-based resources. In this research, several proof-of-concept radiation therapy calculations were successfully performed on a cloud-based virtual Monte Carlo cluster. Performance evaluations were made of a distributed processing framework developed specifically for this project. The expected 1/n performance was observed with some caveats. The economics of cloud-based virtual...

  18. Computational determination of radiation damage effects on DNA structure

    Science.gov (United States)

    Pinak, Miroslav

    2003-03-01

    Molecular dynamics (MD) studies of several radiation originated lesions on the DNA molecules are presented. The pyrimidine lesions (cytosinyl radical, thymine dimer, thymine glycol) and purine lesion (8-oxoguanine) were subjected to the MD simulations for several hundred picoseconds using MD simulation code AMBER 5.0 (4.0). The simulations were performed for fully dissolved solute molecules in water. Significant structural changes in the DNA double helical structure were observed in all cases which may be categorized as: a) the breaking of hydrogen bonds network between complementary bases and resulted opening of the double helix (cytosinyl, radical, 8-oxoguanine); b) the sharp bending of the DNA helix centered at the lesion site (thymine dimer, thymine glycol); and c) the flippingout of adenine on the strand complementary to the lesion (8-oxoguanine). These changes related to the overall collapsing of the double helical structure around the lesion, are expected to facilitate the docking of the repair enzyme into the DNA in the formation of DNA-enzyme complex. The stable DNA-enzyme complex is a necessary condition for the onset of the enzymatic repair process. In addition to structural changes, specific values of electrostatic interaction energy were determined at several lesion sites (thymine dimer, thymine glycol and 8-oxoguanine). This lesion-specific electrostatic energy is a factor that enables repair enzyme to discriminate lesion from the native site during the scanning of the DNA surface.

  19. Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed by X-ray computed tomography.

    Science.gov (United States)

    Burr-Hersey, Jasmine E; Mooney, Sacha J; Bengough, A Glyn; Mairhofer, Stefan; Ritz, Karl

    2017-01-01

    Plant roots growing through soil typically encounter considerable structural heterogeneity, and local variations in soil dry bulk density. The way the in situ architecture of root systems of different species respond to such heterogeneity is poorly understood due to challenges in visualising roots growing in soil. The objective of this study was to visualise and quantify the impact of abrupt changes in soil bulk density on the roots of three cover crop species with contrasting inherent root morphologies, viz. tillage radish (Raphanus sativus), vetch (Vicia sativa) and black oat (Avena strigosa). The species were grown in soil columns containing a two-layer compaction treatment featuring a 1.2 g cm-3 (uncompacted) zone overlaying a 1.4 g cm-3 (compacted) zone. Three-dimensional visualisations of the root architecture were generated via X-ray computed tomography, and an automated root-segmentation imaging algorithm. Three classes of behaviour were manifest as a result of roots encountering the compacted interface, directly related to the species. For radish, there was switch from a single tap-root to multiple perpendicular roots which penetrated the compacted zone, whilst for vetch primary roots were diverted more horizontally with limited lateral growth at less acute angles. Black oat roots penetrated the compacted zone with no apparent deviation. Smaller root volume, surface area and lateral growth were consistently observed in the compacted zone in comparison to the uncompacted zone across all species. The rapid transition in soil bulk density had a large effect on root morphology that differed greatly between species, with major implications for how these cover crops will modify and interact with soil structure.

  20. Computed Tomography Radiation Dose Reduction: Effect of Different Iterative Reconstruction Algorithms on Image Quality

    NARCIS (Netherlands)

    Willemink, M.J.; Takx, R.A.P.; Jong, P.A. de; Budde, R.P.; Bleys, R.L.; Das, M.; Wildberger, J.E.; Prokop, M.; Buls, N.; Mey, J. de; Leiner, T.; Schilham, A.M.

    2014-01-01

    We evaluated the effects of hybrid and model-based iterative reconstruction (IR) algorithms from different vendors at multiple radiation dose levels on image quality of chest phantom scans.A chest phantom was scanned on state-of-the-art computed tomography scanners from 4 vendors at 4 dose levels

  1. The use of symbolic computation in radiative, energy, and neutron transport calculations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, J.I.

    1997-09-01

    This investigation used sysmbolic manipulation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular integral and integro-differential equations which appear in radiative and mixed-mode energy transport. Contained in this report are seven papers which present the technical results as individual modules.

  2. The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL

    2009-01-01

    The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries. An important activity of RSICC is its participation in international efforts on computational and experimental benchmarks. An example is the Shielding Integral Benchmarks Archival Database (SINBAD), which includes shielding benchmarks for fission, fusion and accelerators. RSICC is funded by the United States Department of Energy, Department of Homeland Security and Nuclear Regulatory Commission.

  3. Computer simulation of electron-positron pair production by channeling radiation in amorphous converter

    Science.gov (United States)

    Abdrashitov, S. V.; Bogdanov, O. V.; Dabagov, S. B.; Pivovarov, Yu L.; Tukhfatullin, T. A.

    2016-07-01

    We consider the radiator-converter approach at 200 MeV channeled electrons (the SPARC_LAB LNF facility energies) for the case of using W crystalline radiator and W amorphous converter. A comparison of the positron production by the axial channeling radiation and the bremsstrahlung is performed. The positron stopping in the convertor is studied by means of computer simulations. It is shown that for the maximum yield of positrons the thickness of the W amorphous converter should be taken 0.35 cm in the case of using the axial channeling radiation resulting to total yield of positrons 5 10-3 e+/e- and 0.71 cm in the case of using the bremsstrahlung resulting to total yield of positrons 3.3 10-3 e+/e-.

  4. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach.

  5. Computed Tomography Density Change in the Thyroid Gland Before and After Radiation Therapy.

    Science.gov (United States)

    Ishibashi, Naoya; Maebayashi, Toshiya; Aizawa, Takuya; Sakaguchi, Masakuni; Okada, Masahiro; Matsushita, Junichi

    2018-01-01

    Hypothyroidism is an established adverse effect of radiation therapy for head and neck cancer, and computed tomography (CT) density of the thyroid gland is lower in hypothyroid than euthyroid individuals. No previous studies have evaluated changes in CT densities of the thyroid gland caused by radiation therapy. The aim was to investigate the relationship between the change in CT density of the thyroid gland before and after radiation therapy for head and neck cancer and hypothyroidism. This retrospective study analyzed data of 24 patients treated by radiation therapy for head and neck cancers. After dosimetric analysis of received radiation therapy, a Picture Archiving and Communication System was used to manually contour the thyroid on pre-treatment CT images to enable determination of mean thyroid gland CT densities and received radiation doses. Pre- and post-treatment thyroid function was assessed on the basis of serum TSH concentrations. Multivariate and univariate analyses were used to determine what clinical factors are associated with post-radiation therapy decrease in CT density of the thyroid and Pearson's χ 2 test was used to assess correlations between these densities and TSH concentrations. Mean CT densities of the thyroid gland decreased from before to after radiation therapy in 73.9% of our patients (median decrease 16.8 HU). Serum TSH concentrations were significantly higher in patients with greater then median decreases in CT density than in those with lesser or no decreases. Post-radiation therapy hypothyroidism may be predicted by significant decreases in CT density of the thyroid gland. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Readjustment of abdominal computed tomography protocols in a university hospital: impact on radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Ricardo Francisco Tavares; Salvadori, Priscila Silveira; Torres, Lucas Rios; Bretas, Elisa Almeida Sathler; Bekhor, Daniel; Medeiros, Regina Bitelli; D' Ippolito, Giuseppe, E-mail: ricardo.romano@unifesp.br [Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP (Brazil). Escola Paulista de Medicina; Caldana, Rogerio Pedreschi [Fleury Medicina e Saude, Sao Paulo, SP (Brazil)

    2015-09-15

    Objective: To assess the reduction of estimated radiation dose in abdominal computed tomography following the implementation of new scan protocols on the basis of clinical suspicion and of adjusted images acquisition parameters. Materials and Methods: Retrospective and prospective review of reports on radiation dose from abdominal CT scans performed three months before (group A - 551 studies) and three months after (group B - 788 studies) implementation of new scan protocols proposed as a function of clinical indications. Also, the images acquisition parameters were adjusted to reduce the radiation dose at each scan phase. The groups were compared for mean number of acquisition phases, mean CTDI{sub vol} per phase, mean DLP per phase, and mean DLP per scan. Results: A significant reduction was observed for group B as regards all the analyzed aspects, as follows: 33.9%, 25.0%, 27.0% and 52.5%, respectively for number of acquisition phases, CTDI{sub vol} per phase, DLP per phase and DLP per scan (p < 0.001). Conclusion: The rational use of abdominal computed tomography scan phases based on the clinical suspicion in conjunction with the adjusted images acquisition parameters allows for a 50% reduction in the radiation dose from abdominal computed tomography scans. (author)

  7. Ultraviolet radiation emitted by lamps, TVs, tablets and computers: are there risks for the population?

    Science.gov (United States)

    Duarte, Ida Alzira Gomes; Hafner, Mariana de Figueiredo Silva; Malvestiti, Andrey Augusto

    2015-01-01

    The frequent human exposure to various types of indoor lamps, as well as other light sources (television monitors, tablets and computers), raises a question: are there risks for the population? In the present study the emission of UVA and UVB radiation by lamps and screens of electronic devices were measured in order to determine the safe distance between the emitting source and the individual. We concluded that the lamps and electronic devices do not emit ultraviolet radiation; so they pose no health risk for the population.

  8. The Impact of Iterative Reconstruction on Computed Tomography Radiation Dosimetry: Evaluation in a Routine Clinical Setting.

    Science.gov (United States)

    Moorin, Rachael E; Gibson, David A J; Forsyth, Rene K; Fox, Richard

    2015-01-01

    To evaluate the effect of introduction of iterative reconstruction as a mandated software upgrade on radiation dosimetry in routine clinical practice over a range of computed tomography examinations. Random samples of scanning data were extracted from a centralised Picture Archiving Communication System pertaining to 10 commonly performed computed tomography examination types undertaken at two hospitals in Western Australia, before and after the introduction of iterative reconstruction. Changes in the mean dose length product and effective dose were evaluated along with estimations of associated changes to annual cancer incidence. We observed statistically significant reductions in the effective radiation dose for head computed tomography (22-27%) consistent with those reported in the literature. In contrast the reductions observed for non-contrast chest (37-47%); chest pulmonary embolism study (28%), chest/abdominal/pelvic study (16%) and thoracic spine (39%) computed tomography. Statistically significant reductions in radiation dose were not identified in angiographic computed tomography. Dose reductions translated to substantial lowering of the lifetime attributable risk, especially for younger females, and estimated numbers of incident cancers. Reduction of CT dose is a priority Iterative reconstruction algorithms have the potential to significantly assist with dose reduction across a range of protocols. However, this reduction in dose is achieved via reductions in image noise. Fully realising the potential dose reduction of iterative reconstruction requires the adjustment of image factors and forgoing the noise reduction potential of the iterative algorithm. Our study has demonstrated a reduction in radiation dose for some scanning protocols, but not to the extent experimental studies had previously shown or in all protocols expected, raising questions about the extent to which iterative reconstruction achieves dose reduction in real world clinical practice.

  9. The Impact of Iterative Reconstruction on Computed Tomography Radiation Dosimetry: Evaluation in a Routine Clinical Setting.

    Directory of Open Access Journals (Sweden)

    Rachael E Moorin

    Full Text Available To evaluate the effect of introduction of iterative reconstruction as a mandated software upgrade on radiation dosimetry in routine clinical practice over a range of computed tomography examinations.Random samples of scanning data were extracted from a centralised Picture Archiving Communication System pertaining to 10 commonly performed computed tomography examination types undertaken at two hospitals in Western Australia, before and after the introduction of iterative reconstruction. Changes in the mean dose length product and effective dose were evaluated along with estimations of associated changes to annual cancer incidence.We observed statistically significant reductions in the effective radiation dose for head computed tomography (22-27% consistent with those reported in the literature. In contrast the reductions observed for non-contrast chest (37-47%; chest pulmonary embolism study (28%, chest/abdominal/pelvic study (16% and thoracic spine (39% computed tomography. Statistically significant reductions in radiation dose were not identified in angiographic computed tomography. Dose reductions translated to substantial lowering of the lifetime attributable risk, especially for younger females, and estimated numbers of incident cancers.Reduction of CT dose is a priority Iterative reconstruction algorithms have the potential to significantly assist with dose reduction across a range of protocols. However, this reduction in dose is achieved via reductions in image noise. Fully realising the potential dose reduction of iterative reconstruction requires the adjustment of image factors and forgoing the noise reduction potential of the iterative algorithm. Our study has demonstrated a reduction in radiation dose for some scanning protocols, but not to the extent experimental studies had previously shown or in all protocols expected, raising questions about the extent to which iterative reconstruction achieves dose reduction in real world clinical

  10. Abstracts of digital computer code packages. Assembled by the Radiation Shielding Information Center. [Radiation transport codes

    Energy Technology Data Exchange (ETDEWEB)

    McGill, B.; Maskewitz, B.F.; Anthony, C.M.; Comolander, H.E.; Hendrickson, H.R.

    1976-01-01

    The term ''code package'' is used to describe a miscellaneous grouping of materials which, when interpreted in connection with a digital computer, enables the scientist--user to solve technical problems in the area for which the material was designed. In general, a ''code package'' consists of written material--reports, instructions, flow charts, listings of data, and other useful material and IBM card decks (or, more often, a reel of magnetic tape) on which the source decks, sample problem input (including libraries of data) and the BCD/EBCDIC output listing from the sample problem are written. In addition to the main code, and any available auxiliary routines are also included. The abstract format was chosen to give to a potential code user several criteria for deciding whether or not he wishes to request the code package. (RWR)

  11. Fortran programs for computation of optical properties of the sea from radiation data collected by in situ spectrometers

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Sathyendranath, S.

    biological parameters are collected. When these experiments are synchronized with the satellite passes, the radiation data collected in the appropriate channels (i.e. those in which the satellite sensor receives the radiation from the sea), become... attenuation coefficient for down- welling light for any uppermost slab of water, i.e. one of the two layers selected for computation of K is the surface layer \\[computed using Eq. (5)\\], R(g)=the seasurface reflectance \\[computed using Eq. (I)\\], ZENW...

  12. Modelling artificial night-sky brightness with a polarized multiple scattering radiative transfer computer code

    Science.gov (United States)

    Kerola, Dana Xavier

    2006-02-01

    As part of an ongoing investigation of radiative effects produced by hazy atmospheres, computational procedures have been developed for use in determining the brightening of the night sky as a result of urban illumination. The downwardly and upwardly directed radiances of multiply scattered light from an offending metropolitan source are computed by a straightforward Gauss-Seidel (G-S) iterative technique applied directly to the integrated form of Chandrasekhar's vectorized radiative transfer equation. Initial benchmark night-sky brightness tests of the present G-S model using fully consistent optical emission and extinction input parameters yield very encouraging results when compared with the double scattering treatment of Garstang, the only full-fledged previously available model.

  13. Determination of Radiative Heat Transfer Coefficient at High Temperatures Using a Combined Experimental-Computational Technique

    Science.gov (United States)

    Kočí, Václav; Kočí, Jan; Korecký, Tomáš; Maděra, Jiří; Černý, Robert Č.

    2015-04-01

    The radiative heat transfer coefficient at high temperatures is determined using a combination of experimental measurement and computational modeling. In the experimental part, cement mortar specimen is heated in a laboratory furnace to 600°C and the temperature field inside is recorded using built-in K-type thermocouples connected to a data logger. The measured temperatures are then used as input parameters in the three dimensional computational modeling whose objective is to find the best correlation between the measured and calculated data via four free parameters, namely the thermal conductivity of the specimen, effective thermal conductivity of thermal insulation, and heat transfer coefficients at normal and high temperatures. The optimization procedure which is performed using the genetic algorithms provides the value of the high-temperature radiative heat transfer coefficient of 3.64 W/(m2K).

  14. Numerical Computation of Net Radiative Heat Transfer within a Non Absorbing Furnace Enclosure

    Directory of Open Access Journals (Sweden)

    Shuaibu Ndache MOHAMMED

    2006-07-01

    Full Text Available The numerical evaluation of the net radiative heat transfer rate in a single zone, non absorbing furnace enclosure is reported. In this analysis, simplified mathematical furnace model namely, the long furnace model is used to determine furnace performance. The formulation assumes some known temperature values. Thus, heat transfer equations were set up and solved numerically. A FORTRAN computer program was developed and debugged. Results obtained from this study compare favourably well with the results from the traditional graphical method. Also, the computer program developed can handle variations in furnace operating conditions, temperatures, thermal properties and dimensions.

  15. Computer subroutines for estimation of human exposure to radiation in low Earth orbit

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.

    1985-01-01

    Computer subroutines to calculate human exposure to trapped radiations in low Earth orbit (LEO) on the basis of a simple approximation of the human geometry by spherical shell shields of varying thickness are presented and detailed. The subroutines calculate the dose to critical body organs and the fraction of exposure limit reached as a function of altitude of orbit, degree of inclination, shield thickness, and days in mission. Exposure rates are compared with current exposure limits.

  16. Diagnostic accuracy of computed tomography using lower doses of radiation for patients with Crohn's disease.

    LENUS (Irish Health Repository)

    Craig, Orla

    2012-08-01

    Magnetic resonance and ultrasonography have increasing roles in the initial diagnosis of Crohn\\'s disease, but computed tomography (CT) with positive oral contrast agents is most frequently used to identify those with acute extramural complications. However, CT involves exposure of patients to radiation. We prospectively compared the diagnostic accuracy of low-dose CT (at a dose comparable to that used to obtain an abdominal radiograph) with conventional-dose CT in patients with active Crohn\\'s disease.

  17. Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66.

    Science.gov (United States)

    Mutic, Sasa; Palta, Jatinder R; Butker, Elizabeth K; Das, Indra J; Huq, M Saiful; Loo, Leh-Nien Dick; Salter, Bill J; McCollough, Cynthia H; Van Dyk, Jacob

    2003-10-01

    This document presents recommendations of the American Association of Physicists in Medicine (AAPM) for quality assurance of computed-tomography- (CT) simulators and CT-simulation process. This report was prepared by Task Group No. 66 of the AAPM Radiation Therapy Committee. It was approved by the Radiation Therapy Committee and by the AAPM Science Council.

  18. Radiation dose of cone-beam computed tomography compared to conventional radiographs in orthodontics.

    Science.gov (United States)

    Signorelli, Luca; Patcas, Raphael; Peltomäki, Timo; Schätzle, Marc

    2016-01-01

    The aim of this study was to determine radiation doses of different cone-beam computed tomography (CBCT) scan modes in comparison to a conventional set of orthodontic radiographs (COR) by means of phantom dosimetry. Thermoluminescent dosimeter (TLD) chips (3 × 1 × 1 mm) were used on an adult male tissue-equivalent phantom to record the distribution of the absorbed radiation dose. Three different scanning modes (i.e., portrait, normal landscape, and fast scan landscape) were compared to CORs [i.e., conventional lateral (LC) and posteroanterior (PA) cephalograms and digital panoramic radiograph (OPG)]. The following radiation levels were measured: 131.7, 91, and 77 μSv in the portrait, normal landscape, and fast landscape modes, respectively. The overall effective dose for a COR was 35.81 μSv (PA: 8.90 μSv; OPG: 21.87 μSv; LC: 5.03 μSv). Although one CBCT scan may replace all CORs, one set of CORs still entails 2-4 times less radiation than one CBCT. Depending on the scan mode, the radiation dose of a CBCT is about 3-6 times an OPG, 8-14 times a PA, and 15-26 times a lateral LC. Finally, in order to fully reconstruct cephalograms including the cranial base and other important structures, the CBCT portrait mode must be chosen, rendering the difference in radiation exposure even clearer (131.7 vs. 35.81 μSv). Shielding radiation-sensitive organs can reduce the effective dose considerably. CBCT should not be recommended for use in all orthodontic patients as a substitute for a conventional set of radiographs. In CBCT, reducing the height of the field of view and shielding the thyroid are advisable methods and must be implemented to lower the exposure dose.

  19. Validated physical models and parameters of bulk 3C-SiC aiming for credible technology computer aided design (TCAD) simulation

    Science.gov (United States)

    Arvanitopoulos, A.; Lophitis, N.; Gyftakis, K. N.; Perkins, S.; Antoniou, M.

    2017-10-01

    The cubic form of SiC (β- or 3C-) compared to the hexagonal α-SiC polytypes, primarily 4H- and 6H-SiC, has lower growth cost and can be grown heteroepitaxially in large area silicon (Si) wafers which makes it of special interest. This in conjunction with the recently reported growth of improved quality 3C-SiC, make the development of devices an imminent objective. However, the readiness of models that accurately predict the material characteristics, properties and performance is an imperative requirement for attaining the design and optimization of functional devices. The purpose of this study is to provide and validate a comprehensive set of models alongside with their parameters for bulk 3C-SiC. The validation process revealed that the proposed models are in a very good agreement to experimental data and confidence ranges were identified. This is the first piece of work achieving that for 3C-SiC. Considerably, it constitutes the necessary step for finite element method simulations and technology computer aided design.

  20. 3D deterministic radiation transport for dose computations in clinical procedures

    Science.gov (United States)

    Al-Basheer, Ahmad

    The main goal of this dissertation was to establish the feasibility of basing megavoltage external photon beam absorbed dose calculations in voxelized phantoms on SN deterministic calculations and pre-calculated electron absorbed dose kernels derived from full-physics Monte Carlo. The SN derived electron absorbed dose kernel method EDK-SN, developed as part of this research, achieves total execution times that are on the order of several times to orders of magnitude faster than conventional full-physics Monte Carlo electron transport methods considering equivalently detailed models and data fidelity. With the rapid movement toward intensity modulated radiation therapy (IMRT), radiation beam intensities have increased dramatically over the past decade, thus heightening the need for further characterization of out-of-field organ absorbed doses, along with their associated biological risks. Assessment of these tissue absorbed doses is complicated by two fundamental limitations. First, anatomic information on the patient is generally restricted to a partial body CT image acquired for treatment planning; consequently, whole-body computational phantoms must be employed to provide the out-of-field anatomy model structure for absorbed dose evaluation. Second, existing methods based on Monte Carlo radiation transport, even with the application significant variance reduction, are quite computationally inefficient at large distances from the primary beam, and point-kernel methods do not properly handle tissue inhomogeneities. Moreover, since absorbed dose are generally tracked in all major organs in the body, variance reduction schemes for Monte Carlo are not all effective in this regard. The outcome of this dissertation is to demonstrate that absorbed dose from high-energy external beams radiation can be accurately computed for whole body and organ-specific absorbed doses. The EDK-SN method implements voxelized phantoms with discrete ordinates (SN) transport computations

  1. The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Matthew R; Geyer, John W; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Aris, John P [Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (United States); Shifrin, Roger Y, E-mail: wbolch@ufl.edu [Department of Radiology, University of Florida, Gainesville, FL (United States)

    2011-08-07

    Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR(TM) and then imported to the 3D modeling software package Rhinoceros(TM) for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations

  2. Radiation Dose Reduction in Computed Tomography-Guided Lung Interventions using an Iterative Reconstruction Technique.

    Science.gov (United States)

    Chang, D H; Hiss, S; Mueller, D; Hellmich, M; Borggrefe, J; Bunck, A C; Maintz, D; Hackenbroch, M

    2015-10-01

    To compare the radiation doses and image qualities of computed tomography (CT)-guided interventions using a standard-dose CT (SDCT) protocol with filtered back projection and a low-dose CT (LDCT) protocol with both filtered back projection and iterative reconstruction. Image quality and radiation doses (dose-length product and CT dose index) were retrospectively reviewed for 130 patients who underwent CT-guided lung interventions. SDCT at 120 kVp and automatic mA modulation and LDCT at 100 kVp and a fixed exposure were each performed for 65 patients. Image quality was objectively evaluated as the contrast-to-noise ratio and subjectively by two radiologists for noise impression, sharpness, artifacts and diagnostic acceptability on a four-point scale. The groups did not significantly differ in terms of diagnostic acceptability and complication rate. LDCT yielded a median 68.6% reduction in the radiation dose relative to SDCT. In the LDCT group, iterative reconstruction was superior to filtered back projection in terms of noise reduction and subjective image quality. The groups did not differ in terms of beam hardening artifacts. LDCT was feasible for all procedures and yielded a more than two-thirds reduction in radiation exposure while maintaining overall diagnostic acceptability, safety and precision. The iterative reconstruction algorithm is preferable according to the objective and subjective image quality analyses. Implementation of a low-dose computed tomography (LDCT) protocol for lung interventions is feasible and safe. LDCT protocols yield a significant reduction (more than 2/3) in radiation exposure. Iterative reconstruction algorithms considerably improve the image quality in LDCT protocols. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Report: EPA’s Radiation and Indoor Environments National Laboratory Should Improve Its Computer Room Security Controls

    Science.gov (United States)

    Report #12-P-0847, September 21, 2012.Our review of the security posture and in-place environmental controls of EPA’s Radiation and Indoor Environments National Laboratory computer room disclosed an array of security and environmental control deficiencies.

  4. The UF Family of hybrid phantoms of the pregnant female for computational radiation dosimetry

    Science.gov (United States)

    Maynard, Matthew R.; Long, Nelia S.; Moawad, Nash S.; Shifrin, Roger Y.; Geyer, Amy M.; Fong, Grant; Bolch, Wesley E.

    2014-08-01

    Efforts to assess in utero radiation doses and related quantities to the developing fetus should account for the presence of the surrounding maternal tissues. Maternal tissues can provide varying levels of protection to the fetus by shielding externally-emitted radiation or, alternatively, can become sources of internally-emitted radiation following the biokinetic uptake of medically-administered radiopharmaceuticals or radionuclides located in the surrounding environment—as in the case of the European Union’s SOLO project (Epidemiological Studies of Exposed Southern Urals Populations). The University of Florida had previously addressed limitations in available computational phantom representation of the developing fetus by constructing a series of hybrid computational fetal phantoms at eight different ages and three weight percentiles. Using CT image sets of pregnant patients contoured using 3D-DOCTORTM, the eight 50th percentile fetal phantoms from that study were systematically combined in RhinocerosTM with the UF adult non-pregnant female to yield a series of reference pregnant female phantoms at fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. Deformable, non-uniform rational B-spline surfaces were utilized to alter contoured maternal anatomy in order to (1) accurately position and orient each fetus and surrounding maternal tissues and (2) match target masses of maternal soft tissue organs to reference data reported in the literature.

  5. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes

    CERN Document Server

    Pinsky, L; Ferrari, A; Sala, P; Carminati, F; Brun, R

    2001-01-01

    This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be usef...

  6. Performance enhancement of poly(3-hexylthiophene):methanofullerene bulk-heterojunction solar cells. : Section Title: Electrochemical, Radiational, and Thermal Energy Technology

    NARCIS (Netherlands)

    Koster, L. Jan Anton; Mihailetchi, Valentin D.; Hummelen, Jan C.; Blom, Paul W. M.

    2006-01-01

    Using a newly developed device model we have studied the effect of controlled thermal annealing on charge transport and photogeneration in bulk-heterojunction solar cells made from blend films of regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene (PCBM). With respect to the charge

  7. The use of mobile computed tomography in intensive care: regulatory compliance and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, G C; Rowles, N P; Loader, R [Healthcare Science and Technology Directorate, Plymouth Hospitals NHS Trust (United Kingdom); Foy, R T [Department of Medical Physics, Royal Cornwall NHS Trust (United Kingdom); Barua, N; Williams, A; Palmer, J D [South West Neurosurgery Centre, Plymouth Hospitals NHS Trust (United Kingdom)], E-mail: Gregory.Stevens@phnt.swest.nhs.uk

    2009-12-01

    The use of mobile head computed tomography (CT) equipment in intensive care is of benefit to unstable patients with brain injury. However, ionising radiation in a ward environment presents difficulties due to the necessity to restrict the exposure to staff and members of the public according to regulation 8(1-2) of the Ionising Radiation Regulations 1999. The methodology for enabling the use of a mobile head CT unit in an open ward area is discussed and a practical solution given. This required the reduction in scatter doses through the installation of extra internal and external shielding, and a further reduction in annual scatter dose by restricting the use of the equipment based on a simulation of the annual ward workload.

  8. Childhood exposure to ionizing radiation from computed tomography imaging in Nova Scotia.

    Science.gov (United States)

    Inman, Mark; Otley, Anthony; Dummer, Trevor; Cui, Yunsong; Schmidt, Matthias H; Parker, Louise

    2015-10-01

    Examining radiation dose in the paediatric population is particularly important due to the vulnerability of paediatric patients (increased radiosensitive tissues and postexposure life-years) and risk for future radiogenic malignancy. To evaluate trends in paediatric computed tomography (CT) use and ionizing radiation exposure using population-based data from Nova Scotia. A retrospective, population-based cohort study of CT use in patients Nova Scotia. CT examination data were retrieved from a provincial imaging repository. Trends in CT use were described, and both annual and cumulative effective dose exposures were calculated. In total, 29,452 CT events, involving up to 22,867 individuals were retrieved. Overall annual paediatric CT examination rates remained static (range 17.4 to 18.8 per 1000 per year). However, use in children 50% (P50 mSv), and rates in individuals >15 years of age steadily increased, suggesting further exposure reduction efforts are necessary.

  9. Computer modeling characterization, and applications of Gallium Arsenide Gunn diodes in radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    El- Basit, Wafaa Abd; El-Ghanam, Safaa Mohamed; Kamh, Sanaa Abd El-Tawab [Electronics Research Laboratory, Physics Department, Faculty of Women for Arts, Science and Education, Ain-Shams University, Cairo (Egypt); Abdel-Maksood, Ashraf Mosleh; Soliman, Fouad Abd El-Moniem Saad [Nuclear Materials Authority, Cairo (Egypt)

    2016-10-15

    The present paper reports on a trial to shed further light on the characterization, applications, and operation of radar speed guns or Gunn diodes on different radiation environments of neutron or γ fields. To this end, theoretical and experimental investigations of microwave oscillating system for outer-space applications were carried out. Radiation effects on the transient parameters and electrical properties of the proposed devices have been studied in detail with the application of computer programming. Also, the oscillation parameters, power characteristics, and bias current were plotted under the influence of different γ and neutron irradiation levels. Finally, shelf or oven annealing processes were shown to be satisfactory techniques to recover the initial characteristics of the irradiated devices.

  10. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  11. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  12. EDISTR: a computer program to obtain a nuclear decay data base for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Dillman, L.T.

    1980-01-01

    This report provides documentation for the computer program EDISTR. EDISTR uses basic radioactive decay data from the Evaluated Nuclear Structure Data File developed and maintained by the Nuclear Data Project at the Oak Ridge National Laboratory as input, and calculates the mean energies and absolute intensities of all principal radiations associated with the radioactive decay of a nuclide. The program is intended to provide a physical data base for internal dosimetry calculations. The principal calculations performed by EDISTR are the determination of (1) the average energy of beta particles in a beta transition, (2) the beta spectrum as function of energy, (3) the energies and intensities of x-rays and Auger electrons generated by radioactive decay processes, (4) the bremsstrahlung spectra accompanying beta decay and monoenergetic Auger and internal conversion electrons, and (5) the radiations accompanying spontaneous fission. This report discusses the theoretical and empirical methods used in EDISTR and also practical aspects of the computer implementation of the theory. Detailed instructions for preparing input data for the computer program are included, along with examples and discussion of the output data generated by EDISTR.

  13. Radiation exposure for coronary artery calcium score at prospective 320 row multi-detector computed tomography

    Directory of Open Access Journals (Sweden)

    Faisal Khosa

    2013-12-01

    Full Text Available Purpose:To date there is extensive data on the radiation dose for assessing coronary artery calcium scores (CACS with 4-64 row multidetector MDCT. However with the advent of 320 row MDCT, the entire heart can be imaged in one beat and thus potentially reduce the radiation dose. The aim of this study was to evaluate radiation dose for CACS on low-dose prospective EKG-triggered 320 row MDCT.Materials and Methods: Informed consent for this retrospective HIPAA-compliant study was waived and approved by our institution’s institutional review board IRB. One hundred and sixty eight consecutive patients (Male 133 (79%: female 35 (21%, mean body mass index BMI 29±5 and mean heart rate 58± bpm underwent coronary calcium scoring with prospective gating. The scan parameters were 300 mA, 120 kVp, volume scan length (VSL 160 mm, gantry rotation 0.350 msec and 320 x 0.5 mm detectors at 320 MDCT. Beta blockers were given to patients in a case heart rate HR > 65 bpm. The effective dose (ED estimates were calculated for all patients from the dose length product and the conversion factor k (0.014 mSv/mGy/cm as recommended by current guidelines.Results: The mean SD radiation was 1.89±0.79 mSv. Overall the range varied from 0.28-2.48 mSv. The radiation was significantly less in females as compared to males (2.02±0.73 vs. 1.41±0.87, p<0.0001. No differences were noted whether HR was <60 vs. >=60 bpm (1.87±0.79 vs. 1.77±0.84 mSv, p=0.45. On the other hand a higher radiation was noted among obese individuals as compared to those with BMI<30 (1.84±0.82 vs. 1.91±0.80 mSv, p=0.62.Conclusion: Radiation dose obtained from 320-MDCT is similar to those obtained with 4-64 row MDCT. Further studies are needed to assess the feasibility of further lowering the tube current and tube voltage.------------------------------------------------Cite this article as:Khosa F, Khan A, Shuaib W, Clouse M, Budoff M, Blankstein R, Nasir K. Radiation exposure for coronary artery

  14. MULTI2D - a computer code for two-dimensional radiation hydrodynamics

    Science.gov (United States)

    Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.

    2009-06-01

    Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are

  15. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Lee, Choonsik [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20852 (United States); Bolch, Wesley E. [Departments of Nuclear and Radiological and Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB (Netherlands)

    2015-06-15

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired. Methods: Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms. Results: For most organs, {sup 201}Tl produces the highest absorbed dose whereas {sup 82}Rb and {sup 15}O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of {sup 82}Rb is 48% and 77% lower than that of {sup 99m}Tc-tetrofosmin (rest), respectively. Conclusions: {sup 82}Rb results in lower effective dose in adults compared to {sup 99m}Tc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice.

  16. Trends in radiation protection of positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Alenezi, A; Soliman, K

    2015-06-01

    Over the past decade, the number of positron emission tomography/computed tomography (PET/CT) imaging procedures has increased substantially. This imaging technique provides accurate functional and anatomical information, particularly for oncological applications. Separately, both PET and CT are considered as high-dose imaging modalities. With the increased use of PET/CT, one could expect an increase in radiation doses to staff and patients. As such, major efforts have been made to reduce radiation dose in PET/CT facilities. Variations in working techniques have made it difficult to compare published results. This study aimed to review the literature on proposed methods to reduce patient and staff dose in clinical PET/CT imaging. A brief overview of some published information on staff and patient doses will be analysed and presented. Recent trends regarding radiation protection in PET/CT imaging will be discussed, and practical recommendations for reducing radiation doses to staff and patients will be discussed and summarised. Generally, the CT dose component is often higher in magnitude than the dose from PET alone; as such, focusing on CT dose reduction will decrease the overall patient dose in PET/CT imaging studies. The following factors should be considered in order to reduce the patient's dose from CT alone: proper justification for ordering contrast-enhanced CT; use of automatic exposure control features; use of adaptive statistical iterative reconstruction algorithms; and optimisation of scan parameters, especially scan length. The PET dose component can be reduced by administration of lower activity to the patient, optimisation of the workflow, and appropriate use of protective devices and engineered systems. At the international level, there is wide variation in work practices among institutions. The current observed trends are such that the annual dose limits for radiation workers in PET/CT imaging are unlikely to be exceeded. © Author(s) 2014.

  17. Computer-aided analysis of star shot films for high-accuracy radiation therapy treatment units.

    Science.gov (United States)

    Depuydt, Tom; Penne, Rudi; Verellen, Dirk; Hrbacek, Jan; Lang, Stephanie; Leysen, Katrien; Vandevondel, Iwein; Poels, Kenneth; Reynders, Truus; Gevaert, Thierry; Duchateau, Michael; Tournel, Koen; Boussaer, Marlies; Cosentino, Dorian; Garibaldi, Cristina; Solberg, Timothy; De Ridder, Mark

    2012-05-21

    As mechanical stability of radiation therapy treatment devices has gone beyond sub-millimeter levels, there is a rising demand for simple yet highly accurate measurement techniques to support the routine quality control of these devices. A combination of using high-resolution radiosensitive film and computer-aided analysis could provide an answer. One generally known technique is the acquisition of star shot films to determine the mechanical stability of rotations of gantries and the therapeutic beam. With computer-aided analysis, mechanical performance can be quantified as a radiation isocenter radius size. In this work, computer-aided analysis of star shot film is further refined by applying an analytical solution for the smallest intersecting circle problem, in contrast to the gradient optimization approaches used until today. An algorithm is presented and subjected to a performance test using two different types of radiosensitive film, the Kodak EDR2 radiographic film and the ISP EBT2 radiochromic film. Artificial star shots with a priori known radiation isocenter size are used to determine the systematic errors introduced by the digitization of the film and the computer analysis. The estimated uncertainty on the isocenter size measurement with the presented technique was 0.04 mm (2σ) and 0.06 mm (2σ) for radiographic and radiochromic films, respectively. As an application of the technique, a study was conducted to compare the mechanical stability of O-ring gantry systems with C-arm-based gantries. In total ten systems of five different institutions were included in this study and star shots were acquired for gantry, collimator, ring, couch rotations and gantry wobble. It was not possible to draw general conclusions about differences in mechanical performance between O-ring and C-arm gantry systems, mainly due to differences in the beam-MLC alignment procedure accuracy. Nevertheless, the best performing O-ring system in this study, a BrainLab/MHI Vero system

  18. Collection and analysis of environmental radiation data using a desktop computer

    Energy Technology Data Exchange (ETDEWEB)

    Gogolak, C V

    1982-04-01

    A portable instrumentation sytem using a Hewlett-Packard HP-9825 desktop computer for the collection and analysis of environmental radiation data is described. Procedures for the transmission of data between the HP-9825 and various nuclear counters are given together with a description of the necessary hardware and software. Complete programs for the analysis of Ge(Li) and NaI(Tl) gamma-ray spectra, high pressure ionization chamber monitor data, /sup 86/Kr monitor data and air filter sample alpha particle activity measurements are presented. Some utility programs, intended to increase system flexibility, are included.

  19. Abstracts of digital computer code packages assembled by the Radiation Shielding Information Center

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B.J.; Maskewitz, B.F.

    1985-04-01

    This publication, ORNL/RSIC-13, Volumes I to III Revised, has resulted from an internal audit of the first 168 packages of computing technology in the Computer Codes Collection (CCC) of the Radiation Shielding Information Center (RSIC). It replaces the earlier three documents published as single volumes between 1966 to 1972. A significant number of the early code packages were considered to be obsolete and were removed from the collection in the audit process and the CCC numbers were not reassigned. Others not currently being used by the nuclear R and D community were retained in the collection to preserve technology not replaced by newer methods, or were considered of potential value for reference purposes. Much of the early technology, however, has improved through developer/RSIC/user interaction and continues at the forefront of the advancing state-of-the-art.

  20. An Examination of the Performance of Parallel Calculation of the Radiation Integral on a Beowulf-Class Computer

    Science.gov (United States)

    Katz, D.; Cwik, T.; Sterling, T.

    1998-01-01

    This paper uses the parallel calculation of the radiation integral for examination of performance and compiler issues on a Beowulf-class computer. This type of computer, built from mass-market, commodity, off-the-shelf components, has limited communications performance and therefore also has a limited regime of codes for which it is suitable.

  1. Nationwide radiation dose survey of computed tomography for fetal skeletal dysplasias

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Osamu [National Center for Child Health and Development, Department of Radiology, Setagaya-ku, Tokyo (Japan); Sawai, Hideaki [Hyogo College of Medicine, Department of Obstetrics and Gynecology, Nishinomiya-shi, Hyogo (Japan); Murotsuki, Jun [Miyagi Children' s Hospital, Department of Maternal and Fetal Medicine, Sendai-shi, Miyagi (Japan); Tohoku University Graduate School of Medicine, Department of Advanced Fetal and Developmental Medicine, Sendai-shi, Miyagi (Japan); Nishimura, Gen [Tokyo Metropolitan Children' s Medical Center, Department of Pediatric Imaging, Fuchu-shi, Tokyo (Japan); Horiuchi, Tetsuya [National Center for Child Health and Development, Department of Radiology, Setagaya-ku, Tokyo (Japan); Osaka University, Department of Medical Physics and Engineering, Division of Medical Technology and Science, Course of Health Science, Graduate School of Medicine, Suita, Osaka (Japan)

    2014-08-15

    Recently, computed tomography (CT) has been used to diagnose fetal skeletal dysplasia. However, no surveys have been conducted to determine the radiation exposure dose and the diagnostic reference level (DRL). To collect CT dose index volume (CTDIvol) and dose length product (DLP) data from domestic hospitals implementing fetal skeletal 3-D CT and to establish DRLs for Japan. Scan data of 125 cases of 20 protocols from 16 hospitals were analyzed. The minimum, first-quartile, median, third-quartile and maximum values of CTDIvol and DLP were determined. The time-dependent change in radiation dose setting in hospitals with three or more cases with scans was also examined. The minimum, first-quartile, median, third-quartile and maximum CTDIvol values were 2.1, 3.7, 7.7, 11.3 and 23.1 mGy, respectively, and these values for DLP were 69.0, 122.3, 276.8, 382.6 and 1025.6 mGy.cm, respectively. Six of the 12 institutions reduced the dose setting during the implementation period. The DRLs of CTDIvol and DLP for fetal CT were 11.3 mGy and 382.6 mGy.cm, respectively. Institutions implementing fetal CT should use these established DRLs as the standard and make an effort to reduce radiation exposure by voluntarily decreasing the dose. (orig.)

  2. Estimation of radiation exposure from lung cancer screening program with low-dose computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Yeon; Jun, Jae Kwan [Graduate School of Cancer Science and Policy, National Cancer Center, Seoul (Korea, Republic of)

    2016-12-15

    The National Lung Screening Trial (NLST) demonstrated that screening with Low-dose Computed Tomography (LDCT) screening reduced lung cancer mortality in a high-risk population. Recently, the United States Preventive Services Task Force (USPSTF) gave a B recommendation for annual LDCT screening for individuals at high-risk. With the promising results, Korea developed lung cancer screening guideline and is planning a pilot study for implementation of national lung cancer screening. With widespread adoption of lung cancer screening with LDCT, there are concerns about harms of screening, including high false-positive rates and radiation exposure. Over the 3 rounds of screening in the NLST, 96.4% of positive results were false-positives. Although the initial screening is performed at low dose, subsequent diagnostic examinations following positive results additively contribute to patient's lifetime exposure. As with implementing a large-scale screening program, there is a lack of established risk assessment about the effect of radiation exposure from long-term screening program. Thus, the purpose of this study was to estimate cumulative radiation exposure of annual LDCT lung cancer screening program over 20-year period.

  3. Measurement Of Electromagnetic Field Radiation In The Internet Halls And Educational Computer Laboratories

    Directory of Open Access Journals (Sweden)

    Ghanim Thiab Hasan

    2013-04-01

    Full Text Available     There are more concerns about possible health effects related to electromagnetic fields from computer monitors and other video display terminals because of the widespread using of computers in laboratories ,offices and internet halls. This research aims to detect the effect of electromagnetic field radiations in these halls and laboratories and study the successful ways of minimizing its negative  health  effect on human health. The research has been performed on both the mathematical calculations and practical measurements. The obtaining results show that the practical measurements are consistent with the  mathematical calculations results. Comparison of  these results with the safety standard guideline  limits shows that they are within the acceptable exposuring limits recommended by the International Commission on Non-Ionizing Radiation Protection  (ICNIRP and that means there is no health risk from exposure to these fields if the exposure is within the acceptable limits.     

  4. Computed Tomography Angiography with a 192-slice Dual-source Computed Tomography System: Improvements in Image Quality and Radiation Dose

    Directory of Open Access Journals (Sweden)

    Philip V M Linsen

    2016-01-01

    Full Text Available Purpose: This study aims to compare image quality, radiation dose, and the influence of the heart rate on image quality of high-pitch spiral coronary computed tomography angiography (CCTA using 128-slice (second generation dual-source CT (DSCT and a 192-slice DSCT (third generation scanner. Materials and Methods: Two consecutive cohorts of fifty patients underwent CCTA by high-pitch spiral scan mode using 128 or 192-slice DSCT. The 192-slice DSCT system has a more powerful roentgen tube (2 × 120 kW that allows CCTA acquisition at lower tube voltages, wider longitudinal coverage for faster table speed (732 m/s, and the use of iterative reconstruction. Objective image quality was measured as the signal-to-noise ratio (SNR and contrast-to-noise ratio (CNR. Subjective image quality was evaluated using a Likert scale. Results: While the effective dose was lower with 192-slice DSCT (1.2 ± 0.5 vs. 0.6 ± 0.3 mSv; P < 0.001, the SNR (18.9 ± 4.3 vs. 11.0 ± 2.9; P < 0.001 and CNR (23.5 ± 4.8 vs. 14.3 ± 4.1; P < 0.001 were superior to 128-slice DSCT. Although patients scanned with 192-slice DSCT had a faster heart rate (59 ± 7 vs. 56 ± 6; P = 0.045, subjective image quality was scored higher (4.2 ± 0.8 vs. 3.0 ± 0.7; P < 0.001 compared to 128-slice DSCT. Conclusions: High-pitch spiral CCTA by 192-slice DSCT provides better image quality, despite a higher average heart rate, at lower radiation doses compared to 128-slice DSCT.

  5. Optimizing Cone Beam Computed Tomography (CBCT) System for Image Guided Radiation Therapy

    Science.gov (United States)

    Park, Chun Joo

    Cone Beam Computed Tomography (CBCT) system is the most widely used imaging device in image guided radiation therapy (IGRT), where set of 3D volumetric image of patient can be reconstructed to identify and correct position setup errors prior to the radiation treatment. This CBCT system can significantly improve precision of on-line setup errors of patient position and tumor target localization prior to the treatment. However, there are still a number of issues that needs to be investigated with CBCT system such as 1) progressively increasing defective pixels in imaging detectors by its frequent usage, 2) hazardous radiation exposure to patients during the CBCT imaging, 3) degradation of image quality due to patients' respiratory motion when CBCT is acquired and 4) unknown knowledge of certain anatomical features such as liver, due to lack of soft-tissue contrast which makes tumor motion verification challenging. In this dissertation, we explore on optimizing the use of cone beam computed tomography (CBCT) system under such circumstances. We begin by introducing general concept of IGRT. We then present the development of automated defective pixel detection algorithm for X-ray imagers that is used for CBCT imaging using wavelet analysis. We next investigate on developing fast and efficient low-dose volumetric reconstruction techniques which includes 1) fast digital tomosynthesis reconstruction using general-purpose graphics processing unit (GPGPU) programming and 2) fast low-dose CBCT image reconstruction based on the Gradient-Projection-Barzilai-Borwein formulation (GP-BB). We further developed two efficient approaches that could reduce the degradation of CBCT images from respiratory motion. First, we propose reconstructing four dimensional (4D) CBCT and DTS using respiratory signal extracted from fiducial markers implanted in liver. Second, novel motion-map constrained image reconstruction (MCIR) is proposed that allows reconstruction of high quality and high phase

  6. Knowledge management: Role of the the Radiation Safety Information Computational Center (RSICC)

    Science.gov (United States)

    Valentine, Timothy

    2017-09-01

    The Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 software packages that have been provided by code developers from various federal and international agencies. RSICC's customers (scientists, engineers, and students from around the world) obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programs both domestically and internationally, as the majority of RSICC's customers are students attending U.S. universities. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC's activities, services, and systems that support knowledge management and education and training in the nuclear field.

  7. Knowledge management: Role of the the Radiation Safety Information Computational Center (RSICC

    Directory of Open Access Journals (Sweden)

    Valentine Timothy

    2017-01-01

    Full Text Available The Radiation Safety Information Computational Center (RSICC at Oak Ridge National Laboratory (ORNL is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 software packages that have been provided by code developers from various federal and international agencies. RSICC’s customers (scientists, engineers, and students from around the world obtain access to such computing codes (source and/or executable versions and processed nuclear data files to promote on-going research, to ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programs both domestically and internationally, as the majority of RSICC’s customers are students attending U.S. universities. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S tools that support both domestic and international activities. This presentation will provide a general review of RSICC’s activities, services, and systems that support knowledge management and education and training in the nuclear field.

  8. Optimizing Radiation Doses for Computed Tomography Across Institutions: Dose Auditing and Best Practices.

    Science.gov (United States)

    Demb, Joshua; Chu, Philip; Nelson, Thomas; Hall, David; Seibert, Anthony; Lamba, Ramit; Boone, John; Krishnam, Mayil; Cagnon, Christopher; Bostani, Maryam; Gould, Robert; Miglioretti, Diana; Smith-Bindman, Rebecca

    2017-06-01

    Radiation doses for computed tomography (CT) vary substantially across institutions. To assess the impact of institutional-level audit and collaborative efforts to share best practices on CT radiation doses across 5 University of California (UC) medical centers. In this before/after interventional study, we prospectively collected radiation dose metrics on all diagnostic CT examinations performed between October 1, 2013, and December 31, 2014, at 5 medical centers. Using data from January to March (baseline), we created audit reports detailing the distribution of radiation dose metrics for chest, abdomen, and head CT scans. In April, we shared reports with the medical centers and invited radiology professionals from the centers to a 1.5-day in-person meeting to review reports and share best practices. We calculated changes in mean effective dose 12 weeks before and after the audits and meeting, excluding a 12-week implementation period when medical centers could make changes. We compared proportions of examinations exceeding previously published benchmarks at baseline and following the audit and meeting, and calculated changes in proportion of examinations exceeding benchmarks. Of 158 274 diagnostic CT scans performed in the study period, 29 594 CT scans were performed in the 3 months before and 32 839 CT scans were performed 12 to 24 weeks after the audit and meeting. Reductions in mean effective dose were considerable for chest and abdomen. Mean effective dose for chest CT decreased from 13.2 to 10.7 mSv (18.9% reduction; 95% CI, 18.0%-19.8%). Reductions at individual medical centers ranged from 3.8% to 23.5%. The mean effective dose for abdominal CT decreased from 20.0 to 15.0 mSv (25.0% reduction; 95% CI, 24.3%-25.8%). Reductions at individual medical centers ranged from 10.8% to 34.7%. The number of CT scans that had an effective dose measurement that exceeded benchmarks was reduced considerably by 48% and 54% for chest and abdomen, respectively. After

  9. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study. Phase I

    Science.gov (United States)

    Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.

    2012-01-01

    The key objectives of this study are to investigate, both computationally and experimentally, which forms, compositions, and layerings of hydrogen, boron, and nitrogen containing materials will offer the greatest shielding in the most structurally robust combination against galactic cosmic radiation (GCR), secondary neutrons, and solar energetic particles (SEP). The objectives and expected significance of this research are to develop a space radiation shielding materials system that has high efficacy for shielding radiation and that also has high strength for load bearing primary structures. Such a materials system does not yet exist. The boron nitride nanotube (BNNT) can theoretically be processed into structural BNNT and used for load bearing structures. Furthermore, the BNNT can be incorporated into high hydrogen polymers and the combination used as matrix reinforcement for structural composites. BNNT's molecular structure is attractive for hydrogen storage and hydrogenation. There are two methods or techniques for introducing hydrogen into BNNT: (1) hydrogen storage in BNNT, and (2) hydrogenation of BNNT (hydrogenated BNNT). In the hydrogen storage method, nanotubes are favored to store hydrogen over particles and sheets because they have much larger surface areas and higher hydrogen binding energy. The carbon nanotube (CNT) and BNNT have been studied as potentially outstanding hydrogen storage materials since 1997. Our study of hydrogen storage in BNNT - as a function of temperature, pressure, and hydrogen gas concentration - will be performed with a hydrogen storage chamber equipped with a hydrogen generator. The second method of introducing hydrogen into BNNT is hydrogenation of BNNT, where hydrogen is covalently bonded onto boron, nitrogen, or both. Hydrogenation of BN and BNNT has been studied theoretically. Hyper-hydrogenated BNNT has been theoretically predicted with hydrogen coverage up to 100% of the individual atoms. This is a higher hydrogen content

  10. Optimization of dose radiation and image quality on computed tomography of thorax in adult women

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Z, G. R.; Casian C, G. [Hospital Juarez de Mexico, Av. IPN No. 5160, 07760 Mexico D. F. (Mexico); Gaona, E.; Franco E, J. G.; Molina F, N., E-mail: gaen1310@correo.xoc.uam.mx [Universidad Autonoma Metropolitana, Unidad Xochimilco, Calz. del Hueso 1100, 04960 Mexico D. F. (Mexico)

    2015-10-15

    Full text: The objective of the study is the optimization of the dose (Dlp) and image quality in the exploration of adult women in studies of thorax with computed tomography (CT). The CT is a technique of exploration with high radiation doses to patients with an increase of the risk factors of developing cancer in the future, but X-rays are a very important medical diagnostic tool. We performed a retrospective survey of 50 female patients who had thorax tomography using the automatic protocol established by the manufacturer, a database of dose (Dlp), measures of patient A P and radiological parameters such as kV and m A was obtained. Subsequently, we carry out the prospective study with 30 patients with prescription of thorax tomography, scans were conducted with CT with reduced doses using manual techniques protocol of exploration while maintaining diagnostic image quality. The results show that the prospective study patients received doses lower than 30% on average. In general the dose patients were within the confidence interval of 95% of the levels of diagnostic reference (DRL) adopted by the European Community for CT and the most common value is 400 Dlp for thorax. Comparative image quality study was conducted using the protocol of the manufacturer and the manual protocol and image quality was diagnostic after dose reduction up to 30%. The reduction of radiation dose in female patients in studies of thorax CT helps to reduce risk factors of developing cancer later in life. A thorax tomography study includes the fibro-glandular tissue of the breast which is very sensitive to stochastic effects of radiation. (Author)

  11. Uncertainties in radiative transfer computations: consequences on the ocean color products

    Science.gov (United States)

    Dilligeard, Eric; Zagolski, Francis; Fischer, Juergen; Santer, Richard P.

    2003-05-01

    Operational MERIS (MEdium Resolution Imaging Spectrometer) level-2 processing uses auxiliary data generated by two radiative transfer tools. These two codes simulate upwelling radiances within a coupled 'Atmosphere-Ocean' system, using different approaches based on the matrix-operator method (MOMO) and the successive orders (SO) technique. Intervalidation of these two radiative transfer codes was performed in order to implement them in the MERIS level-2 processing. MOMO and SO simulations were then conducted on a set of representative test cases. Results stressed both for all test cases good agreements were observed. The scattering processes are retrieved within a few tenths of a percent. Nevertheless, some substantial discrepancies occurred if the polarization is not taken into account mainly in the Rayleigh scattering computations. A preliminary study indicates that the impact of the code inaccuracy in the water leaving radiances retrieval (a level-2 MERIS product) is large, up to 50% in relative difference. Applying the OC2 algorithm, the effect on the retrieval chlorophyll concentration is less than 10%.

  12. Eurotherm Conference No. 105: Computational Thermal Radiation in Participating Media V

    Science.gov (United States)

    El Hafi, Mouna; Fournier, Richard; Lemonnier, Denis; Lybaert, Paul; Selçuk, Nevin

    2016-01-01

    This volume of Journal of Physics: Conference Series is based on papers presented at the Eurotherm Conference 105: Computational Thermal Radiation in Participating Media V, which was held in Albi, France on 1-3 April 2015. This seminar was the fifth in a series after Nancy, France (Eurotherm Seminar 95, April 2012), Mons, Belgium (Eurotherm Seminar 73, April 2003), Poitiers, France (Eurotherm Seminar 78, April 2006) and Lisbon, Portugal (Eurotherm Seminar 83, April 2009). Around 40 contributions were received during the conference preparation that have been submitted to oral presentations. A selection process based on two peer-reviews of the full papers finally resulted in the acceptance of 36 for oral presentations (including 2 plenary lectures). These 2 plenary lectures and 10 other papers have been selected for a special issue in a journal related to radiative heat transfer and will not be presented in this volume. The conference was attended by almost 60 scientists from 15 different countries: Australia, Belgium, Canada, China, France, Germany, Poland, Portugal, Russia, Switzerland, The Netherlands, Sweden, Tunisia, Turkey and USA.

  13. Dose computation in conformal radiation therapy including geometric uncertainties: Methods and clinical implications

    Science.gov (United States)

    Rosu, Mihaela

    The aim of any radiotherapy is to tailor the tumoricidal radiation dose to the target volume and to deliver as little radiation dose as possible to all other normal tissues. However, the motion and deformation induced in human tissue by ventilatory motion is a major issue, as standard practice usually uses only one computed tomography (CT) scan (and hence one instance of the patient's anatomy) for treatment planning. The interfraction movement that occurs due to physiological processes over time scales shorter than the delivery of one treatment fraction leads to differences between the planned and delivered dose distributions. Due to the influence of these differences on tumors and normal tissues, the tumor control probabilities and normal tissue complication probabilities are likely to be impacted upon in the face of organ motion. In this thesis we apply several methods to compute dose distributions that include the effects of the treatment geometric uncertainties by using the time-varying anatomical information as an alternative to the conventional Planning Target Volume (PTV) approach. The proposed methods depend on the model used to describe the patient's anatomy. The dose and fluence convolution approaches for rigid organ motion are discussed first, with application to liver tumors and the rigid component of the lung tumor movements. For non-rigid behavior a dose reconstruction method that allows the accumulation of the dose to the deforming anatomy is introduced, and applied for lung tumor treatments. Furthermore, we apply the cumulative dose approach to investigate how much information regarding the deforming patient anatomy is needed at the time of treatment planning for tumors located in thorax. The results are evaluated from a clinical perspective. All dose calculations are performed using a Monte Carlo based algorithm to ensure more realistic and more accurate handling of tissue heterogeneities---of particular importance in lung cancer treatment planning.

  14. Assessment of radiation exposure on a dual-source computed tomography-scanner performing coronary computed tomography-angiography

    Energy Technology Data Exchange (ETDEWEB)

    Kirchhoff, S., E-mail: sonja.kirchhoff@med.uni-muenchen.d [Institute of Clinical Radiology, University Hospital Munich - Grosshadern, Ludwig Maximilians-Universitaet Muenchen, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich (Germany); Herzog, P., E-mail: peter.herzog@med.uni-muenchen.d [Institute of Clinical Radiology, University Hospital Munich - Grosshadern, Ludwig Maximilians-Universitaet Muenchen, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich (Germany); Johnson, T., E-mail: Thorsten.johnson@med.uni-muenchen.d [Institute of Clinical Radiology, University Hospital Munich - Grosshadern, Ludwig Maximilians-Universitaet Muenchen, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich (Germany); Boehm, H., E-mail: holger.boehm@med.uni-muenchen.d [Institute of Clinical Radiology, University Hospital Munich - Grosshadern, Ludwig Maximilians-Universitaet Muenchen, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich (Germany); Nikolaou, K., E-mail: konstantin.nikolaou@med.uni-muenchen.d [Institute of Clinical Radiology, University Hospital Munich - Grosshadern, Ludwig Maximilians-Universitaet Muenchen, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich (Germany); Reiser, M.F., E-mail: maximilian.reiser@med.uni-muenchen.d [Institute of Clinical Radiology, University Hospital Munich - Grosshadern, Ludwig Maximilians-Universitaet Muenchen, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich (Germany); Becker, C.H., E-mail: christoph.becker@med.uni-muenchen.d [Institute of Clinical Radiology, University Hospital Munich - Grosshadern, Ludwig Maximilians-Universitaet Muenchen, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich (Germany)

    2010-06-15

    Objective: The radiation exposure of a dual-source-64-channel multi-detector-computed-tomography-scanner (Somatom-Defintion, Siemens, Germany) was assessed in a phantom-study performing coronary-CT-angiography (CTCA) in comparison to patients' data randomly selected from routine scanning. Methods: 240 CT-acquisitions of a computed tomography dose index (CTDI)-phantom (PTW, Freiburg, Germany) were performed using a synthetically generated Electrocardiography (ECG)-signal with variable heart rates (30-180 beats per minute (bpm)). 120 measurements were acquired using continuous tube-output; 120 measurements were performed using ECG-synchronized tube-modulation. The pulsing window was set at minimum duration at 65% of the cardiac cycle between 30 and 75 bpm. From 90-180 bpm the pulsing window was set at 30-70% of the cardiac cycle. Automated pitch adaptation was always used. A comparison between phantom CTDI and two patient groups' CTDI corresponding to the two pulsing groups was performed. Results: Without ECG-tube-modulation CDTI-values were affected by heart-rate-changes resulting in 85.7 mGray (mGy) at 30 and 45 bpm, 65.5 mGy/60 bpm, 54.7 mGy/75 bpm, 46.5 mGy/90 bpm, 34.2 mGy/120 bpm, 27.0 mGy/150 bpm and 22.1 mGy/180 bpm equal to effective doses between 14.5 mSievert (mSv) at 30/45 bpm and 3.6 mSv at 180 bpm. Using ECG-tube-modulation these CTDI-values resulted: 32.6 mGy/30 bpm, 36.6 mGy/45 bpm, 31.4 mGy/60 bpm, 26.8 mGy/75 bpm, 23.7 mGy/90 bpm, 19.4 mGy/120 bpm, 17.2 mGy/150 bpm and 15.6 mGy/180 bpm equal to effective doses between 5.5 mSv at 30 bpm and 2.6 mSv at 180 bpm. Significant CTDI-differences were found between patients with lower/moderate and higher heart rates in comparison to the phantom CTDI-results. Conclusions: Dual source CTCA is particularly dose efficient at high heart rates when automated pitch adaptation, especially in combination with ECG-based tube-modulation is used. However in clinical routine scanning for patients with higher

  15. Computation of Aerodynamic Noise Radiated from Ducted Tail Rotor Using Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Yunpeng Ma

    2017-01-01

    Full Text Available A detailed aerodynamic performance of a ducted tail rotor in hover has been numerically studied using CFD technique. The general governing equations of turbulent flow around ducted tail rotor are given and directly solved by using finite volume discretization and Runge-Kutta time integration. The calculations of the lift characteristics of the ducted tail rotor can be obtained. In order to predict the aerodynamic noise, a hybrid method combining computational aeroacoustic with boundary element method (BEM has been proposed. The computational steps include the following: firstly, the unsteady flow around rotor is calculated using the CFD method to get the noise source information; secondly, the radiate sound pressure is calculated using the acoustic analogy Curle equation in the frequency domain; lastly, the scattering effect of the duct wall on the propagation of the sound wave is presented using an acoustic thin-body BEM. The aerodynamic results and the calculated sound pressure levels are compared with the known technique for validation. The sound pressure directivity and scattering effect are shown to demonstrate the validity and applicability of the method.

  16. Computation of sound radiation by a driver in a cabinet using a substitute source approach.

    Science.gov (United States)

    Lindberg, Anders; Pavić, Goran

    2015-08-01

    Sound radiation by a driver set in a rigid closed cabinet is modeled analytically using the principle of wave superposition. The driver-cabinet assembly is replaced by an array of volumeless substitute sources-monopoles-confined within its surface. The role of substitute sources is to reproduce the sound field exterior to the surface as close to the original field as possible. The frequency dependent positions and strengths of substitute monopoles are optimized by an iterative search procedure aimed at matching the prescribed surface boundary conditions of the original source. The time-consuming optimization of monopole positions is carried out at narrowband center frequencies reducing the computational cost without significant loss of accuracy. The consistency of computed results is verified by checking the power output through the cabinet surface. Modeling is done for anechoic and semi-anechoic conditions. The model has been validated experimentally in a semi-anechoic room with satisfactory results using a mid-range driver set in a closed-box baffle.

  17. Radiation therapy for intracranial germ cell tumors. Predictive value of tumor response as evaluated by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Kazuhiko; Toita, Takafumi; Kakinohana, Yasumasa; Yamaguchi, Keiichiro; Miyagi, Koichi; Kinjo, Toshihiko; Yamashiro, Katsumi; Sawada, Satoshi [Ryukyu Univ., Nishihara, Okinawa (Japan). School of Medicine

    1997-07-01

    This retrospective study analyzed the outcome in patients with intracranial germ-cell tumors to determine whether tumor response during radiation therapy can predict achievement of primary local with radiation therapy alone. Between 1983 and 1993, 22 patients with untreated primary intracranial germ cell tumors received a total whole brain radiation dose of between 18 Gy and 45 Gy (mean 31.3 Gy) with or without a localized field of 10 to 36.4 Gy (mean, 22.4 Gy), or local irradiation only (1 patient). In 10 patients with pineal tumor only, who were treated first with radiation therapy, tumor response to radiation therapy was evaluated using computed tomography (CT) (at baseline, and approximately 20 Gy and 50 Gy). Areas of calcification in the tumor were subtracted from total tumor volume. Follow-up time ranged from 2 to 12 years. Five-year actuarial survival rates for patients with germinoma were 71%, 100% for patients with a teratoma component, and 100% for patients without histologic verification. Patients with germinomas or tumors suspected of being germinomas who were given more than 50 Gy had no local relapse. There was no correlation between primary local control by radiation therapy alone and initial tumor volume. The rate of tumor volume response to irradiation assessed by CT was significantly different in those patients who relapsed compared to those who did not relapse. Tumor response during radiation therapy using CT was considered to be predictive of primary local control with radiation therapy alone. (author)

  18. The UF family of reference hybrid phantoms for computational radiation dosimetry

    Science.gov (United States)

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L.; Bolch, Wesley E.

    2010-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms—those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR™. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros™. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference

  19. The UF family of reference hybrid phantoms for computational radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choonsik [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, MD 20852 (United States); Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Williams, Jonathan L [Department of Radiology, University of Florida, Gainesville, FL 32611 (United States); Bolch, Wesley E [Departments of Nuclear and Radiological and Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)], E-mail: wbolch@ufl.edu

    2010-01-21

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms-those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR(TM). NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros(TM). The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference

  20. SU-F-J-178: A Computer Simulation Model Observer for Task-Based Image Quality Assessment in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dolly, S; Mutic, S; Anastasio, M; Li, H [Washington University School of Medicine, Saint Louis, MO (United States); Yu, L [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: Traditionally, image quality in radiation therapy is assessed subjectively or by utilizing physically-based metrics. Some model observers exist for task-based medical image quality assessment, but almost exclusively for diagnostic imaging tasks. As opposed to disease diagnosis, the task for image observers in radiation therapy is to utilize the available images to design and deliver a radiation dose which maximizes patient disease control while minimizing normal tissue damage. The purpose of this study was to design and implement a new computer simulation model observer to enable task-based image quality assessment in radiation therapy. Methods: A modular computer simulation framework was developed to resemble the radiotherapy observer by simulating an end-to-end radiation therapy treatment. Given images and the ground-truth organ boundaries from a numerical phantom as inputs, the framework simulates an external beam radiation therapy treatment and quantifies patient treatment outcomes using the previously defined therapeutic operating characteristic (TOC) curve. As a preliminary demonstration, TOC curves were calculated for various CT acquisition and reconstruction parameters, with the goal of assessing and optimizing simulation CT image quality for radiation therapy. Sources of randomness and bias within the system were analyzed. Results: The relationship between CT imaging dose and patient treatment outcome was objectively quantified in terms of a singular value, the area under the TOC (AUTOC) curve. The AUTOC decreases more rapidly for low-dose imaging protocols. AUTOC variation introduced by the dose optimization algorithm was approximately 0.02%, at the 95% confidence interval. Conclusion: A model observer has been developed and implemented to assess image quality based on radiation therapy treatment efficacy. It enables objective determination of appropriate imaging parameter values (e.g. imaging dose). Framework flexibility allows for incorporation

  1. Computed tomography imaging parameters for inhomogeneity correction in radiation treatment planning

    Directory of Open Access Journals (Sweden)

    Indra J Das

    2016-01-01

    Full Text Available Modern treatment planning systems provide accurate dosimetry in heterogeneous media (such as a patient' body with the help of tissue characterization based on computed tomography (CT number. However, CT number depends on the type of scanner, tube voltage, field of view (FOV, reconstruction algorithm including artifact reduction and processing filters. The impact of these parameters on CT to electron density (ED conversion had been subject of investigation for treatment planning in various clinical situations. This is usually performed with a tissue characterization phantom with various density plugs acquired with different tube voltages (kilovoltage peak, FOV reconstruction and different scanners to generate CT number to ED tables. This article provides an overview of inhomogeneity correction in the context of CT scanning and a new evaluation tool, difference volume dose-volume histogram (DVH, dV-DVH. It has been concluded that scanner and CT parameters are important for tissue characterizations, but changes in ED are minimal and only pronounced for higher density materials. For lungs, changes in CT number are minimal among scanners and CT parameters. Dosimetric differences for lung and prostate cases are usually insignificant (<2% in three-dimensional conformal radiation therapy and < 5% for intensity-modulated radiation therapy (IMRT with CT parameters. It could be concluded that CT number variability is dependent on acquisition parameters, but its dosimetric impact is pronounced only in high-density media and possibly in IMRT. In view of such small dosimetric changes in low-density medium, the acquisition of additional CT data for financially difficult clinics and countries may not be warranted.

  2. Reducing the radiation dose during excretory urography: flat-panel silicon x-ray detector versus computed radiography.

    Science.gov (United States)

    Zähringer, M; Hesselmann, V; Schulte, O; Kamm, K F; Braun, W; Haupt, G; Krug, B; Lackner, K

    2003-10-01

    The purpose of the study was to examine the possibilities for reducing radiation exposure in uroradiology using digital flat-panel silicon X-ray detector radiography. We compared the subjectively determined image quality of abdominal radiographs and urograms obtained on a digital flat-panel detector radiography system with those obtained on a computed radiography system. SUBJECTS AND METHODS. Fifty patients who had a clinical indication for urography underwent unenhanced abdominal imaging that was alternately performed using flat-panel silicon X-ray detector radiography or computed radiography. For patients who required a second radiograph with contrast medium, the examination modality was changed to avoid exposing the patients to excess radiation. The images obtained on flat-panel X-ray detector radiography were obtained at half the radiation dose of the images obtained on computed radiography (800 speed vs 400 speed). The resulting 50 pairs of images were interpreted by four independent observers who rated the detectability of structures of bone and the efferent urinary tract relevant to diagnosis and compared the image quality. At half the radiation dose, digital flat-panel X-ray detector radiography provided equivalent image quality of the liver and spleen, lumbar vertebrae 2 and 5, pelvis, and psoas margin on abdominal radiographs. The image quality obtained with digital flat-panel X-ray detector radiography of the kidneys, the hollow cavities of the upper efferent urinary tract, and the urinary bladder was judged to be statistically better than those obtained with computed radiography. With half the exposure dose of computed radiography, the flat-panel X-ray detector produced urograms with an image quality equivalent to or better than computed radiography.

  3. 19 CFR 149.4 - Bulk and break bulk cargo.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from the...

  4. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of the proposed research are to develop a space radiation shielding material system that has high efficacy for shielding radiation and also has high...

  5. Use of Positron Emission Tomography/Computed Tomography in Radiation Treatment Planning for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Kezban Berberoğlu

    2016-06-01

    Full Text Available Radiotherapy (RT plays an important role in the treatment of lung cancer. Accurate diagnosis and staging are crucial in the delivery of RT with curative intent. Target miss can be prevented by accurate determination of tumor contours during RT planning. Currently, tumor contours are determined manually by computed tomography (CT during RT planning. This method leads to differences in delineation of tumor volume between users. Given the change in RT tools and methods due to rapidly developing technology, it is now more significant to accurately delineate the tumor tissue. F18 fluorodeoxyglucose positron emission tomography/CT (F18 FDG PET/CT has been established as an accurate method in correctly staging and detecting tumor dissemination in lung cancer. Since it provides both anatomic and biologic information, F18 FDG PET decreases interuser variability in tumor delineation. For instance, tumor volumes may be decreased as atelectasis and malignant tissue can be more accurately differentiated, as well as better evaluation of benign and malignant lymph nodes given the difference in FDG uptake. Using F18 FDG PET/CT, the radiation dose can be escalated without serious adverse effects in lung cancer. In this study, we evaluated the contribution of F18 FDG PET/CT for RT planning in lung cancer.

  6. Quantitative measurement of regional lung gas volume by synchrotron radiation computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Monfraix, Sylvie [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble (France); Bayat, Sam [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble (France); Porra, Liisa [Department of Physical Sciences, University of Helsinki, POB 64, FIN-00014 Helsinki (Finland); Berruyer, Gilles [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble (France); Nemoz, Christian [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble (France); Thomlinson, William [Canadian Light Source, 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada); Suortti, Pekka [Department of Physical Sciences, University of Helsinki, POB 64, FIN-00014 Helsinki (Finland); Sovijaervi, Anssi R A [Department of Clinical Physiology and Nuclear Medicine, Helsinki University Central Hospital, POB 340, FIN-00029 HUS, Helsinki (Finland)

    2005-01-07

    The aim of this study was to assess the feasibility of a novel respiration-gated spiral synchrotron radiation computed tomography (SRCT) technique for direct quantification of absolute regional lung volumes, using stable xenon (Xe) gas as an inhaled indicator. Spiral SRCT with K-edge subtraction using two monochromatic x-ray beams was used to visualize and directly quantify inhaled Xe concentrations and airspace volumes in three-dimensional (3D) reconstructed lung images. Volume measurements were validated using a hollow Xe-filled phantom. Spiral images spanning 49 mm in lung height were acquired following 60 breaths of an 80% Xe-20% O{sub 2} gas mixture, in two anaesthetized and mechanically ventilated rabbits at baseline and after histamine aerosol inhalation. Volumetric images of 20 mm lung sections were obtained at functional residual capacity (FRC) and at end-inspiration. 3D images showed large patchy filling defects in peripheral airways and alveoli following histamine provocation. Local specific lung compliance was calculated based on FRC/end-inspiration images in normal lung. This study demonstrates spiral SRCT as a new technique for direct determination of regional lung volume, offering possibilities for non-invasive investigation of regional lung function and mechanics, with a uniquely high spatial resolution. An example of non-uniform volume distribution in rabbit lung following histamine inhalation is presented.

  7. Measurement of the linear attenuation coefficients of breast tissues by synchrotron radiation computed tomography

    Science.gov (United States)

    Chen, R. C.; Longo, R.; Rigon, L.; Zanconati, F.; De Pellegrin, A.; Arfelli, F.; Dreossi, D.; Menk, R.-H.; Vallazza, E.; Xiao, T. Q.; Castelli, E.

    2010-09-01

    The measurement of the linear attenuation coefficients of breast tissues is of fundamental importance in the field of breast x-ray diagnostic imaging. Different groups have evaluated the linear attenuation coefficients of breast tissues by carrying out direct attenuation measurements in which the specimens were thin and selected as homogeneous as possible. Here, we use monochromatic and high-intensity synchrotron radiation computed tomography (SR CT) to evaluate the linear attenuation coefficients of surgical breast tissues in the energy range from 15 to 26.5 keV. X-ray detection is performed by a custom digital silicon micro-strip device, developed in the framework of the PICASSO INFN experiment. Twenty-three human surgical breast samples were selected for SR CT and histological study. Six of them underwent CT, both as fresh tissue and after formalin fixation, while the remaining 17 were imaged only as formalin-fixed tissues. Our results for fat and fibrous tissues are in good agreement with the published values. However, in contrast to the published data, our measurements show no significant differences between fibrous and tumor tissues. Moreover, our results for fresh and formalin-fixed tissues demonstrate a reduction of the linear attenuation coefficient for fibrous and tumor tissues after fixation.

  8. Pilot study for the establishment of biomarkers for radiation damage after computed tomography in children.

    Science.gov (United States)

    Halm, Brunhild M; Franke, Adrian A; Lai, Jennifer F; Li, Xingnan; Custer, Laurie J; Pagano, Ian; Cooney, Robert V; Turner, Helen C; Brenner, David J

    2015-03-01

    Computed tomography (CT) is an imaging modality that exposes patients to ionizing radiation (IR). We review and report findings from our pilot study evaluating whether blood markers are altered in 17 children undergoing medically indicated CT scans. Blood was drawn before ('pre-CT') and 1 hour after ('post-CT' CT scans. Plasma carotenoids, tocopherols, Q10, ascorbic acid (AA) and uric acid (UA) were analyzed by RP-HPLC with diode-array and electrochemical detection. Dehydroascorbic acid (DHAA) was calculated by subtraction from total AA. Total antioxidant capacity (TAC) was measured using the ORAC assay. Cytokines were quantified using a multiplex immunoassay. γ-H2AX foci were visualized using immunofluorescence. Mean pre- and post-CT changes were compared using t-tests; P-levels children). Our results suggest that CT-derived IR can influence the antioxidant system and may elicit detrimental responses on the cellular level of young children. When possible and if appropriate non-IR based techniques such as ultrasound or magnetic resonance imaging should be used.

  9. High resolution 3D imaging of bump-bonds by means of synchrotron radiation computed laminography

    Science.gov (United States)

    Cecilia, A.; Hamann, E.; Koenig, T.; Xu, F.; Cheng, Y.; Helfen, L.; Ruat, M.; Scheel, M.; Zuber, M.; Baumbach, T.; Fauler, A.; Fiederle, M.

    2013-12-01

    During the flip-chip bonding process of a semiconductor sensor onto readout electronics, a formation of defects may take place, like solder joint displacements, voids, cracks, pores and bridges. This may result in blind spots on the detector, which are insensitive to photons and thus reduce the detector performance. In this work, the flip-chip interconnections of selected CdTe and GaAs Medipix detectors were investigated by synchrotron radiation computed laminography at a micrometer scale. The analysis of the volume rendering proved the presence of voids in the CdTe sensor flip-chip interconnections, with sizes between 3 μm and 9 μm. These voids can be harmful for the long term use of the device, because their presence weakens the adhesive strength between a contact and the readout electronics. Consequently, their formation needs to be avoided. The GaAs Medipix detectors investigated include two sensors that were produced with different flip-chip methods. The comparison of the 3D renderings of the bump-bond interconnections in the two GaAs sensors demonstrated the presence of a misalignment in the range of 5-12 μm between pixel passivation and bump-bonds in the detector produced with an older technique. In contrast to this, no misalignment was observed for the most recently produced detector. The only remarkable observation is the presence of ``satellites'' of solder that do not compromise the detector operation.

  10. Imaging of lung function using synchrotron radiation computed tomography: What's new?

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Sam [Universite de Picardie Jules Verne, Departement de Physiologie, DMAG EA 3901, 3 Rue des Louvels, 80036 Amiens Cedex 1 (France)], E-mail: Bayat.Sam@chu-amiens.fr; Porra, Liisa [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble (France); Department of Physics, POB 64, FIN-00014 University of Helsinki, Helsinki (Finland)], E-mail: porra@esrf.fr; Suhonen, Heikki [Department of Physics, POB 64, FIN-00014 University of Helsinki, Helsinki (Finland)], E-mail: heikki.suhonen@helsinki.fi; Janosi, Tibor [Geneva Children' s Hospital, University Hospitals of Geneva and University of Geneva, Geneva (Switzerland)], E-mail: janosit@dmi.u-szeged.hu; Strengell, Satu [Department of Physics, POB 64, FIN-00014 University of Helsinki, Helsinki (Finland)], E-mail: skstreng@mappi.helsinki.fi; Habre, Walid [Geneva Children' s Hospital, University Hospitals of Geneva and University of Geneva, Geneva (Switzerland)], E-mail: Walid.Habre@hcuge.ch; Petak, Ferenc [Department of Department of Medical Informatics and Engineering, University of Szeged, 6720 Szeged, Koranyi fasor 9 (Hungary)], E-mail: petak@dmi.szote.u-szeged.hu; Hantos, Zoltan [Department of Department of Medical Informatics and Engineering, University of Szeged, 6720 Szeged, Koranyi fasor 9 (Hungary)], E-mail: hantos@dmi.u-szeged.hu; Suortti, Pekka [Department of Physics, POB 64, FIN-00014 University of Helsinki, Helsinki (Finland)], E-mail: Pekka.Suortti@helsinki.fi; Sovijaervi, Anssi [Departments of Clinical Physiology and Nuclear Medicine, Helsinki University Central Hospital, POB 340, FIN-00029 HUS, Helsinki (Finland)], E-mail: anssi.sovijarvi@hus.fi

    2008-12-15

    There is a growing interest in imaging techniques as non-invasive means of quantitatively measuring regional lung structure and function. Abnormalities in lung ventilation due to alterations in airway function such as those observed in asthma and COPD are highly heterogeneous, and experimental methods to study this heterogeneity are crucial for better understanding of disease mechanisms and drug targeting strategies. In severe obstructive diseases requiring mechanical ventilation, the optimal ventilatory strategy to achieve recruitment of poorly ventilated lung zones remains a matter of considerable debate. We have used synchrotron radiation computed tomography (SRCT) for the in vivo study of regional lung ventilation and airway function. This imaging technique allows direct quantification of stable Xenon (Xe) gas used as an inhaled contrast agent using K-edge subtraction imaging. Dynamics of Xe wash-in can be used to calculate quantitative maps of regional specific lung ventilation. More recently, the development of Spiral-CT has allowed the acquisition of 3D images of the pulmonary bronchial tree and airspaces. This technique gives access to quantitative measurements of regional lung volume, ventilation, and mechanical properties. Examples of application in an experimental model of allergic asthma and in imaging lung recruitment as a function of mechanical ventilation parameters will be presented. The future orientations of this tecnique will be discussed.

  11. Measurement of the linear attenuation coefficients of breast tissues by synchrotron radiation computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chen, R C; Xiao, T Q [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai (China); Longo, R; Arfelli, F; Castelli, E [Department of Physics, University of Trieste, Trieste (Italy); Rigon, L; Dreossi, D; Menk, R-H; Vallazza, E [INFN, Sezione di Trieste, Trieste (Italy); Zanconati, F; De Pellegrin, A, E-mail: rongchang.chen@gmail.co [Department of Pathologic Anatomy, University of Trieste, Trieste (Italy)

    2010-09-07

    The measurement of the linear attenuation coefficients of breast tissues is of fundamental importance in the field of breast x-ray diagnostic imaging. Different groups have evaluated the linear attenuation coefficients of breast tissues by carrying out direct attenuation measurements in which the specimens were thin and selected as homogeneous as possible. Here, we use monochromatic and high-intensity synchrotron radiation computed tomography (SR CT) to evaluate the linear attenuation coefficients of surgical breast tissues in the energy range from 15 to 26.5 keV. X-ray detection is performed by a custom digital silicon micro-strip device, developed in the framework of the PICASSO INFN experiment. Twenty-three human surgical breast samples were selected for SR CT and histological study. Six of them underwent CT, both as fresh tissue and after formalin fixation, while the remaining 17 were imaged only as formalin-fixed tissues. Our results for fat and fibrous tissues are in good agreement with the published values. However, in contrast to the published data, our measurements show no significant differences between fibrous and tumor tissues. Moreover, our results for fresh and formalin-fixed tissues demonstrate a reduction of the linear attenuation coefficient for fibrous and tumor tissues after fixation.

  12. Quantitative measurement of regional lung gas volume by synchrotron radiation computed tomography

    Science.gov (United States)

    Monfraix, Sylvie; Bayat, Sam; Porra, Liisa; Berruyer, Gilles; Nemoz, Christian; Thomlinson, William; Suortti, Pekka; Sovijärvi, Anssi R. A.

    2005-01-01

    The aim of this study was to assess the feasibility of a novel respiration-gated spiral synchrotron radiation computed tomography (SRCT) technique for direct quantification of absolute regional lung volumes, using stable xenon (Xe) gas as an inhaled indicator. Spiral SRCT with K-edge subtraction using two monochromatic x-ray beams was used to visualize and directly quantify inhaled Xe concentrations and airspace volumes in three-dimensional (3D) reconstructed lung images. Volume measurements were validated using a hollow Xe-filled phantom. Spiral images spanning 49 mm in lung height were acquired following 60 breaths of an 80% Xe-20% O2 gas mixture, in two anaesthetized and mechanically ventilated rabbits at baseline and after histamine aerosol inhalation. Volumetric images of 20 mm lung sections were obtained at functional residual capacity (FRC) and at end-inspiration. 3D images showed large patchy filling defects in peripheral airways and alveoli following histamine provocation. Local specific lung compliance was calculated based on FRC/end-inspiration images in normal lung. This study demonstrates spiral SRCT as a new technique for direct determination of regional lung volume, offering possibilities for non-invasive investigation of regional lung function and mechanics, with a uniquely high spatial resolution. An example of non-uniform volume distribution in rabbit lung following histamine inhalation is presented.

  13. Digital mammography with synchrotron radiation: characterization of a novel computed radiography system

    Science.gov (United States)

    Trivellato, S.; Vandenbroucke, D.; Arfelli, F.; Bessem, M.; Fedon, C.; Longo, R.; Tromba, G.; Taibi, A.

    2015-08-01

    Breast X-ray imaging is a continuous research field to define dedicated equipment, with specialized X-ray sources and efficient detectors to improve image quality with an equal or even lower patient dose. The Needle Imaging Plate HM5.0, produced by Agfa, has been characterized using synchrotron radiation to assess the performance of this novel imaging chain in comparison to conventional mammographic equipment. The detection performance has been initially assessed in terms of Detective Quantum Efficiency (DQE) and its computation showed that DQE curves are very close to the typical results for digital radiography systems. Image threshold contrast has been then evaluated using the CDMAM phantom. The analysis has been completed with a scoring of visible details in the radiographs of the TORMAM phantom. The characterization thus confirms that monochromaticity leads to an equal image quality with a lower glandular dose and phase-contrast effects lead to an increase in anatomical structure detectability. Finally, a preliminary evaluation of clinical images showed a clear improvement in image quality thanks to phase-contrast contribution and to detector performance.

  14. XVII International Conference on the Use of Computers in Radiation Therapy (ICCR 2013)

    Science.gov (United States)

    2014-03-01

    Editorial Dear colleagues, From a professional perspective there is nothing quite as enjoyable as attending a good conference with colleagues that share not only interest for the same topic but also a similar vision for their field of work. Proceedings cannot replace the direct contact and lively conversations between participants who are at the same time at the same place sharing ideas and discussion. However, proceedings complement the actual conference by 1. giving the ideas, research findings and debates which characterise the conference lasting presence 2. giving participants an opportunity to refresh their memory about issues they would like to follow up on and 3. providing an opportunity for others who were not able to attend the meeting to share in the thoughts and issues discussed at the conference. For the proceedings of the International Conferences on the Use of Computers in Radiation Therapy (ICCR) all this has been important in the past as the high citation rates for ICCR proceedings show. We hope that also the present proceedings will appeal to participants and others who are interested in cancer and ways to treat patients affected by it. It is exciting to note that what sounded like a small niche field (''Computers in Radiation Therapy'') has become a very broad forum to discuss all aspects of cancer diagnosis and therapy. Of particular interest for the 17th ICCR have been data and how to collect, organise and use it effectively. This is relevant for most areas in medicine and we believe that radiation therapy with its focus on evidence based practice and measurable and standardised activities has an important and possibly leading role to play. The 100 manuscripts combined in the present proceedings can hopefully contribute to this. The proceedings are organised into five different streams which reflect the foci of the conference: • Dose Calculation • Imaging for treatment planning and Motion Management • Treatment planning and optimisation

  15. Computer codes in nuclear safety, radiation transport and dosimetry; Les codes de calcul en radioprotection, radiophysique et dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Bordy, J.M.; Kodeli, I.; Menard, St.; Bouchet, J.L.; Renard, F.; Martin, E.; Blazy, L.; Voros, S.; Bochud, F.; Laedermann, J.P.; Beaugelin, K.; Makovicka, L.; Quiot, A.; Vermeersch, F.; Roche, H.; Perrin, M.C.; Laye, F.; Bardies, M.; Struelens, L.; Vanhavere, F.; Gschwind, R.; Fernandez, F.; Quesne, B.; Fritsch, P.; Lamart, St.; Crovisier, Ph.; Leservot, A.; Antoni, R.; Huet, Ch.; Thiam, Ch.; Donadille, L.; Monfort, M.; Diop, Ch.; Ricard, M

    2006-07-01

    The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations.

  16. Ionizing radiation doses during lower limb torsion and anteversion measurements by EOS stereoradiography and computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Delin, Cyrille, E-mail: cdelin@maunol.fr [Réseau d’Imagerie Médicale Maussins-Nollet, 114 rue Nollet, 75017 Paris (France); Silvera, Stéphane, E-mail: stephane.silvera@gmail.com [Service de Radiologie A, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75014 Paris (France); Bassinet, Céline, E-mail: celine.bassinet@irsn.fr [Institut de Radioprotection et de Sureté Nucléaire, BP 17, 31 Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses Cedex (France); Thelen, Philippe, E-mail: pthelen@maunol.fr [Réseau d’Imagerie Médicale Maussins-Nollet, 114 rue Nollet, 75017 Paris (France); Rehel, Jean-Luc, E-mail: jean-luc.rehel@irsn.fr [Institut de Radioprotection et de Sureté Nucléaire, BP 17, 31 Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses Cedex (France); Legmann, Paul, E-mail: paul.legmann@cch.aphp.fr [Service de Radiologie A, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75014 Paris (France); Folinais, Dominique, E-mail: dfolinais@gmail.com [Réseau d’Imagerie Médicale Maussins-Nollet, 114 rue Nollet, 75017 Paris (France)

    2014-02-15

    Objectives: To calculate and compare the doses of ionizing radiation delivered to the organs by computed tomography (CT) and stereoradiography (SR) during measurements of lower limb torsion and anteversion. Materials and methods: A Rando anthropomorphic phantom (Alderson RANDO phantom, Alderson Research Laboratories Inc., Stanford, Conn) was used for the dose measurements. The doses were delivered by a Somatom 16-slice CT-scanner (Siemens, Erlangen) and an EOS stereoradiography unit (EOS-Imaging, Paris) according to the manufacturers’ acquisition protocols. Doses to the surface and deeper layers were calculated with thermoluminiscent GR207P dosimeters. Dose uncertainties were evaluated and assessed at 6% at k = 2 (that is, two standard deviations). Results: The absorbed doses for the principal organs assessed were as follows: for the ovaries, 0.1 mGy to the right ovary and 0.5 mGy to the left ovary with SR versus1.3 mGy and 1.1 mGy with CT, respectively; testes, 0.3 mGy on the right and 0.4 mGy on the left with SR versus 8.5 mGy and 8.4 mGy with CT; knees, 0.4 mGy to the right knee and 0.8 mGy to the left knee with SR versus 11 mGy and 10.4 mGy with CT; ankles, 0.5 mGy to the right ankle and 0.8 mGy to the left with SR versus 15 mGy with CT. Conclusion: The SR system delivered substantially lower doses of ionizing radiation doses than CT to all the organs studied: CT doses were 4.1 times higher to the ovaries, 24 times higher for the testicles, and 13–30 times higher for the knees and ankles. The use of the SR system to study the torsion of lower limbs makes it possible to reduce the amount of medical irradiation that patients accumulate.

  17. Computational lymphatic node models in pediatric and adult hybrid phantoms for radiation dosimetry

    Science.gov (United States)

    Lee, Choonsik; Lamart, Stephanie; Moroz, Brian E.

    2013-03-01

    We developed models of lymphatic nodes for six pediatric and two adult hybrid computational phantoms to calculate the lymphatic node dose estimates from external and internal radiation exposures. We derived the number of lymphatic nodes from the recommendations in International Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right) and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old and adult). We modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all nodes have identical size derived from published data except narrow cluster sites. The lymph nodes were generated by the following algorithm: (1) selection of the lymph node site among the 16 cluster sites; (2) random sampling of the location of the lymph node within a spherical space centered at the chosen cluster site; (3) creation of the sphere or ovoid of tissue representing the node based on lymphatic node characteristics defined in ICRP Publications 23 and 89. We created lymph nodes until the pre-defined number of lymphatic nodes at the selected cluster site was reached. This algorithm was applied to pediatric (newborn, 1-, 5-and 10-year-old male, and 15-year-old males) and adult male and female ICRP-compliant hybrid phantoms after voxelization. To assess the performance of our models for internal dosimetry, we calculated dose conversion coefficients, called S values, for selected organs and tissues with Iodine-131 distributed in six lymphatic node cluster sites using MCNPX2.6, a well validated Monte Carlo radiation transport code. Our analysis of the calculations indicates that the S values were significantly affected by the location of the lymph node clusters and that the values increased for

  18. COMPUTATIONAL LYMPHATIC NODE MODELS IN PEDIATRIC AND ADULT HYBRID PHANTOMS FOR RADIATION DOSIMETRY

    Science.gov (United States)

    Lee, Choonsik; Lamart, Stephanie; Moroz, Brian E.

    2013-01-01

    We developed models of lymphatic nodes for 6 pediatric and 2 adult hybrid computational phantoms to calculate the lymphatic node dose estimates from external and internal radiation exposures. We derived the number of lymphatic nodes from the recommendations in International Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right), and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old, and adult). We modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all nodes have identical size derived from published data except narrow cluster sites. The lymph nodes were generated by the following algorithm: (1) selection of the lymph node site among the 16 cluster sites; (2) random sampling of the location of the lymph node within a spherical space centered at the chosen cluster site; (3) creation of the sphere or ovoid of tissue representing the node based on lymphatic node characteristics defined in ICRP Publications 23 and 89. We created lymph nodes until the pre-defined number of lymphatic nodes at the selected cluster site was reached. This algorithm was applied to pediatric (newborn, 1-, 5-, and 10-year-old male, and 15-year-old males) and adult male and female ICRP-compliant hybrid phantoms after voxelization. To assess the performance of our models for internal dosimetry, we calculated dose conversion coefficients, called S values, for selected organs and tissues with Iodine-131 distributed in 6 lymphatic node cluster sites using MCNPX2.6, a well validated Monte Carlo radiation transport code. Our analysis of the calculations indicates that the S values were significantly affected by the location of the lymph node clusters and that the values increased for

  19. PREFACE: Eurotherm Conference No. 95: Computational Thermal Radiation in Participating Media IV

    Science.gov (United States)

    Boulet, Pascal; Lacroix, David; Lemonnier, Denis; Lybaert, Paul; Selçuk, Nevin

    2012-06-01

    This volume of Journal of Physics: Conference Series is based on papers presented at the Eurotherm Conference 95: Computational Thermal Radiation in Participating Media IV, which was held in Nancy, France, on 18-20 April 2012. This seminar was the fourth in a series after Mons, Belgium (Eurotherm Seminar 73, April 2003), Poitiers, France (Eurotherm Seminar 78, April 2006) and Lisbon, Portugal (Eurotherm Seminar 83, April 2009). Around 70 contributions were received during the conference preparation, including submissions for oral and poster presentations. A first selection process based on abstracts and a second based on two peer-reviews of the full papers finally resulted in the acceptance of 38 contributions from oral presentations and 11 from poster presentations. The conference was attended by almost 80 scientists from 17 different countries: Austria, Belgium, Brazil, Canada, Chile, China, France, Germany, India, Poland, Portugal, Russia, Switzerland, The Netherlands, Tunisia, Turkey and USA. The 30 contributions presented in this volume relate to the following main topics: Radiative transfer in complex media Applications, combustion and high temperatures Inverse methods New developments for RTE solution Gas radiation modeling Particles, droplets and dispersed systems Monte Carlo methods The conference organizers gratefully acknowledge the members of the scientific committee and the experts who carried out the reviews of the papers, and the local organizing committee for their preparation of the conference. Also acknowledged are the support by the LEMTA, the Société Française de Thermique, ICHMT, the sponsorship of CNRS and the Lorraine Region, and the financial contributions of the Université de Lorraine, FLIR, Baccarat and the city of Nancy. Conference Chairs P BouletLEMTA, Nancy, France D LemonnierInstitut P', Poitiers, France N SelçukMiddle East Technical University, Ankara, Turkey P LybaertFaculté Polytechnique de Mons, Belgium International

  20. The use of high-performance computing to solve participating media radiative heat transfer problems-results of an NSF workshop

    Energy Technology Data Exchange (ETDEWEB)

    Gritzo, L.A.; Skocypec, R.D. [Sandia National Labs., Albuquerque, NM (United States); Tong, T.W. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mechanical and Aerospace Engineering

    1995-01-11

    Radiation in participating media is an important transport mechanism in many physical systems. The simulation of complex radiative transfer has not effectively exploited high-performance computing capabilities. In response to this need, a workshop attended by members active in the high-performance computing community, members active in the radiative transfer community, and members from closely related fields was held to identify how high-performance computing can be used effectively to solve the transport equation and advance the state-of-the-art in simulating radiative heat transfer. This workshop was held on March 29-30, 1994 in Albuquerque, New Mexico and was conducted by Sandia National Laboratories. The objectives of this workshop were to provide a vehicle to stimulate interest and new research directions within the two communities to exploit the advantages of high-performance computing for solving complex radiative heat transfer problems that are otherwise intractable.

  1. Development of a Radiation Dose Reporting Software for X-ray Computed Tomography (CT)

    Science.gov (United States)

    Ding, Aiping

    X-ray computed tomography (CT) has experienced tremendous technological advances in recent years and has established itself as one of the most popular diagnostic imaging tools. While CT imaging clearly plays an invaluable role in modern medicine, its rapid adoption has resulted in a dramatic increase in the average medical radiation exposure to the worldwide and United States populations. Existing software tools for CT dose estimation and reporting are mostly based on patient phantoms that contain overly simplified anatomies insufficient in meeting the current and future needs. This dissertation describes the development of an easy-to-use software platform, “VirtualDose”, as a service to estimate and report the organ dose and effective dose values for patients undergoing the CT examinations. “VirtualDose” incorporates advanced models for the adult male and female, pregnant women, and children. To cover a large portion of the ignored obese patients that frequents the radiology clinics, a new set of obese male and female phantoms are also developed and applied to study the effects of the fat tissues on the CT radiation dose. Multi-detector CT scanners (MDCT) and clinical protocols, as well as the most recent effective dose algorithms from the International Commission on Radiological Protection (ICRP) Publication 103 are adopted in “VirtualDose” to keep pace with the MDCT development and regulatory requirements. A new MDCT scanner model with both body and head bowtie filter is developed to cover both the head and body scanning modes. This model was validated through the clinical measurements. A comprehensive slice-by-slice database is established by deriving the data from a larger number of single axial scans simulated on the patient phantoms using different CT bowtie filters, beam thicknesses, and different tube voltages in the Monte Carlo N-Particle Extended (MCNPX) code. When compared to the existing CT dose software packages, organ dose data in this

  2. Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation

    Science.gov (United States)

    Land, V.

    2007-12-01

    the void towards the outside of the discharge. The void thus requires electron-impact ionizations inside the void. The electrons gain the energy for these ionizations inside the dust cloud surrounding the void, however. We show that a growing electron temperature gradient is responsible for the transport of electron energy from the surrounding dust cloud into the void. An axial magnetic field in the discharge magnetizes the electrons. This changes the ambipolar flux of ions through the bulk of the discharge. The ion drag force changes, resulting in a differently shaped void and faster void formation. Experiments in a direct current discharge, show a response of both dust and plasma in the E?B direction, when a magnetic field is applied. The dust response consists of two phases: an initial fast phase, and a later, slow phase. Using a Particle-In-Cell plus Monte Carlo model, we show that the dust charge can be reduced by adding a flux of ultraviolet radiation. A source of ultraviolet light can thus serve as a tool to manipulate dusty plasmas, but might also be important for the coagulation of dust particles around young stars and planet formation in general.

  3. Computed tomography as a source of electron density information for radiation treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Skrzynski, Witold; Slusarczyk-Kacprzyk, Wioletta; Bulski, Wojciech [Medical Physics Dept., Center of Oncology, Warsaw (Poland); Zielinska-Dabrowska, Sylwia; Wachowicz, Marta; Kukolowicz, Pawel F. [Medical Physics Dept., Holycross Cancer Center, Kielce (Poland)

    2010-06-15

    Purpose: to evaluate the performance of computed tomography (CT) systems of various designs as a source of electron density ({rho}{sub el}) data for treatment planning of radiation therapy. Material and methods: dependence of CT numbers on relative electron density of tissue-equivalent materials (HU-{rho}{sub el} relationship) was measured for several general-purpose CT systems (single-slice, multislice, wide-bore multislice), for radiotherapy simulators with a single-slice CT and kV CBCT (cone-beam CT) options, as well as for linear accelerators with kV and MV CBCT systems. Electron density phantoms of four sizes were used. Measurement data were compared with the standard HU-{rho}{sub el} relationships predefined in two commercial treatment-planning systems (TPS). Results: the HU-{rho}{sub el} relationships obtained with all of the general-purpose CT scanners operating at voltages close to 120 kV were very similar to each other and close to those predefined in TPS. Some dependency of HU values on tube voltage was observed for bone-equivalent materials. For a given tube voltage, differences in results obtained for different phantoms were larger than those obtained for different CT scanners. For radiotherapy simulators and for kV CBCT systems, the information on {rho}{sub el} was much less precise because of poor uniformity of images. For MV CBCT, the results were significantly different than for kV systems due to the differing energy spectrum of the beam. Conclusion: the HU-{rho}{sub el} relationships predefined in TPS can be used for general-purpose CT systems operating at voltages close to 120 kV. For nontypical imaging systems (e.g., CBCT), the relationship can be significantly different and, therefore, it should always be measured and carefully analyzed before using CT data for treatment planning. (orig.)

  4. Computational Modeling of Medical Images of Brain Tumor Patients for Optimized Radiation Therapy Planning

    DEFF Research Database (Denmark)

    Agn, Mikael

    In brain tumor radiation therapy, the aim is to maximize the delivered radiation dose to the targeted tumor and at the same time minimize the dose to sensitive healthy structures – so-called organs-at-risk (OARs). When planning a radiation therapy session, the tumor and the OARs therefore need...... to be delineated on medical images of the patient’s head, to be able to optimize a radiation dose plan. In clinical practice, the delineation is performed manually with limited assistance from automatic procedures, which is both time-consuming and typically suffers from poor reproducibility. There is, therefore...

  5. Operating room radiation exposure in cone beam computed tomography-based, image-guided spinal surgery: clinical article.

    Science.gov (United States)

    Nottmeier, Eric W; Pirris, Stephen M; Edwards, Steven; Kimes, Sherri; Bowman, Cammi; Nelson, Kevin L

    2013-08-01

    Surgeon and operating room (OR) staff radiation exposure during spinal surgery is a concern, especially with the increasing use of multiplanar fluoroscopy in minimally invasive spinal surgery procedures. Cone beam computed tomography (cbCT)-based, 3D image guidance does not involve the use of active fluoroscopy during instrumentation placement and therefore decreases radiation exposure for the surgeon and OR staff during spinal fusion procedures. However, the radiation scatter of a cbCT device can be similar to that of a standard 64-slice CT scanner and thus could expose the surgeon and OR staff to radiation during image acquisition. The purpose of the present study was to measure radiation exposure at several unshielded locations in the OR when using cbCT in conjunction with 3D image-guided spinal surgery in 25 spinal surgery cases. Five unshielded badge dosimeters were placed at set locations in the OR during 25 spinal surgery cases in which cbCT-based, 3D image guidance was used. The cbCT device (O-ARM) was used in conjunction with the Stealth S7 image-guided platform. The radiology department analyzed the badge dosimeters after completion of the last case. Fifty high-definition O-ARM spins were performed in 25 patients for spinal registration and to check instrumentation placement. Image-guided placement of 124 screws from C-2 to the ileum was accomplished without complication. Badge dosimetry analysis revealed minimal radiation exposure for the badges 6 feet from the gantry in the area of the anesthesiology equipment, as well as for the badges located 10-13 feet from the gantry on each side of the room (mean 0.7-3.6 mrem/spin). The greatest radiation exposure occurred on the badge attached to the OR table within the gantry (mean 176.9 mrem/spin), as well as on the control panel adjacent to the gantry (mean 128.0 mrem/spin). Radiation scatter from the O-ARM was minimal at various distances outside of and not adjacent to the gantry. Although the average

  6. Estimation of the radiation exposure of a chest pain protocol with ECG-gating in dual-source computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ketelsen, Dominik; Luetkhoff, Marie H.; Thomas, Christoph; Werner, Matthias; Tsiflikas, Ilias; Reimann, Anja; Kopp, Andreas F.; Claussen, Claus D.; Heuschmid, Martin [University Hospital Tuebingen, Eberhard-Karls-University, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Buchgeister, Markus [University Hospital, Department of Radiotherapy and Radiooncology, Tuebingen (Germany); Burgstahler, Christof [University Hospital Tuebingen, Department of Cardiology, Tuebingen (Germany)

    2009-01-15

    The aim of the study was to evaluate radiation exposure of a chest pain protocol with ECG-gated dual-source computed tomography (DSCT). An Alderson Rando phantom equipped with thermoluminescent dosimeters was used for dose measurements. Exposure was performed on a dual-source computed tomography system with a standard protocol for chest pain evaluation (120 kV, 320 mAs/rot) with different simulated heart rates (HRs). The dose of a standard chest CT examination (120 kV, 160 mAs) was also measured. Effective dose of the chest pain protocol was 19.3/21.9 mSv (male/female, HR 60), 17.9/20.4 mSv (male/female, HR 80) and 14.7/16.7 mSv (male/female, HR 100). Effective dose of a standard chest examination was 6.3 mSv (males) and 7.2 mSv (females). Radiation dose of the chest pain protocol increases significantly with a lower heart rate for both males (p = 0.040) and females (p = 0.044). The average radiation dose of a standard chest CT examination is about 36.5% that of a CT examination performed for chest pain. Using DSCT, the evaluated chest pain protocol revealed a higher radiation exposure compared with standard chest CT. Furthermore, HRs markedly influenced the dose exposure when using the ECG-gated chest pain protocol. (orig.)

  7. Coronary computed tomography angiography - Tolerability of β-blockers and contrast media, and temporal changes in radiation dose

    DEFF Research Database (Denmark)

    Pedersen, Charlotte; Thomsen, Camilla F; Hosbond, Susanne Elisabeth

    2014-01-01

    Abstract Objective: To determine the risk of administration of β-blockers, contrast induced nephropathy (CIN) and trend in x-rays use, during coronary computed tomography angiography (CCTA). Methods: A total of 416 patients were referred for elective CCTA. To achieve a resting heart rate below 60.......0001. Conclusions: In terms of side effects to β-blockers and contrast media, there were no short term complications to CCTA. Furthermore the radiation dose was dramatically diminished over the last three years....

  8. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Mikhail [Michigan State Univ., East Lansing, MI (United States); Mokhov, Nikolai [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Niita, Koji [Research Organization for Information Science and Technology, Ibaraki-ken (Japan)

    2013-09-25

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA and MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.

  9. A computational tool for the efficient analysis of dose-volume histograms for radiation therapy treatment plans

    Science.gov (United States)

    Pyakuryal, Anil; Myint, W. Kenji; Gopalakrishnan, Mahesh; Jang, Sunyoung; Logemann, Jerilyn A.; Mittal, Bharat B.

    2010-01-01

    A Histogram Analysis in Radiation Therapy (HART) program was primarily developed to increase the efficiency and accuracy of dose–volume histogram (DVH) analysis of large quantities of patient data in radiation therapy research. The program was written in MATLAB to analyze patient plans exported from the treatment planning system (Pinnacle3) in the American Association of Physicists in Medicine/Radiation Therapy Oncology Group (AAPM/RTOG) format. HART-computed DVH data was validated against manually extracted data from the planning system for five head and neck cancer patients treated with the intensity-modulated radiation therapy (IMRT) technique. HART calculated over 4000 parameters from the differential DVH (dDVH) curves for each patient in approximately 10–15 minutes. Manual extraction of this amount of data required 5 to 6 hours. The normalized root mean square deviation (NRMSD) for the HART–extracted DVH outcomes was less than 1%, or within 0.5% distance-to-agreement (DTA). This tool is supported with various user-friendly options and graphical displays. Additional features include optimal polynomial modeling of DVH curves for organs, treatment plan indices (TPI) evaluation, plan-specific outcome analysis (POA), and spatial DVH (zDVH) and dose surface histogram (DSH) analyses, respectively. HART is freely available to the radiation oncology community. PMID:20160690

  10. Second international conference on computer simulation of radiation effects in solids

    Energy Technology Data Exchange (ETDEWEB)

    de la Rubia, T.D.; Gilmer, G.H. [comps.

    1994-08-01

    A total of 102 abstracts are included, arranged under the following headings: interatomic potentials and theoretical methods, displacement cascades and radiation effects in metals, radiation effects in semiconductors, sputtering and surface processes, cluster-solid interactions, highly charged ions and inelastic effects, and posters (A and B).

  11. Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction

    Science.gov (United States)

    Giantsoudi, Drosoula; De Man, Bruno; Verburg, Joost; Trofimov, Alexei; Jin, Yannan; Wang, Ge; Gjesteby, Lars; Paganetti, Harald

    2017-04-01

    A significant and increasing number of patients receiving radiation therapy present with metal objects close to, or even within, the treatment area, resulting in artifacts in computed tomography (CT) imaging, which is the most commonly used imaging method for treatment planning in radiation therapy. In the presence of metal implants, such as dental fillings in treatment of head-and-neck tumors, spinal stabilization implants in spinal or paraspinal treatment or hip replacements in prostate cancer treatments, the extreme photon absorption by the metal object leads to prominent image artifacts. Although current CT scanners include a series of correction steps for beam hardening, scattered radiation and noisy measurements, when metal implants exist within or close to the treatment area, these corrections do not suffice. CT metal artifacts affect negatively the treatment planning of radiation therapy either by causing difficulties to delineate the target volume or by reducing the dose calculation accuracy. Various metal artifact reduction (MAR) methods have been explored in terms of improvement of organ delineation and dose calculation in radiation therapy treatment planning, depending on the type of radiation treatment and location of the metal implant and treatment site. Including a brief description of the available CT MAR methods that have been applied in radiation therapy, this article attempts to provide a comprehensive review on the dosimetric effect of the presence of CT metal artifacts in treatment planning, as reported in the literature, and the potential improvement suggested by different MAR approaches. The impact of artifacts on the treatment planning and delivery accuracy is discussed in the context of different modalities, such as photon external beam, brachytherapy and particle therapy, as well as by type and location of metal implants.

  12. Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction.

    Science.gov (United States)

    Giantsoudi, Drosoula; De Man, Bruno; Verburg, Joost; Trofimov, Alexei; Jin, Yannan; Wang, Ge; Gjesteby, Lars; Paganetti, Harald

    2017-04-21

    A significant and increasing number of patients receiving radiation therapy present with metal objects close to, or even within, the treatment area, resulting in artifacts in computed tomography (CT) imaging, which is the most commonly used imaging method for treatment planning in radiation therapy. In the presence of metal implants, such as dental fillings in treatment of head-and-neck tumors, spinal stabilization implants in spinal or paraspinal treatment or hip replacements in prostate cancer treatments, the extreme photon absorption by the metal object leads to prominent image artifacts. Although current CT scanners include a series of correction steps for beam hardening, scattered radiation and noisy measurements, when metal implants exist within or close to the treatment area, these corrections do not suffice. CT metal artifacts affect negatively the treatment planning of radiation therapy either by causing difficulties to delineate the target volume or by reducing the dose calculation accuracy. Various metal artifact reduction (MAR) methods have been explored in terms of improvement of organ delineation and dose calculation in radiation therapy treatment planning, depending on the type of radiation treatment and location of the metal implant and treatment site. Including a brief description of the available CT MAR methods that have been applied in radiation therapy, this article attempts to provide a comprehensive review on the dosimetric effect of the presence of CT metal artifacts in treatment planning, as reported in the literature, and the potential improvement suggested by different MAR approaches. The impact of artifacts on the treatment planning and delivery accuracy is discussed in the context of different modalities, such as photon external beam, brachytherapy and particle therapy, as well as by type and location of metal implants.

  13. Toward a web-based real-time radiation treatment planning system in a cloud computing environment.

    Science.gov (United States)

    Na, Yong Hum; Suh, Tae-Suk; Kapp, Daniel S; Xing, Lei

    2013-09-21

    To exploit the potential dosimetric advantages of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), an in-depth approach is required to provide efficient computing methods. This needs to incorporate clinically related organ specific constraints, Monte Carlo (MC) dose calculations, and large-scale plan optimization. This paper describes our first steps toward a web-based real-time radiation treatment planning system in a cloud computing environment (CCE). The Amazon Elastic Compute Cloud (EC2) with a master node (named m2.xlarge containing 17.1 GB of memory, two virtual cores with 3.25 EC2 Compute Units each, 420 GB of instance storage, 64-bit platform) is used as the backbone of cloud computing for dose calculation and plan optimization. The master node is able to scale the workers on an 'on-demand' basis. MC dose calculation is employed to generate accurate beamlet dose kernels by parallel tasks. The intensity modulation optimization uses total-variation regularization (TVR) and generates piecewise constant fluence maps for each initial beam direction in a distributed manner over the CCE. The optimized fluence maps are segmented into deliverable apertures. The shape of each aperture is iteratively rectified to be a sequence of arcs using the manufacture's constraints. The output plan file from the EC2 is sent to the simple storage service. Three de-identified clinical cancer treatment plans have been studied for evaluating the performance of the new planning platform with 6 MV flattening filter free beams (40 × 40 cm(2)) from the Varian TrueBeam(TM) STx linear accelerator. A CCE leads to speed-ups of up to 14-fold for both dose kernel calculations and plan optimizations in the head and neck, lung, and prostate cancer cases considered in this study. The proposed system relies on a CCE that is able to provide an infrastructure for parallel and distributed computing. The resultant plans from the cloud computing are

  14. Ambient radiation levels in positron emission tomography/computed tomography (PET/CT) imaging center

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Priscila do Carmo; Oliveira, Paulo Marcio Campos de; Mamede, Marcelo; Silveira, Mariana de Castro; Aguiar, Polyanna; Real, Raphaela Vila, E-mail: pridili@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Silva, Teogenes Augusto da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-01-15

    Objective: to evaluate the level of ambient radiation in a PET/CT center. Materials and methods: previously selected and calibrated TLD-100H thermoluminescent dosimeters were utilized to measure room radiation levels. During 32 days, the detectors were placed in several strategically selected points inside the PET/CT center and in adjacent buildings. After the exposure period the dosimeters were collected and processed to determine the radiation level. Results: in none of the points selected for measurements the values exceeded the radiation dose threshold for controlled area (5 mSv/ year) or free area (0.5 mSv/year) as recommended by the Brazilian regulations. Conclusion: in the present study the authors demonstrated that the whole shielding system is appropriate and, consequently, the workers are exposed to doses below the threshold established by Brazilian standards, provided the radiation protection standards are followed. (author)

  15. Ambient radiation levels in positron emission tomography/computed tomography (PET/CT) imaging center

    Science.gov (United States)

    Santana, Priscila do Carmo; de Oliveira, Paulo Marcio Campos; Mamede, Marcelo; Silveira, Mariana de Castro; Aguiar, Polyanna; Real, Raphaela Vila; da Silva, Teógenes Augusto

    2015-01-01

    Objective To evaluate the level of ambient radiation in a PET/CT center. Materials and Methods Previously selected and calibrated TLD-100H thermoluminescent dosimeters were utilized to measure room radiation levels. During 32 days, the detectors were placed in several strategically selected points inside the PET/CT center and in adjacent buildings. After the exposure period the dosimeters were collected and processed to determine the radiation level. Results In none of the points selected for measurements the values exceeded the radiation dose threshold for controlled area (5 mSv/year) or free area (0.5 mSv/year) as recommended by the Brazilian regulations. Conclusion In the present study the authors demonstrated that the whole shielding system is appropriate and, consequently, the workers are exposed to doses below the threshold established by Brazilian standards, provided the radiation protection standards are followed. PMID:25798004

  16. [The radiation dose problem in computed tomography. Actual data and strategies for a corrected use of ionizing radiation in computed tomography].

    Science.gov (United States)

    Gualdi, G F; Bertini, L; Lanciotti, S; Colaiacomo, M C; Campagnano, S; Polettini, E

    2008-01-01

    New technologies in these years has taken to a spread and to a growth of the CT application with an increase of patients and population exposure. In clinical practice some technical devices can be used to reduce the exposure dose of multidetector CT that allows radiologist to answer the clinical question with less damage to the patient. The radiologist remains however the guarantor of the ionizing radiation exposition and he has to consider also the opportunity to use other methodics (MR, US) to answer some questions. The radiologist has the role to evaluate the clinical indication to the exam demanded from other doctor and has the responsibility for exam management and for progressive radiologic course, controls and follow-up.

  17. SU-E-I-107: Suitability of Various Radiation Detectors Used in Radiation Therapy for X-Ray Dosimetry in Computed Tomography.

    Science.gov (United States)

    Liebmann, M; Poppe, B; von Boetticher, H

    2012-06-01

    Assessment of suitability for X-ray dosimetry in computed tomography of various ionization chambers, diodes and two-dimensional detector arrays primarily used in radiation therapy. An Oldelft X-ray simulation unit was used to irradiate PTW 60008, 60012 dosimetry diodes, PTW 23332, 31013, 31010, 31006 axial symmetrical ionization chambers, PTW 23343, 34001 plane parallel ionization chambers and PTW Starcheck and 2D-Array seven29 as well as a prototype Farmer chamber with a copper wall. Peak potential was varied from 50 kV up to 125 kV and beam qualities were quantified through half-value-layer measurements. Energy response was investigated free in air as well as in 2 cm depth in a solid water phantom and refers to a manufacturer calibrated PTW 60004 diode for kV-dosimetry. The thimble ionization chambers PTW 31010, 31013, the uncapsuled diode PTW 60012 and the PTW 2D-Array seven29 exhibit an energy response deviation in the investigated energy region of approximately 10% or lower thus proving good usability in X-ray dosimetry if higher spatial resolution is needed or rotational irradiations occur. It could be shown that in radiation therapy routinely used detectors are usable in a much lower energy region. The rotational symmetry is of advantage in computed tomography dosimetry and enables dose profile as well as point dose measurements in a suitable phantom for estimation of organ doses. Additional the PTW 2D-Array seven29 can give a quick overview of radiation fields in non-rotating tasks. © 2012 American Association of Physicists in Medicine.

  18. Bulk Nanostructured Materials

    Science.gov (United States)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-11-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  19. Clinical Implementation of Intrafraction Cone Beam Computed Tomography Imaging During Lung Tumor Stereotactic Ablative Radiation Therapy

    Science.gov (United States)

    Li, Ruijiang; Han, Bin; Meng, Bowen; Maxim, Peter G.; Xing, Lei; Koong, Albert C.; Diehn, Maximilian; Loo, Billy W.

    2013-01-01

    Purpose To develop and clinically evaluate a volumetric imaging technique for assessing intrafraction geometric and dosimetric accuracy of stereotactic ablative radiation therapy (SABR). Methods and Materials Twenty patients received SABR for lung tumors using volumetric modulated arc therapy (VMAT). At the beginning of each fraction, pretreatment cone beam computed tomography (CBCT) was used to align the soft-tissue tumor position with that in the planning CT. Concurrent with dose delivery, we acquired fluoroscopic radiograph projections during VMAT using the Varian on-board imaging system. Those kilovolt projections acquired during megavolt beam-on were automatically extracted, and intrafraction CBCT images were reconstructed using the filtered backprojection technique. We determined the time-averaged target shift during VMAT by calculating the center of mass of the tumor target in the intrafraction CBCT relative to the planning CT. To estimate the dosimetric impact of the target shift during treatment, we recalculated the dose to the GTV after shifting the entire patient anatomy according to the time-averaged target shift determined earlier. Results The mean target shift from intrafraction CBCT to planning CT was 1.6, 1.0, and 1.5 mm; the 95th percentile shift was 5.2, 3.1, 3.6 mm; and the maximum shift was 5.7, 3.6, and 4.9 mm along the anterior-posterior, left-right, and superior-inferior directions. Thus, the time-averaged intrafraction gross tumor volume (GTV) position was always within the planning target volume. We observed some degree of target blurring in the intrafraction CBCT, indicating imperfect breath-hold reproducibility or residual motion of the GTV during treatment. By our estimated dose recalculation, the GTV was consistently covered by the prescription dose (PD), that is, V100% above 0.97 for all patients, and minimum dose to GTV >100% PD for 18 patients and >95% PD for all patients. Conclusions Intrafraction CBCT during VMAT can provide

  20. Evaluating the Toxicity Reduction With Computed Tomographic Ventilation Functional Avoidance Radiation Therapy.

    Science.gov (United States)

    Faught, Austin M; Miyasaka, Yuya; Kadoya, Noriyuki; Castillo, Richard; Castillo, Edward; Vinogradskiy, Yevgeniy; Yamamoto, Tokihiro

    2017-10-01

    Computed tomographic (CT) ventilation imaging is a new modality that uses 4-dimensional (4D) CT information to calculate lung ventilation. Although retrospective studies have reported on the reduction in dose to functional lung, no work to our knowledge has been published in which the dosimetric improvements have been translated to a reduction in the probability of pulmonary toxicity. Our work estimates the reduction in toxicity for CT ventilation-based functional avoidance planning. Seventy previously treated lung cancer patients who underwent 4DCT imaging were used for the study. CT ventilation maps were calculated with 4DCT deformable image registration and a density change-based algorithm. Pneumonitis was graded on the basis of imaging and clinical presentation. Maximum likelihood methods were used to generate normal tissue complication probability (NTCP) models predicting grade 2 or higher (2+) and grade 3+ pneumonitis as a function of dose (V5 Gy, V10 Gy, V20 Gy, V30 Gy, and mean dose) to functional lung. For 30 patients a functional plan was generated with the goal of reducing dose to the functional lung while meeting Radiation Therapy Oncology Group 0617 constraints. The NTCP models were applied to the functional plans and the clinically used plans to calculate toxicity reduction. By the use of functional avoidance planning, absolute reductions in grade 2+ NTCP of 6.3%, 7.8%, and 4.8% were achieved based on the mean fV20 Gy, fV30 Gy, and mean dose to functional lung metrics, respectively. Absolute grade 3+ NTCP reductions of 3.6%, 4.8%, and 2.4% were achieved with fV20 Gy, fV30 Gy, and mean dose to functional lung. Maximum absolute reductions of 52.3% and 16.4% were seen for grade 2+ and grade 3+ pneumonitis for individual patients. Our study quantifies the possible toxicity reduction from CT ventilation-based functional avoidance planning. Reductions in grades 2+ and 3+ pneumonitis were 7.1% and 4.7% based on mean dose-function metrics, with

  1. Optimization of Computed Tomography Urography Protocol, 1997 to 2008: Effects on Radiation Dose

    Energy Technology Data Exchange (ETDEWEB)

    Dahlman, P.; Segelsjoe, M.; Magnusson, A. (Dept. of Radiology, Uppsala Univ. Hospital, Uppsala (Sweden)); Jangland, L. (Dept. of Medical Physics, Uppsala Univ. Hospital, Uppsala (Sweden))

    2009-05-15

    Background: Since computed tomography (CT) urography began to replace excretory urography as the primary imaging technique in uroradiology, the collective radiation dose to the patients has increased. Purpose: To examine the changes in the CT urography protocol for investigating suspected urinary tract malignancy between the years 1997 and 2008, and how these changes have influenced the mean effective dose. Material and Methods: The study was based on 102 patients (mean age 66.1+-14.8 years, range 31-89 years; 30 female, 72 male) divided into five groups (groups A-E) corresponding to the time points at which changes were made to the CT urography protocol. The mean effective doses were estimated using the ImPACT CT Patient Dosimetry Calculator. Results: The number of scan phases at CT urography was reduced from four to three in 1999, resulting in a reduction of the mean effective dose from 29.9/22.5 (female [F]/male [M]) mSv (group A) to 26.1/18.9 (F/M) mSv (group B). In 2001, mAs settings were adapted to patient size, and the mean effective dose was reduced to 16.8/12.0 (F/M) mSv (group C). In 2005, scans were performed with a multidetector-row CT equipped with automatic tube current modulation in the x- and y-axis (CARE Dose). The effective mAs was also lowered in the unenhanced and excretory phase, yet the mean effective dose increased to 18.2/13.1 (F/M) mSv (group D), since the effective mAs had to be increased in the corticomedullary phase to maintain image quality. In 2008, as tube current modulation in the x-, y-, and z-axis was introduced (CARE Dose4D), the mean effective dose was reduced to 11.7/8.8 (F/M) mSv (group E). Conclusion: This study shows that the individual mean effective dose to patients undergoing CT urography has decreased by 60%, from 29.9/22.5 (F/M) mSv in 1997 to 11.7/8.8 (F/M) mSv in 2008.

  2. Optimization of computed tomography urography protocol, 1997 to 2008: effects on radiation dose.

    Science.gov (United States)

    Dahlman, P; Jangland, L; Segelsjö, M; Magnusson, A

    2009-05-01

    Since computed tomography (CT) urography began to replace excretory urography as the primary imaging technique in uroradiology, the collective radiation dose to the patients has increased. To examine the changes in the CT urography protocol for investigating suspected urinary tract malignancy between the years 1997 and 2008, and how these changes have influenced the mean effective dose. The study was based on 102 patients (mean age 66.1+/-14.8 years, range 31-89 years; 30 female, 72 male) divided into five groups (groups A-E) corresponding to the time points at which changes were made to the CT urography protocol. The mean effective doses were estimated using the ImPACT CT Patient Dosimetry Calculator. The number of scan phases at CT urography was reduced from four to three in 1999, resulting in a reduction of the mean effective dose from 29.9/22.5 (female [F]/male [M]) mSv (group A) to 26.1/18.9 (F/M) mSv (group B). In 2001, mAs settings were adapted to patient size, and the mean effective dose was reduced to 16.8/12.0 (F/M) mSv (group C). In 2005, scans were performed with a multidetector-row CT equipped with automatic tube current modulation in the x- and y-axis (CARE Dose). The effective mAs was also lowered in the unenhanced and excretory phase, yet the mean effective dose increased to 18.2/13.1 (F/M) mSv (group D), since the effective mAs had to be increased in the corticomedullary phase to maintain image quality. In 2008, as tube current modulation in the x-, y-, and z-axis was introduced (CARE Dose4D), the mean effective dose was reduced to 11.7/8.8 (F/M) mSv (group E). This study shows that the individual mean effective dose to patients undergoing CT urography has decreased by 60%, from 29.9/22.5 (F/M) mSv in 1997 to 11.7/8.8 (F/M) mSv in 2008.

  3. Radiation dose measurements during kilovoltage-cone beam computed tomography imaging in radiotherapy

    Directory of Open Access Journals (Sweden)

    A Sathish Kumar

    2016-01-01

    Conclusion: Radiation dose to the eye, breast, and the surface of the pelvis have been arrived at during CBCT. The doses measured on patients agreed closely with those measured on humanoid phantom and with published values.

  4. Phase 1-2 Study of Dual-Energy Computed Tomography for Assessment of Pulmonary Function in Radiation Therapy Planning.

    Science.gov (United States)

    Bahig, Houda; Campeau, Marie-Pierre; Lapointe, Andréanne; Bedwani, Stephane; Roberge, David; de Guise, Jacques; Blais, Danis; Vu, Toni; Lambert, Louise; Chartrand-Lefebvre, Carl; Lord, Martin; Filion, Edith

    2017-10-01

    To quantify lung function according to a dual-energy computed tomography (DECT)-derived iodine map in patients treated with radiation therapy for lung cancer, and to assess the dosimetric impact of its integration in radiation therapy planning. Patients treated with stereotactic ablative radiation therapy for early-stage or intensity modulated radiation therapy for locally advanced lung cancer were prospectively enrolled in this study. A DECT in treatment position was obtained at time of treatment planning. The relative contribution of each voxel to the total lung function was based on iodine distribution. The composition of each voxel was determined on the basis of a 2-material decomposition. The DECT-derived lobar function was compared with single photon emission computed tomography/computed tomography (SPECT/CT). A functional map was integrated in the treatment planning system using 6 subvolumes of increasing iodine distribution levels. Percent lung volume receiving 5 Gy (V5), V20, and mean dose (MLD) to whole lungs (anatomic) versus functional lungs were compared. Twenty-five patients with lung cancer, including 18 patients treated with stereotactic ablative radiation therapy and 7 patients with intensity modulated radiation therapy (locally advanced), were included. Eighty-four percent had chronic obstructive pulmonary disease. Median (range) forced expiratory volume in 1 second was 62% of predicted (29%-113%), and median diffusing capacity of the lung for carbon monoxide was 56% (39%-91%). There was a strong linear correlation between DECT- and SPECT/CT-derived lobar function (Pearson coefficient correlation r=0.89, P<.00001). Mean (range) differences in V5, V20, and MLD between anatomic and functional lung volumes were 16% (0%-48%, P=.03), 5% (1%-15%, P=.12), and 15% (1%-43%, P=.047), respectively. Lobar function derived from a DECT iodine map correlates well with SPECT/CT, and its integration in lung treatment planning is associated with significant

  5. Computational Design of Epoxy/ Boron Carbide Nanocomposites for Radiation Shielding Applications

    Science.gov (United States)

    Bejagam, Karteek; Galehdari, Nasim; Espinosa, Ingrid; Deshmukh, Sanket A.; Kelkar, Ajit D.

    An individual working in industries that include nuclear power plants, healthcare industry, and aerospace are knowingly or unknowingly exposed to radiations of different energies. Exposure to high-energy radiations such as α/ β particle emissions or gamma ray electromagnetic radiations enhances the health risks that can lead to carcinogenesis, cardiac problems, cataracts, and other acute radiation syndromes. The best possible solution to protect one from the exposure to radiations is shielding. In the present study, we have developed a new algorithm to generate a range of different structures of Diglycidyl Ether of Bisphenol F (EPON 862) and curing agent Diethylene Toluene Diamine (DETDA) resins with varying degrees of crosslinking. 3, 5, and 10 weight percent boron carbide was employed as filling materials to study its influence on the thermal and mechanical properties of composite. We further conduct the reactive molecular dynamics (RMD) simulations to investigate the effect of radiation exposure on the structural, physical, and mechanical properties of these Epoxy/Boron Carbide nanocomposites. Where possible the simulation results were compared with the experimental data.

  6. A correlation model to compute the incidence angle modifier and to estimate its effect on collectible solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Armenta-Deu, C. (Universidad Complutense de Madrid (ES). Facultad Fisicas); Lukac, B. (University of T. and C. Zilina (CS))

    1991-01-01

    The radiation transmittance and absorptance of materials vary according to the angle of incidence of the incoming solar radiation. Therefore, the efficiency of most solar converters (thermal or photovoltaic) is a function of the sun's position through the angle of incidence. This problem may be taken account of by the Incidence Angle Modifier, which is considered in this paper. An analytic expression for the incidence angle modifier, based on meteorological data or on geographic and geometric parameters, has been developed; this expression includes the effect of beam and diffuse radiation as well as the global influence. A comparison between measured data and these computed from our model has given a very good correlation, the results being within {+-}3% for horizontal and titled planes, and within {+-}7% for vertical surfaces, on average. The method also computes the collectible solar energy within a 5% error for thresholds up to 300Wm{sup -2}. The method has been validated for more than 30 locations in south and west Europe. (author).

  7. Comparative of radiation dose and image quality of Conventional Multislice Computed Tomography (MSCT), Cone-Beam CT (CBCT) and periapical radiography in dental imaging

    OpenAIRE

    Nasrollah Jabbari; Seyyed Reza Mousavi; Kamal Firoozi

    2016-01-01

    Background and Aims: With the increasing use of CT (Computed Tomoghraphy) scans in dentistry especially in the implantology, there may be significant increases in the radiation exposure and its risk. During the last year’s ConeBeam Computed Tomoghraphy (CBCT) has been introduced as an imaging modality for dentistry. The aim of this review article was to present comprehensive information have been published, regarding the  radiation dose and image quality of Conventional Multis...

  8. Assessing lung function using contrast-enhanced dual-energy computed tomography for potential applications in radiation therapy.

    Science.gov (United States)

    Lapointe, Andréanne; Bahig, Houda; Blais, Danis; Bouchard, Hugo; Filion, Édith; Carrier, Jean-François; Bedwani, Stéphane

    2017-10-01

    There is an increasing interest in the evaluation of lung function from physiological images in radiation therapy treatment planning to reduce the extent of postradiation toxicities. The purpose of this work was to retrieve reliable functional information from contrast-enhanced dual-energy computed tomography (DECT) for new applications in radiation therapy. The functional information obtained by DECT is also compared with other methods using single-energy CT (SECT) and single-photon emission computed tomography (SPECT) with CT. The differential function between left and right lung, as well as between lobes is computed for all methods. Five lung cancer patients were retrospectively selected for this study; each underwent a SPECT/CT scan and a contrast-injected DECT scan, using 100 and 140 Sn kVp. The DECT images are postprocessed into iodine concentration maps, which are further used to determine the perfused blood volume. These maps are calculated in two steps: (a) a DECT stoichiometric calibration adapted to the presence of iodine and followed by (b) a two-material decomposition technique. The functional information from SECT is assumed proportional to the HU numbers from a mixed CT image. The functional data from SPECT/CT are considered proportional to the number of counts. A radiation oncologist segmented the entire lung volume into five lobes on both mixed CT images and low-dose CT images from SPECT/CT to allow a regional comparison. The differential function for each subvolume is computed relative to the entire lung volume. The differential function per lobe derived from SPECT/CT correlates strongly with DECT (Pearson's coefficient r = 0.91) and moderately with SECT (r = 0.46). The differential function for the left lung shows a mean difference of 7% between SPECT/CT and DECT; and 17% between SPECT/CT and SECT. The presence of nonfunctional areas, such as localized emphysema or a lung tumor, is reflected by an intensity drop in the iodine concentration maps

  9. A comparative study for image quality and radiation dose of a cone beam computed tomography scanner and a multislice computed tomography scanner for paranasal sinus imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cock, Jens de; Canning, John [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Zanca, Federica; Hermans, Robert [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); KU Leuven, Imaging and Pathology Department, Leuven (Belgium); Pauwels, Ruben [KU Leuven, Imaging and Pathology Department, Leuven (Belgium)

    2015-07-15

    To evaluate image quality and radiation dose of a state of the art cone beam computed tomography (CBCT) system and a multislice computed tomography (MSCT) system in patients with sinonasal poliposis. In this retrospective study two radiologists evaluated 57 patients with sinonasal poliposis who underwent a CBCT or MSCT sinus examination, along with a control group of 90 patients with normal radiological findings. Tissue doses were measured using a phantom model with thermoluminescent dosimeters (TLD). Overall image quality in CBCT was scored significantly higher than in MSCT in patients with normal radiologic findings (p-value: 0.00001). In patients with sinonasal poliposis, MSCT scored significantly higher than CBCT (p-value: 0.00001). The average effective dose for MSCT was 42 % higher compared to CBCT (108 μSv vs 63 μSv). CBCT and MSCT are both suited for the evaluation of sinonasal poliposis. In patients with sinonasal poliposis, clinically important structures of the paranasal sinuses can be better delineated with MSCT, whereas in patients without sinonasal poliposis, CBCT turns out to define the important structures of the sinonasal region better. However, given the lower radiation dose, CBCT can be considered for the evaluation of the sinonasal structures in patients with sinonasal poliposis. (orig.)

  10. Initial experience with adaptive iterative dose reduction 3D to reduce radiation dose in computed tomographic urography.

    Science.gov (United States)

    Juri, Hiroshi; Matsuki, Mitsuru; Itou, Yasushi; Inada, Yuki; Nakai, Go; Azuma, Haruhito; Narumi, Yoshifumi

    2013-01-01

    This study aimed to investigate the feasibility of low-dose computed tomographic (CT) urography with adaptive iterative dose reduction 3D (AIDR 3D). Thirty patients underwent routine-dose CT scans with filtered back projection and low-dose CT scans with AIDR 3D in the excretory phase of CT urography. Visual evaluations were performed with respect to internal image noises, sharpness, streak artifacts, and diagnostic acceptability. Quantitative measures of the image noise and radiation dose were also obtained. All results were compared on the basis of body mass index (BMI). At visual evaluations, streak artifacts in the urinary bladder were statistically weaker on low-dose CT than on routine-dose CT in the axial and coronal images (P urography with AIDR 3D allows 45% reduction of radiation dose without degenerating of the image quality in the excretory phase independently to a BMI.

  11. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pannala, S; D' Azevedo, E; Zacharia, T

    2002-02-26

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of

  12. Improving Radiation Awareness and Feeling of Personal Security of Non-Radiological Medical Staff by Implementing a Traffic Light System in Computed Tomography.

    Science.gov (United States)

    Heilmaier, C; Mayor, A; Zuber, N; Fodor, P; Weishaupt, D

    2016-03-01

    Non-radiological medical professionals often need to remain in the scanning room during computed tomography (CT) examinations to supervise patients in critical condition. Independent of protective devices, their position significantly influences the radiation dose they receive. The purpose of this study was to assess if a traffic light system indicating areas of different radiation exposure improves non-radiological medical staff's radiation awareness and feeling of personal security. Phantom measurements were performed to define areas of different dose rates and colored stickers were applied on the floor according to a traffic light system: green = lowest, orange = intermediate, and red = highest possible radiation exposure. Non-radiological medical professionals with different years of working experience evaluated the system using a structured questionnaire. Kruskal-Wallis and Spearman's correlation test were applied for statistical analysis. Fifty-six subjects (30 physicians, 26 nursing staff) took part in this prospective study. Overall rating of the system was very good, and almost all professionals tried to stand in the green stickers during the scan. The system significantly increased radiation awareness and feeling of personal protection particularly in staff with ≤ 5 years of working experience (p radiation protection was poor in all groups, especially among entry-level employees (p radiation exposure is much appreciated. It increases radiation awareness, improves the sense of personal radiation protection, and may support endeavors to lower occupational radiation exposure, although the best radiation protection always is to re-main outside the CT room during the scan. • A traffic light system indicating areas with different radiation exposure within the computed tomography scanner room is much appreciated by non-radiological medical staff. • The traffic light system increases non-radiological medical staff's radiation awareness and feeling of

  13. The Time Course of Dynamic Computed Tomographic Appearance of Radiation Injury to the Cirrhotic Liver Following Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma

    Science.gov (United States)

    Kimura, Tomoki; Takahashi, Shigeo; Takahashi, Ippei; Nishibuchi, Ikuno; Doi, Yoshiko; Kenjo, Masahiro; Murakami, Yuji; Honda, Yohji; Aikata, Hiroshi; Chayama, Kazuaki; Nagata, Yasushi

    2015-01-01

    This study aimed to evaluate the dynamic computed tomographic (CT) appearance of focal radiation injury to cirrhotic liver tissue around the tumor following stereotactic body radiation therapy (SBRT) for hepatocellular carcinoma (HCC). Seventy-seven patients with 92 HCCs were observed for >6 months. Sixty-four and 13 patients belonged to Child–Pugh class A and B, respectively. The median SBRT dose was 48 Gy/4fr. Dynamic CT scans were performed in non–enhanced, arterial, portal, and venous phases. The median follow-up period was 18 months. Dynamic CT appearances were classified into 3 types: type 1, hyperdensity in all enhanced phases; type 2, hypodensity in arterial and portal phases; type 3, isodensity in all enhanced phases. Half of the type 2 or 3 appearances significantly changed to type 1, particularly in patients belonging to Child–Pugh class A. After 3–6 months, Child–Pugh class B was a significant factor in type 3 patients. Thus, dynamic CT appearances were classified into 3 patterns and significantly changed over time into the enhancement group (type 1) in most patients belonging to Child–Pugh class A. Child–Pugh class B was a significant factor in the non–enhancement group (type 3). PMID:26067065

  14. Radiation doses in volume-of-interest breast computed tomography--A Monte Carlo simulation study.

    Science.gov (United States)

    Lai, Chao-Jen; Zhong, Yuncheng; Yi, Ying; Wang, Tianpeng; Shaw, Chris C

    2015-06-01

    Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region's visibility. In this study, the authors performed Monte Carlo simulations to estimate average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Electron-Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm(2) field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical measurements were 0.97 ± 0.03 and 1.10

  15. Image Guided Radiation Therapy Using Synthetic Computed Tomography Images in Brain Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Ryan G. [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan (United States); Kim, Joshua P.; Zheng, Weili [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan (United States); Glide-Hurst, Carri, E-mail: churst2@hfhs.org [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan (United States)

    2016-07-15

    Purpose: The development of synthetic computed tomography (CT) (synCT) derived from magnetic resonance (MR) images supports MR-only treatment planning. We evaluated the accuracy of synCT and synCT-generated digitally reconstructed radiographs (DRRs) relative to CT and determined their performance for image guided radiation therapy (IGRT). Methods and Materials: Magnetic resonance simulation (MR-SIM) and CT simulation (CT-SIM) images were acquired of an anthropomorphic skull phantom and 12 patient brain cancer cases. SynCTs were generated using fluid attenuation inversion recovery, ultrashort echo time, and Dixon data sets through a voxel-based weighted summation of 5 tissue classifications. The DRRs were generated from the phantom synCT, and geometric fidelity was assessed relative to CT-generated DRRs through bounding box and landmark analysis. An offline retrospective analysis was conducted to register cone beam CTs (n=34) to synCTs and CTs using automated rigid registration in the treatment planning system. Planar MV and KV images (n=37) were rigidly registered to synCT and CT DRRs using an in-house script. Planar and volumetric registration reproducibility was assessed and margin differences were characterized by the van Herk formalism. Results: Bounding box and landmark analysis of phantom synCT DRRs were within 1 mm of CT DRRs. Absolute planar registration shift differences ranged from 0.0 to 0.7 mm for phantom DRRs on all treatment platforms and from 0.0 to 0.4 mm for volumetric registrations. For patient planar registrations, the mean shift differences were 0.4 ± 0.5 mm (range, −0.6 to 1.6 mm), 0.0 ± 0.5 mm (range, −0.9 to 1.2 mm), and 0.1 ± 0.3 mm (range, −0.7 to 0.6 mm) for the superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) axes, respectively. The mean shift differences in volumetric registrations were 0.6 ± 0.4 mm (range, −0.2 to 1.6 mm), 0.2 ± 0.4 mm (range, −0.3 to 1.2 mm), and 0.2 ± 0

  16. Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chao-Jen, E-mail: cjlai3711@gmail.com; Zhong, Yuncheng; Yi, Ying; Wang, Tianpeng; Shaw, Chris C. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2015-06-15

    Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimate average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm{sup 2} field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical

  17. Prediction of the thickness of the compensator filter in radiation therapy using computational intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Dehlaghi, Vahab; Taghipour, Mostafa; Haghparast, Abbas [Department of Biomedical Engineering, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Roshani, Gholam Hossein [School of Energy, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Rezaei, Abbas [Department of Electrical Engineering, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Shayesteh, Sajjad Pashootan [Department of Biomedical Engineering, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Adineh-Vand, Ayoub [Department of Computer Engineering, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Department of Electrical Engineering, Razi University, Kermanshah (Iran, Islamic Republic of); Karimi, Gholam Reza, E-mail: ghkarimi@razi.ac.ir [Department of Electrical Engineering, Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-04-01

    In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) are investigated to predict the thickness of the compensator filter in radiation therapy. In the proposed models, the input parameters are field size (S), off-axis distance, and relative dose (D/D{sub 0}), and the output is the thickness of the compensator. The obtained results show that the proposed ANN and ANFIS models are useful, reliable, and cheap tools to predict the thickness of the compensator filter in intensity-modulated radiation therapy.

  18. The early changes in bone mineral metabolism due to radiation; Measurement of bone mineral density in lumbar vertebra by quantitative computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Katsuyuki; Hori, Reiko; Shigekawa, Koji; Matsubara, Keiichi; Inoue, Yasuhiro; Matsuura, Shunpei; Kataoka, Masaaki; Kawamura, Masashi (Ehime Univ., Shigenobu (Japan). School of Medicine)

    1991-01-01

    Osteosclerosis, osteonecrosis and compression fracture are commonly observed several years after radiation. Since lumbago usually occurs several months after radiation, the possibility that bone mineral metabolism is disturbed during and immediately after radiation cannot be ruled out. However, there have been no reports concerning early changes in bone mineral metabolism due to radiation. The bone mineral density was measured by QCT (Quantitative Computed Tomography) in 30 normal non-radiated cases and 14 radiated cases to investigate the changes in bone mineral metabolism due to radiation. The bone mineral density (QCT-Value: QCT-V) in the 3rd lumbar vertebra (L3) of normal non-radiated subjects decreased linearly with age (Y=291.114447-3.01473X). The QCT-V of the 5th lumbar vertebra (L5) of normal cases also decreased linearly with age (Y=309.641397-3.03986X), resembling that of L3. The ratio of the QCT-V of L5 to L3 (L5/L3, expressed as a parcentage) definitely increased with age (Y=86.5657441+0.58885064X). In radiated cases, the QCT-V of L3 in the non-radiated field did not change appreciably. The QCT-V of L5 in the radiated field was decreased from 20 Gy and reached 53.08+-17.37% of the pre-radiation value after 50 Gy. The L5/L3 ratio was also decreased from 20 Gy and reached 55.47+-15.32% of the pre-radiation value after 50 Gy. It becomes apparent that the QCT-V of the radiated lumbar vertebra is decreased during radiation. It is suggested that bone mineral metabolism may be disturbed in the early phase of radiation. (author).

  19. Reduction of radiation dose of computed tomography in children with traumatic brain injury does not compromise the diagnosis and medical conduct

    Directory of Open Access Journals (Sweden)

    Mônica de Oliveira Bernardo

    2017-01-01

    Full Text Available Introduction: The worldwide increases in availability and request of computed tomography in children have brought concern about the cumulative effect of radiation. Traumatic brain injury is a clinical situation in which tomography is frequently necessary. Objectives: 1. Evaluating if the reduction of the radiation dose of head computed tomography in children with head trauma would affect the diagnosis and medical conduct; 2. Promoting a radioprotection campaign in a private health care system. Method: We selected two groups of computed tomography from children with head trauma: 30 performed before the study period, with usual doses of radiation; and 30 tomographies performed during the project, in which we applied the protocol of The Radiation Safety The Alliance for Imaging in Pediatric with 50% radiation dose reduction. The two series of exams were presented to 19 pediatricians, 2 neurosurgeons and 7 radiologists who were unaware of the technical differences and they answered a questionnaire. Results: The professionals had no difficulty in making a diagnosis and establish a conduct with both series of exams. Four participants noted more grainy images in the exams with lower radiation dose. A radioprotection campaign distributed 17,000 radioprotection wallets for children up to 12 years. Professionals involved and parents joined the campaign strongly and rationally. Conclusions: It is possible to reduce the computed tomography radiation dose for children with head trauma without any prejudice to the diagnosis and treatment. The radioprotection campaign was effective and well accepted by professionals and family and will become a national campaign.

  20. On computations for thermal radiation in MHD channel flow with heat and mass transfer.

    Science.gov (United States)

    Hayat, T; Awais, M; Alsaedi, A; Safdar, Ambreen

    2014-01-01

    This study examines the simultaneous effects of heat and mass transfer on the three-dimensional boundary layer flow of viscous fluid between two infinite parallel plates. Magnetohydrodynamic (MHD) and thermal radiation effects are present. The governing problems are first modeled and then solved by homotopy analysis method (HAM). Influence of several embedded parameters on the velocity, concentration and temperature fields are described.

  1. Fatigue Micromechanism Characterization in Carbon Fibre Reinforced Polymers Using Synchrotron Radiation Computed Tomography

    Science.gov (United States)

    2014-12-18

    tests was very similar, at 1.4 µm. Scans were conducted at the Swiss Light Source (SLS), TOMCAT-X02DA Beamline , Paul Scherrer Institut...Also funding from EPSRC, grant EP/H1506X/1. The authors are grateful to the Swiss Light Synchrotron Radiation for access to TOMCAT-X02DA beamline

  2. Physics study of microbeam radiation therapy with PSI-version of Monte Carlo code GEANT as a new computational tool

    CERN Document Server

    Stepanek, J; Laissue, J A; Lyubimova, N; Di Michiel, F; Slatkin, D N

    2000-01-01

    Microbeam radiation therapy (MRT) is a currently experimental method of radiotherapy which is mediated by an array of parallel microbeams of synchrotron-wiggler-generated X-rays. Suitably selected, nominally supralethal doses of X-rays delivered to parallel microslices of tumor-bearing tissues in rats can be either palliative or curative while causing little or no serious damage to contiguous normal tissues. Although the pathogenesis of MRT-mediated tumor regression is not understood, as in all radiotherapy such understanding will be based ultimately on our understanding of the relationships among the following three factors: (1) microdosimetry, (2) damage to normal tissues, and (3) therapeutic efficacy. Although physical microdosimetry is feasible, published information on MRT microdosimetry to date is computational. This report describes Monte Carlo-based computational MRT microdosimetry using photon and/or electron scattering and photoionization cross-section data in the 1 e V through 100 GeV range distrib...

  3. Comparison of Diagnostic Accuracy of Radiation Dose-Equivalent Radiography, Multidetector Computed Tomography and Cone Beam Computed Tomography for Fractures of Adult Cadaveric Wrists.

    Science.gov (United States)

    Neubauer, Jakob; Benndorf, Matthias; Reidelbach, Carolin; Krauß, Tobias; Lampert, Florian; Zajonc, Horst; Kotter, Elmar; Langer, Mathias; Fiebich, Martin; Goerke, Sebastian M

    2016-01-01

    To compare the diagnostic accuracy of radiography, to radiography equivalent dose multidetector computed tomography (RED-MDCT) and to radiography equivalent dose cone beam computed tomography (RED-CBCT) for wrist fractures. As study subjects we obtained 10 cadaveric human hands from body donors. Distal radius, distal ulna and carpal bones (n = 100) were artificially fractured in random order in a controlled experimental setting. We performed radiation dose equivalent radiography (settings as in standard clinical care), RED-MDCT in a 320 row MDCT with single shot mode and RED-CBCT in a device dedicated to musculoskeletal imaging. Three raters independently evaluated the resulting images for fractures and the level of confidence for each finding. Gold standard was evaluated by consensus reading of a high-dose MDCT. Pooled sensitivity was higher in RED-MDCT with 0.89 and RED-MDCT with 0.81 compared to radiography with 0.54 (P = radiography (P radiography. Readers are more confident in their reporting with the cross sectional modalities. Dose equivalent cross sectional computed tomography of the wrist could replace plain radiography for fracture diagnosis in the long run.

  4. Comparison of Diagnostic Accuracy of Radiation Dose-Equivalent Radiography, Multidetector Computed Tomography and Cone Beam Computed Tomography for Fractures of Adult Cadaveric Wrists.

    Directory of Open Access Journals (Sweden)

    Jakob Neubauer

    Full Text Available To compare the diagnostic accuracy of radiography, to radiography equivalent dose multidetector computed tomography (RED-MDCT and to radiography equivalent dose cone beam computed tomography (RED-CBCT for wrist fractures.As study subjects we obtained 10 cadaveric human hands from body donors. Distal radius, distal ulna and carpal bones (n = 100 were artificially fractured in random order in a controlled experimental setting. We performed radiation dose equivalent radiography (settings as in standard clinical care, RED-MDCT in a 320 row MDCT with single shot mode and RED-CBCT in a device dedicated to musculoskeletal imaging. Three raters independently evaluated the resulting images for fractures and the level of confidence for each finding. Gold standard was evaluated by consensus reading of a high-dose MDCT.Pooled sensitivity was higher in RED-MDCT with 0.89 and RED-MDCT with 0.81 compared to radiography with 0.54 (P = < .004. No significant differences were detected concerning the modalities' specificities (with values between P = .98. Raters' confidence was higher in RED-MDCT and RED-CBCT compared to radiography (P < .001.The diagnostic accuracy of RED-MDCT and RED-CBCT for wrist fractures proved to be similar and in some parts even higher compared to radiography. Readers are more confident in their reporting with the cross sectional modalities. Dose equivalent cross sectional computed tomography of the wrist could replace plain radiography for fracture diagnosis in the long run.

  5. Integrated Experimental and Computational Approach to Understand the Effects of Heavy Ion Radiation on Skin Homeostasis.

    Energy Technology Data Exchange (ETDEWEB)

    von Neubeck, Claere; Shankaran, Harish; Geniza, Matthew; Kauer, Paula M.; Robinson, Robert J.; Chrisler, William B.; Sowa, Marianne B.

    2013-08-08

    The effects of low dose high linear energy transfer (LET) radiation on human health are of concern for both space and clinical exposures. As epidemiological data for such radiation exposures are scarce for making relevant predictions, we need to understand the mechanism of response especially in normal tissues. Our objective here is to understand the effects of heavy ion radiation on tissue homeostasis in a realistic model system. Towards this end, we exposed an in vitro three dimensional skin equivalent to low fluences of Neon (Ne) ions (300 MeV/u), and determined the differentiation profile as a function of time following exposure using immunohistochemistry. We found that Ne ion exposures resulted in transient increases in the tissue regions expressing the differentiation markers keratin 10, and filaggrin, and more subtle time-dependent effects on the number of basal cells in the epidermis. We analyzed the data using a mathematical model of the skin equivalent, to quantify the effect of radiation on cell proliferation and differentiation. The agent-based mathematical model for the epidermal layer treats the epidermis as a collection of heterogeneous cell types with different proliferation/differentiation properties. We obtained model parameters from the literature where available, and calibrated the unknown parameters to match the observed properties in unirradiated skin. We then used the model to rigorously examine alternate hypotheses regarding the effects of high LET radiation on the tissue. Our analysis indicates that Ne ion exposures induce rapid, but transient, changes in cell division, differentiation and proliferation. We have validated the modeling results by histology and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The integrated approach presented here can be used as a general framework to understand the responses of multicellular systems, and can be adapted to other epithelial tissues.

  6. Coronary computed tomography angiography - tolerability of β-blockers and contrast media, and temporal changes in radiation dose.

    Science.gov (United States)

    Pedersen, Charlotte; Thomsen, Camilla F; Hosbond, Susanne E; Thomassen, Anders; Mickley, Hans; Diederichsen, Axel C P

    2014-10-01

    To determine the risk in administering β-blockers, contrast-induced nephropathy (CIN) and the trend in X-ray use, during coronary computed tomography angiography (CCTA). A total of 416 patients were referred for elective CCTA. To achieve a resting heart rate below 60 beats per minute, oral and/or intravenous β-blockers were administered. Using questionnaires, information on the adverse effects of β-blockers was collected from the patients. The levels of s-creatinine and estimated GFR (eGFR) were measured before and after contrast enhanced CCTA. Radiation exposure was compared with the exposure 3 years earlier. There was no significant difference in the symptoms (dizziness, lipothymia and palpitations) between patients with and patients without β-blocker pretreatment. Compared to baseline values, the decrease in s-creatinine was not significant (75.2 vs. 74.6 μmol/L, p = 0.09), while the increase in eGFR was not significant (78 vs. 79 mL/min, p = 0.17). Also, subgroups of patients with hypertension, hypercholesterolemia, diabetes or pre-existing slight impairment in renal function did not develop CIN. The mean radiation exposure decreased from 17.5 to 6.7 mSv, p < 0.0001. In terms of the side effects of β-blockers and contrast media, there were no short term complications to CCTA. Furthermore, the radiation dose has been dramatically diminished over the last three years.

  7. Prospectively gated coronary computed tomography angiography: uncompromised quality with markedly reduced radiation exposure in acute chest pain evaluation.

    Science.gov (United States)

    Goitein, Orly; Beigel, Roy; Matetzky, Shlomi; Kuperstein, Rafael; Brosh, Sella; Eshet, Yael; Di Segni, Elio; Konen, Eli

    2011-08-01

    Coronary computed tomography angiography (CCTA) is an established modality for ruling out coronary artery disease. However, it has been suggested that CCTA may be a source of non-negligible radiation exposure. To evaluate the potential degradation in coronary image quality when using prospective gated (PG) CCTA as compared with retrospective gated (RG) CCTA in chest pain evaluation. The study cohort comprised 216 patients: 108 consecutive patients in the PG CCTA arm and 108 patients matched for age, gender and heart rate in the RG CCTA arm. Scans were performed using a 64-slice multidetector CT scanner. All 15 coronary segments were evaluated subjectively for image quality using a 5-point visual scale. Dose-length product was recorded for each patient and the effective radiation dose was calculated The PG CCTA technique demonstrated a significantly higher incidence of step artifacts in the middle and distal right coronary artery, the distal left anterior descending artery, the second diagonal, the distal left circumflex artery, and the second marginal branches. Nevertheless, the diagnostic performance of these scans was not adversely affected. The mean effective radiation doses were 3.8 +/- 0.9 mSv vs.17.2 +/- 3 mSv for PG CCTA and RG CCTA, respectively (P acute chest pain "fast track" evaluation targeted at relatively young subjects in a chest pain unit.

  8. Classification of the Extremely Low Frequency Magnetic Field Radiation Measurement from the Laptop Computers

    Directory of Open Access Journals (Sweden)

    Brodić Darko

    2015-08-01

    Full Text Available The paper considers the level of the extremely low-frequency magnetic field, which is produced by laptop computers. The magnetic field, which is characterized by extremely low frequencies up to 300 Hz is measured due to its hazardous effects to the laptop user's health. The experiment consists of testing 13 different laptop computers in normal operation conditions. The measuring of the magnetic field is performed in the adjacent neighborhood of the laptop computers. The measured data are presented and then classified. The classification is performed by the K-Medians method in order to determine the critical positions of the laptop. At the end, the measured magnetic field values are compared with the critical values suggested by different safety standards. It is shown that some of the laptop computers emit a very strong magnetic field. Hence, they must be used with extreme caution.

  9. The Way to Thermal Computers Utilizing Near-Field Thermal Radiation

    Science.gov (United States)

    Ndao, S.; Elzouka, M.

    2017-11-01

    Limited performance and reliability of electronic devices in harsh environments requires alternative computing technologies development. Our research group proposed and experimentally demonstrated the first high temperature thermal logic devices.

  10. Low-dose radiation with 80-kVp computed tomography to diagnose pulmonary embolism: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, Ulf [Dept. of Radiology, Univ. of Lund, Lasarettet Trelleborg, Trelleborg (Sweden)], E-mail: ulf.nyman@skane.se; Bjoerkdahl, Peter [Dept. of Radiology, Lasarettet Trelleborg, Trelleborg (Sweden); Olsson, Marie-Louise; Gunnarsson, Mikael [Medical Radiation Physics, Dept. of Clinical Sciences, Univ. of Lund, Skaane Univ. Hospital, Malmoe (Sweden); Goldman, Bitte [Dept. of Internal Medicine, Lasarettet Trelleborg, Trelleborg (Sweden)

    2012-11-15

    Background Mounting collective radiation doses from computed tomography (CT) implies an increased risk of radiation-induced cancer in exposed populations, especially in the young. Purpose To evaluate radiation dose and image quality at 80-kVp CT to diagnose acute pulmonary embolism (PE) compared with a previous study at 100 and 120 kVp with all other scanning parameters unchanged. Material and Methods A custom-made chest phantom with a 12 mg I/mL-syringe was scanned at 80/100/120 kVp to evaluate relative changes in computed tomographic dose index (CTDIvol), attenuation, image noise, and contrast-to-noise ratio (CNR). Fifty patients underwent 80 kVp 16-row detector CT at 100 'Quality reference' mAs. A total of 350 mg I/kg were injected to compensate for increased CNR at 80 kVp, while 300 mg I/kg had been used at 100/120 kVp. CTDI{sub vol}, dose-length product (DLP), and estimated effective dose were evaluated including Monte Carlo simulations. Pulmonary artery attenuation and noise were measured and CNR calculated. Two radiologists evaluated subjective image quality using a four-grade scale. Results Switching from 120 to 80 kVp in the phantom study decreased radiation dose by 67% while attenuation and noise increased 1.6 and 2.0 times, respectively, and CNR decreased by 16%. Switching from 120 to 80 kVp in the patient studies decreased estimated effective dose from 4.0 to 1.2 mSv (70% decrease) in median while pulmonary artery attenuation and noise roughly doubled from 332 to 653 HU and from 22 to 49 HU, respectively, resulting in similar CNR (13 vs. 12). At 80 kVp all examinations were regarded as adequate (8%) or excellent (92%). Conclusion Switching from 120 to 80 kVp CT without increased mAs but slightly increased iodine dose may be of special benefit to diagnose PE in younger individuals with preserved renal function where the primary aim is to minimize radiation dose and reaching levels below that of scintigraphy.

  11. Quantifying morphological parameters of the terminal branching units in a mouse lung by phase contrast synchrotron radiation computed tomography.

    Directory of Open Access Journals (Sweden)

    Jeongeun Hwang

    Full Text Available An effective technique of phase contrast synchrotron radiation computed tomography was established for the quantitative analysis of the microstructures in the respiratory zone of a mouse lung. Heitzman's method was adopted for the whole-lung sample preparation, and Canny's edge detector was used for locating the air-tissue boundaries. This technique revealed detailed morphology of the respiratory zone components, including terminal bronchioles and alveolar sacs, with sufficiently high resolution of 1.74 µm isotropic voxel size. The technique enabled visual inspection of the respiratory zone components and comprehension of their relative positions in three dimensions. To check the method's feasibility for quantitative imaging, morphological parameters such as diameter, surface area and volume were measured and analyzed for sixteen randomly selected terminal branching units, each consisting of a terminal bronchiole and a pair of succeeding alveolar sacs. The four types of asymmetry ratios concerning alveolar sac mouth diameter, alveolar sac surface area, and alveolar sac volume are measured. This is the first ever finding of the asymmetry ratio for the terminal bronchioles and alveolar sacs, and it is noteworthy that an appreciable degree of branching asymmetry was observed among the alveolar sacs at the terminal end of the airway tree, despite the number of samples was small yet. The series of efficient techniques developed and confirmed in this study, from sample preparation to quantification, is expected to contribute to a wider and exacter application of phase contrast synchrotron radiation computed tomography to a variety of studies.

  12. Computed tomographic findings in pelvic cavity after radiation therapy for carcinoma of cervix

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Young Hoon; Kim, Ho Joon; Chun, Byung Hee [Kosin Medical College, Busan (Korea, Republic of); Suh, Soo Jhi [Keimyung University, Daegu (Korea, Republic of)

    1985-02-15

    From July 1, 1981 to August 31, 1984, 59 patients who had radiation therapy for carcinoma of cervix had CT scanning at Department of Diagnostic Radiology, Kosin Medical College. The authors analysed the CT findings of the patients in regard to the recurrence of the disease and postradiation changes. The results are as followings; 1. The incidence of recurrence was most common in advanced stage over llb. 77% 2. Changes in pelvic cavity were as followings; Widening of presacral space 78%; Increased perirectal fat space 81%; Symmetrical thickening of perirectal fascia 97%; Fibrous connection between sacrum and retum 92%; Anterior connection between rectum and perirectal fascia 47%; Increased bowel wall thickness 44%; Increased bladder wall thickness with trabeculations 51% 3. In most patients who had CT scanning within 3 months after radiation therapy, CT did not demonstrate postradiation changes characterized by an increased pelvic fibrous and fatty tissue. 4. In 10 patients who had postoperative radiation therapy, 8 patients show increased bowel wall thickness. 5. 30 patients with recurrent carcinoma of cervix were as followings; Pelvic tumor recurrence 90%; Parametrial and side wall extension 53%; Pelvic and paraaortic lymphadenopathy 40%; Hydronephrosis 23%; Bladder involvement 23%; Lumbar spine involvement 10% And 1 patients shows distant metastasis to paraaortic lymph node, 1 patients to lumbar spine, and 1 patient to liver without recurrent tumor mass in pelvic cavity. 6. 2 patients showing mass without other sign in the pelvic cavity were unable to be differentiated between irradiated uterus and recurrent tumor.

  13. WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, AS; Sun, X [Duke University, Durham, NC (United States); Pitsianis, N [Aristotle University of Thessaloniki (Greece); Duke University, Durham, NC (United States); Yin, FF; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digital projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub

  14. Radiation protection issues in dynamic contrast-enhanced (perfusion) computed tomography.

    Science.gov (United States)

    Brix, Gunnar; Lechel, Ursula; Nekolla, Elke; Griebel, Jürgen; Becker, Christoph

    2015-12-01

    Dynamic contrast-enhanced (DCE) CT studies are increasingly used in both medical care and clinical trials to improve diagnosis and therapy management of the most common life-threatening diseases: stroke, coronary artery disease and cancer. It is thus the aim of this review to briefly summarize the current knowledge on deterministic and stochastic radiation effects relevant for patient protection, to present the essential concepts for determining radiation doses and risks associated with DCE-CT studies as well as representative results, and to discuss relevant aspects to be considered in the process of justification and optimization of these studies. For three default DCE-CT protocols implemented at a latest-generation CT system for cerebral, myocardial and cancer perfusion imaging, absorbed doses were measured by thermoluminescent dosimeters at an anthropomorphic body phantom and compared with thresholds for harmful (deterministic) tissue reactions. To characterize stochastic radiation risks of patients from these studies, life-time attributable cancer risks (LAR) were estimated using sex-, age-, and organ-specific risk models based on the hypothesis of a linear non-threshold dose-response relationship. For the brain, heart and pelvic cancer studies considered, local absorbed doses in the imaging field were about 100-190 mGy (total CTDI(vol), 200 mGy), 15-30 mGy (16 mGy) and 80-270 mGy (140 mGy), respectively. According to a recent publication of the International Commission on Radiological Protection (ICRP Publication 118, 2012), harmful tissue reactions of the cerebro- and cardiovascular systems as well as of the lenses of the eye become increasingly important at radiation doses of more than 0.5 Gy. The LARs estimated for the investigated cerebral and myocardial DCE-CT scenarios are less than 0.07% for males and 0.1% for females at an age of exposure of 40 years. For the considered tumor location and protocol, the corresponding LARs are more than 6 times as high

  15. Heat transport in bulk/nanoporous/bulk silicon devices

    Energy Technology Data Exchange (ETDEWEB)

    Criado-Sancho, M. [Departamento de Ciencias y Técnicas Físicoquimicas, Facultad de Ciencias, UNED, Senda del Rey 9, 20040 Madrid (Spain); Jou, D., E-mail: David.Jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2013-02-04

    We study heat transport in bulk/nanoporous/bulk silicon devices; we show that, despite bulk/nanoporous devices may act as thermal rectifiers, the non-linear aspects of their joint thermal conductance are not strong enough to lead to a negative differential thermal resistance, necessary to allow bulk/nanoporous/bulk Si devices to act as thermal transistors. Furthermore, we explicitly study the effective thermal conductivity of the mentioned devices for several temperatures, geometries, porosities, and pore size.

  16. Computer simulation of heat transfer in zone plate optics exposed to x-ray FEL radiation

    Science.gov (United States)

    Nilsson, D.; Holmberg, A.; Sinn, H.; Vogt, U.

    2011-06-01

    Zone plates are circular diffraction gratings that can provide diffraction-limited nano-focusing of x-ray radiation. When designing zone plates for X-ray Free Electron Laser (XFEL) sources special attention has to be made concerning the high intensity of the sources. Absorption of x-rays in the zone material can lead to significant temperature increases in a single pulse and potentially destroy the zone plate. The zone plate might also be damaged as a result of temperature build up and/or temperature fluctuations on longer time scales. In this work we simulate the heat transfer in a zone plate on a substrate as it is exposed to XFEL radiation. This is done in a Finite Element Method model where each new x-ray pulse is treated as an instantaneous heat source and the temperature evolution between pulses is calculated by solving the heat equation. We use this model to simulate different zone plate and substrate designs and source parameters. Results for both the 8 keV source at LCLS and the 12.4 keV source at the European XFEL are presented. We simulate zone plates made of high Z metals such as gold, tungsten and iridium as well as zone plates made of low Z materials such as diamond. In the case of metal zone plates we investigate the influence of substrate material by comparing silicon and diamond substrates. We also study the effect of different cooling temperatures and cooling schemes. The results give valuable indications on the temperature behavior to expect and can serve as a basis for future experimental investigations of zone plates exposed to XFEL radiation.

  17. A computer based learning program for radiation therapy; Ein Computerlernprogramm fuer Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, T.; Kruell, A.; Schmidt, R. [Universitaetskrankenhaus Eppendorf, Hamburg (Germany). Abt. fuer Strahlentherapie; Dobrucki, W.; Malys, B.; Box, W. [MultiMedia Lab., Inst. Hochschule-Wirtschaft Hamburg (Germany)

    1999-06-01

    Many textbooks about radiation therapy for the education of medical, technical and scientific staff are available. But they are restricted to transfer of knowledge via text and figures. On the other hand movies and animated pictures can give you a more realistic impression of the procedures and technical equipment of a radiation therapy department. Therefore, an interactive multimedia teaching program was developed at the Universitaets-Krankenhaus Eppendorf for the department of radiation therapy. The electronic textbook runs under `MS Windows 3.1 {sup trademark} ` (with multimedia extensions) and `MS Windows 95 {sup trademark} `, contains eight chapters and can be used without any preliminary knowledge. The program has been tested by medical personnel, nurses, physicists and physicians and was generally welcome. The program was designed for people with different levels of education to reach as many users as possible. It was not created to replace textbooks but was designed for their supplement. (orig.) [Deutsch] Zur Ausbildung von medizinischem technischem und wissenschaftlichem Personal im Bereich der Strahlentherapie steht eine Vielzahl von Lehrbuechern zur Verfuegung. Sie vermitteln Wissen nur in Form von Texten und Abbildungen. Filme und Animationen koennen hingegen die Arbeitsablaeufe und die Funktionsweise der Apparaturen einer Strahlentherapieabteilung anschaulich zeigen. Aus diesem Grund wurde am Universitaets-Krankenhaus Eppendorf ein interaktives multimedials Lernprogramm fuer die Abteilung fuer Strahlentherapie entwickelt. Das elektronische Buch ist unter `MS Windows 3.1 {sup trademark} ` (mit Multimedia-Erweiterungen) und `MS Windows 95 {sup trademark} ` lauffaehig, umfasst insgesamt acht Kapitel und kann ohne Vorkenntnisse benutzt werden. Das Programm ist von vielen MTA, Schwesternschuelerinnen, Krankenschwestern, Physikern und Aerzten getestet und durchweg positiv aufgenommen worden. Es wurde bewusst eine breit gefaechterte Zielgruppe gewaehlt, um

  18. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  19. Bulk density of an alfisol under cultivation systems in a long-term experiment evaluated with gamma ray computed tomography;Densidade de um planossolo sob sistemas de cultivo por meio da tomografia computadorizada de raios gama

    Energy Technology Data Exchange (ETDEWEB)

    Bamberg, Adilson Luis; Silva, Thiago Rech da, E-mail: adillbamberg@hotmail.co [Universidade Federal de Pelotas (UFPel), RS (Brazil). Faculdade de Agronomia Eliseu Maciel], E-mail: thiago_cccp@hotmail.com; Pauletto, Eloy Antonio; Pinto, Luiz Fernando Spinelli; Lima, Ana Claudia Rodrigues de, E-mail: pauletto@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Faculdade de Agronomia Eliseu Maciel. Dept. de Solos], E-mail: lfspin@ufpel.edu.b, E-mail: anacrlima@hotmail.co, E-mail: Gome, E-mail: Algenor da Silv, E-mail: algenor@cpact.embrapa.b [EMBRAPA, Pelotas, RS (Brazil). Centro de Pesquisa Agropecuaria Clima Temperado. Estacao Experimental Terras Baixas; Timm, Luis Carlos, E-mail: lctimm@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Faculdade de Agronomia Eliseu Maciel. Dept. de Engenharia Rural

    2009-09-15

    The sustainability of irrigated rice (Oryza sativa L.) in lowland soils is based on the use of crop rotation and succession, which are essential for the control of red and black rice. The effects on the soil properties deserve studies, particularly on soil compaction. The objective of this study was to identify compacted layers in an albaqualf under different cultivation and tillage systems, by evaluating the soil bulk density (Ds) with Gamma Ray Computed Tomography (TC). The analysis was carried out in a long-term experiment, from 1985 to 2004, at an experimental station of EMBRAPA Clima Temperado, Capao do Leao, RS, Brazil, in a random block design with seven treatments, with four replications (T1 - one year rice with conventional tillage followed by two years fallow; T2 - continuous rice under conventional tillage; T4 - rice and soybean (Glycine Max L.) rotation under conventional tillage; T5 - rice, soybean and corn (Zea maize L.) rotation under conventional tillage; T6 - rice under no-tillage in the summer in succession to rye-grass (Lolium multiflorum L.) in the winter; T7 - rice under no-tillage and soybean under conventional tillage rotation; T8 - control: uncultivated soil). The Gamma Ray Computed Tomography method did not identify compacted soil layers under no tillage rice in succession to rye-grass; two fallow years in the irrigated rice production system did not prevent the formation of a compacted layer at the soil surface; and in the rice, soybean and corn rotation under conventional tillage two compacted layers were identified (0.0 to 1.5 cm and 11 to 14 cm), indicating that they may restrict the agricultural production in this cultivation system on Albaqualf soils. (author)

  20. Estimating radiation effective doses from whole body computed tomography scans based on U.S. soldier patient height and weight

    Directory of Open Access Journals (Sweden)

    Quinn Brian

    2011-10-01

    Full Text Available Abstract Background The purpose of this study is to explore how a patient's height and weight can be used to predict the effective dose to a reference phantom with similar height and weight from a chest abdomen pelvis computed tomography scan when machine-based parameters are unknown. Since machine-based scanning parameters can be misplaced or lost, a predictive model will enable the medical professional to quantify a patient's cumulative radiation dose. Methods One hundred mathematical phantoms of varying heights and weights were defined within an x-ray Monte Carlo based software code in order to calculate organ absorbed doses and effective doses from a chest abdomen pelvis scan. Regression analysis was used to develop an effective dose predictive model. The regression model was experimentally verified using anthropomorphic phantoms and validated against a real patient population. Results Estimates of the effective doses as calculated by the predictive model were within 10% of the estimates of the effective doses using experimentally measured absorbed doses within the anthropomorphic phantoms. Comparisons of the patient population effective doses show that the predictive model is within 33% of current methods of estimating effective dose using machine-based parameters. Conclusions A patient's height and weight can be used to estimate the effective dose from a chest abdomen pelvis computed tomography scan. The presented predictive model can be used interchangeably with current effective dose estimating techniques that rely on computed tomography machine-based techniques.

  1. Directional radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, Jonathan L.

    2017-09-12

    Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.

  2. Radiation Dose to the Lens of the Eye from Computed Tomography Scans of the Head

    Science.gov (United States)

    Januzis, Natalie Ann

    While it is well known that exposure to radiation can result in cataract formation, questions still remain about the presence of a dose threshold in radiation cataractogenesis. Since the exposure history from diagnostic CT exams is well documented in a patient's medical record, the population of patients chronically exposed to radiation from head CT exams may be an interesting area to explore for further research in this area. However, there are some challenges in estimating lens dose from head CT exams. An accurate lens dosimetry model would have to account for differences in imaging protocols, differences in head size, and the use of any dose reduction methods. The overall objective of this dissertation was to develop a comprehensive method to estimate radiation dose to the lens of the eye for patients receiving CT scans of the head. This research is comprised of a physics component, in which a lens dosimetry model was derived for head CT, and a clinical component, which involved the application of that dosimetry model to patient data. The physics component includes experiments related to the physical measurement of the radiation dose to the lens by various types of dosimeters placed within anthropomorphic phantoms. These dosimeters include high-sensitivity MOSFETs, TLDs, and radiochromic film. The six anthropomorphic phantoms used in these experiments range in age from newborn to adult. First, the lens dose from five clinically relevant head CT protocols was measured in the anthropomorphic phantoms with MOSFET dosimeters on two state-of-the-art CT scanners. The volume CT dose index (CTDIvol), which is a standard CT output index, was compared to the measured lens doses. Phantom age-specific CTDIvol-to-lens dose conversion factors were derived using linear regression analysis. Since head size can vary among individuals of the same age, a method was derived to estimate the CTDIvol-to-lens dose conversion factor using the effective head diameter. These conversion

  3. Reduced radiation exposure for face transplant surgical planning computed tomography angiography.

    Directory of Open Access Journals (Sweden)

    Kurt Schultz

    Full Text Available OBJECTIVE: To test the hypothesis that wide area detector face transplant surgical planning CT angiograms with simulated lower radiation dose and iterative reconstruction (AIDR3D are comparable in image quality to those with standard tube current and filtered back projection (FBP reconstruction. MATERIALS AND METHODS: The sinograms from 320-detector row CT angiography of four clinical candidates for face transplantation were processed utilizing standard FBP, FBP with simulated 75, 62, and 50% tube current, and AIDR3D with corresponding dose reduction. Signal-to-noise ratio (SNR and contrast-to-noise ratio (CNR were measured at muscle, fat, artery, and vein. Image quality for each reconstruction strategy was assessed by two independent readers using a 4-point scale. RESULTS: Compared to FBP, the median SNR and CNR for AIDR3D images were higher at all sites for all 4 different tube currents. The AIDR3D with simulated 50% tube current achieved comparable SNR and CNR to FBP with standard dose (median muscle SNR: 5.77 vs. 6.23; fat SNR: 6.40 vs. 5.75; artery SNR: 43.8 vs. 45.0; vein SNR: 54.9 vs. 55.7; artery CNR: 38.1 vs. 38.6; vein CNR: 49.0 vs. 48.7; all p-values >0.19. The interobserver agreement in the image quality score was good (weighted κ = 0.7. The overall score and the scores for smaller arteries were significantly lower when FBP with 50% dose reduction was used. The AIDR3D reconstruction images with 4 different simulated doses achieved a mean score ranging from 3.68 to 3.82 that were comparable to the scores from images reconstructed using FBP with original dose (3.68-3.77. CONCLUSIONS: Simulated radiation dose reduction applied to clinical CT angiography for face transplant planning suggests that AIDR3D allows for a 50% reduction in radiation dose, as compared to FBP, while preserving image quality.

  4. Collimation and Image Quality of C-Arm Computed Tomography: Potential of Radiation Dose Reduction While Maintaining Equal Image Quality.

    Science.gov (United States)

    Werncke, Thomas; von Falck, Christian; Luepke, Matthias; Stamm, Georg; Wacker, Frank K; Meyer, Bernhard Christian

    2015-08-01

    The aim of this study was to assess the potential for radiation dose reduction in collimated C-arm computed tomography (CACT) while maintaining the image quality of the full field of view (FFOV) acquisition. A whole-body anthropomorphic phantom representing a 70-kg male was used in this study. The upper abdomen of the phantom was imaged using an angiographic system (Artis Zeego Q; Siemens Healthcare, Germany) with either the standard detector radiation dose level (RDL; D100, 360 nGy) or 14 experimental reduced RDLs ranging from 95% (D95, 342 nGy) to 30% D100 (D30, 108 nGy). Either the FFOV (craniocaudal coverage, 18 cm) or a collimated field of view (CFOV; craniocaudal coverage, 6 cm) was applied. The organ dose was measured using thermoluminescence detector dosimetry, and the mean effective dose was computed according to the recommendations by the International Commission on Radiological Protection Publication 103. To compare the CFOV and the FFOV data sets, image quality was assessed in terms of high- and low-contrast resolution by calculating the modulation transfer function using the wire method as well as the image noise, signal-to-noise ratio, and contrast-to-noise ratio using a low-contrast insert placed in the upper abdomen (Δ50 HU). Collimated imaging (CFOV) covering 33% of the FFOV led to an increase in the x-ray tube output of 152% for CFOV (D100; FFOV, 95.5 mGy; CFOV, 147.7 mGy) to maintain the detector dose. The mean effective dose of D100 was 6.0 mSv (male) and 6.2 mSv (female) for the FFOV and 3.7 mSv (male) and 4.1 mSv (female) for the CFOV. High-contrast resolution was comparable for all acquisition protocols (mean 10% modulation transfer function ± 95% confidence interval; FFOV, 8.8 ± 0.1 line pairs/cm; CFOV, 8.8 ± 0.1 line pairs/cm). Low-contrast resolution was superior for the CFOV compared with that for the FFOV for each RDL (D100; image noise: FFOV, 34 ± 2 HU; CFOV, 22 ± 1 HU; contrast-to-noise ratio: FFOV, 1.3 ± 0.2; CFOV, 1.8 ± 0

  5. Computation of Effective Radiative Properties of Powders for Selective Laser Sintering Simulations

    Science.gov (United States)

    Moser, Daniel; Pannala, Sreekanth; Murthy, Jayathi

    2015-05-01

    Selective laser sintering (SLS) is an additive manufacturing technique for rapidly creating parts directly from a computer-aided design (CAD) model by using a laser to fuse successive layers of powder. However, better understanding of the effect of particle-level variations on the overall build quality is needed. In this work, we investigated these effects computationally by considering the role of the particle size distribution and variations in the powder bed depth to mimic the part complexity found in overhangs and protrusions. In addition, the results from these studies can be distilled to obtain better effective material properties such as laser absorptivity and laser extinction coefficient that are needed for continuum models of the process. We implement a Monte Carlo ray-tracing algorithm within the discrete element model in the open-source simulation software MFiX. Random, loose-packed, particle bed structures are generated, and effective absorptivity and extinction coefficients are calculated. Results are compared against previous computational and experimental measurements for free, monodisperse, and deep powder beds, with good agreement being obtained. Correlations along with uncertainties are developed to allow the effective absorptivity and extinction coefficient as a function of various particle and operational parameters to be accurately set in SLS macroscale models.

  6. Radiation dose reduction in computed tomography (CT) using a new implementation of wavelet denoising in low tube current acquisitions

    Science.gov (United States)

    Tao, Yinghua; Brunner, Stephen; Tang, Jie; Speidel, Michael; Rowley, Howard; VanLysel, Michael; Chen, Guang-Hong

    2011-03-01

    Radiation dose reduction remains at the forefront of research in computed tomography. X-ray tube parameters such as tube current can be lowered to reduce dose; however, images become prohibitively noisy when the tube current is too low. Wavelet denoising is one of many noise reduction techniques. However, traditional wavelet techniques have the tendency to create an artificial noise texture, due to the nonuniform denoising across the image, which is undesirable from a diagnostic perspective. This work presents a new implementation of wavelet denoising that is able to achieve noise reduction, while still preserving spatial resolution. Further, the proposed method has the potential to improve those unnatural noise textures. The technique was tested on both phantom and animal datasets (Catphan phantom and timeresolved swine heart scan) acquired on a GE Discovery VCT scanner. A number of tube currents were used to investigate the potential for dose reduction.

  7. MILDOS - A Computer Program for Calculating Environmental Radiation Doses from Uranium Recovery Operations

    Energy Technology Data Exchange (ETDEWEB)

    Strange, D. L.; Bander, T. J.

    1981-04-01

    The MILDOS Computer Code estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This code is multi-purposed and can be used to evaluate population doses for NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. Emissions of radioactive materials from fixed point source locations and from area sources are modeled using a sector-averaged Gaussian plume dispersion model, which utilizes user-provided wind frequency data. Mechanisms such as deposition of particulates, resuspension. radioactive decay and ingrowth of daughter radionuclides are included in the transport model. Annual average air concentrations are computed, from which subsequent impacts to humans through various pathways are computed. Ground surface concentrations are estimated from deposition buildup and ingrowth of radioactive daughters. The surface concentrations are modified by radioactive decay, weathering and other environmental processes. The MILDOS Computer Code allows the user to vary the emission sources as a step function of time by adjustinq the emission rates. which includes shutting them off completely. Thus the results of a computer run can be made to reflect changing processes throughout the facility's operational lifetime. The pathways considered for individual dose commitments and for population impacts are: • Inhalation • External exposure from ground concentrations • External exposure from cloud immersion • Ingestioo of vegetables • Ingestion of meat • Ingestion of milk • Dose commitments are calculated using dose conversion factors, which are ultimately based

  8. Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform.

    Science.gov (United States)

    Nazareth, Daryl P; Brunner, Stephen; Jones, Matthew D; Malhotra, Harish K; Bakhtiari, Mohammad

    2009-07-01

    Planning intensity modulated radiation therapy (IMRT) treatment involves selection of several angle parameters as well as specification of structures and constraints employed in the optimization process. Including these parameters in the combinatorial search space vastly increases the computational burden, and therefore the parameter selection is normally performed manually by a clinician, based on clinical experience. We have investigated the use of a genetic algorithm (GA) and distributed-computing platform to optimize the gantry angle parameters and provide insight into additional structures, which may be necessary, in the dose optimization process to produce optimal IMRT treatment plans. For an IMRT prostate patient, we produced the first generation of 40 samples, each of five gantry angles, by selecting from a uniform random distribution, subject to certain adjacency and opposition constraints. Dose optimization was performed by distributing the 40-plan workload over several machines running a commercial treatment planning system. A score was assigned to each resulting plan, based on how well it satisfied clinically-relevant constraints. The second generation of 40 samples was produced by combining the highest-scoring samples using techniques of crossover and mutation. The process was repeated until the sixth generation, and the results compared with a clinical (equally-spaced) gantry angle configuration. In the sixth generation, 34 of the 40 GA samples achieved better scores than the clinical plan, with the best plan showing an improvement of 84%. Moreover, the resulting configuration of beam angles tended to cluster toward the patient's sides, indicating where the inclusion of additional structures in the dose optimization process may avoid dose hot spots. Additional parameter selection in IMRT leads to a large-scale computational problem. We have demonstrated that the GA combined with a distributed-computing platform can be applied to optimize gantry angle

  9. Image Registration of Cone-Beam Computer Tomography and Preprocedural Computer Tomography Aids in Localization of Adrenal Veins and Decreasing Radiation Dose in Adrenal Vein Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Busser, Wendy M. H., E-mail: wendy.busser@radboudumc.nl; Arntz, Mark J.; Jenniskens, Sjoerd F. M. [Radboud University Medical Center, Department of Radiology, Section of Interventional Radiology (Netherlands); Deinum, Jaap [Radboud University Medical Center, Department of General Internal Medicine (Netherlands); Hoogeveen, Yvonne L.; Lange, Frank de; Schultze Kool, Leo J. [Radboud University Medical Center, Department of Radiology, Section of Interventional Radiology (Netherlands)

    2015-08-15

    PurposeWe assessed whether image registration of cone-beam computed tomography (CT) (CBCT) and contrast-enhanced CT (CE-CT) images indicating the locations of the adrenal veins can aid in increasing the success rate of first-attempts adrenal vein sampling (AVS) and therefore decreasing patient radiation dose.Materials and Methods CBCT scans were acquired in the interventional suite (Philips Allura Xper FD20) and rigidly registered to the vertebra in previously acquired CE-CT. Adrenal vein locations were marked on the CT image and superimposed with live fluoroscopy and digital-subtraction angiography (DSA) to guide the AVS. Seventeen first attempts at AVS were performed with image registration and retrospectively compared with 15 first attempts without image registration performed earlier by the same 2 interventional radiologists. First-attempt AVS was considered successful when both adrenal vein samples showed representative cortisol levels. Sampling time, dose-area product (DAP), number of DSA runs, fluoroscopy time, and skin dose were recorded.ResultsWithout image registration, the first attempt at sampling was successful in 8 of 15 procedures indicating a success rate of 53.3 %. This increased to 76.5 % (13 of 17) by adding CBCT and CE-CT image registration to AVS procedures (p = 0.266). DAP values (p = 0.001) and DSA runs (p = 0.026) decreased significantly by adding image registration guidance. Sampling and fluoroscopy times and skin dose showed no significant changes.ConclusionGuidance based on registration of CBCT and previously acquired diagnostic CE-CT can aid in enhancing localization of the adrenal veins thereby increasing the success rate of first-attempt AVS with a significant decrease in the number of used DSA runs and, consequently, radiation dose required.

  10. High Atomic Number Contrast Media Offer Potential for Radiation Dose Reduction in Contrast-Enhanced Computed Tomography.

    Science.gov (United States)

    Roessler, Ann-Christin; Hupfer, Martin; Kolditz, Daniel; Jost, Gregor; Pietsch, Hubertus; Kalender, Willi A

    2016-04-01

    Spectral optimization of x-ray computed tomography (CT) has led to substantial radiation dose reduction in contrast-enhanced CT studies using standard iodinated contrast media. The purpose of this study was to analyze the potential for further dose reduction using high-atomic-number elements such as hafnium and tungsten. As in previous studies, spectra were determined for which the patient dose necessary to provide a given contrast-to-noise ratio (CNR) is minimized. We used 2 different quasi-anthropomorphic phantoms representing the liver cross-section of a normal adult and an obese adult patient with the lateral widths of 360 and 460 mm and anterior-posterior heights of 200 and 300 mm, respectively. We simulated and measured on 2 different scanners with x-ray spectra from 80 to 140 kV and from 70 to 150 kV, respectively. We determined the contrast for iodine-, hafnium-, and tungsten-based contrast media, the noise, and 3-dimensional dose distributions at all available tube voltages by measurements and by simulations. The dose-weighted CNR was determined as optimization parameter. Simulations and measurements were in good agreement regarding their dependence on energy for all parameters investigated. Hafnium provided the best performance for normal and for obese patient phantoms, indicating a dose reduction potential of 30% for normal and 50% for obese patients at 120 kV compared with iodine; this advantage increased further with higher kV values. Dose-weighted CNR values for tungsten were always slightly below the hafnium results. Iodine proved to be the superior choice at voltage values of 80 kV and below. Hafnium and tungsten both seem to be candidates for contrast-medium-enhanced CT of normal and obese adult patients with strongly reduced radiation dose at unimpaired image quality. Computed tomography examinations of obese patients will decrease in dose for higher kV values.

  11. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    symplasmic pathway from mesophyll to sieve elements. Crucial for the driving force is the question where water enters the pre-phloem pathway. Surprisingly, the role of PD in water movement has not been addressed so far appropriately. Modeling of assimilate and water fluxes indicates that in symplasmic...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...

  12. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar...

  13. Micromegas in a bulk

    CERN Document Server

    Giomataris, Ioanis; Andriamonje, Samuel A; Aune, S; Charpak, Georges; Colas, P; Giganon, Arnaud; Rebourgeard, P C; Salin, P; Rebourgeard, Ph.

    2006-01-01

    In this paper we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the PCB (Printed Circuit Board) technology is employed to produce the entire sensitive detector. Such fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it extremely attractive for several applications ranging from particle physics and astrophysics to medicine

  14. Micromegas in a bulk

    Energy Technology Data Exchange (ETDEWEB)

    Giomataris, I. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France)]. E-mail: ioa@hep.saclay.cea.fr; De Oliveira, R. [CERN, Geneva (Switzerland); Andriamonje, S. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Aune, S. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Charpak, G. [CERN, Geneva (Switzerland); Colas, P. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Fanourakis, G. [Institute of Nuclear Physcis, NCSR Demokritos, Aghia Paraskevi 15310 (Greece); Ferrer, E. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Giganon, A. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Rebourgeard, Ph. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Salin, P. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France)

    2006-05-10

    In this paper, we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the Printed Circuit Board (PCB) technology is employed to produce the entire sensitive detector. Such a fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it attractive for several applications ranging from particle physics and astrophysics to medicine.

  15. Computation of Domain-Averaged Shortwave Irradiance by a One-Dimensional Algorithm Incorporating Correlations between Optical Thickness and Direct Incident Radiation

    Science.gov (United States)

    Kato, S.

    2003-01-01

    A one-dimensional radiative transfer algorithm that accounts for correlations between the optical thickness and the incident direct solar radiation is developed to compute the domain-averaged shortwave irradiance profile. It divides the direct irradiance into four components and treats the direct irradiance in two separate, clear and cloudy columns to account for the fact that clouds attenuate the direct irradiance more than clear-sky. The horizontal inhomogeneity of clouds in the cloudy column is treated by the gamma weighted two-stream approximation, which assumes that the optical thickness of clouds follows a gamma distribution. The algorithm inputs the cloud fraction, cumulative cloud fraction as a function of height, and a parameter expressing the shape of the probability density function of the cloud optical thickness distribution in addition to inputs required for a two-stream radiative transfer model. These cloud property inputs can be obtained using ground- and satellite-based instruments. Therefore, the algorithm can treat realistic cloud overlap features and horizontal inhomogeneity of clouds in a framework of one- dimensional radiative transfer. Heating rates computed by the algorithm using cloud fields generated by cloud resolving models agree with those computed with a Monte Carlo model. If optical properties in computational layers that divide a vertically extensive cloud are correlated, the irradiance profile computed by the algorithm further improves.

  16. Enhanced bulk polysilicon production using silicon tubes

    Science.gov (United States)

    Jafri, Ijaz; Chandra, Mohan; Zhang, Hui; Prasad, Vish; Reddy, Chandra; Amato-Wierda, Carmela; Landry, Marc; Ciszek, Ted

    2001-05-01

    A novel technique using silicon tubes for the production of bulk polysilicon via chemical vapor deposition is presented. Our experimental studies with a model reactor indicate that the polysilicon growth inside the silicon tube (15.3 g) exceeds that of the calculated polysilicon growth on silicon slim rods (4.3 g) over 55 h of deposition time. A computational model is also being developed to simulate the growth rates of the model reactor. Preliminary computational results from this model show a slightly asymmetric temperature distribution at the reactor center line with a 1000 sccm argon flow at 850°C reactor temperature. Both these experimental and computational modeling studies have identified key criteria for the prototype reactor being designed for bulk polysilicon growth.

  17. Development of computational pregnant female and fetus models and assessment of radiation dose from positron-emitting tracers.

    Science.gov (United States)

    Xie, Tianwu; Zaidi, Habib

    2016-12-01

    Molecular imaging using PET and hybrid (PET/CT and PET/MR) modalities nowadays plays a pivotal role in the clinical setting for diagnosis and staging, treatment response monitoring, and radiation therapy treatment planning of a wide range of oncologic malignancies. The developing embryo/fetus presents a high sensitivity to ionizing radiation. Therefore, estimation of the radiation dose delivered to the embryo/fetus and pregnant patients from PET examinations to assess potential radiation risks is highly praised. We constructed eight embryo/fetus models at various gestation periods with 25 identified tissues according to reference data recommended by the ICRP publication 89 representing the anatomy of the developing embryo/fetus. The developed embryo/fetus models were integrated into realistic anthropomorphic computational phantoms of the pregnant female and used for estimating, using Monte Carlo calculations, S-values of common positron-emitting radionuclides, organ absorbed dose, and effective dose of a number of positron-emitting labeled radiotracers. The absorbed dose is nonuniformly distributed in the fetus. The absorbed dose of the kidney and liver of the 8-week-old fetus are about 47.45 % and 44.76 % higher than the average absorbed dose of the fetal total body for all investigated radiotracers. For 18F-FDG, the fetal effective doses are 2.90E-02, 3.09E-02, 1.79E-02, 1.59E-02, 1.47E-02, 1.40E-02, 1.37E-02, and 1.27E-02 mSv/MBq at the 8th, 10th, 15th, 20th, 25th, 30th, 35th, and 38th weeks of gestation, respectively. The developed pregnant female/fetus models matching the ICRP reference data can be exploited by dedicated software packages for internal and external dose calculations. The generated S-values will be useful to produce new standardized dose estimates to pregnant patients and embryo/fetus from a variety of positron-emitting labeled radiotracers.

  18. Development of computational pregnant female and fetus models and assessment of radiation dose from positron-emitting tracers

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland); Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland); University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Southern Denmark, Department of Nuclear Medicine, Odense (Denmark)

    2016-12-15

    Molecular imaging using PET and hybrid (PET/CT and PET/MR) modalities nowadays plays a pivotal role in the clinical setting for diagnosis and staging, treatment response monitoring, and radiation therapy treatment planning of a wide range of oncologic malignancies. The developing embryo/fetus presents a high sensitivity to ionizing radiation. Therefore, estimation of the radiation dose delivered to the embryo/fetus and pregnant patients from PET examinations to assess potential radiation risks is highly praised. We constructed eight embryo/fetus models at various gestation periods with 25 identified tissues according to reference data recommended by the ICRP publication 89 representing the anatomy of the developing embryo/fetus. The developed embryo/fetus models were integrated into realistic anthropomorphic computational phantoms of the pregnant female and used for estimating, using Monte Carlo calculations, S-values of common positron-emitting radionuclides, organ absorbed dose, and effective dose of a number of positron-emitting labeled radiotracers. The absorbed dose is nonuniformly distributed in the fetus. The absorbed dose of the kidney and liver of the 8-week-old fetus are about 47.45 % and 44.76 % higher than the average absorbed dose of the fetal total body for all investigated radiotracers. For {sup 18}F-FDG, the fetal effective doses are 2.90E-02, 3.09E-02, 1.79E-02, 1.59E-02, 1.47E-02, 1.40E-02, 1.37E-02, and 1.27E-02 mSv/MBq at the 8th, 10th, 15th, 20th, 25th, 30th, 35th, and 38th weeks of gestation, respectively. The developed pregnant female/fetus models matching the ICRP reference data can be exploited by dedicated software packages for internal and external dose calculations. The generated S-values will be useful to produce new standardized dose estimates to pregnant patients and embryo/fetus from a variety of positron-emitting labeled radiotracers. (orig.)

  19. Early Assessment of Treatment Responses During Radiation Therapy for Lung Cancer Using Quantitative Analysis of Daily Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Jijo; Yang, Cungeng [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Wu, Hui [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou (China); Tai, An [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Dalah, Entesar [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah (United Arab Emirates); Zheng, Cheng [Biostatistics, Joseph. J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (United States); Johnstone, Candice [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Kong, Feng-Ming [Department of Radiation Oncology, Indiana University, Indianapolis, Indiana (United States); Gore, Elizabeth [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2017-06-01

    Purpose: To investigate early tumor and normal tissue responses during the course of radiation therapy (RT) for lung cancer using quantitative analysis of daily computed tomography (CT) scans. Methods and Materials: Daily diagnostic-quality CT scans acquired using CT-on-rails during CT-guided RT for 20 lung cancer patients were quantitatively analyzed. On each daily CT set, the contours of the gross tumor volume (GTV) and lungs were generated and the radiation dose delivered was reconstructed. The changes in CT image intensity (Hounsfield unit [HU]) features in the GTV and the multiple normal lung tissue shells around the GTV were extracted from the daily CT scans. The associations between the changes in the mean HUs, GTV, accumulated dose during RT delivery, and patient survival rate were analyzed. Results: During the RT course, radiation can induce substantial changes in the HU histogram features on the daily CT scans, with reductions in the GTV mean HUs (dH) observed in the range of 11 to 48 HU (median 30). The dH is statistically related to the accumulated GTV dose (R{sup 2} > 0.99) and correlates weakly with the change in GTV (R{sup 2} = 0.3481). Statistically significant increases in patient survival rates (P=.038) were observed for patients with a higher dH in the GTV. In the normal lung, the 4 regions proximal to the GTV showed statistically significant (P<.001) HU reductions from the first to last fraction. Conclusion: Quantitative analysis of the daily CT scans indicated that the mean HUs in lung tumor and surrounding normal tissue were reduced during RT delivery. This reduction was observed in the early phase of the treatment, is patient specific, and correlated with the delivered dose. A larger HU reduction in the GTV correlated significantly with greater patient survival. The changes in daily CT features, such as the mean HU, can be used for early assessment of the radiation response during RT delivery for lung cancer.

  20. Longitudinal assessment of carotid atherosclerosis after Radiation Therapy using Computed Tomography: A case control Study

    Energy Technology Data Exchange (ETDEWEB)

    Anzidei, Michele [Rome Univ. ' ' La Sapienza' ' (Italy). Dept. of Radiology; Suri, Jasjit S.; Piga, Mario [AtheroPoint TM LLC, Roseville, CA (United States). Monitoring and Diagnostic Div.; Global Biomedical Technologies, Inc., CA (United States). Point of Care Devices; Idaho Univ., Moscow, ID (United States). Electrical Engineering Dept.; Saba, Luca [Azienda Ospedaliero Universitaria (A.O.U.), Cagliari (Italy). Dept. of Radiology; Sanfilippo, Roberto; Montisci, Roberto [Azienda Ospedaliero Universitaria (A.O.U.), Cagliari (Italy). Dept. of Vascular Surgery; Laddeo, Giancarlo [New York Univ. Langone Medical Center, New York, NY (United States). Dept. of Radiology; Argiolas, Giovanni Maria [Azienda Ospedaliera Brotzu, Cagliari (Italy). Dept. of Radiology; Raz, Eytan [Rome Univ. ' ' La Sapienza' ' (Italy). Dept. of Radiology; New York Univ. Langone Medical Center, New York, NY (United States). Dept. of Radiology

    2016-01-15

    To study the carotid artery plaque composition and its volume changes in a group of patients at baseline and 2 years after head and neck radiation therapy treatment (HNXRT). In this retrospective study, 62 patients (41 males; mean age 63 years; range 52-81) who underwent HNXRT and 40 patients (24 males; mean age 65) who underwent surgical resection of neoplasm and did not undergo HNXRT were assessed, with 2-year follow-up. The carotid artery plaque volumes, as well as the volume of the sub-components (fatty-mixed-calcified), were semiautomatically quantified. Mann-Whitney and Wilcoxon tests were used to test the hypothesis. In the HNXRT group, there was a statistically significant increase in the total volume of the carotid artery plaques (from 533 to 746 mm{sup 3}; p = 0.001), in the fatty plaques (103 vs. 202 mm{sup 3}; p = 0.001) and mixed plaque component volume (328 vs. 419 mm{sup 3}; p = 0.034). A statistically significant variation (from 21.8 % to 27.6 %) in the percentage of the fatty tissue was found. of this preliminary study suggest that HNXRT promotes increased carotid artery plaque volume, particularly the fatty plaque component. (orig.)

  1. AITRAC: Augmented Interactive Transient Radiation Analysis by Computer. User's information manual

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    AITRAC is a program designed for on-line, interactive, DC, and transient analysis of electronic circuits. The program solves linear and nonlinear simultaneous equations which characterize the mathematical models used to predict circuit response. The program features 100 external node--200 branch capability; conversional, free-format input language; built-in junction, FET, MOS, and switch models; sparse matrix algorithm with extended-precision H matrix and T vector calculations, for fast and accurate execution; linear transconductances: beta, GM, MU, ZM; accurate and fast radiation effects analysis; special interface for user-defined equations; selective control of multiple outputs; graphical outputs in wide and narrow formats; and on-line parameter modification capability. The user describes the problem by entering the circuit topology and part parameters. The program then automatically generates and solves the circuit equations, providing the user with printed or plotted output. The circuit topology and/or part values may then be changed by the user, and a new analysis, requested. Circuit descriptions may be saved on disk files for storage and later use. The program contains built-in standard models for resistors, voltage and current sources, capacitors, inductors including mutual couplings, switches, junction diodes and transistors, FETS, and MOS devices. Nonstandard models may be constructed from standard models or by using the special equations interface. Time functions may be described by straight-line segments or by sine, damped sine, and exponential functions. 42 figures, 1 table. (RWR)

  2. Computing the far field scattered or radiated by objects inside layered fluid media using approximate Green's functions.

    Science.gov (United States)

    Zampolli, Mario; Tesei, Alessandra; Canepa, Gaetano; Godin, Oleg A

    2008-06-01

    A numerically efficient technique is presented for computing the field radiated or scattered from three-dimensional objects embedded within layered acoustic media. The distance between the receivers and the object of interest is supposed to be large compared to the acoustic wavelength. The method requires the pressure and normal particle displacement on the surface of the object or on an arbitrary circumscribing surface, as an input, together with a knowledge of the layered medium Green's functions. The numerical integration of the full wave number spectral representation of the Green's functions is avoided by employing approximate formulas which are available in terms of elementary functions. The pressure and normal particle displacement on the surface of the object of interest, on the other hand, may be known by analytical or numerical means or from experiments. No restrictions are placed on the location of the object, which may lie above, below, or across the interface between the fluid media. The proposed technique is verified through numerical examples, for which the near field pressure and the particle displacement are computed via a finite-element method. The results are compared to validated reference models, which are based on the full wave number spectral integral Green's function.

  3. Radiation doses in cone-beam breast computed tomography: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yi Ying; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Shen Youtao; Liu Xinming; Ge Shuaiping; You Zhicheng; Wang Tianpeng; Shaw, Chris C. [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2011-02-15

    Purpose: In this article, we describe a method to estimate the spatial dose variation, average dose and mean glandular dose (MGD) for a real breast using Monte Carlo simulation based on cone beam breast computed tomography (CBBCT) images. We present and discuss the dose estimation results for 19 mastectomy breast specimens, 4 homogeneous breast models, 6 ellipsoidal phantoms, and 6 cylindrical phantoms. Methods: To validate the Monte Carlo method for dose estimation in CBBCT, we compared the Monte Carlo dose estimates with the thermoluminescent dosimeter measurements at various radial positions in two polycarbonate cylinders (11- and 15-cm in diameter). Cone-beam computed tomography (CBCT) images of 19 mastectomy breast specimens, obtained with a bench-top experimental scanner, were segmented and used to construct 19 structured breast models. Monte Carlo simulation of CBBCT with these models was performed and used to estimate the point doses, average doses, and mean glandular doses for unit open air exposure at the iso-center. Mass based glandularity values were computed and used to investigate their effects on the average doses as well as the mean glandular doses. Average doses for 4 homogeneous breast models were estimated and compared to those of the corresponding structured breast models to investigate the effect of tissue structures. Average doses for ellipsoidal and cylindrical digital phantoms of identical diameter and height were also estimated for various glandularity values and compared with those for the structured breast models. Results: The absorbed dose maps for structured breast models show that doses in the glandular tissue were higher than those in the nearby adipose tissue. Estimated average doses for the homogeneous breast models were almost identical to those for the structured breast models (p=1). Normalized average doses estimated for the ellipsoidal phantoms were similar to those for the structured breast models (root mean square (rms

  4. Improving radiation awareness and feeling of personal security of non-radiological medical staff by implementing a traffic light system in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Heilmaier, C.; Mayor, A.; Zuber, N.; Weishaupt, D. [Stadtspital Triemli, Zurich (Switzerland). Dept. of Radiology; Fodor, P. [Stadtspital Triemli, Zurich (Switzerland). Dept. of Anesthesiology and Intensive Care Medicine

    2016-03-15

    Non-radiological medical professionals often need to remain in the scanning room during computed tomography (CT) examinations to supervise patients in critical condition. Independent of protective devices, their position significantly influences the radiation dose they receive. The purpose of this study was to assess if a traffic light system indicating areas of different radiation exposure improves non-radiological medical staff's radiation awareness and feeling of personal security. Phantom measurements were performed to define areas of different dose rates and colored stickers were applied on the floor according to a traffic light system: green = lowest, orange = intermediate, and red = highest possible radiation exposure. Non-radiological medical professionals with different years of working experience evaluated the system using a structured questionnaire. Kruskal-Wallis and Spearman's correlation test were applied for statistical analysis. Fifty-six subjects (30 physicians, 26 nursing staff) took part in this prospective study. Overall rating of the system was very good, and almost all professionals tried to stand in the green stickers during the scan. The system significantly increased radiation awareness and feeling of personal protection particularly in staff with ? 5 years of working experience (p < 0.05). The majority of non-radiological medical professionals stated that staying in the green stickers and patient care would be compatible. Knowledge of radiation protection was poor in all groups, especially among entry-level employees (p < 0.05). A traffic light system in the CT scanning room indicating areas with lowest, in-termediate, and highest possible radiation exposure is much appreciated. It increases radiation awareness, improves the sense of personal radiation protection, and may support endeavors to lower occupational radiation exposure, although the best radiation protection always is to re-main outside the CT room during the scan.

  5. Computer simulation of protein solvation, hydrophobic mapping, and the oxygen effect in radiation biology

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, L.R.; Garcia, A.E.; Hummer, G. [and others

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory. Hydrophobic effects are central to the structural stability of biomolecules, particularly proteins, in solution but are not understood at a molecular level. This project developed a new theoretical approach to calculation of hydrophobic effects. This information theory approach can be implemented with experimental, including computer simulation-experimental, information. The new theory is consistent with, builds upon, and subsumes previous integral equation and scaled particle statistical thermodynamic modes of hydrophobic effects. the new theory is sufficiently simple to permit application directly to complex biomolecules in solution and to permit further expansion to incorporate more subtle effects.

  6. Radiative corrections, quasi-Monte Carlo methods and discrepancy. Computational aspects of high energy phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Hoogland, J.K.

    1996-10-18

    In this thesis we looked at the computation of six-fermion processes at LEP2, e.g., the process e{sup -}e{sup +}{yields}e{sup -} anti {nu}{sub e}u anti d. A good numerical estimate of these processes is necessary to improve on the measurement of the W-mass. These processes contain Feynman-diagrams with propagating Z and W`s, which are massive and have a non-negligible width, i.e., they can decay into other particles. The effect of these widths in cross-sections can be taken into account, but one has to be very careful not to break the gauge invariance of the theory as this would lead in this case to huge errors in the numerical results. (orig./WL).

  7. Reduction of radiation exposure and improvement of image quality with BMI-adapted prospective cardiac computed tomography and iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Hosch, Waldemar, E-mail: waldemar.hosch@med.uni-heidelberg.de [University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Stiller, Wolfram [University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Mueller, Dirk [Philips GmbH Healthcare Division, Hamburg (Germany); Gitsioudis, Gitsios [University of Heidelberg, Department of Cardiology, Heidelberg (Germany); Welzel, Johanna; Dadrich, Monika [University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Buss, Sebastian J.; Giannitsis, Evangelos [University of Heidelberg, Department of Cardiology, Heidelberg (Germany); Kauczor, Hans U. [University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Katus, Hugo A. [University of Heidelberg, Department of Cardiology, Heidelberg (Germany); Korosoglou, Grigorios, E-mail: gkorosoglou@hotmail.com [University of Heidelberg, Department of Cardiology, Heidelberg (Germany)

    2012-11-15

    Purpose: To assess the impact of body mass index (BMI)-adapted protocols and iterative reconstruction algorithms (iDose) on patient radiation exposure and image quality in patients undergoing prospective ECG-triggered 256-slice coronary computed tomography angiography (CCTA). Methods: Image quality and radiation exposure were systematically analyzed in 100 patients. 60 Patients underwent prospective ECG-triggered CCTA using a non-tailored protocol and served as a 'control' group (Group 1: 120 kV, 200 mA s). 40 Consecutive patients with suspected coronary artery disease (CAD) underwent prospective CCTA, using BMI-adapted tube voltage and standard (Group 2: 100/120 kV, 100-200 mA s) versus reduced tube current (Group 3: 100/120 kV, 75-150 mA s). Iterative reconstructions were provided with different iDose levels and were compared to filtered back projection (FBP) reconstructions. Image quality was assessed in consensus of 2 experienced observers and using a 5-grade scale (1 = best to 5 = worse), and signal- and contrast-to-noise ratios (SNR and CNR) were quantified. Results: CCTA was performed without adverse events in all patients (n = 100, heart rate of 47-87 bpm and BMI of 19-38 kg/m{sup 2}). Patients examined using the non-tailored protocol in Group 1 had the highest radiation exposure (3.2 {+-} 0.4 mSv), followed by Group 2 (1.7 {+-} 0.7 mSv) and Group 3 (1.2 {+-} 0.6 mSv) (radiation savings of 47% and 63%, respectively, p < 0.001). Iterative reconstructions provided increased SNR and CNR, particularly when higher iDose level 5 was applied with Multi-Frequency reconstruction (iDose5 MFR) (14.1 {+-} 4.6 versus 21.2 {+-} 7.3 for SNR and 12.0 {+-} 4.2 versus 18.1 {+-} 6.6 for CNR, for FBP versus iDose5 MFR, respectively, p < 0.001). The combination of BMI adaptation with iterative reconstruction reduced radiation exposure and simultaneously improved image quality (subjective image quality of 1.4 {+-} 0.4 versus 1.9 {+-} 0.5 for Group 2 reconstructed using

  8. Comparative of radiation dose and image quality of Conventional Multislice Computed Tomography (MSCT, Cone-Beam CT (CBCT and periapical radiography in dental imaging

    Directory of Open Access Journals (Sweden)

    Nasrollah Jabbari

    2016-03-01

    Full Text Available Background and Aims: With the increasing use of CT (Computed Tomoghraphy scans in dentistry especially in the implantology, there may be significant increases in the radiation exposure and its risk. During the last year’s ConeBeam Computed Tomoghraphy (CBCT has been introduced as an imaging modality for dentistry. The aim of this review article was to present comprehensive information have been published, regarding the  radiation dose and image quality of Conventional Multislice Computed Tomography (MSCT, Cone-Beam CT (CBCT and periapical radiography in dentistry imaging. Materials and Methods: A review of the literature was carried out in PubMed, Google Scholar, Science Direct and Scopus database using key words (CBCT, MSCT, periapical radiography, radiation dose of dentistry and image quality. These searches were limited to the articles published between the years of 1993 to 2015. Conclusion: In comparison to MSCT, CBCT had a short scanning times and lower radiation dose, but in comparison to periapical radiography, CBCT had higher radiation dose. In contrast, CBCT with flat panel detector had higher spatial resolution to MSCT. The periapical radiography also had a good image contrast and relatively high resolution. Generally, CBCT was suitable for hard tissue imaging and MSCT was preferred for soft tissue imaging.

  9. Cone-beam computed tomography in lung stereotactic ablative radiation therapy: predictive parameters of early response.

    Science.gov (United States)

    Mazzola, Rosario; Fiorentino, Alba; Ricchetti, Francesco; Giaj Levra, Niccolò; Fersino, Sergio; Di Paola, Gioacchino; Lo Casto, Antonio; Ruggieri, Ruggero; Alongi, Filippo

    2016-06-20

    To analyze lung lesion volume variations by contouring on cone-beam CT (CBCT) images to evaluate the early predictive parameters of stereotactic ablative radiation therapy (SABR) treatment response. The prescribed dose of SABR was varied according to the tumour site (central or peripheral) and maximum diameter of the lesions by using a strategy of risk-adapted dose prescription with a dose range between 48 and 70 Gy in 3-10 consecutive fractions. For the purpose of the analysis, the gross tumour volume (GTV) was recontoured for each patient at first and last CBCT using two lung levels/windows: (a) -600/1000 HU and (b) -1000/250 HU. Univariate analysis was performed to evaluate a correlation between lung lesion variations on CBCT using the two levels/windows and treatment response 6 months after SABR. Independent variables were the number of fractions, time between initial and final fraction, biologically effective dose and pre-SABR GTV. Cut points of lesion volume reduction were evaluated to determine the correlation with complete response 6 months after SABR. 41 lung lesions were evaluated. 82 lung lesions were recontoured for each CBCT level/window. A lung lesion shrinkage of at least 20% was revealed to be statistically related to complete response 6 months after SABR for both the CBCT levels/windows used. The probability of complete response ranged between six and eight times higher in respect to CBCT levels/windows -600/1000 HU and -1000/250 HU, respectively, compared with patients without a lesion shrinkage of 20% at the last session of SABR. According to current findings, a lung lesion shrinkage of at least 20% at the last session of SABR could be predictable of complete response 6 months thereafter. Further investigations about this topic are needed. Prediction of the early tumour response could be useful to personalize imaging restaging after the completion of SABR or to incorporate additional therapies in case of poor responders to improve

  10. Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks

    Science.gov (United States)

    Alvarenga de Moura Meneses, Anderson; Giusti, Alessandro; de Almeida, André Pereira; Parreira Nogueira, Liebert; Braz, Delson; Cely Barroso, Regina; deAlmeida, Carlos Eduardo

    2011-12-01

    Synchrotron Radiation (SR) X-ray micro-Computed Tomography (μCT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-μCT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-μCT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-μCT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.

  11. Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga de Moura Meneses, Anderson, E-mail: ameneses@ieee.org [Radiological Sciences Laboratory, Rio de Janeiro State University, Rua Sao Francisco Xavier 524, CEP 20550-900, RJ (Brazil); Giusti, Alessandro [IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Pereira de Almeida, Andre; Parreira Nogueira, Liebert; Braz, Delson [Nuclear Engineering Program, Federal University of Rio de Janeiro, RJ (Brazil); Cely Barroso, Regina [Laboratory of Applied Physics on Biomedical Sciences, Physics Department, Rio de Janeiro State University, RJ (Brazil); Almeida, Carlos Eduardo de [Radiological Sciences Laboratory, Rio de Janeiro State University, Rua Sao Francisco Xavier 524, CEP 20550-900, RJ (Brazil)

    2011-12-21

    Synchrotron Radiation (SR) X-ray micro-Computed Tomography ({mu}CT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-{mu}CT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-{mu}CT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-{mu}CT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.

  12. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment

    Science.gov (United States)

    Quej, Victor H.; Almorox, Javier; Arnaldo, Javier A.; Saito, Laurel

    2017-03-01

    Daily solar radiation is an important variable in many models. In this paper, the accuracy and performance of three soft computing techniques (i.e., adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and support vector machine (SVM) were assessed for predicting daily horizontal global solar radiation from measured meteorological variables in the Yucatán Peninsula, México. Model performance was assessed with statistical indicators such as root mean squared error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). The performance assessment indicates that the SVM technique with requirements of daily maximum and minimum air temperature, extraterrestrial solar radiation and rainfall has better performance than the other techniques and may be a promising alternative to the usual approaches for predicting solar radiation.

  13. Cardiac-Specific Conversion Factors to Estimate Radiation Effective Dose From Dose-Length Product in Computed Tomography.

    Science.gov (United States)

    Trattner, Sigal; Halliburton, Sandra; Thompson, Carla M; Xu, Yanping; Chelliah, Anjali; Jambawalikar, Sachin R; Peng, Boyu; Peters, M Robert; Jacobs, Jill E; Ghesani, Munir; Jang, James J; Al-Khalidi, Hussein; Einstein, Andrew J

    2017-08-16

    This study sought to determine updated conversion factors (k-factors) that would enable accurate estimation of radiation effective dose (ED) for coronary computed tomography angiography (CTA) and calcium scoring performed on 12 contemporary scanner models and current clinical cardiac protocols and to compare these methods to the standard chest k-factor of 0.014 mSv·mGy(-1)cm(-1). Accurate estimation of ED from cardiac CT scans is essential to meaningfully compare the benefits and risks of different cardiac imaging strategies and optimize test and protocol selection. Presently, ED from cardiac CT is generally estimated by multiplying a scanner-reported parameter, the dose-length product, by a k-factor which was determined for noncardiac chest CT, using single-slice scanners and a superseded definition of ED. Metal-oxide-semiconductor field-effect transistor radiation detectors were positioned in organs of anthropomorphic phantoms, which were scanned using all cardiac protocols, 120 clinical protocols in total, on 12 CT scanners representing the spectrum of scanners from 5 manufacturers (GE, Hitachi, Philips, Siemens, Toshiba). Organ doses were determined for each protocol, and ED was calculated as defined in International Commission on Radiological Protection Publication 103. Effective doses and scanner-reported dose-length products were used to determine k-factors for each scanner model and protocol. k-Factors averaged 0.026 mSv·mGy(-1)cm(-1) (95% confidence interval: 0.0258 to 0.0266) and ranged between 0.020 and 0.035 mSv·mGy(-1)cm(-1). The standard chest k-factor underestimates ED by an average of 46%, ranging from 30% to 60%, depending on scanner, mode, and tube potential. Factors were higher for prospective axial versus retrospective helical scan modes, calcium scoring versus coronary CTA, and higher (100 to 120 kV) versus lower (80 kV) tube potential and varied among scanner models (range of average k-factors: 0.0229 to 0.0277 mSv·mGy(-1)cm(-1)). Cardiac

  14. Observer variation in target volume delineation of lung cancer related to radiation oncologist-computer interaction: a 'Big Brother' evaluation.

    Science.gov (United States)

    Steenbakkers, Roel J H M; Duppen, Joop C; Fitton, Isabelle; Deurloo, Kirsten E I; Zijp, Lambert; Uitterhoeve, Apollonia L J; Rodrigus, Patrick T R; Kramer, Gijsbert W P; Bussink, Johan; De Jaeger, Katrien; Belderbos, José S A; Hart, Augustinus A M; Nowak, Peter J C M; van Herk, Marcel; Rasch, Coen R N

    2005-11-01

    To evaluate the process of target volume delineation in lung cancer for optimization of imaging, delineation protocol and delineation software. Eleven radiation oncologists (observers) from five different institutions delineated the Gross Tumor Volume (GTV) including positive lymph nodes of 22 lung cancer patients (stages I-IIIB) on CT only. All radiation oncologist-computer interactions were recorded with a tool called 'Big Brother'. For each radiation oncologist and patient the following issues were analyzed: delineation time, number of delineated points and corrections, zoom levels, level and window (L/W) settings, CT slice changes, use of side windows (coronal and sagittal) and software button use. The mean delineation time per GTV was 16 min (SD 10 min). The mean delineation time for lymph node positive patients was on average 3 min larger (P = 0.02) than for lymph node negative patients. Many corrections (55%) were due to L/W change (e.g. delineating in mediastinum L/W and then correcting in lung L/W). For the lymph node region, a relatively large number of corrections was found (3.7 corr/cm2), indicating that it was difficult to delineate lymph nodes. For the tumor-atelectasis region, a relative small number of corrections was found (1.0 corr/cm2), indicating that including or excluding atelectasis into the GTV was a clinical decision. Inappropriate use of L/W settings was frequently found (e.g. 46% of all delineated points in the tumor-lung region were delineated in mediastinum L/W settings). Despite a large observer variation in cranial and caudal direction of 0.72 cm (1 SD), the coronal and sagittal side windows were not used in 45 and 60% of the cases, respectively. For the more difficult cases, observer variation was smaller when the coronal and sagittal side windows were used. With the 'Big Brother' tool a method was developed to trace the delineation process. The differences between observers concerning the delineation style were large. This study led

  15. Ecological impacts of environmental toxicants and radiation on the microbial ecosystem: a model simulation of computational microbiology

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Masahiro; Sakashita, Tetsuya; Ishii, Nobuyoshi; Fuma, Shoichi; Takeda, Hiroshi; Miyamoto, Kiriko; Yanagisawa, K.; Nakamura, Yuji [National Institute of Radiological Sciences, Inage, Chiba (Japan); Kawabata, Zenichiro [Center for Ecological Research, Kyoto Univ., Otsu, Shiga (Japan)

    2000-05-01

    stochasticities according to time since inoculation, and their population showed a non-linear dynamics. When SIM-COSM is stressed by environmental toxicants and radiation, it shows systematic adaptive response to a certain level. When the impacts exceeded the tolerable level, extinction risk of the ecosystem was significant. More computer-based simulation trials are left open as our future assignment. (author)

  16. The Evolving Mcart Multimodal Imaging Core: Establishing a Protocol for Computed Tomography and Echocardiography in the Rhesus Macaque to Perform Longitudinal Analysis of Radiation-Induced Organ Injury.

    Science.gov (United States)

    de Faria, Eduardo B; Barrow, Kory R; Ruehle, Bradley T; Parker, Jordan T; Swartz, Elisa; Taylor-Howell, Cheryl; Kieta, Kaitlyn M; Lees, Cynthia J; Sleeper, Meg M; Dobbin, Travis; Baron, Adam D; Mohindra, Pranshu; MacVittie, Thomas J

    2015-11-01

    Computed Tomography (CT) and Echocardiography (EC) are two imaging modalities that produce critical longitudinal data that can be analyzed for radiation-induced organ-specific injury to the lung and heart. The Medical Countermeasures Against Radiological Threats (MCART) consortium has a well established animal model research platform that includes nonhuman primate (NHP) models of the acute radiation syndrome and the delayed effects of acute radiation exposure. These models call for a definition of the latency, incidence, severity, duration, and resolution of different organ-specific radiation-induced subsyndromes. The pulmonary subsyndromes and cardiac effects are a pair of interdependent syndromes impacted by exposure to potentially lethal doses of radiation. Establishing a connection between these will reveal important information about their interaction and progression of injury and recovery. Herein, the authors demonstrate the use of CT and EC data in the rhesus macaque models to define delayed organ injury, thereby establishing: a) consistent and reliable methodology to assess radiation-induced damage to the lung and heart; b) an extensive database in normal age-matched NHP for key primary and secondary endpoints; c) identified problematic variables in imaging techniques and proposed solutions to maintain data integrity; and d) initiated longitudinal analysis of potentially lethal radiation-induced damage to the lung and heart.

  17. A simple quality assurance test tool for the visual verification of light and radiation field congruent using electronic portal images device and computed radiography

    Directory of Open Access Journals (Sweden)

    Njeh Christopher F

    2012-03-01

    Full Text Available Abstract Background The radiation field on most megavoltage radiation therapy units are shown by a light field projected through the collimator by a light source mounted inside the collimator. The light field is traditionally used for patient alignment. Hence it is imperative that the light field is congruent with the radiation field. Method A simple quality assurance tool has been designed for rapid and simple test of the light field and radiation field using electronic portal images device (EPID or computed radiography (CR. We tested this QA tool using Varian PortalVision and Elekta iViewGT EPID systems and Kodak CR system. Results Both the single and double exposure techniques were evaluated, with double exposure technique providing a better visualization of the light-radiation field markers. The light and radiation congruency could be detected within 1 mm. This will satisfy the American Association of Physicists in Medicine task group report number 142 recommendation of 2 mm tolerance. Conclusion The QA tool can be used with either an EPID or CR to provide a simple and rapid method to verify light and radiation field congruence.

  18. Estimation of radiation exposure in low-dose multislice computed tomography of the heart and comparison with a calculation program

    Energy Technology Data Exchange (ETDEWEB)

    Hohl, C.; Muehlenbruch, G.; Wildberger, J.E.; Schmidt, T.; Guenther, R.W.; Mahnken, A.H. [University of Technology of Aachen, Department of Diagnostic Radiology, Aachen (Germany); Leidecker, C. [University of Erlangen-Nuremberg, Institute of Medical Physics, Erlangen (Germany); Suess, C. [Siemens Medical Solutions Computed Tomography, Forchheim (Germany)

    2006-08-15

    The purpose of this study was to evaluate the achievable organ dose savings in low-dose multislice computed tomography (MSCT) of the heart using different tube voltages (80 kVp, 100 kVp, 120 kVp) and compare it with calculated values. A female Alderson-Rando phantom was equipped with thermoluminescent dosimeters (TLDs) in five different positions to assess the mean doses within representative organs (thyroid gland, thymus, oesophagus, pancreas, liver). Radiation exposure was performed on a 16-row MSCT scanner with six different routine scan protocols: a 120-kV and a 100-kV CT angiography (CTA) protocol with the same collimation, two 120-kV Ca-scoring (CS) protocols with different collimations and two 80-kV CS protocols with the same collimation as the 120-kV CS protocols. Each scan protocol was repeated five times. The measured dose values for the organs were compared with the values calculated by a commercially available computer program. Directly irradiated organs, such as the esophagus, received doses of 34.7 mSv (CTA 16 x 0.75 120 kVp), 21.9 mSv (CTA 16 x 0.75 100 kVp) and 4.96 mSv (CS score 12 x 1.5 80 kVp), the thyroid as an organ receiving only scattered radiation collected organ doses of 2.98 mSv (CTA 16 x 0.75 120 kVp), 1.97 mSv (CTA 16 x 0.75 100 kVp) and 0.58 mSv (CS score 12 x 1.5 80 kVp). The measured relative organ dose reductions from standard to low-kV protocols ranged from 30.9% to 55.9% and were statistically significant (P<0.05). The comparison with the calculated organ doses showed that the calculation program can predict the relative dose reduction of cardiac low photon-energy protocols precisely. (orig.)

  19. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview In autumn the main focus was to process and handle CRAFT data and to perform the Summer08 MC production. The operational aspects were well covered by regular Computing Shifts, experts on duty and Computing Run Coordination. At the Computing Resource Board (CRB) in October a model to account for service work at Tier 2s was approved. The computing resources for 2009 were reviewed for presentation at the C-RRB. The quarterly resource monitoring is continuing. Facilities/Infrastructure operations Operations during CRAFT data taking ran fine. This proved to be a very valuable experience for T0 workflows and operations. The transfers of custodial data to most T1s went smoothly. A first round of reprocessing started at the Tier-1 centers end of November; it will take about two weeks. The Computing Shifts procedure was tested full scale during this period and proved to be very efficient: 30 Computing Shifts Persons (CSP) and 10 Computing Resources Coordinators (CRC). The shift program for the shut down w...

  20. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  1. Bulk viscosity, interaction and the viability of phantom solutions

    CERN Document Server

    Leyva, Yoelsy

    2016-01-01

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with $w<-1$. From the different cases that we study, the only possible scenario, with bulk viscosity and interac...

  2. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview During the past three months activities were focused on data operations, testing and re-enforcing shift and operational procedures for data production and transfer, MC production and on user support. Planning of the computing resources in view of the new LHC calendar in ongoing. Two new task forces were created for supporting the integration work: Site Commissioning, which develops tools helping distributed sites to monitor job and data workflows, and Analysis Support, collecting the user experience and feedback during analysis activities and developing tools to increase efficiency. The development plan for DMWM for 2009/2011 was developed at the beginning of the year, based on the requirements from the Physics, Computing and Offline groups (see Offline section). The Computing management meeting at FermiLab on February 19th and 20th was an excellent opportunity discussing the impact and for addressing issues and solutions to the main challenges facing CMS computing. The lack of manpower is particul...

  3. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction CMS distributed computing system performed well during the 2011 start-up. The events in 2011 have more pile-up and are more complex than last year; this results in longer reconstruction times and harder events to simulate. Significant increases in computing capacity were delivered in April for all computing tiers, and the utilisation and load is close to the planning predictions. All computing centre tiers performed their expected functionalities. Heavy-Ion Programme The CMS Heavy-Ion Programme had a very strong showing at the Quark Matter conference. A large number of analyses were shown. The dedicated heavy-ion reconstruction facility at the Vanderbilt Tier-2 is still involved in some commissioning activities, but is available for processing and analysis. Facilities and Infrastructure Operations Facility and Infrastructure operations have been active with operations and several important deployment tasks. Facilities participated in the testing and deployment of WMAgent and WorkQueue+Request...

  4. COMPUTING

    CERN Multimedia

    P. McBride

    The Computing Project is preparing for a busy year where the primary emphasis of the project moves towards steady operations. Following the very successful completion of Computing Software and Analysis challenge, CSA06, last fall, we have reorganized and established four groups in computing area: Commissioning, User Support, Facility/Infrastructure Operations and Data Operations. These groups work closely together with groups from the Offline Project in planning for data processing and operations. Monte Carlo production has continued since CSA06, with about 30M events produced each month to be used for HLT studies and physics validation. Monte Carlo production will continue throughout the year in the preparation of large samples for physics and detector studies ramping to 50 M events/month for CSA07. Commissioning of the full CMS computing system is a major goal for 2007. Site monitoring is an important commissioning component and work is ongoing to devise CMS specific tests to be included in Service Availa...

  5. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  6. Increased micronucleated cell frequency related to exposure to radiation emitted by computer cathode ray tube video display monitors

    Directory of Open Access Journals (Sweden)

    Carbonari Karina

    2005-01-01

    Full Text Available It is well recognized that electromagnetic fields can affect the biological functions of living organisms at both cellular and molecular level. The potential damaging effects of electromagnetic fields and very low frequency and extremely low frequency radiation emitted by computer cathode ray tube video display monitors (VDMs has become a concern within the scientific community. We studied the effects of occupational exposure to VDMs in 10 males and 10 females occupationally exposed to VDMs and 20 unexposed control subjects matched for age and sex. Genetic damage was assessed by examining the frequency of micronuclei in exfoliated buccal cells and the frequency of other nuclear abnormalities such as binucleated and broken egg cells. Although there were no differences regarding binucleated cells between exposed and control individuals our analysis revealed a significantly higher frequency of micronuclei (p < 0.001 and broken egg cells (p < 0.05 in individuals exposed to VDMs as compared to unexposed. We also found that the differences between individuals exposed to VDMs were significantly related to the sex of the individuals and that there was an increase in skin, central nervous system and ocular disease in the exposed individuals. These preliminary results indicate that microcomputer workers exposed to VDMs are at risk of significant cytogenetic damage and should periodically undergo biological monitoring.

  7. Characterization of a human tooth with carious lesions using conventional and synchrotron radiation-based micro computed tomography

    Science.gov (United States)

    Dziadowiec, Iwona; Beckmann, Felix; Schulz, Georg; Deyhle, Hans; Müller, Bert

    2014-09-01

    In a dental office, every day X rays of teeth within the oral cavity are obtained. Caries induces a mineral loss and, therefore, becomes visible by reduced X-ray absorption. The detailed spatial distribution of the mineral loss, however, is inaccessible in conventional dental radiology, since the dose for such studies is intolerable. As a consequence, such measurements can only be performed after tooth extraction. We have taken advantage of synchrotron radiation-based micro computed tomography to characterize a human tooth with a rather small, natural caries lesion and an artificially induced lesion provoked by acidic etching. Both halves of the tooth were separately visualized from 2400 radiographs recorded at the beam line P07 / PETRA III (HASYLAB at DESY, Hamburg, Germany) with an asymmetric rotation axis at photon energy of 45 keV. Because of the setup, one finds an energy shift in the horizontal plane, to be corrected. After the appropriate three-dimensional registration of the data with the ones of the same crown using the better accessible phoenix nanotom® m of General Electric, Wunstorf, Germany, one can determine the joint histogram, which enable to calibrate the system with the conventional X-ray source.

  8. Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    Science.gov (United States)

    Louchev, Oleg A.; Bakule, Pavel; Saito, Norihito; Wada, Satoshi; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-01

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-α (Ly-α) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-α generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-α radiation generation can achieve a value of ˜5×10-4 which is restricted by the total combined absorption of the fundamental and generated radiation.

  9. COMPUTING

    CERN Multimedia

    I. Fisk

    2013-01-01

    Computing activity had ramped down after the completion of the reprocessing of the 2012 data and parked data, but is increasing with new simulation samples for analysis and upgrade studies. Much of the Computing effort is currently involved in activities to improve the computing system in preparation for 2015. Operations Office Since the beginning of 2013, the Computing Operations team successfully re-processed the 2012 data in record time, not only by using opportunistic resources like the San Diego Supercomputer Center which was accessible, to re-process the primary datasets HTMHT and MultiJet in Run2012D much earlier than planned. The Heavy-Ion data-taking period was successfully concluded in February collecting almost 500 T. Figure 3: Number of events per month (data) In LS1, our emphasis is to increase efficiency and flexibility of the infrastructure and operation. Computing Operations is working on separating disk and tape at the Tier-1 sites and the full implementation of the xrootd federation ...

  10. Improving the bulk data transfer experience

    Energy Technology Data Exchange (ETDEWEB)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  11. High-Resolution Computed Tomography Examinations for Chronic Suppurative Lung Disease in Early Childhood: Radiation Exposure and Image Quality Evaluations With Iterative Reconstruction Algorithm Use.

    Science.gov (United States)

    Smarda, Magdalini; Efstathopoulos, Efstathios; Mazioti, Argyro; Kordolaimi, Sofia; Ploussi, Agapi; Priftis, Konstantinos; Kelekis, Nikolaos; Alexopoulou, Efthymia

    2016-08-01

    High radiosensitivity of children undergoing repetitive computed tomography examinations necessitates the use of iterative reconstruction algorithms in order to achieve a significant radiation dose reduction. The goal of this study is to compare the iDose iterative reconstruction algorithm with filtered backprojection in terms of radiation exposure and image quality in 33 chest high-resolution computed tomography examinations performed in young children with chronic bronchitis. Fourteen patients were scanned using the filtered backprojection protocol while 19 patients using the iDose protocol and reduced milliampere-seconds, both on a 64-detector row computed tomography scanner. The iDose group images were reconstructed with different iDose levels (2, 4, and 6). Radiation exposure quantities were estimated, while subjective and objective image qualities were evaluated. Unpaired t tests were used for data statistical analysis. The iDose application allowed significant effective dose reduction (about 80%). Subjective image quality evaluation showed satisfactory results even with iDose level 2, whereas it approached excellent image with iDose level 6. Subjective image noise was comparable between the 2 groups with the use of iDose level 4, while objective noise was comparable between filtered backprojection and iterative reconstruction level 6 images. The iDose algorithm use in pediatric chest high-resolution computed tomography reduces radiation exposure without compromising image quality. Further evaluation with iterative reconstruction algorithms is needed in order to establish high-resolution computed tomography as the gold standard low-dose method for children suffering from chronic lung diseases. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Microfabricated Bulk Piezoelectric Transformers

    Science.gov (United States)

    Barham, Oliver M.

    Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0

  13. Predicting oropharyngeal tumor volume throughout the course of radiation therapy from pretreatment computed tomography data using general linear models

    Science.gov (United States)

    Yock, Adam D.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Kudchadker, Rajat J.; Court, Laurence E.

    2014-01-01

    Purpose: The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Methods: Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. Results: In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: −11.6%–23.8%) and 14.6% (range: −7.3%–27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: −6.8%–40.3%) and 13.1% (range: −1.5%–52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: −11.1%–20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. Conclusions: A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography

  14. Predicting oropharyngeal tumor volume throughout the course of radiation therapy from pretreatment computed tomography data using general linear models

    Energy Technology Data Exchange (ETDEWEB)

    Yock, Adam D., E-mail: ADYock@mdanderson.org; Kudchadker, Rajat J. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030 (United States); Rao, Arvind [Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and the Graduate School of Biomedical Sciences, the University of Texas Health Science Center at Houston, Houston, Texas 77030 (United States); Dong, Lei [Scripps Proton Therapy Center, San Diego, California 92121 and The Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030 (United States); Beadle, Beth M.; Garden, Adam S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Court, Laurence E. [Department of Radiation Physics and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030 (United States)

    2014-05-15

    Purpose: The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Methods: Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. Results: In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: −11.6%–23.8%) and 14.6% (range: −7.3%–27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: −6.8%–40.3%) and 13.1% (range: −1.5%–52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: −11.1%–20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. Conclusions: A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography

  15. On the use of computed radiography plates for quality assurance of intensity modulated radiation therapy dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Day, R. A.; Sankar, A. P.; Nailon, W. H.; MacLeod, A. S. [Department of Oncology Physics, Edinburgh Cancer Centre, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU (United Kingdom)

    2011-02-15

    Purpose: As traditional film is phased out in most radiotherapy centers, computed radiography (CR) systems are increasingly being purchased as a replacement. CR plates can be used for patient imaging, but may also be used for a variety of quality assurance (QA) purposes and can be calibrated in terms of dose. This study looks at their suitability for verification of intensity modulated radiation therapy (IMRT) dose distributions. Methods: A CR plate was calibrated in terms of the relative dose and the stability of response over 1 year was studied. The effect of exposing the CR plate to ambient light and of using different time delays before scanning was quantified. The CR plate was used to verify the relative dose distributions for ten IMRT patients and the results were compared to those obtained using a two dimensional (2D) diode array. Results: Exposing the CR plate to 10 s of ambient light between irradiation (174 cGy) and scanning erased approximately 80% of the signal. Changes in delay time between irradiation and scanning also affected the measurement results. The signal on the plate was found to decay at a rate of approximately 3.6 cGy/min in the first 10 min after irradiation. The use of a CR plate for IMRT patient-specific QA resulted in a significantly lower distance to agreement (DTA) and gamma pass rate than when using a 2D diode array for the measurement. This was primarily due to the over-response of the CR phosphor to low energy scattered radiation. For the IMRT QA using the CR plate, the average gamma pass rate was 97.3%. For the same IMRT QA using a diode array, the average gamma pass rate was 99.7%. The gamma criteria used were 4% dose difference and 4 mm DTA for head and neck treatments and 3% dose difference and 3 mm DTA for prostate treatments. The gamma index tolerance was 1. The lowest 10% of the dose distribution was excluded from all gamma and DTA analyses. Conclusions: Although the authors showed that CR plates can be used for patient

  16. COMPUTING

    CERN Multimedia

    I. Fisk

    2010-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion An activity that is still in progress is computing for the heavy-ion program. The heavy-ion events are collected without zero suppression, so the event size is much large at roughly 11 MB per event of RAW. The central collisions are more complex and...

  17. COMPUTING

    CERN Multimedia

    M. Kasemann P. McBride Edited by M-C. Sawley with contributions from: P. Kreuzer D. Bonacorsi S. Belforte F. Wuerthwein L. Bauerdick K. Lassila-Perini M-C. Sawley

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the comput...

  18. Developing bulk exchange spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  19. Effects of a radiation dose reduction strategy for computed tomography in severely injured trauma patients in the emergency department: an observational study

    Directory of Open Access Journals (Sweden)

    Kim Soo Hyun

    2011-11-01

    Full Text Available Abstract Background Severely injured trauma patients are exposed to clinically significant radiation doses from computed tomography (CT imaging in the emergency department. Moreover, this radiation exposure is associated with an increased risk of cancer. The purpose of this study was to determine some effects of a radiation dose reduction strategy for CT in severely injured trauma patients in the emergency department. Methods We implemented the radiation dose reduction strategy in May 2009. A prospective observational study design was used to collect data from patients who met the inclusion criteria during this one year study (intervention group from May 2009 to April 2010. The prospective data were compared with data collected retrospectively for one year prior to the implementation of the radiation dose reduction strategy (control group. By comparison of the cumulative effective dose and the number of CT examinations in the two groups, we evaluated effects of a radiation dose reduction strategy. All the patients met the institutional adult trauma team activation criteria. The radiation doses calculated by the CT scanner were converted to effective doses by multiplication by a conversion coefficient. Results A total of 118 patients were included in this study. Among them, 33 were admitted before May 2009 (control group, and 85 were admitted after May 2009 (intervention group. There were no significant differences between the two groups regarding baseline characteristics, such as injury severity and mortality. Additionally, there was no difference between the two groups in the mean number of total CT examinations per patient (4.8 vs. 4.5, respectively; p = 0.227. However, the mean effective dose of the total CT examinations per patient significantly decreased from 78.71 mSv to 29.50 mSv (p Conclusions The radiation dose reduction strategy for CT in severely injured trauma patients effectively decreased the cumulative effective dose of the total

  20. Calibration and error analysis of metal-oxide-semiconductor field-effect transistor dosimeters for computed tomography radiation dosimetry.

    Science.gov (United States)

    Trattner, Sigal; Prinsen, Peter; Wiegert, Jens; Gerland, Elazar-Lars; Shefer, Efrat; Morton, Tom; Thompson, Carla M; Yagil, Yoad; Cheng, Bin; Jambawalikar, Sachin; Al-Senan, Rani; Amurao, Maxwell; Halliburton, Sandra S; Einstein, Andrew J

    2017-12-01

    Metal-oxide-semiconductor field-effect transistors (MOSFETs) serve as a helpful tool for organ radiation dosimetry and their use has grown in computed tomography (CT). While different approaches have been used for MOSFET calibration, those using the commonly available 100 mm pencil ionization chamber have not incorporated measurements performed throughout its length, and moreover, no previous work has rigorously evaluated the multiple sources of error involved in MOSFET calibration. In this paper, we propose a new MOSFET calibration approach to translate MOSFET voltage measurements into absorbed dose from CT, based on serial measurements performed throughout the length of a 100-mm ionization chamber, and perform an analysis of the errors of MOSFET voltage measurements and four sources of error in calibration. MOSFET calibration was performed at two sites, to determine single calibration factors for tube potentials of 80, 100, and 120 kVp, using a 100-mm-long pencil ion chamber and a cylindrical computed tomography dose index (CTDI) phantom of 32 cm diameter. The dose profile along the 100-mm ion chamber axis was sampled in 5 mm intervals by nine MOSFETs in the nine holes of the CTDI phantom. Variance of the absorbed dose was modeled as a sum of the MOSFET voltage measurement variance and the calibration factor variance, the latter being comprised of three main subcomponents: ionization chamber reading variance, MOSFET-to-MOSFET variation and a contribution related to the fact that the average calibration factor of a few MOSFETs was used as an estimate for the average value of all MOSFETs. MOSFET voltage measurement error was estimated based on sets of repeated measurements. The calibration factor overall voltage measurement error was calculated from the above analysis. Calibration factors determined were close to those reported in the literature and by the manufacturer (~3 mV/mGy), ranging from 2.87 to 3.13 mV/mGy. The error σ V of a MOSFET voltage

  1. A web-based remote radiation treatment planning system using the remote desktop function of a computer operating system: a preliminary report.

    Science.gov (United States)

    Suzuki, Keishiro; Hirasawa, Yukinori; Yaegashi, Yuji; Miyamoto, Hideki; Shirato, Hiroki

    2009-01-01

    We developed a web-based, remote radiation treatment planning system which allowed staff at an affiliated hospital to obtain support from a fully staffed central institution. Network security was based on a firewall and a virtual private network (VPN). Client computers were installed at a cancer centre, at a university hospital and at a staff home. We remotely operated the treatment planning computer using the Remote Desktop function built in to the Windows operating system. Except for the initial setup of the VPN router, no special knowledge was needed to operate the remote radiation treatment planning system. There was a time lag that seemed to depend on the volume of data traffic on the Internet, but it did not affect smooth operation. The initial cost and running cost of the system were reasonable.

  2. [Quantitative structure characteristics and fractal dimension of Chinese medicine granules measured by synchrotron radiation X-ray computed micro tomography].

    Science.gov (United States)

    Lu, Xiao-long; Zheng, Qin; Yin, Xian-zhen; Xiao, Guang-qing; Liao, Zu-hua; Yang, Ming; Zhang, Ji-wen

    2015-06-01

    The shape and structure of granules are controlled by the granulation process, which is one of the main factors to determine the nature of the solid dosage forms. In this article, three kinds of granules of a traditional Chinese medicine for improving appetite and promoting digestion, namely, Jianwei Granules, were prepared using granulation technologies as pendular granulation, high speed stirring granulation, and fluidized bed granulation and the powder properties of them were investigated. Meanwhile, synchrotron radiation X-ray computed micro tomography (SR-µCT) was applied to quantitatively determine the irregular internal structures of the granules. The three-dimensional (3D) structure models were obtained by 3D reconstruction, which were more accurately to characterize the three-dimensional structures of the particles through the quantitative data. The models were also used to quantitatively compare the structural differences of granules prepared by different granulation processes with the same formula, so as to characterize how the production process plays a role in the pharmaceutical behaviors of the granules. To focus on the irregularity of the particle structure, the box counting method was used to calculate the fractal dimensions of the granules. The results showed that the fractal dimension is more sensitive to reflect the minor differences in the structure features than the conventional parameters, and capable to specifically distinct granules in structure. It is proved that the fractal dimension could quantitatively characterize the structural information of irregular granules. It is the first time suggested by our research that the fractal dimension difference (Df,c) between two fractal dimension parameters, namely, the volume matrix fractal dimension and the surface matrix fractal dimension, is a new index to characterize granules with irregular structures and evaluate the effects of production processes on the structures of granules as a new

  3. Synchrotron radiation-based micro computed tomography in the assessment of dentin de- and re-mineralization

    Science.gov (United States)

    Kernen, Florian; Waltimo, Tuomas; Deyhle, Hans; Beckmann, Felix; Stark, Wendelin; Müller, Bert

    2008-08-01

    Synchrotron radiation-based micro computed tomography (SRμCT) is well established to determine the degree of mineralization in bony tissue. The present study demonstrates that the method can be likewise used for three-dimensional analyses of dentin de- and remineralization. Four dentin discs about 4 mm in diameter and 0.8 mm thick were prepared from freshly extracted human third molars. In order to study the de- and re-mineralization, three of them were treated with 10% citric acid for the period of 10 min. Nano-particulate bioactive glass made of SiO2, P2O5, CaO, Na2O served for the re-mineralization in physiological saline. This process was carried out at the incubation temperature of 37 °C for 1 and 7 d, respectively. The native and the treated discs were comparatively examined by SRμCT in absorption contrast mode. Already the visual inspection of the tomograms obtained reveals remarkable differences related to the mean X-ray absorption and internal microstructure. The de-mineralization led to a surface morphology characteristic for the treated dentin collagen matrix. The re-mineralized discs show a dependence on the period of the treatment with the bio-active glass suspension. Initial signs of the remineralization were clearly present already after 24 h of incubation. The disc incubated for 7 d exhibits a degree of mineralization comparable to the native control disc. Thus, SRμCT is a powerful non-destructive technique for the analysis of dentin de- and re-mineralization.

  4. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Natalya V.; Lawton, Colleen A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Qi, X. Sharon [Department of Radiation Oncology, University of Colorado Denver, Denver, Colorado (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2012-04-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  5. Development of computational pregnant female and fetus models and assessment of radiation dose from positron-emitting tracers

    DEFF Research Database (Denmark)

    Xie, Tianwu; Zaidi, H.

    2016-01-01

    Purpose: Molecular imaging using PET and hybrid (PET/CT and PET/MR) modalities nowadays plays a pivotal role in the clinical setting for diagnosis and staging, treatment response monitoring, and radiation therapy treatment planning of a wide range of oncologic malignancies. The developing embryo....../fetus presents a high sensitivity to ionizing radiation. Therefore, estimation of the radiation dose delivered to the embryo/fetus and pregnant patients from PET examinations to assess potential radiation risks is highly praised. Methods: We constructed eight embryo/fetus models at various gestation periods...

  6. COMPUTING

    CERN Multimedia

    P. McBride

    It has been a very active year for the computing project with strong contributions from members of the global community. The project has focused on site preparation and Monte Carlo production. The operations group has begun processing data from P5 as part of the global data commissioning. Improvements in transfer rates and site availability have been seen as computing sites across the globe prepare for large scale production and analysis as part of CSA07. Preparations for the upcoming Computing Software and Analysis Challenge CSA07 are progressing. Ian Fisk and Neil Geddes have been appointed as coordinators for the challenge. CSA07 will include production tests of the Tier-0 production system, reprocessing at the Tier-1 sites and Monte Carlo production at the Tier-2 sites. At the same time there will be a large analysis exercise at the Tier-2 centres. Pre-production simulation of the Monte Carlo events for the challenge is beginning. Scale tests of the Tier-0 will begin in mid-July and the challenge it...

  7. COMPUTING

    CERN Multimedia

    I. Fisk

    2012-01-01

    Introduction Computing continued with a high level of activity over the winter in preparation for conferences and the start of the 2012 run. 2012 brings new challenges with a new energy, more complex events, and the need to make the best use of the available time before the Long Shutdown. We expect to be resource constrained on all tiers of the computing system in 2012 and are working to ensure the high-priority goals of CMS are not impacted. Heavy ions After a successful 2011 heavy-ion run, the programme is moving to analysis. During the run, the CAF resources were well used for prompt analysis. Since then in 2012 on average 200 job slots have been used continuously at Vanderbilt for analysis workflows. Operations Office As of 2012, the Computing Project emphasis has moved from commissioning to operation of the various systems. This is reflected in the new organisation structure where the Facilities and Data Operations tasks have been merged into a common Operations Office, which now covers everything ...

  8. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion The Tier 0 infrastructure was able to repack and promptly reconstruct heavy-ion collision data. Two copies were made of the data at CERN using a large CASTOR disk pool, and the core physics sample was replicated ...

  9. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the co...

  10. COMPUTING

    CERN Multimedia

    M. Kasemann

    CCRC’08 challenges and CSA08 During the February campaign of the Common Computing readiness challenges (CCRC’08), the CMS computing team had achieved very good results. The link between the detector site and the Tier0 was tested by gradually increasing the number of parallel transfer streams well beyond the target. Tests covered the global robustness at the Tier0, processing a massive number of very large files and with a high writing speed to tapes.  Other tests covered the links between the different Tiers of the distributed infrastructure and the pre-staging and reprocessing capacity of the Tier1’s: response time, data transfer rate and success rate for Tape to Buffer staging of files kept exclusively on Tape were measured. In all cases, coordination with the sites was efficient and no serious problem was found. These successful preparations prepared the ground for the second phase of the CCRC’08 campaign, in May. The Computing Software and Analysis challen...

  11. COMPUTING

    CERN Multimedia

    I. Fisk

    2010-01-01

    Introduction The first data taking period of November produced a first scientific paper, and this is a very satisfactory step for Computing. It also gave the invaluable opportunity to learn and debrief from this first, intense period, and make the necessary adaptations. The alarm procedures between different groups (DAQ, Physics, T0 processing, Alignment/calibration, T1 and T2 communications) have been reinforced. A major effort has also been invested into remodeling and optimizing operator tasks in all activities in Computing, in parallel with the recruitment of new Cat A operators. The teams are being completed and by mid year the new tasks will have been assigned. CRB (Computing Resource Board) The Board met twice since last CMS week. In December it reviewed the experience of the November data-taking period and could measure the positive improvements made for the site readiness. It also reviewed the policy under which Tier-2 are associated with Physics Groups. Such associations are decided twice per ye...

  12. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction During the past six months, Computing participated in the STEP09 exercise, had a major involvement in the October exercise and has been working with CMS sites on improving open issues relevant for data taking. At the same time operations for MC production, real data reconstruction and re-reconstructions and data transfers at large scales were performed. STEP09 was successfully conducted in June as a joint exercise with ATLAS and the other experiments. It gave good indication about the readiness of the WLCG infrastructure with the two major LHC experiments stressing the reading, writing and processing of physics data. The October Exercise, in contrast, was conducted as an all-CMS exercise, where Physics, Computing and Offline worked on a common plan to exercise all steps to efficiently access and analyze data. As one of the major results, the CMS Tier-2s demonstrated to be fully capable for performing data analysis. In recent weeks, efforts were devoted to CMS Computing readiness. All th...

  13. FAMOUS, faster: using parallel computing techniques to accelerate the FAMOUS/HadCM3 climate model with a focus on the radiative transfer algorithm

    Directory of Open Access Journals (Sweden)

    P. Hanappe

    2011-09-01

    Full Text Available We have optimised the atmospheric radiation algorithm of the FAMOUS climate model on several hardware platforms. The optimisation involved translating the Fortran code to C and restructuring the algorithm around the computation of a single air column. Instead of the existing MPI-based domain decomposition, we used a task queue and a thread pool to schedule the computation of individual columns on the available processors. Finally, four air columns are packed together in a single data structure and computed simultaneously using Single Instruction Multiple Data operations.

    The modified algorithm runs more than 50 times faster on the CELL's Synergistic Processing Element than on its main PowerPC processing element. On Intel-compatible processors, the new radiation code runs 4 times faster. On the tested graphics processor, using OpenCL, we find a speed-up of more than 2.5 times as compared to the original code on the main CPU. Because the radiation code takes more than 60 % of the total CPU time, FAMOUS executes more than twice as fast. Our version of the algorithm returns bit-wise identical results, which demonstrates the robustness of our approach. We estimate that this project required around two and a half man-years of work.

  14. FAMOUS, faster: using parallel computing techniques to accelerate the FAMOUS/HadCM3 climate model with a focus on the radiative transfer algorithm

    Science.gov (United States)

    Hanappe, P.; Beurivé, A.; Laguzet, F.; Steels, L.; Bellouin, N.; Boucher, O.; Yamazaki, Y. H.; Aina, T.; Allen, M.

    2011-09-01

    We have optimised the atmospheric radiation algorithm of the FAMOUS climate model on several hardware platforms. The optimisation involved translating the Fortran code to C and restructuring the algorithm around the computation of a single air column. Instead of the existing MPI-based domain decomposition, we used a task queue and a thread pool to schedule the computation of individual columns on the available processors. Finally, four air columns are packed together in a single data structure and computed simultaneously using Single Instruction Multiple Data operations. The modified algorithm runs more than 50 times faster on the CELL's Synergistic Processing Element than on its main PowerPC processing element. On Intel-compatible processors, the new radiation code runs 4 times faster. On the tested graphics processor, using OpenCL, we find a speed-up of more than 2.5 times as compared to the original code on the main CPU. Because the radiation code takes more than 60 % of the total CPU time, FAMOUS executes more than twice as fast. Our version of the algorithm returns bit-wise identical results, which demonstrates the robustness of our approach. We estimate that this project required around two and a half man-years of work.

  15. Computational tool kit for evaluating air kerma with the purpose of radiation protection of hospital inpatients: proposal of a simple experimental evaluation method

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Gabriela; Fischer, Andreia Caroline Fischer da Silveira, E-mail: ghoff.gesic@gmail.com [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, (Brazil); Andrade, Jose Rodrigo Mendes; Bacelar, Alexandre [Service of Medical Physics and Radioprotection, Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, RS (Brazil)

    2012-03-15

    Objective: To present a data analysis toolkit that may be utilized with the purpose of radiation protection of hospital inpatients and workers in areas where mobile apparatuses are used. Materials and methods: an Excel Active Sheet was utilized to develop a computational toolkit with exposure measurements to generate a database of shape factors and to calculate the air kerma around hospital beds. The initial database included data collected with three mobile apparatuses. A non-anthropomorphic phantom was utilized and exposure measurements were performed on a (4.2 x 4.2) m{sup 2} mesh-grid at 0.3 m steps. Results: The toolkit calculates the air kerma (associated with patients' radiation exposure and with ambient equivalent dose) under secondary radiation. For distances lower than 60.0 cm, values above the maximum ambient equivalent dose threshold defined for radiation free areas (0.5 mSv/year) were verified. Data collected at 2.1 m have always presented values lower than 12% of that threshold. Conclusion: The toolkit can aid in the radiological protection of patients and workers, provided it is combined with appropriate data collection, since it allows the determination of radiation free areas around beds in rooms where mobile X-ray apparatuses are utilized. (author)

  16. Effects of a radiation dose reduction strategy for computed tomography in severely injured trauma patients in the emergency department: an observational study.

    Science.gov (United States)

    Kim, Soo Hyun; Jung, Seung Eun; Oh, Sang Hoon; Park, Kyu Nam; Youn, Chun Song

    2011-11-03

    Severely injured trauma patients are exposed to clinically significant radiation doses from computed tomography (CT) imaging in the emergency department. Moreover, this radiation exposure is associated with an increased risk of cancer. The purpose of this study was to determine some effects of a radiation dose reduction strategy for CT in severely injured trauma patients in the emergency department. We implemented the radiation dose reduction strategy in May 2009. A prospective observational study design was used to collect data from patients who met the inclusion criteria during this one year study (intervention group) from May 2009 to April 2010. The prospective data were compared with data collected retrospectively for one year prior to the implementation of the radiation dose reduction strategy (control group). By comparison of the cumulative effective dose and the number of CT examinations in the two groups, we evaluated effects of a radiation dose reduction strategy. All the patients met the institutional adult trauma team activation criteria. The radiation doses calculated by the CT scanner were converted to effective doses by multiplication by a conversion coefficient. A total of 118 patients were included in this study. Among them, 33 were admitted before May 2009 (control group), and 85 were admitted after May 2009 (intervention group). There were no significant differences between the two groups regarding baseline characteristics, such as injury severity and mortality. Additionally, there was no difference between the two groups in the mean number of total CT examinations per patient (4.8 vs. 4.5, respectively; p = 0.227). However, the mean effective dose of the total CT examinations per patient significantly decreased from 78.71 mSv to 29.50 mSv (p trauma patients effectively decreased the cumulative effective dose of the total CT examinations in the emergency department. But not effectively decreased the number of CT examinations.

  17. A method for the parameterization of cloud optical properties in bulk and bin microphysical models. Implications for arctic cloudy boundary layers

    Science.gov (United States)

    Harrington, Jerry Y.; Olsson, Peter Q.

    Computationally efficient and numerically accurate methods for computing band-averaged cloud optical properties for radiative transfer interactions with various microphysical parameterizations are described. Parameterizations for bulk microphysical models employing generalized gamma distribution representations of the size spectra and binned representations, in which the size spectra fluctuate with time, are discussed. It is shown that simple exponential fits and look-up tables may be used with minimal computational cost and high accuracy for bulk microphysical models. Binned microphysical representations may be parameterized using mean properties for each bin, if averaged appropriately. The implications for the radiative scheme are discussed in comparison with the computed radiative budget of fall/spring season mixed-phase Arctic stratus clouds (ASC). Compared to liquid clouds of the same water path, mixed-phase ASC absorb and reflect less radiation, and transmit more radiation to the surface. This results in greater cooling (warming) of the surface, by up to 60 W m -2, in the infrared (solar) by mixed-phase clouds. The radiative properties of mixed-phase clouds show a significant sensitivity to crystal habit for clouds with ice water paths ≳25 g m -2. Surface net fluxes and cloud absorption may vary by up to 15 W m -2, depending on the ice habit. It is also shown that mixed-phase clouds are more sensitive to the choice of ice effective radius ( re,i) than liquid clouds are to re. Using values of from the literature, it is shown that the surface net fluxes can vary by as much as 50 W m -2 depending on the value of re,i. Furthermore, it is shown that the sign of the surface net flux (i.e. warming or cooling) may be dependent on the value of re,i selected.

  18. Stability analysis of bulk viscous anisotropic universe model

    Science.gov (United States)

    Sharif, M.; Mumtaz, Saadia

    2017-11-01

    This paper is devoted to study the phase space analysis of locally rotationally symmetric Bianchi type I universe model by taking three different cases for bulk viscosity coefficient. An autonomous system of equations is established by defining normalized dimensionless variables. In order to investigate stability of the system, we evaluate corresponding critical points for different values of the parameters. In the case of bulk viscous matter and radiation, the parameters η=η0 and m≥0.8 show realistic evolution of the universe (prior radiation dominated era, conventional decelerated matter dominated state and ultimately accelerated expansion). We conclude that stable solutions exist in the presence of bulk viscosity with different choices of parameter m.

  19. COMPUTING

    CERN Multimedia

    I. Fisk

    2013-01-01

    Computing operation has been lower as the Run 1 samples are completing and smaller samples for upgrades and preparations are ramping up. Much of the computing activity is focusing on preparations for Run 2 and improvements in data access and flexibility of using resources. Operations Office Data processing was slow in the second half of 2013 with only the legacy re-reconstruction pass of 2011 data being processed at the sites.   Figure 1: MC production and processing was more in demand with a peak of over 750 Million GEN-SIM events in a single month.   Figure 2: The transfer system worked reliably and efficiently and transferred on average close to 520 TB per week with peaks at close to 1.2 PB.   Figure 3: The volume of data moved between CMS sites in the last six months   The tape utilisation was a focus for the operation teams with frequent deletion campaigns from deprecated 7 TeV MC GEN-SIM samples to INVALID datasets, which could be cleaned up...

  20. COMPUTING

    CERN Multimedia

    I. Fisk

    2012-01-01

      Introduction Computing activity has been running at a sustained, high rate as we collect data at high luminosity, process simulation, and begin to process the parked data. The system is functional, though a number of improvements are planned during LS1. Many of the changes will impact users, we hope only in positive ways. We are trying to improve the distributed analysis tools as well as the ability to access more data samples more transparently.  Operations Office Figure 2: Number of events per month, for 2012 Since the June CMS Week, Computing Operations teams successfully completed data re-reconstruction passes and finished the CMSSW_53X MC campaign with over three billion events available in AOD format. Recorded data was successfully processed in parallel, exceeding 1.2 billion raw physics events per month for the first time in October 2012 due to the increase in data-parking rate. In parallel, large efforts were dedicated to WMAgent development and integrati...

  1. COMPUTING

    CERN Multimedia

    2010-01-01

    Introduction Just two months after the “LHC First Physics” event of 30th March, the analysis of the O(200) million 7 TeV collision events in CMS accumulated during the first 60 days is well under way. The consistency of the CMS computing model has been confirmed during these first weeks of data taking. This model is based on a hierarchy of use-cases deployed between the different tiers and, in particular, the distribution of RECO data to T1s, who then serve data on request to T2s, along a topology known as “fat tree”. Indeed, during this period this model was further extended by almost full “mesh” commissioning, meaning that RECO data were shipped to T2s whenever possible, enabling additional physics analyses compared with the “fat tree” model. Computing activities at the CMS Analysis Facility (CAF) have been marked by a good time response for a load almost evenly shared between ALCA (Alignment and Calibration tasks - highest p...

  2. COMPUTING

    CERN Multimedia

    Matthias Kasemann

    Overview The main focus during the summer was to handle data coming from the detector and to perform Monte Carlo production. The lessons learned during the CCRC and CSA08 challenges in May were addressed by dedicated PADA campaigns lead by the Integration team. Big improvements were achieved in the stability and reliability of the CMS Tier1 and Tier2 centres by regular and systematic follow-up of faults and errors with the help of the Savannah bug tracking system. In preparation for data taking the roles of a Computing Run Coordinator and regular computing shifts monitoring the services and infrastructure as well as interfacing to the data operations tasks are being defined. The shift plan until the end of 2008 is being put together. User support worked on documentation and organized several training sessions. The ECoM task force delivered the report on “Use Cases for Start-up of pp Data-Taking” with recommendations and a set of tests to be performed for trigger rates much higher than the ...

  3. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction A large fraction of the effort was focused during the last period into the preparation and monitoring of the February tests of Common VO Computing Readiness Challenge 08. CCRC08 is being run by the WLCG collaboration in two phases, between the centres and all experiments. The February test is dedicated to functionality tests, while the May challenge will consist of running at all centres and with full workflows. For this first period, a number of functionality checks of the computing power, data repositories and archives as well as network links are planned. This will help assess the reliability of the systems under a variety of loads, and identifying possible bottlenecks. Many tests are scheduled together with other VOs, allowing the full scale stress test. The data rates (writing, accessing and transfer¬ring) are being checked under a variety of loads and operating conditions, as well as the reliability and transfer rates of the links between Tier-0 and Tier-1s. In addition, the capa...

  4. COMPUTING

    CERN Multimedia

    Contributions from I. Fisk

    2012-01-01

    Introduction The start of the 2012 run has been busy for Computing. We have reconstructed, archived, and served a larger sample of new data than in 2011, and we are in the process of producing an even larger new sample of simulations at 8 TeV. The running conditions and system performance are largely what was anticipated in the plan, thanks to the hard work and preparation of many people. Heavy ions Heavy Ions has been actively analysing data and preparing for conferences.  Operations Office Figure 6: Transfers from all sites in the last 90 days For ICHEP and the Upgrade efforts, we needed to produce and process record amounts of MC samples while supporting the very successful data-taking. This was a large burden, especially on the team members. Nevertheless the last three months were very successful and the total output was phenomenal, thanks to our dedicated site admins who keep the sites operational and the computing project members who spend countless hours nursing the...

  5. COMPUTING

    CERN Multimedia

    P. MacBride

    The Computing Software and Analysis Challenge CSA07 has been the main focus of the Computing Project for the past few months. Activities began over the summer with the preparation of the Monte Carlo data sets for the challenge and tests of the new production system at the Tier-0 at CERN. The pre-challenge Monte Carlo production was done in several steps: physics generation, detector simulation, digitization, conversion to RAW format and the samples were run through the High Level Trigger (HLT). The data was then merged into three "Soups": Chowder (ALPGEN), Stew (Filtered Pythia) and Gumbo (Pythia). The challenge officially started when the first Chowder events were reconstructed on the Tier-0 on October 3rd. The data operations teams were very busy during the the challenge period. The MC production teams continued with signal production and processing while the Tier-0 and Tier-1 teams worked on splitting the Soups into Primary Data Sets (PDS), reconstruction and skimming. The storage sys...

  6. Densidade de um planossolo sob sistemas de cultivo avaliada por meio da tomografia computadorizada de raios gama Bulk density of an alfisol under cultivation systems in a long-term experiment evaluated with gamma ray computed tomography

    Directory of Open Access Journals (Sweden)

    Adilson Luís Bamberg

    2009-10-01

    lowland soils is based on the use of crop rotation and succession, which are essential for the control of red and black rice. The effects on the soil properties deserve studies, particularly on soil compaction. The objective of this study was to identify compacted layers in an Albaqualf under different cultivation and tillage systems, by evaluating the soil bulk density (Ds with Gamma Ray Computed Tomography (TC. The analysis was carried out in a long-term experiment, from 1985 to 2004, at an experimental station of Embrapa Clima Temperado, Capão do Leão, RS, Brazil, in a random block design with seven treatments, with four replications (T1 - one year rice with conventional tillage followed by two years fallow; T2 - continuous rice under conventional tillage; T4 - rice and soybean (Glycine Max L. rotation under conventional tillage; T5 - rice, soybean and corn (Zea maize L. rotation under conventional tillage; T6 - rice under no-tillage in the summer in succession to rye-grass (Lolium multiflorum L. in the winter; T7 - rice under no-tillage and soybean under conventional tillage rotation; T8 - control: uncultivated soil. The Gamma Ray Computed Tomography method did not identify compacted soil layers under no-tillage rice in succession to rye-grass; two fallow years in the irrigated rice production system did not prevent the formation of a compacted layer at the soil surface; and in the rice, soybean and corn rotation under conventional tillage two compacted layers were identified (0.0 to 1.5 cm and 11 to 14 cm, indicating that they may restrict the agricultural production in this cultivation system on Albaqualf soils.

  7. Efficiency of bulk-heterojunction organic solar cells

    Science.gov (United States)

    Scharber, M.C.; Sariciftci, N.S.

    2013-01-01

    During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices. PMID:24302787

  8. On a bulk queueing system with impatient customers

    Directory of Open Access Journals (Sweden)

    Tadj Lotfi

    1997-01-01

    Full Text Available We consider a bulk arrival, bulk service queueing system. Customers are served in batches of r units if the queue length is not less than r . Otherwise, the server delays the service until the number of units in the queue reaches or exceeds level r . We assume that unserved customers may get impatient and leave the system. An ergodicity condition and steady-state probabilities are derived. Various system characteristics are also computed.

  9. On a bulk queueing system with impatient customers

    Directory of Open Access Journals (Sweden)

    Lotfi Tadj

    1998-01-01

    Full Text Available We consider a bulk arrival, bulk service queueing system. Customers are served in batches of r units if the queue length is not less than r. Otherwise, the server delays the service until the number of units in the queue reaches or exceeds level r. We assume that unserved customers may get impatient and leave the system. An ergodicity condition and steady-state probabilities are derived. Various system characteristics are also computed.

  10. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction The Computing Team successfully completed the storage, initial processing, and distribution for analysis of proton-proton data in 2011. There are still a variety of activities ongoing to support winter conference activities and preparations for 2012. Heavy ions The heavy-ion run for 2011 started in early November and has already demonstrated good machine performance and success of some of the more advanced workflows planned for 2011. Data collection will continue until early December. Facilities and Infrastructure Operations Operational and deployment support for WMAgent and WorkQueue+Request Manager components, routinely used in production by Data Operations, are provided. The GlideInWMS and components installation are now deployed at CERN, which is added to the GlideInWMS factory placed in the US. There has been new operational collaboration between the CERN team and the UCSD GlideIn factory operators, covering each others time zones by monitoring/debugging pilot jobs sent from the facto...

  11. A qualitative and quantitative analysis of radiation dose and image quality of computed tomography images using adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Hussain, Fahad Ahmed; Mail, Noor; Shamy, Abdulrahman M; Suliman, Alghamdi; Saoudi, Abdelhamid

    2016-05-08

    Image quality is a key issue in radiology, particularly in a clinical setting where it is important to achieve accurate diagnoses while minimizing radiation dose. Some computed tomography (CT) manufacturers have introduced algorithms that claim significant dose reduction. In this study, we assessed CT image quality produced by two reconstruction algorithms provided with GE Healthcare's Discovery 690 Elite positron emission tomography (PET) CT scanner. Image quality was measured for images obtained at various doses with both conventional filtered back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR) algorithms. A stan-dard CT dose index (CTDI) phantom and a pencil ionization chamber were used to measure the CT dose at 120 kVp and an exposure of 260 mAs. Image quality was assessed using two phantoms. CT images of both phantoms were acquired at tube voltage (kV) of 120 with exposures ranging from 25 mAs to 400 mAs. Images were reconstructed using FBP and ASIR ranging from 10% to 100%, then analyzed for noise, low-contrast detectability, contrast-to-noise ratio (CNR), and modulation transfer function (MTF). Noise was 4.6 HU in water phantom images acquired at 260 mAs/FBP 120 kV and 130 mAs/50% ASIR 120 kV. The large objects (fre-quency ASIR, compared to 260 mAs/FBP. The application of ASIR for small objects (frequency >7 lp/cm) showed poor visibility compared to FBP at 260 mAs and even worse for images acquired at less than 130 mAs. ASIR blending more than 50% at low dose tends to reduce contrast of small objects (frequency >7 lp/cm). We concluded that dose reduction and ASIR should be applied with close attention if the objects to be detected or diagnosed are small (frequency > 7 lp/cm). Further investigations are required to correlate the small objects (frequency > 7 lp/cm) to patient anatomy and clinical diagnosis.

  12. Observer variation in target volume delineation of lung cancer related to radiation oncologist-computer interaction: a 'Big Brother' evaluation.

    NARCIS (Netherlands)

    Steenbakkers, R.J.; Duppen, J.C.; Fitton, I.; Deurloo, K.E.; Zijp, L.; Uitterhoeve, A.L.; Rodrigus, P.T.; Kramer, G.W.P.M.; Bussink, J.; Jaeger, K. de; Belderbos, J.S.; Hart, A.A.M.; Nowak, P.J.; Herk, M. van; Rasch, C.R.

    2005-01-01

    BACKGROUND AND PURPOSE: To evaluate the process of target volume delineation in lung cancer for optimization of imaging, delineation protocol and delineation software. PATIENTS AND METHODS: Eleven radiation oncologists (observers) from five different institutions delineated the Gross Tumor Volume

  13. Image quality and radiation dose of brain computed tomography in children: effects of decreasing tube voltage from 120 kVp to 80 kVp.

    Science.gov (United States)

    Park, Ji Eun; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One; Cho, Hyun Suk; Ryu, Young Jin; Kim, Yu Jin

    2017-05-01

    Computed tomography (CT) has generated public concern associated with radiation exposure, especially for children. Lowering the tube voltage is one strategy to reduce radiation dose. To assess the image quality and radiation dose of non-enhanced brain CT scans acquired at 80 kilo-voltage peak (kVp) compared to those at 120 kVp in children. Thirty children who had undergone both 80- and 120-kVp non-enhanced brain CT were enrolled. For quantitative analysis, the mean attenuation of white and gray matter, attenuation difference, noise, signal-to-noise ratio, contrast-to-noise ratio and posterior fossa artifact index were measured. For qualitative analysis, noise, gray-white matter differentiation, artifact and overall image quality were scored. Radiation doses were evaluated by CT dose index, dose-length product and effective dose. The mean attenuations of gray and white matter and contrast-to-noise ratio were significantly increased at 80 kVp, while parameters related to image noise, i.e. noise, signal-to-noise ratio and posterior fossa artifact index were higher at 80 kVp than at 120 kVp. In qualitative analysis, 80-kVp images showed improved gray-white differentiation but more artifacts compared to 120-kVp images. Subjective image noise and overall image quality scores were similar between the two scans. Radiation dose parameters were significantly lower at 80 kVp than at 120 kVp. In pediatric non-enhanced brain CT scans, a decrease in tube voltage from 120 kVp to 80 kVp resulted in improved gray-white matter contrast, comparable image quality and decreased radiation dose.

  14. Image quality and radiation dose of brain computed tomography in children: effects of decreasing tube voltage from 120 kVp to 80 kVp

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun [Kyung Hee University Hospital, Department of Radiology, Graduate School, Seoul (Korea, Republic of); Choi, Young Hun [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Cho, Hyun Suk; Ryu, Young Jin; Kim, Yu Jin [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of)

    2017-05-15

    Computed tomography (CT) has generated public concern associated with radiation exposure, especially for children. Lowering the tube voltage is one strategy to reduce radiation dose. To assess the image quality and radiation dose of non-enhanced brain CT scans acquired at 80 kilo-voltage peak (kVp) compared to those at 120 kVp in children. Thirty children who had undergone both 80- and 120-kVp non-enhanced brain CT were enrolled. For quantitative analysis, the mean attenuation of white and gray matter, attenuation difference, noise, signal-to-noise ratio, contrast-to-noise ratio and posterior fossa artifact index were measured. For qualitative analysis, noise, gray-white matter differentiation, artifact and overall image quality were scored. Radiation doses were evaluated by CT dose index, dose-length product and effective dose. The mean attenuations of gray and white matter and contrast-to-noise ratio were significantly increased at 80 kVp, while parameters related to image noise, i.e. noise, signal-to-noise ratio and posterior fossa artifact index were higher at 80 kVp than at 120 kVp. In qualitative analysis, 80-kVp images showed improved gray-white differentiation but more artifacts compared to 120-kVp images. Subjective image noise and overall image quality scores were similar between the two scans. Radiation dose parameters were significantly lower at 80 kVp than at 120 kVp. In pediatric non-enhanced brain CT scans, a decrease in tube voltage from 120 kVp to 80 kVp resulted in improved gray-white matter contrast, comparable image quality and decreased radiation dose. (orig.)

  15. Estimation of median human lethal radiation dose computed from data on occupants of reinforced concrete structures in Nagasaki, Japan.

    Science.gov (United States)

    Levin, S G; Young, R W; Stohler, R L

    1992-11-01

    This paper presents an estimate of the median lethal dose for humans exposed to total-body irradiation and not subsequently treated for radiation sickness. The median lethal dose was estimated from calculated doses to young adults who were inside two reinforced concrete buildings that remained standing in Nagasaki after the atomic detonation. The individuals in this study, none of whom have previously had calculated doses, were identified from a detailed survey done previously. Radiation dose to the bone marrow, which was taken as the critical radiation site, was calculated for each individual by the Engineering Physics and Mathematics Division of the Oak Ridge National Laboratory using a new three-dimensional discrete-ordinates radiation transport code that was developed and validated for this study using the latest site geometry, radiation yield, and spectra data. The study cohort consisted of 75 individuals who either survived > 60 d or died between the second and 60th d postirradiation due to radiation injury, without burns or other serious injury. Median lethal dose estimates were calculated using both logarithmic (2.9 Gy) and linear (3.4 Gy) dose scales. Both calculations, which met statistical validity tests, support previous estimates of the median lethal dose based solely on human data, which cluster around 3 Gy.

  16. Impact of reduced-radiation dual-energy protocols using 320-detector row computed tomography for analyzing urinary calculus components: initial in vitro evaluation.

    Science.gov (United States)

    Cai, Xiangran; Zhou, Qingchun; Yu, Juan; Xian, Zhaohui; Feng, Youzhen; Yang, Wencai; Mo, Xukai

    2014-10-01

    To evaluate the impact of reduced-radiation dual-energy (DE) protocols using 320-detector row computed tomography on the differentiation of urinary calculus components. A total of 58 urinary calculi were placed into the same phantom and underwent DE scanning with 320-detector row computed tomography. Each calculus was scanned 4 times with the DE protocols using 135 kV and 80 kV tube voltage and different tube current combinations, including 100 mA and 570 mA (group A), 50 mA and 290 mA (group B), 30 mA and 170 mA (group C), and 10 mA and 60 mA (group D). The acquisition data of all 4 groups were then analyzed by stone DE analysis software, and the results were compared with x-ray diffraction analysis. Noise, contrast-to-noise ratio, and radiation dose were compared. Calculi were correctly identified in 56 of 58 stones (96.6%) using group A and B protocols. However, only 35 stones (60.3%) and 16 stones (27.6%) were correctly diagnosed using group C and D protocols, respectively. Mean noise increased significantly and mean contrast-to-noise ratio decreased significantly from groups A to D (P calculus component analysis while reducing patient radiation exposure to 1.81 mSv. Further reduction of tube currents may compromise diagnostic accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. COMPUTING

    CERN Multimedia

    M. Kasemann

    CMS relies on a well functioning, distributed computing infrastructure. The Site Availability Monitoring (SAM) and the Job Robot submission have been very instrumental for site commissioning in order to increase availability of more sites such that they are available to participate in CSA07 and are ready to be used for analysis. The commissioning process has been further developed, including "lessons learned" documentation via the CMS twiki. Recently the visualization, presentation and summarizing of SAM tests for sites has been redesigned, it is now developed by the central ARDA project of WLCG. Work to test the new gLite Workload Management System was performed; a 4 times increase in throughput with respect to LCG Resource Broker is observed. CMS has designed and launched a new-generation traffic load generator called "LoadTest" to commission and to keep exercised all data transfer routes in the CMS PhE-DEx topology. Since mid-February, a transfer volume of about 12 P...

  18. Towards bulk based preconditioning for quantum dotcomputations

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, Jack; Langou, Julien; Tomov, Stanimire; Channing,Andrew; Marques, Osni; Vomel, Christof; Wang, Lin-Wang

    2006-05-25

    This article describes how to accelerate the convergence of Preconditioned Conjugate Gradient (PCG) type eigensolvers for the computation of several states around the band gap of colloidal quantum dots. Our new approach uses the Hamiltonian from the bulk materials constituent for the quantum dot to design an efficient preconditioner for the folded spectrum PCG method. The technique described shows promising results when applied to CdSe quantum dot model problems. We show a decrease in the number of iteration steps by at least a factor of 4 compared to the previously used diagonal preconditioner.

  19. Silicon Bulk Micromachined Vibratory Gyroscope

    Science.gov (United States)

    Tang, T. K.; Gutierrez, R. C.; Wilcox, J. Z.; Stell, C.; Vorperian, V.; Calvet, R.; Li, W. J.; Charkaborty, I.; Bartman, R.; Kaiser, W. J.

    1996-01-01

    This paper reports on design, modeling, fabrication, and characterization of a novel silicon bulk micromachined vibratory rate gyroscope designed for microspacecraft applications. The new microgyroscope consists of a silicon four leaf cloverstructure with a post attached to the center.

  20. Radiation Exposure of Interventional Radiologists During Computed Tomography Fluoroscopy-Guided Renal Cryoablation and Lung Radiofrequency Ablation: Direct Measurement in a Clinical Setting

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Yusuke, E-mail: wckyh140@yahoo.co.jp; Hiraki, Takao, E-mail: takaoh@tc4.so-net.ne.jp; Gobara, Hideo, E-mail: gobara@cc.okayama-u.ac.jp; Iguchi, Toshihiro, E-mail: i10476@yahoo.co.jp; Fujiwara, Hiroyasu, E-mail: hirofujiwar@gmail.com; Kawabata, Takahiro, E-mail: tkhr-kwbt@yahoo.co.jp [Okayama University Medical School, Department of Radiology (Japan); Yamauchi, Takatsugu, E-mail: me9248@hp.okayama-u.ac.jp; Yamaguchi, Takuya, E-mail: me8738@hp.okayama-u.ac.jp [Okayama University Hospital, Central Division of Radiology (Japan); Kanazawa, Susumu, E-mail: susumu@cc.okayama-u.ac.jp [Okayama University Medical School, Department of Radiology (Japan)

    2016-06-15

    IntroductionComputed tomography (CT) fluoroscopy-guided renal cryoablation and lung radiofrequency ablation (RFA) have received increasing attention as promising cancer therapies. Although radiation exposure of interventional radiologists during these procedures is an important concern, data on operator exposure are lacking.Materials and MethodsRadiation dose to interventional radiologists during CT fluoroscopy-guided renal cryoablation (n = 20) and lung RFA (n = 20) was measured prospectively in a clinical setting. Effective dose to the operator was calculated from the 1-cm dose equivalent measured on the neck outside the lead apron, and on the left chest inside the lead apron, using electronic dosimeters. Equivalent dose to the operator’s finger skin was measured using thermoluminescent dosimeter rings.ResultsThe mean (median) effective dose to the operator per procedure was 6.05 (4.52) μSv during renal cryoablation and 0.74 (0.55) μSv during lung RFA. The mean (median) equivalent dose to the operator’s finger skin per procedure was 2.1 (2.1) mSv during renal cryoablation, and 0.3 (0.3) mSv during lung RFA.ConclusionRadiation dose to interventional radiologists during renal cryoablation and lung RFA were at an acceptable level, and in line with recommended dose limits for occupational radiation exposure.

  1. Radiation dose considerations by intra-individual Monte Carlo simulations in dual source spiral coronary computed tomography angiography with electrocardiogram-triggered tube current modulation and adaptive pitch

    Energy Technology Data Exchange (ETDEWEB)

    May, Matthias S.; Kuettner, Axel; Lell, Michael M.; Wuest, Wolfgang; Scharf, Michael; Uder, Michael [University of Erlangen, Department of Radiology, Erlangen (Germany); Deak, Paul; Kalender, Willi A. [University of Erlangen, Department of Medical Physics, Erlangen (Germany); Keller, Andrea K.; Haeberle, Lothar [University of Erlangen, Department of Medical Informatics, Biometry and Epidemiology, Erlangen (Germany); Achenbach, Stephan; Seltmann, Martin [University of Erlangen, Department of Cardiology, Erlangen (Germany)

    2012-03-15

    To evaluate radiation dose levels in patients undergoing spiral coronary computed tomography angiography (CTA) on a dual-source system in clinical routine. Coronary CTA was performed for 56 patients with electrocardiogram-triggered tube current modulation (TCM) and heart-rate (HR) dependent pitch adaptation. Individual Monte Carlo (MC) simulations were performed for dose assessment. Retrospective simulations with constant tube current (CTC) served as reference. Lung tissue was segmented and used for organ and effective dose (ED) calculation. Estimates for mean relative ED was 7.1 {+-} 2.1 mSv/100 mAs for TCM and 12.5 {+-} 5.3 mSv/100 mAs for CTC (P < 0.001). Relative dose reduction at low HR ({<=}60 bpm) was highest (49 {+-} 5%) compared to intermediate (60-70 bpm, 33 {+-} 12%) and high HR (>70 bpm, 29 {+-} 12%). However lowest ED is achieved at high HR (5.2 {+-} 1.5 mSv/100 mAs), compared with intermediate (6.7 {+-} 1.6 mSv/100 mAs) and low (8.3 {+-} 2.1 mSv/100 mAs) HR when automated pitch adaptation is applied. Radiation dose savings up to 52% are achievable by TCM at low and regular HR. However lowest ED is attained at high HR by pitch adaptation despite inferior radiation dose reduction by TCM. circle Monte Carlo simulations allow for individual radiation dose calculations. (orig.)

  2. Combatting bulking sludge with ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Wuensch, B.; Heine, W.; Neis, U. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Dept. of Sanitary and Environmental Engineering

    2002-07-01

    Bulking and floating sludge cause great problems in many waste water treatment plants with biological nutrient removal. The purification as well as the sludge digestion process can be affected. These problems are due to the interlaced structure of filamentous microorganisms, which have an impact on the sludge's settling behaviour. Foam is able to build up a stable layer, which does not settle in the secondary clarifier. Foam in digestion causes a reduction of the degree of stabilisation and of the biogas production. We use low-frequency ultrasound to combat filamentous organisms in bulking sludge. Low-frequency ultrasound is suitable to create high local shear stresses, which are capable of breaking the filamentous structures of the sludge. After preliminary lab-scale tests now a full-scale new ultrasound equipment is operating at Reinfeld sewage treatment plant, Germany. The objective of this study is to explore the best ultrasound configuration to destroy the filamentous structure of bulking and foaming sludge in a substainable way. Later this study will also look into the effects of ultrasound treated bulking sludge on the anaerobic digestion process. Up to now results show that the settling behaviour of bulking sludge is improved. The minimal ultrasound energy input for destruction of bulking structure was determined. (orig.)

  3. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    Science.gov (United States)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  4. Comparison of radiation dose and image quality of triple-rule-out computed tomography angiography between conventional helical scanning and a strategy incorporating sequential scanning.

    Science.gov (United States)

    Manheimer, Eric D; Peters, M Robert; Wolff, Steven D; Qureshi, Mehreen A; Atluri, Prashanth; Pearson, Gregory D N; Einstein, Andrew J

    2011-04-01

    Triple-rule-out computed tomographic angiography (TRO CTA), performed to evaluate the coronary arteries, pulmonary arteries, and thoracic aorta, has been associated with high radiation exposure. The use of sequential scanning for coronary computed tomographic angiography reduces the radiation dose. The application of sequential scanning to TRO CTA is much less well defined. We analyzed the radiation dose and image quality from TRO CTA performed at a single outpatient center, comparing the scans from a period during which helical scanning with electrocardiographically controlled tube current modulation was used for all patients (n = 35) and after adoption of a strategy incorporating sequential scanning whenever appropriate (n = 35). Sequential scanning was able to be used for 86% of the cases. The sequential-if-appropriate strategy, compared to the helical-only strategy, was associated with a 61.6% dose decrease (mean dose-length product of 439 mGy × cm vs 1,144 mGy × cm and mean effective dose of 7.5 mSv vs 19.4 mSv, respectively, p strategy (326 mGy × cm vs 1,141 mGy × cm and 5.5 mSv vs 19.4 mSv, respectively, p strategies, a nonstatistically significant trend was seen toward better quality in the sequential protocol than in the helical protocol. In conclusion, approaching TRO CTA with a diagnostic strategy of sequential scanning, as appropriate, can offer a marked reduction in the radiation dose while maintaining the image quality. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Modelling of bulk superconductor magnetization

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.

    2015-05-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet-superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed.

  6. Effect of Tube Voltage (100 vs. 120 kVp) on Radiation Dose and Image Quality using Prospective Gating 320 Row Multi-detector Computed Tomography Angiography.

    Science.gov (United States)

    Khan, Atif N; Khosa, Faisal; Shuaib, Waqas; Nasir, Khurram; Blankstein, Ron; Clouse, Melvin

    2013-01-01

    The objective of the following study is to evaluate the effect of reducing tube voltage from 120 to 100 kVp using prospective gating 320 row multi-detector computed tomography angiography on image quality and reduction in radiation dose. A total of 78 sequential patients were scanned with prospective electrocardiogram gating. A total of 45 patients (Group 1) with mean body mass index (BMI) 29 ± 2 and heart rate (HR) 57 ± 7 beats per minute (BPM) were scanned at 120 kVp. 33 patients (Group 2) with mean BMI 23 ± 3 and HR 58 ± 6 bpm were scanned at 100 kVp. Effective dose was calculated using dose length product and factor (k = 0.014). Quantitative assessment of image quality was calculated by measuring signal to noise ratio (SNR) and contrast to noise ratio (CNR) in the left ventricle and left main coronary artery. Two experienced cardiac radiologists using a three-point ordinal scale assessed subjectively image quality. In Group 1, the median radiation dose was 5.31 mSv (95% confidence interval [CI]: 4.86-6.09) and for Group 2 (P = 0.009) the mean radiation dose was 3.71 mSv (95% CI: 2.76-4.87), representing 30% decrease in radiation dose. In multivariate analyses, adjusting for age, gender, HR, BMI, tube current and scan length, an absolute median reduction of 2.21 mSv (1.13-3.29 mSv) was noted in patients scanned with 100 kVp (P image quality (SNR and CNR) was not statistically significant between the groups. Subjective image quality was rated as good or excellent in 99% of coronary segments for both groups (P value was considered as non-significant). Our study suggests that radiation dose may be lowered from 120 to 100 kVp with preservation of image quality in patient's whose BMI is ≤27.

  7. Assessment of effectiveness of geologic isolation systems. ARRRG and FOOD: computer programs for calculating radiation dose to man from radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Roswell, R.L.; Kennedy, W.E. Jr.; Strenge, D.L.

    1980-06-01

    The computer programs ARRRG and FOOD were written to facilitate the calculation of internal radiation doses to man from the radionuclides in the environment and external radiation doses from radionuclides in the environment. Using ARRRG, radiation doses to man may be calculated for radionuclides released to bodies of water from which people might obtain fish, other aquatic foods, or drinking water, and in which they might fish, swim or boat. With the FOOD program, radiation doses to man may be calculated from deposition on farm or garden soil and crops during either an atmospheric or water release of radionuclides. Deposition may be either directly from the air or from irrigation water. Fifteen crop or animal product pathways may be chosen. ARRAG and FOOD doses may be calculated for either a maximum-exposed individual or for a population group. Doses calculated are a one-year dose and a committed dose from one year of exposure. The exposure is usually considered as chronic; however, equations are included to calculate dose and dose commitment from acute (one-time) exposure. The equations for calculating internal dose and dose commitment are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and Maximum Permissible Concentration (MPC) of each radionuclide. The radiation doses from external exposure to contaminated farm fields or shorelines are calculated assuming an infinite flat plane source of radionuclides. A factor of two is included for surface roughness. A modifying factor to compensate for finite extent is included in the shoreline calculations.

  8. Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model

    Directory of Open Access Journals (Sweden)

    Akira Sasaki

    2016-10-01

    Full Text Available The ionization balance of the bismuth-to-tin plasmas is systematically investigated on the basis of a collisional radiative model, which has been generated using a computer algorithm to analyze the level structure of multiple charged ions to construct the model. The atomic energy levels and rate coefficients corresponding to the model are calculated using the HULLAC code. With this method, we investigate the plasma temperature, which is required to obtain emission in the extreme ultraviolet wavelength range from 13.5 nm to the water window.

  9. Automated Computer-Based Facility for Measurement of Near-Field Structure of Microwave Radiators and Scatterers

    DEFF Research Database (Denmark)

    Mishra, Shantnu R.;; Pavlasek, Tomas J. F.;; Muresan, Letitia V.

    1980-01-01

    An automatic facility for measuring the three-dimensional structure of the near fields of microwave radiators and scatterers is described. The amplitude and phase for different polarization components can be recorded in analog and digital form using a microprocessor-based system. The stored data...

  10. Accuracy and Radiation Dose Reduction Using Low-Voltage Computed Tomography Coronary Artery Calcium Scoring With Tin Filtration

    NARCIS (Netherlands)

    Tesche, Christian; De Cecco, Carlo N.; Vliegenthart, Rozemarijn; Albrecht, Moritz Moritz H.; Varga-Szemes, Akos; Duguay, Taylor M.; Ebersberger, Ullrich; Bayer, Richard R.; Canstein, Christian; Schmidt, Bernhard; Allmendinger, Thomas; Litwin, Sheldon E.; Morris, Pamela B.; Flohr, Thomas G.; Hoffmann, Ellen; Schoepf, U. Joseph

    2017-01-01

    This study prospectively investigated the accuracy and radiation dose reduction of CT coronary artery calcium scoring (CACS) using a 100 kVp acquisition protocol with tin filtration (Sn100 kVp) compared with the standard 120 kVp acquisition protocol; 70 patients (59% men, 62.1 10.7 years) who

  11. Resrad-recycle: a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing radioactively surface-contaminated materials and equipment.

    Science.gov (United States)

    Cheng, Jing-Jy; Kassas, Bassel; Yu, Charley; Amish, John; LePoire, Dave; Chen, Shih-Yew; Williams, W A; Wallo, A; Peterson, H

    2004-11-01

    RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the entire metal recycling process into six steps: (1) scrap delivery, (2) scrap melting, (3) ingot delivery, (4) product fabrication, (5) product distribution, and (6) use of finished product. RESRAD-RECYCLE considers the reuse of surface-contaminated materials in their original forms. It contains representative exposure scenarios for each recycling step and the reuse process; users can also specify scenarios if desired. The model calculates individual and collective population doses for workers involved in the recycling process and for the public using the finished products. The results are then used to derive clearance levels for the contaminated materials on the basis of input dose restrictions. The model accounts for radiological decay and ingrowth, dilution and partitioning during melting, and distribution of refined metal in the various finished products, as well as the varying densities and geometries of the radiation sources during the recycling process. A complete material balance in terms of mass and radioactivity during the recycling process can also be implemented. In an international validation study, the radiation doses calculated by RESRAD-RECYCLE were shown to agree fairly well with actual measurement data.

  12. Ultra-low dose dual-source high-pitch computed tomography of the paranasal sinus: diagnostic sensitivity and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Boris; Zangos, Stefan; Friedrichs, Ingke; Bauer, Ralf W.; Kerl, Matthias; Vogl, Thomas J.; Martin M Mack, Martin M. (Clinic of the Goethe Univ., Dept. of Diagnostic and Interventional Radiology, Frankfurt (Germany)), email: boris.schell@googlemail.com; Potente, Stefan (Clinic of the Goethe Univ., Dept. of Forensic Medicine, Frankfurt (Germany))

    2012-05-15

    Background: Today's gold standard for diagnostic imaging of inflammatory diseases of the paranasal sinus is computed tomography (CT). Purpose: To evaluate diagnostic sensitivity and radiation dose of an ultra-low dose dual-source CT technique. Material and Methods: Paranasal sinuses of 14 cadaveric heads were independently evaluated by two readers using a modern dual-source CT with lowest reasonable dosage in high-pitch mode (100 kV, 10 mAs, collimation 0.6 mm, pitch value 3.0). Additionally the head part of an anthropomorphic Alderson-Rando phantom was equipped with thermoluminescent detectors to measure radiation exposure to the eye lenses and thyroid gland. Results: Diagnostic accuracy regarding sinusoidal fluid, nasal septum deviation, and mucosal swelling was 100%. Mastoid fluid was detected in 76% and 92%, respectively. In the phantom study, average measured eye lens dosage was 0.64 mGy; radiation exposure of the thyroid gland was 0.085 mGy. Conclusion: Regarding evaluation of inflammatory diseases of the paranasal sinus this study indicates sufficient accuracy of the proposed CT protocol at a very low dosage level

  13. A low tube voltage technique reduces the radiation dose at retrospective ECG-gated cardiac computed tomography for anatomical and functional analyses.

    Science.gov (United States)

    Oda, Seitaro; Utsunomiya, Daisuke; Funama, Yoshinori; Awai, Kazuo; Katahira, Kazuhiro; Nakaura, Takeshi; Yanaga, Yumi; Namimoto, Tomohiro; Yamashita, Yasuyuki

    2011-08-01

    To investigate the effect of low-tube-voltage technique on a cardiac computed tomography (CT) for coronary arterial and cardiac functional analyses and radiation dose in slim patients. We enrolled 80 patients (52women, 28 men; mean age, 68.7 ± 8.9 years) undergoing retrospective electrocardiogram-gated 64-slice cardiac CT. Forty were subjected to the low (80-kV) and 40 to the standard (120-kV) tube-voltage protocol. Quantitative parameters of the coronary arteries (ie, CT attenuation, image noise, and the contrast-to-noise ratio [CNR]) were calculated, as were the effective radiation dose and the figure of merit (FOM). Each coronary artery segment was visually evaluated using a 5-point scale. Cardiac function calculated by using low-tube-voltage cardiac CT was compared with that on echocardiographs. CT attenuation and image noise were significantly higher at 80- than 120-kV (P tube-voltage cardiac CT and echocardiography for cardiac functional analyses. Low-tube-voltage cardiac CT significantly reduced the radiation dose by approximately 55% in slim patients while maintaining anatomical image quality and accuracy of cardiac functional analysis. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  14. Using 100- instead of 120-kVp computed tomography to diagnose pulmonary embolism almost halves the radiation dose with preserved diagnostic quality

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkdahl, Peter; Nyman, Ulf (Dept. of Radiology, Univ. of Lund, Lasarettet Trelleborg, Trelleborg (Sweden)), e-mail: ulf.nyman@skane.se

    2010-04-15

    Background: Concern has been raised regarding the mounting collective radiation doses from computed tomography (CT), increasing the risk of radiation-induced cancers in exposed populations. Purpose: To compare radiation dose and image quality in a chest phantom and in patients for the diagnosis of pulmonary embolism (PE) at 100 and 120 peak kilovoltage (kVp) using 16-multichannel detector computed tomography (MDCT). Material and Methods: A 20-ml syringe containing 12 mg I/ml was scanned in a chest phantom at 100/120 kVp and 25 milliampere seconds (mAs). Consecutive patients underwent 100 kVp (n = 50) and 120 kVp (n = 50) 16-MDCT using a 'quality reference' effective mAs of 100, 300 mg I/kg, and a 12-s injection duration. Attenuation (CT number), image noise (1 standard deviation), and contrast-to-noise ratio (CNR; fresh clot = 70 HU) of the contrast medium syringe and pulmonary arteries were evaluated on 3-mm-thick slices. Subjective image quality was assessed. Computed tomography dose index (CTDIvol) and dose-length product (DLP) were presented by the CT software, and effective dose was estimated. Results: Mean values in the chest phantom and patients changed as follows when X-ray tube potential decreased from 120 to 100 kVp: attenuation +23% and +40%, noise +38% and +48%, CNR -6% and 0%, and CTDIvol -38% and -40%, respectively. Mean DLP and effective dose in the patients decreased by 42% and 45%, respectively. Subjective image quality was excellent or adequate in 49/48 patients at 100/120 kVp. No patient with a negative CT had any thromboembolism diagnosed during 3-month follow-up. Conclusion: By reducing X-ray tube potential from 120 to 100 kVp, while keeping all other scanning parameters unchanged, the radiation dose to the patient may be almost halved without deterioration of diagnostic quality, which may be of particular benefit in young individuals

  15. Memory reliability of spintronic materials and devices for disaster-resilient computing against radiation-induced bit flips on the ground

    Science.gov (United States)

    Hirose, Kazuyuki; Kobayashi, Daisuke; Ito, Taichi; Endoh, Tetsuo

    2017-08-01

    The memory reliability of magnetic tunnel junctions has been examined from the aspect of their potential use in disaster-resilient computing. This computing technology requires memories that can keep stored information intact even in power-cut emergency situations. Such a requirement has been quantified as a score of acceptable flip probability, which is the failure in time (FIT) rate of 1 for a single-interface perpendicular magnetic tunnel junction (p-MTJ) with a disk diameter of 20 nm. For comparison with this acceptable probability, p-MTJ memory reliability has been evaluated. The risk of particle radiation bombardments, i.e., alpha particles and neutrons — the well-known soft error sources on the ground — has been evaluated from the aspects of both frequency of bombardments and the hazardous effects of bombardments. This study highlights that high-energy terrestrial neutrons may lead to soft errors in p-MTJs, but the flip probability, or the risk, is expected to be lower than 1 × 10-6 FIT/p-MTJ, which is much smaller than the target probability. It has also been found that the use of p-MTJs can reduce the risk by three orders of magnitude compared with that of the conventional SRAMs. Few risks have been suggested for other radiation particles, such as alpha particles and thermal neutrons.

  16. Comparison of image quality and radiation dose of coronary computed tomographic angiography between conventional helical scanning and a strategy incorporating sequential scanning.

    Science.gov (United States)

    Einstein, Andrew J; Wolff, Steven D; Manheimer, Eric D; Thompson, James; Terry, Sylvia; Uretsky, Seth; Pilip, Adalbert; Peters, M Robert

    2009-11-15

    Radiation dose from coronary computed tomographic angiography may be decreased using a sequential scanning protocol rather than a conventional helical scanning protocol. We compared radiation dose and image quality from coronary computed tomographic angiography in a single center between an initial period during which helical scanning with electrocardiographically controlled tube current modulation was used for all patients (n = 138) and after adoption of a strategy incorporating sequential scanning whenever appropriate (n = 261). Using the sequential-if-appropriate strategy, sequential scanning was employed in 86.2% of patients. Compared to the helical-only strategy, this strategy was associated with a 65.1% dose decrease (mean dose-length product [DLP] 305.2 vs 875.1 and mean effective dose 14.9 vs 5.2 mSv, respectively), with no significant change in overall image quality, step artifacts, motion artifacts, or perceived image noise. For the 225 patients undergoing sequential scanning, the DLP was 201.9 +/- 90.0 mGy x cm; for patients undergoing helical scanning under either strategy, the DLP was 890.9 +/- 293.3 mGy x cm (p strategy. In conclusion, a sequential-if-appropriate diagnostic strategy decreases dose markedly compared to a helical-only strategy, with no significant difference in image quality.

  17. Dose measurements on cone beam computed tomography for trilogy and truebeam STx for image-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwon; Ye, Sung Joon [Dept. of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Kwon, Hyuck Jun; Sung, Won Mo [Interdisciplinary program in Radiation applied Life Science, College of Medicine, Seoul National University, Seoul (Korea, Republic of); Park, Jong Min [Dept. of Radiation Oncology, Seoul National University Hospital,Seoul (Korea, Republic of)

    2012-11-15

    The number of use of the intensity-modulated radiation therapy (IMRT) with the kV cone beam CT for the image-guided radiotherapy (IGRT) has increased. With the increased frequency in use of IGRT, the patient absorbed radiation dose during the treatment procedure has increased and become the major concern that there have been studies about these issue. The purpose of this study is to confirm the patient dose from the daily CBCT scan during the IGRT using the On-Board Imager(OBI) of Trilogy and Truebeam STx (Varian Medical Systems, CA, USA). These two linear accelerators are newly set up in SNUH that the patient dose from CBCT scan is needed to be verified before the start of IGRT. Daily CBCT scans can provide better patient localizing but increase the patient absorbed dose slightly. Considering the beneficial advantage on the localizing patient, CT dose during IGRT would be a reasonable cost.

  18. Automated tube voltage selection in thoracoabdominal computed tomography at high pitch using a third-generation dual-source scanner: image quality and radiation dose performance.

    Science.gov (United States)

    Lurz, Markus; Lell, Michael M; Wuest, Wolfgang; Eller, Achim; Scharf, Michael; Uder, Michael; May, Matthias Stefan

    2015-05-01

    The objective of this study was to evaluate the radiation dose and image quality performance of thoracoabdominal examinations with an automated tube voltage selection (tube voltage adaptation), tube current modulation, and high pitch using a third-generation dual-source computed tomography (CT) compared intraindividually with 120-kV examinations with tube current modulation with special attention on clinically relevant lesions in the liver, the lungs, and extrahepatic soft tissues. This study was approved by the institutional review board. Computed tomography of the body was performed using a third-generation dual-source system in 95 patients (mean body mass index, 25 kg/m²; range, 18-35 kg/m²). For 49 of these patients, all calculated tube settings and resulting dose values were recorded for each of the 12 gradual contrast weightings of the tube voltage adaptation algorithm. Spiral CT was performed for all patients with an intermediate weighting (grade 7) in a portal venous phase at 120 reference kV, 180 reference mAs, and pitch of 1.55. Objective image quality was assessed on the basis of contrast-to-noise ratio. Subjective image quality was assessed on the basis of clarity and sharpness of anatomical and pathological structures as well as interfering beam hardening and spiral and motion artifacts (heart, lungs, diaphragm). Previous examinations on a 64-slice scanner served as reference. All examinations were rated good or excellent for clinical diagnosis. Automated tube voltage selection resulted in significantly lower effective radiation dose (9.5 mSv) compared with the reference (12.0 mSv; P radiation dose reduction while substantially increasing the image quality, even at large-volume exposure.

  19. Elementary computation of radiation doses and shieldings for radiochemical laboratories; Calculo Elemental de dosis y blindajes para laboratorios radioquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Jimeno de Osso, F.

    1971-07-01

    Simple procedures for the calculation of radiation exposition, half thickness, shield thickness, etc. are described and equations and graphs are included for those gamma-emitting radionuclides, that are more often used in radiochemical laboratories. Application is made of these procedures to three radionuclides, bromine-82, sodium-24 and cobalt-60 which cover a rather wl.de energy range; theoretical results are compared with those obtained from experimental measurements. (Author) 23 refs.

  20. Evaluation of image quality and radiation dose using gold nanoparticles and other clinical contrast agents in dual-energy Computed Tomography (CT): CT abdomen phantom

    Science.gov (United States)

    Zukhi, J.; Yusob, D.; Tajuddin, A. A.; Vuanghao, L.; Zainon, R.

    2017-05-01

    The aim of this study was to evaluate the image quality and radiation dose using commercial gold nanoparticles and clinical contrast agents in dual-energy Computed Tomography (CT). Five polymethyl methacrylate (PMMA) tubes were used in this study, where four tubes were filled with different contrast agents (barium, iodine, gadolinium, and gold nanoparticles). The fifth tube was filled with water. Two optically stimulated luminescence dosimeters (OSLD) were placed in each tube to measure the radiation dose. The tubes were placed in a fabricated adult abdominal phantom of 32 cm in diameter using PMMA. The phantom was scanned using a DECT at low energy (80 kV) and high energy (140 kV) with different pitches (0.6 mm and 1.0 mm) and different slice thickness (3.0 mm and 5.0 mm). The tube current was applied automatically using automatic exposure control (AEC) and tube current modulation recommended by the manufacturer (CARE Dose 4D, Siemens, Germany). The contrast-to-noise ratio (CNR) of each contrast agent was analyzed using Weasis software. Gold nanoparticles has highest atomic number (Z = 79) than barium (Z = 56), iodine (Z = 53) and gadolinium (Z = 64). The CNR value of each contrast agent increases when the slice thickness increases. The radiation dose obtained from this study decreases when the pitch increases. The optimal imaging parameters for gold nanoparticles and other clinical contrast agents is obtained at pitch value of 1.0 mm and slice thickness of 5.0 mm. Low noise and low radiation dose obtained at these imaging parameters. The optimal imaging parameters obtained in this study can be applied in multiple contrast agents imaging.

  1. Automated tube voltage adaptation in head and neck computed tomography between 120 and 100 kV: effects on image quality and radiation dose.

    Science.gov (United States)

    May, Matthias S; Kramer, Manuel R; Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael; Saake, Marc; Schmidt, Bernhard; Uder, Michael; Lell, Michael M

    2014-09-01

    Low tube voltage allows for computed tomography (CT) imaging with increased iodine contrast at reduced radiation dose. We sought to evaluate the image quality and potential dose reduction using a combination of attenuation based tube current modulation (TCM) and automated tube voltage adaptation (TVA) between 100 and 120 kV in CT of the head and neck. One hundred thirty consecutive patients with indication for head and neck CT were examined with a 128-slice system capable of TCM and TVA. Reference protocol was set at 120 kV. Tube voltage was reduced to 100 kV whenever proposed by automated analysis of the localizer. An additional small scan aligned to the jaw was performed at a fixed 120 kV setting. Image quality was assessed by two radiologists on a standardized Likert-scale and measurements of signal- (SNR) and contrast-to-noise ratio (CNR). Radiation dose was assessed as CTDIvol. Diagnostic image quality was excellent in both groups and did not differ significantly (p = 0.34). Image noise in the 100 kV data was increased and SNR decreased (17.8/9.6) in the jugular veins and the sternocleidomastoid muscle when compared to 120 kV (SNR 24.4/10.3), but not in fatty tissue and air. However, CNR did not differ statistically significant between 100 (23.5/14.4/9.4) and 120 kV data (24.2/15.3/8.6) while radiation dose was decreased by 7-8%. TVA between 100 and 120 kV in combination with TCM led to a radiation dose reduction compared to TCM alone, while keeping CNR constant though maintaining diagnostic image quality.

  2. Comparison of radiation doses imparted during 128-, 256-, 384-multislice CT-scanners and cone beam computed tomography for intra- and perioperative cochlear implant assessment.

    Science.gov (United States)

    Guberina, N; Dietrich, U; Arweiler-Harbeck, D; Forsting, M; Ringelstein, A

    2017-09-19

    To examine radiation-doses imparted during multislice (MSCT) and cone-beam computed-tomography (CBCT) for perioperative examination of cochlear-implant insertion. Radiation-doses were assessed during standardized petrous-bone CT-protocols at different MSCT ((I) single-source CT-scanner Somatom-Definition-AS+, (II) 2nd generation of dual-source CT-scanner Somatom-Definition-Flash, (III) 3rd generation of dual-source CT-scanner Somatom-Force and at the CBCT Ziehm-Vision-RFD3D ((IV) (a) RFD-3D (Standard-modifier), (b) RFD-3D (Low-dose-modifier)). Image quality was examined by two radiologists appraising electrode-array placement, quality-control of cochlear-implant surgery and complications based on real patients' examinations (n=78). In MSCT-setting following radiation-doses were assessed (CTDIw; DLP): (I) 21.5mGy; 216mGycm; (II) 19.7mGy; 195mGycm; (III) 12.7mGy; 127mGycm; in the CBCT setting radiation doses were distributed as follows: (IV) (a) 1.9mGy; 19.4mGycm; (b) 1.2mGy; 12.9mGycm. Overall, image quality was evaluated as good for both, MSCT- and CBCT-examinations, with a good interrater reliability (r=0.81). CBCT bears considerable dose-saving potential for the perioperative examination of cochlear-implant insertion while maintaining adequate image quality. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Impact of Pretreatment Combined {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Staging on Radiation Therapy Treatment Decisions in Locally Advanced Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Sweet Ping, E-mail: sweet.ng@petermac.org [Peter MacCallum Cancer Centre, Melbourne (Australia); David, Steven [Peter MacCallum Cancer Centre, Melbourne (Australia); Alamgeer, Muhammad; Ganju, Vinod [Monash Cancer Centre, Melbourne (Australia)

    2015-09-01

    Purpose: To assess the diagnostic performance of pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and its impact on radiation therapy treatment decisions in patients with locally advanced breast cancer (LABC). Methods and Materials: Patients with LABC with Eastern Cooperative Oncology Group performance status <2 and no contraindication to neoadjuvant chemotherapy, surgery, and adjuvant radiation therapy were enrolled on a prospective trial. All patients had pretreatment conventional imaging (CI) performed, including bilateral breast mammography and ultrasound, bone scan, and CT chest, abdomen, and pelvis scans performed. Informed consent was obtained before enrolment. Pretreatment whole-body {sup 18}F-FDG PET/CT scans were performed on all patients, and results were compared with CI findings. Results: A total of 154 patients with LABC with no clinical or radiologic evidence of distant metastases on CI were enrolled. Median age was 49 years (range, 26-70 years). Imaging with PET/CT detected distant metastatic disease and/or locoregional disease not visualized on CI in 32 patients (20.8%). Distant metastatic disease was detected in 17 patients (11.0%): 6 had bony metastases, 5 had intrathoracic metastases (pulmonary/mediastinal), 2 had distant nodal metastases, 2 had liver metastases, 1 had pulmonary and bony metastases, and 1 had mediastinal and distant nodal metastases. Of the remaining 139 patients, nodal disease outside conventional radiation therapy fields was detected on PET/CT in 15 patients (10.8%), with involvement of ipsilateral internal mammary nodes in 13 and ipsilateral level 5 cervical nodes in 2. Conclusions: Imaging with PET/CT provides superior diagnostic and staging information in patients with LABC compared with CI, which has significant therapeutic implications with respect to radiation therapy management. Imaging with PET/CT should be considered in all patients undergoing primary

  4. Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Young Jin; Choi, Young Hun [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Ha, Seongmin [New York-Presbyterian Hospital and the Weill Cornell Medical College, Dalio Institute of Cardiovascular Imaging, New York, NY (United States)

    2016-03-15

    CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose{sup 4}, levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose{sup 4} levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose{sup 4} level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose{sup 4} obtained at 1.81 mSv. (orig.)

  5. Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom.

    Science.gov (United States)

    Ryu, Young Jin; Choi, Young Hun; Cheon, Jung-Eun; Ha, Seongmin; Kim, Woo Sun; Kim, In-One

    2016-03-01

    CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose(4), levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose(4) levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose(4) level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose(4) obtained at 1.81 mSv.

  6. Computational dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  7. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  8. Bulk fields with brane terms

    Energy Technology Data Exchange (ETDEWEB)

    Aguila, F. del [Departamento de Fisica Teorica y del Cosmos and Centro Andaluz de Fisica de Particulas Elementales (CAFPE), Universidad de Granada, E-18071 Granada (Spain); Perez-Victoria, M. [Dipartimento di Fisica ' ' G. Galilei' ' , Universita di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padua (Italy); Santiago, J. [Institute for Particle Physics Phenomenology, University of Durham, South Road, Durham DH1 3LE (United Kingdom)

    2004-07-01

    In theories with branes, bulk fields get in general divergent corrections localized on these defects. Hence, the corresponding brane terms are renormalized and should be included in the effective theory from the very beginning. We review the phenomenology associated to brane kinetic terms for different spins and backgrounds, and point out that renormalization is required already at the classical level. (orig.)

  9. Bulk Viscous Matter-dominated Universes: Asymptotic Properties

    CERN Document Server

    Avelino, Arturo; Gonzalez, Tame; Nucamendi, Ulises; Quiros, Israel

    2013-01-01

    By means of a combined study of the type Ia supernovae test,together with a study of the asymptotic properties in the equivalent phase space -- through the use of the dynamical systems tools -- we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of very particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed...

  10. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  11. Accidental SUSY: enhanced bulk supersymmetry from brane back-reaction

    Science.gov (United States)

    Burgess, C. P.; van Nierop, L.; Parameswaran, S.; Salvio, A.; Williams, M.

    2013-02-01

    We compute how bulk loops renormalize both bulk and brane effective interactions for codimension-two branes in 6D gauged chiral supergravity, as functions of the brane tension and brane-localized flux. We do so by explicitly integrating out hyper- and gauge-multiplets in 6D gauged chiral supergravity compactified to 4D on a flux-stabilized 2D rugby-ball geometry, specializing the results of a companion paper, arXiv:1210.3753, to the supersymmetric case. While the brane back-reaction generically breaks supersymmetry, we show that the bulk supersymmetry can be preserved if the amount of brane- localized flux is related in a specific BPS-like way to the brane tension, and verify that the loop corrections to the brane curvature vanish in this special case. In these systems it is the brane-bulk couplings that fix the size of the extra dimensions, and we show that in some circumstances the bulk geometry dynamically adjusts to ensure the supersymmetric BPS-like condition is automatically satisfied. We investigate the robustness of this residual supersymmetry to loops of non-supersymmetric matter on the branes, and show that supersymmetry-breaking effects can enter only through effective brane-bulk interactions involving at least two derivatives. We comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

  12. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient.

    Science.gov (United States)

    Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich

    2015-08-14

    In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Running with rugby balls: bulk renormalization of codimension-2 branes

    Science.gov (United States)

    Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.

    2013-01-01

    We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

  14. Bulk viscosity, interaction and the viability of phantom solutions

    Energy Technology Data Exchange (ETDEWEB)

    Leyva, Yoelsy; Sepulveda, Mirko [Universidad de Tarapaca, Departamento de Fisica, Facultad de Ciencias, Arica (Chile)

    2017-06-15

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) Universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with w < -1. From the different cases that we study, the only possible scenario, with bulk viscosity and interaction term, belongs to the quintessence region. In the latter case, we find bounds on the interaction parameter compatible with latest observational data. (orig.)

  15. Space-Based FPGA Radio Receiver Design, Debug, and Development of a Radiation-Tolerant Computing System

    Directory of Open Access Journals (Sweden)

    Zachary K. Baker

    2010-01-01

    Full Text Available Los Alamos has recently completed the latest in a series of Reconfigurable Software Radios, which incorporates several key innovations in both hardware design and algorithms. Due to our focus on satellite applications, each design must extract the best size, weight, and power performance possible from the ensemble of Commodity Off-the-Shelf (COTS parts available at the time of design. A large component of our work lies in determining if a given part will survive in space and how it will fail under various space radiation conditions. Using two Xilinx Virtex 4 FPGAs, we have achieved 1 TeraOps/second signal processing on a 1920 Megabit/second datastream. This processing capability enables very advanced algorithms such as our wideband RF compression scheme to operate at the source, allowing bandwidth-constrained applications to deliver previously unattainable performance. This paper will discuss the design of the payload, making electronics survivable in the radiation of space, and techniques for debug.

  16. Use of Transportable Radiation Detection Instruments to Assess Internal Contamination from Intakes of Radionuclides Part II: Calibration Factors and ICAT Computer Program.

    Science.gov (United States)

    Anigstein, Robert; Olsher, Richard H; Loomis, Donald A; Ansari, Armin

    2016-12-01

    The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: Co, I, Cs, and Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of

  17. Optimizing radiation dose levels in prospectively electrocardiogram-triggered coronary computed tomography angiography using iterative reconstruction techniques: a phantom and patient study.

    Directory of Open Access Journals (Sweden)

    Yang Hou

    Full Text Available AIM: To investigate the potential of reducing the radiation dose in prospectively electrocardiogram-triggered coronary computed tomography angiography (CCTA while maintaining diagnostic image quality using an iterative reconstruction technique (IRT. METHODS AND MATERIALS: Prospectively-gated CCTA were first performed on a phantom using 256-slice multi-detector CT scanner at 120 kVp, with the tube output gradually reduced from 210 mAs (Group A to 125, 105, 84, and 63 mAs (Group B-E. All scans were reconstructed using filtered back projection (FBP algorithm and five IRT levels (L2-6, image quality (IQ assessment was performed. Based on the IQ assessment, Group D(120 kVp, 84 mAs reconstructed with L5 was found to provide IQ comparable to that of Group A with FBP. In the patient study, 21 patients underwent CCTA using 120 kV, 210 mAs with FBP reconstruction (Group 1 followed by 36 patients scanned with 120 kV, 84 mAs with IRT L5 (Group 2. Subjective and objective IQ and effective radiation dose were compared between two groups. RESULTS: In the phantom scans, there were no significant differences in image noise, contrast-to-noise ratio (CNR and modulation transfer function (MTF curves between Group A and the 84 mAs, 63 mAs groups (Groups D and E. Group D (120 kV, 84 mAs and L5 provided an optimum balance, producing equivalent image quality to Group A, at the lowest possible radiation dose. In the patient study, there were no significant difference in image noise, signal-to-noise ratio (SNR and CNR between Group 1 and Group 2 (p=0.71, 0.31, 0.5, respectively. The effective radiation dose in Group 2 was 1.21 ± 0.14 mSv compared to 3.20 ± 0.58 mSv (Group 1, reflecting dose savings of 62.5% (p<0.05. CONCLUSION: iterative reconstruction technique used in prospectively ECG-triggered 256-slice coronary CTA can provide radiation dose reductions of up to 62.5% with acceptable image quality.

  18. Effect of Tube Voltage (100 vs. 120 kVp on Radiation Dose and Image Quality using Prospective Gating 320 Row Multi-detector Computed Tomography Angiography

    Directory of Open Access Journals (Sweden)

    Atif N Khan

    2013-01-01

    Full Text Available Objectives : The objective of the following study is to evaluate the effect of reducing tube voltage from 120 to 100 kVp using prospective gating 320 row multi-detector computed tomography angiography on image quality and reduction in radiation dose. Materials and Methods : A total of 78 sequential patients were scanned with prospective electrocardiogram gating. A total of 45 patients (Group 1 with mean body mass index (BMI 29 ± 2 and heart rate (HR 57 ± 7 beats per minute (BPM were scanned at 120 kVp. 33 patients (Group 2 with mean BMI 23 ± 3 and HR 58 ± 6 bpm were scanned at 100 kVp. Effective dose was calculated using dose length product and factor (k = 0.014. Quantitative assessment of image quality was calculated by measuring signal to noise ratio (SNR and contrast to noise ratio (CNR in the left ventricle and left main coronary artery. Two experienced cardiac radiologists using a three-point ordinal scale assessed subjectively image quality. Results: In Group 1, the median radiation dose was 5.31 mSv (95% confidence interval [CI]: 4.86-6.09 and for Group 2 (P = 0.009 the mean radiation dose was 3.71 mSv (95% CI: 2.76-4.87, representing 30% decrease in radiation dose. In multivariate analyses, adjusting for age, gender, HR, BMI, tube current and scan length, an absolute median reduction of 2.21 mSv (1.13-3.29 mSv was noted in patients scanned with 100 kVp (P < 0.0001. The quantitative image quality (SNR and CNR was not statistically significant between the groups. Subjective image quality was rated as good or excellent in 99% of coronary segments for both groups (P value was considered as non-significant. Conclusion: Our study suggests that radiation dose may be lowered from 120 to 100 kVp with preservation of image quality in patient′s whose BMI is ≤27.

  19. Technical vision system for analysing the mechanical characteristics of bulk materials

    Science.gov (United States)

    Boikov, A. V.; Payor, V. A.; Savelev, R. V.

    2018-01-01

    In this article actual topics concerned with mechanical properties of bulk materials, usage of computer vision and artificial neural networks in this research are discussed. The main principles of the system for analysis of bulk materials mechanical characteristics are described. Bulk material outflow behaviour with predefined parameters (particles shapes and radius, coefficients of friction, etc.) was modelled. The outflow was modelled from the calibrated conical funnel. Obtained dependencies between mechanical characteristics and pile geometrical properties are represented as diagrams and graphs.

  20. The Hydrated Electron at the Surface of Neat Liquid Water Appears To Be Indistinguishable from the Bulk Species.

    Science.gov (United States)

    Coons, Marc P; You, Zhi-Qiang; Herbert, John M

    2016-08-31

    Experiments have suggested that the aqueous electron, e(-)(aq), may play a significant role in the radiation chemistry of DNA. A recent measurement of the energy (below vacuum level) of the putative "interfacial" hydrated electron at the water/vacuum interface, performed using liquid microjet photoelectron spectroscopy, has been interpreted to suggest that aqueous electrons at the water/biomolecule interface may possess the appropriate energetics to induce DNA strand breaks, whereas e(-)(aq) in bulk water lies too far below the vacuum level to induce such reactions. Other such experiments, however, find no evidence of a long-lived feature at low binding energy. We employ a variety of computational strategies to demonstrate that the energetics of the hydrated electron at the surface of neat liquid water are not significantly different from those of e(-)(aq) in bulk water and as such are incompatible with dissociative electron attachment reactions in DNA. We furthermore suggest that no stable interfacial species may exist at all, consistent with the interpretation of certain surface-sensitive spectroscopy measurements, and that even if a short-lived, metastable species does exist at the vacuum/water interface, it would be extremely difficult to distinguish, experimentally, from e(-)(aq) in bulk water, using either optical absorption or photoelectron spectroscopy.

  1. Development of Computational Tools for Modeling Thermal and Radiation Effects on Grain Boundary Segregation and Precipitation in Fe-Cr-Ni-based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This work aims at developing computational tools for modeling thermal and radiation effects on solute segregation at grain boundaries (GBs) and precipitation. This report described two major efforts. One is the development of computational tools on integrated modeling of thermal equilibrium segregation (TES) and radiation-induced segregation (RIS), from which synergistic effects of thermal and radiation, pre-existing GB segregation have been taken into consideration. This integrated modeling was used in describing the Cr and Ni segregation in the Fe-Cr-Ni alloys. The other effort is thermodynamic modeling on the Fe-Cr-Ni-Mo system which includes the major alloying elements in the investigated alloys in the Advanced Radiation Resistant Materials (ARRM) program. Through thermodynamic calculation, we provide baseline thermodynamic stability of the hardening phase Ni2(Cr,Mo) in selected Ni-based super alloys, and contribute knowledge on mechanistic understanding on the formation of Ni2(Cr,Mo) in the irradiated materials. The major outcomes from this work are listed in the following: 1) Under the simultaneous thermal and irradiation conditions, radiation-induced segregation played a dominant role in the GB segregation. The pre-existing GB segregation only affects the subsequent radiation-induced segregation in the short time. For the same element, the segregation tendency of Cr and Ni due to TES is opposite to it from RIS. The opposite tendency can lead to the formation of W-shape profile. These findings are consistent with literature observation of the transitory W-shape profile. 2) While TES only affects the distance of one or two atomic layers from GBs, the RIS can affect a broader distance from GB. Therefore, the W-shape due to pre-existing GB segregation is much narrower than that due to composition gradient formed during the transient state. Considering the measurement resolution of Auger or STEM analysis, the segregation tendency due to RIS should play a dominant

  2. Detection of parathyroid adenomas using a monophasic dual-energy computed tomography acquisition: diagnostic performance and potential radiation dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Leiva-Salinas, Carlos; Flors, Lucia; Durst, Christopher R.; Hou, Qinghua; Mukherjee, Sugoto [University of Virginia, Department of Radiology, Division of Neuroradiology, Charlottesville, VA (United States); Patrie, James T. [University of Virginia, Department of Public Health Sciences, Charlottesville, VA (United States); Wintermark, Max [Stanford University, Department of Radiology, Palo Alto, CA (United States)

    2016-11-15

    The aims of the study were to compare the diagnostic performance of a combination of virtual non-contrast (VNC) images and arterial images obtained from a single-phase dual-energy CT (DECT) acquisition and standard non-contrast and arterial images from a biphasic protocol and to study the potential radiation dose reduction of the former approach. All DECT examinations performed for evaluation of parathyroid adenomas during a 13-month period were retrospectively reviewed. An initial single-energy unenhanced acquisition was followed by a dual-energy arterial phase acquisition. ''Virtual non-contrast images'' were generated from the dual-energy acquisition. Two independent and blinded radiologists evaluated three different sets of images during three reading sessions: single arterial phase, single-phase DECT (virtual non-contrast and arterial phase), and standard biphasic protocol (true non-contrast and arterial phase). The accuracy of interpretation in lateralizing an adenoma to the side of the neck and localizing it to a quadrant in the neck was evaluated. Sixty patients (mean age, 65.5 years; age range, 38-87 years) were included in the study. The lateralization and localization accuracy, sensitivity, and positive predicted value (PPV) and negative predicted value (NPV) of the different image datasets were comparable. The combination of VNC and arterial images was more specific than arterial images alone to lateralize a parathyroid lesion (OR = 1.93, p = 0.043). The use of the single-phase protocol resulted in a calculated radiation exposure reduction of 52.8 %. Virtual non-contrast and arterial images from a single DECT acquisition showed similar diagnostic accuracy than a biphasic protocol, providing a significant dose reduction. (orig.)

  3. Detection of parathyroid adenomas using a monophasic dual-energy computed tomography acquisition: diagnostic performance and potential radiation dose reduction.

    Science.gov (United States)

    Leiva-Salinas, Carlos; Flors, Lucia; Durst, Christopher R; Hou, Qinghua; Patrie, James T; Wintermark, Max; Mukherjee, Sugoto

    2016-11-01

    The aims of the study were to compare the diagnostic performance of a combination of virtual non-contrast (VNC) images and arterial images obtained from a single-phase dual-energy CT (DECT) acquisition and standard non-contrast and arterial images from a biphasic protocol and to study the potential radiation dose reduction of the former approach. All DECT examinations performed for evaluation of parathyroid adenomas during a 13-month period were retrospectively reviewed. An initial single-energy unenhanced acquisition was followed by a dual-energy arterial phase acquisition. "Virtual non-contrast images" were generated from the dual-energy acquisition. Two independent and blinded radiologists evaluated three different sets of images during three reading sessions: single arterial phase, single-phase DECT (virtual non-contrast and arterial phase), and standard biphasic protocol (true non-contrast and arterial phase). The accuracy of interpretation in lateralizing an adenoma to the side of the neck and localizing it to a quadrant in the neck was evaluated. Sixty patients (mean age, 65.5 years; age range, 38-87 years) were included in the study. The lateralization and localization accuracy, sensitivity, and positive predicted value (PPV) and negative predicted value (NPV) of the different image datasets were comparable. The combination of VNC and arterial images was more specific than arterial images alone to lateralize a parathyroid lesion (OR = 1.93, p = 0.043). The use of the single-phase protocol resulted in a calculated radiation exposure reduction of 52.8 %. Virtual non-contrast and arterial images from a single DECT acquisition showed similar diagnostic accuracy than a biphasic protocol, providing a significant dose reduction.

  4. Computed tomography of the chest with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination: preliminary observations

    Energy Technology Data Exchange (ETDEWEB)

    Neroladaki, Angeliki; Botsikas, Diomidis; Boudabbous, Sana; Becker, Christoph D.; Montet, Xavier [Geneva University Hospital, Department of Radiology, Geneva 4 (Switzerland)

    2013-02-15

    The purpose of this study was to assess the diagnostic image quality of ultra-low-dose chest computed tomography (ULD-CT) obtained with a radiation dose comparable to chest radiography and reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) in comparison with standard dose diagnostic CT (SDD-CT) or low-dose diagnostic CT (LDD-CT) reconstructed with FBP alone. Unenhanced chest CT images of 42 patients acquired with ULD-CT were compared with images obtained with SDD-CT or LDD-CT in the same examination. Noise measurements and image quality, based on conspicuity of chest lesions on all CT data sets were assessed on a five-point scale. The radiation dose of ULD-CT was 0.16 {+-} 0.006 mSv compared with 11.2 {+-} 2.7 mSv for SDD-CT (P < 0.0001) and 2.7 {+-} 0.9 mSv for LDD-CT. Image quality of ULD-CT increased significantly when using MBIR compared with FBP or ASIR (P < 0.001). ULD-CT reconstructed with MBIR enabled to detect as many non-calcified pulmonary nodules as seen on SDD-CT or LDD-CT. However, image quality of ULD-CT was clearly inferior for characterisation of ground glass opacities or emphysema. Model-based iterative reconstruction allows detection of pulmonary nodules with ULD-CT with radiation exposure in the range of a posterior to anterior (PA) and lateral chest X-ray. (orig.)

  5. Computed tomography versus intravenous urography in diagnosis of acute flank pain from urolithiasis: a randomized study comparing imaging costs and radiation dose.

    Science.gov (United States)

    Thomson, J M; Glocer, J; Abbott, C; Maling, T M; Mark, S

    2001-08-01

    The equivalent sensitivity of non-contrast computed tomography (NCCT) and intravenous urography (IVU) in the diagnosis of suspected ureteric colic has been established. Approximately 50% of patients with suspected ureteric colic do not have a nephro-urological cause for pain. Because many such patients require further imaging studies, NCCT may obviate the need for these studies and, in so doing, be more cost effective and involve less overall radiation exposure. The present study compares the total imaging cost and radiation dose of NCCT versus IVU in the diagnosis of acute flank pain. Two hundred and twenty-four patients (157 men; mean age 45 years; age range 19-79 years) with suspected renal colic were randomized either to NCCT or IVU. The number of additional diagnostic imaging studies, cost (IVU A$136; CTU A$173), radiation exposure and imaging times were compared. Of 119 (53%) patients with renal obstruction, 105 had no nephro-urological causes of pain. For 21 (20%) of these patients an alternative diagnosis was made at the initial imaging, 10 of which were significant. Of 118 IVU patients, 28 (24%) required 32 additional imaging tests to reach a diagnosis, whereas seven of 106 (6%) NCCT patients required seven additional imaging studies. The average total diagnostic imaging cost for the NCCT group was A$181.94 and A$175.46 for the IVU group (P IVU) (P IVU) (P IVU, its advantages of faster diagnosis, the avoidance of additional diagnostic imaging tests and its ability to diagnose other causes makes it the study of choice for acute flank pain at Christchurch Hospital.

  6. Comparison of diagnostic performance between single- and multiphasic contrast-enhanced abdominopelvic computed tomography in patients admitted to the emergency department with abdominal pain: potential radiation dose reduction.

    Science.gov (United States)

    Hwang, Shin Hye; You, Je Sung; Song, Mi Kyong; Choi, Jin-Young; Kim, Myeong-Jin; Chung, Yong Eun

    2015-04-01

    To evaluate feasibility of radiation dose reduction by optimal phase selection of computed tomography (CT) in patients who visited the emergency department (ED) for abdominal pain. We included 253 patients who visited the ED for abdominal pain. They underwent multiphasic CT including precontrast, late arterial phase (LAP), and hepatic venous phase (HVP). Three image sets (HVP, precontrast + HVP, and precontrast + LAP + HVP) were reviewed. Two reviewers determined the most appropriate diagnosis with five-point confidence scale. Diagnostic performances were compared among image sets by weighted-least-squares method or DeLong's method. Linear mixed model was used to assess changes of diagnostic confidence and radiation dose. There was no difference in diagnostic performance among three image sets, although diagnostic confidence level was significantly improved after review of triphasic images compared with both HVP images only or HVP with precontrast images (confidence scale, 4.64 ± 0.05, 4.66 ± 0.05, and 4.76 ± 0.04 in the order of the sets; overall P = 0.0008). Similar trends were observed in the subgroup analysis for diagnosis of pelvic inflammatory disease and cholecystitis. There is no difference between HVP-CT alone and multiphasic CT for the diagnosis of causes of abdominal pain in patients admitted to the ED without prior chronic disease or neoplasia. • There was no difference in diagnostic performance of HVP CT and multiphasic CT. • The diagnostic confidence level was improved after review of the LAP images. • HVP CT can achieve diagnostic performance similar to that of multiphasic CT, while minimizing radiation.

  7. Comparison of diagnostic performance between single- and multiphasic contrast-enhanced abdominopelvic computed tomography in patients admitted to the emergency department with abdominal pain: potential radiation dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Shin Hye; You, Je Sung; Choi, Jin-Young; Kim, Myeong-Jin; Chung, Yong Eun [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Seodaemun-gu, Seoul (Korea, Republic of); Song, Mi Kyong [Yonsei University, Biostatistics Collaboration Unit, College of Medicine, Seoul (Korea, Republic of)

    2015-04-01

    To evaluate feasibility of radiation dose reduction by optimal phase selection of computed tomography (CT) in patients who visited the emergency department (ED) for abdominal pain. We included 253 patients who visited the ED for abdominal pain. They underwent multiphasic CT including precontrast, late arterial phase (LAP), and hepatic venous phase (HVP). Three image sets (HVP, precontrast + HVP, and precontrast + LAP + HVP) were reviewed. Two reviewers determined the most appropriate diagnosis with five-point confidence scale. Diagnostic performances were compared among image sets by weighted-least-squares method or DeLong's method. Linear mixed model was used to assess changes of diagnostic confidence and radiation dose. There was no difference in diagnostic performance among three image sets, although diagnostic confidence level was significantly improved after review of triphasic images compared with both HVP images only or HVP with precontrast images (confidence scale, 4.64 ± 0.05, 4.66 ± 0.05, and 4.76 ± 0.04 in the order of the sets; overall P = 0.0008). Similar trends were observed in the subgroup analysis for diagnosis of pelvic inflammatory disease and cholecystitis. There is no difference between HVP-CT alone and multiphasic CT for the diagnosis of causes of abdominal pain in patients admitted to the ED without prior chronic disease or neoplasia. (orig.)

  8. Potential of a spectroscopic measurement method using adding-doubling to retrieve the bulk optical properties of dense microalgal media.

    Science.gov (United States)

    Bellini, Sarah; Bendoula, Ryad; Latrille, Eric; Roger, Jean-Michel

    2014-01-01

    In the context of algal mass cultivation, current techniques used for the characterization of algal cells require time-consuming sample preparation and a large amount of costly, standard instrumentation. As the physical and chemical properties of the algal cells strongly affect their optical properties, the optical characterization is seen as a promising method to provide an early diagnosis in the context of mass cultivation monitoring. This article explores the potential of a spectroscopic measurement method coupled with the inversion of the radiative transfer theory for the retrieval of the bulk optical properties of dense algal samples. Total transmittance and total reflectance measurements were performed over the 380-1020 nm range on dense algal samples with a double integrating sphere setup. The bulk absorption and scattering coefficients were thus extracted over the 380-1020 nm range by inverting the radiative transfer theory using inverse-adding-doubling computations. The experimental results are presented and discussed; the configuration of the optical setup remains a critical point. The absorption coefficients obtained for the four samples of this study appear not to be more informative about pigment composition than would be classical methods in analytical spectroscopy; however, there is a real added value in measuring the reduced scattering coefficient, as it appears to be strongly correlated to the size distribution of the algal cells.

  9. Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Universe

    CERN Document Server

    Avelino, Arturo

    2010-01-01

    We explore the viability of a bulk viscous matter-dominated Universe to explain the present accelerated expansion of the Universe. The model is composed by two fluids: a radiation component and a pressureless fluid with bulk viscosity of the form zeta = zeta_0 + zeta_1 H where zeta_0 and zeta_1 are constants and H is the Hubble parameter. The pressureless fluid characterizes both the baryon and dark matter components. We study all the possible scenarios for the Universe according to the values of zeta_0 and zeta_1 analyzing the behavior of the scale factor as well as the curvature scalar and the matter density. On the other hand, we test the model computing the best estimated values of zeta_0 and zeta_1 using the type Ia Supernovae (SNe Ia) and the shift parameter R of the Cosmic Microwave Radiation Anisotropies (CMB) probes. We find that the model fits well to both tests. We find also that from all the possible scenarios for the Universe, the preferred one by the best estimated values of (zeta_0, zeta_1) is ...

  10. Bulk density of small meteoroids

    Science.gov (United States)

    Kikwaya, J.-B.; Campbell-Brown, M.; Brown, P. G.

    2011-06-01

    Aims: Here we report on precise metric and photometric observations of 107 optical meteors, which were simultaneously recorded at multiple stations using three different intensified video camera systems. The purpose is to estimate bulk meteoroid density, link small meteoroids to their parent bodies based on dynamical and physical density values expected for different small body populations, to better understand and explain the dynamical evolution of meteoroids after release from their parent bodies. Methods: The video systems used had image sizes ranging from 640 × 480 to 1360 × 1036 pixels, with pixel scales from 0.01° per pixel to 0.05° per pixel, and limiting meteor magnitudes ranging from Mv = +2.5 to +6.0. We find that 78% of our sample show noticeable deceleration, allowing more robust constraints to be placed on density estimates. The density of each meteoroid is estimated by simultaneously fitting the observed deceleration and lightcurve using a model based on thermal fragmentation, conservation of energy and momentum. The entire phase space of the model free parameters is explored for each event to find ranges of parameters which fit the observations within the measurement uncertainty. Results: (a) We have analysed our data by first associating each of our events with one of the five meteoroid classes. The average density of meteoroids whose orbits are asteroidal and chondritic (AC) is 4200 kg m-3 suggesting an asteroidal parentage, possibly related to the high-iron content population. Meteoroids with orbits belonging to Jupiter family comets (JFCs) have an average density of 3100 ± 300 kg m-3. This high density is found for all meteoroids with JFC-like orbits and supports the notion that the refractory material reported from the Stardust measurements of 81P/Wild 2 dust is common among the broader JFC population. This high density is also the average bulk density for the 4 meteoroids with orbits belonging to the Ecliptic shower-type class (ES) also

  11. Incorporating quantitative single photon emission computed tomography into radiation therapy treatment planning for lung cancer: impact of attenuation and scatter correction on the single photon emission computed tomography-weighted mean dose and functional lung segmentation.

    Science.gov (United States)

    Yin, Lingshu; Shcherbinin, Sergey; Celler, Anna; Thompson, Anna; Fua, Tsien-Fei; Liu, Mitchell; Duzenli, Cheryl; Gill, Brad; Sheehan, Finbar; Powe, John; Worsley, Daniel; Marks, Lawrence; Moiseenko, Vitali

    2010-10-01

    To assess the impact of attenuation and scatter corrections on the calculation of single photon emission computed tomography (SPECT)-weighted mean dose (SWMD) and functional volume segmentation as applied to radiation therapy treatment planning for lung cancer. Nine patients with lung cancer underwent a SPECT lung perfusion scan. For each scan, four image sets were reconstructed using the ordered subsets expectation maximization method with attenuation and scatter corrections ranging from none to a most comprehensive combination of attenuation corrections and direct scatter modeling. Functional volumes were segmented in each reconstructed image using 10%, 20%, …, 90% of maximum SPECT intensity as a threshold. Systematic effects of SPECT reconstruction methods on treatment planning using functional volume were studied by calculating size and spatial agreements of functional volumes, and V(20) for functional volume from actual treatment plans. The SWMD was calculated for radiation beams with a variety of possible gantry angles and field sizes. Functional volume segmentation is sensitive to the particular method of SPECT reconstruction used. Large variations in functional volumes, as high as >50%, were observed in SPECT images reconstructed with different attenuation/scatter corrections. However, SWMD was less sensitive to the type of scatter corrections. SWMD was consistent within 2% for all reconstructions as long as computed tomography-based attenuation correction was used. When using perfusion SPECT images during treatment planning optimization/evaluation, the SWMD may be the preferred figure of merit, as it is less affected by reconstruction technique, compared with threshold-based functional volume segmentation. 2010 Elsevier Inc. All rights reserved.

  12. Minimized Radiation and Contrast Agent Exposure for Coronary Computed Tomography Angiography: First Clinical Experience on a Latest Generation 256-slice Scanner.

    Science.gov (United States)

    Benz, Dominik C; Gräni, Christoph; Hirt Moch, Beatrice; Mikulicic, Fran; Vontobel, Jan; Fuchs, Tobias A; Stehli, Julia; Clerc, Olivier F; Possner, Mathias; Pazhenkottil, Aju P; Gaemperli, Oliver; Buechel, Ronny R; Kaufmann, Philipp A

    2016-08-01

    The aim of the study was to evaluate the impact of the latest coronary computed tomography angiography (CCTA) techniques allowing a radiation- and contrast-sparing protocol on image quality in unselected patients referred for exclusion of suspected coronary artery disease (CAD). This prospective study was approved by the local ethics committee, and all patients provided written informed consent. Between March and June 2015, 89 consecutive patients (61% male; mean age 55 ± 11 years) referred for exclusion of CAD by 256-slice CCTA using prospective electrocardiogram triggering were included. Tube voltage (80-120 kVp), tube current (180-310 mA) as well contrast agent volume (25-45 mL) and flow rate (3.5-5 mL/s) were adapted to body mass index. Signal intensity was measured by placing a region of interest in the aortic root, the left main artery, and the proximal right coronary artery. Image noise was measured in the aortic root. Two independent blinded readers semi-quantitatively assessed the image quality regarding motion, noise, and contrast on a 4-point scale. Median contrast agent volume and median effective radiation dose were 35 mL (interquartile range, 30-40 mL) and 0.5 mSv (interquartile range, 0.4-0.6 mSv), respectively. Mean attenuation in the aortic root was 412 ± 89 Hounsfield units. Diagnostic image quality was obtained in 1050 of 1067 (98.4%) coronary segments and, on an intention-to-diagnosis basis, in 85 of 89 (95.5%) patients. Below a cut-off heart rate of 67 beats/min, only 1 of 974 (0.1%) coronary segments was nondiagnostic. A radiation- and contrast-sparing protocol for CCTA on a latest generation 256-slice computed tomography scanner yields diagnostic image quality in patients referred for CAD exclusion in daily clinical routine. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  13. Quantifying the delocalization of surface and bulk F-centers

    Science.gov (United States)

    Janesko, Benjamin G.; Jones, Stephanie I.

    2017-05-01

    Electrons trapped in ionic crystal defects form color centers (F-centers) important in surface science, catalysis, and optoelectronic devices. We apply the electron delocalization range function (EDR) to quantify the delocalization of surface and bulk F-centers. The EDR uses computed one-particle density matrices to quantify ;delocalization lengths; capturing the characteristic size of orbital lobes. Ab initio cluster model calculations confirm that the delocalization lengths of bulk alkali halide F-centers scale with the size of the anion vacancy. Calculations on magnesium oxide surface Fs and Fs+ centers, as well as other anionic surface defects, show how the trapped electrons' delocalization depends on the defect morphology, defect occupancy, and the approximate treatment of electron correlation. Application to N2 activation by anionic surface defects illustrate how the trapped electron localizes into the adsorbed molecule's unoccupied orbitals. The results confirm that the EDR provides a useful tool for understanding the chemistry of surface- and bulk-trapped electrons.

  14. The impact of pediatric-specific dose modulation curves on radiation dose and image quality in head computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Joana; Paulo, Graciano [Instituto Politecnico de Coimbra, ESTESC, DMIR, Coimbra (Portugal); Foley, Shane; Rainford, Louise [University College Dublin, School of Medicine and Medical Science, Health Science Centre, Dublin 4 (Ireland); McEntee, Mark F. [The University of Sydney, Faculty of Health Sciences, Cumberland Campus, Sydney (Australia)

    2015-11-15

    The volume of CT examinations has increased with resultant increases in collective dose values over the last decade. To analyze the impact of the tube current and voltage modulation for dose values and image quality of pediatric head CT examinations. Head CT examinations were performed on anthropomorphic phantoms and four pediatric age categories before and after the introduction of dedicated pediatric curves for tube voltage and current modulation. Local diagnostic reference levels were calculated. Visual grading characteristic image quality evaluation was performed by four pediatric neuroradiologists and image noise comparisons were performed. Pediatric-specific modulation curves demonstrated a 49% decrease in mean radiation dose for phantom examinations. The local diagnostic reference levels (CTDIvol) for clinical examinations decreased by 52%, 41%, 46% and 40% for newborn, 5-, 10- and 15-year-old patients, respectively. Visual grading characteristic image quality was maintained for the majority of age categorizations (area under the curve = 0.5) and image noise measurements did not change (P = 0.693). Pediatric-specific dose modulation curves resulted in an overall mean dose reduction of 45% with no significant differences in subjective or objective image quality findings. (orig.)

  15. Development of posture-specific computational phantoms using motion capture technology and application to radiation dose-reconstruction for the 1999 Tokai-Mura nuclear criticality accident

    Science.gov (United States)

    Vazquez, Justin A.; Caracappa, Peter F.; Xu, X. George

    2014-09-01

    The majority of existing computational phantoms are designed to represent workers in typical standing anatomical postures with fixed arm and leg positions. However, workers found in accident-related scenarios often assume varied postures. This paper describes the development and application of two phantoms with adjusted postures specified by data acquired from a motion capture system to simulate unique human postures found in a 1999 criticality accident that took place at a JCO facility in Tokai-Mura, Japan. In the course of this accident, two workers were fatally exposed to extremely high levels of radiation. Implementation of the emergent techniques discussed produced more accurate and more detailed dose estimates for the two workers than were reported in previous studies. A total-body dose of 6.43 and 26.38 Gy was estimated for the two workers, who assumed a crouching and a standing posture, respectively. Additionally, organ-specific dose estimates were determined, including a 7.93 Gy dose to the thyroid and 6.11 Gy dose to the stomach for the crouching worker and a 41.71 Gy dose to the liver and a 37.26 Gy dose to the stomach for the standing worker. Implications for the medical prognosis of the workers are discussed, and the results of this study were found to correlate better with the patient outcome than previous estimates, suggesting potential future applications of such methods for improved epidemiological studies involving next-generation computational phantom tools.

  16. In-Situ Observations of Longitudinal Compression Damage in Carbon-Epoxy Cross Ply Laminates Using Fast Synchrotron Radiation Computed Tomography

    Science.gov (United States)

    Bergan, Andrew C.; Garcea, Serafina C.

    2017-01-01

    The role of longitudinal compressive failure mechanisms in notched cross-ply laminates is studied experimentally with in-situ synchrotron radiation based computed tomography. Carbon/epoxy specimens loaded monotonically in uniaxial compression exhibited a quasi-stable failure process, which was captured with computed tomography scans recorded continuously with a temporal resolutions of 2.4 seconds and a spatial resolution of 1.1 microns per voxel. A detailed chronology of the initiation and propagation of longitudinal matrix splitting cracks, in-plane and out-of-plane kink bands, shear-driven fiber failure, delamination, and transverse matrix cracks is provided with a focus on kink bands as the dominant failure mechanism. An automatic segmentation procedure is developed to identify the boundary surfaces of a kink band. The segmentation procedure enables 3-dimensional visualization of the kink band and conveys the orientation, inclination, and spatial variation of the kink band. The kink band inclination and length are examined using the segmented data revealing tunneling and spatial variations not apparent from studying the 2-dimensional section data.

  17. Development of posture-specific computational phantoms using motion capture technology and application to radiation dose-reconstruction for the 1999 Tokai-Mura nuclear criticality accident.

    Science.gov (United States)

    Vazquez, Justin A; Caracappa, Peter F; Xu, X George

    2014-09-21

    The majority of existing computational phantoms are designed to represent workers in typical standing anatomical postures with fixed arm and leg positions. However, workers found in accident-related scenarios often assume varied postures. This paper describes the development and application of two phantoms with adjusted postures specified by data acquired from a motion capture system to simulate unique human postures found in a 1999 criticality accident that took place at a JCO facility in Tokai-Mura, Japan. In the course of this accident, two workers were fatally exposed to extremely high levels of radiation. Implementation of the emergent techniques discussed produced more accurate and more detailed dose estimates for the two workers than were reported in previous studies. A total-body dose of 6.43 and 26.38 Gy was estimated for the two workers, who assumed a crouching and a standing posture, respectively. Additionally, organ-specific dose estimates were determined, including a 7.93 Gy dose to the thyroid and 6.11 Gy dose to the stomach for the crouching worker and a 41.71 Gy dose to the liver and a 37.26 Gy dose to the stomach for the standing worker. Implications for the medical prognosis of the workers are discussed, and the results of this study were found to correlate better with the patient outcome than previous estimates, suggesting potential future applications of such methods for improved epidemiological studies involving next-generation computational phantom tools.

  18. Bulk Moisture and Salinity Sensor

    Science.gov (United States)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  19. Gold based bulk metallic glass

    OpenAIRE

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-01-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5 mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644 K, a glass transition temperature of 401 K, and a supercooled liquid region of 58 K. The Vickers hardness of the alloys in this system...

  20. Multi-detector computed tomography radiation doses in the follow-up of paediatric neurosurgery patients in KwaZulu-Natal: A dosimetric audit

    Directory of Open Access Journals (Sweden)

    Christopher T. Sikwila

    2014-04-01

    Full Text Available Background: Multi-detector computed tomography (MDCT is the preferred modality for follow-up of paediatric neurosurgery patients. Serial imaging, however, has the disadvantage of an ionising radiation burden, which may be mitigated using the ‘as low as reasonably achievable’ (ALARA principle. Objectives: The primary objectives were to determine the radiation dose exposure in paediatric patients subjected to MDCT imaging following neurosurgery and to compare these values with references in current literature. Our secondary objective was to assess the relationship between radiation dose and clinical scenario.Method: Retrospective descriptive data were collected from all paediatric postsurgical patients (n = 169 between the ages of 0 and 12 years who had their first followed-up scan in the year 2010 and were followed up for six months or less. Dose-length product (DLP and current-time product were collected from the picture archiving and communication system. Demographic data including radiology reports were collected from the hospital information system. The effective doses (ED were calculated from the corresponding DLP using age-adjusted conversion factors. For purposes of comparison with other studies, median dosimetric values were calculated and the children were grouped into three age ranges, namely younger than 3 years, 3–7 years and 8–12 years old.Results: The highest median radiation doses were noted in patients being followed-up for intracranial abscesses (1183 mGy cm in the 8–12 year age group, most of whom were female. The lowest radiation doses were for intracranial shunt follow-ups (447 mGy cm. Median values for DLP, ED and current-time product (mAs were comparable to reference doses in all three age groups. However, our study showed a much broader distribution of values with higher upper limits relative to reference values. Indications for follow-up included shunts (n = 110; 65%, intracranial abscess (n = 31; 18%, subdural

  1. Computer system for the assessment of radiation situation in the cases of radiological accidents and extreme weather conditions in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Talerko, M.; Garger, E.; Kuzmenko, A. [Institute for Safety Problems of Nuclear Power Plants (Ukraine)

    2014-07-01

    Radiation situation within the Chernobyl Exclusion Zone (ChEZ) is determined by high radionuclides contamination of the land surface formed after the 1986 accident, as well as the presence of a number of potentially hazardous objects (the 'Shelter' object, the Interim Spent Nuclear Fuel Dry Storage Facility ISF-1, radioactive waste disposal sites, radioactive waste temporary localization sites etc.). The air concentration of radionuclides over the ChEZ territory and radiation exposure of personnel are influenced by natural and anthropogenic factors: variable weather conditions, forest fires, construction and excavation activity etc. The comprehensive radiation monitoring and early warning system in the ChEZ was established under financial support of European Commission in 2011. It involves the computer system developed for assessment and prediction of radiological emergencies consequences in the ChEZ ensuring the protection of personnel and the population living near its borders. The system assesses radiation situation under both normal conditions in the ChEZ and radiological emergencies which result in considerable radionuclides emission into the air (accidents at radiation hazardous objects, extreme weather conditions). Three different types of radionuclides release sources can be considered in the software package. So it is based on a set of different models of emission, atmospheric transport and deposition of radionuclides: 1) mesoscale model of radionuclide atmospheric transport LEDI for calculations of the radionuclides emission from stacks and buildings; 2) model of atmospheric transport and deposition of radionuclides due to anthropogenic resuspension from contaminated area (area surface source model) as a result of construction and excavation activity, heavy traffic etc.; 3) model of resuspension, atmospheric transport and deposition of radionuclides during grassland and forest fires in the ChEZ. The system calculates the volume and surface

  2. The extension of radiative viscosity to superfluid matter

    OpenAIRE

    Pi, Chun-Mei; Yang, Shu-Hua; Zheng, Xiao-Ping

    2010-01-01

    The radiative viscosity of superfluid $npe$ matter is studied, and it is found that to the lowest order of $\\delta \\mu/T$ the ratio of radiative viscosity to bulk viscosity is the same as that of the normal matter.

  3. Bulk viscous matter-dominated Universes: asymptotic properties

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)

    2013-08-01

    By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.

  4. Radiation dose reduction using a CdZnTe-based computed tomography system: comparison to flat-panel detectors.

    Science.gov (United States)

    Le Huy, Q; Ducote, Justin L; Molloi, Sabee

    2010-03-01

    Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam hardening effect. The results

  5. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  6. Computed tomography scout views vs. conventional radiography in body-packers – Delineation of body-packs and radiation dose in a porcine model

    Energy Technology Data Exchange (ETDEWEB)

    Ziegeler, Edvard, E-mail: edvard.ziegeler@campus.lmu.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Nussbaumstraße 20, 80336 Munich (Germany); Grimm, Jochen M., E-mail: jochen.grimm@med.lmu.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Nussbaumstraße 20, 80336 Munich (Germany); Wirth, Stefan, E-mail: tefan.wirth@med.lmu.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Nussbaumstraße 20, 80336 Munich (Germany); Uhl, Michael, E-mail: michael.uhl@polizei.bayern.de [Bavarian State Criminal Police Office, Maillingerstrasse 15, 80636 Munich (Germany); Reiser, Maximilian F., E-mail: Maximilian.Reiser@med.lmu.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Nussbaumstraße 20, 80336 Munich (Germany); Scherr, Michael K., E-mail: Michael.Scherr@med.lmu.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Nussbaumstraße 20, 80336 Munich (Germany)

    2012-12-15

    Objective: To compare abdominal computed tomography (CT) scout views with conventional radiography regarding radiation dose and delineation of drug packages in a porcine body-packer model. Materials and methods: Nine samples of illicit drugs packed in ovoid plastic containers were consecutively placed in the rectum of a 121.5 kg pig cadaver. Antero-posterior and lateral scout views were obtained at 120 kVp and 80 mA, 150 mA and 200 mA, respectively, using a 64-row MDCT. Scout views were compared with conventional abdominal antero-posterior radiographs (77 kV and 106 ± 13 mAs). Visibility of three body pack characteristics (wrapping, content, shape) was rated independently by two radiologists and summarized to a delineation score ranging from 0 to 9 with a score ≥6 representing sufficient delineation. Mean delineation scores were calculated for each conventional radiography and single plane scout view separately and for a combined rating of antero-posterior and lateral scout views. Results: Even the lowest single plane scout view delineation score (5.3 ± 2.0 for 80 mA lateral; 0.4 mSv; sensitivity = 44%) was significantly higher than for conventional radiographs (3.1 ± 2.5, p < 0.001; 2.4 ± 0.3 mSv; sensitivity = 11%). Combined reading of antero-posterior and lateral scout views 80 mA yielded sufficient delineation (6.2 ± 1.4; 0.8 mSv; sensitivity = 56%). Conclusions: All CT scout views showed significantly better delineation ratings and sensitivity than conventional radiographs. Scout views in two planes at 80 mA provided a sufficient level of delineation and a sensitivity five times higher than conventional radiography at less than one third of the radiation dose. In case of diagnostic insecurity, CT can be performed without additional logistical effort.

  7. Attenuation-based kV pair selection in dual source dual energy computed tomography angiography of the chest: impact on radiation dose and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Renapurkar, Rahul D.; Azok, Joseph; Lempel, Jason; Karim, Wadih; Graham, Ruffin [Thoracic Imaging, L10, Imaging Institute, Cleveland Clinic, Cleveland, OH (United States); Primak, Andrew [Siemens Medical Solutions, Malvern, PA (United States); Tandon, Yasmeen [Case Western Reserve University-Metro Health Medical Center, Department of Radiology, Cleveland, OH (United States); Bullen, Jennifer [Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH (United States); Dong, Frank [Section of Medical Physics, Cleveland Clinic, Cleveland, OH (United States)

    2017-08-15

    The purpose of this study was to evaluate the impact of attenuation-based kilovoltage (kV) pair selection in dual source dual energy (DSDE)-pulmonary embolism (PE) protocol examinations on radiation dose savings and image quality. A prospective study was carried out on 118 patients with suspected PE. In patients in whom attenuation-based kV pair selection selected the 80/140Sn kV pair, the pre-scan 100/140Sn CTDIvol (computed tomography dose index volume) values were compared with the pre-scan 80/140Sn CTDIvol values. Subjective and objective image quality parameters were assessed. Attenuation-based kV pair selection switched to the 80/140Sn kV pair (''switched'' cohort) in 63 out of 118 patients (53%). The mean 100/140Sn pre-scan CTDIvol was 8.8 mGy, while the mean 80/140Sn pre-scan CTDIvol was 7.5 mGy. The average estimated dose reduction for the ''switched'' cohort was 1.3 mGy (95% CI 1.2, 1.4; p < 0.001), representing a 15% reduction in dose. After adjusting for patient weight, mean attenuation was significantly higher in the ''switched'' vs. ''non-switched'' cohorts in all five pulmonary arteries and in all lobes on iodine maps. This study demonstrates that attenuation-based kV pair selection in DSDE examination is feasible and can offer radiation dose reduction without compromising image quality. (orig.)

  8. Noncontrast chest computed tomography immediately after transarterial chemoembolization in patients with hepatocellular carcinoma: Clinical benefits and effect of radiation reduction on image quality in low-dose scanning

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joon-Il [Center for Liver Cancer, Research Institute and Hospital, National Cancer Center, Goyang-si (Korea, Republic of); Department of Radiology, Research Institute and Hospital, National Cancer Center, Goyang-si (Korea, Republic of); Department of Radiology, Seoul St. Mary' s Hospital, The Catholic University of Korea, Seoul (Korea, Republic of); Kim, Hyun Beom, E-mail: dockhb@naver.com [Center for Liver Cancer, Research Institute and Hospital, National Cancer Center, Goyang-si (Korea, Republic of); Department of Radiology, Research Institute and Hospital, National Cancer Center, Goyang-si (Korea, Republic of); Kim, Min Ju; Lee, Jong Seok [Department of Radiology, Research Institute and Hospital, National Cancer Center, Goyang-si (Korea, Republic of); Koh, Young Whan; An, Sang Bu [Center for Liver Cancer, Research Institute and Hospital, National Cancer Center, Goyang-si (Korea, Republic of); Department of Radiology, Research Institute and Hospital, National Cancer Center, Goyang-si (Korea, Republic of); Ko, Heung-kyu [Department of Radiology, Research Institute and Hospital, National Cancer Center, Goyang-si (Korea, Republic of); Park, Joong-Won [Center for Liver Cancer, Research Institute and Hospital, National Cancer Center, Goyang-si (Korea, Republic of)

    2011-11-15

    Purpose: To evaluate the clinical benefits of noncontrast chest computed tomography (CT) immediately after transarterial chemoembolization in patients with hepatocellular carcinoma and to assess the effect of radiation reduction on image quality in low-dose scanning. Materials and methods: From June to October 2010, we performed standard-dose, noncontrast chest CTs immediately after transarterial chemoembolization in 160 patients and low-dose CTs in 88 patients. We reviewed the entire noncontrast chest CTs and follow-up CTs to reveal the clinical benefits of CT evaluation immediately after transarterial chemoembolization. Using two independent readers, we also retrospectively evaluated the radiation dose and image quality in terms of the image noise, contrast between the liver parenchyma and iodized oil and diagnostic acceptability for the evaluation of treatment response after transarterial chemoembolization. Results: In 5.2% of the patients, additional treatment was performed immediately after the interpretation of the noncontrast chest CT, and additional pulmonary lesions were found in 8.5% of the patients. The measured mean dose-length product for the low-dose scanning was 18.4% of that of the standard-dose scanning. The image noise was significantly higher with the low-dose scanning (p < 0.001). However, all of the low-dose CT scans were diagnostically acceptable, and the mean scores for the subjective assessments of the contrast and diagnostic acceptability showed no significant differences for either reader. Conclusion: A noncontrast chest CT immediately after transarterial chemoembolization has some clinical benefits for immediate decision making and detecting pulmonary lesions. Low-dose, noncontrast chest CTs immediately after transarterial chemoembolization consistently provide diagnostically acceptable images and information on treatment response in patients who have undergone transarterial chemoembolization.

  9. A comparison between radiation therapists and medical specialists in the use of kilovoltage cone-beam computed tomography scans for potential lung cancer radiotherapy target verification and adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Watt, Sandie Carolyn, E-mail: sandie.watt@sswahs.gov.au [Liverpool and Macarthur Cancer Therapy Centres, NSW (Australia); University of Sydney, Sydney, NSW (Australia); Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia); Vinod, Shalini K. [Liverpool and Macarthur Cancer Therapy Centres, NSW (Australia); Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia); South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW (Australia); Department of Radiation Oncology, Prince of Wales Hospital, NSW (Australia); Dimigen, Marion [Department of Radiology, Liverpool Hospital, NSW (Australia); Department of Radiation Oncology, Prince of Wales Hospital, NSW (Australia); Descallar, Joseph [Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia); South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW (Australia); Zogovic, Branimere [Department of Radiation Oncology, Prince of Wales Hospital, NSW (Australia); Atyeo, John [University of Sydney, Sydney, NSW (Australia); Wallis, Sian [University of Western Sydney, NSW (Australia); Holloway, Lois C. [Liverpool and Macarthur Cancer Therapy Centres, NSW (Australia); University of Sydney, Sydney, NSW (Australia); Institute of Medical Physics, University of Sydney, Sydney, NSW (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia. (Australia); Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia)

    2016-04-01

    Target volume matching using cone-beam computed tomography (CBCT) is the preferred treatment verification method for lung cancer in many centers. However, radiation therapists (RTs) are trained in bony matching and not soft tissue matching. The purpose of this study was to determine whether RTs were equivalent to radiation oncologists (ROs) and radiologists (RDs) in alignment of the treatment CBCT with the gross tumor volume (GTV) defined at planning and in delineating the GTV on the treatment CBCT, as may be necessary for adaptive radiotherapy. In this study, 10 RTs, 1 RO, and 1 RD performed a manual tumor alignment and correction of the planning GTV to a treatment CBCT to generate an isocenter correction distance for 15 patient data sets. Participants also contoured the GTV on the same data sets. The isocenter correction distance and the contoured GTVs from the RTs were compared with the RD and RO. The mean difference in isocenter correction distances was 0.40 cm between the RO and RD, 0.51 cm between the RTs, and RO and 0.42 cm between the RTs and RD. The 95% CIs were smaller than the equivalence limit of 0.5 cm, indicating that the RTs were equivalent to the RO and RD. For GTV delineation comparisons, the RTs were not found to be equivalent to the RD or RO. The alignment of the planning defined GTV and treatment CBCT using soft tissue matching by the RTs has been shown to be equivalent to those by the RO and RD. However, tumor delineation by the RTs on the treatment CBCT was not equivalent to that of the RO and RD. Thus, it may be appropriate for RTs to undertake soft tissue alignment based on CBCT; however, further investigation may be necessary before RTs undertake delineation for adaptive radiotherapy purposes.

  10. Low kilovoltage peak (kVp) with an adaptive statistical iterative reconstruction algorithm in computed tomography urography: evaluation of image quality and radiation dose.

    Science.gov (United States)

    Zhou, Zhiguo; Chen, Haixi; Wei, Wei; Zhou, Shanghui; Xu, Jingbo; Wang, Xifu; Wang, Qingguo; Zhang, Guixiang; Zhang, Zhuoli; Zheng, Linfeng

    2016-01-01

    The purpose of this study was to evaluate the image quality and radiation dose in computed tomography urography (CTU) images acquired with a low kilovoltage peak (kVp) in combination with an adaptive statistical iterative reconstruction (ASiR) algorithm. A total of 45 subjects (18 women, 27 men) who underwent CTU with kV assist software for automatic selection of the optimal kVp were included and divided into two groups (A and B) based on the kVp and image reconstruction algorithm: group A consisted of patients who underwent CTU with a 80 or 100 kVp and whose images were reconstructed with the 50% ASiR algorithm (n=32); group B consisted of patients who underwent CTU with a 120 kVp and whose images were reconstructed with the filtered back projection (FBP) algorithm (n=13). The images were separately reconstructed with volume rendering (VR) and maximum intensity projection (MIP). Finally, the image quality was evaluated using an image score, CT attenuation, image noise, the contrast-to-noise ratio (CNR) of the renal pelvis-to-abdominal visceral fat and the signal-to-noise ratio (SNR) of the renal pelvis. The radiation dose was assessed using volume CT dose index (CTDIvol), dose-length product (DLP) and effective dose (ED). For groups A and B, the subjective image scores for the VR reconstruction images were 3.9±0.4 and 3.8±0.4, respectively, while those for the MIP reconstruction images were 3.8±0.4 and 3.6±0.6, respectively. No significant difference was found (p>0.05) between the two groups' image scores for either the VR or MIP reconstruction images. Additionally, the inter-reviewer image scores did not significantly differ (p>0.05). The mean attenuation of the bilateral renal pelvis in group A was significantly higher than that in group B (271.4±57.6 vs. 221.8±35.3 HU, preconstruction exhibit sufficient image quality and facilitate up to a 44% radiation dose reduction.

  11. Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation.

    Science.gov (United States)

    Nakashima, Yoshito; Nakano, Tsukasa; Nakamura, Koichi; Uesugi, Kentaro; Tsuchiyama, Akira; Ikeda, Susumu

    2004-10-01

    The diffusion pathways of porous sandstone were examined by a three-dimensional (3-D) imaging technique based on X-ray computed tomography (CT) using the SPring-8 (Super Photon ring-8 GeV, Hyogo, Japan) synchrotron radiation facility. The analysis was undertaken to develop better understanding of the diffusion pathways in natural rock as a key factor in clarifying the detailed mechanism of the diffusion of radionuclides and water molecules through the pore spaces of natural barriers in underground nuclear waste disposal facilities. A cylindrical sample (diameter 4 mm, length 6 mm) of sandstone (porosity 0.14) was imaged to obtain a 3-D image set of 450(3) voxels=2.62(3) mm(3). Through cluster-labeling analysis of the 3-D image set, it was revealed that 89% of the pore space forms a single large pore-cluster responsible for macroscopic diffusive transport, while only 11% of the pore space is made up of isolated pores that are not involved in long-range diffusive transport. Computer simulations of the 3-D diffusion of non-sorbing random walkers in the largest pore cluster were performed to calculate the surface-to-volume ratio of the pore, tortuosity (diffusion coefficient in free space divided by that in porous rock). The results showed that (i) the simulated surface-to-volume ratio is about 60% of the results obtained by conventional pulsed-field-gradient proton nuclear magnetic resonance (NMR) laboratory experiments and (ii) the simulated tortuosity is five to seven times larger than the results of laboratory diffusion experiments using non-sorbing I(-) and Br(-). These discrepancies are probably attributed to the intrinsic sample heterogeneity and limited spatial resolution of the CT system. The permeability was also estimated based on the NMR diffusometry theory using the results of the random walk simulations via the Kozeny-Carman equation. The estimated permeability involved an error of about 20% compared with the permeability measured by the conventional

  12. The Effects Of Ultrasonic Application For The Microbiological Quality Of Bulk Cooking Oil

    Directory of Open Access Journals (Sweden)

    Wisnu Istanto

    2015-08-01

    Full Text Available Radiation is one of natural phenomenon that often discussed in light atomic reaction nuclear application and electromagnetic wave especially in gamma ray X ray and UV light. Commonly we usually think that they are negative deadly and dangerous for living creatures. Radiaton may be correlated with thermal phenomenon but this reasearch was applied to get audio phenomenon and radiation especially ultrasonic radiation. Sound is a particle of vibration that propagates through medium and transmitted as longitudinal wave in which the displacement of the medium is parallel to the propagation of the wave. Radiation is the emission of waves in all directions in space by vibratory sources transducers form small balls or knob 234 this study were irradiating exposing to bulk cooking oils. The bulk cooking oil was treated by the ultrasonic exposure 1.5 hours and 3 hours and 24-hour incubation that it showed no aerobic colony. And besides the untreated bulk cooking oil showed a few aerobic colonies. And also the untreated used bulk cooking oil showed more some aerobic colonies. The research results shows that ultrasonic exposure at 48 kHz for 1.5 hours can enhance the microbiological quality of bulk cooking oil for 10 day storage.

  13. Comparison of the radiation dose from cone beam computed tomography and multidetector computed tomography in examinations of the hand; Vergleich der Strahlendosis von Cone-Beam Computertomografie und Multidetektor Computertomografie in Untersuchungen der Hand

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Neubauer, C.; Gerstmair, A.; Krauss, T.; Kotter, E.; Langer, M. [University Medical Center Freiburg (Germany). Dept. of Radiology; Reising, K. [University Medical Center Freiburg (Germany). Dept. of Orthopedics and Trauma Surgery; Zajonc, H. [University Medical Center Freiburg (Germany). Dept. of Plastic and Hand Surgery; Fiebich, M.; Voigt, J. [University of Applied Sciences, Giessen (Germany). Inst. of Medical Physics and Radiation Protection

    2016-05-15

    Comparison of radiation dose of cone beam computed tomography (CBCT) and multidetector computed tomography (MDCT) in examinations of the hand. Dose calculations were carried out by means of Monte Carlo simulations in MDCT and CBCT. A corpse hand was examined in a 320-row MDCT scanner and a dedicated extremities CBCT scanner with standard protocols and multiple low-dose protocols. The image quality of the examinations was evaluated by 5 investigators using a Likert scale from 1 (very good) to 5 (very poor) regarding depiction of cortical bone, cancellous bone, joint surfaces, soft tissues and artifacts. For a sum of ratings of all structures < 50 a good overall image quality was expected. The studies with at least good overall image quality were compared with respect to the dose. The dose of the standard examination was 13.21 (12.96 to 13.46 CI) mGy in MDCT and 7.15 (6.99 to 7.30 CI) mGy in CBCT. The lowest dose in a study with good overall image quality was 4.54 (4.43 to 4.64 CI) mGy in MDCT and 5.72 (5.59 to 5.85 CI) mGy in CBCT. Although the dose of the standard protocols in the CBCT is lower than in the MDCT, the MDCT can realize a good overall image quality at a lower dose than the CBCT. Dose optimization of CT examination protocols for the hand is useful in both modalities, the MDCT has an even greater potential for optimization.

  14. Excess of Radiation Burden for Young Testicular Cancer Patients using Automatic Exposure Control and Contrast Agent on Whole-body Computed Tomography Imaging.

    Science.gov (United States)

    Niiniviita, Hannele; Kulmala, Jarmo; Pölönen, Tuukka; Määttänen, Heli; Järvinen, Hannu; Salminen, Eeva

    2017-06-01

    The aim of the study was to assess patient dose from whole-body computed tomography (CT) in association with patient size, automatic exposure control (AEC) and intravenous (IV) contrast agent. Sixty-five testicular cancer patients (mean age 28 years) underwent altogether 279 whole-body CT scans from April 2000 to April 2011. The mean number of repeated examinations was 4.3. The GE LightSpeed 16 equipped with AEC and the Siemens Plus 4 CT scanners were used for imaging. Whole-body scans were performed with (216) and without (63) IV contrast. The ImPACT software was used to determine the effective and organ doses. Patient doses were independent (p agent caused significantly higher (13% Plus 4, 35% LightSpeed 16) exposure than non-contrast imaging (p agent and careful set-up of the AEC modulation parameters is recommended to avoid excessive radiation exposure on the whole-body CT imaging of young patients.

  15. Iterative reconstruction and individualized automatic tube current selection reduce radiation dose while maintaining image quality in 320-multidetector computed tomography coronary angiography.

    Science.gov (United States)

    Williams, M C; Weir, N W; Mirsadraee, S; Millar, F; Baird, A; Minns, F; Uren, N G; McKillop, G; Bull, R K; van Beek, E J R; Reid, J H; Newby, D E

    2013-11-01

    To assess the effect of two iterative reconstruction algorithms (AIDR and AIDR3D) and individualized automatic tube current selection on radiation dose and image quality in computed tomography coronary angiography (CTCA). In a single-centre cohort study, 942 patients underwent electrocardiogram-gated CTCA using a 320-multidetector CT system. Images from group 1 (n = 228) were reconstructed with a filtered back projection algorithm (Quantum Denoising Software, QDS+). Iterative reconstruction was used for group 2 (AIDR, n = 379) and group 3 (AIDR3D, n = 335). Tube current was selected based on body mass index (BMI) for groups 1 and 2, and selected automatically based on scout image attenuation for group 3. Subjective image quality was graded on a four-point scale (1 = excellent, 4 = non-diagnostic). There were no differences in age (p = 0.975), body mass index (p = 0.435), or heart rate (p = 0.746) between the groups. Image quality improved with iterative reconstruction and automatic tube current selection [1.3 (95% confidence intervals (CI): 1.2-1.4), 1.2 (1.1-1.2) and 1.1 (1-1.2) respectively; p image quality in CTCA. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Attenuation-based automatic kilovolt (kV)-selection in computed tomography of the chest: effects on radiation exposure and image quality.

    Science.gov (United States)

    Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael; Achenbach, Stephan; Uder, Michael; Lell, Michael M

    2013-12-01

    To evaluate an automated attenuation-based kV-selection in computed tomography of the chest in respect to radiation dose and image quality, compared to a standard 120 kV protocol. 104 patients were examined using a 128-slice scanner. Fifty examinations (58 ± 15 years, study group) were performed using the automated adaption of tube potential (100-140 kV), based on the attenuation profile of the scout scan, 54 examinations (62 ± 14 years, control group) with fixed 120 kV. Estimated CT dose index (CTDI) of the software-proposed setting was compared with a 120 kV protocol. After the scan CTDI volume (CTDIvol) and dose length product (DLP) were recorded. Image quality was assessed by region of interest (ROI) measurements, subjective image quality by two observers with a 4-point scale (3--excellent, 0--not diagnostic). The algorithm selected 100 kV in 78% and 120 kV in 22%. Overall CTDIvol reduction was 26.6% (34% in 100 kV) overall DLP reduction was 22.8% (32.1% in 100 kV) (all pimage quality was excellent in both groups. The attenuation based kV-selection algorithm enables relevant dose reduction (~27%) in chest-CT while keeping image quality parameters at high levels. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. SUSD3D Computer Code as Part of the XSUN-2017 Windows Interface Environment for Deterministic Radiation Transport and Cross-Section Sensitivity-Uncertainty Analysis

    Directory of Open Access Journals (Sweden)

    Ivan A. Kodeli

    2017-01-01

    Full Text Available A Windows interface XSUN-2017 facilitating the deterministic radiation transport and cross-section sensitivity-uncertainty (S/U calculation is presented. The package was developed to assist the users in the preparation of input cards, rapid modification, and execution of the complete chain of codes including TRANSX, PARTISN, and SUSD3D, all available from the OECD/NEA Data Bank and RSICC. The objective of this work was to make the input and output handling for these codes as user-friendly as possible, passing information among codes internally. XSUN-2017 allows a user-friendly viewing of results obtained from the PARTISN and SUSD3D programs. The first version of the Windows interface XSUN-2013 was developed in 2013 and submitted to OECD/NEA Data Bank Computer Code Collection and RSICC in early 2014. An updated version, XSUN-2017, will be released in 2017. The package includes also the new version of the SUSD3D code. The XSUN-2017 and SUSD3D code systems and recent improvements and updates are described. Examples of the use and validation are presented, including the S/U intercomparison exercise using the SNEAK-7 benchmarks involving the XSUN-2017 code system comparison with the codes such as TSUNAMI, SERPENT, and MCNP6, and the S/U analysis of the keff and βeff parameters for the MYRRHA accelerator driven system (ADS.

  18. Simultaneous in vivo synchrotron radiation computed tomography of regional ventilation and blood volume in rabbit lung using combined K-edge and temporal subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Suhonen, H [Department of Physical Sciences, University of Helsinki (Finland); Porra, L [Department of Physical Sciences, University of Helsinki (Finland); Bayat, S [Universite de Picardie Jules Verne, Faculte de Medecine, PERITOX (EA-INI RIS) and Cardiologie et Pneumo-Allerglogie Pediatriques, CHU Amiens (France); Sovijaervi, A R A [Department of Clinical Physiology and Nuclear Medicine, Helsinki University Central Hospital, Helsinki (Finland); Suortti, P [Department of Physical Sciences, University of Helsinki (Finland)

    2008-02-07

    In K-edge subtraction (KES) imaging with synchrotron radiation computed tomography (SRCT), two images are taken simultaneously using energies above and below the K-absorption edge of a contrast agent. A logarithmic difference image reveals the contrast agent concentration with good accuracy. Similarly, in temporal subtraction imaging (TSI) the reference image is taken before the introduction of the contrast agent. Quantitative comparisons of in vivo images of rabbit lung indicated that similar results for concentrations of iodine in blood vessels and xenon in airways are obtained by KES and TSI, but the level of noise and artifacts was higher in the latter. A linear fit showed that in the lung parenchyma {rho}{sub TSI} = (0.97 {+-} 0.03){rho}{sub KES} + (0.00 {+-} 0.05) for xenon and {rho}{sub TSI} = (1.21 {+-} 0.15){rho}{sub KES} + (0.0 {+-} 0.1) for iodine. For xenon the calculation of time constant of ventilation gave compatible values for both of the methods. The two methods are combined for the simultaneous determination of the xenon concentration (by KES) and the iodine concentration (by TSI) in lung imaging, which will allow simultaneous in vivo determination of ventilation and perfusion.

  19. 3D investigation on polystyrene colloidal crystals by floatage self-assembly with mixed solvent via synchrotron radiation x-ray phase-contrast computed tomography

    Science.gov (United States)

    Fu, Yanan; Xie, Honglan; Deng, Biao; Du, Guohao; Xiao, Tiqiao

    2017-06-01

    The floatage self-assembly method was introduced with mixed solvent as the medium of polystyrene sphere suspension to fabricate the colloidal crystal. The three dimensional (3D) void system of the colloidal crystal was noninvasively characterized by synchrotron radiation phase-contrast computed tomography, and the quantitative image analysis was implemented aiming to the polystyrene sphere colloidal crystal. Comparing with gravity sedimentation method, the three samples fabricated from floatage self-assembly with mixed solvents have the lowest porosity, and when ethylene glycol and water were mixed with ratio of 1:1, the lowest porosity of 27.49% could be achieved, that has been very close to the minimum porosity of ordered 3D monodisperse sphere array (26%). In single slices, the porosities and fractal dimension for the voids were calculated. The results showed that two factors would significantly influence the porosity of the whole colloidal crystal: the first deposited sphere layer's orderliness and the sedimentation speed of the spheres. The floatage self-assembly could induce a stable close-packing process, resulted from the powerful nucleation force-lateral capillary force coupled with the mixed solvent to regulate the floating upward speed for purpose of matching the assembly rate.

  20. Reducing radiation dose in the diagnosis of pulmonary embolism using adaptive statistical iterative reconstruction and lower tube potential in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kaul, David [Campus Virchow-Klinikum, Department of Radiation Oncology, Charite School of Medicine and University Hospital, Berlin (Germany); Charite School of Medicine and University Hospital, Department of Radiology, Berlin (Germany); Grupp, Ulrich; Kahn, Johannes; Wiener, Edzard; Hamm, Bernd; Streitparth, Florian [Charite School of Medicine and University Hospital, Department of Radiology, Berlin (Germany); Ghadjar, Pirus [Campus Virchow-Klinikum, Department of Radiation Oncology, Charite School of Medicine and University Hospital, Berlin (Germany)

    2014-11-15

    To assess the impact of ASIR (adaptive statistical iterative reconstruction) and lower tube potential on dose reduction and image quality in chest computed tomography angiographies (CTAs) of patients with pulmonary embolism. CT data from 44 patients with pulmonary embolism were acquired using different protocols - Group A: 120 kV, filtered back projection, n = 12; Group B: 120 kV, 40 % ASIR, n = 12; Group C: 100 kV, 40 % ASIR, n = 12 and Group D: 80 kV, 40 % ASIR, n = 8. Normalised effective dose was calculated; image quality was assessed quantitatively and qualitatively. Normalised effective dose in Group B was 33.8 % lower than in Group A (p = 0.014) and 54.4 % lower in Group C than in Group A (p < 0.001). Group A, B and C did not show significant differences in qualitative or quantitative analysis of image quality. Group D showed significantly higher noise levels in qualitative and quantitative analysis, significantly more artefacts and decreased overall diagnosability. Best results, considering dose reduction and image quality, were achieved in Group C. The combination of ASIR and lower tube potential is an option to reduce radiation without significant worsening of image quality in the diagnosis of pulmonary embolism. (orig.)

  1. Digital subtraction angiography and computer assisted image analysis for the evaluation of the antiangiogenetic effect of ionizing radiation on tumor angiogenesis.

    Science.gov (United States)

    Siablis, Dimitrios; Liatsikos, Evangelos N; Karnabatidis, Dimitrios; Kagadis, George C; Sakelaropoulos, George C; Maroulis, John; Kardamakis, Dimitrios; Athanassopoulos, Anastasios; Perimenis, Petros; Nikiforidis, George; Barbalias, George A

    2006-01-01

    The aim of the present study was to evaluate and quantify the antiangiogenetic effect of ionizing radiation on tumor angiogenesis using digital subtraction angiography (DSA) in conjunction with computer assisted image analysis (CAIA). Walker 256 carcinosarcoma was inoculated in both glutei of 12 Wistar rats. When the tumors reached a diameter of 1.5 cm, local irradiation of the right gluteus was performed. The left gluteus of each animal served as a control. After 24 hours of irradiation, angiography was performed, and images where digitized and subsequently processed. The effect of irradiation was observed both in big and small vessels (smaller or greater than 200 microm). Irradiated areas of both small and big vessels showed a statistically significant reduction in both total vessel area and length. Small vessels showed a greater trend toward suppression by irradiation (not statistically significant). Irradiation had a deleterious effect in both macro- and micro-blood supply of a tumor. The use of CAIA enhanced the efficacy of DSA and enabled the in vivo identification of the effect of irradiation on various caliber vessels as well as the ratios of total length and total area of small and big vessels.

  2. Bone dynamics in the upward direction after a maxillary sinus floor elevation procedure: serial segmentation using synchrotron radiation micro-computed tomography.

    Science.gov (United States)

    Seo, Seung-Jun; Bark, Chung Wung; Lim, Jae-Hong; Kim, Yong-Gun

    2015-01-01

    Maxillary sinus floor augmentation has been shown to be the most predictable surgical technique for enhancing the bone volume in the posterior area of the maxilla. The purpose of this study was to analyze the serial slice image segmentation of newly formed bone and bone substitutes after sinus floor elevation using synchrotron radiation X-ray micro-computed tomography (SR-μCT). Bone biopsy specimens were collected after 6 months of sinus floor augmentation. From the six bone biopsy specimens, the cross-sectional images at every 8 μm along the apical direction from the inferior border using serial segmentation from three-dimensional reconstructed X-ray images were analyzed. The amount of new bone and bone substitutes were measured at each slicing image (300-430 images per specimen). The bone dynamics between the new bone and bone substitutes along the inferior-superior direction in humans after maxillary sinus floor elevation (MSFE) were analyzed using the whole sample region. Although these observations suggest that the specimens are structurally inhomogeneous, sinus floor elevation was confirmed to be a reliable surgical procedure for increasing the amount of bone. SR-μCT is highly effective for obtaining high-resolution images. An analysis of biological specimens using SR-μCT is quite reliable and this technique will be an important tool in the wide field of tissue engineering.

  3. Utility of the inspiratory phase in high-resolution computed tomography evaluations of pediatric patients with bronchiolitis obliterans after allogeneic bone marrow transplant: reducing patient radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Togni Filho, Paulo Henrique; Casagrande, Joao Luiz Marin; Lederman, Henrique Manoel, E-mail: paulotognifilho@gmail.com [Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP (Brazil). Escola Paulista de Medicina. Dept. of Diagnostico por Imagem; Universidade de Sao Paulo (InRad/HC/FMUSP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Instituto de Radiologia

    2017-03-15

    Objective: To evaluate the utility of the inspiratory phase in high-resolution computed tomography (HRCT) of the chest for the diagnosis of post-bone marrow transplantation bronchiolitis obliterans. Materials and Methods: This was a retrospective, observational, cross-sectional study. We selected patients of either gender who underwent bone marrow transplantation and chest HRCT between March 1, 2002 and December 12, 2014. Ages ranged from 3 months to 20.7 years. We included all examinations in which the HRCT was performed appropriately. The examinations were read by two radiologists, one with extensive experience in pediatric radiology and another in the third year of residency, who determined the presence or absence of the following imaging features: air trapping, bronchiectasis, alveolar opacities, nodules, and atelectasis. Results: A total of 222 examinations were evaluated (mean, 5.4 ± 4.5 examinations per patient). The expiratory phase findings were comparable to those obtained in the inspiratory phase, except in one patient, in whom a small uncharacteristic nodule was identified only in the inspiratory phase. Air trapping was identified in a larger number of scans in the expiratory phase than in the inspiratory phase, as was atelectasis, although the difference was statistically significant only for air trapping. Conclusion: In children being evaluated for post-bone marrow transplantation bronchiolitis obliterans, the inspiratory phase can be excluded from the chest HRCT protocol, thus reducing by half the radiation exposure in this population. (author)

  4. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  5. RTOG Sarcoma Radiation Oncologists Reach Consensus on Gross Tumor Volume and Clinical Target Volume on Computed Tomographic Images for Preoperative Radiotherapy of Primary Soft Tissue Sarcoma of Extremity in Radiation Therapy Oncology Group Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dian, E-mail: dwang@mcw.edu [Medical College of Wisconsin, Milwaukee, WI (United States); Bosch, Walter [Washington University, St. Louis, MO (United States); Roberge, David [McGill University, Montreal, Quebec (Canada); Finkelstein, Steven E. [Moffitt Cancer Center, Tampa, FL (United States); Petersen, Ivy; Haddock, Michael [Mayo Clinic, Rochester, MN (United States); Chen, Yen-Lin E.; Saito, Naoyuki G. [Roswell Park Cancer Institute, Buffalo, NY (United States); Kirsch, David G. [Duke University, Durham, NC (United States); Hitchcock, Ying J. [University of Utah, Salt Lake City, UT (United States); Wolfson, Aaron H. [University of Miami Miller School of Medicine, Miami, FL (United States); DeLaney, Thomas F. [Massachusetts General Hospital, Boston, MA (United States)

    2011-11-15

    Objective: To develop a Radiation Therapy Oncology Group (RTOG) atlas delineating gross tumor volume (GTV) and clinical target volume (CTV) to be used for preoperative radiotherapy of primary extremity soft tissue sarcoma (STS). Methods and Materials: A consensus meeting was held during the RTOG meeting in January 2010 to reach agreement about GTV and CTV delineation on computed tomography (CT) images for preoperative radiotherapy of high-grade large extremity STS. Data were presented to address the local extension of STS. Extensive discussion ensued to develop optimal criteria for GTV and CTV delineation on CT images. Results: A consensus was reached on appropriate CT-based GTV and CTV. The GTV is gross tumor defined by T1 contrast-enhanced magnetic resonance images. Fusion of magnetic resonance and images is recommended to delineate the GTV. The CTV for high-grade large STS typically includes the GTV plus 3-cm margins in the longitudinal directions. If this causes the field to extend beyond the compartment, the field can be shortened to include the end of a compartment. The radial margin from the lesion should be 1.5 cm, including any portion of the tumor not confined by an intact fascial barrier, bone, or skin surface. Conclusion: The consensus on GTV and CTV for preoperative radiotherapy of high-grade large extremity STS is available as web-based images and in a descriptive format through the RTOG. This is expected to improve target volume consistency and allow for rigorous evaluation of the benefits and risks of such treatment.

  6. Geodesic bulk diagrams on the Bruhat-Tits tree

    Science.gov (United States)

    Gubser, Steven S.; Parikh, Sarthak

    2017-09-01

    Geodesic bulk diagrams were recently shown to be the geometric objects which compute global conformal blocks. We show that this duality continues to hold in p -adic AdS /CFT , where the bulk is replaced by the Bruhat-Tits tree, an infinite regular graph with no cycles, and the boundary is described by p -adic numbers, rather than reals. We apply the duality to evaluate the four-point function of scalar operators of generic dimensions using tree-level bulk diagrams. Relative to standard results from the literature, we find intriguing similarities as well as significant simplifications. Notably, all derivatives disappear in the conformal block decomposition of the four-point function. On the other hand, numerical coefficients in the four-point function as well as the structure constants take surprisingly universal forms, applicable to both the reals and the p -adics when expressed in terms of local zeta functions. Finally, we present a minimal bulk action with nearest neighbor interactions on the Bruhat-Tits tree, which reproduces the two-, three-, and four-point functions of a free boundary theory.

  7. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences

    Energy Technology Data Exchange (ETDEWEB)

    Dowling, Jason A., E-mail: jason.dowling@csiro.au [CSIRO Australian e-Health Research Centre, Herston, Queensland (Australia); University of Newcastle, Callaghan, New South Wales (Australia); Sun, Jidi [University of Newcastle, Callaghan, New South Wales (Australia); Pichler, Peter [Calvary Mater Newcastle Hospital, Waratah, New South Wales (Australia); Rivest-Hénault, David; Ghose, Soumya [CSIRO Australian e-Health Research Centre, Herston, Queensland (Australia); Richardson, Haylea [Calvary Mater Newcastle Hospital, Waratah, New South Wales (Australia); Wratten, Chris; Martin, Jarad [University of Newcastle, Callaghan, New South Wales (Australia); Calvary Mater Newcastle Hospital, Waratah, New South Wales (Australia); Arm, Jameen [Calvary Mater Newcastle Hospital, Waratah, New South Wales (Australia); Best, Leah [Department of Radiology, Hunter New England Health, New Lambton, New South Wales (Australia); Chandra, Shekhar S. [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland (Australia); Fripp, Jurgen [CSIRO Australian e-Health Research Centre, Herston, Queensland (Australia); Menk, Frederick W. [University of Newcastle, Callaghan, New South Wales (Australia); Greer, Peter B. [University of Newcastle, Callaghan, New South Wales (Australia); Calvary Mater Newcastle Hospital, Waratah, New South Wales (Australia)

    2015-12-01

    Purpose: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. Patients and Methods: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1w flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. Results: The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). Conclusions: The MR-Sim setup and automatic s

  8. Computational studies on the excited states of luminescent platinum(II) alkynyl systems of tridentate pincer ligands in radiative and nonradiative processes.

    Science.gov (United States)

    Lam, Wai Han; Lam, Elizabeth Suk-Hang; Yam, Vivian Wing-Wah

    2013-10-09

    Platinum(II) alkynyl complexes of various tridentate pincer ligands, [Pt(trpy)(C≡CR)](+) (trpy = 2,2':6',2″-terpyridine), [Pt(R'-bzimpy)(C≡CR)](+) (R'-bzimpy = 2,6-bis(N-alkylbenzimidazol-2'-yl)pyridine and R' = alkyl), [Pt(R'-bzimb)(C≡CR)] (R'-bzimb = 1,3-bis(N-alkylbenzimidazol-2'-yl)benzene and R' = C4H9), have been found to possess rich photophysical properties. The emission in dilute solutions of [Pt(trpy)(C≡CR)](+) originated from a triplet alkynyl-to-tridentate pincer ligand-to-ligand charge transfer (LLCT) excited state, with mixing of a platinum-to-tridentate pincer ligand metal-to-ligand charge transfer (MLCT) excited state, while that of [Pt(R'-bzimb)(C≡CR)] originated from a triplet excited state of intraligand (IL) character of the tridentate ligand mixed with a platinum-to-tridentate ligand MLCT character. Interestingly, both emissions were observed in [Pt(R'-bzimpy)(C≡CR)](+) in some cases. In addition, [Pt(R'-bzimb)(C≡CR)] displayed a photoluminescence quantum yield higher than that of [Pt(R'-bzimpy)(C≡CR)](+). Computational studies have been performed on the representative complexes [Pt(trpy)(C≡CPh)](+) (1), [Pt(R'-bzimpy)(C≡CPh)](+) (2), and [Pt(R'-bzimb)(C≡CPh)] (3), where R' = CH3 and Ph = C6H5, to provide an in-depth understanding of the nature of their emissive origin as well as the radiative and nonradiative processes. In particular, the factors governing the ordering of the triplet excited states and radiative decay rate constants of the emissive state ((3)ES) have been examined. The potential energy profiles for the deactivation process from the (3)ES via triplet metal-centered ((3)MC) states have also been explored. This work reveals for the first time the potential energy profiles for the thermal deactivation pathway of square planar platinum(II) complexes.

  9. AOI 1— COMPUTATIONAL ENERGY SCIENCES:MULTIPHASE FLOW RESEARCH High-fidelity multi-phase radiation module for modern coal combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Modest, Michael

    2013-11-15

    The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the “optically thin” approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particles scatter radiation, making the radiative transfer equation (RTE) much more di fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gas–particulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.

  10. Test problems for radiation and radiation-hydrodynamics codes

    Science.gov (United States)

    Ensman, Lisa

    1994-01-01

    A number of test problems for radiation and radiation-hydrodynamics computer codes are described. These include evolution to radiative equilibrium, cooling from radiative equilibrium, subcritical and supercritical radiating shocks, and a radiating blast wave in a power-law density distribution. For each test problem, example input parameters and plots of the results are presented. Some test problems for pure hydrodynamics are also suggested. The radiation-hydrodynamics code used to perform the example test problems and the equations it solves are described in some detail.

  11. Radiation and contrast agent doses reductions by using 80-kV tube voltage in coronary computed tomographic angiography: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Jian-xin [Department of Radiology, Wuhan 161th Hospital, Wuhan (China); Wang, Yi-min, E-mail: wym6669@yahoo.com.cn [Department of Radiology, Wuhan 161th Hospital, Wuhan (China); Lu, Jin-guo [Department of Cardiology, Asia Heart Hospital, Wuhan (China); Zhang, Yu; Wang, Peng; Yang, Cheng [Department of Radiology, Wuhan 161th Hospital, Wuhan (China)

    2014-02-15

    Objective: To investigate the effects of 80-kilovoltage (kV) tube voltage coronary computed tomographic angiography (CCTA) with a reduced amount of contrast agent on qualitative and quantitative image quality parameters and on radiation dose in patients with a body mass index (BMI) <23.0 kg/m{sup 2}. Methods: One hundred and twenty consecutive patients with a BMI <23.0 kg/m{sup 2} and a low calcium load undergoing retrospective electrocardiogram (ECG)-gated dual-source CCTA were randomized into two groups [standard-tube voltage (120-kV) vs. low-tube voltage (80-kV)]. The injection flow rate of contrast agent (350 mg I/mL) was adjusted to body weight of each patient (4.5–5.5 mL/s in the 120-kV group and 2.8–3.8 mL/s in the 80-kV group). Radiation and contrast agent doses were evaluated. Quantitative image quality parameters and figure of merit (FOM) of coronary artery were evaluated. Each coronary segment was evaluated for image quality on a 4-point scale. Results: Compared with the 120-kV group, effective dose and amount of contrast agent in the 80-kV group were decreased by 57.8% and 30.5% (effective dose:2.7 ± 0.5vs. 6.4 ± 1.3 mSv; amount of contrast agent:57.1 ± 3.2 vs. 82.1 ± 6.1 mL; both p < 0.0001), respectively. Image noise was 22.7 ± 2.1 HU for 120-kV images and 33.2 ± 5.2 HU for 80-kV images (p < 0.0001). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the proximal right coronary artery (RCA) and left main coronary artery (LMA) were all lower in 80-kV than 120-kV images (SNR in the proximal RCA: 16.5 ± 1.8 vs. 19.4 ± 2.8; SNR in the LMA: 16.3 ± 2.0 vs.19.6 ± 2.7; CNR in the proximal RCA: 19.4 ± 2.3 vs.22.9 ± 3.0; CNR in the LMA: 18.8 ± 2.4 vs. 22.7 ± 2.9; all p < 0.0001). FOM were all significantly higher in 80-kV than 120-kV images (proximal RCA: 146.7 ± 45.1 vs. 93.4 ± 32.0; LMA: 139.1 ± 47.2 vs. 91.6 ± 31.1; all p < 0.0001). There was no significant difference in image quality score between the two groups (3.3 ± 0

  12. High-pitch computed tomography of the lung in pediatric patients. An intraindividual comparison of image quality and radiation dose to conventional 64-MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Tsiflikas, I.; Thomas, C.; Ketelsen, D.; Claussen, C.D.; Schaefer, J.F. [University Hospital of Tuebingen (Germany). Diagnostic and Interventional Radiology; Seitz, G.; Warmann, S. [University Hospital of Tuebingen (Germany). Pediatric Surgery

    2014-06-15

    Purpose: The aim of this study was to investigate frequencies of typical artifacts in low-dose pediatric lung examinations using high-pitch computed tomography (HPCT) compared to MDCT, and to estimate the effective radiation dose (E{sub eff}). Materials and Methods: Institutional review board approval for this retrospective study was obtained. 35 patients (17 boys, 18 girls; mean age 112 ± 69 months) were included and underwent MDCT and follow-up scan by HPCT or vice versa (mean follow-up time 87 days), using the same tube voltage and current. The total artifact score (0-8) was defined as the sum of artifacts arising from movement, breathing or pulsation of the heart or pulmonary vessels (0 - no; 1 - moderate; 2 - severe artifacts). E{sub eff} was estimated according to the European Guidelines on Quality Criteria for Multislice Computed Tomography. The Mann-Whitney U test was used to analyze differences between the patient groups. The Spearman's rank correlation coefficient was used for correlation of ordinal variables. Results: The scan time was significantly lower for HPCT compared to MDCT (0.72 ± 0.13 s vs. 3.65 ± 0.81s; p < 0.0001). In 28 of 35 (80 %) HPCT examinations no artifacts were visible, whereas in MDCT artifacts occurred in all examinations. The frequency of pulsation artifacts and breathing artifacts was higher in MDCT compared to HPCT (100% vs. 17% and 31% vs. 6%). The total artifact score significantly correlated with the patient's age in MDCT (r=-0.42; p=0.01), but not in HPCT (r=-0.32; p=0.07). The estimated E{sub eff} was significantly lower in HPCT than in MDCT (1.29±0.31 vs. 1.47±0.37 mSv; p < 0.0001). Conclusion: Our study indicates that the use of HPCT has advantages for pediatric lung imaging with a reduction of breathing and pulsation artifacts. Moreover, the estimated E{sub eff} was lower. In addition, examinations can be performed without sedation or breath-hold without losing image quality. (orig.)

  13. Local bulk S-matrix elements and conformal field theory singularities

    CERN Document Server

    Gary, Michael; Penedones, Joao

    2009-01-01

    We give a procedure for deriving certain bulk S-matrix elements from corresponding boundary correlators. These are computed in the plane wave limit, via an explicit construction of certain boundary sources that give bulk wavepackets. A critical role is played by a specific singular behavior of the lorentzian boundary correlators. It is shown in examples how correlators derived from the bulk supergravity exhibit the appropriate singular structure, and reproduce the corresponding S-matrix elements. This construction thus provides a nontrivial test for whether a given boundary conformal field theory can reproduce bulk physics, and where it does, supplies a prescription to extract bulk S-matrix elements in the plane wave limit.

  14. 27 CFR 20.191 - Bulk articles.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of this...

  15. Volume of Lytic Vertebral Body Metastatic Disease Quantified Using Computed Tomography-Based Image Segmentation Predicts Fracture Risk After Spine Stereotactic Body Radiation Therapy.

    Science.gov (United States)

    Thibault, Isabelle; Whyne, Cari M; Zhou, Stephanie; Campbell, Mikki; Atenafu, Eshetu G; Myrehaug, Sten; Soliman, Hany; Lee, Young K; Ebrahimi, Hamid; Yee, Albert J M; Sahgal, Arjun

    2017-01-01

    To determine a threshold of vertebral body (VB) osteolytic or osteoblastic tumor involvement that would predict vertebral compression fracture (VCF) risk after stereotactic body radiation therapy (SBRT), using volumetric image-segmentation software. A computational semiautomated skeletal metastasis segmentation process refined in our laboratory was applied to the pretreatment planning CT scan of 100 vertebral segments in 55 patients treated with spine SBRT. Each VB was segmented and the percentage of lytic and/or blastic disease by volume determined. The cumulative incidence of VCF at 3 and 12 months was 14.1% and 17.3%, respectively. The median follow-up was 7.3 months (range, 0.6-67.6 months). In all, 56% of segments were determined lytic, 23% blastic, and 21% mixed, according to clinical radiologic determination. Within these 3 clinical cohorts, the segmentation-determined mean percentages of lytic and blastic tumor were 8.9% and 6.0%, 0.2% and 26.9%, and 3.4% and 15.8% by volume, respectively. On the basis of the entire cohort (n=100), a significant association was observed for the osteolytic percentage measures and the occurrence of VCF (Pconfidence interval 9.4-148.9). On multivariable analysis, ≥11.6% lytic disease (P<.001), baseline VCF (P<.001), and SBRT with ≥20 Gy per fraction (P=.014) were predictive. Pretreatment lytic VB disease volumetric measures, independent of the blastic component, predict for SBRT-induced VCF. Larger-scale trials evaluating our software are planned to validate the results. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Imaging performance of phase-contrast breast computed tomography with synchrotron radiation and a CdTe photon-counting detector.

    Science.gov (United States)

    Sarno, A; Mettivier, G; Golosio, B; Oliva, P; Spandre, G; Di Lillo, F; Fedon, C; Longo, R; Russo, P

    2016-05-01

    Within the SYRMA-CT collaboration based at the ELETTRA synchrotron radiation (SR) facility the authors investigated the imaging performance of the phase-contrast computed tomography (CT) system dedicated to monochromatic in vivo 3D imaging of the female breast, for breast cancer diagnosis. Test objects were imaged at 38keV using monochromatic SR and a high-resolution CdTe photon-counting detector. Signal and noise performance were evaluated using modulation transfer function (MTF) and noise power spectrum. The analysis was performed on the images obtained with the application of a phase retrieval algorithm as well as on those obtained without phase retrieval. The contrast to noise ratio (CNR) and the capability of detecting test microcalcification clusters and soft masses were investigated. For a voxel size of (60μm)(3), images without phase retrieval showed higher spatial resolution (6.7mm(-1) at 10% MTF) than corresponding images with phase retrieval (2.5mm(-1)). Phase retrieval produced a reduction of the noise level and an increase of the CNR by more than one order of magnitude, compared to raw phase-contrast images. Microcalcifications with a diameter down to 130μm could be detected in both types of images. The investigation on test objects indicates that breast CT with a monochromatic SR source is technically feasible in terms of spatial resolution, image noise and contrast, for in vivo 3D imaging with a dose comparable to that of two-view mammography. Images obtained with the phase retrieval algorithm showed the best performance in the trade-off between spatial resolution and image noise. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Volume of Lytic Vertebral Body Metastatic Disease Quantified Using Computed Tomography–Based Image Segmentation Predicts Fracture Risk After Spine Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, Isabelle [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Centre Hospitalier de L' Universite de Québec–Université Laval, Quebec, Quebec (Canada); Whyne, Cari M. [Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Department of Surgery, University of Toronto, Toronto, Ontario (Canada); Zhou, Stephanie; Campbell, Mikki [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Atenafu, Eshetu G. [Department of Biostatistics, University Health Network, University of Toronto, Toronto, Ontario (Canada); Myrehaug, Sten; Soliman, Hany; Lee, Young K. [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Ebrahimi, Hamid [Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Department of Surgery, University of Toronto, Toronto, Ontario (Canada); Yee, Albert J.M. [Division of Orthopaedic Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Sahgal, Arjun, E-mail: arjun.sahgal@sunnybrook.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada)

    2017-01-01

    Purpose: To determine a threshold of vertebral body (VB) osteolytic or osteoblastic tumor involvement that would predict vertebral compression fracture (VCF) risk after stereotactic body radiation therapy (SBRT), using volumetric image-segmentation software. Methods and Materials: A computational semiautomated skeletal metastasis segmentation process refined in our laboratory was applied to the pretreatment planning CT scan of 100 vertebral segments in 55 patients treated with spine SBRT. Each VB was segmented and the percentage of lytic and/or blastic disease by volume determined. Results: The cumulative incidence of VCF at 3 and 12 months was 14.1% and 17.3%, respectively. The median follow-up was 7.3 months (range, 0.6-67.6 months). In all, 56% of segments were determined lytic, 23% blastic, and 21% mixed, according to clinical radiologic determination. Within these 3 clinical cohorts, the segmentation-determined mean percentages of lytic and blastic tumor were 8.9% and 6.0%, 0.2% and 26.9%, and 3.4% and 15.8% by volume, respectively. On the basis of the entire cohort (n=100), a significant association was observed for the osteolytic percentage measures and the occurrence of VCF (P<.001) but not for the osteoblastic measures. The most significant lytic disease threshold was observed at ≥11.6% (odds ratio 37.4, 95% confidence interval 9.4-148.9). On multivariable analysis, ≥11.6% lytic disease (P<.001), baseline VCF (P<.001), and SBRT with ≥20 Gy per fraction (P=.014) were predictive. Conclusions: Pretreatment lytic VB disease volumetric measures, independent of the blastic component, predict for SBRT-induced VCF. Larger-scale trials evaluating our software are planned to validate the results.

  18. The Integrated Radiation Mapper Assistant

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, R.E.; Tripp, L.R. [Odetics, Inc., Anaheim, CA (United States)

    1995-03-01

    The Integrated Radiation Mapper Assistant (IRMA) system combines state-of-the-art radiation sensors and microprocessor based analysis techniques to perform radiation surveys. Control of the survey function is from a control station located outside the radiation thus reducing time spent in radiation areas performing radiation surveys. The system consists of a directional radiation sensor, a laser range finder, two area radiation sensors, and a video camera mounted on a pan and tilt platform. THis sensor package is deployable on a remotely operated vehicle. The outputs of the system are radiation intensity maps identifying both radiation source intensities and radiation levels throughout the room being surveyed. After completion of the survey, the data can be removed from the control station computer for further analysis or archiving.

  19. Modeling and simulation of bulk gallium nitride power semiconductor devices

    Directory of Open Access Journals (Sweden)

    G. Sabui

    2016-05-01

    Full Text Available Bulk gallium nitride (GaN power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range.

  20. Enhanced bulk modulus and reduced transition pressure in gamma-Fe2O3 nanocrystals

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Olsen, J. Staun; Gerward, Leif

    1998-01-01

    Synchrotron radiation X-ray diffraction studies of gamma-Fe2O3 have been performed with emphasis on the pressure-induced phase transformation gamma(maghemite) - alpha(hematite) and the equation of state of the nanophase material. For gamma-Fe2O3 the bulk modulus has been found to increase from 203...

  1. A high energy microscope for local strain measurements within bulk materials

    DEFF Research Database (Denmark)

    Lienert, U.; Poulsen, H.F.; Martins, R.V.

    2000-01-01

    A novel diffraction technique for local, three dimensional strain scanning within bulk materials is presented. The technique utilizes high energy, micro-focussed synchrotron radiation which can penetrate several millimeters into typical metals. The spatial resolution can be as narrow as 1 mum...

  2. Limited short-term effect of palliative radiation therapy on quantitative computed tomography-derived bone mineral density in femora with metastases

    NARCIS (Netherlands)

    Eggermont, F.E.; Derikx, L.C.; Verdonschot, N.J.; Hannink, G.J.; Kaatee, R.; Tanck, E.J.; Linden, Y.M. van der

    2017-01-01

    PURPOSE: The aim of this study was to determine the effect of single fraction (SF) and multiple fraction (MF) radiation therapy (RT) on bone mineral density (BMD) in patients with cancer and bone metastases in the proximal femur. We studied this effect in the radiation field and within metastatic

  3. Radiation Therapy

    Science.gov (United States)

    ... Be extra careful not to spend time with children or pregnant women. Internal Radiation Therapy Makes You Give Off Radiation With systemic radiation, your body fluids ( urine , sweat, and saliva ) will give off radiation for a while. With ...

  4. Radiation enteritis

    Science.gov (United States)

    Radiation enteropathy; Radiation-induced small bowel injury; Post-radiation enteritis ... Radiation therapy uses high-powered x-rays, particles, or radioactive seeds to kill cancer cells. The therapy ...

  5. Bulk-bronzied graphites for plasma-facing components in ITER (International Thermonuclear Experimental Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Y.; Conn, R.W.; Doerner, R.; Khandagle, M. (California Univ., Los Angeles, CA (USA). Inst. of Plasma and Fusion Research); Causey, R.; Wilson, K. (Sandia National Labs., Livermore, CA (USA)); Croessmann, D.; Whitley, J. (Sandia National Labs., Albuquerque, NM (USA)); Holland, D.; Smolik, G. (Idaho National Engineering Lab., Idaho Falls, ID (USA)); Matsuda, T.; Sogabe, T. (Toyo Tanso Co. Ltd., O

    1990-06-01

    Newly developed bulk-boronized graphites and boronized C-C composites with a total boron concentration ranging from 1 wt % to 30 wt % have been evaluated as plasma-facing component materials for the International Thermonuclear Experimental Reactor (ITER). Bulk-boronized graphites have been bombarded with high-flux deuterium plasmas at temperatures between 200 and 1600{degree}C. Plasma interaction induced erosion of bulk-boronized graphites is observed to be a factor of 2--3 smaller than that of pyrolytic graphite, in regimes of physical sputtering, chemical sputtering and radiation enhanced sublimation. Postbombardment thermal desorption spectroscopy indicates that bulk-boronized graphites enhance recombinative desorption of deuterium, which leads to a suppression of the formation of deuterocarbon due to chemical sputtering. The tritium inventory in graphite has been found to decrease by an order of magnitude due to 10 wt % bulk-boronization at temperatures above 1000{degree}C. The critical heat flux to induce cracking for bulk-boronized graphites has been found to be essentially the same as that for non-boronized graphites. Also, 10 wt % bulk-boronization of graphite hinders air oxidation nearly completely at 800{degree}C and reduces the steam oxidation rate by a factor of 2--3 at around 1100 and 1350{degree}C. 38 refs., 5 figs.

  6. MICROHARDNESS OF BULK-FILL COMPOSITE MATERIALS.

    Science.gov (United States)

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-12-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fi l (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and x-tra base (XB), and conventional control material X-Flow (XF). Composite samples (n=5) were polymerized for 20 s with Bluephase G2 curing unit. Vickers hardness was used to determine microhardness of each material at the surface, and at 2-mm and 4-mm depth. GSO on average recorded significantly higher microhardness values than bulk-fill materials (pcomposite XF revealed similar microhardness values as SDR, but significantly lower than XB (pmaterials was lower than microhardness of the conventional composite material (GSO). Surface microhardness of low-viscosity materials was generally even lower. The microhardness of all tested materials at 4 mm was not different from their surface values. However, additional capping layer was a necessity for low-viscosity bulk-fill materials due to their low microhardness.

  7. Irradiating of Bulk Soybeans: Influence on Their Functional and Sensory Properties for Soyfood Processing

    Science.gov (United States)

    Chia, Chiew-Ling; Wilson, Lester A.; Boylston, Terri; Perchonok, Michele; French, Stephen

    2006-01-01

    Soybeans were chosen for lunar and planetary missions, where soybeans will be supplied in bulk or grown locally, due to their nutritive value and ability to produce oil and protein for further food applications. However, soybeans must be processed into foods prior to consumption. Radiation that soybeans would be exposed to during bulk storage prior to and during a Mars mission may influence their germination and functional properties. The influence of radiation includes the affect of surface pasteurization to ensure the astronauts safety from food-borne illnesses (HACCP, CCP), and the affect of the amount of radiation the soybeans receive during a Mars mission. Decreases in the amount of natural antioxidants free radical formation, and oxidation-induced changes in the soybean will influence the nutritional value, texture, color, and aroma of soyfoods. The objective of this study was to determine the influence of pasteurization and sterilization surface radiation on whole soybeans using gamma and electron beam radiation. The influence of 0, 1, 5, 10, and 30kGy on microbial load, germination rate, ease of processing, and quality of soymilk and tofu were determined. Surface radiation of whole dry soybeans using electron beam or gamma rays from 1-30kGy did provide microbial safety for the astronauts. However, the lower dose levels had surviving yeasts and molds. These doses caused oxidative changes that resulted in soymilk and tofu with rancid aromas. GC-MS of the aroma compounds using SPME Headspace confirmed the presence of lipid oxidation compounds. Soybean germination ability was reduced as radiation dosage increased. While lower doses may reduce these problems, the ability to insure microbial safety of bulk soybeans will be lost. Counter measures could include vacuum packaging, nitrogen flushing, added antioxidants, and radiating under freezing conditions. Doses below 1kGy need to be investigated further to determine the influence of the radiation encountered

  8. Cardiovascular Responses to Electromagnetic Radiation

    African Journals Online (AJOL)

    Dr Olaleye Samuel

    fatigue. ABSTRACT. Electromagnetic signaling has recently greatly increased due to mobile telephony and computers some of which radiate much and have wide spectra. The radiations are also reflected and thus form standing waves with incoming ones. In cities both the direct and reflected radiations form complex ...

  9. Inversion of radiation data in biophysics

    Science.gov (United States)

    Twersky, V.

    1972-01-01

    Topics in biophysics are summarized in which radiation data inversion problems occur. The topics fall into two main categories. The first relates to information acquired about the distance environment through seeing, hearing, etc. The second relates to the use of electromagnetic, acoustic, or other radiation for diagnostic purposes, either at a bulk or a molecular level.

  10. The effect of radiation dose reduction on computer-aided detection (CAD) performance in a low-dose lung cancer screening population.

    Science.gov (United States)

    Young, Stefano; Lo, Pechin; Kim, Grace; Brown, Matthew; Hoffman, John; Hsu, William; Wahi-Anwar, Wasil; Flores, Carlos; Lee, Grace; Noo, Frederic; Goldin, Jonathan; McNitt-Gray, Michael

    2017-04-01

    Lung cancer screening with low-dose CT has recently been approved for reimbursement, heralding the arrival of such screening services worldwide. Computer-aided detection (CAD) tools offer the potential to assist radiologists in detecting nodules in these screening exams. In lung screening, as in all CT exams, there is interest in further reducing radiation dose. However, the effects of continued dose reduction on CAD performance are not fully understood. In this work, we investigated the effect of reducing radiation dose on CAD lung nodule detection performance in a screening population. The raw projection data files were collected from 481 patients who underwent low-dose screening CT exams at our institution as part of the National Lung Screening Trial (NLST). All scans were performed on a multidetector scanner (Sensation 64, Siemens Healthcare, Forchheim Germany) according to the NLST protocol, which called for a fixed tube current scan of 25 effective mAs for standard-sized patients and 40 effective mAs for larger patients. The raw projection data were input to a reduced-dose simulation software to create simulated reduced-dose scans corresponding to 50% and 25% of the original protocols. All raw data files were reconstructed at the scanner with 1 mm slice thickness and B50 kernel. The lungs were segmented semi-automatically, and all images and segmentations were input to an in-house CAD algorithm trained on higher dose scans (75-300 mAs). CAD findings were compared to a reference standard generated by an experienced reader. Nodule- and patient-level sensitivities were calculated along with false positives per scan, all of which were evaluated in terms of the relative change with respect to dose. Nodules were subdivided based on size and solidity into categories analogous to the LungRADS assessment categories, and sub-analyses were performed. From the 481 patients in this study, 82 had at least one nodule (prevalence of 17%) and 399 did not (83%). A total of 118

  11. Validation of High-Risk Computed Tomography Features for Detection of Local Recurrence After Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Peulen, Heike [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands); Mantel, Frederick [Department of Radiation Oncology, University of Wuerzburg, Wuerzburg (Germany); Department of Radiation Oncology, University Hospital Zurich, Zurich (Switzerland); Guckenberger, Matthias [Department of Radiation Oncology, University of Wuerzburg, Wuerzburg (Germany); Belderbos, José [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands); Werner-Wasik, Maria [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania (United States); Hope, Andrew; Giuliani, Meredith [Department of Radiation Oncology University of Toronto and Princess Margaret Cancer Center, Toronto, Ontario (Canada); Grills, Inga [Department of Radiation Oncology Beaumont Hospital, Royal Oak, Michigan (United States); Sonke, Jan-Jakob, E-mail: j.sonke@nki.nl [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands)

    2016-09-01

    Purpose: Fibrotic changes after stereotactic body radiation therapy (SBRT) for stage I non-small cell lung cancer (NSCLC) are difficult to distinguish from local recurrences (LR), hampering proper patient selection for salvage therapy. This study validates previously reported high-risk computed tomography (CT) features (HRFs) for detection of LR in an independent patient cohort. Methods and Materials: From a multicenter database, 13 patients with biopsy-proven LR were matched 1:2 to 26 non-LR control patients based on dose, planning target volume (PTV), follow-up time, and lung lobe. Tested HRFs were enlarging opacity, sequential enlarging opacity, enlarging opacity after 12 months, bulging margin, linear margin disappearance, loss of air bronchogram, and craniocaudal growth. Additionally, 2 new features were analyzed: the occurrence of new unilateral pleural effusion, and growth based on relative volume, assessed by manual delineation. Results: All HRFs were significantly associated with LR except for loss of air bronchogram. The best performing HRFs were bulging margin, linear margin disappearance, and craniocaudal growth. Receiver operating characteristic analysis of the number of HRFs to detect LR had an area under the curve (AUC) of 0.97 (95% confidence interval [CI] 0.9-1.0), which was identical to the performance described in the original report. The best compromise (closest to 100% sensitivity and specificity) was found at ≥4 HRFs, with a sensitivity of 92% and a specificity of 85%. A model consisting of only 2 HRFs, bulging margin and craniocaudal growth, resulted in a sensitivity of 85% and a specificity of 100%, with an AUC of 0.96 (95% CI 0.9-1.0) (HRFs ≥2). Pleural effusion and relative growth did not significantly improve the model. Conclusion: We successfully validated CT-based HRFs for detection of LR after SBRT for early-stage NSCLC. As an alternative to number of HRFs, we propose a simplified model with the combination of the 2 best HRFs

  12. Efficient quantum transport simulation for bulk graphene heterojunctions

    Science.gov (United States)

    Liu, Ming-Hao; Richter, Klaus

    2012-09-01

    The quantum transport formalism based on tight-binding models is known to be powerful in dealing with a wide range of open physical systems subject to external driving forces but is, at the same time, limited by the memory requirement's increasing with the number of atomic sites in the scattering region. Here we demonstrate how to achieve an accurate simulation of quantum transport feasible for experimentally sized bulk graphene heterojunctions at a strongly reduced computational cost. Without free tuning parameters, we show excellent agreement with a recent experiment on Klein backscattering [A. F. Young and P. Kim, Nature Phys.1745-247310.1038/nphys1198 5, 222 (2009)].

  13. A brief overview of bulk metallic glasses

    National Research Council Canada - National Science Library

    Mingwei Chen

    2011-01-01

      The discovery of bulk metallic glasses (BMGs) has stimulated widespread research enthusiasm because of their technological promise for practical applications and scientific importance in understanding glass formation and glass phenomena...

  14. Comments on universal properties of entanglement entropy and bulk reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Haehl, Felix M. [Centre for Particle Theory & Department of Mathematical Sciences, Science Laboratories,South Road, Durham DH1 3LE (United Kingdom)

    2015-10-26

    Entanglement entropy of holographic CFTs is expected to play a crucial role in the reconstruction of semiclassical bulk gravity. We consider the entanglement entropy of spherical regions of vacuum, which is known to contain universal contributions. After perturbing the CFT with a relevant scalar operator, also the first order change of this quantity gives a universal term which only depends on a discrete set of basic CFT parameters. We show that in gravity this statement corresponds to the uniqueness of the ghost-free graviton propagator on an AdS background geometry. While the gravitational dynamics in this context contains little information about the structure of the bulk theory, there is a discrete set of dimensionless parameters of the theory which determines the entanglement entropy. We argue that for every (not necessarily holographic) CFT, any reasonable gravity model can be used to compute this particular entanglement entropy. We elucidate how this statement is consistent with AdS/CFT and also give various generalizations. On the one hand this illustrates the remarkable usefulness of geometric concepts for understanding entanglement in general CFTs. On the other hand, it provides hints as to what entanglement data can be expected to provide enough information to distinguish, e.g., bulk theories with different higher curvature couplings.

  15. Phenomenology of Bulk Scalar Production at the LHC

    CERN Document Server

    Beauchemin , Pierre-Hugues; Burgess, Cliff

    We examine the sensitivity of the ATLAS detector to extra-dimensional scalars in scenarios having the extra-dimensional Planck scale in the TeV range and n = 2 large extra dimensions. Such scalars appear as partners of the graviton in higher-dimensional supersymmetric theories. Using first the scalar's lowest-dimensional effective couplings to quarks and gluons, we compute the rate of production of a hard jet together with missing energy. We find a nontrivial range of bulk scalar couplings for which ATLAS could observe a signal, and in particular, higher sensitivity to couplings to gluons than to quarks. Bulk scalar emission increases the missing-energy signal by adding to graviton production, and so complicates the inference of the extra-dimensional Planck scale from the observed rate of jet + EmissT . Because bulk scalar differential cross sections resemble those for gravitons, it is unlikely that these can be experimentally distinguished should a missing energy signal be observed. However, given, for examp...

  16. Reproducibility of coronary plaque detection and characterization using low radiation dose coronary computed tomographic angiography in patients with intermediate likelihood of coronary artery disease (ReSCAN study)

    DEFF Research Database (Denmark)

    Ovrehus, Kristian Altern; Marwan, Mohamed; Bøtker, Hans Erik

    2012-01-01

    The purpose of this study is to evaluate the interscan, interobserver and intraobserver agreement for coronary plaque detection, and characterization using low radiation dose high-pitch spiral acquisition coronary CT angiography (CTA). Two experienced observers independently evaluated coronary CT...

  17. Boundary-bulk relation in topological orders

    Science.gov (United States)

    Kong, Liang; Wen, Xiao-Gang; Zheng, Hao

    2017-09-01

    In this paper, we study the relation between an anomaly-free n + 1D topological order, which are often called n + 1D topological order in physics literature, and its nD gapped boundary phases. We argue that the n + 1D bulk anomaly-free topological order for a given nD gapped boundary phase is unique. This uniqueness defines the notion of the "bulk" for a given gapped boundary phase. In this paper, we show that the n + 1D "bulk" phase is given by the "center" of the nD boundary phase. In other words, the geometric notion of the "bulk" corresponds precisely to the algebraic notion of the "center". We achieve this by first introducing the notion of a morphism between two (potentially anomalous) topological orders of the same dimension, then proving that the notion of the "bulk" satisfies the same universal property as that of the "center" of an algebra in mathematics, i.e. "bulk" = center". The entire argument does not require us to know the precise mathematical description of a (potentially anomalous) topological order. This result leads to concrete physical predictions.

  18. Fabric space radiators

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.; Krotiuk, W.J.; Webb, B.J.; Prater, J.T.; Bates, J.M.

    1988-01-01

    Future Air Force space missions will require thermal radiators that both survive in the hostile space environment and stow away for minimal bulk during launch. Advances in all aspects of radiator design, construction, and analysis will be necessary to enable such future missions. Currently, the best means for obtaining high strength along with flexibility is through structures known as fabrics. The development of new materials and bonding techniques has extended the application range of fabrics into areas traditionally dominated by monolithic and/or metallic structures. Given that even current spacecraft heat rejection considerations tend to dominate spacecraft design and mass, the larger and more complex designs of the future face daunting challenges in thermal control. Ceramic fabrics bonded to ultra-thin metal liners (foils) have the potential of achieving radiator performance levels heretofore unattainable, and of readily matching the advances made in other branches of spacecraft design. The research effort documented here indicates that both pumped loops and heat pipes constructed in ceramic fabrics stand to benefit in multiple ways. Flexibility and low mass are the main advantages exhibited by fabric radiators over conventional metal ones. We feel that fabric radiators have intrinsic merits not possessed by any other radiator design and need to be researched further. 26 refs., 16 figs., 17 tabs.

  19. Polder maps: improving OMIT maps by excluding bulk solvent.

    Science.gov (United States)

    Liebschner, Dorothee; Afonine, Pavel V; Moriarty, Nigel W; Poon, Billy K; Sobolev, Oleg V; Terwilliger, Thomas C; Adams, Paul D

    2017-02-01

    The crystallographic maps that are routinely used during the structure-solution workflow are almost always model-biased because model information is used for their calculation. As these maps are also used to validate the atomic models that result from model building and refinement, this constitutes an immediate problem: anything added to the model will manifest itself in the map and thus hinder the validation. OMIT maps are a common tool to verify the presence of atoms in the model. The simplest way to compute an OMIT map is to exclude the atoms in question from the structure, update the corresponding structure factors and compute a residual map. It is then expected that if these atoms are present in the crystal structure, the electron density for the omitted atoms will be seen as positive features in this map. This, however, is complicated by the flat bulk-solvent model which is almost universally used in modern crystallographic refinement programs. This model postulates constant electron density at any voxel of the unit-cell volume that is not occupied by the atomic model. Consequently, if the density arising from the omitted atoms is weak then the bulk-solvent model may obscure it further. A possible solution to this problem is to prevent bulk solvent from entering the selected OMIT regions, which may improve the interpretative power of residual maps. This approach is called a polder (OMIT) map. Polder OMIT maps can be particularly useful for displaying weak densities of ligands, solvent molecules, side chains, alternative conformations and residues both in terminal regions and in loops. The tools described in this manuscript have been implemented and are available in PHENIX.

  20. Integration of bulk piezoelectric materials into microsystems

    Science.gov (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.

  1. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  2. Study of radiation conditions for obtaining standard beam computed tomography; Estudo das condicoes de radiacao para obtencao do feixe padrao em tomografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Lucio das Chagas de; Peixoto, Jose Guilherme Pereira, E-mail: lucio-andrade@hotmail.com [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    In Brazil there is a need to expand the traceability for the calibration of cameras used in dosimetry in CT. Thus, in order to promote the expansion of the radiation conditions RQT, LNMRI disseminate this greatness. These radiation conditions may be characterized in terms of tension in the X-ray tube (PPV), the first half-value layer (1{sup st} HVL) and homogeneity coefficient (CH). The LNMRI achieved satisfactory results within the international specifications suggested by IEC 61267 and TRS 457. (author)

  3. Radiation Therapy

    Science.gov (United States)

    Radiation therapy is a cancer treatment. It uses high doses of radiation to kill cancer cells and stop them from ... half of all cancer patients receive it. The radiation may be external, from special machines, or internal, ...

  4. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  5. {sup 18}F-Choline Positron Emission Tomography/Computed Tomography–Driven High-Dose Salvage Radiation Therapy in Patients With Biochemical Progression After Radical Prostatectomy: Feasibility Study in 60 Patients

    Energy Technology Data Exchange (ETDEWEB)

    D' Angelillo, Rolando M., E-mail: r.dangelillo@unicampus.it [Radiation Oncology, Campus Bio-Medico University, Rome (Italy); Sciuto, Rosa [Department of Nuclear Medicine, Regina Elena National Cancer Institute, Rome (Italy); Ramella, Sara [Radiation Oncology, Campus Bio-Medico University, Rome (Italy); Papalia, Rocco [Department of Urology, Regina Elena National Cancer Institute, Rome (Italy); Jereczek-Fossa, Barbara A. [Department of Radiation Oncology, European Institute of Oncology, Milan (Italy); Department of Health Sciences, University of Milan, Milan (Italy); Trodella, Luca E.; Fiore, Michele [Radiation Oncology, Campus Bio-Medico University, Rome (Italy); Gallucci, Michele [Department of Urology, Regina Elena National Cancer Institute, Rome (Italy); Maini, Carlo L. [Department of Nuclear Medicine, Regina Elena National Cancer Institute, Rome (Italy); Trodella, Lucio [Radiation Oncology, Campus Bio-Medico University, Rome (Italy)

    2014-10-01

    Purpose: To retrospectively review data of a cohort of patients with biochemical progression after radical prostatectomy, treated according to a uniform institutional treatment policy, to evaluate toxicity and feasibility of high-dose salvage radiation therapy (80 Gy). Methods and Materials: Data on 60 patients with biochemical progression after radical prostatectomy between January 2009 and September 2011 were reviewed. The median value of prostate-specific antigen before radiation therapy was 0.9 ng/mL. All patients at time of diagnosis of biochemical recurrence underwent dynamic {sup 18}F-choline positron emission tomography/computed tomography (PET/CT), which revealed in all cases a local recurrence. High-dose salvage radiation therapy was delivered up to total dose of 80 Gy to 18F-choline PET/CT-positive area. Toxicity was recorded according to the Common Terminology Criteria for Adverse Events, version 3.0, scale. Results: Treatment was generally well tolerated: 54 patients (90%) completed salvage radiation therapy without any interruption. Gastrointestinal grade ≥2 acute toxicity was recorded in 6 patients (10%), whereas no patient experienced a grade ≥2 genitourinary toxicity. No grade 4 acute toxicity events were recorded. Only 1 patient (1.7%) experienced a grade 2 gastrointestinal late toxicity. With a mean follow-up of 31.2 months, 46 of 60 patients (76.6%) were free of recurrence. The 3-year biochemical progression-free survival rate was 72.5%. Conclusions: At early follow-up, {sup 18}F-choline PET/CT-driven high-dose salvage radiation therapy seems to be feasible and well tolerated, with a low rate of toxicity.

  6. Possible Radiation-Induced Damage to the Molecular Structure of Wooden Artifacts Due to Micro-Computed Tomography, Handheld X-Ray Fluorescence, and X-Ray Photoelectron Spectroscopic Techniques

    Directory of Open Access Journals (Sweden)

    Madalena Kozachuk

    2016-05-01

    Full Text Available This study was undertaken to ascertain whether radiation produced by X-ray photoelectron spectroscopy (XPS, micro-computed tomography (μCT and/or portable handheld X-ray fluorescence (XRF equipment might damage wood artifacts during analysis. Changes at the molecular level were monitored by Fourier transform infrared (FTIR analysis. No significant changes in FTIR spectra were observed as a result of μCT or handheld XRF analysis. No substantial changes in the collected FTIR spectra were observed when XPS analytical times on the order of minutes were used. However, XPS analysis collected over tens of hours did produce significant changes in the FTIR spectra.

  7. Radiation dosimetry

    CERN Document Server

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  8. Holographic bulk reconstruction with α' corrections

    Science.gov (United States)

    Roy, Shubho R.; Sarkar, Debajyoti

    2017-10-01

    We outline a holographic recipe to reconstruct α' corrections to anti-de Sitter (AdS) (quantum) gravity from an underlying CFT in the strictly planar limit (N →∞ ). Assuming that the boundary CFT can be solved in principle to all orders of the 't Hooft coupling λ , for scalar primary operators, the λ-1 expansion of the conformal dimensions can be mapped to higher curvature corrections of the dual bulk scalar field action. Furthermore, for the metric perturbations in the bulk, the AdS /CFT operator-field isomorphism forces these corrections to be of the Lovelock type. We demonstrate this by reconstructing the coefficient of the leading Lovelock correction, also known as the Gauss-Bonnet term in a bulk AdS gravity action using the expression of stress-tensor two-point function up to subleading order in λ-1.

  9. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    and a low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state...... are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface......The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio...

  10. Orchestrating Bulk Data Movement in Grid Environments

    Energy Technology Data Exchange (ETDEWEB)

    Vazhkudai, SS

    2005-01-25

    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.

  11. Radiation therapy physics

    CERN Document Server

    1995-01-01

    The aim of this book is to provide a uniquely comprehensive source of information on the entire field of radiation therapy physics. The very significant advances in imaging, computational, and accelerator technologies receive full consideration, as do such topics as the dosimetry of radiolabeled antibodies and dose calculation models. The scope of the book and the expertise of the authors make it essential reading for interested physicians and physicists and for radiation dosimetrists.

  12. Thermal relics in cosmology with bulk viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, A. [Charles University in Prague, Faculty of Mathematics and Physics, Prague (Czech Republic); Lambiase, G. [Universita di Salerno, Dipartimento di Fisica E.R. Caianiello, Fisciano (Italy); INFN, Gruppo Collegato di Salerno, Fisciano (Italy)

    2015-03-01

    In this paper we discuss some consequences of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. The latter takes into account the dissipative effects (bulk viscosity) arising from different cooling rates of the fluid components in the expanding Universe. We discuss, in particular, the effects of the bulk viscosity on Big Bang Nucleosynthesis and on the thermal relic abundance of particles, looking at recent results of PAMELA experiment. The latter has determined an anomalous excess of positron events, which cannot be explained by conventional cosmology and particle physics. (orig.)

  13. A mechanistic analysis of bulk powder caking

    Science.gov (United States)

    Calvert, G.; Curcic, N.; Ghadiri, M.

    2013-06-01

    Bulk powder transformations, such as caking, can lead to numerous problems within industry when storing or processing materials. In this paper a new Environmental Caking Rig (ECR) is introduced and has been used to evaluate the caking propensity of a hygroscopic powder as a function of temperature, Relative Humidity (RH), mechanical stress and also when RH is cycled. A linear relationship exists between cake strength and the extent of bulk deformation, here defined by the engineering strain. An empirical model has been used to predict the caking behaviour based on consolidation stress and environmental conditions.

  14. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  15. Effect of the forward-projected model-based iterative reconstruction solution algorithm on image quality and radiation dose in pediatric cardiac computed tomography.

    Science.gov (United States)

    Nishiyama, Yukako; Tada, Keiji; Nishiyama, Yuichi; Mori, Hiroshi; Maruyama, Mitsunari; Katsube, Takashi; Yamamoto, Nobuko; Kanayama, Hidekazu; Yamamoto, Yasushi; Kitagaki, Hajime

    2016-11-01

    Some iterative reconstruction algorithms are useful for reducing the radiation dose in pediatric cardiac CT. A new iterative reconstruction algorithm (forward-projected model-based iterative reconstruction solution) has been developed, but its usefulness for radiation dose reduction in pediatric cardiac CT is unknown. To investigate the effect of the new algorithm on CT image quality and on radiation dose in pediatric cardiac CT. We obtained phantom data at six dose levels, as well as pediatric cardiac CT data, and reconstructed CT images using filtered back projection, adaptive iterative dose reduction 3-D (AIDR 3-D) and the new algorithm. We evaluated phantom image quality using physical assessment. Four radiologists performed visual evaluation of cardiac CT image quality. In the phantom study, the new algorithm effectively suppressed noise in the low-dose range and moderately generated modulation transfer function, yielding a higher signal-to-noise ratio compared with filtered back projection or AIDR 3-D. When clinical cardiac CT was performed, images obtained by the new method had less perceived image noise and better tissue contrast at similar resolution compared with AIDR 3-D images. The new algorithm reduced image noise at moderate resolution in low-dose CT scans and improved the perceived quality of cardiac CT images to some extent. This new algorithm might be superior to AIDR 3-D for radiation dose reduction in pediatric cardiac CT.

  16. Limited short-term effect of palliative radiation therapy on quantitative computed tomography-derived bone mineral density in femora with metastases

    Directory of Open Access Journals (Sweden)

    Florieke Eggermont, MSc

    2017-01-01

    Conclusions: Ten weeks after palliative radiation therapy in patients with femoral metastatic lesions, a limited increase in BMD was seen with no beneficial effect of MF over SF RT. BMD in lytic lesions was unchanged but slightly increased in mixed and blastic lesions.

  17. Radiation dose and imaging quality of abdominal computed tomography before and scan protocol adjustment: Single-institution experience in three years

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hwi Young; Choi, Joon Il; Jung, Seung Eun; Rha, Seong Eun; Oh, Nam Soon; Lee, Young Joon; Byun, Jae Young [Dept. of Radiology, Seoul St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    To compare radiation dose and image quality of abdominal CT for patients who underwent repeated CT examinations before and after adjustment of scan protocol. We compared radiation dose and image quality of repeated abdominal CT scans (at three-year-interval) of 50 patients with chronic liver disease, 50 patients with early gastric cancer, and 50 patients with uterine cancer. To reduce radiation dose, we optimized CT protocols by omitting unnecessary pre-contrast phase, reducing kVp, and setting higher noise index. Data of dose reports were collected. Objective image quality was evaluated for noise level, signal to noise ratio (SNR), and contrast noise ratio (CNR). For subjective image quality, we evaluated image noise, contrast, and overall diagnostic acceptability. The mean values of dose length product of 2011 CT scans compared to those of 2008 CT scans were 27.6% to 45.7%. The image noise level, SNR, and CNR were significantly (p < 0.05) worse in 2011 CT scans compared to 2008 CT scans. For subjective image quality, image noise was also significantly (p < 0.05) worse in 2011. However, CNR and diagnostic acceptability showed variable results. No CT scans were considered as unacceptable image.We modified abdominal CT protocols to reduce radiation exposure while trying to maintain diagnostic acceptability.

  18. Microthrix parvicella abundance associates with activated sludge settling velocity and rheology - Quantifying and modelling filamentous bulking

    DEFF Research Database (Denmark)

    Wágner, Dorottya Sarolta; Ramin, Elham; Szabo, Peter

    2015-01-01

    high variability, and no significant association with filamentous abundance. A two-dimensional, axi-symmetrical computational fluid dynamics (CFD) model was used to assess calibration scenarios to model filamentous bulking. Our results suggest that model predictions can significantly benefit from...... explicitly accounting for filamentous bulking by calibrating the hindered settling velocity function. Furthermore, accounting for the transient and compression settling velocity in the computational domain is crucial to improve model accuracy when modelling filamentous bulking. However, the case......The objective of this work is to identify relevant settling velocity and rheology model parameters and to assess the underlying filamentous microbial community characteristics that can influence the solids mixing and transport in secondary settling tanks. Parameter values for hindered, transient...

  19. Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications.

    Science.gov (United States)

    Schulz, Boris; Heidenreich, Ralf; Heidenreich, Monika; Eichler, Katrin; Thalhammer, Axel; Naeem, Naguib Nagy Naguib; Vogl, Thomas Josef; Zangos, Stefan

    2012-12-01

    To evaluate the radiation exposure for operating personnel associated with rotational flat-panel angiography and C-arm cone beam CT. Using a dedicated angiography-suite, 2D and 3D examinations of the liver were performed on a phantom to generate scattered radiation. Exposure was measured with a dosimeter at predefined heights (eye, thyroid, breast, gonads and knee) at the physician's location. Analysis included 3D procedures with a field of view (FOV) of 24 cm × 18 cm (8s/rotation, 20s/rotation and 5s/2 rotations), and 47 cm×18 cm (16s/2 rotations) and standard 2D angiography (10s, FOV 24 cm×18 cm). Measurements showed the highest radiation dose at the eye and thyroid level. In comparison to 2D-DSA (3.9 μSv eye-exposure), the 3D procedures caused an increased radiation exposure both in standard FOV (8s/rotation: 28.0 μSv, 20s/rotation: 79.3 μSv, 5s/2 rotations: 32.5 μSv) and large FOV (37.6 μSv). Proportional distributions were measured for the residual heights. With the use of lead glass, irradiation of the eye lens was reduced to 0.2 μSv (2D DSA) and 10.6 μSv (3D technique with 20s/rotation). Rotational flat-panel angiography and C-arm cone beam applications significantly increase radiation exposure to the attending operator in comparison to 2D angiography. Our study indicates that the physician should wear protective devices and leave the examination room when performing 3D examinations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Surprising radiation detectors

    CERN Document Server

    Fleischer, Robert

    2003-01-01

    Radiation doses received by the human body can be measured indirectly and retrospectively by counting the tracks left by particles in ordinary objects like pair of spectacles, glassware, compact disks...This method has been successfully applied to determine neutron radiation doses received 50 years ago on the Hiroshima site. Neutrons themselves do not leave tracks in bulk matter but glass contains atoms of uranium that may fission when hurt by a neutron, the recoil of the fission fragments generates a track that is detectable. The most difficult is to find adequate glass items and to evaluate the radiation shield they benefited at their initial place. The same method has been used to determine the radiation dose due to the pile-up of radon in houses. In that case the tracks left by alpha particles due to the radioactive decay of polonium-210 have been counted on the superficial layer of the window panes. Other materials like polycarbonate plastics have been used to determine the radiation dose due to heavy io...